
Innocent strategies as presheaves and interactive

equivalences for CCS (expanded version)

Tom Hirschowitz, Damien Pous

To cite this version:

Tom Hirschowitz, Damien Pous. Innocent strategies as presheaves and interactive equivalences
for CCS (expanded version). Scientific Annals of Computer Science, Alexandru Ioan Cuza
University Publishing House, 2012, 22 (1), pp.147-199. <10.7561/SACS.2012.1.147>. <hal-
00555144v3>

HAL Id: hal-00555144

https://hal.archives-ouvertes.fr/hal-00555144v3

Submitted on 12 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL Université de Savoie

https://core.ac.uk/display/47285081?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00555144v3

Innocent strategies as presheaves
and interactive equivalences for CCS1

Tom HIRSCHOWITZ2 and Damien POUS3

Abstract

Seeking a general framework for reasoning about and comparing
programming languages, we derive a new view of Milner’s CCS [34].
We construct a category E of plays, and a subcategory V of views. We
argue that presheaves on V adequately represent innocent strategies,
in the sense of game semantics [20]. We equip innocent strategies with
a simple notion of interaction.

We then prove decomposition results for innocent strategies, and,
restricting to presheaves of finite ordinals, prove that innocent strate-
gies are a final coalgebra for a polynomial functor [27] derived from
the game. This leads to a translation of CCS with recursive equations.

Finally, we propose a notion of interactive equivalence for innocent
strategies, which is close in spirit to Beffara’s interpretation [1] of
testing equivalences [7] in concurrency theory. In this framework, we
consider analogues of fair testing and must testing. We show that
must testing is strictly finer in our model than in CCS, since it avoids
what we call ‘spatial unfairness’. Still, it differs from fair testing, and
we show that it coincides with a relaxed form of fair testing.

Note: This is an expanded version of our ICE ’11 paper [19]. It notably
simplifies a few aspects of the development, and corrects the mistaken state-
ment that fair and must testing coincide in our semantic framework. Must
testing only coincides with a relaxed variant of fair testing. This version
also subsumes a previous preprint, providing more compact proofs.

1 Overview

Theories of programming languages Research in programming lan-
guages is mainly technological. Indeed, it heavily relies on techniques which

1Both authors have been partially funded by the French projects CHoCo (ANR-07-
BLAN-0324), PiCoq (ANR-10-BLAN-0305-01), and CNRS PEPS CoGIP.

2CNRS, Université de Savoie, France, tom.hirschowitz@univ-savoie.fr
3CNRS, Laboratoire d’Informatique de Grenoble, France, damien.pous@ens-lyon.fr

are ubiquitous in the field, but almost never formally made systematic. Typ-
ically, the definition of a language then quotiented by variable renaming (α-
conversion) appears in many theoretical papers about functional program-
ming languages. Why isn’t there yet any abstract framework performing
these systematic steps for you? Because the quest for a real theory of pro-
gramming languages is not achieved yet, in the sense of a corpus of results
that actually help developing them or reasoning about them. However,
many attempts at such a theory do exist.

A problem for most of them is that they do not account for the dynam-
ics of execution, which limits their range of application. This is for example
the case of Fiore et al.’s second-order theories [10, 15, 16]. A problem for
most of the other theories of programming languages is that they neglect
denotational semantics, i.e., they do not provide a notion of model for a
given language. This is for example the case of Milner et al.’s bigraphs [22],
or of most approaches to structural operational semantics [37], with the
notable exception of the bialgebraic semantics of Turi and Plotkin [41]. A
recent, related, and promising approach is Kleene coalgebra, as advocated
by Bonsangue et al. [2]. Finally, higher-order rewriting [36], and its seman-
tics in double categories [12] or in cartesian closed 2-categories [18], is not
currently known to adequately account for process calculi.

Towards a new approach The most relevant approaches to us are bial-
gebraic semantics and Kleene coalgebra, since the programme underlying
the present paper concerns a possible alternative. A first difference, which
is a bit technical but may be of importance, is that both bialgebraic se-
mantics and Kleene coalgebra are based on labelled transition systems
(LTSs), while our approach is based on reduction semantics. This seems
relevant, since reduction semantics is often considered more primitive than
LTSs, and much work has been devoted to deriving the latter from the
former [40, 29, 22, 39, 38].

More generally, our approach puts more emphasis on interaction be-
tween programs, and hence is less interesting in cases where there is no
interaction. A sort of wild hope is that this might lead to unexpected mod-
els of programming languages, e.g., physical ones. This could also involve
finding a good notion of morphism between languages, and possibly propose
a notion of compilation. At any rate, the framework is not set up yet, so
investigating the precise relationship with bialgebraic semantics and Kleene
coalgebra is deferred to further work.

How will this new approach look like? Compared to such long-term
goals, we only take a small step forward here, by considering a particular
case, namely Milner’s CCS [34], and providing a new view of it. This view
borrows ideas from the following lines of research: game semantics [20], and
in particular the notion of an innocent strategy, graphical games [8, 17],
Krivine realisability [28], ludics [13], testing equivalences in concurrency [7,
1], the presheaf approach to concurrency [24, 25], and sheaves [32]. It is
also, more remotely, related to graph rewriting [9] and computads [4].

From strategies to presheaves Game semantics [20] has provided fully
complete models of programming languages. It is based on the notion of
a strategy, i.e., a set of plays in some game, satisfying a few conditions.
In concurrency theory, taking as a semantics the set of accepted plays, or
‘traces’, is known as trace semantics. Trace semantics is generally considered
too coarse, since it equates, for a most famous example, the right and the
wrong coffee machines, a.pb ` cq and ab ` ac [34].

An observation essentially due to Joyal, Nielsen, and Winskel is that
strategies, i.e., prefix-closed sets of plays, are actually particular presheaves
of booleans on the category C with plays as objects, and prefix inclusions as
morphisms. By presheaves of booleans on C we here mean functors Cop Ñ 2,
where 2 is the preorder category 0 ď 1. If a play p is accepted, i.e., mapped
to 1, then its prefix inclusions q ãÑ p are mapped to the unique morphism
with domain 1, i.e., id1, which entails that q is also accepted.

Following Joyal, Nielsen, and Winskel, we observe that considering
instead presheaves (of sets) on C yields a much finer semantics. So, a play
p is now mapped to a set Sppq, to be thought of as the set of ways for p

to be accepted by the strategy S. Considering the set of players as a team,
Sppq may also be thought of as the set of possible states of the team after
playing p – which is empty if the team never accepts to play p.

This presheaf semantics is fine enough to account for bisimilarity [24,
25]. Indeed, presheaves are essentially forests with edges labelled by moves.
For example, in the setting where plays are finite words on an alphabet, the
wrong coffee machine may be represented by the presheaf S defined by the
equations on the left and pictured as on the right:

Spǫq “ t‹u,
Spaq “ tx, x1u,
Spabq “ tyu,
Spacq “ ty1u,

Spǫ ãÑ aq “ tx ÞÑ ‹, x1 ÞÑ ‹u,
Spa ãÑ abq “ ty ÞÑ xu,
Spa ãÑ acq “ ty1 ÞÑ x1u :

‹

x x1

y y1.

a a

b c

So, in summary: the standard notion of strategy may be generalised to
account for branching equivalences, by passing from presheaves of booleans
to presheaves of sets.

Multiple players Traditional game semantics mostly emphasises two-
player games. There is an implicit appearance of three-player games in
the definition of composition of strategies, and of four-player games in the
proof of its associativity, but these games are never given a proper status.
A central idea of graphical games, and to a lesser extent of ludics, is the
emphasis on multiple-player games.

Here, there first is a base category B of positions, whose objects repre-
sent configurations of players. Since the game represents CCS, it should be
natural that players are related to each other via the knowledge of communi-
cation channels. So, roughly, positions are bipartite graphs with vertex sets
players and channels, and edges from channels to players indicating when
the former is known to the latter. As a first approximation, morphisms of
positions may be thought of as just embeddings of such graphs.

Second, there is a category E of plays, with a functor to B sending
each play to its initial position. Plays are represented in a more flexible
way than just sequences of moves, namely using a kind of string diagrams.
This echoes the idea [33] that two moves may be independent, and that
plays should not depend on the order in which two independent moves are
performed. Furthermore, our plays are a rather general notion, allowing,
e.g., to focus on a given player. Morphisms of plays account both for:

• prefix inclusion, i.e., inclusion of a play into a longer play, and

• position enlargement, e.g., inclusion of information about some players
into information about more players.

Now, restricting to plays over a given initial position X, and then
taking presheaves on this category EX , we have a category of strategies on
X.

Innocence A fundamental idea of game semantics is the notion of inno-
cence, which says that players have a restricted view of the play, and that
their actions may only depend on that view.

We implement this here by defining a subcategory VX ãÑ EX of views
on X, and deeming a presheaf F on EX innocent when it is determined by

its restriction F 1 to VX , in the sense that it is isomorphic to the right Kan
extension [31] of F 1 along V

op
X ãÑ E

op
X .

We then define innocent strategies to be just presheaves on VX , and
view them as (naive) strategies via the (essential) embedding yVX ãÑ xEX

induced by right Kan extension.

Interaction For each position X, we thus have a category SX “ yVX of
innocent strategies. In game semantics, composition of strategies is achieved
in two steps: interaction and hiding. Essentially, interaction amounts to
considering the three-player game obtained by letting two two-player games
interact at a common interface. Hiding then forgets what happens at that
interface, to recover a proper two-player game.

We have not yet investigated hiding in our approach, but, thanks to
the central status of multiple-player games, interaction is accounted for in a
very streamlined way. For any position X with two subpositions X1 ãÑ X

andX2 ãÑ X such that each player is in either X1 or X2, but none is in both,
given innocent strategies F1 P SX1

and F2 P SX2
, there is a unique innocent

strategy, the amalgamation rF1, F2s of F1 and F2, whose restrictions to X1

and X2 are F1 and F2.

Amalgamation in this sense models interaction in the sense of game
semantics, and, using the correspondence with presheaves on EX given by
right Kan extension, it is the key to defining interactive equivalences.

CCS Next, we define a translation of CCS terms with recursive equations
into innocent strategies. This rests on spatial and temporal decomposition
results for innocent strategies. Spatial decomposition says that giving a
strategy on a position X is the same as giving a strategy for each of its
players. Temporal decomposition says that a strategy is determined up
to isomorphism by its set of initial states, plus what remains of each of
them after each basic move. Restricting to presheaves of finite ordinals, we
also prove that innocent strategies form a final coalgebra for a polynomial
functor (in the sense of Kock [27]) derived from the game, thus hinting at
links with Kleene coalgebra. It is then easy to translate finite CCS into
the language induced by our polynomial functor, and to finally extend the
translation to CCS with recursive equations via infinite unfolding.

A natural question is then: which equivalence does this translation
induce on CCS terms? As explained in the following paragraph, we provide
some preliminary results about interactive equivalences, but essentially leave

the question open.

Interactive equivalences Returning to our model, we then define a no-
tion of interactive equivalence, which is close in spirit to both testing equiv-
alences in concurrency theory and Krivine realisability and ludics.

The game, as sketched above, allows interacting with players which are
not part of the considered position. E.g., a player in the considered position
X may perform an input which is not part of any synchronisation. A test
for an innocent strategy F on X is then, roughly, an innocent strategy G on
a position X 1 with the same channels as X. To decide whether F passes the
test G, we consider a restricted variant of the game on the ‘union’ X Y X 1,
forbidding any interaction with the outside. We call that variant the closed-
world game.

Then F passes G iff the amalgamation rF,Gs, right Kan extended
to EXYX1 and then restricted to the closed-world game, belongs to some
initially fixed class of strategies, KKXYX1 . Finally, two innocent strategies F
and F 1 on X are equivalent when they pass the same tests.

Here are two examples for KK. Consider a tick move, fixed in advance.
Then call successful all plays containing at least one tick, and accordingly
call successful all states reached after a successful play. One may consider:

• KKm, consisting of strategies whose maximal states (those that admit
no strict extensions) are all successful; the tick move plays a rôle anal-
ogous to the daimon in ludics: it is the only move which is observable
from the outside;

• KKf , consisting of strategies in which all states on finite plays admit a
successful extension.

