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SUMMARY 

 

Two studies are presented quantifying the impact of plug-in hybrid vehicles 

(PHEVs) on power systems.  The first study quantifies this impact in terms of (a) primary 

fuel utilization shifts, (b) pollution shifts, and (c) total cost for consumers.  The second 

study quantifies this impact on distribution transformers. 

In the first study vehicle fleet and power system simulations are used.  The 

vehicle fleet simulations compute the amount of added electric load demand to charge the 

PHEV fleet, the amount of gasoline used by both internal combustion (IC) vehicles and 

PHEVs, and the amount of environmental air pollution (EAP) generated by both IC 

vehicles and PHEVs.  The power system simulations simulate how much fuel usage and 

subsequent EAP are generated by a specific power system. 

In the second study the impact on distribution transformers is quantified through a 

loss-of-life (LOL) calculation that is based on the transformers hot-spot temperature.  

This temperature is estimated using an electro-thermal transformer model and is a 

function of the transformer currents.  These currents are computed using a center-tapped 

single phase transformer model. 

The results from this research indicate that PHEVs offer cleaner transportation 

(depending on the generation mix used to charge the vehicles) with decreased gasoline 

utilization at a lower operating cost to consumers.  The utility infrastructure impact to pay 

for these three advantages is added wear to distribution transformers. 
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CHAPTER 1 

INTRODUCTION 

 

Presently, the U.S. is importing crude oil at the rate of 10.0 Mb/day [1].  

Additionally, approximately 5.1 Mb/day of crude oil are produced domestically [1].  

Two-thirds (62.9%) of this oil is refined into gasoline and diesel fuel to power U.S. 

passenger vehicles and trucks [2].  Thus, the majority of U.S. passenger vehicles and 

trucks are fueled by imported oil.  A number of options have been proposed to reduce the 

use of imported oil including: finding more oil, increasing vehicle fuel economy, using 

ethanol as a vehicle fuel, using conventional hybrid electric vehicles (HEVs), and using 

plug-in HEVs (PHEVs). 

Aftermarket conversion of a currently available HEV into a PHEV is possible 

today [3], suggesting that PHEV technology is feasible for significant levels of market 

penetration in the near future.  PHEVs represent a potentially lucrative new semi-

dispatchable load for the electric utility industry. 

The key potential benefit to the electric utility industry is the possible addition of 

a large controllable load.  Just under 400 million gallons of gasoline a day are used in the 

U.S. [4].  If PHEV drivers were to charge off peak this additional load would be added 

with minimal increased need for added generation. 

Displacing petroleum usage with electric energy would diversify the 

transportation sector energy usage.  The energy mix used in transportation (Figure 1.1) is 

96% petroleum [5].  Displacing a small portion of this energy distribution with the energy 
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mixture used in the electric power system (Figure 1.2) has the potential to add three new 

fuel types to the transportation sector energy mix. 

 

 

The remainder of this thesis is organized as follows: 

• Related published literature is examined and the context which this thesis fits 
into the broader research is evaluative (Chapter 2). 

 
Figure 1.2.  Energy mix used in the electric utility industry [5]. 
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Figure 1.1.  Energy mix used in transportation [5]. 
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• Research into the impact of diversifying the transportation energy mix is 
described in terms of primary energy source utilization, environmental air 
pollution (EAP), and gasoline consumption (Chapter 3). 

• Research into the potential impact of increased loading on an aging 
infrastructure is described utilizing a loss-of-life indication on distribution 
transformers (Chapter 4). 

• A summary of the results are included in the conclusion (Chapter 5). 
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CHAPTER 2 

LITERATURE REVIEW 

 

Two foci of this research are (1) which power system fuel types will be utilized to 

meet the added electric energy demand used to charge plug-in hybrid electric vehicles 

(PHEVs) and (2) what will be the impact of the increased electricity demand on pole top 

distribution transformers.  The first focus includes two related considerations of (1) how 

many vehicles an existing power system can accommodate and (2) the total system 

environmental air pollution (EAP) which includes EAP from both the vehicle fleet and 

from the power system. 

2.1 First Focus 

The first focus of this research has received much attention in currently available 

literature.  The second focus has received only minimal attention in currently available 

literature.  First, a subset of the currently available literature related to focus number one 

is introduced.  Second, a single document is introduced related to focus number two.  

Finally, the contribution provided by the present work is summarized. 

What impact will charging PHEVs have on the electric power system?  This 

question has been investigated by many research groups, in many different ways, 

focusing on a number of implications.  The questions answered by others include: 

• How many vehicles can a power system accommodate? 
• Which fuel types will the added load utilize? 
• What added EAP will be generated by this new load? 
• Can the electric utility infrastructure withstand the potential additional load? 



 5

Two investigations which computed the number of vehicles that existing power 

systems could support found that the percentage of the U.S. light duty vehicle fleet that 

could be supported was 34% (charging the vehicle between 22:00 and 08:00) [6], 43% 

(charging between 18:00 and 06:00) and 73% (charging all day) [7].  The calculations in 

both reports are quite similar. 

Key PHEV assumptions made in both investigations, including vehicle energy 

required per mile and total miles driven per year, shown in Table 2.1. 

 

Clear reasons for the discrepancy between these results include more conservative 

charging time limits in [6] then [7], more miles driven per year in [6] then [7], and higher 

grid energy requirements in [6] over every vehicle size in [7] except the full size SUV.  

Each of these factors leads to a lower percentage penetration result in [6] then [7]. 

In [8] an optimal dispatch charging procedure is outlined and results conclude that 

50% penetration of the light duty vehicle fleet, where vehicles derived 40% of their miles 

from electricity, could be met by existing generation capacity.  In this report the vehicle 

assumptions include an average grid electric energy demand of 0.34 kWh per mile and 

different average daily driving distances depending on different U.S. regions, from 29.8 

miles per day in the southwestern study region to 42.2 miles per day in the central study 

region.  This level of penetration is clearly within the ranges indicated in the first two 

reports discussed ([6], and [7]). 

Table 2.1.  Vehicle assumptions made in penetration level papers. 

Report Total Miles Driven [mi.] Grid energy required per mile [kWh/mi.] 

[6] 14,300 0.41 

[7] 12,000 

0.26 – Compact sedan 
0.30 – Mid-size sedan 
0.38 – Mid-size SUV 
0.46 – Full-size SUV 
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Additional research has focused on the impact that charging PHEVs will have on 

primary energy source utilization, where primary energy source utilization refers to 

which power system fuel type/s will be utilized to meet the added demand due to PHEV 

charging.  Specifically, investigations have been performed using the Xcel power system 

[9] and the 13 regions specified by the North American Electric Reliability Corporation 

(NERC) [10]. 

In [9], three vehicle types were modeled: conventional vehicles (CVs), HEVs, and 

PHEV-20s, where PHEV-X indicates a PHEV which is capable of driving X miles using 

the battery alone.  Each vehicles equivalent miles per gallon (MPG) is shown in Table 

2.2.  The PHEV fuel efficiency was computed using Advanced Vehicle Simulator 

(ADVISOR) [11]. 

 

In [9] vehicle assumptions include an annual driving distance of 13,900 miles per 

year, a PHEV grid electric energy demand of 0.36 kWh per mile, and a PHEV battery 

capacity of 7.2 kWh.  Further, in [9] four vehicle charging cases were defined: 

Case 1. Uncontrolled charging, which meant each vehicle charged at a rate of 1.4 
kW where charging started whenever the vehicle arrived home and 
charged only at home. 

Case 2. Delayed charging, which meant all vehicles from case 1 are delayed until 
10 pm to start charging. 

Case 3. Off-peak charging, which meant utility control of vehicle charging times 
at a rate of 3.2 kW (providing a least cost scenario). 

Case 4. Continuous charging, which meant each vehicle charged at a rate of 1.4 
kW where mid-day charging is capable (providing a maximum amount of 
electric drive mileage and minimum gasoline case). 

Finally, vehicle fleet daily driving performance was based on global positioning 

satellite (GPS) recorded vehicle data of 227 vehicles in St. Louis, Missouri [9].  Results 

Table 2.2.  Vehicle MPG [9]. 

CV HEV PHEV-20 

MPG [mi./gal.] 26 36 37 
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of electricity usage, gasoline consumed, and total fuel costs are shown in Table 2.3.  In 

these results fuel cost is the cost of only gasoline purchasing for CVs and HEVs where as 

this cost includes both gasoline and electric energy purchasing for the PHEV cases. 

 

The annual fuel cost was computed using $2.57 per gallon of gasoline and 8.6 

cents per kWh electricity rates [9].  From the results in Table 2.3, it is clear that total 

gasoline consumption and annual fuel cost are reduced in all PHEV cases over the CV 

and HEV operation.  Regardless of charging method the annual reduction in gasoline 

utilization, driving PHEVs versus CV, would be at least 298 gallons of gasoline per 

vehicle and at least $597 saved in fuel costs per vehicle. 

The primary energy source utilization results in [9] include the impact of PHEV 

charging on the total system load, the EAP emissions (vehicle and power system), and the 

marginal cost of electricity.  This study considered a penetration level of 500,000 

vehicles, or equivalently 30% of the light-duty vehicle fleet in the Xcel Energy, Inc. 

service territory.  The power system simulations were computed using Proprietary Hourly 

Power System Evaluation Model (PROSYM).  The PROSYM software computed 

generator dispatching, on an hourly basis, and generated EAP for each of the four 

charging cases [9]. 

The 2005 power system generating mix and energy generated for all of Colorado 

based on fuel type is shown in Figures 2.1 and 2.2.  Xcel Energy, Inc. serves 

Table 2.3.  Vehicle performance results [9]. 

 CV HEV 
PHEV Cases 1-3 
(Charging once 

per day) 

PHEV Case 4 
(Continuous 

charging) 
Electricity Required [kWh] (Daily / Annual) 0 0 5.3 / 1,944 9.4 / 3,530 

Annual Gasoline Use [gal.] 535 386 237 145 
Annual Fuel Cost [$] 1,375 993 778 614 
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approximately 55% of the total Colorado population and supports 55% of the total 

Colorado annual electricity demand. 

 

 

In [9] results showed the percent of energy from each generator type for the four 

charging cases.  The three generator types considered were simple cycle and other gas 

 
Figure 2.2.  2005 electric power system energy generation by fuel type for Colorado [9]. 
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Figure 2.1.  2005 electric power system generation capacity by fuel type for Colorado [9]. 
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(reciprocating and steam units); combined cycle gas; and coal.  The percentage of energy 

produced from each generator type for each charging scenario is shown in Figure 2.3. 

 

This analysis showed that natural gas is utilized to meet the majority of the PHEV 

charging load.  Also, as the PHEV charging load is shifted later in the evening and off 

peak the coal utilization increased.  Further results drawn in this work include a small 

decrease in total NOx generated and a significant reduction in total CO2.  Next, the 

investigation of the 13 regions specified by the NERC in terms of PHEV primary energy 

source utilization [10] is described. 

In [10] an analysis is provided of primary energy source utilization due to PHEV 

charging for each of the 13 NERC regions of the U.S.  This analysis utilized the Oak 

Ridge Competitive Electricity Dispatch (ORCED) model to compute primary energy 

source utilization and power system EAP generated.  This analysis included two different 

charging time considerations and three different charging rates.  The first charging time 

was called “evening” and was defined by PHEV charging starting at 5 pm and the second 

 
Figure 2.3.  Generator type used to charge PHEV in the Xcel service area [9]. 
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charging time scenario was called “night” and was defined by PHEV charging starting at 

10 pm.  The three charging rates were 120V/15A (1.4kW), 120V/20A (2kW), and 

220V/30A (6kW).  All PHEV charging included nine hours of charging.  Two future time 

frames were simulated.  The first time frame was in the year 2020 and the second in the 

year 2030.  The projected level of PHEV penetration in 2020 was estimated to be 19.58% 

and in 2030 was estimated to be 50.39%. 

This report [10] documented results for all 13 NERC regions.  The results 

summarized here are the sum of the results for all 13 regions.  The power generating 

capacity for the 13 regions projected to 2020 is shown in Figure 2.4.  The base case 

energy generated for the 13 regions in 2020 is shown in Figure 2.5.  Comparable figures 

for 2030 are Figures 2.6 and 2.7.  In each of these figures ST, CT, and CC represent 

steam turbines, combustion turbines and combined cycle generation plants respectively. 

 

 
Figure 2.4.  Projected power generating capacity in 2020 [10]. 
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Figure 2.6.  Projected power generating capacity in 2030 [10]. 
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Figure 2.5.  Computed base case energy generated in 2020 [10]. 
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This investigation [10] compared the projected primary energy source utilization 

and EAP generated with and without PHEV penetration in the years 2020 and 2030 for 

each charging scenario.  Vehicle assumptions included daily driving distance of 20 miles 

per day, PHEVs operated in an all electric driving mode, and a HEV fuel efficiency of 40 

MPG.  The primary energy source utilization results from this investigation for each 

charging scenario are summarized in Figures 2.8 and 2.9 for the 2020 and 2030 results 

respectively.  In each of these figures the projected increase in energy generated for each 

fuel type is shown. 

 
Figure 2.7.  Computed base case energy generated in 2030 [10]. 
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In both time frames 2020 and 2030 and all charging scenarios, the three most 

utilized fuel types were gas CC, gas CT and coal.  Emission results showed CO2 

emissions slightly higher in most NERC regions, contradicting the CO2 results in [9].  

The generation of the other two pollutants considered, NOx and SO2, were limited by 

regulation caps.  This limitation invalidates any comparison of emission results between 

 
Figure 2.9.  Computed increase in energy per fuel type for 2030 [10]. 
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Figure 2.8.  Computed increase in energy per fuel type for 2020 [10]. 
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studies for NOx and SO2.  Next, an additional study of EAP effects of PHEV use is 

summarized. 

In [12] nine scenarios of annual CO2 emission scenarios were simulated.  The 

nine scenarios were all possible combinations of three levels of power system CO2 

emission intensity and three levels of PHEV penetration levels.  From the nine scenarios 

the follow conclusions were drawn: 

• CO2 emissions decreased significantly in each of the nine scenarios. 
• The maximum of CO2 reduction was achieved with the combination of high 

PHEV penetration and the low power system CO2 intensity. 
• Cumulative CO2 emission reductions were simulated in the range of 3.4 to 

10.3 billion tons.  The simulation operated in the time span of 2010 through 
2050. 

• Regionally each area of the country will have CO2 reductions. 

The common reduction in CO2 for each regional area was contradicted in [10] where 

emission levels did not follow any consistent pattern. 

The modeling in [12] simulated the evolution of the power system and 

transportation utilization over the 2010 to 2050 time span.  The power system model was 

a combination of the Energy Information Agency’s (EIA) National Energy Modeling 

System (NEMS) [13] and the Electric Power Research Institute (EPRI) National Electric 

System Simulation Integrated Evaluator (NESSIE).  The transportation utilization 

modeled both vehicle emissions and market adoption of PHEVs. 

Additional research literature which investigated the impact that PHEV operation 

will have on EAP production includes [14], [15], and [16].  These investigations lack an 

analysis of EAP produced from the electric power system, thus missing half of the picture 

when comparing the operation of PHEVs with the use of CVs.  Next, literature 

documenting the impact of PHEV charging on the electric infrastructure is introduced. 
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2.2 Second Focus 

Thus far, the mentioned research has focused on (1) the number of vehicles an 

existing power system idle generation capacity can accommodate, (2) the primary energy 

source utilization of PHEV charging, and (3) the EAP produced by PHEV utilization.  

The question remains what, if any, impact will PHEV charging have on the electric 

power infrastructure itself?  The potential impact was quantified in [17]. 

An advantage of a higher utilization factor of the electric power utility, achievable 

with the use of PHEVs [6], [7], and [8], is “an efficiency gain, distributing average costs 

over a greater number of kilowatt-hours” [17].  However, oil-cooled transformers rely on 

common utilization patterns to avoid the detrimental effects of overheating.  In [17] the 

transformers temperature and life expectancy were modeled using a Montsinger equation.  

Further, a sensitivity analysis of the modeled transformer temperature indicated that, “the 

current transformer designs may represent a significant constraint with respect to 

integration PHEVs into central-station power systems” [17]. 

In summary, a review of the literature shows that existing reserve capacity is 

capable of supporting a sizable portion of the light duty vehicle fleet replaced by PHEVs, 

the added electric energy will be met by primary energy sources depending on the 

generating mix, mixed EAP results, and oil-cooled transformers may represent a 

constraint on integrating PHEVs into the existing infrastructure. 

This thesis adds to the existing body of research by (1) developing a probabilistic 

analysis of the well documented topic of PHEV primary energy source utilization, (2) 

quantifying the loss-of-life of pole top transformers using probabilistic simulations. 
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The impact of PHEV charging on primary energy source utilization is described 

next. 
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CHAPTER 3 

IMPACT OF PHEV CHARGING ON PRIMARY ENERGY 

SOURCE UTILIZATION 

 

To quantify where the electric energy used to charge plug-in hybrid electric 

vehicles (PHEVs) is generated, a probabilistic simulation program was developed.  Two 

key steps of this simulation program include vehicle fleet simulations and power system 

simulations.  The vehicle fleet simulations compute the amount of added electric load 

demand to charge the PHEV fleet, the amount of gasoline used by both internal 

combustion (IC) vehicles and PHEVs, and the amount of environmental air pollution 

(EAP) generated by both IC vehicles and PHEVs.  The power system simulations 

simulate how much fuel usage and subsequent EAP are generated by a specific power 

system.  The specific power system simulation is based on the Probabilistic Production 

Costing (PPC) [18] power system simulation procedure. 

3.1 Probabilistic Simulation of an Integrated Power System with 
Distributed PHEVs Methodology 

A top level block diagram of the probabilistic simulation program is shown in 

Figure 3.1. 
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In Figure 3.1 step 1 is initiated when an input file is opened, step 2 is an optional 

step where the program user may or may not edit the input data, step 3 is broken into four 

sub-steps shown in Figure 3.2, and step 4 is an optional step where the program user may 

or may not view or save the simulation results. 

 

 
Figure 3.2.  Simulation sub-steps block diagram. 

 
Figure3.1.  Simulation overview block diagram. 
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Each sub-step in Figure 3.2 is used to perform the probabilistic simulation.  

Specifically, sub-step 1 initializes the vehicle fleet performance metrics, generates the 

vehicle operation distributions, and computes the gasoline usage statistics.  Sub-step 2, 

computes the chronological load demand curves and the normalized inverted load 

duration curves (NILDCs).  Sub-step 3, performs the PPC power system simulation 

procedure.  Sub-step 4, computes the IC vehicle EAP and PHEV EAP statistics. 

In the reminder of this section: 

• The vehicle fleet simulations are fully described. 
• The power system load curve calculation method is fully described. 
• The power system simulations are fully described. 

