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 SUMMARY 

 

Catalysis is an important field of study in chemical engineering and chemistry due 

to its application in a vast number of chemical transformations. Traditionally, catalysts 

have been developed as homogeneous molecular species or as heterogeneous insoluble 

materials. While homogeneous catalysts are typically very active and selective, they are 

difficult to recover. Conversely, heterogeneous catalysts are easy to recover and reuse, 

but they generally are less selective. To address these issues, the immobilization of 

homogeneous catalyst analogs onto solid supports has been a subject of research for the 

past few decades. Nonetheless, the effects of immobilization are still not completely 

predictable, and so continued effort is required to develop new immobilized catalysts as 

well as to develop a better understanding of how different parameters affect catalytic 

behavior. 

This dissertation presents the synthesis, characterization, and evaluation of new 

immobilized catalysts for different applications. First, a solid base catalyst supported on 

silica was developed and studied in the synthesis of cyclic carbonates from epoxides and 

carbon dioxide. Next, polymer and silica supported vanadium Schiff base catalysts were 

developed and evaluated for use in the oxidative kinetic resolution of α-hydroxy esters, 

an enantioselective reaction. Lastly, salen catalyst analogs with amine reactive functional 

groups were synthesized and characterized for grafting onto aminosilicas with different 

degrees of amine group isolation. The grafted catalysts were then tested to determine how 

catalyst spacing on the surface affects their behavior. Throughout the presentation of 

these results, comparisons are made amongst the new supported catalysts and relevant 

 xix



 xx

existing catalysts to discern general trends which could be applied to a wider range of 

immobilized catalysts. Finally, research opportunities for further improvements in these 

areas are suggested.  

 



 

CHAPTER 1 

INTRODUCTION 

1.1. Immobilized Catalysts 

 The field of catalysis is extensive and diverse due to its ubiquitous use in all types 

of chemical and biological transformations. While catalysis in biological systems is 

predominantly governed by enzymes, catalysis in non-biological systems has focused on 

reactive solid materials, transition metal catalysts with or without organic ligands, and 

acid/base catalysts to name a few. Even though this field is vast, its development can be 

loosely divided into two parallel paths. The first path follows the progress of traditional 

heterogeneous catalysis, wherein the catalytically active site (metal, acid, or base) is 

directly attached to or incorporated in a solid material. The second path follows the 

advancement of homogeneous catalysis, which utilizes soluble molecular species whose 

active sites are often modified with complex ligand structures.  

 Each of these classes of catalysis has advantages that historically have been 

difficult for the other to achieve. On the heterogeneous side, the catalyst lends itself 

nicely to use in continuous flow reactor systems, and it is often more easily recovered 

from the product mixture. This can be particularly advantageous if there are concerns 

with product contamination or if there is a desire to reuse the catalyst without complex 

recovery and regeneration procedures. However, achieving high selectivity, particularly 

enantioselectivity, with heterogeneous catalysts is often not possible. Since the active site 

is directly linked to the solid surface, multiple types of active site/surface interactions 

may exist on the material. If these multiple types of catalytic sites interact with the 

reactant in different ways, selectivity can be decreased. Also, because of the limited 
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nature of active sites which can exist on these types of catalysts, the scope of reactions 

for which they can be applied is also restricted.1 

 In homogeneous catalysis, high activity and high selectivity are two significant 

advantages. Here, the model for this behavior is found in nature in enzymatic catalysis, 

which is exceptionally efficient and extremely selective.2 The main reason for the high 

level of enzyme selectivity is the very controlled manner in which the substrate molecule 

interacts with the catalytic site – the substrate configuration must match with particular 

enzyme configurations for the binding and reaction to occur. This type of site-specificity 

is possible in non-biological homogeneous catalysis due to the vast range of organic 

synthesis methodologies available to design a catalyst to possess a single, specific 

chemical environment around the active site. However, recovery of homogeneous 

catalysts is typically difficult or expensive due to the need for high temperature 

distillations, high volume extractions, or other labor or energy intensive processes. 

 Over the past few decades, significant research efforts have focused on combining 

the best properties of both of these fields through the immobilization of homogeneous 

catalyst analogs onto insoluble supports.1,3-9 Specifically, the goal has been to create 

catalysts that have the single-site nature of homogeneous catalysts and the ease of 

recovery and reuse of heterogeneous catalysts (Figure 1.1). Numerous immobilization 

techniques, support structures, catalyst analogs, and reactions have been investigated with 

varied degrees of success for developing highly active, selective, recoverable, and 

recyclable catalysts.  
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Figure 1.1. Representation of traditional heterogeneous catalysts, immobilized catalysts, 

and homogeneous catalysts. 
 

 

 The focus of this dissertation is the synthesis, characterization, and evaluation of 

new immobilized catalysts for three specific applications, with the broader goal of using 

the information learned from these systems to contribute to the on-going development of 

design criteria that may be applied to many immobilized catalyst systems. Each of the 

three systems detailed in this work is of increasing complexity in terms of synthesis and 

sensitivity to immobilization method, and each offers additional parameters for 

consideration in determining design criteria. Therefore, this dissertation demonstrates 

both an expansion in the available immobilized catalysts as well as an enhanced 

understanding of how immobilization parameters (support material, point of attachment, 

order of synthesis, etc.) effect catalytic activity and selectivity. 

1.2. Immobilization Methods 

 As mentioned above, a number of immobilization methods have been employed 

in the development of new catalysts over the past few decades. Typically, most methods 

fall into one of four general categories: 1) adsorption of the catalytic species onto the 
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support, 2) encapsulation of the catalytic species inside cavities in the support structure, 

3) grafting of a close analog of the catalytic species onto a solid support, and 4) direct 

incorporation of the catalytic species into the final insoluble material (Figure 1.2).1,5,10 

Each method finds use in different applications, and each method can be highly effective 

in appropriate reaction conditions. 
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a                            b                           c                        d

- -
M

- -
MM MMMMM

MMM

a                            b                           c                        d  

 

Figure 1.2. Immobilization methods: a) adsorption, b) encapsulation, c) grafting, d) direct 
incorporation. 

 

 

 Adsorption of the catalyst onto a solid support is attractive due to the fact that the 

desired catalyst is simply brought into contact with the support material to produce the 

immobilized catalyst. In this case, the synthetic procedure is very simple, and the catalyst 

need not be modified from its homogeneous configuration in many cases. However, the 

stability of the immobilized catalyst is highly dependent on interactions between the 

catalyst or surface and the reactants or solvents involved in the reaction. Therefore, the 

right combination of components must be used for this method to be suitable.10  

 Encapsulation is also a highly efficient immobilization method which utilizes a 

straightforward synthetic approach. This method is the only one which does not require 
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any interaction between the support structure and the catalyst.5 Much like a ship-in-a-

bottle, the individual components of the catalyst are diffused into cages in a support 

material where they assemble together. Once assembled, the catalyst is unable to diffuse 

back out of the pore channels as its size is now larger than the size of the pore. This 

method is most often used with zeolites since their frameworks have small diameter pore 

channels that interconnect larger cage structures (Figure 1.3). The drawbacks of 

encapsulation are that the sizes of the reactants one can use with this method are limited 

by the pore diameter of the channel, and diffusion effects can significantly influence 

reaction rates.  

 

 

 
 

Figure 1.3. Zeolite structure FAU with smaller diameter pores leading into a larger cage 
structure. 

 

 

 The last two methods, grafting and direct incorporation, offer the greatest 

flexibility in terms of catalyst analog and reactant size. Additionally, the covalent nature 

of the attachment can be exploited to increase the catalyst’s stability. For these reasons, 

these methods find the broadest application, and they will be used throughout this work.  
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1.2.1. Catalyst immobilization through grafting 

 Grafting is one of the most common methods of catalyst immobilization.4,11 One 

of the reasons for this is that there is a large degree of flexibility in selecting the support 

material. The support material may be an inorganic material such as a zeolite, a 

mesoporous silica, an alumina, or a clay, or it may be an organic polymeric material such 

as a cross-linked resin or any polymer backbone bearing reactive functional groups. The 

only significant restraints on the support material are that: 1) it has functional groups on 

its surface that are able to react with a catalyst analog, and 2) the reactive surface groups 

are accessible to the catalyst which is being immobilized. Clearly there are other 

parameters which must also be considered when selecting an appropriate support 

material, but they are determined more by the particular application of the catalyst than 

by limitations of the method. 

 There are two main approaches to catalyst grafting.4,12 The first is the step-wise 

grafting of the desired functionality onto the support material (Figure 1.4). The synthetic 

procedure is typically very straightforward, as one can take advantage of well-established 

solid-phase synthesis procedures.9 With this approach, the selected support is stirred with 

the first component in the catalyst synthesis (along with any other reactants required to 

complete the surface reaction), filtered, and washed. Then each additional component is 

added individually, and the material is stirred, filtered, and washed until all of the 

components required to synthesize the complete catalyst analog have been added. The 

considerable disadvantage of this approach, however, is that characterization of the 

resulting material is limited.4 Since the amount of functionalization on the surface is 

relatively small at each step relative to the amount of support material, most solid state 

 6



analytical techniques lack the resolution to detect unintended side products. This makes 

the appropriate assignment of catalytic properties imprecise and the ability to create a 

single-sited solid catalyst challenging. 
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Figure 1.4. Step-wise grafting approach for anchoring a cobalt salen catalyst to a solid 
support. 

 

 

 The second approach to grafting is the preassembly and characterization of the 

catalyst analog before reacting it with the surface (Figure 1.5).4 In this case, anchoring 

the complex to the surface is the last step in the synthetic protocol. This allows for the 

purification and characterization of the catalyst analog using standard quantitative 

solution techniques, but it is also more synthetically challenging than the step-wise 

grafting approach. Efficiently synthesizing and purifying the desired product at each step 

often requires great effort. If the catalyst is grafted onto silica, there also is always the 

possibility that the catalytic species may interact with silanols on the surface. However, 

this approach minimizes the opportunity to create undesired side products on the 

support’s surface, especially when compared with the step-wise grafting approach. 
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Figure 1.5. Grafting of a preassembled cobalt salen catalyst to a solid support. 
 

 

 Of course, not all grafting procedures must fall on either extreme of this synthetic 

spectrum. Preassembly of some portion of the catalyst analog followed by solid phase 

synthesis of the remaining portions is also possible. For example, the catalyst ligand 

structure might be preassembled and anchored to the surface, followed by metalation of 

the ligand. Regardless of the approach taken, thorough characterization of the solid 

catalyst is critical for the proper assignment of catalytic activity. 

1.2.2. Catalyst immobilization through direct incorporation 

 Another method by which a homogeneous catalyst can be made heterogeneous is 

through direct incorporation of the catalytic species during the synthesis of the solid 

composite material.13,14 This process differs from grafting in that the catalytic 

functionality is introduced before the support framework has formed. It is generally used 

when the desired support is an inorganic mesoporous silica or an organic polymer.  

 For incorporation in mesoporous silica, the desired catalytic species is 

functionalized with a trialkoxysilane. This compound is then co-condensed with a 

tetraalkoxysilane, usually tetraethyl orthosilicate or tetramethyl orthosilicate, in the 
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presence of structure directing agents (Figure 1.6).15 These agents form ordered micelles 

in the synthesis solution, and the silica and catalyst functionalities co-condense around 

the micelles to form ordered materials. The structure directing agents are then extracted 

from the solid material, which leaves the catalytic species projecting into the pores of the 

support. This method generally produces a more regular distribution of the catalytic 

species throughout the material than grafting, but the concentration of functionalized 

catalyst that can be added before disturbing the ordering of the final material is limited.13 

Also, the catalytic functionality being incorporated must not interfere with either the co-

condensation reaction or the formation of the solid material around the ordered micelles. 

 

 

 
 

Figure 1.6. Direct incorporation of catalyst functionality into silica through co-
condensation. 

 

 

 Direct incorporation of the catalytic species may also be used with organic 

polymer supports.14 Here, the catalyst analog is synthesized in such a way that it is in 

itself a monomer capable of being polymerized, either alone or with a co-monomer 

(Figure 1.7). This allows for greater control over the architecture of the final material 
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than does the use of structure directing agents in the silica co-condensation process. In 

principle, the physical (and catalytic) properties of the polymer can be tuned with the 

appropriate selection of polymer backbone, degree of co-polymerization, and degree of 

cross-linking. As with silica co-condensation, polymerization of catalyst monomers can 

also provide a more uniform distribution of catalytic sites in the final material than when 

grafting onto polymer supports is used. Direct polymerization also allows a high degree 

of characterization to be completed on the monomeric catalyst prior to its immobilization. 
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Figure 1.7. Direct incorporation of catalyst functionality through polymerization of 
analog monomers: a) catalyst in backbone, b) catalyst as pendant. 