From the classical concurrency theory point of view on behavioural equiva-
lences, the first choice clearly mimicks must testing equivalence, while the
second mimicks fair testing equivalence [35, 3].

Consider the processes Ω and Ω|a, where Ω is a process doing infinitely
many silent transitions. These processes are intuitively quite different: the
latter can do an output on the channel a, while the former cannot. They are
however equated by standard must testing equivalence: the infinite trace
provided by Ω may prevent the output prefix from being performed. In
fact, must testing equivalence heavily relies on the potential unfairness of
the scheduler. In the literature, this peculiar behaviour actually motivates
the introduction of fair testing equivalence.

In contrast, our notion of play is more flexible than standard traces, so
that our counterpart to must testing equivalence actually distinguishes these
two processes: the infinite play where the output prefix is not performed is
not maximal, so that the corresponding unfair behaviour is not taken into
account. In other words, thanks to our notion of play, the rather natural
notion of must testing already avoids what we call ‘spatial unfairness’. How-
ever, must testing does not coincide with fair testing in our setting, because
there are other sources of unfairness, that are not handled properly. Tech-
nically, we prove that KKm coincides with the set of strategies whose states
all admit a successful extension. However, the restriction to finite plays in
the definition of KKf is required to rule out other sources of unfairness.

Summary In summary, our approach emphasises a flexible notion of
multiple-player play, encompassing both views in the sense of game seman-
tics, closed-world plays, and intermediate notions. Strategies are then de-
scribed as presheaves on plays, while innocent strategies are presheaves on
views. Innocent strategies admit a notion of interaction, or amalgamation,
and are embedded into strategies via right Kan extension. This allows a
notion of testing, or interactive equivalence by amalgamation with the test,
right Kan extension, and finally restriction to closed-world.

Our main technical contributions are then a translation of CCS terms
with recursive equations into innocent strategies, and the study of fair and
must equivalences in our setting.

Perspectives Our next task is clearly to tighten the link with CCS. Namely,
we should explore which equivalence on CCS is induced via our translation,
for a given interactive equivalence. We will start with KKf . Furthermore,
the very notion of interactive equivalence might deserve closer considera-
tion. Its current form is rather ad hoc, and one could hope to see it emerge
more naturally from the game. For instance, the fixed class KK of ‘successful’
strategies should probably be more constrained than is done here. Also, the
paradigm of observing via the set of successful tests might admit sensible
refinements, e.g., probabilistic ones.

Another possible research direction is to tighten the link with ‘graphical’
approaches to rewriting, such as graph rewriting or computads. E.g., our
plays might be presented by a computad [14], or be the bicategory of rewrite
sequences up to shift equivalence, generated by a graph grammar in the sense
of Gadducci et al. [11]. Both goals might require some technical adjustments,

however. For computads, we would need the usual yoga of U-turns to flexibly
model our positions; e.g., zigzags of U-turns are usually only equal up to
a higher-dimensional cell, while they would map to equal positions in our
setting. For graph rewriting, the problem is that our positions are not
exactly graphs (e.g., the channels known to a player are linearly ordered).

Other perspectives include the treatment of more complicated calculi
like π or λ. In particular, calculi with duplication of terms will pose a
serious challenge. An even longer-term hope is to be able to abstract over
our approach. Is it possible to systematise the process starting from a
calculus as studied in programming language theory, and generating its
strategies modulo interactive equivalence? If this is ever understood, the
next question is: when does a translation between two such calculi preserve
a given interactive equivalence? Finding general criteria for this might have
useful implications in programming languages, especially compilation.

Notation Throughout the paper, we abusively identify n with t1 . . . nu,
for readability. So, e.g., i P n means i P t1, . . . , nu.

FC FC 1

GD GD1

F pfq

u u1

Gpgq

The various categories and functors constructed
in the development are summed up with a short de-

scription in Table 1. There, given two functors C
F
ÝÑ

E
G

ÐÝ D, we denote (slightly abusively) by C ÓE D the
comma category: it has as objects triples pC,D, uq with C P C, D P D,
and u : F pCq Ñ GpDq in E, and as morphisms pC,D, uq Ñ pC 1,D1, u1q pairs
pf, gq making the square above commute. Also, when F is the identity on
C and G : 1 Ñ C is an object C of C, this yields the usual slice category,
which we abbreviate as C{C. Finally, the category of presheaves on any
category C is denoted by pC “ rCop ,Sets.

We denote by obpCq the set of objects of any small category C. For any
functor F : C Ñ D, we denote by F

op : Cop Ñ D
op the functor induced on

opposite categories, defined exactly as F on both objects and morphisms.
Also, recall that an embedding of categories is an injective-on-objects, faith-
ful functor. This admits the following generalisation: a functor F : C Ñ D

is essentially injective on objects when FC – FC 1 implies C – C 1. Any
faithful, essentially injective on objects functor is called an essential embed-
ding.

Category Description of its objects

pC ‘diagrams’

B ãÑ pC positions

E ãÑ pB ÓpC
pCq plays

EX “ pE ÓB pB{Xqq plays on a position X

VX ãÑ EX views on X

SX “ yVX innocent strategies on X

W ãÑ E closed-world plays
WpXq closed-world plays on X

Table 1: Summary of categories and functors

2 Plays as string diagrams

We now describe our approach more precisely, starting with the category of
multiple-player plays. For the sake of clarity, we first describe this category
in an informal way, before giving the precise definition (Section 3).

2.1 Positions

Since the game represents CCS, it should be natural
that players are related to each other via the knowledge
of communication channels. This is represented by a
kind of4 finite, bipartite graph: an example position is
on the right. Bullets represent players, circles represent channels, and edges
indicate when a player knows a channel. The channels known by a player
are linearly ordered. Formally, as explained in Section 3, positions are
presheaves over a certain category C1. Morphisms of positions are natural
transformations, which are roughly morphisms of graphs, mapping players
to players and channels to channels. In full generality, morphisms thus do
not have to be injective, but include in particular embeddings of positions in
the intuitive sense. Positions and morphisms between them form a category
B.

4Only ‘a kind of’, because, as mentioned above, the channels known to a player are
linearly ordered.

2.2 Moves

Plays will be defined as glueings of moves between positions. Moves are
derived from the very definition of CCS, as we now sketch. The diagrams
we draw in this section will be given a very precise combinatorial definition
in Section 3.

Let us start with the forking move, which corresponds to parallel com-
position in CCS: a process (the player) forks into two sub-processes. In the
case of a player knowing two channels, the forking move is represented by
the diagram

,

(1)

to be thought of as a move from the bottom position X

(with one player p) to the top position Y

.

(with two players, which we call the ‘avatars’ of p). The left- and right-hand
borders are just channels evolving in time, not noticing that the represented
player forks into two. The surfaces spread between those vertical lines rep-
resent links (edges in the involved positions) evolving in time. For example,
each link here divides into two when the player forks, thus representing the
fact that both of the avatars retain knowledge of the corresponding channel.
There is of course an instance πn of forking for each n, according to the
number of channels known to the player. As for channels known to a player,
the players and channels touching the black triangle are ordered: there are
different ‘ports’ for the initial player and its two avatars.

We then have a tick move ♥n, whose role is to define successful plays,
and a move for the channel creation or restriction of CCS, here νn. In the
case where the player knows two channels, they are graphically represented
as

♥
and

respectively. As expected, there is an instance of each of these two moves
for each number n of channels known to the player.

We also need a move to model CCS-like synchronisation, between two
players. For all n and m, representing the numbers of channels known to
the players involved in the synchronisation, and for all i P n, j P m, there is
a synchronisation τn,i,m,j, represented, in the case where one player outputs
on channel 3 P 3 and the other inputs on channel 1 P 2, by

.

As we shall see in Section 3, the dotted wire in the picture is actually a
point in the formal representation (i.e., an element of the corresponding
presheaf).

The above four kinds of moves (forking, tick, channel creation, and
synchronisation) come from the reduction semantics of CCS. We classify
these as closed-world moves, since they correspond to the evolution of a
group of players in isolation.

We however need a more fine-grained structure for moves: moves whose
final position has more than one player (forking and synchronisation) must
be decomposed into basic moves, to get an appropriate notion of view.

We introduce two sub-moves for forking: left and right half-forking. In
the case where the player knows two channels, they are represented by the
following diagrams, respectively:

and

.

(2)

These sub-moves represent what each of the ‘avatars’ of the forking player
sees of the move. We call πl

n and πr
n the respective instances of the left-hand

and right-hand basic moves for a player knowing n channels. Formally,
there will be injections from the left and right half-forking moves to the
corresponding forking moves.

We finally decompose synchronisation into an input move and an out-
put move: a.P and a.P in CCS become on,i and ιn,i here (where n is the
number of known channels, i P t1 . . . nu is the index of the channel bearing
the synchronisation). Here, output on the right-hand channel and input on
the left-hand channel respectively look like

and

.

(3)

Like with forking, there will be injections from the input and output moves
to the corresponding synchronisation moves.

All in all, there are three classes of moves, which we summarise in
Table 2.

• Tick, channel creation, half-forking, and input/output moves are basic
moves: they evolve from a position with exactly one player to another
position with exactly one player. These moves are used to define views
later on.

• Forking, synchronisation, tick and channel creation moves are closed-
world moves: they correspond to the case where a group of players
evolves on its own, in isolation; they are central to the notion of inter-
active equivalence.

• We need a third class of moves, called full, which consists of forking,
input, output, tick and channel creation. They involve a single player
and all of its avatars. They appear, e.g., in the statement of Lemma 12,
which is a partial correctness criterion for closed-world plays.

Formally, we define moves as cospans X ãÑ P Ðâ Y in the category of
diagrams (technically a presheaf category pC—see Section 3), where X is the
initial position and Y the final one. Both legs of the cospan are actually
monic morphisms in pC, as will be the case for all cospans considered here.

Basic Full Closed-world

Left half-forking
Right half-forking

Forking Forking

Input
Output

Input
Output

Synchronisation

Channel creation Channel creation Channel creation

Tick Tick Tick

Table 2: Summary of classes of moves

2.3 Plays

We now sketch how plays are defined as glueings of moves. We start with
the following example, depicted in Figure 1. The initial position consists
of two players p1 and p2 sharing knowledge of a channel a, each of them
knowing another channel, resp. a1 and a2. The play consists of four moves:
first p1 forks into p1,1 and p1,2, then p2 forks into p2,1 and p2,2, and then
p1,1 does a left half-fork into p1,1,1; finally p1,1,1 synchronises (as the sender)
with p2,1. Now, we reach the limits of the graphical representation, but the
order in which p1 and p2 fork is irrelevant: if p2 forks before p1, we obtain
the same play. This means that glueing the various parts of the picture in
Figure 1 in different orders formally yields the same result (although there
are subtle issues in representing this result graphically in a canonical way).

Let us now sketch a definition of plays. Recall that moves may be seen
as cospans X ãÑ M Ðâ Y , and consider an extended notion of move, which
may occur in a position not limited to players involved in the move. For
example, the moves in Figure 1 are extended moves in this sense.

Definition 1 A play is an embedding X0 ãÑ U in the category pC of dia-
grams, isomorphic to a possibly denumerable ‘composition’ of moves in the
(bi)category CospanppCq of cospans in pC, i.e., obtained as a colimit:

X0 X1 . . . Xn Xn`1 Xn`2 . . .

M0 . . . Mn Mn`1 . . .

U,

.
p1 p2aa1 a2

Figure 1: An example play

where each Xi ãÑ Mi Ðâ Xi`1 is an extended move.

We often denote plays just by U , leaving the embedding X ãÑ U implicit.

Remark 1 For finite plays, one might want to keep track not only of the
initial position, but also of the final position. This indeed makes sense. Fi-
nite plays then compose ‘vertically’, and form a double category. But infinite
plays do not really have any final position, which explains our definition.

U V

X Y.h

kLet a morphism pX ãÑ Uq Ñ pY ãÑ V q of plays be
a pair ph, kq making the diagram on the right commute in
pC. This permits both inclusion ‘in width’ and ‘in height’.
E.g., the play consisting of the left-hand basic move in (2)
embeds in exactly two ways into the play of Figure 1. (Only two because the
image of the base position must lie in the base position of the codomain.)
We have:

Proposition 1 Plays and morphisms between them form a category E.