3.1.1 Vehicle Simulation 
In the first sub step of Figure 3.2 the vehicle fleet parameters are computed based 

on vehicle simulations performed using Powertrain System Analysis Toolkit (PSAT) 

version 6.2, developed by DOEs Argonne National Labs [19].  In PSAT the simulation of 

IC and hybrid powertrains generate vehicle operational data from which IC vehicle and 

PHEV models are developed.  The development of the vehicle classes and the PSAT 

simulations are documented in [20] which at the time of this thesis has not been 

published.  Full PSAT results are shown in Appendix 1, and this data is utilized to 

compute the results below. 

Four vehicle classes were arbitrarily selected to provide a diverse vehicle fleet 

representative of what a real vehicle fleet could look like in the future.  The following 

vehicles were used as inspiration for each class [20]: 

Class 1: Honda Civic and Ford Focus. 
Class 2: Honda Accord and Ford Taurus. 
Class 3: Ford Explorer and Ford F-150. 
Class 4: Chevrolet Suburban and Chevrolet Silverado. 
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Once the complete vehicle models had been selected, PSAT simulated the 

operation of the modeled vehicles over specified driving schedules. Three drive schedules 

Highway Fuel Economy Test (HWFET), Urban Dynamometer Driving Schedule 

(UDDS), and the updated federal test driving cycle (US06) were selected to generate 

varied results representative of an entire vehicle fleet [20].  First the PSAT IC vehicle 

results are described followed by the PSAT PHEV results. 

3.1.1.1 Vehicle Fleet Performance Metrics 
The PSAT IC vehicle simulations resulted in fuel efficiency, NOx generated per 

mile driven, and CO2 generated per mile driven for each vehicle class over each of the 

three drive cycles (Table A.5) [20].  To compute a single estimate, for each of the 

performance metrics (fuel efficiency, NOx generated per mile driven, and CO2 generated 

per mile driven), for each vehicle class (classes 1-4) a weighted average of the results for 

each drive cycle is computed.  The US06 drive cycle represents more modern driving and 

as such is weighted 50%.  The remaining 50% is split 55% UDDS and 45% HWFET 

analogous to the comprehensive EPA fuel efficiency.  The resulting weighted average 

performance metric for each class is shown in Table 3.1. 

 

Next, the PHEV PSAT results are described.  No mass production PHEVs are 

currently available thus the performance metrics including energy required per mile, 

gasoline efficiency, and EAP generated per mile are approximated based on PSAT 

simulation results [20]. 

Table 3.1.  PSAT IC results for each vehicle class. 

Class 1 2 3 4 

MPG [mi./gal.], ܥܫெ௉ீ
ሺ௖ሻ  27.58 23.52 15.17 11.89 

NOx generated per mile [kg/mi.], ܥܫேை௫
ሺ௖ሻ  1.643E-04 1.904E-04 2.778E-04 3.253E-04 

CO2 generated per mile [kg/mi.], ܥܫ஼ைଶ
ሺ௖ሻ  0.3300 0.3884 0.6016 0.7656 
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PSAT simulations were performed for each vehicle class over each drive cycle 

and varying the amount of drive energy supplied from the vehicles battery [20].  The 

variable amount of driving energy supplied from the vehicles battery was defined as 

݇௉ுா௏ሺ݇௉ுா௏ א ሾ0,1ሿሻ [20].  This parameter is defined such that, ݇௉ுா௏ ൌ 0 represented 

a charge sustaining hybrid i.e. on average all of the drive energy came from gasoline and 

݇௉ுா௏ ൌ 1 represented a pure battery electric vehicle (BEV) i.e. all of the drive energy 

came from electricity [20]. 

The vehicle simulation methodology utilizes randomly generated vehicle design 

parameters including ݇௉ுா௏.  To facilitate simulating PHEV operation without a priori 

knowledge of the exact value of ݇௉ுா௏ performance metric functions (3.1 - 3.4) are 

approximated based on the discrete PSAT results (Tables A.1 - A.4).  The method to 

compute the functional relations is described next. 

ሺ௖ሻሺ݇௉ுா௏ሻܧ ൌ ாܣ
ሺ௖ሻ · ሺ݇௉ுா௏ሻ஻ಶ

ሺ೎ሻ
 (3.1) 

1 ⁄ሺ௖ሻሺ݇௉ுா௏ሻܩܲܯ ൌ ௉ெீܣ
ሺ௖ሻ · ሺ1 െ ݇௉ுா௏ሻ஻ಸುಾ

ሺ೎ሻ
 (3.2) 

ܰ ௫ܱ
ሺ௖ሻሺ݇௉ுா௏ሻ ൌ ேை௫ܣ

ሺ௖ሻ · ሺ1 െ ݇௉ுா௏ሻ஻ಿೀೣ
ሺ೎ሻ

 (3.3) 

ܥ ଶܱ
ሺ௖ሻሺ݇௉ுா௏ሻ ൌ ஼଴ଶܣ

ሺ௖ሻ · ሺ1 െ ݇௉ுா௏ሻ஻಴ೀమ
ሺ೎ሻ

 (3.4) 

Each performance metric function is a function of the vehicle design parameter 

݇௉ுா௏ and the vehicle class-ܿ.  In (3.1), ܧሺ௖ሻሺ݇௉ுா௏ሻ is the required energy per mile 

driven [kWh/mi.] and values of the function parameters ܣா
ሺ௖ሻ [kWh/mi.] and ܤா

ሺ௖ሻ are 

given in Table 3.2.  In (3.2), ܩܲܯሺ௖ሻሺ݇௉ுா௏ሻ is the fuel efficiency [mi./gal.] and values 

of the function parameters ீܣ௉ெ
ሺ௖ሻ  [gal./mi.] and ீܤ௉ெ

ሺ௖ሻ  are given in Table 3.3.  In (3.3), 

ܰ ௫ܱ
ሺ௖ሻሺ݇௉ுா௏ሻ is the generated NOx per mile driven [kg/mi.] and values of the function 

parameters ܣேை௫
ሺ௖ሻ  [kg/mi.] and ܤேை௫

ሺ௖ሻ  are given in Table 3.4.  In (3.4), ܥ ଶܱ
ሺ௖ሻሺ݇௉ுா௏ሻ is the 
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generated CO2 per mile driven [kg/mi.] and values of the function parameters ܣ஼଴ଶ
ሺ௖ሻ  

[kg/mi.] and ܤ஼଴ଶ
ሺ௖ሻ  are given in Table 3.5. 

 

 

 

 

The function parameters (Tables 3.2 - 3.5) are estimated from the discrete PSAT 

results (Tables A.1 - A.4) using a weighted nonlinear least squares approximation 

method.  Specifically, MATLABs function lsqnonlin [21] is used to compute the 

approximation function parameters. 

Table 3.5.  PHEV CO2 generated per mile function parameters for each vehicle class. 

Class ܣ஼ைଶ [kg/mi.] ܤ஼ைଶ 

1 0.2423 1.916 
2 0.2954 1.895 
3 0.4555 1.875 
4 0.4907 1.839 

 

Table 3.4.  PHEV NOx generated per mile function parameters for each vehicle class. 

Class ܣேை௫ 
[kg/mi.] ܤேை௫ 

1 1.341E-04 1.752 
2 1.642E-04 2.113 
3 2.209E-04 1.751 
4 2.500E-04 1.501 

 

Table 3.3.  PHEV fuel efficiency (1/MPG) function parameters for each vehicle class. 

Class ீܣ௉ெ 
[gal./mi.] ீܤ௉ெ  

1 0.0268 1.901 
2 0.0329 1.892 
3 0.0505 1.884 
4 0.0547 1.844 

 

Table 3.2.  PHEV grid energy per mile function parameters for each vehicle class. 

Class ܣா [kWh/mi.] ܤா 

1 0.3790 0.4541 
2 0.4288 0.4179 
3 0.6720 0.4040 
4 0.8180 0.4802 
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Each drive cycle PSAT data and resulting weighted average performance metric 

function for the Class 2 data is shown in Figure 3.3 for the grid electric energy, in Figure 

3.4 for the fuel efficiency, in Figure 3.5 for the NOx generated per mile, and in Figure 3.6 

for the CO2 generated per mile.  In Figures 3.3 - 3.6 the discrete drive cycle data [20] is 

shown with data markers and dashed lines, the weighted continuous approximations are 

shown with a solid line. 

 

 
Figure 3.3.  Class 2 PSAT discrete data and weighted average for the required grid energy 

performance metric. 
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Figure 3.5.  Class 2 PSAT discrete data and weighted average for the NOx rate performance 

metric. 
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Figure 3.4.  Class 2 PSAT discrete data and weighted average for the fuel efficiency performance 

metric. 
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The weighted average performance metric functions (3.1 - 3.4) are computed with 

the same weighting as the IC data results (50% US06, 27.5% UDDS, and 22.5% 

HWFET).  The most accurate approximation of the PHEV energy per mile (3.1) for each 

class is a power trend line.  In Figure 3.3 the approximated power function (3.1) closely 

matches the PSAT discrete data over the entire range of ݇௉ுா௏ and when evaluated at 

݇௉ுா௏ ൌ 0 evaluates to zero electrical energy required per mile driven as expected for a 

charge sustaining HEV.  All other performance metrics are approximated with shifted 

power functions.  In figures 3.4 through 3.6 the shifted approximation functions closely 

match the PSAT discrete data over the entire range of ݇௉ுா௏.  These approximation 

functions (3.2 - 3.4) are shifted so that at ݇௉ுா௏ ൌ 1, and these functions then evaluate to 

zero.  Thus, a BEV ሺ݇௉ுா௏ ൌ 0ሻ requires no gasoline per mile driven (3.2) and produces 

no NOx (3.3) nor CO2 (3.4) per mile driven. 

The weighted average performance metric function (3.1 - 3.4) for each vehicle 

class are shown in Figure 3.7 for the grid energy per mile approximations (3.1), in Figure 

 
Figure 3.6.  Class 2 PSAT discrete data and weighted average for the CO2 rate performance 

metric. 
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3.8 for the fuel efficiency approximations (3.2), in Figure 3.9 for the NOx rate 

approximations (3.3), and in Figure 3.10 for the CO2 rate approximations (3.4). 

 

 

 
Figure 3.8.  Average PHEV fuel efficiency approximations for each PHEV class. 
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Figure 3.7.  Average PHEV grid energy per mile approximation for each PHEV class. 
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In figures 3.7 through 3.10 all of the weighted approximations follow a strict 

ranking by class, except the NOx rate approximation functions (Figure 3.9) for PHEV 

classes 1 and 2.  There is a crossover between these two classes of NOx rate 

approximation functions at approximately 50% ݇௉ுா௏.  This result is realistic because the 

two vehicle classes are similar in size and performance. 

 
Figure 3.10.  Average PHEV CO2 rate approximation and for each PHEV class. 
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Figure 3.9.  Average PHEV NOx rate approximation and for each PHEV class. 
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The two-mode PHEV control strategy is optimized to maximize the benefits of 

PHEVs for an optimal trip length of ܯா
כ  miles.  The two modes are a charge depleting 

mode and a charge sustaining mode ሺ݇௉ுா௏ ൌ 0ሻ.  The charge depleting mode is used 

initially when the vehicles battery is relatively fully charged.  On trips (times between 

charging) longer then ܯா
כ , after the battery is depleted (to a specified lower level) the 

charge sustaining mode is utilized.  The charge sustaining mode relies on gasoline to 

maintain a constant average state-of-charge where on average all the energy used to drive 

the PHEV comes from gasoline.  The driving distance in the charge depleting mode is 

called the charge depleting distance ܯா
ሺ௖ሻ (miles).  The charge depleting distance for each 

vehicle class-ܿ ሺܿ א ሼ1,2,3,4ሽሻ, ܯா
ሺ௖ሻ, is calculated, in (3.5), as a function of the useable 

battery capacity, ܥܤሺ௖ሻ [kWh], assumed to be a random variable (RV) within the battery 

capacity ranges defined in Table 3.6 for each vehicle class, and the vehicles required grid 

energy per mile, ܧሺ௖ሻሺ݇௉ுா௏ሻ. 

ாܯ
ሺ௖ሻ ൌ ሺ௖ሻܥܤ ⁄௖ሺ݇௉ுா௏ሻܧ  (3.5) 

 

From ܥܤሺ௖ሻ (Table 3.6) and ܯா
כ  a formula for the vehicle design parameter ݇௉ுா௏ 

can be derived.  Substituting (3.1) into (3.5) results in 

ாܯ
ሺ௖ሻ ൌ ሺ௖ሻܥܤ ቈܣா

ሺ௖ሻ · ቀ݇௉ுா௏
ሺ௖ሻ ቁ

஻ಶ
ሺ೎ሻ

቉ൗ  (3.6) 

which can be rearranged to solve for ݇௉ுா௏
ሺ௖ሻ  as 

Table 3.6.  Battery capacity range for each vehicle class [kWh]. 

Class ܥܤmax
ሺ௖ሻ  [kWh] ܥܤmin

ሺ௖ሻ  [kWh] 

1 12 8 
2 14 10 
3 21 17 
4 23 19 
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݇௉ுா௏
ሺ௖ሻ ൌ ቂܥܤሺ௖ሻ ቀܣா

ሺ௖ሻ · ாܯ
ቁൗכ ቃ

ଵ ஻ಶ
ሺ೎ሻ⁄

 (3.7) 

The ranges of ݇௉ுா௏
ሺ௖ሻ  for each vehicle class can be computed from (3.7), an ܯா

כ  

value of 40 miles, and the battery capacity ranges in Table 3.6.  An ܯா
כ  value of 40 is 

selected to provide typical results for approximately 75% of average U.S. driver’s daily 

commutes [22].  The computed ranges of ݇௉ுா௏ are shown in Table 3.7.  The parameter 

݇௉ுா௏
ሺ௖ሻ  represents the percentage of energy per mile on average which comes from a 

PHEV in class-ܿ battery in the assumed vehicle control strategy during the charge 

depleting mode. 

 

The values in Tables 3.6 and 3.7 form the basis of one of the three random vehicle 

fleet parameters described next. 

3.1.1.2 Vehicle Operation Distributions 
The following three vehicle parameters are based on random distributions. 

1. PHEV vehicle class populations. 
2. PHEV design parameters ݇௉ுா௏ and battery capacity. 
3. Daily driving distance, departure time, and arrival time. 

This section of the thesis introduces the RV distributions for each of the vehicle 

parameters, motivates why the particular distribution type and parameters are selected, 

and describes the method used to generate the RVs in the simulation program. 

The vehicle fleet is distributed into the four vehicle classes based on the assumed 

vehicle class distribution ݌ሺ௖ሻ.  The number of vehicles in each vehicle class is the total 

Table 3.7.  Computed kPHEV range for each vehicle class. 

Class ݇௉ுா௏,max
ሺ௖ሻ  ݇௉ுா௏,max

ሺ௖ሻ  

1 0.5976 0.2447 
2 0.6151 0.2750 
3 0.5428 0.3217 
4 0.4800 0.3224 
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number of vehicles in the power system area, ்ܰ, times the percentage of vehicles in each 

class, ݌ሺ௖ሻ, shown in Table 3.8. 

 

The first RV distribution is the number of PHEVs in each vehicle class.  The level 

of PHEV penetration is defined as ௉ܲுா௏.  The total number of PHEVs with ௉ܲுா௏ 

penetration is ்ܰ · ௉ܲுா௏.  The number of PHEVs in each vehicle class is normally 

distributed with mean ߤሺ௖ሻ and variance ൫ߪሺ௖ሻ൯ଶ.  Where ߤሺ௖ሻ is ்ܰ · ௉ܲுா௏ ·  ሺ௖ሻ and݌

൫ߪሺ௖ሻ൯ଶ is ߙ௣ ·  The normal distribution is selected because  .(ሺ௖ሻ is 1%ߙ by default) ሺ௖ሻߤ

normal distributions often occur naturally.  Thus, this distribution realistically models 

random consumer behavior.  The specific values for mean and variance are arbitrarily 

selected. 

The Box-Műller method, in (3.8) is used to compute normally distributed RVs 

[23] 

ܰ ൌ ඥെ2 · ln ሺ ଵܷሻcos ሺ2 · ߨ · ܷଶሻ (3.8) 

where, ܰ is a standard normal value (a normal RV with a mean of zero and a variance of 

one), ଵܷ and ܷଶ are independent and identically distributed (IID) pseudo random 

numbers distributed uniformly over the range (0,1].  ଵܷ and ܷଶ are generated using the C 

function rand().  The vehicle class population is then computed 

௉ܰுா௏
ሺ௖ሻ ൌ ሺ௖ሻߤ ൅ ሺ௖ሻߪ · ܰ (3.9) 

where the result ௉ܰுா௏
ሺ௖ሻ  is normally distributed with mean ߤሺ௖ሻ and standard deviation 

 .ሺ௖ሻߪ

Table 3.8.  IC vehicle class distribution [20]. 

Class 1 Class 2 Class 3 Class 4 

0.20 0.30 0.30 0.20 
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The next set of RV distributions is the vehicle design parameters ݇௉ுா௏
ሺ௖ሻ  and 

usable battery capacity ܥܤሺ௖ሻ [kWh].  The random vehicle design parameters are 

assumed to be distributed according to a bivariate normal distribution with mean vector ߤԦ 

and covariance matrix ࢳ.  The bivariate normal distribution is selected because of the 

ability to include parameter correlation.  Using the specified ranges of ݇௉ுா௏ and ܥܤሺ௖ሻ, 

given in Tables 3.6 and 3.7, ߤԦ and ࢳ are calculated.  The correlation between ݇௉ுா௏
ሺ௖ሻ  and 

 is arbitrarily set to 0.8.  This correlation represents the intuitive relationship ߩ ሺ௖ሻܥܤ

between the design parameters ݇௉ுா௏
ሺ௖ሻ  and ܥܤሺ௖ሻ.  The correlation coefficient is arbitrarily 

selected with added consideration that ࢳ be positive definite so that a Cholesky 

decomposition [24] of ࢳ can be computed. 