 

 

 There are two main ways in which catalyst analogs are functionalized with 

polymerizable groups. The first is functionalization of the catalyst ligand with multiple 

polymerizable groups such that the catalyst becomes part of the polymer backbone 

(Figure 1.7a).16-18 The synthesis of these monomers can be more straightforward, and 

having the catalytic site in the backbone can restrict its mobility and conformation. The 
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alternative is to functionalize the catalyst analog with only one polymerizable group such 

that the catalyst is attached in a pendant manner to the backbone, and only a portion of 

the modified ligand is incorporated into the polymer backbone (Figure 1.7b).19,20 This 

method allows for greater mobility of the active site. 

1.3. Support Materials 

 As previously stated, there are many support materials that are used for catalyst 

immobilization. Any number of parameters may be considered when selecting the ideal 

support for a given application. These include the support’s porosity, thermal stability, 

swellability, chemical inertness, surface shape (flat, concave, convex), surface area, and 

density of reactive surface groups. When investigating how catalyst immobilization 

affects the catalytic behavior, a few of these parameters become particularly important. 

First, the support should be inert toward the chemical transformations for which the 

catalyst will be used as well as inert toward the solvent in which the reaction will take 

place. Second, the support must be stable over the temperature and pressure ranges under 

which the catalyst will be tested. Third, the support material should be well-defined. 

Given that cause and effect relationships are sought, broad ranges of support properties 

such as pore size are not desired as these can complicate the analysis of the catalytic data. 

Lastly, the support material must have reactive functional groups that allow the catalyst 

to be reacted to the surface, or the catalyst analog must have reactive functional groups 

that allow the formation of the solid structure. In this work, two types of support 

structures are used: 1) mesoporous, ordered silica and 2) organic polymers. 
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1.3.1. Mesoporous, ordered silica supports 

 Silica materials possess all of the desired properties listed for ideal immobilized 

catalyst supports, and as such have been widely employed in the synthesis of 

immobilized catalysts.1,6,8,11,21,22 They are typically inert toward most chemical 

transformations, particularly if the surface silanol groups are capped after the desired 

catalyst is grafted. They show very high thermal stability, withstand wide pressure 

ranges, and do not swell in solvents. They also have high surface areas and a high density 

of surface silanol groups which are easily reacted with organic molecules.  

 Amorphous silica materials possess these traits, but the disordered nature of the 

material complicates the analysis of the catalytic behavior of the immobilized catalyst. 

Specifically, amorphous materials have wide distributions of pore diameters. Since some 

catalytic sites may be anchored inside very small pores while other sites are anchored in 

larger pores, the diffusion effects experienced at each site can be very different. At the 

other end of the spectrum, zeolites are crystalline silica materials with very small pore 

size distributions and very consistent properties. However, the use of zeolites is 

restrictive in terms of catalyst analog and reactant sizes due to the fact that the pore sizes 

are within the microporous region.  

 The discovery of the MCM-41 family of silica materials by Beck and co-workers 

in 1992 initiated an expansion in the investigation of immobilized catalysts because it 

extended the support pore size of ordered silica materials into the mesoporous range.23 

MCM materials are synthesized using quaternary ammonium surfactants. The surfactants 

form long, rod-shaped micelles in acidic solution, and then a silica source such as sodium 

silicate polymerizes around them (Figure 1.8). After synthesis, the surfactant is removed 
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by calcination to leave an ordered silica material. MCM-41 is an ordered material with a 

hexagonal array of unidirectional pores and a small pore size distribution. As an 

additional benefit, the average pore size is not restricted to one value, but can be tuned 

over a range of values by varying the alkyl chain length of the surfactant used in the 

synthesis (15-150 Å). These silica materials have high surface areas (>700 m2/g) and high 

densities of surface silanol groups. These traits are desirable because there is a large area 

on which to graft the desired catalytic species, thereby increasing the amount of catalyst 

loaded per gram of support material. 

 

 

 
 

Figure 1.8. Synthesis of hexagonally ordered, mesoporous materials. 
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 While MCM-41 offered many improvements in silica support structures for 

immobilized catalysts, the material did suffer from a lack of thermal stability due to its 

relatively thin pore walls. This issue was ameliorated with the development of the 

SBA-15 family of materials by Zhao and co-workers in 1998.24 SBA-15 is synthesized 

similarly to MCM-41, but its synthesis uses a triblock poly(ethylene oxide)-

poly(propylene oxide)-poly(ethylene oxide) copolymer template instead of quaternary 

ammonium surfactants. SBA-15 is also an ordered mesoporous material with 

unidirectional pores which are arranged in a hexagonal array. The pore sizes can be 

adjusted from 35-150 Å in a very simple manner, and the surface areas are >800 m2/g. 

Because it is a well-defined, thermally stable, and extensively characterized material, it is 

used throughout this work for all of the silica supported catalysts. 

 As alluded to earlier, grafting onto silica materials occurs through reaction with 

the surface silanol groups. The silanol groups may be isolated, geminal, or vicinal (Figure 

1.9). Siloxane bridges found on the surface may also be reacted with organic species. The 

most common method of grafting onto the silica surface is by the reaction of silanols with 

a trialkoxysilane that also possesses a desired functionality. This may be a preassembled 

catalyst analog that has been modified with a trialkoxysilane, or it may be another 

functional group capable of further reaction later with the desired catalyst analog. 

Depending on the proximity of the silanol groups, the trialkoxysilane can react to form 

one, two, or three anchoring points (Figure 1.10). 
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Figure 1.9. Surface silanol groups: a) isolated, b) geminal, c) vicinal, d) siloxane bridge. 
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Figure 1.10. Reaction of a trialkoxysilane with a silica surface.  
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1.3.2. Polymer supports 

 Organic polymer supports also find wide application in catalyst immobilization. 

This is in spite of the fact that they do not have all of the attributes cited previously as 

desirable in support materials. In particular, they are not as thermally stable as silica 

materials, and they may exhibit swelling in some solvents. However, polymer supports 

offer some advantageous qualities that are simply not available with silica materials. For 

instance, the physical properties of the polymer may be tuned through the use of co-

polymerization or cross-linking. Also, the degree of separation between active sites is 

more easily controlled with the use of a properly selected co-polymer than it can be 

controlled with standard silica grafting methods. Additionally, very high “loadings” of 

active sites are possible per gram of material when the direct incorporation method is 

used to homopolymerize the catalyst analog.  

 An additional benefit of polymer supports is that they may be designed to more 

closely bridge the gap between heterogeneous and homogeneous catalysis. In some cases, 

polymeric catalysts can be designed so that they are soluble under the reaction conditions 

but easily precipitated at the reaction’s completion so that they may be easily recovered 

and reused.25 This, in many ways, is truly the best of both worlds, but developing such a 

catalyst is not trivial. Many polymers, such as polystyrene, polyvinyl alcohol, polyacrylic 

acid, polyacrylamide, polyethylene imine, and others have good solubilities in common 

solvents. However, it is not always easy to predict how the solubility will be affected 

once the polymer is functionalized with the catalyst ligand structure. Furthermore, 

metalation of the catalyst can change the polymer’s solubility as well. Since little 
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information is available a priori in regard to how these modifications effect the solubility 

of the new catalyst, some trial and error is often required.   

1.4. Catalyst Systems Studied 

1.4.1. Solid base catalysts 

 Many chemical transformations are promoted by acid or base catalysis. It was 

reported in 1999 that on an industrial scale, there were 127 types of processes using 180 

different solid acid, solid base, or solid acid-base catalysts.26 The motivations for the use 

of solid acids and bases in place of liquid acids and bases are both economical and 

environmental. From an economic viewpoint, the solid catalysts can be recovered and 

reused much more easily than their liquid phase counterparts, decreasing both catalyst 

and separation costs. From an environmental standpoint, the ability to reuse the catalyst 

instead of adding a corrosive material to a waste stream is a definite benefit. Thus, 

significant research efforts have centered on the development of these catalysts. While 

the majority of these efforts have focused on solid acid catalysts due to their extensive 

use in the petroleum refining industry, solid bases are also an important area of research.  

 Most of the initial research on solid base catalysis used materials such as zeolites, 

alkaline earth oxides, alkali metals on supports, and hydrotalcites.27,28 These materials 

can catalyze such reactions as hydrogenations, aminations, alkylations, Knoevenagel 

condensations, aldol additions, transesterifications, Michael additions, and many 

more.27,29 While this is a very broad range of applications, there are some constraints put 

on the catalyst design due to the nature of the solid materials. For instance, the pore sizes 

of zeolites limit both the size of the base functionality as well as the size of suitable 

reactants and products. Most of the early solid base catalysts incorporated ionic 
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functionalities onto or into the support, but the creation of catalysts with complex ligand 

structures was almost, if not completely absent. Additionally, the use of organic 

polymeric materials as supports was not possible. 

 Solid materials, both inorganic and polymeric, functionalized with organic bases 

have also been studied and offer considerable opportunities for the development of 

catalysts for new applications.4,7,30 First, very strongly acidic and basic materials are often 

so reactive that they are not selective toward only the desired reaction, forming a mixture 

of products that must be separated. Additionally, such high reactivity can lead to coking 

of the catalyst.26 The functionalized organic bases however, tend to be more weakly 

basic, and therefore often show high selectivity of the desired product. Also, as the field 

of catalyst immobilization expands and is more thoroughly understood, the combinations 

of ligand structures and support materials available to be tailored to specific reactions 

becomes vast.  

 In Chapter 2, an organic base catalyst is grafted onto a mesoporous silica support 

and evaluated for the addition of carbon dioxide (CO2) to propylene oxide (Figure 1.11). 

It is compared with a commercially available catalyst which has a similar base 

functionality immobilized on a polymer support. This comparison allows insight to be 

obtained into how the support structure can effect the catalytic behavior. This work also 

highlights the important role a co-catalyst may play in a reaction; in fact, the “co-

catalyst” here can be the only catalyst under certain reaction conditions.  
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Figure 1.11. Reaction of propylene oxide with CO2 using an immobilized base. 

 

 

1.4.2. Schiff base catalysts 

 There are many catalysts whose ligand structures contain one or more Schiff 

bases.31 A Schiff base is an imine group which has been created from the reaction of an 

aldehyde, or less frequently in this context a ketone, with a primary amine (Figure 1.12). 

Schiff base catalysts promote reactions such as oxidations, epoxidations, ketone 

reductions, olefin polymerizations, ring-opening polymerizations, hydrosilations, Michael 

additions, cyclopropanations, as well as many others. They are appropriate choices in the 

formation of metal complexes because of the basicity of the sp2-hybridized lone pair on 

the imine nitrogen.32,33 This basicity is why Schiff bases form complexes with almost all 

metal ions.31 Additionally, this accounts for the increased stability of the metal 

complexed Schiff base, even though the un-complexed imine is prone to acid-catalyzed 

hydrolysis in the presence of water. 
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Figure 1.12. Reaction of an aldehyde with a primary amine to form a Schiff base. 
 

 

 The vast majority of Schiff bases in catalytic ligands are conjugated with aromatic 

rings. Additionally, the ligand structure almost always has at least one other heteroatom 

(usually oxygen, nitrogen, or sulfur) in close enough proximity to the imine that it will 

also coordinate with the metal. Often, the synthesis of the Schiff base is accomplished 

from the reaction of a diamine with a salicylaldehyde, which necessarily imparts the 

compound with the above mentioned characteristics (Figure 1.13). The number and 

nature of coordination sites, however, are tailored to the specific catalytic application, 

with mono-, bi-, tri-, and multi-dentate complexes all being employed. For example, 

many bi-dentate ruthenium Schiff base catalysts have one metal coordination with the 

imine nitrogen and one metal coordination with a phenolate oxygen.34 This is because the 

phenolate oxygen is a hard donor which stabilizes the higher oxidation states of the 

ruthenium, whereas the imine nitrogen is a softer donor which stabilizes the lower 

oxidation states of the ruthenium. 
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Figure 1.13. Reaction of salicylaldehyde with 1,2-cyclohexanediamine. 
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 Another attractive feature of Schiff base ligands is that they are very amenable to 

enantioselective reactions. The ligands may be easily synthesized to generate a chiral 

center in the ligand (Figure 1.14), and this catalyst chirality can introduce 

enantioselectivity to the catalytic reaction. Interest in enantioselective reactions greatly 

increased when the U. S. Food and Drug Administration issued a statement in 1992 

outlining a new policy for the development of pharmaceuticals with one or more chiral 

centers. This statement indicated that either enantiomerically pure compounds must be 

developed and tested, or individual enantiomers must be isolated and tested separately for 

their pharmacokinetic effects in vivo.35 As development and testing of multiple 

enantiomers is generally more expensive than the additional cost of synthesizing only the 

desired enantiomer, developing catalysts which promote enantioselective reactions has 

become an intense area of research.36 
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Figure 1.14. Reaction of a salicylaldehyde with S-tert-leucinol to form a chiral Schiff 
base ligand. 