There is a projection functor E Ñ B mapping each play X ãÑ U to its base
position X. This functor has a section, which is an embedding B ãÑ E,
mapping each position X to the ‘identity’ play X ãÑ X on X.

Remark 2 (Size) The category E is only locally small. Since presheaves
on a locally small category are less well-behaved than on a small category,
we will actually consider a skeleton of E. Because E consists only of denu-
merable presheaves, this skeleton is a small category. Thus, our presheaves
in the next section may be understood as taken on a small category.

Remark 3 Plays are not very far from being just (infinite) abstract syn-
tax trees (or forests) ‘glued together along channels’. E.g., the play from
Figure 1 is the glueing of, say pπl

2pa.0qq|0 and a|0 along a.

2.4 Relativisation

If we now want to restrict to plays over a given base position X, we may
consider

Definition 2 Let the category EX have

• as objects pairs of a play Y ãÑ U and a morphism Y Ñ X,

• as morphisms pY ãÑ Uq Ñ pY 1 ãÑ U 1q all pairs ph, kq making the
diagram

U U 1

Y Y 1

X

k

h

commute in pC.

We will usually abbreviate U Ðâ Y Ñ X as just U when no ambiguity
arises. As for morphisms of positions, in full generality, h and k, as well as
the morphisms Y Ñ X, do not have to be injective.

Example 1 Let X be the position . The play
in Figure 1, say Y ãÑ U , equipped with the injection Y ãÑ X mapping the
two players of Y to the two leftmost players of X, is an object of EX .

One naively could imagine that the objects EX could just consist of
plays X ãÑ U on X. However, spatial decomposition, Theorem 1, relies on
our slightly more complex definition. E.g., still in Figure 1, this allows us
to distinguish between the identity view r2s r2s

p1
ãÝÑ X on p1 from the

identity view r2s r2s
p2ãÝÑ X on p2, which would otherwise not be possible.

3 Diagrams

In this section, we define the category on which the string diagrams of the
previous section are presheaves. The techniques used here date back at least
to Carboni and Johnstone [5, 6].

3.1 First steps

Let us first consider two small examples. It is well-known that directed
graphs form a presheaf category: consider the category C freely generated
by the graph with two vertices, say ‹ and r1s, and two edges d, c : ‹ Ñ r1s
between them. One way to visualise this is to compute the category of
elements of a few presheaves on C. Recall that the category of elements of
a presheaf F on C is the comma category y ÓpC F , where y is the Yoneda
embedding. Via Yoneda, it has as elements pairs pC, xq with C P obpCq and
x P F pCq, and morphisms pC, xq Ñ pD, yq morphisms f : C Ñ D in C such
that F pfqpyq “ x (which we abbreviate as y ¨ f “ x when the context is
clear).

Example 2 Consider the graph

0 1 2e e1

with three vertices 0, 1, and 2, and two edges e and e1.
This graph is represented by the presheaf F defined by the following

equations, whose category of elements is actually freely generated by the
graph on the right:

• F p‹q “ t0, 1, 2u,

• F pr1sq “ te, e1u,

• e ¨ d “ 0,

• e ¨ c “ 1,

• e1 ¨ d “ 1,

• e1 ¨ c “ 2,

1

e e1

0 2.

d

c d

c

This latter graph is not exactly the original one, but it does represent it.
Indeed, for each vertex we know whether it is in F p‹q or F pr1sq, hence
whether it represents a ‘vertex’ or an ‘edge’. The arrows all go from a
‘vertex’ v to an ‘edge’ e. They lie over d when v is the domain of e, and
over c when v is the codomain of e.

Multigraphs, i.e., graphs whose edges have a list of sources instead of
just one, may also be seen as a presheaves on the category freely generated
by the graph with

• as vertices: one special vertex ‹, plus for each natural number n a
vertex, say, rns; and

• for all n P N, n ` 1 edges ‹ Ñ rns, called d1, . . . , dn, and c.

It should be natural for presheaves on this category to look like multigraphs:
the elements of a presheaf F over ‹ are the vertices in the multigraph, the
elements over rns are the n-ary multiedges, and the action of the di’s give
the ith source of a multiedge, while the action of c gives its target.

Example 3 Similarly, computing a few categories of elements might help
visualising. As above, consider F defined by

• F p‹q “ t0, 1, 2, 3, 4, 5u,

• F pr1sq “ F pr0sq “ H,

• F pr2sq “ te1u,

• F pr3sq “ teu,

• F prn ` 4sq “ H,

• e ¨ c “ 0,

• e ¨ d1 “ 1,

• e ¨ d2 “ 2,

• e ¨ d3 “ 3,

• e1 ¨ c “ 1,

• e1 ¨ d1 “ 4,

• e1 ¨ d2 “ 5,

whose category of elements is freely generated by the graph:

0

e

1 2 3

e1

4 5.

c

d1

c

d2
d3

d1 d2

Now, this pattern may be extended to higher dimensions. Consider for
example extending the previous base graph with a vertex rm1, . . . ,mn; ps
for all natural numbers n, p,m1, . . . ,mn, plus edges

s1 : rm1s Ñ rm1, . . . ,mn; ps,
. . . ,

sn : rmns Ñ rm1, . . . ,mn; ps, and
t : rps Ñ rm1, . . . ,mn; ps.

Let now C be the free category on this extended graph. Presheaves on C

are a kind of 2-multigraphs: they have vertices, multiedges, and multiedges
between multiedges.

We could continue this in higher dimensions.

3.2 Constructing the base category

Our base category follows a very similar pattern. We start from a slightly
different graph: let G0 have just one vertex ‹; let G1, have one vertex ‹, plus
a vertex rns for each natural number n, plus n edges d1, . . . , dn : ‹ Ñ rns.
Let C0 and C1 be the categories freely generated by G0 and G1, respectively.
So, presheaves on C1 are a kind of hypergraphs with arity (since vertices
incident to a hyperedge are numbered). This is enough to model positions.

Example 4 The position drawn at the beginning of Section 2.1 may be
represented as the presheaf

• ‹ ÞÑ t1, 2, 3u,

• r2s ÞÑ tx, zu,

• r3s ÞÑ tyu,

• ÞÑ H,

• x ¨d1 “ 1,

• x ¨d2 “ 2,

• z ¨ d1 “ 2,

• z ¨ d2 “ 3,

• y ¨d1 “ 1,

• y ¨d2 “ 2,

• y ¨d3 “ 3,

whose category of elements is:

1 3

x y z

2.

d1 d1 d3 d2

d2
d2

d1

Now, consider the graph G2, which is G1 augmented with:

• for all n, vertices ♥n, π
l
n, π

r
n, νn,

• for all n and 1 ď i ď n, vertices on,i and ιn,i,

• for all n, edges s, t : rns Ñ ♥n, s, t : rns Ñ πl
n, s, t : rns Ñ πr

n, s : rns Ñ
νn, t : rn ` 1s Ñ νn,

• for all n and 1 ď i ď n, edges s, t : rns Ñ on,i, s, t : rns Ñ ιn,i.

We slightly abuse language here by calling all these t’s and s’s the same.
We could label them with their codomain, but we refrain from doing so for
the sake of readability.

Now, let C2 be the category generated by G2 and the relations s ˝ di “
t ˝ di for all n and 1 ď i ď n (for all sensible—common—codomains). The
intuition here is that for any basic move by a player with n channels, these
n channels remain the same after the move. This includes the case of νn,
for which the absence of any equation involving the new channel makes it
different from the others.

Example 5 Again, computing a few categories of elements is in order. For
example, the category of elements of (the representable presheaf on) ι´

3,3 is
the poset freely generated by the graph

td1

t td3

td2

id
ι´
3,3

sd1

s sd3

sd2,

to be compared with the corresponding pictures (3).

Example 6 Similarly, the category of elements of ν1 is the poset freely
generated by the graph

td1 t td2

idν1

sd1 s.

Note that only channel creation changes the number of channels known to
the player, and accordingly the corresponding morphism t has domain rn`1s.

Presheaves on C2 are enough to model basic moves, but since we want
more, we continue, as follows.

Let G3 be G2, augmented with:

• for all n, a vertex πn, and

• edges l : πl
n Ñ πn and r : πr

n Ñ πn.

Definition 3 Let C3 be the category generated by G3, the previous relations,
plus the relations l ˝ s “ r ˝ s.

The equation models the fact that a forking move should be played by just
one player. We also call s “ l ˝s “ r ˝s the common composite, which gives
a uniform notation for the initial player of full moves.

Example 7 The category of elements of π2 is the poset freely generated by
the graph

ltd1 “ rtd1 lt rt ltd2 “ rtd2

l idπ2
r

lsd1 “ rsd1 ls “ rs lsd2 “ rsd2.

The two views corresponding to left and right half-forking are subcategories,
and the object idπ2

‘ties them together’.

Presheaves on C3 are enough to model full moves; to model closed-world
moves, and in particular synchronisation, we continue as follows.

Let G4 be G3, augmented with, for all n, m, 1 ď i ď n, and 1 ď j ď m,

• a vertex τn,i,m,j, and

• edges ǫ : on,i Ñ τn,i,m,j and ρ : ιm,j Ñ τn,i,m,j (ǫ and ρ respectively
stand for ‘emission’ and ‘reception’).

Definition 4 Let C4 be the category generated by G4, the previous relations,
plus, for each on,i

ǫ
ÝÑ τn,i,m,j

ρ
ÐÝ ιm,j , the relation ǫ ˝ s ˝ di “ ρ ˝ s ˝ dj .

This equation is the exact point where we enforce that a synchronisation
involves an input and an output on the same channel, as announced in
Example 5.

Example 8 The category of elements of τ3,3,1,1 is the preorder freely gen-
erated by the graph

ǫtd1

ǫt ǫtd3 “ ρtd1 ρt ρtd2

ǫtd2

ǫ id τ3,3,2,1 ρ

ǫsd1

ǫs ǫsd3 “ ρsd1 ρs ρsd2

ǫsd2.

Again, the two views corresponding to ι`3,3 and ι´2,1 are subcategories, and
the new object τ3,3,2,1 ties them together.

3.3 Positions and moves

We have now defined the base category C “ C4 on which the string diagrams
of Section 2 are presheaves. More accurately we have defined a sequence
C0 ãÑ . . . ãÑ C4 of subcategories.

Positions Positions are finite presheaves on C1, or equivalently, finite
presheaves on C4 empty except over C1.

Moves Basic moves should be essentially representable presheaves on ob-
jects in obpC2qz obpC1q. Recall however that basic moves are defined as
particular cospans in pC. This is also easy: in the generating graph G2,
each such object c has exactly two morphisms s and t into it, from ob-
jects, say, rnss and rnts, respectively. By Yoneda, these induce a cospan

rnss
s

ÝÑ c
t

ÐÝ rnts in pC, which is the desired cospan. (Observe, again, that
only νn has ns ‰ nt.)

Similarly, full moves either are basic moves, or are essentially repre-
sentable presheaves on objects in obpC3qz obpC1q, i.e., representables on
some πn. To define the expected cospan, first observe that by the equation

ls “ rs, we obtain an morphism rns
s

ÝÑ πl
n

l
ÝÑ πn, equal to rs, in pC. This

will form the first leg of the cospan. For the other, observe that for each
n and i P n, we obtain, by the equations ltdi “ lsdi “ rsdi “ rtdi and by
Yoneda, that the outermost part of

n ¨ ‹ rns

rns n|n πr
n

πl
n πn

rdisiPn

rdisiPn
t

t
r

l

t

(4)

commutes in pC, where n ¨ ‹ denotes an n-fold coproduct of ‹. Letting n|n
be the induced pushout, and the dashed morphism t be obtained by its

universal property, we obtain the desired cospan rns
ls
ÝÑ πn

t
ÐÝ n|n.

Finally, closed-world moves either are full moves, or are essentially
representable presheaves on some τn,i,m,j. To define the expected cospan,
we proceed as in Figure 2: compute the pushout ni |jm, and infer the dashed

morphisms s1 and t1 to obtain the desired cospan ni |jm
s1

ÝÑ τn,i,m,j
t1

ÐÝ ni |jm.