As an example of how the bivariate normal values are generated, the calculations 

for the Class 2 vehicle design parameters are shown below in detail.  First, the bivariate 

distribution parameters ߤԦሺଶሻ and ࢳሺ૛ሻ are calculated 

Ԧሺଶሻߤ ൌ ቎
ቀ݇௉ுா௏,max

ሺଶሻ ൅ ݇௉ுா௏,min
ሺଶሻ ቁ 2⁄

ቀܥܤmax
ሺଶሻ ൅ minܥܤ

ሺଶሻቁ 2⁄
቏ (3.10) 

ൌ ൤ሺ0.6151 ൅ 0.2750ሻ 2⁄
ሺ14 ൅ 10ሻ 2⁄ ൨ ൌ ቂ0.445112 ቃ 

௞௉ுா௏ߪ
ሺଶሻ ൌ ቀ݇௉ுா௏,max

ሺଶሻ െ ݇௉ுா௏,min
ሺଶሻ ቁ 4⁄  (3.11) 

ൌ 0.6151 െ 0.2750 4⁄ ൌ 0.0850 

஻஼ߪ
ሺଶሻ ൌ ቀܥܤmax

ሺଶሻ െ minܥܤ
ሺଶሻቁ 4⁄  (3.12) 

ൌ ሺ14 െ 10ሻ 4⁄ ൌ 1 kWh 

ሺଶሻࢳ ൌ ቈ
௞௉ுா௏ଶߪ ρ · ௞௉ுா௏ߪ · ஻஼ߪ

ρ · ௞௉ுா௏ߪ · ஻஼ߪ ஻஼ଶߪ
቉ (3.13) 

ൌ ቂ 0.0882ଶ 0.8 · 0.0882 · 1
0.8 · 0.0882 · 1 1ଶ

ቃ 



 32

ൌ ቂ0.0072 0.0680
0.0680 1 ቃ 

Next, the Cholesky decomposition is used to decompose the covariance matrix into a 

lower triangular matrix ࡮, where 

ࢳ ൌ ࡮ · ்࡮
 (3.14) 

and specifically, for Class 2 

ሺଶሻ࡮ ൌ ቂ0.0850 0
0.8 0.6ቃ 

Then, a vector of two standard normal values ሬܰሬԦ is generated using (3.8).  Finally, the 

desired multivariate normal distribution is calculated 

Ԧܺ௏஽ ൌ ቈ݇௉ுா௏
ሺଶሻ

ሺଶሻܥܤ
቉ ൌ Ԧߤ ൅ ࡮ · ሬܰሬԦ (3.15) 

Similar calculations are performed for each vehicle class. 

The last set of RVs are those associated with the daily vehicle performance: miles 

driven per day ܯሺ௩,ௗሻ [mi], vehicle departure time்ܦ
ሺ௣ሻ [h], and vehicle arrival time ்ܣ

ሺ௣ሻ 

[h].  The miles driven per day are distributed log-normal RVs with mean ߤ௠ of 3.37 and 

standard deviation ߪ௠ of 0.5 [25], the vehicle timing distributions are normally 

distributed RVs with parameters shown in Table 3.9.  The parameter ݌ in the distribution 

parameters mean ்ߤ
ሺ௣ሻ [h] and variance ቀ்ߪ

ሺ௣ሻቁ
ଶ
 [h] indicates one of the four possible 

daily timing distributions: weekday departure, weekend departure, weekday arrival, or 

weekend arrival. 

 

Table 3.9.  Vehicle departure and arrival time distribution parameters. 

 Departure Arrival 

Parameter Weekday Weekend Weekday Weekend 

்ߤ
ሺ௣ሻ [h] 7 9 18 15 

൫்ߪ
ሺ௣ሻ൯

ଶ
 [h] 3 6 3 6 
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The log normal distribution is selected because of the correlation between the 

shape of a log normal histogram and the author’s intuition.  This intuition has been 

verified comparing sample generated results with known driving pattern statistics.  The 

known driving statistics are average yearly total miles driven of 12,000 miles, 50% of 

drivers drive 25 miles per day or less, and 75% of drivers drive 45 miles or less [22].  

Sample results computed by MATLAB using 328,500 log normal RVs (ߤ௠ = 3.37 and 

 ௠ = 0.5) show that the total yearly driving distance average is 12,018 miles, 48% of theߪ

vehicles drive 25 miles or less each day, and 83% of the vehicles drive 45 miles or less 

each day, which closely approximate the driving performance results from [22]. 

In the probabilistic simulation program the log normal RVs are generated using a 

standard normal RV, ܰ, generated using (3.8).  Then, the value ܯሺ௩,ௗሻ is computed from 

ሺ௩,ௗሻܯ ൌ ݁ሺఓ೘ାఙಾ·ேሻ (3.16) 

where ܯሺ௩,ௗሻ is a RV representing the total miles vehicle-ݒ on day-݀ drove and is 

distributed log normal with mean ߤ௠ and standard deviation ߪெ.  Vehicle-ݒ is a 

particular vehicle sampled randomly from the total vehicle fleet ்ܰ.  The total number of 

vehicles in the sample population is ݊, where ݊ is much less then ்ܰ, because generating 

data for ்ܰ vehicles for the entire simulation period is computationally prohibitive.  Day-

݀ is a particular day of the simulation.  The total number of days simulated is ܦ. 

For the time performance parameters, departure time and arrival time Gaussian 

distributions are selected as a best estimate of random consumer behavior.  Different 

timing distributions are used to model the potential different consumer behaviors on 

weekdays versus weekends. 
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As before a standard normal value, ܰ, is computed using (3.8).  Then, the value 

்ܺ
ሺ௣ሻ is computed 

்ܺ
ሺ௣ሻ ൌ ቔ்ߤ

ሺ௣ሻ ൅ ்ߪ
ሺ௣ሻ · ܰቕ (3.17) 

where the result ்ܺ
ሺ௣ሻ is a normally distributed integer with mean ்ߤ

ሺ௣ሻ and standard 

deviation ்ߪ
ሺ௣ሻ.  The value ்ܺ

ሺ௣ሻ represents either the arrival time ்ܣ
ሺ௣ሻ or the departure 

time ்ܦ
ሺ௣ሻ depending on the values used for the mean and standard deviation. 

The arrival time ்ܣ
ሺ௩,ௗሻ for vehicle-ݒ on day-݀ must occur after the departure time 

்ܦ
ሺ௩,ௗሻ for vehicle-ݒ on day-݀.  To achieve this specification, an acceptance-rejection 

method is used.  Let כ்ܣ  be a particular generated arrival time and כ்ܦ  be a particular 

generated departure time.  Each generated pair ሺכ்ܣ , כ்ܣ ሻ is checked, and ifכ்ܦ ൑ כ்ܦ  then 

a new pair is generated.  The process is repeated until כ்ܣ ൐ כ்ܦ  and the generated pair is 

accepted. 

3.1.1.3 Gasoline Usage Statistics 
Three steps are required to compute of the amount of gasoline for a vehicle fleet 

with a specified level of PHEV penetration: 

1. Compute the amount of gasoline which a fleet of ்ܰ IC vehicles will 
consume, ܩூ஼  [gal.]. 

2. Compute the amount of gasoline which a fleet of ்ܰ · ௉ܲுா௏ PHEVs will 
consume, ܩ௉ுா௏ [gal.]. 

3. Compute the total gasoline usage, ܩ [gal.]. 

The total gasoline ܩூ஼  used by a fleet of ்ܰ IC vehicles is computed assuming the 

average gasoline used by the vehicle sample population, ܩூ஼
ሺ௖ሻതതതതത [gal./veh.], is equal to the 

average gasoline used by the population average, so that 

ூ஼ܩ
ሺ௖ሻതതതതത ൌ 1 ݊⁄ ڄ ∑ ቀܶሺ௩ሻ ெ௉ீܥܫ

ሺ௖ሻൗ ቁ௡
௩ୀଵ  (3.18) 
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where ܶሺ௩ሻ is the total number of miles driven by vehicle-ݒ over the simulation period 

and ܥܫெ௉ீ
ሺ௖ሻ  is the fuel efficiency of an IC vehicle in class-ܿ.  Thus, ܩூ஼  is the sum of the 

product of the total number of vehicles in class-ܿ times the average gasoline used per 

vehicle in class-ܿ for each vehicle class.  Hence 

ூ஼ܩ ൌ ்ܰ ڄ ∑ ቀ݌ሺ௖ሻ · ூ஼ܩ
ሺ௖ሻതതതതതቁସ

௖ୀଵ  (3.19) 

To calculate the amount of gasoline a fleet of PHEVs uses is more complicated 

because the rate at which PHEVs use fuel, in the assumed control strategy, depends on 

the daily driving distance.  If ܯா
ሺ௖ሻ is greater than or equal to ܯሺ௩,ௗሻ, then the entire daily 

driving distance is performed in charge depleting mode.  Under this condition the daily 

required gasoline, ீܦ
ሺ௩,ௗ,௖ሻ [gal.], is 

ீܦ
ሺ௩,ௗ,௖ሻ ൌ ሺ௩,ௗሻܯ ⁄ሺ௖ሻሺ݇௉ுா௏ሻܩܲܯ  (3.20) 

Where ܩܲܯሺ௖ሻሺ݇௉ுா௏ሻ is the fuel efficiency of a PHEV with design variable ݇௉ுா௏ in 

class-ܿ in the charge depleting mode.  However, if ܯா
ሺ௖ሻ is strictly less than ܯሺ௩,ௗሻ then 

the distance ቀܯሺ௩,ௗሻ െ ாܯ
ሺ௖ሻቁ must be completed in charge sustaining mode, and ீܦ

ሺ௩,ௗ,௖ሻ 

is 

ீܦ
ሺ௩,ௗ,௖ሻ ൌ ாܯ

ሺ௖ሻ ሺ௖ሻሺ݇௉ுா௏ሻൗܩܲܯ ൅ ቀܯሺ௩,ௗሻെܯா
ሺ௖ሻቁ ሺ௖ሻሺ0ሻൗܩܲܯ  (3.21) 

where the first term in the sum represents gasoline used in charge depleting mode and the 

second term represents gasoline used in charge sustaining mode (where ܩܲܯሺ௖ሻሺ0ሻ is the 

fuel efficiency of a PHEV in class-ܿ in the charge sustaining mode). 

From ீܦ
ሺ௩,ௗ,௖ሻ the yearly gasoline usage, ܻீሺ௩,௖ሻ [gal.], is computed by summing 

over each day in the simulation 

ܻீሺ௩,௖ሻ ൌ ∑ ீܦ
ሺ௩,ௗ,௖ሻD

ୢୀଵ  (3.22) 
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Next, the sample vehicle population average gasoline usage, ܻீሺ௖ሻതതതതത [gal./veh.], is computed 

ܻீሺ௖ሻതതതതത ൌ 1 ݊⁄ ڄ ∑ ܻீሺ௩,௖ሻ୬
୴ୀଵ  (3.23) 

Then, the total gasoline ܩ௉ுா௏ used by a fleet of ்ܰ ڄ ௉ܲுா௏ PHEVs is the sum of 

the product of the number of vehicles in each class times the average gasoline usage per 

vehicle for each vehicle class 

௉ுா௏ܩ ൌ ்ܰ · ௉ܲுா௏ ڄ ∑ ቀ݌ሺ௖ሻ · ܻீሺ௖ሻതതതതതቁସ
௖ୀଵ  (3.24) 

assuming, again, that the sampled PHEV population average gasoline usage is equal to 

the total PHEV population gasoline usage. 

Finally, the total gasoline usage, ܩ, is the sum of the gasoline used by the IC 

vehicles and the gasoline used by the PHEVs, ܩ௉ுா௏.  The gasoline used by the IC 

vehicles is the percentage of IC vehicles in the total vehicle fleet times ܩூ஼ .  The 

percentage of IC vehicles in the population is ሺ1 െ ௉ܲுா௏ሻ.  Thus, 

ܩ ൌ ሺ1 െ ௉ܲுா௏ሻ · ூ஼ܩ ൅ ௉ுா௏ܩ  (3.25) 

Thus far, the described methodology computes the performance of a fleet of ்ܰ 

vehicles with a penetration percentage of ௉ܲுா௏.  The next step in the probabilistic 

simulation program is to compute the load curves used in the power system simulation 

algorithm. 

3.1.2 Calculate Load Curves 
Two forms of load curves are used, namely the chronological load curve and the 

NILDC [18].  The chronological form depicts the load as a function of time.  The second 

form, computed from the first, depicts a probabilistic description of the electric load.  

First the chronological load curve is computed using the base case electric load and the 
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additional electric load due to PHEV charging.  Second the chronological load curve is 

converted into the NILDC. 

In each simulated experiment the base case electric load demand is based on data 

in [26] and the peak electric load of the power system in the experiment.  The data in [26] 

describes the electric load demand as a percentage of the peak for each hour of a year.  

The electric load representing PHEV charging is added to the base case electric load.  

Next, the method to calculate the added electric load demand due to PHEV charging is 

described. 

To compute the additional energy required to charge the PHEV fleet requires five 

calculations: 

1. Compute the daily recharge energy required by the PHEV from the grid, 
ாܦ
ሺ௩,ௗ,௖ሻ [kWh]. 

2. Compute the daily recharge length, ்ܥ
ሺ௩,ௗሻ [h]. 

3. Generate the recharge voltage, ܸሺ௩,௖ሻ [V]. 
4. Compute the recharge current, ܫሺ௩,ௗ,௖ሻ [A]. 
5. Compute the total recharge power, ݌௩ [MW], per hour. 

First, ܦா
ሺ௩,ௗ,௖ሻ is computed.  This value depends on ܯሺ௩,ௗሻ and ܯா

ሺ௖ሻ.  If ܯሺ௩,ௗሻ is 

greater than or equal to ܯா
ሺ௖ሻ then the required grid energy is ܥܤሺ௖ሻ.  Otherwise ܦா

ሺ௩,ௗ,௖ሻ is 

the product of ܯሺ௩,ௗሻ and ܧሺ௖ሻሺ݇௉ுா௏ሻ. 

ாܦ
ሺ௩,ௗ,௖ሻ ൌ ൝

ሺ௖ሻܥܤ ሺ௩,ௗሻܯ ൒ ாܯ
ሺ௖ሻ

ሺ௩,ௗሻܯ · ሺ௖ሻሺ݇௉ுா௏ሻܧ ሺ௩,ௗሻܯ ൏ ாܯ
ሺ௖ሻ (3.26) 

Second, ்ܥ
ሺ௩,ௗሻ is computed.  This value is the number of hours between arriving 

home on day-݀ and leaving on day-݀ ൅ 1 (note that on day-ܦ, the last day of the 

simulation, the arrival time on day-ܦ and the departure time on day-1 is used). 

்ܥ
ሺ௩,ௗሻ ൌ ቀ24 െ ்ܣ

ሺ௩,ௗሻቁ ൅ ்ܦ
ሺ௩,ௗାଵሻ

 (3.27) 



 38

Third, ܸሺ௩,௖ሻ is generated.  This value is a discrete RV, and is set at 120 volts for 

70% of the vehicles and is set at 240 volts for 30% of the vehicles. 

Fourth, ܫሺ௩,ௗ,௖ሻ is computed.  This value is limited by the maximum current 

available, כܫ [A], from the charging circuit, where כܫ is 15 A from a 120 V service and 30 

A from a 240 V service. 

ሺ௩,ௗ,௖ሻܫ ൌ min ቄቀܦா
ሺ௩,ௗ,௖ሻ · 1000ቁ ቀܸሺ௩,௖ሻ · ்ܥ

ሺ௩,ௗሻቁൗ ,  ቅ (3.28)כܫ

where ܦா
ሺ௩,ௗ,௖ሻ · 1000 is the energy [Wh] required by the PHEV-ݒ on day-݀ in class-ܿ, 

and ܸሺ௩,௖ሻ · ்ܥ
ሺ௩,ௗሻ is the charging voltage [V] for the PHEV-ݒ in class-ܿ times the number 

of hours the PHEV-ݒ on day-݀ will be charged.  The charging voltage is held constant for 

each vehicle in the simulation period assuming that PHEV owners will not change their 

charging circuit over the simulation period.  The charging time is held constant for each 

class for simplicity.  Thus, the quotient 

ቀܦா
ሺ௩,ௗ,௖ሻ · 1000ቁ ቀܸሺ௩,௖ሻ · ்ܥ

ሺ௩,ௗሻቁൗ  

is the current demanded for the required energy at the charging voltage level for the 

number of hours the PHEV will be charging.  Additionally, using the minሼڄሽ function 

results in ܫሺ௩,ௗ,௖ሻ not exceeding the service capacity. 

Finally, the required recharge power is the energy required every hour of the 

charging period and is stored in an array, ܥܦܮሾ݄௖ሿ, where ݄௖ is the simulation hour.  The 

array is initialized to all zeros and computed by looping through each vehicle in the 

sampled population and each vehicle class adding the product of the number of vehicles 

in the present class times the required grid power in MW for each charging hour for each 

day of the simulation. 

௩݌ ൌ ቀ ௉ܰுா௏
ሺ௖ሻ · ܸሺ௩,௖ሻ · ሺ௩,ௗ,௖ሻቁܫ ሺ݊ · 10଺ሻൗ  (3.29) 
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This procedure is outlined in Figure 3.11. 

 

The chronological electric load model is converted into a probability distribution 

function (inverted) of the load for the purposes of the probabilistic simulation method.  In 

general, a NILDC describes the length of time for which the load is greater than a 

specified value, which ranges from the system minimum load to the maximum load [18]. 

To convert from the chronological load demand curve to the NILDC requires that 

the range of possible load levels from the system minimum to the system maximum load 

 
Figure 3.11.  PHEV required grid energy calculation block diagram. 
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be broken up into a specified number of increments.  For each increment the number of 

hours during which the load is greater than or equal to that level is counted.  Then, the 

resulting count for each increment is normalized by the total length of the simulation in 

hours.  The resulting curve has horizontal axis units of power and vertical axis units of 

probability.  The vertical axis probability is the probability that the load is greater than or 

equal to the horizontal axis power level. 

3.1.3 Power System Simulation Using the Probabilistic Production Costing (PPC) 
Power System Simulation Procedure 
PPC power system simulation procedure provides the following functionality, 

“Given the forecasted electric load demand for the time period under consideration and a 

list of available generating units of the system, simulate the operation of the system in 

order to forecast energy generated by units, cost, and required fuel, taking into account 

the effects of scheduling functions within the time period considered and the random 

forced outages of the units” [18], where units indicates generators in power plants. 

The forecasted electric load demand is the NILDC introduced in the last section.  

The list of available generating units is described below.  The forced outage rate (FOR) 

of the available generating units is defined as a function of the mean time to failure 

(MTTF) and mean time to repair (MTTR) 

FOR ൌ MTTF ሺMTTF ൅ MTTRሻ⁄  (3.30) 

Given a forecasted electric load demand and list of available generators, the 

expected value of each of the following quantities can be computed for each available 

generating unit: 

1. Total energy produced. 
2. Total fuel cost. 
3. Total amount of fuel utilized. 
4. Total EAP generated. 
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The calculation of the above power system quantities is based on a probabilistic 

methodology fully developed in [18].  In [18] the “arbitrary dispatch criterion“ utilized is 

an economic dispatch criterion.  Thus, when additional load needs to be met the generator 

selected to meet the demand is chosen by the least expensive option available. 