 

 

 Sigman and Jacobsen have reported the use of a tridentate metal-free Schiff base 

catalyst for asymmetric Strecker reactions.37 The reasons the tridentate ligand was 

selected were that its synthetic procedure was not overly complicated and that the 

 21



attachment of the ligand to a support still allowed a high degree of access to the catalytic 

center. There are also reports of transition metal, tridentate Schiff base catalysts for 

oxidation reactions. These catalysts use titanium, vanadium, copper, or zinc for various 

asymmetric oxidation reactions.31,38-40  

 In Chapter 3, three immobilized tridentate vanadium Schiff base catalysts are 

evaluated in the oxidative kinetic resolution of ethyl mandelate (Figure 1.15). 

Homogeneous catalyst analogs have been immobilized onto both polymeric 

(homopolymer and copolymer) and silica supports. The effects of support structure, 

solvent, and synthesis procedure are discussed.  
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Figure 1.15. Oxidative kinetic resolution of ethyl mandelate using a vanadium Schiff base 
catalyst. 

 

 

1.4.3. Salen catalysts 

 One of the most extensively studied Schiff base containing catalysts in 

contemporary research is the salen catalyst. This is due to its broad applicability in many 

different reactions and its high degree of enantiomeric control. The term salen is 
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generally applied to describe a family of tetradentate bisimine compounds derived from 

N,N’-bis(salicylidene)ethylenediamine (Figure 1.16).32 The ligand may be metalated with 

any number of metals, including both transition metals and non-transition metals, and the 

resulting catalysts are active in numerous reactions including addition of carbon dioxide 

to epoxides, hydrolytic kinetic resolution of epoxides, oxidation of alkenes to form 

epoxides, hetero-Diels-Alder, and addition of cyanide to α,β-unsaturated imides. 

Homogeneous and heterogeneous salen catalysts are the subject of many reviews.31,32,41,42  
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Figure 1.16. Structure of N,N’-bis(salicylidene)ethylenediamine. 
 

 

 Although salen catalysts are extensively studied for use in many reactions, two 

enantioselective reactions have garnered a particularly large amount of interest. The first 

of these is the asymmetric epoxidation of alkenes using manganese(III) salen complexes 

(Figure 1.17). Jacobsen and co-workers and Katsuki and co-workers first developed 

efficient catalysts for this reaction, although the Jacobsen catalyst imparted higher 

asymmetric induction (up to 98% enantiomeric excess depending on the substrate).43,44 

The Jacobsen catalyst is composed of di-tert-butyl substituted salicylaldehydes in its 
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homogeneous form. This reaction is reported to proceed through a monometallic 

mechanism, where only one active site is involved per catalytic cycle. Many immobilized 

forms of this catalyst have been studied, although often the enantiomeric induction is 

reduced on both the polymer and silica supported catalysts.8,12,32,42 
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Figure 1.17. Asymmetric epoxidation of alkenes with a Mn(III) salen catalyst. 
 

 

 The second salen catalyzed reaction which is widely studied is the hydrolytic 

kinetic resolution of epoxides (Figure 1.18). During the Jacobsen group’s work on the 

asymmetric epoxidation of alkenes, they postulated a reaction mechanism where the 

alkene attacked the oxygen atom on the metal in a side-on fashion.41 The transition state 

in this reaction appeared to closely mimic that of ground state epoxides complexed with 

similar metal complexes.45 This led to interest in general epoxide ring-opening reactions, 

and eventually to the development of the salen catalyzed hydrolytic kinetic resolution 

reaction for epoxides.46 In this reaction, a cobalt(III) salen complex is used as the most 
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active catalyst, and it resolves terminal epoxides with high conversions and enantiomeric 

excesses. This reaction, unlike the epoxidation reaction, is bimetallic in nature, requiring 

two active sites to complete the catalytic cycle.46,47 Again, many immobilized forms of 

this catalyst have been studied, but in this case, some immobilized catalysts actually 

exceed the activity and selectivity of the homogeneous catalyst.19,20,32,47-49  
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Figure 1.18. Hydrolytic kinetic resolution of epoxides with a Co(III) salen catalyst. 
 

  

 In Chapter 4, the immobilization of salen catalysts onto amine functionalized 

silica materials, or aminosilicas, is studied. The aminosilicas which are used exhibit 

different degrees of spacing between the amine groups. The role that this spacing plays in 

the catalytic behavior of the immobilized catalyst is investigated, specifically in regard to 

the hydrolytic kinetic resolution of epichlorohydrin. Synthetic challenges of immobilizing 

salen ligands onto amine groups are also discussed. 

 While the reports of immobilized catalysts grow at a faster rate each year, there 

are still many aspects of this field that are not clearly understood. Overarching design 
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parameters that allow the scientist to specifically design immobilized catalysts for new 

reactions with high success rates are still not well developed. In a small number of cases, 

parameters do exist. For instance, since the hydrolytic kinetic resolution of epoxides 

proceeds through a bimetallic mechanism, it is known that immobilization methods 

which allow two catalytic sites to come together easily will be more successful than those 

which do not force the sites to be close together. A recent study even reported optimized 

spacing and linker flexibility.48 However, this type of information is typically not known 

for most systems, and so on-going research is required to generate these parameters for 

more systems, with the hope of discovering trends which can be widely applied. 

 This dissertation presents just that. It is an evaluation of new immobilized 

catalysts for two applications, as well as the evaluation of new support scaffolds as tools 

for designing better catalysts. In each case consideration is given to how the findings 

might be generalized. Finally, the conclusion brings together some key findings from 

these results as well as those of colleagues to provide direction for the design of future 

catalyst systems.  

 26



1.5. REFERENCES 

[1] Wight, A. P., and Davis, M. E., Chem. Rev. 102 (2002) 3589. 
 
[2] Breslow, R., Science 218 (1982) 532. 
 
[3] Yermakov, Y. I., Kuznetsov, B. N., and Zakharov, V. A., Studies in Surface Science 
and Catalysis,Vol. 8: Catalysis by Supported Complexes Elsevier Scientific Publishing 
Company, New York, NY, (1981). 
 
[4] Corma, A., and Garcia, H., Adv. Synth. Catal. 348 (2006) 1391. 
 
[5] McMorn, P., and Hutchings, G. J., Chem. Soc. Rev. 33 (2004) 108. 
 
[6] Thomas, J. M., and Raja, R., J. Organomet. Chem. 689 (2004) 4110. 
 
[7] Benaglia, M., Puglisi, A., and Cozzi, F., Chem. Rev. 103 (2003) 3401. 
 
[8] Song, C. E., and Lee, S.-G., Chem. Rev. 102 (2002) 3495. 
 
[9] Clapham, B., Reger, T. S., and Janda, K. D., Tetrahedron 57 (2001) 4637. 
 
[10] Jones, C. W., McKittrick, M. W., Nguyen, J. V., and Yu, K., Topics in Catalysis 34 
(2005) 67. 
 
[11] Clark, J. H., and Macquarrie, D. J., Chem. Commun. (1998) 853. 
 
[12] Leadbeater, N. E., and Marco, M., Chem. Rev. 102 (2002) 3217. 
 
[13] Hoffmann, F., Cornelius, M., Morell, J., and Froba, M., Angew. Chem. Int. Ed. 45 
(2006) 3216. 
 
[14] Mastrorilli, P., and Nobile, C. F., Coord. Chem. Rev. 248 (2004) 377. 
 
[15] Burkett, S. L., Sims, S. D., and Mann, S., Chem. Commun. (1996) 1367. 
 
[16] Alvaro, M., Baleizao, C., Carbonell, E., Ghoul, M. E., Garcia, H., and Gigante, B., 
Tetrahedron 61 (2005) 12131. 
 
[17] Welbes, L. L., Scarrow, R. C., and Borovik, A. S., Chem. Commun, (2004) 2544. 
 
[18] De, B. B., Lohray, B. B., Sivaram, S., and Dhal, P. K., Macromolecules 27 (1994) 
1291. 
 
[19] Zheng, X., Jones, C. W., and Weck, M., Chem. Eur. J. 12 (2006) 576. 
 

 27



[20] Zheng, X., Jones, C. W., and Weck, M., J. Am. Chem. Soc. 129 (2007) 1105. 
 
[21] De Vos, D. E., Dams, M., Sels, B. F., and Jacobs, P. A., Chem. Rev. 102 (2002) 
3615. 
 
[22] Moller, K., and Bein, T., Chem. Mater. 10 (1998) 2950. 
 
[23] Beck, J. S., Vartuli, J. C., Roth, W. J., Leonowicz, M. E., Kresge, C. T., Schmitt, K. 
D., Chu, C. T.-W., Olson, D. H., Sheppard, E. W., McCullen, S. B., Higgins, J. B., and 
Schlenker, J. L., J. Am. Chem. Soc. 114 (1992) 10834. 
 
[24] Zhao, D., Huo, Q., Feng, J., Chmelka, B. F., and Stucky, G. D., J. Am. Chem. Soc. 
120 (1998) 6024. 
 
[25] Gravert, D. J., and Janda, K. D., Chem. Rev. 97 (1997) 489. 
 
[26] Tanabe, K., and Holderich, W. F., Appl. Catal. A 181 (1999) 399. 
 
[27] Hattori, H., Chem. Rev. 95 (1995) 537. 
 
[28] Ono, Y., and Baba, T., Catal. Today 38 (1997) 321. 
 
[29] Figueras, F., Kantam, M. L., and Choudary, B. M., Current Org. Chem. 10 (2006) 
1627. 
 
[30] Brunel, D., Micropor. Mesopor. Mater. 27 (1999) 329. 
 
[31] Gupta, K. C., and Sutar, A. K., Coord. Chem. Rev. (2007) in press. 
 
[32] Baleizao, C., and Garcia, H., Chem. Rev. 106 (2006) 3987. 
 
[33] Smith, M. B., and March, J., March's Advanced Organic Chemistry: Reactions, 
Mechanisms, and Structure Wiley, New York, (2000). 
 
[34] Drozdzak, R., Allaert, B., Ledoux, N., Dragutan, I., Dragutan, V., and Verpoort, F., 
Coord. Chem. Rev. 249 (2005) 3055. 
 
[35] FDA's policy statement for the development of new stereoisomeric drugs, 
http://www.fda.gov/cder/guidance/stereo.htm, (1992). 
 
[36] Farina, V., Reeves, J. T., Senanayake, C. H., and Song, J. J., Chem. Rev. 106 (2006) 
2734. 
 
[37] Sigman, M. S., and Jacobsen, E. N., J. Am. Chem. Soc. 120 (1998) 4901. 
 
[38] Radosevich, A. T., Musich, C., and Toste, F. D., J. Am. Chem. Soc. 127 (2005) 1090. 

 28

http://www.fda.gov/cder/guidance/stereo.htm


 29

 
[39] Weng, S.-S., Shen, M.-W., Kao, J.-Q., Munot, Y. S., and Chen, C.-T., PNAS 103 
(2006) 3522. 
 
[40] Chen, C.-T., Bettigeri, S., Weng, S.-S., Pawar, V. D., Lin, Y.-H., Liu, C.-Y., and 
Lee, W.-Z., J. Org. Chem. 72 (2007) 8175. 
 
[41] Jacobsen, E. N., Acc. Chem. Res. 33 (2000) 421. 
 
[42] Canali, L., and Sherrington, D. C., Chem. Soc. Rev. 28 (1999) 85. 
 
[43] Zhang, W., Loebach, J. L., Wilson, S. R., and Jacobsen, E. N., J. Am. Chem. Soc. 
112 (1990) 2801. 
 
[44] Irie, R., Noda, K., Ito, Y., Matsumoto, N., and Katsuki, T., Tetrahedron Lett. 31 
(1990) 7345. 
 
[45] Groves, J. T., Han, Y., and Van Engen, D. V., J. Chem. Soc., Chem. Commun. 
(1990) 436. 
 
[46] Tokunaga, M., Larrow, J. F., Kakiuchi, F., and Jacobsen, E. N., Science 277 (1997) 
936. 
 
[47] Annis, D. A., and Jacobsen, E. N., J. Am. Chem. Soc. 121 (1999) 4147. 
 
[48] Zheng, X., Jones, C. W., and Weck, M., Adv. Synth. Catal. 350 (2008) 255. 
 
[49] Breinbauer, R., and Jacobsen, E. N., Angew. Chem. Int. Ed. 39 (2000) 3604. 
 
 
 



 

CHAPTER 2 

HOMOGENEOUS AND HETEROGENEOUS  

4-(N,N-DIALKYLAMINO)PYRIDINES AS EFFECTIVE SINGLE 

COMPONENT CATALYSTS IN THE SYNTHESIS OF PROPYLENE 

CARBONATE† 

2.1. Introduction 

 Solid acid and solid base catalysts are used widely on an industrial scale for many 

chemical transformations.1 Within this area, solid materials functionalized with organic 

bases have been  attractive catalysts for study, largely owing to their frequently 

higher selectivities than more traditional solid base catalysts.2-4 Additionally, 

functionalization of solid materials affords the opportunity for more types of organic base 

groups to be employed heterogeneously. One relevant reaction which utilizes organic 

base catalysis, typically in combination with Lewis acid catalysis, is the coupling of 

carbon dioxide (CO2) with epoxides to form cyclic carbonates. 