Remark 4 (Isomorphisms) Moves are particular cospans in pC. For cer-
tain moves, the involved objects are representable, but not for others, like
forking or synchronisation, whose final position is not representable. In the
latter cases, our definition thus relies on a choice, e.g., of pushout in (4).
Thus, let us be completely accurate: a move is a cospan which is isomorphic
to one of the cospans chosen above, in pC¨Ð¨Ñ¨, i.e., the category of functors

‹ rms

rns n i |j m

‹ ιm,j

on,i τn,i,m,j

‹ rms

rns n i |j m

t

s

di

dj

di

dj

di

dj

t

s

t1

s1

Figure 2: Construction of the synchronisation move

from the category ¨ Ð ¨ Ñ ¨ (generated by the graph with three objects and
an edge from one to each of the other two) to pC.

3.4 Extended moves, plays, and relativisation

The most delicate part of our formalisation of Section 3 is perhaps the
passage from moves to extended moves. Recall from the paragraph above
Definition 1 that an extended move should be like a move occurring in a
larger position.

Moves with interfaces To formalise this idea, we first equip moves with
interfaces, as standard in graph rewriting [23]. Since moves are cospans, one
might expect that interfaces are cospans too. This may be done, but there
is a simpler, equivalent presentation. The route we follow here might have
to be generalised in order to handle more complex calculi than CCS, but let
us save the complications for later work.

Here, we define an interface for a cospan X Ñ M Ð Y to consist of a
presheaf I and morphisms X Ð I Ñ Y such that

I Y

X M

(5)

commutes, and I has dimension 0, i.e., is empty except over C0, i.e., consists
only of channels.

Definition 5 A cospan equipped with an interface is called a cospan with
interface.

Moves are particular cospans, and we now equip them with canonical
interfaces: all moves except channel creation preserve the set of channels,
the interface is then n ¨ ‹, with the obvious inclusion. For example, the less
obvious case is πn: we choose

n ¨ ‹ n|n

rns πn,

where the upper map is as in (4). For channel creation, we naturally choose

n ¨ ‹ rn ` 1s

rns νn.

rdisiPn

Definition 6 A move with interface is one of these cospans with interface.
The basic, full, or closed-world character is retained from the underlying
move.

Extended moves We now plug moves with interfaces into contexts, in
the following sense.

Definition 7 A context for a cospan with interface (5) is a position Z,
equipped with a morphism I Ñ Z.

From any cospan with interface µ as in (5) and context C : I Ñ Z, we
construct the cospan Crµs as in:

Y Y 1

M M 1

I Z

X X 1.

C

I.e., we push the available morphisms out of I along C, and infer the dashed
morphisms, which form the desired cospan.

Definition 8 An extended move is a cospan of the shape Crµs, for any
move with interface µ and context C as above.

Example 9 Recall that r2s is a position with one player knowing two chan-
nels. Recall from Figure 2 the pushout

‹ r2s

r2s 2 2 |1 2,

d1

d2

p1

p2

equivalently obtained as the pushout

‹ ` ‹ ‹ ` r2s

r2s 2 2 |1 2.

id‹`d1

rd1,d2s

p1

ra1,p2s

The base position of Figure 1 is thus 2 2 |1 2. Recall also from (4) that
2|2 denotes the position with two players both knowing two channels. Now,
we have the forking move r2s ãÑ π2 Ðâ 2|2. Equipping it with the interface

rd1, d2s : ‹ `‹ Ñ r2s,

and putting it in the context id‹ ` d1 : ‹ `‹ Ñ ‹ ` r2s, (which happens to be
the same as the interface), we obtain

2|2 p2|2q 2 |1 2

π2 M

‹ ` ‹ ‹ ` r2s

r2s 2 2 |1 2.
rd1,d2s

id‹`d1

This formally constructs the first layer of Figure 1. Constructing the whole
play would be a little too verbose to be included here, but essentially straight-
forward.

Plays and relativisation We may now read Definition 1 again, this time
in the formal setting, to define plays. Similarly, the definition of morphisms
now makes rigorous sense, as well as Proposition 1.
Proof of Proposition 1: E is the full subcategory of the arrow category
of pC whose objects are plays. l

Similarly, Section 2.4 now makes rigorous sense.

4 Innocent strategies as sheaves

Now that the category of plays is defined, we move on to defining innocent
strategies. There is a notion of a Grothendieck site [32], which consists
of a category equipped with a (generalised) topology. On such sites, one
may define a category of sheaves, which are very roughly the presheaves
that are determined locally w.r.t. the generalised topology. We claim that
there is a topology on each EX , for which sheaves adequately model innocent
strategies. Fortunately, in our setting, sheaves admit a simple description, so
that we can avoid the whole machinery. But sheaves were the way we arrived
at the main ideas presented here, because they convey the right intuition:
plays form a Grothendieck site, and the states of innocent strategies should
be determined locally.

In this section, we first define innocent strategies, and state the spatial
and temporal decomposition theorems. We then present our coalgebraic
interpretation of innocent strategies, i.e., we define a polynomial endofunc-
tor F, and show that presheaves of finite ordinals on views form a final

F-coalgebra. We then derive from this a formal language and its interpreta-
tion in terms of innocent strategies. We finally use this language to translate
CCS with recursive equations into innocent strategies.

4.1 Innocent strategies

Definition 9 A view is a finite, possibly empty ‘composition’ rns ãÑ V of
(extended) basic moves in CospanppCq, i.e., a play in which all the cospans
are basic moves.

When the composition is empty, we obtain rns ãÑ rns, the identity view on
rns. We also note in passing that empty presheaves cannot be views, i.e.,
X ãÑ H is never a view.

Example 10 Forking (1) has two non-trivial views, namely the (left legs
of) basic moves (2). Each of them embeds into forking:

.

Example 11 In Figure 1, the leftmost branch contains a view consisting of
three basic moves: two πl

2 and an output.

Definition 10 For any position X, let VX be the full subcategory of EX

consisting of views.

More precisely, VX consists of spans U Ðâ Y Ñ X where Y ãÑ U is a view.

Definition 11 Let the category SX of innocent strategies on X be the cat-
egory yVX of presheaves on VX .

A possible interpretation is that for a presheaf F P yVX and view V P VX ,
F pV q is the set of possible states of the strategy F after playing V .

It might thus seem that we could content ourselves with defining only
views, as opposed to plays. However, in order to define interactive equiv-
alences in Section 5, we need to view innocent strategies as (particular)
presheaves on the whole of EX .

C D

E

F

G

H

K

α1

ε

α

The connection is as follows. Recall
from MacLane [31] the notion of right Kan
extension. Given functors F and G as on
the right, a right Kan extension RanF pGq of
G along F is a functor H : D Ñ E, equipped
with a natural transformation ε : HF Ñ G,
such that for all functorsK : D Ñ E and transformations α : KF Ñ G, there
is a unique α1 : K Ñ H such that α “ ε ‚ pα1 ˝ idF q, where ‚ is vertical com-
position of natural transformations. Now, precomposition with F induces a
functor CatpF,Eq : CatpD,Eq Ñ CatpC,Eq, where CatpD,Eq is the category
of functors D Ñ E and natural transformations between them. When E is
complete, right Kan extensions always exist (and an explicit formula for our
setting is given below), and choosing one of them for each functor C Ñ E

induces a right adjoint to CatpF,Eq. Furthermore, it is known that when F

is full and faithful, then ε is a natural isomorphism, i.e., HF – G.

Proposition 2 If F is full and faithful, then RanF is a full essential em-
bedding.

Proof: First, let us show that RanF is essentially injective on objects.
Indeed, assume H “ RanF pGq, RanF pG1q “ H 1, and i : H Ñ H 1 is an
isomorphism with inverse k. We must construct an isomorphism G – G1.
Let j : G Ñ G1 be εG1 ‚ piF q ‚ ε´1

G . Similarly, let l : G1 Ñ G be εG ‚ pkF q ‚ ε´1

G1 .
We have

l ‚ j “ εG ‚ pkF q ‚ ε´1

G1 ‚ εG1 ‚ piF q ‚ ε´1

G

“ εG ‚ pkF q ‚ piF q ‚ ε´1

G

“ εG ‚ ppk ‚ iq ˝ F q ‚ ε´1

G

“ εG ‚ ε´1

G

“ idG.

Similarly, j ‚ l “ idG1 and we have G – G1.

To see that RanF is full, observe that for any i : H Ñ H 1, with H “
RanF pGq and H 1 “ RanF pG1q, j “ εG1 ‚ piF q ‚ ε´1

G is an antecedent of i by
RanF . Indeed, by definition, RanF pjq is the unique i1 : H Ñ H 1 such that
εG1 ‚ pi1F q “ j ‚ εG. But the latter is equal to εG1 ‚ piF q, so i1 “ i.

Finally, to show that RanF is faithful, consider G,G1 : C Ñ E and two
natural transformations i, j : G Ñ G1 such that RanF piq “ RanF pjq “ k.
Then, by construction of k, we have

i ‚ εG “ εG1 ‚ pkF q “ j ‚ εG.

But, εG being an isomorphism, this implies i “ j as desired. l

Returning to views and plays, the embedding iX : VX ãÑ EX is full, so
right Kan extension along i

op
X : Vop

X Ñ E
op
X induces a full essential embedding

Raniop
X
: yVX Ñ xEX . The (co)restriction of this essential embedding to its

essential image thus yields an essentially surjective, fully faithful functor,
i.e., an equivalence of categories:

Proposition 3 The category SX is equivalent to the essential image of
Raniop

X
.

The standard characterisation of right Kan extensions as ends [31] yields,

for any F P yVX and U P EX :

Raniop
X

pF qpUq “

ż

V PVX

F pV qEX pV,Uq,

i.e., giving an element of Raniop
X

pF q on a play U amounts to giving, for

each view V and morphism V Ñ U , an element of F pV q, satisfying some
compatibility conditions. In Example 12 below, we compute an example
right Kan extension.

The interpretation of strategies in terms of states extends: for any
presheaf F P xEX and play U P EX , F pUq is the set of possible states of the
strategy F after playing U . That F is in the image of Raniop

X
amounts to

F pUq being a compatible tuple of states of F after playing each view of U .

Example 12 Here is an example of a presheaf F P xEX which is not inno-
cent, i.e., not in the image of Raniop

X
. Consider the position X consisting

of three players, say x, y, z, sharing a channel, say a. Let Xx be the sub-
position with only x and a, and similarly for Xy, Xz, Xx,y, and Xx,z. Let
Ix “ pι1,1 Ðâ Xx ãÑ Xq be the play where x inputs on a, and similarly let
Oy and Oz be the plays where y and z output on a, respectively. Let now
Sx,y “ pτ1,1,1,1 Ðâ Xx,y ãÑ Xq be the play where x and y synchronise on a

(x inputs and y outputs), and similarly let Sx,z be the play where x and z

synchronise on a.

Finally, we define a presheaf F on E{X such that F pSx,yq “ 2 is a
two-element set, and F pSx,zq “ H. To define F on other plays, the idea is
to map any strict subplay of Sx,y and Sx,z to a one-element set 1, and other
plays to H. The cleanest technical way to do this seems to be as follows.
The poset Ex11 defined by

Oy Ix Oz

Sx,y Sx,z

fully embeds into E{X, via, say i11. Let F0 be the presheaf on Ex11 defined
by:

1 1 1

2 H.

We now let F “ Raniop
11

pF0q. Because i11 is fully faithful, F coincides with
F0 on the plays of Ex11, as desired.

Now, F fails to be innocent on two counts. First, since x and y accept
to input and output in only one way, it is non-innocent to accept that they
synchronise in more than one way. Formally, Sx,y has two non-trivial views,
Ix and Oy, so since F maps identity views to a singleton, F pSx,yq should be
isomorphic to F pIxq ˆ F pOyq “ 1 ˆ 1 “ 1. The second reason why F is not
innocent is that, since x and z accept to input and output, F should accept
that they synchronise. Formally, F pSx,zq should also be a singleton. This
altogether models the fact that in CCS, processes do not get to know with
which other processes they synchronise.