The PPC power system simulation procedure is utilized to compute both the base 

case power system results and the PHEV scenario results.  Because the electric load due 

to PHEV charging is based on RVs repeated simulations of the PHEV scenarios is used 

to compute average system production results. 

3.1.4 Calculate EAP Statistics 
Next, the method used to compute the total system EAP results is described.  The 

results from the vehicle and power system simulations are combined to compute the total 

system EAP. 

The vehicle EAP is computed in a similar fashion to that of the gasoline 

consumption, replacing the fuel efficiency with EAP rates, denoted by ܲሺ௖ሻሺ݇௉ுா௏ሻ, as a 

general term for either, ܰ ௫ܱ
ሺ௖ሻሺ݇௉ுா௏ሻ or ܥ ଶܱ

ሺ௖ሻሺ݇௉ுா௏ሻ, the NOx and CO2 emission rates 

of a PHEV utilizing design variable ݇௉ுா௏ in class-ܿ respectively.  First, the total EAP 

generated by the fleet of IC vehicles is described, followed by a description of the EAP 

generated by the fleet of PHEVs. 

The total EAP generated by a fleet of ்ܰ IC vehicles is computed, assuming the 

sample vehicle population average EAP generated, ܣܧ ூܲ஼
ሺ௖ሻതതതതതതതതത  [kg/veh.], is equal to the 

average EAP generated by the entire vehicle population 

ܣܧ ூܲ஼
ሺ௖ሻതതതതതതതതത ൌ 1 ݊⁄ ڄ ∑ ቀܶሺ௩ሻ ா஺௉ܥܫ

ሺ௖ሻൗ ቁ௡
௩ୀଵ  (3.31) 
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where ܶሺ௩ሻ is the total number of miles driven by vehicle-ݒ over the simulation period 

and ܥܫெ௉ீ
ሺ௖ሻ  is the fuel efficiency of an IC vehicle in class-ܿ.  Thus, the total vehicle fleet 

EAP generated, ܣܧ ூܲ஼ [kg], is the sum of the product of the total number of vehicles in 

class-ܿ times the average EAP generated per vehicle in class-ܿ for each vehicle class.  

Hence 

ܣܧ ூܲ஼ ൌ ்ܰ ڄ ∑ ቀ݌ሺ௖ሻ · ܣܧ ூܲ஼
ሺ௖ሻതതതതതതതതതቁସ

௖ୀଵ  (3.32) 

The method used to compute the total EAP generated by a fleet of PHEVs is 

described next.  First, the daily amount of EAP generated, ܦா஺௉
ሺ௩,ௗ,௖ሻ [kg], is computed.  If 

ாܯ
ሺ௖ሻ is greater than or equal to ܯሺ௩,ௗሻ then 

ா஺௉ܦ
ሺ௩,ௗ,௖ሻ ൌ ሺ௩,ௗሻܯ · ܲሺ௖ሻሺ݇௉ுா௏ሻ  (3.33) 

however, if ܯா
ሺ௖ሻ is strictly less than ܯሺ௩,ௗሻ then 

ா஺௉ܦ
ሺ௩,ௗ,௖ሻ ൌ ாܯ

ሺ௖ሻ · ܲሺ௖ሻሺ݇௉ுா௏ሻ ൅ ቀܯሺ௩,ௗሻ െ ாܯ
ሺ௖ሻቁ · ܲሺ௖ሻሺ0ሻ  (3.34) 

where the first term in the sum represents the EAP produced in charge depleting mode 

and the second term is the EAP produced in charge sustaining mode. 

Second, the yearly EAP generated, ாܻ஺௉
ሺ௩,௖ሻ [kg], is computed by summing over 

each day in the simulation 

ாܻ஺௉
ሺ௩,௖ሻ ൌ ∑ ா஺௉ܦ

ሺ௩,ௗ,௖ሻ஽
ௗୀଵ  (3.35) 

Third, the sample vehicle population average yearly EAP generated, ாܻ஺௉
ሺ௖ሻതതതതതത [kg/veh.], is 

computed 

ாܻ஺௉
ሺ௖ሻതതതതതത ൌ 1 ݊⁄ ڄ ∑ ாܻ஺௉

ሺ௩,௖ሻ୬
୴ୀଵ  (3.36) 

Next, the total EAP generated by a fleet of PHEVs, ܣܧ ௉ܲுா௏ [kg], is calculated.  

This value is the sum of the product of the number of vehicles in each class times the 

average EAP generated per vehicle class over each vehicle class, and is given by 
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ܣܧ ௉ܲுா௏ ൌ ்ܰ · ௉ܲுா௏ ∑ ቀ݌ሺ௖ሻ · ாܻ஺௉
ሺ௖ሻതതതതതതቁସ

௖ୀଵ  (3.37) 

Finally, the total EAP generated, ܲܣܧ [kg], is the sum of the EAP produced by 

both the IC vehicles and the PHEVs 

ܲܣܧ ൌ ሺ1 െ ௉ܲுா௏ሻ · ܣܧ ூܲ஼ ൅ ܣܧ ௉ܲுா௏  (3.38) 

The simulation methodology thus far described is facilitated with the use of a 

graphical user interface (GUI) with access to all the required input data and simulations 

results. 

3.2 Primary Energy Source Utilization Experiments 

This section describes how the three experiments are performed.  The experiments 

are conducted using the probabilistic simulation of an integrated power system with 

distributed PHEVs methodology to quantify the impact which charging PHEVs will have 

on primary energy source utilization.  In the first two experiments the level of PHEV 

penetration is increased from 0% (Base Case), to 5%, 10%, 20% and 40%.  Here ௉ܲுா௏ 

percent penetration is defined as 

௉ܲுா௏ ൌ PܰHEVs Tܰ⁄  (3.39) 

where PܰHEVs is the total number of PHEVs in the simulation.  In the first experiment the 

power system used to charge the vehicles is the 1979 Reliability Test System (RTS) [26].  

In the second experiment the power system is the average generating mix used in the 

United States.  The third experiment keeps the number of PHEVs constant and varies the 

RTS generating mix.  The RTS generating mix is changed such that the total generating 

capacity is constant but the ratio of clean generating capacity (nuclear and hydro) is 

increased. 
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In each experiment the results include primary energy source utilization shifts and 

pollution shifts.  The total cost for consumers is computed for the first experiment only. 

3.2.1 Reliability Test System (RTS) Experiment 
The RTS model was developed in [26] “to provide a basis for reporting on 

analysis methods”.  It contains nearly all the power system data for the probabilistic 

simulation of an integrated power system with distributed PHEVs methodology; the only 

data not included in [26] is generator emission data.  The remainder of this subsection 

describes the power system data used in the RTS experiment in this investigation and the 

results of the experiment. 

3.2.1.1 RTS Experiment Data 
The RTS system utilizes five fuel types (#6 oil, #2 oil, coal, nuclear, and hydro) 

and 32 different generators.  These 32 generators consist of nine different generator 

types. 

The cost and heat content of each fuel type (Table 3.10) is based on data in [26].  

The cost data has been updated to typical current prices. 

 

The hydro energy generation is treated as negative load when calculating the load 

demand curve.  Thus, in Table 3.10 the hydro fuel cost and fuel energy density are not 

included because hydro fuel is not included in the economic dispatch calculation.  The 

Table 3.10.  Fuel type data [26]. 

Fuel Type Fuel Costs [$/kg] Fuel Energy Density [kcal/kg] 

#6 Oil 0.6 11,200 
#2 Oil 0.65 12,000 
Coal 0.05 6,000 

Nuclear 60,000 200·1019 
Hydro -- -- 
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relative cost of each fuel type is of significant importance because the generating unit 

dispatching is ordered based on economic ranking. 

Generator unit reliability data (Table 3.11) includes MTTF, MTTR and resulting 

FOR. 

 

In Table 3.11 unit reliability for the hydro units is considered in the calculations of the 

hyrdo availability data. 

Generator capacity data (Table 3.12) includes generator fuel type, maximum 

generating capacity, and minimum generating capacity. 

 

Table 3.12.  Generating unit generation capacity data [26]. 

Fuel 
Capacity [MW] 

Maximum Minimum 

#6 Oil 12 2.4 
#2 Oil 20 16 
Hydro 50 -- 
Coal 76 15.2 

#6 Oil 100 25 
Coal 155 54.25 

#6 Oil 197 68.95 
Coal 350 140 

Nuclear 400 100 
 

Table 3.11.  Generating unit reliability data [26]. 

Size of Unit [MW] FOR MTTF [h] MTTR [h] 

12 0.02 2,940 60 
20 0.1 450 50 
50 -- -- -- 
76 0.02 1,960 40 

100 0.04 1,200 50 
155 0.04 960 40 
197 0.05 950 50 
350 0.08 1,150 100 
400 0.12 1,100 150 
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In Table 3.12, the hydro capacity is treated as negative load and as such no 

minimum capacity is required. 

Additional data utilized in the PPC power system simulation procedure is heat and 

emission rate functions for all of the available generating units in the system.  This data is 

described next. 

The generator heat rate function (3.40), is used as a cost function modeling the 

amount of fuel needed to meet a specific power demand for each generator.  A linear 

least square method is used to calculate the heat rate coefficients ܽ௛, ܾ௛, and ܿ௛ for each 

generator.  In the heat rate function 

݄ሺܲሻ ൌ ܽ௛ ൅ ܾ௛ · ܲ ൅ ܿ௛ · ܲଶ (3.40) 

P [MW] represents the generated power and ݄ሺܲሻ [kcal/h] is the required heat rate. 

The data used to compute each heat rate functions is found in [26].  The least 

square approximation solves the general matrix equation 

ሬܻԦ ൌ ࡭ · Ԧܺ  (3.41) 

with solution 

Ԧܺ ൌ ሺ்࡭ · ሻ࡭ · ்࡭ · ሬܻԦ (3.42) 

where ሬܻԦ is a vector of known data (heat rate) [kcal/h], ࡭ is a known observation matrix 

(power levels) [MW], and Ԧܺ is a vector of unknown data (generator coefficients). 

An example of how the heat rate coefficients are calculated is provided for the 12 

MW generating units.  For the 12 MW generators the heat rate input at four levels of 

output power levels (2.4 MW, 6.0 MW, 9.6 MW, 12.0 MW) are known [26] 

YሬሬԦ ൌ ቎
Heat Rate 1
Heat Rate 2
Heat Rate 3
Heat Rate 4

቏ ൌ ൦

9,434,880
19,504,800
28,788,480
36288000

൪ (3.43) 
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࡭ ൌ

ۏ
ێ
ێ
ێ
1ۍ
1
1
1

ଵܲ
ଶܲ
ଷܲ

ସܲ

ଵܲ
ଶ

ଶܲ
ଶ

ଷܲ
ଶ

ସܲ
ଶے
ۑ
ۑ
ۑ
ې
ൌ ቎

1
1
1
1

2.4
6
9.6
12

5.76
36

92.16
144

቏ (3.44) 

Ԧܺ ൌ ൥
ܽ௛
ܾ௛
ܿ௛
൩ (3.45) 

and the solution is computed 

Ԧܺ ൌ ሺ்࡭ · ሻ࡭ · ்࡭ · ሬܻԦ 

ൌ ቌ൥
1
2.4
5.76

1
6
36

1
9.6
92.16

1
12
144

൩ · ቎
1
1
1
1

2.4
6
9.6
12

5.76
36

92.16
144

቏ቍ

· ൥
1
2.4
5.76

1
6
36

1
9.6
92.16

1
12
144

൩ · ൦

9,434,880
19,504,800
28,788,480
36,288,000

൪ 

ൌ ൥
303,340
355,040
15,047

൩ 

Figure 3.12 shows the 12 MW generator discrete heat rate data and the continuous 

function computed using the results of linear least square method outlined above. 

 

 
Figure 3.12.  12 MW unit heat rate data [26] and approximation. 
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Figure 3.12 shows a good agreement between the discrete data and the computed heat 

rate function.  Similar linear least square calculations are performed for each generator 

using the discrete data outlined in [26] with results shown in Table 3.13.for all nine 

generator types. 

 

In Table 3.13, the ܿ௛ coefficient for the 20 MW units is zero because only two 

heat rate data points are published in [26].  The resulting heat rate curve is linear.  Again, 

the hydro units are treated as negative load and as such require no heat rate equation in 

Table 3.13. 

Next, the calculation of emission rate functions is described.  The generator 

emission rate function (3.46) is used as a cost function modeling the amount of EAP 

generated at a specific power level.  Again, a linear least square method is used to 

calculate the emission rate coefficients ܽ௘ and ܾ௘ for each generator. 

݁ሺܲሻ ൌ ܽ௘ ൅ ܾ௘ · ܲ (3.46) 

In this equation, ܲ [MW] represents the generated power and ݁ሺܲሻ [kg/h] is the emission 

rate. 

Table 3.13.  Generating unit heat rate coefficients [26]. 

Size [MW] ܽ௛ ൤
݈݇ܿܽ
݄ ൨ ܾ௛ ൤

݈݇ܿܽ
 ൨݄ܹܯ

ܿ௛ ൤
݈݇ܿܽ

ሺܹܯሻଶ݄൨ 

12 3,330,000 2,550,000 15,050 
20 10,080,000 3,150,000 0 
50 -- -- -- 
76 21,090,000 2,550,000 2,376 
100 31,360,000 1,963,000 2,413 
155 43,410,000 1,947,000 1,401 
197 33,000,000 2,194,000 328.5 
350 81,530,000 1,873,000 822.3 
400 90,960,000 2,245,000 116.0 
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Due to the lack of published emission data for the RTS generators in [26] the 

generator pollution statistics in [27], are utilized to approximate linear emission rate 

functions for each generator type in the RTS system (Table 3.14).  From this data [27] the 

following procedure is utilized to compute the emission rate functions.  First, the 

pollution statistics [27] are converted and normalized from thousands of tons per year 

(NOx) and millions of tons per year (CO2) to kg per MWh per year.  Second, the average 

pollution, ܴPollutant [kg/MWh], rate is scaled by the average power capacity, aܲve [MW], 

for each of the seven pollution generating plants utilized in the RTS power system (hydro 

and nuclear produce neither NOx nor CO2).  Finally, assuming each plants pollution 

production would increase 20% from the minimum capacity, mܲin [MW], to the 

maximum capacity mܲax [MW], a linear emission rate function is approximated. 

 

The environmental air pollutants NOx and CO2 are analyzed based on the 

availability of both power plant emission data and vehicle emission data.  Both are 

necessary so that a comparison can be made in terms of total system EAP.  The total 

system EAP is the EAP produced by both the power system and vehicle fleets for 

scenarios with and without PHEV charging. 

Table 3.14.  TVA generator statistics [27]. 

Plant Energy Produced 
[billions of kWh] 

NOx [thousands 
of tones/year] 

CO2 [millions of 
tones/year] 

Allen 4.9 17.4 5.7 
Bull Run 6 28 4.6 

Cumberland 18.97 18.4 19 
Gallatin 4.7 23.4 7.7 

John Saviers 5.25 30.1 5.1 
Johnsonville 5.68 86.8 9 

Kingston 10 55.5 35.8 
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An example of how the emission rate coefficients are calculated is provided for 

the 12 MW generating units below, where the linear least square variables ሬܻԦ, ࡭, and Ԧܺ 

are 

ሬܻԦ ൌ ൥
Emission Rate 1
Emission Rate 2
Emission Rate 3

൩ ൌ ൥
0.9 · ܴPollutant · aܲve
ܴPollutant · aܲve

1.1 · ܴPollutant · aܲve

൩ ൌ ൥
20.88
23.18
25.50

൩ 

࡭ ൌ ൥
1 mܲin 
1 aܲve
1 mܲax

൩ ൌ ൥
1 2.4
1 7.2
1 12

൩ 

Ԧܺ ൌ ቂ
ܽ௘
ܾ௘ቃ 

Thus, 

Ԧܺ ൌ ሺ்࡭ · ሻ࡭ · ்࡭ · ሬܻԦ 
and the 12 MW units NOx rate coefficients are 

ൌ ൭ቂ 1 1 1
2.4 7.5 12ቃ · ൥

1 2.4
1 7.2
1 12

൩൱ · ቂ 1 1 1
2.4 7.5 12ቃ · ൥

20.88
23.18
25.50

൩ 

ൌ ቂ 19.720.4832ቃ 

Similar calculations are performed for each RTS generator, for both NOx and CO2 

rate function coefficients, with results shown in Table 3.15. 

 

Table 3.15.  Generating unit emission rate coefficients. 

Size [MW] 
NOx CO2 

ܽ௘ ൤
݇݃
݄ ൨ 

ܾ௘ ܽ௘ ൤
݇݃
݄ ൨ 

ܾ௘ 

12 19.72 0.4832 6,459 158.31 
20 7.621 3.810 1,252 626.0 
50 -- -- -- -- 
76 179.9 0.6961 37,420 144.8 

100 45.83 0.1467 47,320 151.4 
155 374.4 0.9381 123,200 308.7 
197 548.0 1.080 92,850 183.0 
350 2,604 3.235 270,000 335.4 
400 -- -- -- -- 
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In Table 3.15, the hydro (50 MW) and nuclear (400 MW) generators produced no 

EAP, thus the rate function coefficients are set to zero. 

The accuracy of the emission rate functions is subject to question, having been 

obtained from emission statistics for seven different Tennessee Valley Authority (TVA) 

generators [27].  Pollution results from the RTS using the described power system 

simulation procedure, are plotted in Figure 3.13 and compared with the TVA plant data. 

 

Figure 3.13 shows the TVA generator statistics [27] and sample power system 

simulation procedure results.  The sample power system simulation procedure results are 

shown for two scenarios the “Base Case” and “10% PHEV”.  The “Base Case” scenario 

is RTS power system simulation procedure results with no additional electric load due to 

PHEV charging.  Whereas, the “10% PHEV” scenario is RTS power system simulation 

procedure results with the added electric load from replacing 10% of the light duty 

vehicles in the RTS area with PHEVs.  These results show that for comparable annual 

energy production, between the TVA generator energy production statistics and the “Base 

 
Figure 3.13.  Pollution normalization justification. 
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Case” and “10% PHEV” scenarios, the annual NOx and CO2 production, between these 

two sets of data, are on the same order of magnitude; suggesting that the approximated 

linear emission rate functions (Table 3.15) are realistic. 

The base case load demand data is generated taking the product of the weekly 

peak (Table 3.16), daily peak (Table 3.17), and hourly peak (Table 3.18) data to create 

hourly load demand data for one year.  The RTS system also includes six 50 MW hydro 

electric generating units.  The hydro units are utilized 100% based on the availability 

(Table 3.19), thereby in effect treating the hydro generated energy as negative load.  

Thus, each hourly load is decreased by the hydro power available ܪ௉
ሺ௤ሻ [MW] given by 

(3.47). 

 

Table 3.16.  Weekly peak load in percent of annual peak [26]. 