 The synthesis of cyclic carbonates is of continuing interest for two principal 

reasons.5-9 First, cyclic carbonates are useful molecules as precursors in fine chemical and 

pharmaceutical syntheses due to their cyclic and chiral nature.10 Second, these 

compounds find application as specialty polar solvents, as precursors to 1,2-diols, as 

curing agents, and in electrolytic formulations for high-energy density batteries.11 Cyclic 

                                                 

 
 
† Reproduced in part with permission from Journal of Molecular Catalysis: A Chemical 
261 (2007) 160-166. Copyright 2007 Elsevier. 
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carbonates are also interesting from an environmental standpoint due to the consumption 

of CO2 in their synthesis (Figure 2.1).  
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Figure 2.1.Synthesis of cyclic carbonates from epoxides and CO2.  
 

 

 Many bi-functional solid catalysts possessing both acidic and basic sites have 

been reported for the synthesis of cyclic carbonates, including alkali-loaded zeolites, 

mixed oxides, and amine-functionalized oxide materials.9,12-18 In many of these cases, it 

is suggested that the basic sites activate the CO2 molecule and the acidic sites activate the 

epoxide.  Homogeneous systems combining Lewis acids and Lewis bases also have been 

reported for this reaction.19 Another common catalytic system used for cyclic carbonate 

production combines a transition metal compound, often a salen complex, which acts as a 

Lewis acid with a Lewis base co-catalyst. Both heterogeneous and homogeneous versions 

of this system have been studied.20-35 In these cases, the most frequently proposed 

mechanism involves the metal species activating the epoxide and the base opening the 

epoxide ring (Figure 2.2). A final type of catalyst that commonly has been employed for 

the synthesis of cyclic carbonates is quaternary onium salts. These catalysts have been 

used as single component catalysts in either homogeneous or heterogeneous forms, 

although it has been reported that reaction rates can be substantially increased by 
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combining the onium salt with a weak Brønsted acid such as silanols on silica surfaces.36-

41 These reports indicate that the reaction mechanism is not clearly understood. 
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Figure 2.2. Frequently suggested mechanism for cyclic carbonate synthesis using Lewis 
acid/ Lewis base catalysis. 

 

 

 One particular aspect of the cyclic carbonate reaction mechanism about which 

there are many conflicting reports is the role of the Lewis basic co-catalyst. One report by 

Du and coworkers suggests that a single Lewis basic component may be able to promote 

the coupling of epoxides and CO2.38 They studied polymer resins with primary, 

secondary, and tertiary amine groups as single component catalysts for the synthesis of 

propylene carbonate and found all of these materials to be active at 80 bar CO2 pressure 

and 100 °C. In contrast, Zhang and coworkers found that a silica supported strong tertiary 

amine base, 1,5,7-triazabicyclo[4,4,0]dec-5-ene, was completely inactive at 20 bar CO2 
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pressure and 150 °C when the surface silanols, hypothesized to be co-catalysts, were 

rendered unreactive via a capping reaction.18 Another example of conflicting data 

concerns the use of 4-(N,N-dimethylamino)pyridine (DMAP) as a single component 

catalyst. Shen and coworkers report that DMAP is inactive as a single component catalyst 

at 36 bar CO2 pressure and 120 °C.19 In contrast, Sankar found that DMAP was an active 

catalyst under the relatively mild conditions of 4 bar CO2 pressure and 120-140 °C.20 In 

bi-functional metal complex/DMAP systems, it is often assumed that both components 

are needed to effect catalysis, but even here there are conflicting views as to the role each 

component plays in the catalytic cycle (see Appendix A). The above examples showing 

the activity of the Lewis base alone, however, suggest that there may not be a need for bi-

functional catalysis. In agreement with the work reported by Sankar, this chapter also 

demonstrates the use of DMAP as a single component catalyst in the non-enantioselective 

synthesis of propylene carbonate.  

 One drawback to the use of DMAP as a homogeneous catalyst in the synthesis of 

cyclic carbonates is that it can be expensive to separate the pure carbonate from the 

catalyst after the reaction. Since cyclic carbonates have high boiling points, purification 

by distillation can engender significant energy costs as well as thermally degrade the 

catalyst. Therefore, an equally productive and selective heterogeneous catalyst that could 

be recovered from the product without the need for high temperature separation is an 

important goal. As supporting analogs of selective and active homogeneous catalysts on 

solid supports has been an active area of research for quite some time, there are reports of 

numerous silica-supported organic base hybrid catalysts used for cyclic carbonate 

synthesis.9,16-18,38,41 Similarly, there are reports of DMAP type functionalities 
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immobilized on organic and inorganic supports including polymers and sol-gels, although 

they are not believed to have been evaluated for cyclic carbonate synthesis.3,21,42-46 

Building on these precedents, this chapter presents the synthesis of a new DMAP analog 

tethered to an SBA-15 support. This supported catalyst exhibits comparable productivity 

to the homogeneous catalyst under the reaction conditions studied, and it can be easily 

separated from the product by filtration. 

2.2. Experimental 

2.2.1. Materials 

 4-(Dimethylamino)pyridine (DMAP) (Acros), 4-methylaminopyridine (MAP) 

(Aldrich), and 2,2’-azo-bis(isobutyronitrile) (AIBN) (Aldrich) were dried under vacuum 

and stored in a nitrogen dry box. 3-Mercaptopropyltrimethoxysilane (Alfa-Aesar), n-

butyllithium 1.6 M in hexanes (Aldrich), tetraethyl orthosilicate (TEOS) (Aldrich), 

poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) 

(Aldrich), ‘Dimethylaminopyridine’ on polystyrene (~3 mmol/g) (Fluka), and 99.999% 

pure research grade carbon dioxide (<3 ppm water) (Airgas) were used as received. 

Phenol (Acros) was used as received except where otherwise indicated. Propylene oxide 

(PO) (Aldrich) and dichloromethane (Fisher) were dried over calcium hydride and 

distilled; chloroform (Aldrich) was dried with 4 Å molecular sieves and distilled; allyl 

bromide (Acros) was dried over magnesium sulfate and distilled. Tetrahydrofuran (THF) 

and toluene were used after purification and drying via a packed bed solvent system made 

of copper oxide and alumina columns in the case of THF and dual alumina columns in 

the case of toluene.47 
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2.2.2. Characterization methods 

 Solid state cross-polarization magic angle spinning (CP-MAS) NMR analyses 

were conducted on a Bruker DSX 300-MHz spectrometer with samples packed in 7-mm 

zirconia rotors. For 13C CP-MAS samples, the following parameters were used: 5 kHz 

spin rate, 16000 scans, 90° pulse length of 5μs, and repetition time between scans of 4 s.  

For 29Si CP-MAS samples, the following parameters were used: 5 kHz spin rate, 18000 

scans, 90° pulse length of 5 μs, and repetition time between scans of 5 s. Solution NMR 

was conducted on a Varian Mercury Vx 400 spectrometer. FT-Raman spectra were 

collected on a Bruker FRA-106. Three thousand scans were collected with a resolution of 

2-4 cm-1. Thermogravimetric analyses (TGA) were performed on a Netzsch STA409. 

Samples, under an air blanket, were heated from 30 °C to 900 °C at a rate of 10 °C/min. 

The organic loading was determined from the weight loss between 200 °C and 700 °C. 

Nitrogen physisorption measurements were taken on a Micromeritics ASAP 2010 at 77 

K. Prior to analysis, SBA-15 samples were degassed at 150 °C under vacuum overnight, 

and DMAP-SBA samples were degassed at 50 °C under vacuum overnight. X-ray 

diffraction (XRD) patterns were taken using Cu Kα radiation on a PAN analytical X’Pert 

Pro powder X-ray diffractometer equipped with a PW3011 proportional detector with a 

parallel plate collimator. Gas chromatography was conducted on a Shimadzu GC 17-A 

equipped with a flame-ionization detector and an HP-5 column (length = 30 m, inner 

diameter = 0.32 mm, and film thickness = 0.25 μm). The temperature profile was as 

follows: heat to 50 °C, wait 2 min, ramp to 140 °C at a rate of 30 °C/min, ramp to 300 °C 

at 40 °C/min, and hold for 2 min. 
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Figure 2.3. Synthesis of supported DMAP analog on SBA-15. 
 

 

2.2.3. Synthesis of 4-(N-allyl-N-methylamino)pyridine (1) 

 A solution of 4-(methylamino)pyridine (MAP) (2.0 g, 18.5 mmol) in THF was 

prepared in a nitrogen dry box and then stirred under argon at 0 °C for 2 h (Figure 2.3). 

n-Butyllithium (13 ml of 1.6 M in hexanes, 21 mmol) was added via syringe to the 

MAP/THF mixture while under an argon purge and stirred for an additional 1 h at 0 °C. 

Dry allyl bromide (3.4 g, 28.1 mmol) in THF was added via syringe, and the mixture was 

allowed to warm to room temperature overnight while being stirred. Excess n-

butyllithium was quenched with DI water, and the volatile components were removed 

under vacuum. Compound 1 was recovered as a dark yellow oil by extraction from 

dichloromethane/DI water and was dried. 
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1: Yield 72 %. 1H NMR (400 MHz, CDCl3): δ 3.00 (s, 3H), δ 3.94-3.98 (b, 2H), δ 5.08-

5.21 (m, 2H), δ 5.74-5.85 (m, 1H), δ 6.51 (d, J = 6.36 Hz, 2H), δ 8.20 (d, J = 6.04 Hz, 

2H). 13C NMR (101 MHz, CDCl3): δ 37.4, 53.9, 106.8, 116.8, 132.1, 150.1, 153.7.  

2.2.4. Synthesis of 4-[N-methyl-N-(3'-(3'-(trimethoxysilyl)propylthio)propyl) 

amino]pyridine (2) 

 A solution of 1 (2.0 g, 13.5 mmol) in chloroform was prepared in a nitrogen dry 

box. 3-Mercaptopropyltrimethoxysilane (12 g, 61 mmol) was added to the solution along 

with AIBN (150 mg, 0.9 mmol) (Figure 2.3). The reaction mixture was then stirred at 

reflux conditions under an argon blanket overnight. The solvent was removed under 

vacuum, and excess 3-mercaptopropyltrimethoxysilane was distilled off at 110 °C under 

vacuum to isolate compound 2 as a brown oil. 

2: Yield 95%. 1H NMR (400 MHz, CDCl3): δ 0.71 (m, 2H), δ 1.66 (m, 2H), δ 1.82 (m, 

2H), δ 2.49 (m, 4H), δ 2.93 (s, 3H), δ 3.42 (t, 2H), δ 3.52 (s, 9H), δ 6.47 (d, J = 6.56 Hz, 

2H), δ 8.16 (d, J = 6.48 Hz, 2H). 13C NMR (101 MHz, CDCl3): δ 8.6, 22.9, 26.4, 29.1, 

35.2, 37.5, 50.0, 50.5, 106.4, 149.8, 153.3. MS (ESI): m/z 345.2 [M + H]+. Accurate 

mass: calcd., for C15H29N2O3SSi, 345.1663; found, 345.1647. 

2.2.5. Synthesis of SBA-15 

 SBA-15 was synthesized according to literature procedures.48 In a typical batch, 

the poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) 

copolymer template (18 g) was dissolved in HCl (103.5 g) and DI water (477 g). 

Tetraethyl orthosilicate (TEOS) (38.4 g) was added to the solution which was stirred for 

20 h at 35 °C. Then, the solution was heated to 80 °C and maintained at that temperature 
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for 24 h. The reaction was quenched with DI water, filtered, and washed with several 

portions of DI water to remove excess copolymer and give SBA-15 as a white powder. 

The SBA-15 was dried for 3 h at 50 °C and then calcined according to the following 

temperature program: 1) ramp to 200 °C at 1.2 °C/min, 2) hold at 200 °C for 1 h, 3) ramp 

to 550 °C at 1.2 °C/min, and 4) hold at 550 °C for 6 h. Finally, the calcined SBA-15 was 

heated under vacuum at 200 °C for 3 h and stored in a nitrogen dry box. The procedure 

yielded approximately 12 g of SBA-15. 