The restriction of F to VX , i.e., F 1 “ F ˝ i
op
X , in turn has a right

Kan extension F 2, which is innocent. (In passing, the unit of the adjunc-
tion CatpiopX ,Setq % Raniop

X
is a natural transformation F Ñ F 2.) To con-

clude this example, let us compute F 2. First, F 1 only retains from F its
values on views. So, if Xx denotes the empty view on Xx, F 1pXxq “ 1,
and similarly F 1pXyq “ F 1pXzq “ 1. Furthermore, F 1pIxq “ F 1pOyq “
F 1pOzq “ 1. Finally, for any view V not isomorphic to any of the previ-
ous ones, F 1pV q “ H. So, recall that F 2 maps any play U Ðâ Y ãÑ X toş
V PVX

F 1pV qEX pV,Uq. So, e.g., since the views of Sx,y are subviews of Ix and

Oy, we have F 2pSx,yq “ F 1pIxq ˆ F 1pOyq “ 1. Similarly, F 2pSx,zq “ 1. But
also, for any play U such that all views V Ñ U are subviews of either of
Ix, Oy, or Oz, we have F 2pUq “ 1. Finally, for any play U such that there
exists a view V Ñ U which is not a subview of any of Ix, Oy, or Oz, we
have F 2pUq “ H.

One way to understand Proposition 3 is to view yVX as the syntax for in-
nocent strategies: presheaves on views are (almost) infinite terms in a cer-

tain syntax (see Section 4.4 below). On the other hand, seeing them as
presheaves on plays will allow us to consider their global behaviour: see
Section 5 when we restrict to the closed-world game. Thus, right Kan ex-
tension followed by restriction to closed-world will associate a semantics to
innocent strategies.

Remark 5 The relevant Grothendieck topology on EX says, roughly, that
a play is covered by its views. Any sheaf for this topology is determined by
its restriction to VX , for its elements on any non-view play U are precisely
amalgamations of its elements on views of U . Right Kan extension just
computes these amalgamations in the particular case of a topology derived
from a full subcategory, here views.

So, we have defined for eachX the category SX of innocent strategies on
X. This assignment is actually functorial Bop Ñ CAT, as follows (where CAT
is the large category of locally small categories). Any morphism f : Y Ñ X

induces a functor f! : VY Ñ VX mapping pV Ðâ Z Ñ Y q to pV Ðâ Z Ñ

Y Ñ Xq. Precomposition with pf!q
op thus induces a functor Sf : yVX Ñ xVY .

Proposition 4 This defines a functor S : Bop Ñ CAT.

Proof: A straightforward verification. l

But there is more: for any position, giving a strategy for each player in
it easily yields a strategy on the whole position. We call this amalgamation
of innocent strategies (because the functor S is indeed a stack [43], and this
is a particular case of amalgamation in that stack). Formally, consider any
subpositions X1 and X2 of a given position X, inducing a partition of the
players of X, i.e., such that X1 YX2 contains all players of X, and X1 XX2

contains none. Then VX is isomorphic to the coproduct VX1
`VX2

. (Indeed,
a view contains in particular an initial player in X, which forces it to belong
either in VX1

or in VX2
.)

Definition 12 Given innocent strategies F1 on X1 and F2 on X2, let their
amalgamation be their copairing

rF1, F2s : Vop
X – pVX1

` VX2
qop – V

op
X1

` V
op
X2

Ñ Set.

By universal property of coproduct:

Proposition 5 Amalgamation yields an isomorphism of categories

yVX – yVX1
ˆ yVX2

.

Example 13 Consider again the position X from Example 12, and let Xy,z

be the subposition with only y and z. We have VX » pVXx ` VXy,zq, which
we may explain by hand as follows. A view on X has a base player, x, y, or
z, and so belongs either in VXx or in VXy,z . Furthermore, if V is a view on
x and W is a view on y, then VXpV,W q “ H (and similarly for any pair
of distinct players in X).

Now, recall F 1, the restriction of F to VX . We may define Fx : V
op
Xx

Ñ
Set to be the restriction of F 1 along the (opposite of the) embedding VXx ãÑ
VX , and similarly Fy,z to be the restriction of F 1 along VXy,z ãÑ VX . We
have obviously F 1 “ rFx, Fy,zs.

Analogous reasoning leads to what we call spatial decomposition. For
any X, let PlpXq “

ř
nXprnsq, i.e., the set of pairs pn, xq, where x is a

player in X, knowing n channels.

Theorem 1 We have yVX –
ś

pn,xqPPlpXq
yVrns.

Again, this is a particular case of amalgamation in the stack S, but we
do not need to spell out the definition here.

4.2 Temporal decomposition

Let us now describe temporal decomposition. Recall that basic moves are
left and right half-forking (2), input, output, tick, and channel creation.

Definition 13 Let M be the graph with vertices all natural numbers n, and
with edges n Ñ n1 all (isomorphism classes of) basic moves M : rns Ñ rn1s.

Recall from Remark 4 that the notion of isomorphism considered here is
that of an isomorphism of cospans in pC.

Definition 14 Let Mn be the set of edges from n in M.

For stating the temporal decomposition theorem, we need a standard [21]
categorical construction, the category of families on a given category C.
First, given a set X, consider the category FampXq with as objects X-
indexed families of sets Y “ pYxqxPX , and as morphisms Y Ñ Z families

pfx : Yx Ñ ZxqxPX of maps. This category is equivalently described as
the slice category Set{X. To see the correspondence, consider any family
pYxqxPX , and map it to the projection function

ř
xPX Yx Ñ X sending px, yq

to x. Conversely, given f : Y Ñ X, let, for any x P X, Yx be the fibre of f
over x, i.e., f´1pxq.

Generalising from sets X to small categories C, FampCq has as objects
families p : Y Ñ obpCq indexed by the objects of C. Morphisms pY, pq Ñ
pZ, qq are pairs of u : Y Ñ Z and v : Y Ñ morpCq, where morpCq is the set
of morphisms of C, such that dom ˝v “ p, and cod ˝v “ q ˝ u. Thus, any
element y P Y over C P C is mapped to some upyq P Z over C 1 P C, and
this mapping is labelled by a morphism vpyq : C Ñ C 1 in C. The obtained
category is locally small.

Further generalising, for C a locally small category, we may define
FampCq in exactly the same way (with Y still a set), and the obtained
category remains locally small.

The temporal decomposition theorem is:

Theorem 2 There is an equivalence of categories

Sn » Fam

˜ ź

MPMn

ScodpMq

¸
.

The main intuition is that an innocent strategy is determined up to iso-
morphism by (i) its initial states, and (ii) what remains of them after each
possible basic move. The family construction is what permits innocent
strategies with several possible states over the identity play.
Proof sketch: For general reasons, we have:

Fam
`ś

MPMn
ScodpMq

˘
“ Fam

´ś
MPMn

rVop

codpMq,Sets
¯

– Fam
`“ř

MPMn
VcodpMq

op ,Set
‰˘

»
”ř

MPMn
V
op

codpMq,Set
ı

Ó ∆,

where ∆: Set Ñ r
ř

MPMn
V
op

codpMq,Sets maps any set X to the constant
presheaf mapping any object to X and any morphism to the identity.

By definition, the last category is a lax pullback
”ř

MPMn
V
op

codpMq,Set
ı ”ř

MPMn
V
op

codpMq,Set
ı

Set
”ř

MPMn
V
op

codpMq,Set
ı

Ó ∆

∆

in CAT.
Now, any basic move M : n Ñ n1 induces a functor p´ ˝ Mq : Vrn1s Ñ

Vrns, mapping any view V P Vrn1s to V ˝M (with composition in CospanppCq).
We show that the square

ř
MPMn

V
op

codpMq

ř
MPMn

V
op

codpMq

1 V
op

rns

!

xid rnsy

r´˝MsMPMn
λ (6)

is a lax pushout in Cat, where λM,V : id rns Ñ M ˝ V , seen in Vrns, is the
obvious inclusion, which for general reasons is mapped by the hom-2-functor
CATp´,Setq to a lax pullback. But CATp!,Setq “ ∆ and CATpid ,Setq “ id ,
so we obtain a canonical isomorphism of lax pullbacks

Srns “ rVop

rns,Sets –

« ÿ

MPMn

V
op

codpMq,Set

ff
Ó ∆.

More detail is in Appendix A. l

Remark 6 The theorem almost makes innocent strategies into a sketch (on
the category with positions as objects, finite compositions of extended moves
as morphisms, and the MX ’s as distinguished cones). Briefly, being a sketch
would require a bijection of sets Sn –

ś
MPMn

ScodpMq. Here, the bijection
becomes an equivalence of categories, and the family construction sneaks in.

4.3 Innocent strategies as a terminal coalgebra

Temporal decomposition gives

Sn » Fam

˜ ź

MPMn

ScodpMq

¸
,

for all n. Considering a variant of this formula as a system of equations
will lead to our interpretation of CCS. The first step is to replace Set with
FinOrd, the category of finite ordinals and monotone functions. The proof
appliesmutatis mutandis and we obtain an equivalence, which, because both
categories are skeletal, is an isomorphism:

ŊVrns – Famf

˜ ź

MPMn

ŔVcodpMq

¸
, (7)

where

• Famf is the same as Fam but with finite families, i.e., for any category
C, obpFamf pCqq “

ř
IPFinOrd

pobpCqqI “ pobpCqq˚ is the set of finite
words over objects of C, also known as the free monoid on obpCq;

• and for any category C, uC denotes the functor category rCop ,FinOrds.

Remark 7 Recall that in the proof of Theorem 2, Fam arises from the
‘constant presheaf’ functor ∆: Set Ñ ṕ , with ´ a complicated category. This
functor itself is equal to restriction along ´ Ñ 1, via p1 – Set. Replacing
Set with FinOrd thus replaces ∆ with the analogous functor FinOrd Ñ ú , via
u1 – FinOrd, and thus Fam with Famf .

Furthermore, because FinOrd embeds into Set, the special strategies of
ŊVrns embed into Srns.

Then, taking advantage of the fact that FinOrd is a small category, we
consider its set FinOrd0 of objects, i.e., finite ordinals, and the endofunctor
F on Set{FinOrd0 defined on any family of sets X “ pXiqiPFinOrd0 by:

pFpXqqn “
ÿ

IPFinOrd0

˜ ź

MPMn

XcodpMq

¸I

,

where we abusively confuse rn1s “ codpMq and the natural number n1 itself.
The isomorphism (7) becomes

obp ŊVrnsq – pFpobp ŇV´qqqn.

We may decompose F as follows. Consider the endofunctor on Set{
FinOrd0 defined by pBXqn “

ś
MPMn

XcodpMq, for any family X. We obvi-
ously have:

Lemma 1 F is equal to the composite pB´q˚.

This endofunctor is polynomial [27] and we now give a characterisation
of its final coalgebra. The rest of this subsection is devoted to proving:

Theorem 3 The family obpŇVnq formed for each n by (the objects of) ŇVn

is a terminal coalgebra for F.

Consider any F-coalgebra a : X Ñ FX.
We define by induction on N a sequence of maps fN : X Ñ ŐVr´s, such

that for any view V of length less than N (i.e., with less than N basic
moves), and any N 1 ą N , fN 1pxqpV q “ fN pxqpV q, and similarly the action
of fN pxq on morphisms is the same as that of fN 1pxq.

To start the induction, take f0pxq to be the strategy mapping id rns to

πpapxqq, i.e., the length of apxq P
ř

IPFinOrd0
ppBXqnqI , and all other views to

0.
Furthermore, given fN , define fN`1 to be

X
a
ÝÑ FX

FpfN q
ÝÝÝÑ FpŐVr´sq

–
ÝÑ ŐVr´s,

where the equivalence is by temporal decomposition.
Unfolding the definitions yields:

Lemma 2 Consider any x P Xn, and apxq “ pz1, . . . , zkq. For any move
M : n Ñ n1 and view V : n1 Ñ n2 of length at most N , and for any i P k,
fN`1pxqpV ˝ Mq “

ř
iPk fN pzipMqqpV q.

For any x P Xn, we have a sequence f0pxq ãÑ f1pxq ãÑ . . . fN pxq ãÑ
fN`1pxq ãÑ . . . which is pointwise stationary. This sequence thus has a
colimit in ŊVrns, the presheaf mapping any view V of length N to fNpV q (or
equivalently fN 1pV q for any N 1 ě N), which allows us to define:

Definition 15 Let f : X Ñ ŐVr´s map any x P Xn to
Ť

N fN pxq.