Week Peak Load [%] Week Peak Load [%] Week Peak Load [%] 

1 86.2 19 87 37 78 
2 90 20 88 38 69.5 
3 87.8 21 85.6 39 72.4 
4 83.4 22 81.1 40 72.4 
5 88 23 90 41 74.3 
6 84.1 24 88.7 42 74.4 
7 83.2 25 89.6 43 80 
8 80.6 26 86.1 44 88.1 
9 74 27 75.5 45 88.5 

10 73.7 28 81.6 46 90.9 
11 71.5 29 80.1 47 94 
12 72.7 30 88 48 89 
13 70.4 31 72.2 49 94.2 
14 75 32 77.6 50 97 
15 72.1 33 80 51 100 
16 80 34 72.9 52 95.2 
17 75.4 35 72.6 

 18 83.7 36 70.5 
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Table 3.19.  Hydro energy per calendar quarter [26]. 

Quarter Energy Availability [%] Capacity Availability [%] 

1 35 100 
2 35 100 
3 10 90 
4 20 90 

 

Table 3.18.  Hourly peak load in percent of daily peak [26]. 

Hour 

Winter Weeks [%] Summer Weeks [%] Spring/Fall Weeks [%] 

1-8 and 44-52 18-30 9-17 and 31-43 

Weekday Weekend Weekday Weekend Weekday Weekend 

12(midnight)-1a 67 78 64 74 63 75 
1a-2a 63 72 60 70 62 73 
2a-3a 60 68 58 66 60 69 
3a-4a 59 66 56 65 58 66 
4a-5a 59 64 56 64 59 65 
5a-6a 60 65 58 62 65 65 
6a-7a 74 66 64 62 72 68 
7a-8a 86 70 76 66 85 74 
8a-9a 95 80 87 81 95 83 

9a-10a 96 88 95 86 99 89 
10a-11a 96 90 99 91 100 92 

11a-12noon 95 91 100 93 99 94 
12noon-1p 95 90 99 93 93 91 

1p-2p 95 88 100 92 92 90 
2p-3p 93 87 100 91 90 90 
3p-4p 94 87 97 91 88 86 
4p-5p 99 91 96 92 90 85 
5p-6p 100 100 96 94 92 88 
6p-7p 100 99 93 95 96 92 
7p-8p 96 97 92 95 98 100 
8p-9p 91 94 92 100 96 97 
9p-10p 83 92 93 93 90 95 

10p-11p 73 87 87 88 80 90 
11p-12midnight 63 81 72 80 70 85 

 

Table 3.17.  Daily peak load in percent of weekly peak [26]. 

Day Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

Peak Load [%] 93 100 98 96 94 77 75 
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௉ܪ
ሺ௤ሻ ൌ ቀܧ஺

ሺ௤ሻ · ஺ܥ
ሺ௤ሻ · ாቁܪ ሺ2190 · 1000ሻൗ  (3.47) 

In (3.47) ܪ௉
ሺ௤ሻ is the power available from the hydro generators in quarter-ܧ ,ݍ஺

ሺ௤ሻ 

[MWh] is the energy available in quarter-ܥ ,ݍ஺
ሺ௤ሻ [MW] is the maximum capacity 

available in quarter-ݍ, and ܪா is 100% of the available energy from the hydro units (200 

GWh [26]). 

As described in [26] the peak load demand of the RTS system is 2850 MW.  From 

the peak load demand and a number of average statistical assumptions the total number of 

vehicles in the RTS area is derived below. 

The number of customers is calculated from an average electric monthly demand 

of 1,500 kWh.  Based on an average month of 30 days, the average power demand per 

customer is calculated to be ሾ1,500 ሺ30 ڄ 24ሻ⁄ ሿ ൌ 2.083 kW.  The peak system electric 

load demand is 2,850 MW [26] assuming 75% of this load is comprised of residential 

demand the number of customers in the power system area is calculated to be 

ሺ2,850,000 ڄ 75% 2.083⁄ ሻ ൌ 1.026 million.  Finally, the number of vehicles per electric 

customer is assumed to be 1.5, which results in a total number of vehicles ሺ்ܰሻ of 1.539 

million. 

3.2.1.2 RTS Experiment Results 
Four simulations are considered for varying the percentage of PHEV penetration.  

The levels simulated are 5%, 10%, 20% and 40%.  For each RTS experiment scenario the 

number of IC vehicles ሺ ூܰ஼ሻ and PHEVs ሺ ௉ܰுா௏ሻ are shown in Table 3.20. 

 

Table 3.20.  Number of vehicles for each RTS simulation. 

Simulation BC 5% 10% 20% 40% 

௉ܰுா௏ 0 76,950 153,900 307,800 615,600 

ூܰ஼ 1,539,000 1,462,000 1,385,000 1,231,000 923,400 
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In Table 3.20 notice that for each simulation the total number of vehicles remains 

1.539 million. 

For each PHEV penetration level the simulation is performed 30 times each, with 

a sample population of 100 vehicles.  Thirty repeated simulations are performed so that a 

distribution of the expected results can be analyzed.  Similarly, 100 vehicles are used as a 

sample vehicle population so that the impact of the vehicle assumption distribution can 

be observed; whereas simulating all of the vehicles in the power system areas is 

computationally prohibitive. 

Vehicle assumptions including vehicle design parameters ݇௉ுா௏
ሺ௖ሻ  and ܥܤሺ௖ሻ, are 

generated based on the probabilistic models described above.  A scatter plot of 30 

generated values is shown in Figure 3.14. 

 

In Figure 3.14 two characteristics are apparent, namely the range of the vehicle 

design parameters and the correlation ሺߩ ൌ 0.8ሻ between the design parameters. 

 
Figure 3.14.  Typical vehicle design parameter scatter plot. 
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The base case electric load model [26] varies over the simulated year which is 

representative of typical electric load demand in a typical electric power system.  Thus, 

the maximum power demand differs from the minimum power demand.  The additional 

load due to PHEV charging is calculated with random charging times and random daily 

driving distances.  One result of the probabilistic model of the added electric load due to 

PHEV charging is an increase in system maximum and minimum power demand.  The 

increase in the maximum and minimum power demand is shown in Figure 3.15 for each 

of the simulated PHEV penetration levels.  The maximum and minimum power demand 

for the PHEV scenarios are the average maximum and minimum power demand for the 

30 PHEV penetration simulations. 

 

In Figure 3.15, the horizontal axis shows the percent of penetration of PHEVs and 

the vertical axis shows the increase in both maximum and minimum power demand for 

each percent PHEV penetration scenario simulated.  Further, the base case result for 

maximum power demand is 2,834 MW and minimum power demand is 841 MW.  Thus, 

 
Figure 3.15.  Increase in max and min power demand for each RTS scenario. 
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the 5% PHEV penetration scenario maximum power demand is approximately 2834 + 10 

= 2844 MW.  Where 2834 MW represents the base case maximum power demand and 10 

MW (from Figure 3.15) represents the increase in maximum power demand for the 5% 

PHEV penetration scenario.  Similarly, for the 5% PHEV penetration scenario minimum 

power demand is approximately 841 + 50 = 891 MW.  Where 841 MW represents the 

base case minimum power demand and 50 MW (from Figure 3.15) represents the 

increase in minimum power demand for the 5% PHEV penetration scenario. 

The curves in Figure 3.15 show that the increase in system maximum load is 

smaller than the increase in system minimum load for each PHEV penetration scenario.  

This result indicates that the addition of PHEVs into a typical power system, with no 

control over when the vehicles are charged, will act to flatten the electric load demand 

curve. 

The PPC power system simulation procedure computes the expected amount of 

energy generated by each fuel type to meet a projected electric load demand.  Based on 

the developed projected electric load the energy generated by each fuel type is shown in 

Figure 3.16.  For the “Base Case” scenario (no additional electric load due to PHEVs) the 

energy generated per fuel type is deterministic because the “Base Case” electric load 

demand is deterministic.  Whereas, for the PHEV penetration scenarios the energy 

generated per fuel type is the average energy generated by each fuel type over the 30 

repeated simulations for each penetration level. 
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In Figure 3.16, as expected the total generated energy increases as the penetration 

level of PHEVs increases.  In Figure 3.16 the #2 oil, hydro, and unserviced energy energy 

productions are negligible (i.e. very small contribution to the total energy production) and 

are removed from the list of fuel types.  The specific increase in each fuel types energy 

production for each PHEV penetration level is shown in Figure 3.17. 

 

 
Figure 3.17.  Increase in primary energy for each RTS PHEV penetration scenario. 
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Figure 3.16.  Primary energy generated for each RTS scenario. 
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In Figure 3.17, the increase in energy produced by each fuel type is computed by 

subtracting the base case fuel type energy production from the average PHEV scenario 

fuel type energy production ሺ∆ൌ PHEV Scenario െ Base Caseሻ.  The expected amount of 

nuclear and hydro energy production is constant, thus no increase in either is observed 

and both energy sources are removed from the list of power system fuel types in Figure 

3.17.  The significant increase in both #6 oil and coal indicates that these two fuel types 

are utilized to charge PHEVs for the particular power system generating mix studied. 

The PPC power system simulation procedure computes expected energy statistics 

including loss of load probability (LOLP), total generated energy (GE), unserviced 

energy (UE), total fuel cost (TFC), and average electricity cost (AEC) amount of energy 

generated by each fuel type to meet a project electric demand.  For each PHEV scenario 

the energy statistic results are the average energy statistic over the 30 simulations, as 

shown in Table 3.21. 

 

In Table 3.21, each statistic increases proportionally with the number of PHEVs.  

From Tables 3.20 and 3.21 the added utility revenues can be calculated for each PHEV 

penetration level as shown in Table 3.22. 

Table 3.21.  Energy statistics for each simulated RTS scenario. 

 Base Case 5% 10% 20% 40% 

LOLP 0.0070 0.0083 0.0099 0.0142 0.0296 
GE [MWh] 15,080,000 15,400,000 15,710,000 16,340,000 17,580,000 
UE [MWh] 9,029 10,82 13,200 20,000 47,020 
TFC [k$] 202,700 215,100 228,1 256,500 323,000 

AEC [¢/kWh] 1.34 1.40 1.45 1.57 1.84 
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The results shown in Table 3.22 are computed assuming that the retail electricity 

rate of 8 cents per kWh is constant all year long.  In Table 3.22, the average power 

system revenue is $326 per PHEV per year. 

The impact of displacing gasoline usage with increased utilization of electric 

energy, for the RTS, causes a slight increase in NOx and significant decrease in CO2 for 

all PHEV penetration scenarios.  The percent change in EAP is shown in Figure 3.18. 

 

The percent change at 5% PHEV penetration is 0.92% of NOx and -0.93% of 

CO2, which corresponds to an annual increase of 0.4986 million kg of NOx and an annual 

decrease of 160.6 million kg of CO2. 

 
Figure 3.18.  RTS percent change of EAP as a function of PHEV penetration. 
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Table 3.22.  Added RTS power system revenue. 

Scenario 5% 10% 20% 40% 

Increased Energy [MWh] 315,000 628,500 1,255,000 2,498,000 
NPHEV 76,950 153,900 307,800 615,600 

Revenue [k$] 25,210 50,280 100,400 199,900 
Revenue [$] per Vehicle per Year 327.60 326.70 326.20 324.70 
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The gasoline utilization results reveal that the gasoline utilization decreases 

approximately linearly as PHEV penetration increases as shown in Figure 3.19. 

 

Specifically, with a fleet of 1.539 million IC vehicles the average yearly gasoline 

utilization is 1,047 million gallons whereas with 40% of the vehicle fleet replaced with 

PHEV this utilization reduces to 774 million gallons, a reduction of 26.1%. 

Based on the gasoline utilization (Figure 3.19) and the total generated energy 

(Table 3.21) the total fuel cost can be calculated for an average driver in each PHEV 

penetration level.  The “Base Case” scenario yearly fuel cost consists of entirely gasoline 

purchases because no PHEVs are utilized, and the PHEV penetration scenarios total fuel 

cost includes electricity and gasoline purchases.  It is assumed that gasoline costs $3.00 

per gallon and electricity rate is 8 cents per kWh all year long.  Finally, the average 

gasoline utilization for the base case scenario is used to compute the amount of gasoline 

used per IC vehicle in the PHEV scenarios, the results are shown in Table 3.23. 

 
Figure 3.19.  RTS gasoline utilization as a function of PHEV penetration. 
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In Table 3.23, a 65% reduction in fuel cost is achieved utilizing PHEVs over IC 

vehicles.  This reduction in annual fuel cost is significantly influence by the cost 

effectiveness of electricity over gasoline. 

3.2.2 United States System Experiment 
Next, the second experiment, the U.S. experiment, is described.  As with the RTS 

experiment the U.S. experiment varies the level of PHEV penetration.  This experiment 

uses a generation mix representative of the entire U.S.  Similarly, the peak electric load 

and number of vehicles in the power system area are set to values representing the entire 

U.S. 

3.2.2.1 U.S. Experiment Data 
Specifically, the data to generate PPC power system simulation procedure input 

data is the total U.S. generating capacity [28] (Table 3.24), the total U.S. generated 

energy production per fuel type [29] (Table 3.25), and the total U.S. power system EAP 

generated [30] (Table 3.26).  PPC power system simulation procedure input data is 

composed so that the base case energy and EAP results match the statistics in Tables 3.25 

and 3.26. 

 

Table 3.24.  Total U.S. generating capacity by fuel type [28]. 

Fuel Type Generator Nameplate Capacity [MW] 

Coal 336,040 
Liquid and Coke Petroleum 62,394 

Natural and Other Gas 452,052 
Nuclear 105,764 

Renewable/Other 131,541 
 

Table 3.23.  RTS annual fuel cost. 

Scenario Base Case 5% 10% 20% 40% 

Annual Fuel Cost [$]  2,042.00   1,089.00   1,041.00   1,037.00   1,035.00  
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Further, the RTS electric load demand distribution [26] is used, but changing the 

peak electric load demand to 764,476 [MW] [31].  The number of vehicles in the power 

system test area is set to 135.7 million [32]. 

3.2.2.2 U.S. Experiment Results 
Four simulations are considered for varying the percentage of PHEV penetration.  

The penetration levels simulated are 5%, 10%, 20% and 40%.  For each scenario the 

number of IC vehicles ሺ ூܰ஼ሻ and PHEVs ሺ ௉ܰுா௏ሻ is shown in Table 3.27. 

 

In Table 3.27, for each PHEV penetration level the total number of vehicles 

remains 135.7 million. 

Table 3.27.  Number of vehicles for each U.S. simulation. 

Scenario BC 5% 10% 20% 40% 

௉ܰுா௏ 0 6,783,495 13,566,990 27,133,979 54,267,959 

ூܰ஼ 135,669,897 128,886,402 122,102,907 108,535,918 81,401,938 
 

Table 3.26.  Estimated EAP by each fuel type in 2007 for the entire U.S. [30]. 

Fuel Type CO2 [kg] NOx [kg] 

Coal 16,018,807,896,000 22,956,252,000 
Liquid and Coke Petroleum 536,895,358,000 1,258,970,000 

Natural and Other Gas 3,458,905,616,000 3,402,814,000 
Renewable/Other 118,031,404,000 1,582,196,000 

 

Table 3.25.  Net U.S. energy generating by fuel type [29]. 

Fuel Type Net Generation By Fuel Source [GWh] 

Coal 1,994,385 
Liquid and Coke Petroleum 45,354 

Natural and Other Gas 888,521 
Nuclear 808,972 

Renewable/Other 377,648 
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Each PHEV penetration scenario is repeated 30 times each, with a sample 

population of 100 vehicles using the same vehicle assumptions as for the RTS 

experiment. 

One result of the probabilistic model of the added electric load due to PHEV 

charging is an increase in system maximum and minimum power demand.  The increase 

in the maximum and minimum power demand is shown in Figure 3.20 for each of the 

simulated PHEV penetration levels.  The maximum and minimum power demand for the 

PHEV scenarios is the average maximum and minimum power demand for the 30 PHEV 

penetration simulations. 

 

As is the case for the RTS experiment the change in maximum and minimum 

power demand, the curves in Figure 3.20 show that the increase in system maximum load 

is smaller than the increase in system minimum load for each PHEV penetration scenario.  

This result indicates that the addition of PHEVs into a typical power system, with no 

control over when the vehicles are charged, will act to flatten the electric load demand 

 
Figure 3.20.  Increase in max and min power demand for each U.S. scenario. 
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curve.  Specifically, for the U.S. experiment the base case result for maximum power 

demand is 764,810 MW and the minimum power demand is 229,200 MW. 

Based on the projected electric load, the energy generated by each fuel type is 

shown in Figure 3.21.  For the PHEV penetration scenarios the energy generated per fuel 

type is the average energy generated by each fuel type over the 30 simulations. 

 

In Figure 3.21, as expected, the total generated energy increases as the level of 

PHEV penetration increases.  In Figure 3.21, liquid and coke petroleum energy 

production is negligible (i.e. very small contribution to the total energy production) and is 

removed from the list of fuel types.  The increase in fuel types energy production is 

shown in Figure 3.22 for each level of PHEV penetration. 

 
Figure 3.21.  Primary energy generated for each U.S. scenario. 
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In Figure 3.22, the increase in energy produced by each fuel type is computed by 

subtracting the base case fuel type energy production from the average PHEV scenario 

fuel type energy production ሺ∆ൌ PHEV Scenario െ Base Caseሻ.  The significant increase 

in coal and natural gas energy production indicates that these two fuel types are utilized 

to charge PHEVs for the particular power system generating mix studied. 

Due to a lack of generating unit reliability and fuel cost data the power system 

simulation procedure energy statistic results for the U.S. experiment simulations are not 

applicable. 

The impact of displacing gasoline usage with increased utilization of electric 

energy, using the average U.S. power system, results in the percent change in NOx and 

CO2 shown is shown in Figure 3.23. 

 
Figure 3.22.  Increase in primary energy for each U.S. PHEV penetration scenario. 
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The percent change at 40% PHEV penetration is -0.33% of NOx and -1.10% of 

CO2, which corresponded to annual decrease of 98 million kg of NOx and an annual 

decrease of 230,133 million kg of CO2.  This represents a significant reductions in both 

pollutants considered. 

The gasoline utilization results reveal that the gasoline utilization decreases 

approximately linearly as PHEV penetration increases as shown in Figure 3.24. 

 
Figure 3.23.  U.S. percent change of EAP as a function of PHEV penetration. 
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Specifically, with a fleet of 135.7 million IC vehicles the average yearly gasoline 

utilization is 92,340 million gallons whereas with 40% of the vehicle fleet replaced with 

PHEV this utilization reduces to 67,300 million gallons a reduction of 37.2%. 