2.2.6. Synthesis of 4-[N-methyl-N-(3'-(3'-(trimethoxysilyl)propylthio)propyl) 

amino]pyridine supported on SBA-15 (DMAP-SBA, 3) 

 Compound 2 (1.0 g, 2.9 mmol) was added drop-wise to a solution of calcined 

SBA-15 (1.5 g) in dry toluene in a nitrogen dry box (Figure 2.3). The solution was stirred 

at reflux conditions under an argon blanket overnight. The functionalized DMAP-SBA 

was then filtered in the dry box and washed with toluene and hexanes. Finally, material 3 

was dried overnight under vacuum to give a pale brown powder. The procedure yielded 

approximately 2 g of 3. 

2.2.7. Catalytic reactions 

 In a representative reaction, DMAP or an immobilized analog (0.36 mmol), 

propylene oxide (PO) (5.20 g, 89.5 mmol), and dichloromethane (1.33 g, 15.7 mmol) 

were charged into a 50 ml Parr stainless steel reactor and sealed inside a nitrogen dry 

box. The reactor was then removed from the dry box and connected to a supply of 3.4 bar 

of CO2 for 10 min with no heating. Next, the reactor was heated to 120 °C, and the CO2 

supply pressure was increased to 17.2 bar. The contents were maintained at these 

conditions for the length of the reaction, and the reaction was quenched by placing the 
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reactor in an ice bath. Excess pressure was released, and the reactor contents were 

transferred into a round-bottom flask. Un-reacted propylene oxide and dichloromethane 

were removed under vacuum, and the yield of propylene carbonate was determined from 

the residual weight after subtracting the weight of the catalyst that had been added.26 

Production of propylene carbonate was verified by GC through comparison with a known 

standard of propylene carbonate (99.5% purity, Acros) and by 1H and 13C NMR. 

2.3. Results and Discussion 

2.3.1. Carbonate reactions with the homogeneous catalyst(s)  

 This investigation into the catalytic role of DMAP in cyclic carbonate reactions 

initially began with the use of a co-catalyst system of phenol and DMAP which was 

reported by Shen and coworkers.19 It should be noted that the majority of the experiments 

in this work were conducted at greatly reduced CO2 pressure compared to their original 

work (35.7 bar in their work vs. 17.2 bar in this work). Reaction results from the catalytic 

systems that were examined are shown in Table 2.1. For the phenol and DMAP co-

catalyst system, each catalyst was added at a loading of 4 mmol/mol propylene oxide 

(PO), and an 86% conversion of the epoxide was achieved. In this case, propylene 

carbonate was the only product as verified by GC and 1H NMR. As a control experiment, 

PO and CO2 were reacted under the same conditions with no catalysts, and a conversion 

of PO of approximately 50% was observed. However, in this case, there were two 

product peaks in the GC trace. One peak was the desired cyclic carbonate, and the other 

peak was identified as propylene glycol by comparison with a known standard. 

Postulating that the presence of water could cause the formation of the glycol, all 

reagents and catalysts were rigorously dried and charged and sealed in the reactor in a 
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nitrogen dry box. After this careful exclusion of water, no conversion was seen for the 

reaction of PO and CO2 without any catalyst at these conditions. This result suggests that 

water can act as a catalyst if the system is not rigorously dried.  

 

 

Table 2.1. Cyclic carbonate reaction results.a 

Entry Catalyst Conversionb # Productsc 

1 Phenol, homogeneous DMAP 86 % 1 

2 none (ambient conditions) 48 % 2 

3 none (anhydrous conditions) 0 % 0 

4 Homogeneous DMAP 85 % 1 

5 Homogeneous DMAPd 92 % 1 

6 DMAP-SBA 3 81 % 1 

7 DMAP-SBA 3 recycle 49 % 1 

8 Poly(styrene) supported DMAP 82 % 1 

9 Poly(styrene) supported DMAP recycle 30 % 1 

10 3-Aminopropyl functionalized SBA 0 % 0 

11 3-Mercaptopropyl functionalized SBA 0 % 0 

12 Capped DMAP-SBA 3 81 % 1 

a Reaction conditions: Propylene oxide (89.5 mmol), methylene chloride (15.7 mmol), 
and catalyst (0.36 mmol) were stirred at 120 °C and 17.2 bar CO2 pressure for 4 hours. b 
Conversion determined by residual weight after removing volatile components and 
subtracting catalyst weight. c Determined by GC-FID and NMR. d CO2 pressure was 34 
bar in this case. 
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 The next system that was examined was DMAP alone without the presence of 

phenol. The loading of DMAP was again 4 mmol/mol PO. Using the reaction conditions 

of Shen (120 °C and 35.7 bar), yields of 92% were unexpectedly observed, with 

propylene carbonate as the only product as verified by GC and 1H NMR. At the same 

temperature and only 17.2 bar CO2 pressure, yields of 85% were observed. To further 

explore the effect of pressure, additional experiments at 120 °C and various pressures 

were performed. These results suggest that once a sufficiently high pressure is employed, 

a further increase in CO2 pressure does not significantly increase the yield (Figure 2.4). 

With the experimental set-up used, it was difficult to determine the minimum pressure 

required for the reaction to take place. If the initial pressure was set at 3.4 bar, the reactor 

would pressurize beyond this value as it was heated. If the initial pressure was set lower 

than 3.4 bar, the epoxide and solvent would vaporize as the reactor was heated, and the 

catalyst would char onto the bottom of the reactor.  

 The effect of the reaction time on the yield was also studied (Figure 2.5). These 

results indicate that the homogeneously catalyzed reaction has reached its maximum 

conversion after approximately 2 h. This conversion was not observed to increase even 

after 24 h. It also should be noted that if the temperature was decreased to 100 °C for 

reactions run for 2 h at 17.2 bar, only 30% yield was attained versus the 85% yield 

attained at 120 °C. In the case of DMAP alone, just as in the case of the control reaction 

with no added catalysts, it was observed that if the reactor was charged in ambient 

atmosphere, propylene glycol was occasionally obtained as a side product. Again, the 

glycol was not seen if the reaction conditions were kept dry. 
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Figure 2.4 Yield of propylene carbonate versus CO2 pressure with 0.4 mol% DMAP 
catalyst after 4 h at 120 °C. 
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Figure 2.5. Yield of propylene carbonate versus time with 0.4 mol% DMAP catalyst at 

17.2 bar CO2 and 120 °C. 
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 Previously reported mechanisms for this reaction involve both a Lewis acid and 

Lewis base site for the catalytic cycle as discussed in the introduction (Figure 2.2). For 

most of these suggested mechanisms, a lone pair of electrons from the Lewis base attacks 

the least hindered carbon of the epoxide ring. Since DMAP is known to be a strong base, 

and in light of the data shown here suggesting that DMAP promotes the reaction without 

the addition of another catalyst, we have proposed a mechanism which may be operating 

for this system when the reaction is conducted under anhydrous conditions (Figure 2.6). 

This mechanism involves the lone pair on the pyridyl nitrogen from a single DMAP 

molecule attacking the epoxide ring with subsequent addition of CO2 to the opened 

epoxide. It should be noted that a related mechanism involving two DMAP molecules 

working in concert might also be reasonable.20 To ensure that trace acid impurities from 

the dichloromethane used as the reaction solvent were not added to the system, 

dichloromethane treated with base and dichloromethane distilled from calcium hydride 

were used in reactions. In both cases, the reaction results were the same as those reported 

above. Additionally, the use of rigorously dry solvents, gases and techniques suggests 

that traces of water likely do not play a co-catalytic role.† 

 

 

                                                 

 
 
† As nearly all cyclic carbonate syntheses that are carried out at high temperatures are 
conducted in autoclaves, one cannot conclusively rule out the presence and possible 
importance of traces of dissolved transition metal species in solution that may leach from 
the reactor walls. 
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Figure 2.6. Proposed mechanism for cyclic carbonate synthesis using only DMAP as a 
catalyst. 

 

 

 An alternate mechanism for those reactions not conducted under anhydrous 

conditions is additionally proposed (Figure 2.7). This mechanism is based on the 

observations of seeing two products in the reaction of PO and CO2 conducted in ambient 

atmosphere with no added catalyst and of seeing no products in the reaction of PO and 

CO2 conducted under anhydrous conditions with no added catalyst. In this mechanism, a 

water molecule attacks the least hindered carbon of the epoxide ring and opens it. Once 

the epoxide is in the ring opened form, it may undergo proton transfer to yield propylene 

glycol, or it may undergo carbon dioxide insertion and cyclization to produce propylene 

carbonate. 
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Figure 2.7. Proposed mechanism for cyclic carbonate synthesis with water as a 
catalyst/reactant. 

 

 

2.3.2. Characterization of DMAP-SBA (3)  

 One of the main goals of this study was to develop a well-defined, effective, silica 

supported catalyst that could be easily separated from the product without the use of 

distillation. Therefore, after attaining good yields with homogeneous DMAP as the 

catalyst, the effectiveness of an immobilized DMAP analog supported on mesoporous 

SBA-15 was tested (Figure 2.3). In order to better understand the properties of the 

immobilized catalyst 3, it was extensively characterized to confirm the covalent nature of 

the immobilization as well as to confirm the nature of the organic functionality on the 

surface. 

 The solid state 13C CP-MAS NMR spectrum of 3 exhibited peaks corresponding 

to those present in the solution 13C NMR spectrum of ligand 2 prior to tethering (Figure 

2.8). Also, the solid state 29Si CP-MAS NMR spectrum showed the Q2, Q3, and Q4 silicon 

resonances between -90 and -110 ppm associated with the silica framework and T1, T2, 
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and T3 resonances between -40 and -60 ppm corresponding to one, two, and three 

methoxy groups from the silane reacting with the surface.49 These results suggest the 

organic moiety is covalently bound to the silica surface. 
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Figure 2.8. Solution 13C NMR of 2 and solid state 13C CP-MAS NMR of 3. 

 

 

 FT-Raman spectroscopy was also conducted on 3 to further confirm the nature of 

the organic species on the surface. The spectrum is shown in Figure 2.9 along with the 

resonances of interest.50 This analysis further suggests that the DMAP analog has in fact 

been immobilized onto the SBA-15 support. 
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Figure 2.9. FT-Raman spectrum of DMAP-SBA with peak assignments. 
 

 

 Thermogravimetric analysis (TGA) was preformed to determine the amount of 

catalyst loaded onto the silica surface. This measurement indicated a loading of 1.77 

mmol catalyst/g SiO2. This value was used to determine the amount of solid added in the 

propylene carbonate reactions conducted with the silica immobilized catalyst. 

 Nitrogen physisorption provided further evidence that the catalyst was in fact 

immobilized onto the silica support material. Both bare SBA-15 and DMAP-SBA 
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demonstrate a type IV isotherm with hysteresis. Bare SBA-15 exhibited a BJH average 

adsorption pore diameter of 67 Å, whereas DMAP-SBA exhibited a BJH average 

adsorption pore diameter of 41 Å. This suggests that the catalyst is in fact inside the 

mesopores of the SBA-15. Also, the BET surface area for the silica material decreased 

from 964 m2/g before functionalization to 201 m2/g after functionalization. This can be 

explained by the fact that organic loading inside the pores blocks access to the 

micropores that are known to exist in SBA-15, and thus much or all of the microporous 

surface area is no longer included in the total surface area calculation.51  

 Finally, to ensure that the immobilization procedure did not alter the ordered 

structure of the SBA-15 support material, X-ray diffraction (XRD) patterns were 

analyzed for bare SBA-15 and DMAP-SBA (Figure 2.10). In the diffraction pattern for 

bare SBA-15, three peaks corresponding to the (1 0 0), (1 1 0), and (2 0 0) reflections 

were seen. These peaks are ascribed to an ordered mesoporous structure with 2-d 

hexagonal (p6mm) symmetry.48 In the diffraction pattern for DMAP-SBA prior to use, 

the same three peaks are still present. These results indicate that the ordered nature of the 

SBA-15 support material persists after functionalization with ligand 2. Additionally, the 

XRD pattern for DMAP-SBA after reaction indicates that the ordered nature of the 

support material is maintained during use. 
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Figure 2.10. XRD patterns for bare SBA-15 (top line on right-hand side) and 
DMAP-SBA (middle line is prior to reaction, bottom line is after reaction). 

 

 

2.3.3. Carbonate reactions with the immobilized catalyst (3) 

 Under the same reaction conditions used with the homogeneous catalyst, the silica 

immobilized catalyst 3 produced propylene carbonate yields of 81%, which is remarkably 

close to the homogeneous result (Table 2.1). Also, catalyst 3 could be efficiently 

separated from the product by simple filtration, leaving behind pure propylene carbonate 

as the filtrate since excess PO and CO2 were removed under vacuum prior to filtration as 

described in Section 2.2.7. When the catalyst was recycled, the propylene carbonate 

product was again generated, although the yield was decreased relative to the fresh 

supported catalyst (49% versus 81%). The lower yield on recycle could be due to several 

factors including pore clogging, degradation of the DMAP functionality, leaching, or 

others. It should be noted that it was not conclusively determined if traces of the DMAP 

functionality leached from the surface, although NMR and GC of the propylene 
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carbonate product did not detect any catalyst species. In addition, FT-Raman and FTIR 

spectroscopy both confirmed that the DMAP moiety was still present on the surface after 

its use in reactions. 