By construction, we have

Lemma 3 The following diagram commutes:

X FX

ŐVr´s FpŐVr´sq.

a

f Fpfq

–

Lemma 4 The map f is a morphism of F-coalgebras.

Proof: Let, for any innocent strategy S P ŊVrns and i P Spid rnsq, S|i be
the strategy mapping any view V to the fibre over i of SpV q Ñ Spid rnsq.
Using the notations of Lemma 2, we must show that for any i P k, we have
pfpxqq|ipV ˝Mq “ fpzipMqqpV q. But Lemma 2 entails that fpxqpV ˝Mq Ñ

fpxqpid rnsq is actually the coproduct over i1 P k of all fpzi1pMqqpV q
!

ÝÑ 1
i1

ÝÑ
πpapxqq, so its fibre over i is indeed fpzipMqqpV q. l

Lemma 5 The map f is the unique map X Ñ ŐVr´s of F-coalgebras.

Proof: Consider any such map g of coalgebras. It must be such that
gpxqpid rnsq “ πpapxqq, and furthermore, using the same notation as before,
for any i P k pgpxqq|ipV ˝ Mq “ gpzipMqqpV q, which imposes by induction
that f “ g. l

The last two lemmas directly entail Theorem 3.

4.4 Languages

A consequence of Theorem 3 is that the family ŇVn supports the operations
of the grammar

. . . n $ Fi . . . p@i P Iq

n $
ÿ

iPI

Fi

pI P FinOrd0q

. . . n1 $ FM . . . p@M : rns Ñ rn1s P Mq

n $ xM ÞÑ FM y
¨

Here, n $ F denotes a presheaf of finite ordinals on Vn. The interpretation
is as follows: given presheaves F1, . . . , FI , for I P FinOrd0, the first rule
constructs the finite coproduct

ř
iPI Fi of presheaves (finite coproducts exist

in ŇVn because they do in FinOrd). In particular, when I is the empty ordinal,
we sum over an empty set, so the rule degenerates to

n $ H
¨

In terms of presheaves, this is just the constantly empty presheaf.
For the second rule, if for all basic M : rns Ñ rn1s, we are given FM P

ŐVrn1s, then xM ÞÑ FM y denotes the image under (7) of

p1, 1 ÞÑ M ÞÑ FM q.

Here, we provide an element of the right-hand side of (7), consisting of the
finite ordinal I “ 1 “ t1u, and the function mapping M to FM P ŐVrn1s

(up to currying). That was for parsing; the intuition is that we construct a
presheaf with one initial state, 1, which maps any view starting with M , say
V ˝M , to FM pV q. Thus the FM ’s specify what remains of our presheaf after
each possible basic move. In particular, when all the FM ’s are empty, we
obtain a presheaf which has an initial state, but which does nothing beyond
it. We abbreviate it as 0 “ x ÞÑ Hy.

CCSApp

Ξ;Γ $ xpa1, . . . , anq
ppx : nq P Ξ and a1, . . . , an P Γq

Ξ;Γ, a $ P

Ξ;Γ $ νa.P
(a R Γ)

Ξ; Γ $ P Ξ;Γ $ Q

Ξ;Γ $ P |Q

. . . Ξ;Γ $ Pi . . . p@i P Iq

Ξ;Γ $
ÿ

iPI

αi.Pi

pI P FinOrd0 and @i P I, tαiu P Γq

Global

Ξ;∆1 $ P1 . . . Ξ;∆n $ Pn Ξ;Γ $ P

Γ $ rec x1p∆1q := P1, . . . , xnp∆nq := Pn in P

Figure 3: CCS syntax

4.5 Translating CCS

It is rather easy to translate CCS into this language. First, define CCS
syntax by the natural deduction rules in Figure 3, where Names and Vars

are two fixed, disjoint, and infinite sets of names and variables; Ξ ranges
over finite sequences of pairs px : nq of a variable x and its arity n P FinOrd0,
such that the variables are pairwise distinct; Γ ranges over finite sequences
of pairwise distinct names; there are two judgements: Γ $ P for global
processes, Ξ; Γ $ P for open processes. Rule Global is the only rule for
forming global processes, and there Ξ “ px1 : |∆1|, . . . , xn : |∆n|q. Finally, α
denotes a or a, for a P Names, and tau “ tau “ a.

First, we define the following (approximation of a) translation on open
processes, mapping each open process Ξ; Γ $ P to JP K P ŇVn, for n “ |Γ|.
This translation ignores the recursive definitions, and we will refine it below
to take them into account. We proceed by induction on P , leaving contexts
Ξ; Γ implicit:

xpa1, . . . , akq ÞÑ H
P |Q ÞÑ x πl

n ÞÑ JP K,
πr
n ÞÑ JQK,

ÞÑ H y

νa.P ÞÑ xνn ÞÑ JP K, ÞÑ Hyř
iPI αi.Pi ÞÑ x pon,j ÞÑ

ř
kPI

j
JPkK,

ιn,j ÞÑ
ř

kPIj
JPkK qjPn,

ÞÑ H y.

Let us explain intuitions and notation. In the first case, we assume implicitly
that px : kq P Ξ; the intuition is just that we approximate variables with
empty strategies. Next, P |Q is translated to the strategy with one initial
state, which only accepts left and right half-forking first, and then lets its
avatars play JP K and JQK, respectively. Similarly, νa.P is translated to the
strategy with one initial state, accepting only the channel creation move, and
then playing JP K. In the last case, the guarded sum

ř
iPI αi.Pi is translated

to the strategy with one initial state, which

• accepts input on any channel a when αi “ a for some i P I, and output
on any channel a when αi “ a for some i P I;

• after an input on a, plays the sum of all JPiK’s such that αi “ a; and
after an output on a, plays the sum of all JPiK’s such that αi “ a.

Formally, in the definition, we let, for all j P n, Ij “ ti P I | αi “ aju and
Ij “ ti P I | αi “ aju. In particular, if I “ H, we obtain 0.

Thus, almost all translations of open processes have exactly one initial
state, i.e., map the identity view on rns to the singleton 1. The only excep-
tions are variable applications, which are mapped to the empty presheaf.

The translation extends to global processes as follows. Fixing a global
process Q “ prec x1p∆1q := P1, . . . , xkp∆kq := Pk in P q typed in Γ with n

names, define the sequence pP iqiPFinOrd0 of open processes (all typed in Ξ; Γ)
as follows. First, P 0 “ P . Then, let P i`1 “ dP i, where d is the derivation
endomap on open processes typed in any extension Ξ; pΓ,∆q of Ξ; Γ, which
unfolds one layer of recursive definitions. This map is defined by induction
on its argument as follows:

dpxlpa1, . . . , aklqq “ Plrbj ÞÑ ajs1ďjďkl

dpP |Qq “ dP |dQ
dpνa.P q “ νa.dP

dp
ř

iPI αi.Piq “
ř

iPI αi.pdPiq,

where for all l P t1, . . . , ku, ∆l “ pb1, . . . , bklq, and P rσs denotes simultane-
ous, capture-avoiding substitution of names in P by σ.

By construction, the translations of these open processes form a se-
quence JP 0K ãÑ JP 1K . . . of inclusions in ŇVn, such that for any natural num-
ber i and view V P Vn of length i, JP jKpV q is fixed after j “ pk ` 1qi,
at worst, i.e., for all j ě pk ` 1qi, JP jKpV q “ JP pk`1qiKpV q. Thus, this
sequence has a colimit in ŇVn, the presheaf sending any view V of length i

to JP pk`1qiKpV q. We put:

Definition 16 Let the translation of Q be JQK “ colimiPFinOrdJP
iK.

Which equivalence is induced by this mapping on CCS, especially when
taking into account the interactive equivalences developed in the next sec-
tion? This is the main question we will try to address in future work.

5 Interactive equivalences

5.1 Fair testing vs. must testing: the standard case

An important part of concurrency theory consists in studying behavioural
equivalences. Since each such equivalence is supposed to define when two
processes behave the same, it might seem paradoxical to consider several of
them. Van Glabbeek [42] argues that each behavioural equivalence corre-
sponds to a physical scenario for observing processes.

A distinction we wish to make here is between fair scenarios, and poten-
tially unfair ones. An example of a fair scenario is when parallel composition
of processes is thought of as modelling different physical agents, e.g., in a
game with several players. Otherwise said, players are really independent.
On the other hand, an example of a potentially unfair scenario is when
parallelism is implemented via a scheduler.

This has consequences on so-called testing equivalences [7]. Let ♥ be
a fixed action.

Definition 17 A process P is must orthogonal to a context C, notation
P Km C, when all maximal traces of CrP s play ♥ at some point.

Here, maximal means either infinite or finite without extensions. Let PKm

be the set of all contexts must orthogonal to P .

Definition 18 P and Q are must equivalent, notation P „m Q, when
PKm

“ QKm

.

In transition systems, or automata, we have Ω „m Ω|a (where Ω is the
looping process, producing infinitely many silent transitions). This might
be surprising, because the context C “ a.♥ |� intuitively should distinguish
these processes, by being orthogonal to Ω|a but not to Ω alone. However, it
is not orthogonal to Ω|a, because CrΩ|as has an infinite looping trace giving
priority to Ω. This looping trace is unfair, because the synchronisation on
a is never performed. Thus, one may view the equivalence Ω „m Ω|a as
exploiting potential unfairness of a hypothetical scheduler.

Usually, concurrency theorists consider this too coarse, and resort to
fair testing equivalence.

Definition 19 A process P is fair orthogonal to a context C, notation
P Kf C, when all finite traces of CrP s extend to traces that play ♥ at some
point.

Again, PKf
denotes the set of all contexts fair orthogonal to P .

Definition 20 P and Q are fair equivalent, notation P „f Q, when PKf

“

QKf

.

This solves the issue, i.e., Ω f Ω|a.

In summary, the mainstream setting for testing equivalences relies on
traces; and the notion of maximality for traces is intrinsically unfair. This
is usually rectified by resorting to fair testing equivalence over must testing
equivalence. Our setting is more flexible, in the sense that maximal plays are
better behaved than maximal traces. In terms of the previous section, this
allows viewing the looping trace Ω|a|a.♥

τ
ÝÑ Ω|a|a.♥

τ
ÝÑ . . . as non-maximal.

In the next sections, we define an abstract notion of interactive equivalence
(still in the particular case of CCS but in our setting) and we instantiate it
to define and study the counterparts of must and fair testing equivalences.

5.2 Interactive equivalences

Definition 21 A play is closed-world when it is a composite of closed-world
extended moves.

Equivalently, a play is closed-world when all of its basic moves are part of
a closed-world move.

Let W ãÑ E be the full subcategory of closed-world plays, WpXq being
the fibre over X for the projection functor W Ñ B, i.e., the subcategory
of W consisting of closed-world plays with base X, and morphisms pidX , kq
between them5.

Let the category of closed-world behaviours on X be the category GX “
{WpXq of presheaves on WpXq. We may now put:

Definition 22 An observable criterion consists for all positions X, of a
replete subcategory KKX ãÑ GX .

5This is not exactly equivalent to what could be noted WX , since in the latter there are
objects U Ðâ Y ãÑ X with a strict inclusion Y ãÑ X. However, both should be equivalent
for what we do in this paper, i.e., fair and must equivalences.

Recall that KKX being replete means that for all F P KKX and isomorphism
f : F Ñ F 1 in GX , F 1 and f are in KKX .

An observable criterion specifies the class of ‘successful’, closed-world
behaviours. The two criteria considered below are two ways of formalising
the idea that a successful behaviour is one in which all accepted closed-world
plays are ‘successful’, in the sense that some player plays the tick move at
some point.

We now define interactive equivalences. Recall that rF,Gs denotes the
amalgamation of F and G, and that right Kan extension along i

op
Z induces a

functor Raniop
Z
: xVZ Ñ xEZ . Furthermore, precomposition with the canonical

inclusion jZ : WpZq ãÑ EZ induces a functor j˚
Z : xEZ Ñ {WpZq. Composing

the two, we obtain a functor Gl : SZ Ñ GZ :

SZ “ xVZ

Ran
i
op

ZÝÝÝÝÑ xEZ

j˚
ZÝÑ {WpZq “ GZ .