3.2.3 Modified Reliability Test System 
Next, the third experiment, the modified RTS experiment, is described.  In the 

third experiment the penetration level of PHEVs is constant and the RTS electric power 

generation capacity mix varies.  The generating mix varies such that the total generating 

capacity is constant but the ratio of clean generating capacity increases.  All other PPC 

power system simulation procedure input data is identical to the first experiment. 

3.2.3.1 Modified RTS Experiment Data 
Five simulation scenarios are considered (called RTS, C1, C2, C3, and C4) each 

with 5% penetration of PHEV in the RTS power system area, representing 76,950 

PHEVs (1,462,050 IC vehicles, thus 1.539 million vehicles in total).  The total generating 

 
Figure 3.24.  U.S. gasoline utilization as a function of PHEV penetration. 
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capacity of each set of generators, where a set is comprised of all available generator 

using the same fuel type, is shown in Figure 3.25. 

 

In Figure 3.25, the first column is the original RTS power generating capacity 

mix, and each subsequent column indicates the modified power generating mix capacity 

for each fuel type.  In Figure 3.25, the #2 oil generating capacity is negligible and is 

removed from the list of fuel types.  The generating capacity available from all nuclear 

and hydro (non-EAP producing) generators increases and the capacity available from #2 

oil, #6 oil, and coal (all others fuel types) generators decreases; thus, the total generating 

capacity for each scenario is constant 3,405 MW. 

3.2.3.2 Modified RTS Experiment Data 
The percentage of non-EAP producing capacity and energy production is shown 

in Table 3.28 for each modified RTS scenario. 

 
Figure 3.25.  Clean energy experiment scenario generation capacities. 
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Clearly, as the level of non-EAP producing capacity increases the energy 

generated by the non-EAP producing energy sources also increases.  The amount of 

energy generated by each power system fuel type is shown in Figure 3.26. 

 

In Figure 3.26, #2 oil and hydro energy production are negligible (i.e. very small 

contribution to the total energy production) and are removed from the list of fuel types.  

In Figure 3.26, as the level of nuclear energy reaches significant levels, scenarios C3 and 

C4 (78% and 85% respectively), the amount of unserviced energy becomes noticeable 

(2% and 4% respectively).  This result is due to the relatively high forced outage rate 

(FOR) for the nuclear generators (Table 3.11).  The specific percentage increase for each 

fuel type is shown in Figure 3.27. 

 
Figure 3.26.  Clean energy experiment scenario generated energy. 
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Table 3.28.  Clean energy capacity and generated energy summary. 

Percentage of Non-EAP Producing RTS C1 C2 C3 C4 

Capacity 32.31% 44.00% 56.00% 68.00% 80.00% 
Energy Generated 40.79% 55.40% 69.42% 80.71% 89.41% 
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In Figure 3.27, the percentage increase for #2 oil, #6 oil, hydro, and unserviced 

energy are an order of magnitude smaller than that of the percent increase of coal and 

nuclear energy, for this reason the percentage in #2 oil, #6 oil, hydro and unserviced 

energy are plotted on a secondary (right-hand side) vertical axis, with a different scale 

then the primary (left-hand side) vertical axis.. 

This experiment indicates that nuclear energy is used to replace the energy 

originally derived by coal energy.  The other three fuel types, #2 oil, #6 oil and hydro 

energy combined only produce less that 8% of the total generated energy for each 

scenario.  The resulting change in EAP is shown in Figure 3.28. 

 
Figure 3.27.  Clean energy experiment scenario increase in primary energy. 
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Not surprisingly as the amount of energy produced from non-EAP producing 

sources increases, the total amount of EAP decreases significantly. 

3.3 Conclusion 

The use of PHEVs represents a feasible near term solution to the correlated global 

crisis of increased use of petroleum and increased generation of EAP.  The impact of 

PHEV use in the context of these two issues is addressed in this chapter. 

The change in primary energy source utilization due to PHEV charging is 

evaluated using the PPC power system simulation procedure [18].  For this research the 

PPC power system simulation procedure is augmented with a PHEV model.  The PHEV 

model allows the amount of added electric energy demand to charge a fleet of PHEVs to 

be calculated.  The results of this methodology include expected energy generated with 

and without the added electric load demand required to charge PHEVs, the expected EAP 

produced by the vehicle fleet and power system with and without PHEV charging, and 

fuel costs for IC vehicles and PHEVs. 

 
Figure 3.28.  Clean energy experiment change in EAP for each simulated scenario. 
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Three experiments are presented.  The first uses the 1979 RTS [26] to charge 

varying levels of PHEV penetration.  The second uses the U.S. average generation mix to 

charge varying levels of PHEV penetration.  The third varies the relative capacity of EAP 

producing and non-EAP producing generation in the RTS power system and simulated 

the primary energy utilized to charge 5% penetration of PHEVs. 

The probabilistic simulation of an integrated power system with distributed 

PHEVs results depend on the integrated power system generation mix.  The percent of 

the total generating capacity for each fuel type utilized in the original RTS system [26] is 

shown in Figure 3.29, the U.S. average generation [28] mix is shown in Figure 3.30, and 

the generating capacity of each fuel type for the five clean energy scenarios are shown in 

Figure 3.25. 

 

 
Figure 3.29.  RTS generating capacity [26]. 
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The expected energy production from each fuel type for the base case, no PHEVs 

included in the light duty vehicle fleet, and a scenario where 5% of the light duty vehicle 

fleet in the power system area is replaced with PHEVs, are shown in Table 3.29.  In 

Table 3.29 the percentage change is given by 

Percent Change ൌ ሾሺ5% PHEV െ Base Caseሻ Base Case Total⁄ ሿ ڄ 100% (3.48) 

where the base case total amount of generated energy is used to normalize the change in 

energy production so that the relative size of each fuel types contribution to the total 

energy generated is accounted for.  Without this normalization the RTS simulation results 

percent increase in #2 oil energy production would be 17.71% and the percent increase in 

#6 oil energy production would be 9.67%, thereby incorrectly indicating a higher increase 

in #2 oil over #6 oil because the contribution of #2 oil is so small compared to all other 

fuel types.  The modified RTS simulation results in Table 3.29 are the C1 scenario 

results.  In the C1 scenario results the non-EAP producing capacity (nuclear and hydro) is 

increased to provide 44% of the total system capacity up from 32.31% in the original 

 
Figure 3.30.  U.S. total generating capacity [28]. 
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RTS generating capacity [26].  This scenario represents the smallest increase in clean 

production capacity simulated in the modified RTS experiment. 

 

In the RTS simulations the #6 oil and coal are utilized to meet the additional load 

created by PHEV charging, and the nuclear and hydro energy are fully utilized thus no 

increase in energy utilization of these fuel types is possible.  In the U.S. power system 

simulations coal is utilized to meet the additional load created by PHEV charging.  The 

modified RTS simulations introduce additional nuclear and hydro generation capacity 

compared to the RTS simulations.  The modified RTS simulations result in a significant 

increase in nuclear energy generation and a slight increase in hydro energy generation. 

In addition to the expected energy production, expected NOx and CO2 EAP 

production are also calculated.  The total system EAP is the EAP produced by both the 

electric power system and the light duty vehicle fleet in the power system area.  Table 

Table 3.29.  Change in primary energy source utilization. 

 
Base Case 

[GWh] 

5% PHEV 
Penetration 

[GWh] 

Percent 
Change 

RTS Simulations 

#6 Oil 924 1,014 0.59% 
#2 Oil 5 6 0.01% 
Coal 7,988 8,212 1.47% 

Nuclear 6,167 6,167 0% 
Hydro 194 194 0% 

U.S. Power 
System 

Simulations 

Coal 2,000,000 2,014,000 0.33% 
Liquid and Coke 

Petroleum 45,530 45,880 0.01% 

Natural and Other 
Gas 882,800 889,200 0.16% 

Nuclear 808,600 812,500 0.09% 
Renewables/Others 377,900 380,700 0.07% 

Modified RTS 
Simulations 

#6 Oil 1,014 862 -0.97% 
#2 Oil 6 11 0.03% 
Coal 8,212 6,052 -13.85% 

Nuclear 6,167 8,384 14.22% 
Hydro 194 217 0.15% 
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3.30 shows EAP results for each experiments base case and 5% PHEV penetration 

simulations and the modified RTS experiment C1 scenario.  Here the percent decrease is 

normalized by the base case results, as is the standard percent reduction calculation. 

 

In the RTS simulations, an increase of 0.92% of NOx represents an annual 

increase of 0.4986 million kg of NOx; whereas, a decrease of 0.93% of CO2 represents a 

decrease of 160.6 million kg of CO2.  Similarly in the U.S. simulations, a decrease of 

0.04% of NOx represents an annual decrease of 12.40 million kg of NOx; further, a 

decrease of 0.14% of CO2 represents a decrease of 28,900 million kg of CO2.  In the 

modified RTS simulations significant EAP reduction are simulated, a decrease of 6.13% 

of NOx represents an annual decrease of 2.742 million kg of NOx; further, a decrease of 

4.34% of CO2 represents a decrease of 745.9 million kg of CO2.   

The fuel cost of a PHEV includes gasoline and electricity purchasing.  The 

average annual fuel cost is compared for PHEV versus IC vehicles in the RTS 

experiment.  Assuming a constant gasoline price of $3.00 per gallon and electricity rate 

of 8 cents per kWh all year long, it is found that PHEV fuel costs are 65% less expensive 

then IC vehicle fuel costs. 

The results from Chapter 3 indicate that PHEVs offer cleaner transportation 

(depending on the generation mix used to charge the vehicles) with decreased gasoline 

Table 3.30.  Total system EAP. 

  Base Case [kg] 5% PHEV 
Penetration [kg] 

Percent 
Decrease 

RTS Simulations 
NOx 4.432E+07 4.472E+07 -0.92% 
CO2 1.736E+10 1.720E+10 0.93% 

U.S. Power System 
Simulations 

NOx 2.959E+10 2.958E+10 0.04% 
CO2 2.097E+13 2.095E+13 0.14% 

Modified RTS 
Simulations 

NOx 4.472E+07 4.198E+07 6.13% 
CO2 1.720E+10 1.645E+10 4.34% 
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utilization at a lower cost to consumers.  The cost to pay for these three advantages in 

terms of impact on distribution transformers is discussed in Chapter 4. 
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CHAPTER 4 

IMPACT OF PHEV CHARGING ON DISTRIBUTION 

TRANSFORMERS 

 

This chapter examines the impact that charging plug-in hybrid electric vehicles 

(PHEVs) will have on distribution transformers.  Distribution systems, and specifically 

the distribution transformer, are designed for specific load carrying capability based on 

typical load consumption patterns.  When PHEVs are deployed the pattern of electric 

power demand will change.  The power system may or may not be capable of handling 

the new pattern and level of demand. 

To examine the impact that PHEV charging will have on distribution 

transformers, simulations of daily load flows are performed using random electric loads.  

Two scenarios are examined, the first provides a baseline comparison of the transformer 

percent loss of life (LOL) with no electric load due to PHEV, the second scenario 

provides the transformer LOL including PHEV charging in addition to the normal 

household electrical demand. 

A center-tapped single phase transformer model is used to compute the expected 

transformer currents and an electro-thermal transformer model of the distribution 

transformer is used to compute the expected distribution transformer hourly hot-spot 

temperature. 

Random distributions for both the normal house hold electric load demand and 

additional electric load demand for PHEV charging are utilized.  Repeated simulations in 

both scenarios provide a distribution of the expected LOL results. 
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The remainder of this chapter is organized as follows: 

1. The random transformer electrical load distribution is described. 
2. The PHEV electrical load distribution is described. 
3. The center-tapped single phase transformer model is described. 
4. The electro-thermal transformer model is described. 
5. The method of computing the transformer LOL is described. 
6. The simulation methodology is described. 
7. The transformer LOL results are compared. 

4.1 Random Feeder Electrical Load 

Two assumptions used to compute the random electric load representing the 

average electric demand for a three house distribution circuit are (1) the hourly peak real 

power demand, ܲሺ௛ሻ [W], is a normally distributed random variable (RV) with mean and 

variance as a function of the daily hour and (2) the hourly power factor ሺ݌. ݂.ሺ௛ሻ ሻ for each 

hour is a discrete RV with probability mass function 

P൛݌. ݂.ሺ௛ሻ ൌ ൟݔ ൌ ൝
0.3 if ݔ ൌ 0.9
0.4 if ݔ ൌ 0.95
0.3 if ݔ ൌ 1

 (4.1) 

The assumed time distribution for the average hourly peak load is shown in 

Figure 4.1. 
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In Figure 4.1, this curve represents the mean value for the hourly real power 

demand at the distribution transformer over a typical day.  The real power generated 

using this mean value is the real power electric load demand for three houses.  The 

validity of this curve is checked by computing the average total daily electric energy 

demand represented by this curve.  The resulting average daily electric energy computed 

is 151.2 kWh which is consistent with an assumed average household monthly electric 

load demand of 1,500 kWh. 

From the hourly mean peak real power, ߤ௉
ሺ௛ሻ [W] the real power variance is 

computed as 

௉ߪ
ሺ௛ሻ ൌ ௣ߤ

ሺ௛ሻ 4⁄  (4.2) 

From the generated real power quantity ൫ܲሺ௛ሻ൯ and power factor ൫݌. ݂.ሺ௛ሻ ൯ the 

reactive power demand, ܳሺ௛ሻ [VAR] is computed as 

Qሺ୦ሻ ൌ sinൣcosିଵ൫݌. ݂.ሺ௛ሻ ൯൧ ڄ ൫ܲሺ௛ሻ .݌ ݂.ሺ௛ሻ⁄ ൯ (4.3) 

 
Figure 4.1.  Hourly mean peak real power. 
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4.2 PHEV Electrical Load 

The added electric load due to PHEV charging is assumed to 90% of the 

estimated PHEV-40 battery capacity, where PHEV-X indicates a PHEV which is capable 

of driving X miles using the battery alone.  This electric load represents the useful 

capacity of the total PHEV battery capacity.  This scenario models the situation where a 

PHEV returns home with a completely discharged battery.  A fully discharged battery 

represents the largest possible demand from the PHEV, representing a worst case 

scenario in terms of added electric load demand to the distribution transformer.  Further, 

it is assumed that the vehicle begins charging as soon as it is plugged in. 

The method to compute the required power and time when the vehicle is 

connected to the power system is computed by the following three steps: 

1. The vehicles arrival, ்ܣ [h], and departure times, ்ܦ [h], are randomly 
generated.  

2. The vehicles added electric energy load, ܥܤ [Wh], is randomly generated. 
3. The additional real, ܲ [W], and reactive, ܳ [VAR], power demand power 

demand is computed. 

The arrival ሺ்ܣሻ and departure ሺ்ܦሻ times are assumed to be normally distributed 

RVs.  The distribution parameters (Table 4.1) are the weekday distribution parameter 

values previously defined (Table 3.9).  In Table 4.1, the parameter ݌ in the distribution 

parameters mean, ்ߤ
ሺ௣ሻ [h], and variance, ቀ்ߪ

ሺ௣ሻቁ
ଶ
 [h], indicates one of the two possible 

daily timing distributions: weekday departure or weekday arrival. 

 

Table 4.1.  PHEV timing distribution parameters. 

Parameter Departure Arrival 

்ߤ
ሺ௣ሻ 7 18 

൫்ߪ
ሺ௣ሻ൯

ଶ
 3 3 

 



 82

The vehicles added electric energy load ሺܥܤሻ is assumed to be a normally 

distributed RV with a mean ሺߤ஻஼ሻ of 16,000 Wh and a standard deviation ሺߪ஻஼ሻ of 4,000 

Wh.  These parameters are selected to include all four vehicle classes previously defined.  

Finally, the vehicle charger is assumed to have a power factor of 0.99.  All RVs are 

assumed to be independent. 

From these distributions the added charging power (4.4) and reactive power, (4.5) 

can be computed. 

ܲ ൌ ܥܤ ሾሺ24 െ ሻ்ܣ ൅ ⁄ሿ்ܦ  (4.4) 

ܳ ൌ ሺܲ 0.99⁄ ሻ sinሾܿିݏ݋ଵሺ0.99ሻሿ (4.5) 

In (4.4) ሺ24 െ ሻ்ܣ ൅  .is the total time, in hours, that the vehicle will be charging ்ܦ

4.3 Center-Taped Single-Phase Distribution Transformer Model 

The typical residential distribution system distribution transformer model is used 

to compute the expected transformer currents for a specified electric load demand.  The 

model, shown in Figure 4.2, is fully described in [33].  The specific scenario modeled 

here is a single phase distribution transformer feeding three typical houses.  The 

transformer is a 7.960 kV to 120/240 V transformer rated at 15 kVA.  The transformer 

has a series resistance ሺܴ஺ሻ and reactance ሺ ஺ܺሻ of 0.007 p.u. and 0.035 p.u. respectively. 
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To compute the winding impedances ܼ଴, ܼଵ, and ܼଶ the interlaced transformer 

design equations are used [33] 

ܼp.u.଴ ൌ 0.5 ڄ ܴ஺ ൅ ݆ ڄ 0.8 ڄ ஺ܺ (4.6) 

ܼp.u.ଵ ൌ ܼp.u.ଶ ൌ ܴ஺ ൅ ݆ ڄ 0.4 ڄ ஺ܺ (4.7) 

The per-unit impedance values are converted to actual units by multiplying them 

by the per-unit base impedances 

ܼbase high voltage ൌ ሺ ௦ܸ
ଶ

tܵransformer rated⁄ ሻ (4.8) 

ൌ 7,960ଶ 15,000⁄ ൌ 4224 Ω 

ܼbase low voltage ൌ 240ଶ 15,000⁄ ൌ 3.84 Ω (4.9) 

Thus, 

ܼ଴ ൌ ܼbase high voltage ڄ ܼp.u.଴ (4.10) 

ൌ 4,224 ڄ ሺ0.5 ڄ 0.007 ൅ ݆ ڄ 0.8 ڄ 0.035ሻ 
ൌ 14.78 ൅ ݆ ڄ 118.3 Ω 

ܼଵ ൌ Zଶ ൌ ܼbase low voltage ڄ ܼp.u.ଵ (4.11) 

ൌ 3.84 ڄ ሺ0.007 ൅ ݆ ڄ 0.4 ڄ 0.035ሻ 
ൌ 0.0269 ൅ ݆ ڄ 0.0538 Ω 

The turns ratio ሺ݊௧ሻ is the ratio of the primary and secondary voltages 

݊௧ ൌ 7960 120⁄ ൌ 66.33 (4.12) 

 
Figure 4.2.  Center-tapped single phase transformer model [33]. 
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Finally, the total complex power is distributed between the two 120 V circuits 