 To provide insight on the effect of the support structure, DMAP-SBA (3) was 

compared with a commercially available DMAP analog supported on poly(styrene). 

When the polymer catalyst was tested, the activity in the initial run was virtually the same 

as the silica supported DMAP (Table 2.1). However, when the catalysts were recycled, 

the DMAP-SBA retained more of its initial activity than did the polymer supported 

catalyst (49% versus 30%). This suggests that degradation of the catalyst is more severe 

for the polymer supported catalyst, indicating the high temperatures and pressures used in 

this reaction may require more stable supports such as inorganic silica materials. 

 Control experiments were also conducted to confirm that it was the DMAP 

functionality on the SBA-15 and not some other portion of the immobilized ligand that 

was performing the catalysis. The reactivities of 3-aminopropyl functionalized SBA-15 

and 3-mercaptopropyl functionalized SBA-15, neither with DMAP, were tested, and no 

conversion of the epoxide was observed.52-54 Additionally, catalyst 3 was treated with 

1,1,1,3,3,3-hexamethyldisilazane (HMDS) to cap the accessible surface silanols and was 

tested, and the capped material produced the same yield of propylene carbonate as the 

uncapped material. These results plus the observed productivity of soluble DMAP 

without the addition of another catalyst suggest that DMAP can behave as a single 

component catalyst. Thus, although DMAP is not the most productive catalyst available, 

it is noteworthy that it can behave as a single component catalyst under the conditions 

reported here in either a homogeneous or heterogeneous state.  
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2.4. Conclusions 

 This chapter has provided evidence that homogeneous 4-(N,N-dimethylamino) 

pyridine, DMAP, can catalyze the reaction of propylene oxide with carbon dioxide giving 

propylene carbonate yields of 85% without the addition of a co-catalyst under the given 

reaction conditions. Furthermore, the reaction forms only propylene carbonate when 

conducted under anhydrous conditions. A new immobilized DMAP analog was 

synthesized which produced propylene carbonate yields of 81% at the same conditions 

and could be easily separated from the product by filtration. Additionally, the recycle 

performance of the silica immobilized catalyst was better than the recycle performance of 

a poly(styrene) supported DMAP, indicating the inorganic silica support may be more 

robust toward the high reaction temperatures and pressures. Although most of the 

literature concerning CO2 fixation to epoxides to form cyclic carbonates suggests the 

need for bi-functional catalytic systems, the results presented in this chapter indicate that 

multiple reaction mechanisms, including those utilizing only one catalytic component, are 

likely possible depending on the reaction conditions. 
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CHAPTER 3 

POLYMER AND SILICA SUPPORTED TRIDENTATE SCHIFF 

BASE VANADIUM CATALYSTS FOR THE ASYMMETRIC 

OXIDATION OF ETHYL MANDELATE 

3.1. Introduction 

 The ability to synthesize enantiomerically pure α-hydroxy esters is a significant 

topic of interest since these compounds are useful building blocks for chiral syntheses in 

the pharmaceutical and fine chemical industries.1 A great deal of research has been 

devoted to discovering catalytic systems that can efficiently generate enantiomerically 

pure α-hydroxy esters and other secondary alcohols,2-4 and an important subset of these 

systems exploit the kinetic resolution of racemic substrates through the appropriate 

selection of catalyst and reaction conditions.5-10 One such system that effectively utilizes 

kinetic resolution to yield enantiomerically pure alcohols from racemic mixtures involves 

the application of vanadium complexes with Schiff base ligands for selective oxidation 

with molecular oxygen. Specifically, tridentate Schiff base vanadium catalysts derived 

from salicylaldehydes and tert-leucinol or tert-leucine have been shown to promote the 

oxidative kinetic resolution of racemic α-hydroxy esters by the selective oxidation of 

only one enantiomer (Figure 3.1).11-13 This reactions is particularly attractive not only due 

to the high enantioselectivity it imparts but also due to the use of molecular oxygen at 

atmospheric pressure as the primary oxidant. Molecular oxygen is highly abundant, low 

in cost, and non-toxic, which make it more attractive than other oxidants, particularly 
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inorganic oxidants, which can be expensive and potentially hazardous to dispose of after 

use. 
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Figure 3.1. Oxidative kinetic resolution of an α-hydroxy ester. 
 

 

 Previous research efforts in our group have investigated the immobilization of 

enantioselective homogeneous catalysts to improve catalyst performance, with the key 

parameters by which performance is judged being productivity, selectivity, ease of 

recovery, and recyclability. This research, up to now, predominantly has focused on the 

immobilization of cobalt salen catalysts for application in the hydrolytic kinetic 

resolution (HKR) of epoxides, and a number of successful polymer supported catalysts 

have resulted from these efforts.14-16  

 Since the tridentate Schiff base vanadium catalysts used in the oxidative kinetic 

resolution reaction resemble “half” salen functionalities, it was desired to apply the 

knowledge gained from the immobilization of the cobalt salen HKR catalysts to the 

development of immobilized vanadium oxidative kinetic resolution catalysts. Even 

though the activities of homogeneous catalysts are well-established, there are no found 

reports of analogous immobilized catalysts derived from salicylaldehydes and tert-

leucinol for the resolution reaction. The development of active and selective immobilized 
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catalysts for this reaction, therefore, is attractive for a few reasons. First, it provides data 

as to how immobilization effects the catalytic properties. Also, it creates the opportunity 

for easier recovery of the metal catalyst from the product, which is important due to 

economic, environmental, and product quality issues. This chapter describes the 

immobilization of these vanadium catalysts on both insoluble polymers as well as 

SBA-15 mesoporous silica, and it demonstrates the new catalysts’ utilities in the 

oxidative kinetic resolution of ethyl mandelate. 

3.2. Experimental 

3.2.1. Materials 

 3,5-Di-tert-butyl-2-hydroxybenzaldehyde (Aldrich), (S)-tert-leucinol (Aldrich), 3-

isocyanatopropyltrimethoxysilane (Gelest), anhydrous methanol (EMD Chemicals), and 

vanadium(V) oxytriisopropoxide (VO(OiPr)3) (Aldrich) were used as received. 2,2’-Azo-

bis(isobutyronitrile) (AIBN) (Aldrich) was dried under vacuum and stored in a nitrogen 

dry box. Styrene was distilled and stored in a nitrogen dry box. Dichloromethane and 

acetonitrile were dried over calcium hydride and distilled; chlorobenzene was dried with 

4 Å molecular sieves and distilled under vacuum; acetone was dried over anhydrous 

calcium sulfate and distilled. Toluene and THF were used after purification and drying 

via a packed bed solvent system made of dual alumina columns.17 

3.2.2. Characterization methods 

 Solution 1H and 13C NMR spectroscopy was conducted on a Varian Mercury Vx 

400 spectrometer. FT-IR spectroscopy was conducted on a Bruker Equinox 55 using 

disks made from solid catalyst samples dispersed in potassium bromide (KBr). The 
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samples were analyzed using 1024 scans with a resolution of 4 cm-1. Nitrogen 

physisorption measurements were taken on a Micromeritics ASAP 2010 at 77 K. Prior to 

analysis, SBA-15 was degassed with heating at 150 °C under vacuum overnight, and the 

functionalized SBA-15 sample was degassed with heating at 50 °C under vacuum 

overnight. Gas chromatography was used to monitor the reaction progress and was 

conducted on a Shimadzu GC 17-A equipped with a flame-ionization detector and a 

Chiraldex γ-TA column (length = 40 m, inner diameter = 0.25 mm, and film thickness = 

0.25 μm). The following temperature profile was used: heat to 90 °C, ramp to 140 °C at a 

rate of 6 °C per minute, and hold for 11 minutes. 

 

 

N

R OH

R OH

O

H2N OH

OH
+ Methanol

Na2SO4
4 h, r.t.

R=

(1) C(CH3)3 (2) (3) CH2OH
 

 
Figure 3.2. Synthesis procedure for catalyst ligands. 

 

 

3.2.3. Synthesis of homogeneous Schiff base ligand (1) 

 The homogeneous Schiff base ligand (1) was synthesized according to literature 

procedures (Figure 3.2).11,18 3,5-Di-tert-butyl-2-hydroxybenzaldehyde (4 g, 17 mmol) 

was dissolved in anhydrous methanol. Then, sodium sulfate (12.2 g) and (S)-tert-leucinol 
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(2 g, 17 mmol) were added, and the mixture was stirred at room temperature for 4 h. The 

solution was filtered through Celite, the solvent was removed, and the product was dried 

under vacuum. The synthesis produced a yellow solid which was used without further 

purification. 

1: Yield 98 %. 1H NMR (400 MHz, CDCl3): δ 0.96 (s, 9H), δ 1.30 (s, 9H), δ 1.44 (s, 9H), 

δ 2.91 (dd, J = 9.48 and 2.72 Hz, 1H), δ 3.73 (m, 1H), δ 3.90 (m, 1H), δ 7.13 (d, J = 2.36 

Hz, 1H), δ 7.39 (d, J = 2.32 Hz, 1H), δ 8.35 (s, 1H), δ 13.60 (s, 1H). 13C NMR (101 

MHz, CDCl3): δ 27.4, 29.7, 31.7, 33.5, 34.4, 35.3, 62.8, 81.7, 117.9, 126.4, 127.4, 137.0, 

140.4, 158.4, 167.4. Elemental analysis calcd. (%) for C21H35NO2: C 75.63, H 10.58, N 

4.20, Found: C 75.39, H 10.64, N 4.24. Accurate mass calcd., 333.2668; found, 

333.2656. 

3.2.4. Synthesis of styryl functionalized Schiff base monomer (2) 

 The styryl functionalized Schiff base monomer was prepared similarly to the 

homogeneous ligand 1 (Figure 3.2). 3-tert-Butyl-2-hydroxy-5-(4’-vinylphenyl) 

benzaldehyde was synthesized according to published literature procedures.14,19 This 

styryl aldehyde (1.5 g, 5.35 mmol) was dissolved in anhydrous methanol. Then, sodium 

sulfate (4 g) and (S)-tert-leucinol (0.627g, 5.35 mmol) were added, and the mixture was 

stirred at room temperature for 4 h. The solution was filtered through Celite, the solvent 

was removed, and the product was dried under vacuum. The synthesis produced a yellow 

solid which was used without further purification. 

2: Yield 98%. 1H NMR (400 MHz, CDCl3): δ 0.98 (s, 9H), δ 1.48 (s, 9H), δ 2.95 (dd, J = 

9.44 and 2.60 Hz, 1H), δ 3.76 (m, 1H), δ 3.96 (m, 1H), δ 5.25 (d, J = 10.88 Hz, 1H), 

δ 5.77 (d, J = 17.60 Hz, 1H), δ 6.74 (dd, J = 17.60 and 10.88 Hz, 1H), δ 7.37 (d, J = 2.12 
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Hz, 1H), δ 7.48 (m, 4H), δ 7.58 (d, J = 2.12 Hz, 1H), δ 8.42 (s, 1H), δ 13.94 (s, 1H). 13C 

NMR (101MHz, CDCl3): δ 27.4, 29.6, 33.5, 35.3, 62.8, 81.6, 113.8, 118.8, 126.90, 

126.95, 128.4, 128.7, 130.8, 136.2, 136.7, 138.1, 140.7, 160.4, 167.0. Elemental analysis 

calcd. (%) for C25H33NO2: C 79.11, H 8.76, N 3.69, Found: C 79.12, H 8.42, N 3.63. 

Accurate mass calcd., 379.2511; found, 379.2505. 

3.2.5. Synthesis of Schiff base homopolymer ligand (2a) 

The styryl functionalized Schiff base monomer (2) was polymerized to form the 

homopolymer ligand (2a) (Figure 3.3). In a typical preparation, monomer (0.25 g, 0.66 

mmol) was added to a 15 ml pressure tube reaction vessel in a nitrogen dry box. Then, 

approximately 3 ml of dry, degassed chlorobenzene was added along with AIBN (11 mg, 

0.067 mmol). The pressure tube was sealed and placed in an 80 °C oil bath and was 

allowed to stir for 48 h. The reaction mixture was then cooled to room temperature and 

precipitated into cold hexanes. The precipitated polymer was filtered from the solution, 

washed with hexanes, and dried under vacuum to give a yellow solid. 