Definition 23 For any innocent strategy F on X

and any pushout square P of positions as on the
right, with I consisting only of channels, let FKKP be
the class of all innocent strategies G on Y such that
GlprF,Gsq P KKZ.

I Y

X Z

(8)

Here, G is thought of as a test for F . Also, P denotes the whole pushout
square and FKKP denotes all the valid tests for the considered pushout square
P . From the CCS point of view, I corresponds to the set of names shared
by the process under observation pF q and the test pGq.

Definition 24 Any two innocent strategies F,F 1 P SX are KK-equivalent,
notation F „KK F 1, iff for all pushouts P as in 8, FKKP “ F 1KKP .

5.3 Fair vs. must

Let us now define fair and must testing equivalences. Let a closed-world
play be successful when it contains a ♥n. Furthermore, for any closed-world
behaviour G P GX and closed-world play U P WpXq, an extension of a state
σ P GpUq to U 1 is a σ1 P GpU 1q with i : U Ñ U 1 and Gpiqpσ1q “ σ. The
extension σ1 is successful when U 1 is. The intuition is that the behaviour G,
before reaching U 1 with state σ1, passed through U with state σ.

Definition 25 The fair criterion KKf contains all closed-world behaviours
G such that any state σ P GpUq for finite U admits a successful extension.

Now call an extension of σ P GpUq strict when U Ñ U 1 is not surjective,
or, equivalently, when U 1 contains more moves than U . For any closed-world
behaviour G P GX , a state σ P GpUq is G-maximal when it has no strict
extension.

Definition 26 Let the must criterion KKm consist of all closed-world be-
haviours G such that for all closed-world U and G-maximal σ P GpUq, U is
successful.

As explained in the introduction and Section 5.1, unlike in the standard
setting, this definition of must testing equivalence distinguishes between the
processes Ω and Ω|a. Indeed, take the CCS context C “ a.♥ | �, which we
can implement by choosing as a test the strategy T “ Ja.♥K on a single
player knowing one channel a. Taking I to consist of the sole channel a, the
pushout Z as in Definition 23 consists of two players, say x for the observed
strategy and y for the test strategy, sharing the channel a. Now, assuming
that Ω loops deterministically, the global behaviour G “ GlprJP K, T sq has
exactly one state on the identity play, and again exactly one state on the
play π1 consisting of only one fork move by x. Thus, G reaches a position
with three players, say x1 playing Ω, x2 playing a, and y playing a.♥. The
play with infinitely many silent moves by x1 is not maximal: we could insert
(anywhere in the sequence of moves by x1) a synchronisation move by x2
and y, and then a tick move by the avatar of y. Essentially: our notion of
play is more fair than just traces.

To get more intuition about must testing equivalence in our setting, we
prove that it actually coincides with the testing equivalence generated by
the following criterion:

Definition 27 The spatially fair criterion KKsf contains all closed-world
behaviours G such that any state σ P GpUq admits a successful extension.

This criterion is almost like the fair criterion, except that we do not restrict
to finite plays. The key result to show the equivalence is:

Theorem 4 For any innocent strategy F on X, any state σ P GlpF qpUq
admits a GlpF q-maximal extension.

The proof is in Appendix B. Thanks to the theorem, we have:

Lemma 6 For all F P SX, GlpF q P KKm
X iff GlpF q P KKsf

X .

Proof: Let G “ GlpF q.
(ñ) By Theorem 4, any state σ P GpUq has a G-maximal extension

σ1 P GpU 1q, which is successful by hypothesis, hence σ has a successful
extension.

(ð) Any G-maximal σ P GpUq admits by hypothesis a successful ex-
tension which may only be on U by G-maximality, and hence U is successful.
l

(Note that U is not necessarily finite in the proof of the right-to-left
implication, so that the argument does not apply to the fair criterion.)

Now comes the expected result:

Theorem 5 For all F,F 1 P SX , F „KKm F 1 iff F „KKsf F 1.

Proof: (ñ) Consider two innocent strategies F and F 1 on X, and an inno-
cent strategy G on Y (as in the pushout (8)). As in spatial decomposition
(Proposition 5), copairing induces an isomorphism SX ˆ SY Ñ SZ , and we
have, using Lemma 6:

GlrF,Gs P KKsf iff GlrF,Gs P KKm

iff GlrF 1, Gs P KKm

iff GlrF 1, Gs P KKsf

(ð) Symmetric. l
Intuitively, must testing only considers spatially fair schedulings, in the

sense that all players appearing in a play should be given the opportunity
to play: no one should starve.

However, this is not the only source of unfairness, so that must test-
ing and fair testing differ. To see this, consider the CCS process P “
νb.rec xpa, bq := b|pb.pxpa, bqq ` aq in xpa, bq, that can repeatedly perform
synchronisations on the private channel b, until it chooses to perform an
output on a. We have JΩK „sf JP K while JΩK f JP K. Indeed, since the
choice between doing a synchronisation on b or an output on a is done by
a single player, the infinite play where the output on a is never performed
is maximal: no player starve, we just have a player that repeatedly chooses
the same branch, in an unfair way.

We leave for future work the investigation of such unfair scenarios and
their correlation to the corresponding behaviours in classical presentations
of CCS.

A Temporal decomposition

This section is a proof of Theorem 2. Let us first review the general equiv-
alences mentioned in the proof sketch. The product of a family of presheaf
categories is isomorphic to the category of presheaves over the corresponding
coproduct of categories:

Lemma 7 We have
ś

MPMn
ScodpMq – r

ř
MPMn

V
op

codpMq,Sets.

Furthermore, let the functor ∆: Set Ñ pCmap any setX to the constant
presheaf mapping any C P C to X. We have:

Lemma 8 For any small category C, FamppCq » ppC Ó ∆q.

Proof: A generalisation of the more well-known SetX » Set{X. l

Corollary 1 We have:

Fam

˜ ź

MPMn

ScodpMq

¸
» pr

ÿ

MPMn

V
op

codpMq,Sets Ó ∆q.

We now construct the lax pushout (6). A first step is the construction,
for each move rns ãÑ M Ðâ rn1s, of a functor p´ ˝Mq : Vrn1s Ñ Vrns given by

precomposition with M in CospanppCq. This functor maps any V1 : rn1s ãÑ V1

to the view V1 ˝ M , i.e., the view rns ãÑ V 1
1 defined by the colimit

rns rn1s

M V1

V 1
1 .

This of course relies on the choice of such a colimit for every V and V1. Any
morphism f : V1 Ñ V2 in Vrn1s, letting V 1

2 “ V2 ˝V , is mapped to the dashed
morphism induced by universal property of pushout in

rns rn1s

V V1

V 1
1

V2

V 1
2 .

f

f˝V

Once the choice has been made on objects, the map for morphisms is deter-
mined uniquely.

This family of functors allows us to decompose Vrns as follows:

Lemma 9 The diagram

ř
MPMn

V
op

codpMq

ř
MPMn

V
op

codpMq

1 V
op

rns

!

xid rnsy

r´˝MsMPMn
λ (9)

is a lax pushout, where λM,V : id rns Ñ M ˝ V , seen in Vrns, is the obvious
inclusion.

Proof: For any category C, taking such a lax pushout of idC with 1 just
adds a terminal object to C. The rest is an easy verification. A dual result
of course holds with Vrns, reversing the direction of λ. l

Now, it is well-known that, in any small 2-category K, any contravari-
ant hom-2-functor, i.e., 2-functor of the shape Kp´,Xq for X P K, maps
weighted colimits in K to weighted limits in Cat. For an introduction
to weighted limits and colimits in the case of enrichment over Cat, see
Kelly [26]. Here, for any 2-category P , and 2-functors G : P Ñ K and
J : P op Ñ Cat, any colimit L “ J ‹ G of G weighted by J with unit
ξ : J Ñ KpGp´q, Lq in rP op ,Cats is mapped, for any object X P K, by
the hom-2-functor Kp´,Xq to a limit of KpGp´q,Xq : P op Ñ Cat weighted
by J in Cat, with unit Kpξ,Xq : J Ñ CatpKpL,Xq,KpGp´q,Xqq, in Cat. In
particular, lax pushouts are mapped to lax pullbacks. As usual, considering
a larger universe, we may replace Cat with CAT and obtain the same results
with K “ Cat.

Recalling our lax pushout (9) and taking the hom-categories to Set, we
obtain a lax pullback

r
ř

MPMn
V
op

codpMq,Sets r
ř

MPMn
V
op

codpMq,Sets

Set Srns

!˚
λ˚

in CAT, i.e., a comma category. But observe that restriction along ! is
precisely ∆: Set Ñ r

ř
MPMn

V
op

codpMq,Sets, so we have indeed shown that

Srns is a comma category r
ř

MPMn
V
op

codpMq,Sets Ó ∆.

B Maximal extensions

This section is a proof of Theorem 4.

Lemma 10 For any position X, the category WpXq of closed-world plays
is a preorder.

Proof: Easy. l
In the following, we consider the quotient poset.

Lemma 11 In WpXq, any non-decreasing chain admits an upper bound.

Recall M, the graph of all basic moves, and the set Mn of edges from
n, for each n. Let now, for each n, Mf

n be the analogous set with full moves,
i.e., the set of isomorphism classes of full moves from rns.

Lemma 12 For each play U P EX , the coproduct of all s maps from full
moves ¨

˝ ÿ

nPFinOrd

ÿ

MPMf
n

UpMq

˛
‚Ñ

ÿ

nPFinOrd

U rns, (10)

is injective.

Recall here that for forking, we have also called s the common composite
l ˝ s “ r ˝ s (see the discussion following Definition 3).
Proof: By induction on U . l

Lemma 13 Any non-decreasing sequence in the poset WpXq admits its col-
imit in pC as an upper bound.

Proof: Consider any increasing sequence U1 ãÑ U2 ãÑ . . . of plays in
WpXq. Let U be its colimit in pC. We want to prove that U is a play.

First, observe that U satisfies joint injectivity of s-maps as in Lemma 12:
indeed, if we had a player p and two full moves M and M 1 such that spMq “
spM 1q “ p, then all of M , M 1, and p would appear in some U i, which, being
a play, has to satisfy joint injectivity.

For each n, Un comes with a sequence of compatible (closed-world)
extended moves

X “ Xn
0 ãÑ Mn

1 Ðâ Xn
1 ãÑ . . . Ðâ Xn

i´1 ãÑ Mn
i Ðâ Xn

i ãÑ . . .

which are also (by the colimit cocone) morphisms over U in pC. For each i ě
1, taking the colimit of the i first moves yields a finite play X ãÑ Un

i Ðâ Xn
i .

By convention, letting Un
0 “ X extends this to i ě 0. Similarly, we may

consider all the given plays infinite, by accepting not only extended moves,
but also identity cospans.

We consider the poset of pairs pN,nq P tp0, 0qu Z
ř

NPFinOrd
˚ N , with

lexicographic order, i.e., pN,nq ď pN 1, n1q when N ă N 1 or when N “ N 1

and n ď n1.
We will construct by induction on pN,nq a sequence of composable

closed-world moves, with colimit U 1, such that for all pN,nq, Un
N´n`1

Ď U 1

in WpXq{U . More precisely, we construct for each pN,nq an integer KN,n

and a sequence

X “ X
N,n
0

ãÑ M
N,n
1

Ðâ XN,n
1

ãÑ . . . Ðâ XN,n
KN,n´1

ãÑ M
N,n
KN,n

Ðâ XN,n
KN,n

,

(again, if KN,n “ 0, we mean the empty sequence) such that

• for all pN 1, n1q ă pN,nq, we have KN 1,n1 ď KN,n and the sequence

pMN 1,n1

i qiPKN1,n1 is a prefix of pMN,n
iPKN,n

q;

• and the colimit, say UN,n, of pMN,n
i qiPKN,n

is such that for all pN 1, n1q ď

pN,nq, Un1

N´n1`1
Ď UN,n in WpXq{U .

For the base case, we let K0,0 “ 0, which forces M0,0 to be the empty
sequence on X.

For the induction step, consider any pN,nq ‰ p0, 0q, and let pN0, n0q
be the predecessor of pN,nq. The induction hypothesis gives a KN0,n0

and

a sequence pMN0,n0

i qiPKN0,n0
satisfying some hypotheses, among which the

existence of a diagram

X Un
N´n Xn

N´n Mn
N´n`1

Xn
N´n`1

X UN0,n0
X

N0,n0

KN0,n0

over U .