(ܵ௅ଵ and ܵ௅ଶ [VA]) and the 240 V circuit (ܵ௅ଷ [VA]) assuming that 60% of the power 

demand in a typical household is 120 V (split evenly between the two 120 V lines) and 

the remaining 40% is 240 V.  Thus, 

ܵ௅ଵ ൌ ܵ௅ଶ ൌ 0.3 ڄ ൫ܲሺ௛ሻ ൅ ݆ ڄ ܳሺ௛ሻ൯ (4.13) 

ܵ௅ଷ ൌ 0.4 ڄ ൫ܲሺ௛ሻ ൅ ݆ ڄ ܳሺ௛ሻ൯ (4.14) 

To compute the winding currents ܫ଴, ܫଵ, and ܫଶ in Figure 4.2 an iterative process 

from [33] is utilized.  These currents form the input to the electro-thermal transformer 

model, which is in turn used to compute the expected distribution transformer 

temperature, and thus the distribution transformer LOL.  The method outlined in [33] to 

compute the transformer currents is an iterative process consisting of a forward sweep 

and a backward sweep.  As an example of this method the transformer currents are 

computed in detail below for the average assumed electric load including average real 

power തܲ [W], average power factor ݌. ݂.തതതതത, and average reactive power തܳ [VAR] 

തܲ ൌ ൛ܲሺ௛ሻൟܧ ൌ 1 24⁄ ڄ ∑ ܲሺ௛ሻଶସ
௛ୀଵ ൌ 6,298 W (4.15) 

.݌ ݂.തതതതതൌ .݌൛ܧ ݂.ሺ௛ሻ ൟ ൌ 1 ڄ 0.3 ൅ 0.95 ڄ 0.4 ൅ 0.9 ڄ 0.3 ൌ 0.95 (4.16) 
തܳ ൌ sinሺcosିଵሺ0.95ሻሻ ڄ 6298 0.95⁄ ൌ 2,070 VAR (4.17) 

Thus, the average electric load demand at the transformer, representing the total demand 

for three average houses, is ܵ௅ଵതതതത (120 V load number 1), ܵ௅ଶതതതത (120 V load number 2), and 

ܵ௅ଷതതതത (240 V load) 

ܵ௅ଵതതതത ൌ ܵ௅ଶതതതത ൌ 0.3 ڄ ሺ6,298 ൅ ݆ ڄ 2,558ሻ ൌ 1,889 ൅ ݆ ڄ 621.0 VA 

ܵ௅ଷതതതത ൌ 0.4 ڄ ሺ6,298 ൅ ݆ ڄ 2,558ሻ ൌ 2,519 ൅ ݆ ڄ 828.0 VA 
The first step to compute the transformer currents is to assume no average low voltage 

line currents 
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൤ܫଵ
ഥ
ଶഥܫ
൨ ൌ ቂ00ቃ  A (4.18) 

Next, the average load voltages are computed 

൤ ଵܸഥ

ଶܸഥ
൨ ൌ ቀ݊௧ ڄ ቂ

1 0
0 1ቃቁ

ିଵ
ڄ ቌ൤ ௦ܸ

௦ܸ
൨ െ ቎

ܼଵ ൅
ଵ
௡೟మ
ܼ଴ െ ଵ

௡೟మ
ܼ଴

ଵ
௡೟మ
ܼ଴ െܼଶ െ

ଵ
௡೟మ
ܼ଴
቏ ڄ ൤ܫଵ

ഥ
ଶഥܫ
൨ቍ (4.19) 

ൌ ቂ0.0151 0
0 0.0151ቃ

ڄ ൬ቂ79607960ቃ െ ൤
0.0303 ൅ ݆ ڄ 0.0807 െ0.0034 െ ݆ ڄ 0.0269
0.0034 ൅ ݆ ڄ 0.0269 െ0.0303 െ ݆ ڄ 5.3518൨

ڄ ቂ00ቃ൰ 

ൌ ቂ120120ቃ  V 

Then, the average load currents are computed 

቎
௅ଵതതതതܫ
௅ଶതതതതܫ
௅ଷതതതതܫ
቏ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ ቀ

ௌಽభതതതതത

௏భ
ቁ
כ

ቀௌಽమ
തതതതത

௏మ
ቁ
כ

ቀ ௌಽయതതതതത

௏భା௏మ
ቁ
כ

ے
ۑ
ۑ
ۑ
ۑ
ې

ൌ ቎
15.75 െ ݆ ڄ 5.175
15.75 െ ݆ ڄ 5.175
10.50 െ ݆ ڄ 3.450

቏  A (4.20) 

Next, the average line currents are computed 

൤ܫଵ
ഥ
ଶഥܫ
൨ ൌ ቂ1 0 1

0 െ1 െ1ቃ ڄ ቎
௅ଵതതതതܫ
௅ଶതതതതܫ
௅ଷതതതതܫ
቏ ൌ ൤ 26.24 െ ݆ ڄ 8.625

െ26.24 ൅ ݆ ڄ 8.625൨  A (4.21) 

Finally, the average load voltages are computed.  Now using the average load currents 

computed in the preceding step 

൤ ଵܸഥ

ଶܸഥ
൨ ൌ ൤120.0 െ ݆ ڄ 0.0382

120.0 െ ݆ ڄ 0.0382൨  V (4.22) 

This process is repeated until the error ሺ݁ሻ falls below a specified tolerance ሺ݁ ൏ 0.001ሻ  

[33] 

ቂ7960 ڄ ݁7960 ڄ ݁ቃ ൌ 
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൤ ௦ܸ

௦ܸ
൨ െ

ۉ

ۈ
ۇ
݊௧ ڄ ቂ

1 0
0 1ቃ ڄ ൤

ଵܸഥ

ଶܸഥ
൨ ൅

ۏ
ێ
ێ
ێ
௧݊ۍ ڄ ܼଵ ൅

1
݊௧ଶ
ܼ଴ െ

1
݊௧ଶ
ܼ଴

1
݊௧ଶ
ܼ଴ െ݊௧ ڄ ܼଶ െ

1
݊௧ଶ
ܼ଴ے
ۑ
ۑ
ۑ
ې
ڄ ൤ܫଵ
ഥ
ଶഥܫ
൨

ی

ۋ
ۊ

 

ൌ ቂ0.00.0ቃ  V 

Once the iterative process converges the average high voltage winding current can be 

computed 

൤ܫ଴
ഥ
଴ഥܫ
൨ ൌ ଵ

௡೟
ቂ1 െ1
1 െ1ቃ ൤

ଵഥܫ
ଶഥܫ
൨ (4.23) 

ൌ ቂ0.0151 െ0.0151
0.0151 െ0.0151ቃ ڄ ൤

26.24 െ ݆ ڄ 8.625
െ26.24 ൅ ݆ ڄ 8.625൨ 

ൌ ൤0.7912 െ ݆ ڄ 0.2601
0.7912 െ ݆ ڄ 0.2601൨  A 

The electro-thermal transformer model, described next, computes the expected 

transformer winding temperature based on real valued currents, and thus the following 

magnitudes of the complex current values are used 

቎
|଴ഥܫ|
|ଵഥܫ|
|ଶഥܫ|

቏ ൌ ൥
0.8328
27.62
27.62

൩  ܣ 

4.4 Electro-Thermal Transformer Model 

Different electro-thermal transformer models of transformers have been 

experimentally developed in [34] and [35], and a similar model is used here to calculate 

the hot-spot temperature of a distribution transformer for random daily load patterns.  

Variations of the model used in this thesis, shown in Figure 4.3, have also been used by 

others in [36] and [37] and is a simplified electro-thermal transformer model of a center-

tapped single phase convection cooled distribution transformer. 
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The nodes in Figure 4.3 represent: 

• The high voltage winding (node h). 
• The low voltage winding center tap 1 (node 1). 
• The low voltage winding center tap 2 (node 2). 

Each circuit element represents a thermal phenomenon: the conductance 

components represent heat transfer within and between the transformer windings 

(estimated from temperature gradients between transformer windings [38]); the 

capacitive components represent transformer winding thermal inertia (computed from the 

winding mass and winding specific heat constant [38]); and the current sources represent 

heat sources in the form of ohmic losses in each of the transformer windings. 

The dynamics of the transformer winding temperatures [38] are described by the 

following differential equation 

࡯ ڄ ݀ሬܶԦ ⁄ݐ݀ ൌ െࡳ ڄ ሬܶԦ ൅ ሬܳԦ (4.24) 

 
Figure 4.3.  Electro-thermal transformer model. 
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where ࡯ [joules/˚C] is the thermal capacitance matrix 

࡯ ൌ ቎
௛,௛ܥ 0 0
0 ଵ,ଵܥ 0
0 0 ଶ,ଶܥ

቏ (4.25) 

ሬܶԦ [˚C] is the components temperature vector 

ሬܶԦ ൌ ሾ ௛ܶ ଵܶ ଶܶሿ் (4.26) 

ሬܳԦ [W] is the heat input vector 

ሬܳԦ ൌ ሾܳ௛ ܳଵ ܳଶሿ் (4.27) 

which represent ohmic losses in the transformer windings and as such can be modeled as 

the following function of the winding currents and resistances 

ሬܳԦ ൌ ሾ14.78 ڄ ௛ଶܫ 0.0269 ڄ ଵଶܫ 0.0269 ڄ  ଶଶሿ் (4.28)ܫ

and ࡳ [W/˚C] is the thermal conductance matrix, which represents the thermal 

conductance among the three windings 

ࡳ ൌ ቎
௛,௛ܩ ൅ ௛,ଵܩ ൅ ௛,ଶܩ െܩ௛,ଵ െܩ௛,ଶ

െܩ௛,ଵ ଵ,ଵܩ ൅ ௛,ଵܩ ൅ ଵ,ଶܩ െܩଵ,ଶ
െܩ௛,ଶ െܩଵ,ଶ ଶ,ଶܩ ൅ ௛,ଶܩ ൅ ଵ,ଶܩ

቏ (4.29) 

The numeric values of the circuit parameters chosen were analytical computed 

and experimentally verified [39] 

࡯ ൌ ൥
468 0 0
0 375 0
0 0 365

൩ 
joules
Ԩ  

ࡳ ൌ ൥
0.78 ൅ 2.1 ൅ 2.0 െ2.1 െ2.0

െ2.1 0.44 ൅ 2.1 ൅ 3.5 െ3.5
െ2.0 െ3.5 0.46 ൅ 2.0 ൅ 3.5

൩ 
W
Ԩ 

A trapezoidal integration method is used to calculate the solution of (4.24).  In 

particular, the integration within the time interval ሾݐ െ ,ݑ  ሿ isݐ

ሬܶԦሺݐሻ ൌ ሺ࡯ ൅ ࡳ ڄ ݑ 2⁄ ሻିଵ ڄ ሺܥ െ ࡳ ڄ ݑ 2⁄ ሻ ڄ ሬܶԦሺݐ െ  ሻݑ

൅ሺ࡯ ൅ ࡳ ڄ ݑ 2⁄ ሻିଵ ڄ ሬܳԦ ڄ  (4.30) ݑ

where ݑ is the time step of the integration. 
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The input to the above model is the transformer currents ܫ௛, ܫଵ, and ܫଶ over a 

specific time period, typically one day.  The result from the trapezoidal integration is the 

estimated transformer temperature with respect to ambient temperature over the 

simulated time span.  An assumed flat daily temperature profile is used for simplicity 

ሺ20Ԩሻ. 

4.5 Transformer Loss-of-Life (LOL) Calculation 

The process of insulation degradation, for oil filled transformer, is a function of 

three phenomenon (1) temperature, (2) moisture, and (3) oxygen content [40].  The 

second two consist of water and oxygen contamination of the transformer oil and can be 

controlled through “oil preservation systems” [40] and thus are not considered in this 

analysis.  The following method outlined in [40] is used to compute the LOL. 

The LOL, ௅ܲ [%], is a function of the equivalent life, ܧ௅ [h], and the normal 

insulation life, ௅ܰ [h], [40] 

௅ܲ ൌ ሺܧ௅ ڄ 100ሻ ௅ܰ⁄  (4.31) 

where ܧ௅ is computed as a function of the aging acceleration factor, ߠ௨, 

௅ܧ ൌ ∑ ሺߠ௨ ڄ Δݐ௨ሻ௎
௨ୀଵ  (4.32) 

and ߠ௨ is computed as a function of the aging rate constant, ܤ [K], and the transformer 

hot-spot temperature, ෨ܶ௨ [˚C], at time ݑ 

௨ߠ ൌ exp൛ܤ 383⁄ െ ܤ ൫ ෨ܶ௨ ൅ 273൯⁄ ൟ (4.33) 

The LOL calculations are computed for a typical day based on hourly increments, 

thus ܷ [h] is 24 and Δݐ௨ is 1 hour.  The LOL calculation variables ܧ௅ and ߠ௨ are 

computed for each hour of the simulated day based on the simulated hot-spot temperature 
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෨ܶ௨ in that hour (the maximum simulated transformer winding temperature for a given 

hour). 

The LOL constants ௅ܰ and ܤ are selected based on historically accepted values.  

The historical perspective on the insulation life values and LOL calculations is quite 

interesting, and the values in Table 4.2 for normal insulation life and in Table 4.3 for 

aging rate constant are surrounded in ambiguity; however, in [40] a conclusion is drawn 

that the “chemical test measurement of degree of polymerization is a much better 

indication of cellulosic insulation mechanical characteristics than loss of tensile 

strength,” therefore the normal insulation life used is 150,000 hours (17.1 years) and the 

aging rate constant used is 14,580 K. 

 

 

Normal LOL, using the normal insulation life and aging rate constant selected, for 

operation of a constant 110 ˚C for 24 hours is 0.016%.  Intuitively, this indicates that a 

transformer which withstood a 24 hour period with hot-spot temperature of 110 ˚C aged 

Table 4.3.  Aging rate constant [40]. 

Basis 

Aging 
rate 

constant 
[K] 

50% retained tensile strength of insulation (former IEEE Std. C57.92-1948) 14,830 
50% retained tensile strength of insulation (former IEEE Std. C57.92-1981) 16,054 

DT life tests (former IEEE Std. C57.92-1981) 14,594 
250 retained degree of polymerization in insulation 14,580 

 

Table 4.2.  Normal insulation life times [40]. 

Basis Normal Insulation Life [h] 

50% retained tensile strength of insulation (former IEEE 
Std. C57.92-1981) 65,000 

25% retained tensile strength of insulation 135,000 
200 retained degree of polymerization in insulation 150,000 

Interpretation of distribution transformer functional life 
test (former IEEE std. C57.91-1981 criterion) 180,000 
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the equivalent of 0.016% of its useful life.  Notice that 24 hours is 0.016% of 150,000 

hours.  

4.6 Transformer Impact Simulation Procedure 

A block diagram of the simulation procedure is shown in Figure 4.4. 

 

The first step in Figure 4.4 is to generate all RVs used in the simulation 

procedure.  The first RV generated is the hourly household power factor, this is a discrete 

value, and to generate this RV an inverse transform method is used [23].  The cumulative 

distribution function of the RV is inverted and evaluated using uniform (0, 1) values to 

generate the random power factor values. 

ଵሺܷሻିܨ ൌ ൝
0.9 0 ൑ ܷ ൏ 0.3
0.95 0.3 ൑ ܷ ൏ 0.7
1 0.7 ൑ ܷ ൑ 1

 (4.34) 

where ܷ is a RV distributed uniform (0, 1) and is generated using the C function rand(). 

 
Figure 4.4.  Transformer impact simulation block diagram. 
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The second and third RVs are generated using the Box-Műller method, (3.8).  The 

second RV, the hourly real power demand is computed by 

ܲሺ௛ሻ ൌ ሺ௛ሻߤ ൅ ሺ௛ሻߪ ڄ ܰ (4.35) 

The third RV, the PHEV power demand is computed using (4.4).  This value represents 

the added grid electric energy required for one PHEV. 

The second step in Figure 4.4 is to compute the transformer current based on the 

assumed distribution transformer electric load demand.  The methodology assumes that 

the distribution transformer electric load demand is constant for each hour of the 

simulated day.  The iterative process, to compute the transformer currents for the 

simulated day, is repeated twice for every hour of the simulated day, once for the base 

case scenario and again for the PHEV scenario.  The final result of the iterative process is 

the transformer currents for the specified load. 

The third step in Figure 4.4 is to compute the transformer hot-spot temperature for 

every hour of the simulated day.  Here hot-spot temperature is defined as the maximum 

winding temperature in a given hour.  A step length of 10 seconds is used in the 

trapezoidal integration method described above.  Thus, the transformer currents, from the 

center-tapped single phase distribution transformer, are sampled every 10 seconds as 

input to the electro-thermal transformer model simulation.  The final result of this 

simulation is the hot-spot temperature of the distribution transformer, which is the 

maximum temperature observed from each hour of the simulated day. 

The fourth step in Figure 4.4 computes the transformer LOL.  Using the described 

method the LOL is computed for each simulated day for both scenarios, without PHEV 

charging (base case) and with PHEV charging (PHEV scenario). 
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Sample results are described below to clarify the procedure.  The sample results 

consist of one day with the base case feeder demand (feeder demand with no electric load 

due to PHEV charging), and one day with the added electric load demand of charging 

three PHEVs.  The input to the sample results are the average hourly peak load shown in 

Figure 4.1, and the average PHEV required grid electric energy of three PHEVs charged 

over the average arrival and departure times.  Figure 4.5 shows the base case feeder load 

(called “BC Feeder Demand”), required PHEV grid electric energy due to three PHEVs 

(called “PHEV Feeder Demand”), and total feeder load with added PHEV electric load 

(called “Total Load with PHEVs”). 

 

In Figure 4.5 the total load with PHEVs is the hour by hour sum of the PHEV 

feeder demand and the base case feeder demand.  The total load with PHEVs has a 

maximum real power demand of 14,792 W which is an increase of 33% over the base 

case feeder demand; moreover the total load with PHEVs has a minimum real power 

demand of 5,200 W, which is an increase of 93% over the base case feeder demand. 

 
Figure 4.5.  Sample scenario feeder load data. 
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The next step in the transformer impact simulation is to compute the expected 

distribution transformer winding currents.  This calculation includes two scenarios: one 

with no additional load due to PHEV charging (called “BC”) and a second with the added 

electric load due to PHEVs (called “PHEV”).  Both scenarios winding current results 

include two low voltage winding currents and one high voltage winding current.  Because 

the load on both the low voltage windings is balanced, the low voltage winding current 

results are the same; for this reason and for simplicity, only one low voltage winding 

current result (called “Low V”) and the high voltage winding current result (called “High 

V”) are shown for both scenarios in Figure 4.6. 

 

In both scenarios the high voltage winding currents are significantly smaller in 

amplitude then the low voltage winding currents; thus, in Figure 4.6 the high voltage 

winding currents are plotted for the secondary (right-hand side) vertical axis using a 

different scale than the primary (left-hand side) vertical axis. 