2a: Yield 76%. Mn: 5,330. PDI:  2.16. 
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Figure 3.3. Synthesis of polymeric ligands. 
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3.2.6. Synthesis of Schiff base copolymer ligand (2b) 

 The styryl functionalized Schiff base monomer (2) was copolymerized with 

styrene to form the copolymer ligand (2b) (Figure 3.3). In a typical preparation, one 

equivalent of styryl Schiff base monomer (152 mg, 0.4 mmol) and four equivalents of 

styrene (167 mg, 1.6 mmol) were added to a 15 ml pressure tube reaction vessel in a 

nitrogen dry box. Then, approximately 3 ml of dry, degassed chlorobenzene was added 

along with AIBN (8.2 mg, 0.05 mmol). The pressure tube was sealed and placed in an 

80°C oil bath and was allowed to stir for 48 h. The reaction mixture was then cooled to 

room temperature and precipitated into cold hexanes. The precipitated polymer was 

filtered from the solution, washed with hexanes, and dried under vacuum to give a yellow 

solid. 

2b: Yield 63%. Mn: 8,439. PDI: 2.01. 

3.2.7. Synthesis of hydroxyl functionalized ligand (3) 

 3-tert-Butyl-5-chloromethyl-2-hydroxybenzaldehyde was synthesized according 

to published literature procedures.20 This compound was then converted to 3-tert-butyl-2-

hydroxy-5-(hydroxymethyl)benzaldehyde.21 The 5-hydroxymethyl aldehyde (2.08 g, 10 

mmol) was dissolved in anhydrous methanol. Then, sodium sulfate (6 g) and (S)-tert-

leucinol (1.17 g, 10 mmol) were added, and the mixture was stirred at room temperature 

for 4 h (Figure 3.2). The solution was filtered through Celite, the solvent was removed, 

and the product was dried. The product was purified via column chromatography (1:1 

hexanes: ethyl acetate) and then recrystallized from methanol to produce a pure, pale 

yellow solid. 
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3: Yield 79%. 1H NMR (400 MHz, CDCl3): δ 0.96 (s, 9H), δ 1.42 (s, 9H), δ 1.55 (s, 2H), 

δ 2.92 (dd, J = 9.48 and 2.76 Hz, 1H), δ 3.75 (m, 1H), δ 3.92 (m, 1H), δ 4.60 (d, J = 2.72 

Hz, 2H), δ 7.16 (d, J = 1.84 Hz, 1H), δ 7.31 (d, J = 1.92 Hz, 1H), δ 8.34 (s, 1H), δ 13.85 

(s, 1H). 13C NMR (101 MHz, CDCl3): δ 27.3, 29.6, 33.5, 35.1, 62.7, 65.6, 81.6, 118.5, 

129.1, 129.3, 130.3, 138.0, 160.4, 166.8. Elemental analysis calcd. (%) for C18H29NO3: C 

70.32, H 9.51, N 4.56, Found: C 70.26, H 9.59, N 4.51. Accurate mass calcd., 307.2147; 

found, 307.2116. 

3.2.8. Synthesis of SBA-15 supported catalyst (3a) 

 The SBA-15 silica support material was synthesized and calcined according to 

literature procedures, dried under vacuum at 200 °C for 3 hours, and stored in a nitrogen 

dry box prior to use.22,23 The hydroxyl functionalized ligand (3) (0.25 g, 0.81 mmol) was 

first reacted with VO(OiPr)3 (188 mg, 0.77 mmol) by stirring the compounds in dry 

acetone under an oxygen blanket for 30 minutes. The acetone was removed under 

vacuum, and the metal complex was re-dissolved in dried tetrahydrofuran. Then, 

3-isocyanatopropyltrimethoxysilane (183 mg, 0.89 mmol) was added to the THF solution 

in a nitrogen dry box along with triethylamine (90 mg, 0.89 mmol), and the solution was 

stirred at reflux conditions overnight (Figure 3.4).24,25 The solvent was again removed, 

and the compound was dried under vacuum. The silane functionalized catalyst was 

dissolved in a small amount of toluene and added to a solution of calcined SBA-15 (0.45 

g) in toluene in a nitrogen dry box. This slurry was stirred at reflux conditions overnight. 

The functionalized silica catalyst was filtered in the dry box and washed with copious 

amounts of toluene, hexanes, and acetone until each solvent ran clear. Catalyst 3a was 

dried overnight under vacuum to give a light brown/maroon powder. The procedure 
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yielded approximately 0.4 g of compound 3a. Elemental analysis indicated a vanadium 

loading on the silica of 2 wt%. 
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Figure 3.4. Synthesis of silica supported vanadium Schiff base catalyst 3a. 
 

 

3.2.9. Catalytic reactions with in situ metalation (Method 1) 

 Oxidative kinetic resolution reactions were preformed via two methods. In the 

first method, the ligand was metalated in situ just prior to the reaction. The selected 

ligand (1, 2a, or 2b) (0.0825 mmol, 5.5 mol %) was added to the reaction flask, followed 

by 3.5 ml of solvent. Once the ligand was completely dissolved, VO(OiPr)3 (17.5 μl, 

0.075 mmol, 5 mol %) was added to the flask. The mixture was allowed to stir under an 

oxygen blanket for 15 minutes. At the completion of this time, a solution of ethyl 

mandelate (270.3 mg, 1.5 mmol) and hexamethylbenzene (12.5 mg as an internal 

standard) in 4 ml of solvent was added to the reaction flask, and 100 μl samples were 
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taken periodically to monitor the extent of the reaction. An oxygen blanket was 

maintained in the flask throughout the course of the reaction. 

3.2.10. Catalytic reactions with pre-metalated ligands (Method 2) 

 In the second method, the selected ligand was metalated and isolated prior to 

reaction. For the polymer catalysts (2a and 2b), the polymerized ligand first was 

dissolved in dry acetone. VO(OiPr)3 (0.9 equivalents) was added, and the solution was 

stirred under an oxygen blanket for 1 ½ h. During this time, the metalated catalyst 

precipitated from the solution for both the homopolymer and the copolymer. Then, 

stirring was ceased, the solid catalyst was allowed to settle, and the liquid layer was 

decanted. Fresh dry acetone was added, and the catalyst was stirred for 20 minutes. 

Again, the catalyst was allowed to settle, and the liquid layer was decanted. This wash 

procedure was repeated two additional times. The metalated polymers were then dried 

under vacuum overnight. Silica catalyst 3a was always tested with Method 2 and was 

never metalated after the ligand was anchored to the silica surface.  

 For the oxidative kinetic resolution, the selected metalated catalyst (2a, 2b, or 3a) 

was added to the reaction flask at a 5 mol% vanadium loading (determined from 

elemental analysis) with 3.5 ml of solvent, and it was allowed to stir under an oxygen 

blanket for 15 minutes. At the completion of this time, a solution of ethyl mandelate 

(270.3 mg, 1.5 mmol) and hexamethylbenzene (12.5 mg as an internal standard) in 4 ml 

of solvent was added to the reaction flask, and 100 μl samples were taken periodically to 

monitor the extent of the reaction. An oxygen blanket was maintained in the flask 

throughout the course of the reaction. 
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3.3. Results and discussion 

3.3.1. Oxidative kinetic resolution using the homogeneous catalyst 

 In order to provide a benchmark for the heterogeneous catalysts, experiments with 

both the homogeneous catalyst and unligated VO(OiPr)3 were conducted to determine 

their reactivities in the oxidation of ethyl mandelate. The reactivity of the homogeneous 

catalyst was tested in dry acetone, dry acetonitrile, and dry methylene chloride in the 

manner described in Section 3.2.9. The results showed acetone to be the best solvent for 

the reaction, providing > 99% conversion of S-ethyl mandelate and 99% enantiomeric 

excess (ee) of R-ethyl mandelate in less than 4 h (Figure 3.5) (total conversion S + R: 

54%).  Acetonitrile was also a suitable solvent, providing > 99% conversion of S-ethyl 

mandelate and 99% ee of R-ethyl mandelate in 5 hours (total conversion S + R: 50%). 

However, the resolution reaction was significantly slower in methylene chloride, reaching 

only 85% conversion of S-ethyl mandelate and 79% ee of R-ethyl mandelate after 7 h. 

This trend is similar to that reported by Radosevich, although the reaction times found in 

this work are different than those for their system.11 
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Figure 3.5. Enantiomeric excess of R-ethyl mandelate vs. time for homogeneous catalyst 
1 in various solvents. 

 

 

 Since the homogeneous catalyst is metalated in situ prior to reaction, the catalytic 

activity of VO(OiPr)3 alone was probed to determine if this compound plays a part in the 

oxidation of ethyl mandelate if it is not fully ligated by the Schiff base ligand. Test 

reactions were conducted in both dry acetone and dry acetonitrile and were allowed to 

run for 23 h. At the end of this period, the reaction in acetone yielded a total ethyl 

mandelate conversion of only 7% with no increase in ee. The reaction in acetonitrile gave 

a total ethyl mandelate conversion of 5% with no increase in ee. These results suggest 

that any catalytic contribution from free VO(OiPr)3 in solution can be neglected relative 

to the contribution from the metalated ligand. 
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3.3.2. Polymer catalyst syntheses and characterization (2a, 2b) 

 With the homogeneous benchmark established, polymer immobilized catalysts 

derived from salicylaldehydes and tert-leucinol were synthesized and investigated. 

Generally, researchers employ one of two strategies when creating immobilized polymer 

catalysts. The first strategy involves grafting the desired catalyst functionality onto an 

insoluble polymeric support such as a resin. This is an efficient way to create a 

heterogeneous catalyst, but if the procedure is performed in a step-wise manner or if the 

surface reaction is not quantitative, multiple types of species can exist on the resin 

surface. In order to circumvent this issue, the second strategy for immobilization is the 

direct polymerization of monomers containing the desired catalyst functionality. Since 

previous research in our group utilized the second method to synthesize polymeric salen 

catalysts for the hydrolytic kinetic resolution of epoxides with great success, this 

approach was taken in this work as well.14-16 

 By employing the synthesis described in Section 3.2.4, a monomer bearing both 

the desired ligand functionality and a styryl group capable of being polymerized was 

created (2). Corresponding polymers were then easily prepared by the AIBN initiated 

free-radical homopolymerization of the styryl monomer (2a) or copolymerization of the 

styryl monomer with styrene (2b). 1H NMR spectroscopy of the polymers exhibited the 

typical broadening features that are expected for macromolecules (Figure 3.6). Also, the 

peaks associated with the vinyl protons in the monomer spectrum (δ 5.0-6.0) were absent 

in the polymer spectra, which indicated that residual monomer was removed during the 

isolation of the polymers. Using gel-permeation chromatography (GPC) in THF with 

poly(styrene) standards, the number average molecular weight (Mn) of the homopolymer 
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was determined to be 5,330 with a polydispersity index (PDI) of 2.16. This corresponds 

to an average of 14 repeat units in the polymer chain. The Mn of the copolymer was 

determined to be 8,439 with a PDI of 2.01. This corresponds to an average of 11 repeat 

units in the polymer chain with a 2:5 ligand to styrene ratio (determined from 1H NMR).  

These data are summarized in Table 3.1. 

PPM   13.0     11.0    9.0    7.0    5.0    3.0     1.0   

2

2a

2b

PPM   13.0     11.0    9.0    7.0    5.0    3.0     1.0   PPM   13.0     11.0    9.0    7.0    5.0    3.0     1.0   PPM   13.0     11.0    9.0    7.0    5.0    3.0     1.0   

2

2a

2b

 

 

 
Figure 3.6. 1H NMR spectra of the styryl functionalized monomer 2, homopolymer 2a, 

and copolymer 2b. 
 

 

 

Table 3.1. Polymeric ligand characterization. 
Polymer AIBN loading 

(mol%) 
Mna PDIa m,n actualb 

2a 10 % 5,330 2.16 14, 0 
2b 2.5 % 8,439 2.01 11, 28 

a: From GPC in THF with poly(styrene) standards; b: Calculated from Mn and 1H NMR. 
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In order to establish the heterogeneous nature of these catalysts, the solubilities of 

the homopolymer and copolymer were tested. The homopolymer ligand was soluble in 

acetone, ethanol, methylene chloride and THF, and the copolymer ligand was soluble in 

acetone and THF. However, both the homopolymer and the copolymer were insoluble in 

a range of solvents including acetone, acetonitrile, hexanes, THF, methylene chloride, 

ethanol, and water after metalation with VO(OiPr)3.  

The vanadium content of the metalated polymers was determined by elemental 

analysis. In the case of homopolymer 2a, the vanadium loading was 10.3 wt% (2.02 

mmol/g), which corresponds to roughly 87% of the Schiff base ligands being metalated. 

For copolymer 2b, the vanadium loading was 6.0 wt% (1.18 mmol/g), which corresponds 

to roughly 83% of the Schiff base ligands being metalated. 