Now, if Mn
N´n`1

Ñ U factors through UN0,n0
, then we put KN,n “

KN0,n0
and pMN,n

i qiPKN,n
“ pMN0,n0

i qiPKN0,n0
, and all induction hypotheses

go through.

Otherwise, Mn
N´n`1

is played by players in Xn
N´n which are not in the

joint image of all s maps (10) in UN0,n0
, otherwise s maps in U could not

be jointly injective, contradicting Lemma 12. Technically, the diagram

Xn
N´n Ñ Mn

N´n`1 Ð Xn
N´n`1

is obtained by pushing some (non-extended) closed-world move Y Ñ M Ð
Y 1 along some morphism I Ñ Z from an interface I, and the induced
morphism Y Ñ Xn

N´n Ñ Un
N´n Ñ UN0,n0

factors through X
N0,n0

KN0,n0

. We

consider the subposition Z 1 Ď X
N0,n0

KN0,n0

making

I Y

Z 1 X
N0,n0

KN0,n0

a pushout; Z 1 consists of the players in X
N0,n0

KN0,n0

that are not in the image

of Y , plus their names, plus possibly missing names from I.

Then, pushing Y Ñ M Ð Y 1 along I Ñ Z 1, we obtain an extended
move X

N0,n0

KN0,n0

ãÑ M 1 Ðâ X 1. We let KN,n “ KN0,n0
` 1 and define

pMN,n
i qiPKN,n

to be the extension of pMN0,n0

i qiPKN0,n0
by M 1. This in-

duces a unique map UN,n Ñ U by universal property of UN,n as a col-
imit. All induction hypotheses go through; in particular, Un

N´n`1
is a union

Un
N´n Y Mn

N´n`1
in WpXq{U , and actually a union Un

N´n Y M ; similarly,
UN,n “ UN0,n0

Y M ; so, since we have Un
N´n Ď UN0,n0

by induction hypoth-
esis, we obtain Un

N´n`1
Ď UN,n.

The sequences MN,n induce by union a possibly infinite sequence of
closed-world extended moves, i.e., a closed-world play U 1, such that for all
pN,nq, Un

N´n`1
Ď U 1, hence, for all n, Un Ď U 1 Ď U , i.e., U 1 – U . Thus, U

is indeed a play. l

We are almost ready for proving Theorem 4. We just need one more
lemma. Consider any innocent strategy F on X, play U P WpXq, and any
state σ P GlpF qpUq. Consider now the poset Fσ of GlpF q-extensions of σ
(made into a poset by choosing a skeleton of WpXq), where σ1 P F pU 1q ď
σ2 P F pU2q iff U 1 ď U2. This poset is not empty, since it contains σ.
Furthermore, we have:

Lemma 14 Any non-decreasing sequence in Fσ admits an upper bound.

Proof: Any such sequence, say pσiqiPFinOrd, induces a non-decreasing se-
quence of plays in WpXq, say pUiqi, which by Lemma 13 admits its colimit,
say U 1, as an upper bound. Now, any view inclusion j : V ãÑ U 1, factors
through some Ui, and we let σj “ pσiq|V (this does not depend on the choice
of i). This assignment determines (by innocence of F and by construction
of the right Kan extension as an end) an element σ1 P F pU 1q, which is an
upper bound for pσiqiPFinOrd. l

Proof of Theorem 4: Consider any innocent strategy F on X, play
U P WpXq, and any state σ P GlpF qpUq. Consider as above the poset Fσ of
GlpF q-extensions of σ. By the last lemma, we may apply Zorn’s lemma to
choose a maximal element of Fσ, which is a GlpF q-maximal extension of σ.
l

References

[1] Emmanuel Beffara. Logique, réalisabilité et concurrence. PhD thesis,
Université Paris 7, December 2005.

[2] Marcello M. Bonsangue, Jan J. M. M. Rutten, and Alexandra Silva. A
Kleene theorem for polynomial coalgebras. In Luca de Alfaro, editor,
FOSSACS, volume 5504 of Lecture Notes in Computer Science, pages
122–136. Springer, 2009.

[3] Ed Brinksma, Arend Rensink, and Walter Vogler. Fair testing. In Insup
Lee and Scott A. Smolka, editors, CONCUR, volume 962 of Lecture
Notes in Computer Science, pages 313–327. Springer, 1995.

[4] Albert Burroni. Higher-dimensional word problems with applications
to equational logic. Theoretical Computer Science, 115(1):43–62, 1993.

[5] Aurelio Carboni and Peter Johnstone. Connected limits, familial rep-
resentability and artin glueing. Mathematical Structures in Computer
Science, 5(4):441–459, 1995.

[6] Aurelio Carboni and Peter Johnstone. Corrigenda for ‘connected limits,
familial representability and artin glueing’. Mathematical Structures in
Computer Science, 14(1):185–187, 2004.

[7] Rocco De Nicola and Matthew Hennessy. Testing equivalences for pro-
cesses. Theor. Comput. Sci., 34:83–133, 1984.

[8] Olivier Delande and Dale Miller. A neutral approach to proof and
refutation in mall. In LICS ’08 [30], pages 498–508.

[9] H. Ehrig, H.-J. Kreowski, Ugo Montanari, and Grzegorz Rozenberg, edi-
tors. Handbook of Graph Grammars and Computing by Graph Transfor-
mation, Volume 3: Concurrency, Parallelism and Distribution. World
Scientific, 1999.

[10] Marcelo P. Fiore. Second-order and dependently-sorted abstract syntax.
In LICS ’08 [30], pages 57–68.

[11] Fabio Gadducci, Reiko Heckel, and Mercè Llabrés. A bi-categorical
axiomatisation of concurrent graph rewriting. Electronic Notes in The-
oretical Computer Science, 29, 1999.

[12] Fabio Gadducci and Ugo Montanari. The tile model. In Gordon D.
Plotkin, Colin Stirling, and Mads Tofte, editors, Proof, Language, and
Interaction, pages 133–166. The MIT Press, 2000.

[13] Jean-Yves Girard. Locus solum: From the rules of logic to the logic
of rules. Mathematical Structures in Computer Science, 11(3):301–506,
2001.

[14] Yves Guiraud and Philippe Malbos. Higher-dimensional categories
with finite derivation type. Theory and Applications of Categories,
22(18):420–278, 2009.

[15] André Hirschowitz and Marco Maggesi. Modules over monads and
linearity. In Daniel Leivant and Ruy J. G. B. de Queiroz, editors,
WoLLIC, volume 4576 of Lecture Notes in Computer Science, pages
218–237. Springer, 2007.

[16] André Hirschowitz and Marco Maggesi. Modules over monads and
initial semantics. Information and Computation, 208(5):545–564, 2010.

[17] André, Michel, and Tom Hirschowitz. Contraction-free proofs and fini-
tary games for linear logic. Electronic Notes in Theoretical Computer
Science, 249:287–305, 2009.

[18] Tom Hirschowitz. Cartesian closed 2-categories and permutation equiv-
alence in higher-order rewriting. Preprint, 2010.

[19] Tom Hirschowitz and Damien Pous. Innocent strategies as presheaves
and interactive equivalences for CCS. In Alexandra Silva, Simon Bli-
udze, Roberto Bruni, and Marco Carbone, editors, ICE, volume 59 of
EPTCS, pages 2–24, 2011.

[20] Martin Hyland. Semantics and Logics of Computation, chapter Game
Semantics. Cambridge University Press, 1997.

[21] Bart Jacobs. Categorical Logic and Type Theory. Number 141 in Stud-
ies in Logic and the Foundations of Mathematics. North Holland, Am-
sterdam, 1999.

[22] Ole H. Jensen and Robin Milner. Bigraphs and mobile processes (re-
vised). Technical Report TR580, University of Cambridge, 2004.

[23] P. T. Johnstone, S. Lack, and P. Sobociński. Quasitoposes, quasiadhe-
sive categories and Artin glueing. In CALCO, volume 4624 of LNCS,
pages 312–326. Springer Verlag, 2007.

[24] André Joyal, Mogens Nielsen, and Glynn Winskel. Bisimulation and
open maps. In LICS ’93, pages 418–427. IEEE Computer Society, 1993.

[25] Stefano Kasangian and Anna Labella. Observational trees as models for
concurrency. Mathematical Structures in Computer Science, 9(6):687–
718, 1999.

[26] G. M. Kelly. Elementary observations on 2-categorical limits. Bulletin
of the Australian Mathematical Society, 39:301–317, 1989.

[27] Joachim Kock. Polynomial functors and trees. International Mathe-
matics Research Notices, 2011(3):609–673, 2011.

[28] Jean-Louis Krivine. Dependent choice, ‘quote’ and the clock. Theor.
Comput. Sci., 308(1-3):259–276, 2003.

[29] James J. Leifer and Robin Milner. Deriving bisimulation congru-
ences for reactive systems. In Catuscia Palamidessi, editor, CONCUR,
volume 1877 of Lecture Notes in Computer Science, pages 243–258.
Springer, 2000.

[30] Proceedings of the Twenty-Third Annual IEEE Symposium on Logic in
Computer Science, LICS 2008, 24-27 June 2008, Pittsburgh, PA, USA.
IEEE Computer Society, 2008.

[31] Saunders Mac Lane. Categories for the Working Mathematician. Num-
ber 5 in Graduate Texts in Mathematics. Springer, 2nd edition, 1998.

[32] Saunders MacLane and Ieke Moerdijk. Sheaves in Geometry and Logic:
A First Introduction to Topos Theory. Universitext. Springer, 1992.

[33] Paul-André Melliès. Asynchronous games 2: the true concurrency of
innocence. In Proc. CONCUR ’04, volume 3170 of LNCS, pages 448–
465. Springer Verlag, 2004.

[34] Robin Milner. A Calculus of Communicating Systems, volume 92 of
LNCS. Springer, 1980.

[35] V. Natarajan and Rance Cleaveland. Divergence and fair testing. In
Zoltán Fülöp and Ferenc Gécseg, editors, ICALP, volume 944 of Lecture
Notes in Computer Science, pages 648–659. Springer, 1995.

[36] Tobias Nipkow. Higher-order critical pairs. In LICS ’91, pages 342–349.
IEEE Computer Society, 1991.

[37] Gordon D. Plotkin. A structural approach to operational semantics.
DAIMI Report FN-19, Computer Science Department, Aarhus Univer-
sity, 1981.

[38] Julian Rathke and Pawel Sobocinski. Deconstructing behavioural the-
ories of mobility. In IFIP TCS, volume 273 of IFIP, pages 507–520.
Springer, 2008.

[39] Vladimiro Sassone and Pawel Sobociński. Deriving bisimulation con-
gruences using 2-categories. Nordic Journal of Computing, 10(2), 2003.

[40] Peter Sewell. From rewrite rules to bisimulation congruences. In Davide
Sangiorgi and Robert de Simone, editors, CONCUR, volume 1466 of
Lecture Notes in Computer Science, pages 269–284. Springer, 1998.

[41] Daniele Turi and Gordon D. Plotkin. Towards a mathematical opera-
tional semantics. In LICS ’97, pages 280–291, 1997.

[42] Rob J. van Glabbeek. The linear time-branching time spectrum (ex-
tended abstract). In Jos C. M. Baeten and Jan Willem Klop, editors,
CONCUR, volume 458 of Lecture Notes in Computer Science, pages
278–297. Springer, 1990.

[43] Angelo Vistoli. Notes on Grothendieck topologies, fibered categories
and descent theory. Preprint. http://arxiv.org/abs/math/0412512.,
2007.

http://arxiv.org/abs/math/0412512

	Overview
	Plays as string diagrams
	Positions
	Moves
	Plays
	Relativisation

	Diagrams
	First steps
	Constructing the base category
	Positions and moves
	Extended moves, plays, and relativisation

	Innocent strategies as sheaves
	Innocent strategies
	Temporal decomposition
	Innocent strategies as a terminal coalgebra
	Languages
	Translating CCS

	Interactive equivalences
	Fair testing vs. must testing: the standard case
	Interactive equivalences
	Fair vs. must

	Temporal decomposition
	Maximal extensions