 
Figure 4.6.  Sample scenario winding currents. 
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The next step in the transformer impact simulation is to compute the expected 

distribution transformer winding temperature for both scenarios (“BC” and “PHEV”).  

The electro-thermal transformer model is utilized to compute these expected 

temperatures.  The results of the electro-thermal transformer model using the winding 

currents in Figure 4.6 are shown in Figure 4.7.  Again, because the load on the low 

voltage windings is balanced, the currents in the low voltage windings are the same and 

thus the low voltage winding temperatures are the same.  For this reason and for 

simplicity only one low voltage winding temperature (called “Low V”) and the high 

voltage winding temperature (called “High V”) are shown in Figure 4.7. 

 

Notice that, the significantly smaller high voltage winding current then the low 

voltage winding currents in Figure 4.6 result in similar amplitude temperature results for 

both high and low voltage winding temperatures.  This change is due to the significantly 

larger high voltage winding resistance of 14.78 Ω, see (4.10) than the low voltage 

winding resistance of 0.0269 Ω, see (4.11). 

 
Figure 4.7.  Sample scenarios winding temperatures. 
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The next step in the transformer impact simulation is to compute the hot-spot 

winding temperature for both scenarios (“BC” and “PHEV”).  The hot spot temperature is 

the maximum winding temperature in a given hour.  Based on the winding temperatures 

in Figure 4.7, the windings hot-spot temperatures is computed and shown in Figure 4.8. 

 

The last step in the transformer impact simulation is to compute the distribution 

transformer LOL for both scenarios.  Finally, from the hot-spot temperatures the aging 

acceleration values are computed shown in Table 4.4 and the resulting LOL are, 5.8891E-

07% and 9.0037E-07%, for the base case and PHEV feeder demand respectively shown 

in Figure 4.5. 

 
Figure 4.8.  Sample scenarios hot-spot temperature. 
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The hot-spot temperatures estimated by the sample results indicate average 

results.  The developed probabilistic model varies the electric load above and below the 

average with variance as a function of the average peak real power, see (4.2), thus the 

sample results provide validation of the developed probabilistic simulation. 

The LOL values computed indicate that in the simulated 24 hour period the 

transformer aged only 8.837E-4, and 1.350E-3 years for the base case and PHEV feeder 

demand respectively.  This amount of aging is 5.889E-07% and 9.004E-07% (base case 

and PHEV feeder demand respectively) of the total expected life of 150,000 hours.  There 

Table 4.4.  Hot-spot temperature results and LOL calculation. 

Hour BC ෨ܶ௨ BC ߠ௨ PHEV ෨ܶ௨ PHEV ߠ௨ 

1 23.33 1.460E-05 27.44 2.863E-05 
2 23.87 1.596E-05 27.98 3.126E-05 
3 25.22 1.994E-05 29.29 3.853E-05 
4 26.47 2.445E-05 30.50 4.670E-05 
5 27.51 2.895E-05 31.51 5.476E-05 
6 27.52 2.898E-05 31.51 5.481E-05 
7 27.52 2.898E-05 31.51 5.481E-05 
8 27.52 2.898E-05 31.38 5.370E-05 
9 27.52 2.898E-05 27.32 2.807E-05 

10 27.48 2.884E-05 27.26 2.782E-05 
11 26.48 2.451E-05 26.29 2.375E-05 
12 26.47 2.448E-05 26.28 2.373E-05 
13 27.51 2.895E-05 27.29 2.793E-05 
14 28.55 3.424E-05 28.30 3.287E-05 
15 29.59 4.044E-05 29.31 3.865E-05 
16 30.63 4.771E-05 30.32 4.539E-05 
17 31.68 5.622E-05 31.33 5.324E-05 
18 33.24 7.173E-05 37.03 1.285E-04 
19 33.76 7.785E-05 37.57 1.394E-04 
20 33.75 7.766E-05 37.55 1.390E-04 
21 33.14 7.066E-05 36.96 1.271E-04 
22 29.53 4.002E-05 33.46 7.428E-05 
23 26.41 2.425E-05 30.45 4.631E-05 
24 23.87 1.597E-05 27.99 3.127E-05 
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are two reasons for the smallness of these results.  First, the transformer is oversized for 

the modeled electric load.  Second, the ambient temperature used is very conservative.  

The nameplate rating of the modeled transformer is 15 kVA.  The peak average electric 

load is 11.1 kW.  This indicates that there is 26% ൌ ሺ1 െ 11.1 15⁄ ሻ ڄ 100% spare 

transformer capacity for the peak average load.  The ambient temperature assumed is 20 

˚C (≈ 68 ˚F) and is very conservative for warm temperate climate summer temperatures. 

The amplitude of the LOL is not the focus of this study.  Rather the relative 

increase in LOL which is the increase in transformer degradation caused by the additional 

electrical load caused by PHEV charging.  The percent increase for the sample results is 

52.89%.  This shows that the sample results indicate that the life time of an average 

transformer will be decreased by 53% because of the added stress of charging three 

PHEVs.  Next, results are presented which show the LOL results using the developed 

probabilistic models.  It is expected that the probabilistic model results will on average 

approximate the sample results. 

4.7 Transformer Impact Results 

Each simulated day results in slightly different LOL values and therefore the LOL 

results are presented in histograms. Two LOL histograms are provided as visual evidence 

that the LOL results are normally distributed.  The expectation is that the LOL results 

should follow a normal distribution due to the law of large numbers.  The base case LOL 

results from 100 simulated days are shown in Figure 4.9.  The PHEV scenario with the 

added electric load due to one PHEV in the distribution system is shown in Figure 4.10.  

The results for the added electric load due to two and three PHEVs are quite similar and 

are not shown.   
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The simulation results are further characterized using a normal distribution 

maximum likelihood estimator (MLE) 

ߤ̂ ൌ 1 N⁄ ڄ ∑ ௜ேݔ
௜ୀଵ  (4.36) 

where ܰ is the number of repeated simulations (100) and ݔ௜ represent the LOL result 

from iteration-݅.  This equation is valid assuming that the LOL results will follow a 

 
Figure 4.10.  Single PHEV charging LOL histogram. 
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Figure 4.9.  Base case LOL histogram. 
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normal distribution.  From the mean MLE results for each of the four scenarios 

simulated, the percent change in average LOL is computed, indicating the impact PHEV 

charging will have on distribution transformers. 

Table 4.5 compares all four scenarios mean MLE results.  The calculated values 

for ̂ߤ show a percent change of 11.99% (from 6.212E-07% to 6.957E-7%) when adding 

one PHEV, 28.84% (from 6.212E-07% to 8.004E-7%) when adding two PHEVs, and 

43.75% (from 6.212E-07% to 8.930E-7%) when adding three PHEVs. 

 

Also, the change in LOL comparing the probabilistic results versus the 

deterministic sample results from Section 4.6 show a 5.49% change in base  case results 

(computed as ൣ1 െ ൫6.212E‐07 5.889E‐07ൗ ൯ ڄ 100%൧ where 6.212E-07 is the base case 

 in Table 4.5 and the 5.8891E-07 is the deterministic sample base case LOL result), and ߤ̂

a 0.82% change in the three PHEV scenario (computed as 

ൣ1 െ ൫8.930E‐07 9.004E‐07ൗ ൯ ڄ 100%൧ where 8.930E-07 is the three PHEV scenario ̂ߤ 

in Table 4.5 and the 9.004E-07 is the deterministic sample three PHEV scenario. 

4.8 Conclusion 

To examine the impact that PHEV charging will have on distribution 

transformers, simulations of daily load flows are performed using random electric loads.  

Two scenarios are examined, the first provides a baseline comparison of the transformer 

Table 4.5.  LOL MLE results. 

 ߤ̂

Base Case 6.212E-07 
One PHEV 6.957E-07 

Two PHEVs 8.004E-07 
Three PHEVs 8.930E-07 
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LOL with no PHEV electric load, and the second scenario provides the transformer LOL 

including PHEV charging in addition to the normal household electrical demand. 

A center-tapped single phase transformer model is used to compute the expected 

transformer currents and an electro-thermal transformer model of the distribution 

transformer is used to compute the expected distribution transformer hourly hot-spot 

temperature. 

On average it is assumed that the average daily electric demand experienced by a 

distribution transformer for three typical houses is 150 kWh.  The average added electric 

load due to PHEVs is on average 16 kWh.  The percent increase in feeder load and 

percent increase in average LOL are shown in Table 4.6. 

 

The results in Table 4.6 show that adding the additional electric load demand to 

distribution transformers will have a measurable effect on the expected life of the 

distribution transformer.  Specifically, if it is assumed that an average distribution 

transformer would operate for 150,000 hours (17.1 years), then the added impact of one 

PHEV decreases this expected lifetime to 132,015 hours (15.1 years).  Similarly, the 

added impact of two PHEVs decreases it to 106,740 hours (12.2 years) and the added 

impact of three PHEVs decreases this expected lifetime to 84,390 hours (9.6 years). 

  

Table 4.6.  Increase in average electric load and resulting average transformer LOL. 

 Percent Increase 

 Average Electric Load Transformer LOL 

One PHEV 10.67% 11.99% 
Two PHEVs 21.33% 28.84% 
Three PHEVs 32.00% 43.74% 
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CHAPTER 5 

CONCLUSION 

 

Plug-in hybrid electric vehicles (PHEVs) are a vehicle designed similar to a 

traditional hybrid electric vehicle (HEV) with more dependence on the electric drive 

system.  PHEVs have the added ability, over HEVs, to recharge from the electric power 

system.  The wide spread adoption of PHEVs has the potential benefit to (1) generate a 

lucrative new semi-dispatchable load for the electric utility industry and (2) diversify the 

transportation sector energy usage by displacing petroleum usage with electric energy. 

Two power system level impacts of PHEV charging are investigated in this thesis.  

The first investigation quantifies the primary energy source utilization due to PHEV 

charging and the second quantifies the impact of PHEV charging on distribution 

transformers.  In Chapter 3 the primary energy source utilization describes which power 

system fuel types are utilized to meet the added electric load demand created by PHEV 

charging.  Additionally, the tradeoff between vehicle tailpipe environmental air pollution 

(EAP) and power system EAP is compared when PHEVs are used to replace varying 

levels of the light duty vehicle fleet in a given power system area.  Finally, the annual 

fuel cost is computed for conventional internal combustion (IC) vehicles, which includes 

only gasoline purchasing, and that of PHEVs, which includes gasoline and electricity 

purchasing.  The results from Chapter 3 indicate that PHEVs offer cleaner transportation 

(depending on the generation mix used to charge the vehicles) with decreased gasoline 

utilization at a lower cost (in terms of annual fuel costs) to consumers. 
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In Chapter 4 the impact of PHEV charging on distribution transformers is 

quantified using a transformer insulation percent loss-of-life (LOL) calculation.  Two 

models are utilized to compute the data required for the LOL calculation, namely a 

center-tapped model and a simplified electro-thermal transformer model.  The center-

tapped single phase transformer model simulates the transformer winding currents for 

random daily load demand values.  The electro-thermal model simulates the winding 

temperature as a function of the winding currents.  The LOL calculation is based on the 

hourly transformer hot-spot temperature which is defined as the maximum winding 

temperature for each hour of the simulation period.  The transformer LOL results indicate 

that adding the additional electric load demand to distribution transformers has a 

measurable effect on the expected life of the distribution transformer. 

Future work which could follow this thesis includes: 

• Model verification of the probabilistic consumer behavior including miles 
driven per day, arrival time and departure time random variables. 

• Additional simulations of the effect that real time electric price signals could 
have on PHEV charging and primary energy source utilization. 

• Power system data of existing power system could provide experimental 
results for existing power systems. 

• Additional development of the transformer impact chapter could include 
investigations into the impact of ambient temperature profiles, the impact of 
vehicle charging time, and the impact of transformer sizing. 
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APPENDIX A 

PSAT SIMULATION RESULTS 

 

The data in this appendix is taken from [20].  From this data the vehicle, both 

internal combustion (IC) and plug-in hybrid electric (PHEV), performance metrics are 

computed.  The IC vehicle performance metrics include fuel efficiency, NOx generated 

per mile driven, and CO2 generated per mile driven.  The PHEV performance metrics 

include energy required per mile, gasoline efficiency, NOx generated per mile driven, and 

CO2 generated per mile driven.  The methodology used to compute the performance 

metrics is described in Chapter 3. 

PHEV simulations were performed using the Powertrain System Analysis Toolkit 

(PSAT).  PSATs Matlab/Simulink/State-Flow models, of conventional vehicle and hybrid 

powertrain components, of various architectures, were assembled and simulated to 

generate operational data for PHEVs [20]. 

Once the complete vehicle models had been selected, PSAT allowed for the 

simulated operation of the developed vehicles over specified driving schedules with a 

variable amount of driving energy supplied from the vehicles battery [20]. 

PHEV PSAT results for each vehicle class are shown in Tables A.1 - A.4.  IC 

PSAT results are shown in Table A.5. 
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Table A.2.  Vehicle class 2 PHEV PSAT results [20]. 
Driving 

Schedule kPHEV Electric Energy Per Mile 
[kWh/mi.] 

GPM 
[gal./mi.] 

NOx Per Mile 
[kg/mi.] 

CO2 Per Mile 
[kg/mi.] 

HWFET 

0.1131 0.0987 0.0183 1.025E-04 0.1651 
0.1210 0.1070 0.0184 1.022E-04 0.1659 
0.1340 0.1117 0.0171 9.500E-05 0.1538 
0.4617 0.2698 0.0074 3.250E-05 0.0671 
0.6035 0.2808 0.0044 2.230E-05 0.0393 
0.7829 0.2952 0.0022 9.300E-06 0.0197 

UDDS 

0.1898 0.1818 0.0186 8.860E-05 0.1680 
0.4534 0.3168 0.0091 3.100E-05 0.0820 
0.7613 0.3016 0.0023 7.800E-06 0.0203 
0.9664 0.2950 0.0002 1.000E-06 0.0022 
1.0000 0.2866 0.0001 0.00 0.00 

US06 

0.0992 0.1374 0.0300 1.370E-04 0.2692 
0.1215 0.1609 0.0278 1.367E-04 0.2492 
0.3608 0.3539 0.0149 6.960E-05 0.1336 
0.5108 0.4232 0.0097 3.990E-05 0.0864 
0.9199 0.4672 0.0010 3.600E-06 0.0087 

 

Table A.1.  Vehicle class 1 PHEV PSAT results [20]. 
Driving 

Schedule kPHEV Electric Energy Per Mile 
[kWh/mi.] 

GPM 
[gal./mi.] 

NOx Per Mile 
[kg/mi.] 

CO2 Per Mile 
[kg/mi.] 

HWFET 

0.1156 0.0807 0.0146 7.720E-05 0.1316 
0.2183 0.1471 0.0125 5.100E-05 0.1123 
0.7196 0.2508 0.0023 6.700E-06 0.0208 
1.000 0.2626 0.0001 0.00 0.00 

UDDS 

0.1461 0.1167 0.0162 7.080E-05 0.1457 
0.2757 0.1973 0.0123 4.790E-05 0.1109 
0.5193 0.2666 0.0059 2.040E-05 0.0528 
1.000 0.2235 0.0001 0.00 0.00 

US06 

0.1141 0.1281 0.0235 1.273E-04 0.2115 
0.1803 0.1820 0.0196 1.016E-04 0.1760 
0.4114 0.3162 0.0107 4.920E-05 0.0963 
0.9463 0.4341 0.0006 2.300E-06 0.0052 
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Table A.4.  Vehicle class 4 PHEV PSAT results [20]. 
Driving 

Schedule kPHEV Electric Energy Per Mile 
[kWh/mi.] 

GPM 
[gal./mi.] 

NOx Per Mile 
[kg/mi.] 

CO2 Per Mile 
[kg/mi.] 

HWFET 

0.0630 0.1024 0.0361 1.746E-04 0.3254 
0.2503 0.2985 0.0212 9.000E-05 0.1909 
0.5925 0.4820 0.0078 3.240E-05 0.0706 
0.9096 0.5155 0.0012 4.600E-06 0.0109 

UDDS 

0.0719 0.1494 0.0461 1.892E-04 0.4158 
0.3406 0.4816 0.0221 7.720E-05 0.1987 
0.7526 0.4819 0.0037 1.320E-05 0.0338 
1.000 0.5189 0.0001 0.00 0.00 

US06 

0.0577 0.1360 0.0532 2.642E-04 0.4770 
0.3484 0.5736 0.0253 1.342E-04 0.2280 
0.4982 0.6986 0.0165 8.500E-05 0.1497 
0.6900 0.7606 0.0080 3.860E-05 0.0726 
0.8776 0.8530 0.0028 1.270E-05 0.0253 

 

Table A.3.  Vehicle class 3 PHEV PSAT results [20]. 
Driving 

Schedule kPHEV Electric Energy Per Mile 
[kWh/mi.] 

GPM 
[gal./mi.] 

NOx Per Mile 
[kg/mi.] 

CO2 Per Mile 
[kg/mi.] 

HWFET 

0.0482 0.0780 0.0364 1.307E-04 0.3287 
0.2976 0.2950 0.0165 5.250E-05 0.1484 
0.4217 0.3790 0.0123 3.800E-05 0.1108 
0.7746 0.4143 0.0029 9.400E-06 0.0257 
1.000 0.4247 0.0001 0.00 0.00 

UDDS 

0.0596 0.1145 0.0427 1.612E-04 0.3850 
0.3006 0.3927 0.0216 7.370E-05 0.1949 
0.6990 0.3889 0.0039 1.240E-05 0.0357 
1.000 0.3872 0.0001 0.00 0.00 

US06 

0.0530 0.1165 0.0492 2.436E-04 0.4436 
0.1872 0.3362 0.0344 1.549E-04 0.3108 
0.3516 0.5259 0.0228 8.750E-05 0.2064 
0.4718 0.6694 0.0176 6.400E-05 0.1595 
0.7168 0.7204 0.0066 2.260E-05 0.0605 
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Table A.5.  IC PSAT results [20]. 

Class Drive Schedule MPG [mi./gal.] NOx Per Mile[kg/mi.] CO2 Per Mile [kg/mi.] 

1 
HWFET 33.21 9.190E-05 0.2715 
UDDS 26.17 1.508E-04 0.3446 
US06 25.82 2.042E-04 0.3483 

2 
HWFET 18.54 1.593E-04 0.4866 
UDDS 14.17 2.530E-04 0.6366 
US06 14.21 3.448E-04 0.6341 

3 
HWFET 19.31 1.453E-04 0.4674 
UDDS 12.17 2.651E-04 0.7411 
US06 14.20 3.090E-04 0.6351 

4 
HWFET 14.07 1.946E-04 0.6411 
UDDS 11.42 2.904E-04 0.7902 
US06 11.16 4.032E-04 0.8081 
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