 Lastly, the metalated polymers were characterized by Fourier transform infrared 

spectroscopy (FT-IR) (Figure 3.7). The spectra for homopolymer 2a and copolymer 2b 

closely resemble one another, and both exhibit the expected peaks that indicate the 

presence of the immobilized catalyst functionality (Table 3.2). Particularly noteworthy is 

the strong C=N stretch located at 1617 cm-1 which is indicative of the coordination of the 

imine nitrogen with the vanadium. This stretch would be expected to appear around 

1630 cm-1 for the uncoordinated ligand.26 Also, the V=O stretch is seen at 986 cm-1 in the 

homopolymer and 984 cm-1 in the copolymer, and these values are in line with literature 

reports as well.13,26-28  
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Figure 3.7. FT-IR spectra of copolymer catalyst 2b (top), homopolymer catalyst 2a 

(middle), and silica catalyst 3a (bottom). 
 

 

 

 

Table 3.2. FT-IR data (KBr disk) for metalated polymeric catalysts 2a and 2b. 
 ν cm-1 

Homopolymer 2a 
ν cm-1  
Copolymer 2b 

C-H aromatic and 
aliphatic stretches 

3020, 2953, 2908, 
2867 

3055, 3021, 2948, 
2908, 2862 

C=N 1617 1617 
V=O 986 984 
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3.3.3. Oxidative kinetic resolution using polymeric catalysts (2a, 2b)  

 Since acetone was the most effective solvent for the oxidative kinetic resolution 

of ethyl mandelate with the homogeneous catalyst, all reactions using the polymeric 

catalysts were conducted in acetone. As stated in the experimental section, two catalyst 

preparation methods were used to investigate the activity of the polymer catalysts: in situ 

metalation (Method 1) and metalation and isolation prior to reaction (Method 2). 

 First, homopolymer catalyst 2a was assessed using Method 1. Although the 

metalated polymer becomes insoluble once it precipitates, it should be noted that when 

the polymeric ligand was metalated in situ, the catalyst was initially soluble in the 

reaction solvent for a short period of time (less than one hour). Once the reaction 

commenced, the resolution of ethyl mandelate proceeded to 99% conversion of S-ethyl 

mandelate and 99% ee of R-ethyl mandelate in approximately 11 h (total conversion S + 

R: 57%) (Figure 3.8). To determine if the catalyst was still active, an additional portion of 

unresolved ethyl mandelate was added to the solution the following day. The reaction 

then proceeded to 89% conversion of S-ethyl mandelate and 86% ee R-ethyl mandelate 

after 10 h, compared with the initial resolution values of 95% conversion of S-ethyl 

mandelate and 90% ee of R-ethyl mandelate at 10 h, or approximately 94% of the initial 

efficiency. This may be explained by the fact that the partially soluble nature of the 

catalyst in the early stages of the initial run slightly increases the rate for that reaction. 

However, when the second portion of reactant is added, the catalyst is insoluble from 

time zero. 
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Figure 3.8 Conversion of S-ethyl mandelate vs. time for homopolymer catalyst 2a with in 
situ metalation (Method 1). 

 

 

 The activity of homopolymer catalyst 2a was also assessed using Method 2. 

Significant differences in reaction rates were observed between the two catalyst 

preparation methods (Figure 3.9). The homopolymer catalyst that was metalated and 

isolated prior to use (Method 2) was significantly less active than the homopolymer 

catalyst that was metalated in situ (Method 1). For instance, after 9 h of reaction, the 

Method 1 reaction had proceeded to 94% conversion of S-ethyl mandelate and 88% ee of 

R-ethyl mandelate, whereas the Method 2 reaction had only reached 61% conversion of 

S-ethyl mandelate and 42% ee of R-ethyl mandelate. This behavior is attributed to the 

semi-soluble nature of the in situ metalated catalyst in the early stages of the reaction. 

The continued activity of pre-metalated catalyst 2a was not tested since the initial activity 

was so low. 
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Figure 3.9. Conversion of S-ethyl mandelate vs. time for homopolymer catalyst 2a with 
in situ metalation (Method 1) and metalation and isolation (Method 2). 

 

 

 Copolymer catalyst 2b was also studied in the oxidative kinetic resolution of ethyl 

mandelate. Method 1 (in situ metalation) was examined first. In this case, it was observed 

that the metalated polymer precipitated out of the solution during the initial oxygen pre-

treatment prior to reaction, unlike homopolymer catalyst 2a which remained soluble for a 

short period of time. Copolymer catalyst 2b successfully completed the resolution 

reaction, taking 9 ½ h to reach 99% conversion of S-ethyl mandelate with 98% ee of R-

ethyl mandelate (total conversion S + R: 58%) (Figure 3.10). To determine if the catalyst 

was still active, another portion of unresolved ethyl mandelate was added to the reaction 

flask the following day. This reaction reached 99% conversion of S-ethyl mandelate in 

10 ½ h with an ee of R-ethyl mandelate of 95%, indicating that the catalyst remained 

active after the initial reaction, although a slightly longer reaction time was required.  
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Figure 3.10. Conversion of S-ethyl mandelate vs. time for copolymer catalyst 2b with in 
situ metalation (Method 1). 

 

 

 When Method 2 (metalation and isolation) was used with copolymer catalyst 2b, 

the catalyst was able to reach 99% conversion of S-ethyl mandelate and 97% ee of R-

ethyl mandelate in 8 h (total conversion S + R: 61%). This result is slightly faster than the 

result obtained using Method 1 (in situ metalation) for the copolymer catalyst (Figure 

3.11).  To test the continued activity of the catalyst, an additional portion of unresolved 

ethyl mandelate was added to the reaction flask, and the conversion of the S enantiomer 

was monitored (Figure 3.12). In the same 8 h reaction time, the conversion of the S 

enantiomer had reached 95% with an ee of R-ethyl mandelate of 94%, roughly 96% of 

the original efficiency.  
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Figure 3.11. Conversion of S-ethyl mandelate vs. time for copolymer catalyst 2b with in 
situ metalation (Method 1) and metalation and isolation (Method 2). 
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Figure 3.12. Conversion of S-ethyl mandelate vs. time for copolymer catalyst 2b with 
metalation and isolation of catalyst prior to reaction (Method 2). 
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 Comparing homopolymer 2a and copolymer 2b metalated by Method 1, it is 

observed that the copolymer is able to completely oxidize S-ethyl mandelate more rapidly 

than the homopolymer (9 h vs. 11 h), even though the homopolymer remains partially 

soluble during the early stages of the reaction (Figure 3.13). The copolymer is also much 

more efficient when metalation Method 2 is used (8 h vs. >15 h) (Figure 3.14). This may 

be due to the separation between the active sites in the copolymer which aids in the 

reactant’s ability to access the active site or which prevents interactions between active 

vanadium sites. In summary, the results presented here indicate that the styrene 

copolymer 2b is a more active catalyst for the oxidative kinetic resolution of ethyl 

mandelate than the catalyst homopolymer 2a, and it shows a slightly shorter reaction time 

when metalated by Method 2 as compared with Method 1.  
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Figure 3.13. Conversion of S-ethyl mandelate vs. time for polymer catalysts 2a and 2b 
with in situ metalation (Method 1). 
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Figure 3.14. Conversion of S-ethyl mandelate vs. time for polymer catalysts 2a and 2b 
with metalation and isolation prior to reaction (Method 2). 

 
 

3.3.4. Silica catalyst synthesis and characterization (3a) 

 A trialkoxysilane functionalized catalyst analog was synthesized as described in 

Sections 3.2.7 and 3.2.8 (Figure 3.4). This analog was then grafted onto SBA-15 silica, 

and supported catalyst 3a was characterized. FT-IR spectroscopy was used to determine 

the nature of the organic species on the silica surface (Figure 3.7). The spectrum shows 

the anticipated peaks which indicate that the catalyst functionality is grafted to the silica 

surface (Table 3.3). Of particular interest are the C=N stretch at 1617 cm-1, indicating the 

vanadium is coordinated with the imine nitrogen, and the V=O stretch at 955 cm-1. These 

values are in line with those reported for similar materials.26 These results suggest the 

desired catalytic functionality is on the silica surface. 
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Table 3.3. FT-IR data (KBr disk) for silica supported catalyst 3a. 
 ν cm-1  

C-H aromatic and 
aliphatic stretches 

2956, 2871, 2845 

C=N 1617 
Si-O-Si 1060 (broad) 
V=O 986 

 

 

 Nitrogen physisorption provided additional evidence that the catalyst was 

immobilized onto the silica. The SBA-15 prior to functionalization as well as after 

functionalization exhibits a type IV isotherm with hysteresis, which is indicative of its 

mesoporous nature. The bare SBA-15 had a BJH average adsorption pore diameter of 65 

Å, whereas the vanadium functionalized material had a BJH average adsorption pore 

diameter of 62 Å. Also, the BET surface area for the SBA-15 material decreased from 

858 m2/g before functionalization to 325 m2/g after functionalization. This is typical of 

what is observed when grafted organometallic or organic species block access to the 

micropores that are known to exist in SBA-15, and thus much or all of the microporous 

surface area is no longer included in the total surface area calculation.23,29-31  

3.3.5. Oxidative kinetic resolution using the silica catalyst (3a) 

 Once characterized, silica catalyst 3a was tested for the oxidative kinetic 

resolution of ethyl mandelate in both dry acetone and dry acetonitrile (Figure 3.15). For 

the reaction in acetone, the resolution was complete in 11 h, reaching 99% conversion of 

S-ethyl mandelate and 98% ee of R-ethyl mandelate (total conversion S + R: 49%). The 

reaction in acetonitrile proceeded at roughly the same rate, also taking 11 h to complete 
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the resolution. These results are similar to those found for homopolymer catalyst 2a 

metalated in situ in an acetone solution, but slower than the results for copolymer 2b.  
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Figure 3.15. Conversion of S-ethyl mandelate vs. time for silica catalyst 3a in acetone 
and acetonitrile.  

 

 

 In the initial synthesis procedure for the silica grafted catalyst, the metalated 

hydroxyl functionalized catalyst was stirred overnight in chloroform with 

3-isocyanatopropyltrimethoxysilane to form a carbamate. The silane functionalized 

catalyst was subsequently reacted with the silica surface as in step 2 of Figure 3.4. When 

the resulting silica catalyst was tested for the resolution of ethyl mandelate in acetonitrile, 

the reaction rate was much faster than that reported above for catalyst 3a (7 ½ h vs. 11 h). 

The same trend was seen when the reaction was performed in acetone. However, the 

extremely poor recycle performance of these materials (~25 % of the efficiency of the 
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fresh catalyst) led to the conclusion that the carbamate was not completely formed prior 

to adding the catalyst analog to the surface, which caused significant catalyst leaching 

from the surface. This conclusion was supported by experiments conducted with benzyl 

alcohol and the same silane. The addition of base and the use of reflux conditions were 

required to effectively form the carbamate. Therefore, the synthesis procedure was 

modified to incorporate these findings.  

 Silica catalyst 3a was tested for its recycle performance in both acetone and 

acetonitrile, and it exhibited approximately 60-65% of the reactivity of the fresh catalyst. 

This result is significantly better than that obtained with the original silica materials. 

However, additional improvements would be required to make recyclability of this 

catalyst viable. 

3.4. Conclusions 

 This chapter has presented the development of three new heterogeneous tridentate 

Schiff base vanadium catalysts for the oxidative kinetic resolution of ethyl mandelate. 

The ligands and metalated catalysts were characterized by a number of quantitative and 

qualitative techniques to ensure that the desired species were immobilized. Polymer and 

silica supported catalysts were created so that the effect of the support structure on the 

catalytic behavior could be determined. In this reaction, the copolymer supported catalyst 

proved to have the highest activity, perhaps due to its ability to isolate catalytic sites from 

one another.  

 The effect of reaction solvent was also investigated. It was found that the polar, 

aprotic solvents acetone and acetonitrile favored the reaction more so than 
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dichloromethane. This was the case for both the homogeneous catalyst and the silica 

supported catalyst. 

 Finally, the effect of the metalation protocol for the polymer catalysts was 

studied, and noticeable differences were observed. The copolymer catalyst was the most 

active regardless of whether it was metalated in situ or isolated prior to reaction, but the 

pre-metalation procedure increased its rate a small amount. The pre-metalated 

homopolymer catalyst, however, was the least active catalyst, taking significantly longer 

to complete the resolution than when the catalyst was metalated in situ. Overall, these 

results provide a nice basis from which to design the next generation of even more active 

catalysts for the oxidative kinetic resolution reaction.  
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CHAPTER 4 

METAL SALEN CATALYSTS SUPPORTED ON AMINOSILICAS 

4.1. Introduction 

 As previously stated, silica materials are often selected as supports for 

immobilized catalysts due to their tunable pore sizes and surface areas, their thermal 

stability, and the ease with which the surfaces can be functionalized. One of the most 

studied functionalities that has been immobilized on silica surfaces is the amine group. 

Amine functionalized silica materials, or aminosilicas, can be used directly for many 

applications including adsorption,1-3 separation,4 and catalysis.5 However, they can also 

be used as support structures on which to graft more complex molecules.6-15 

 Aminosilicas are most often synthesized by either co-condensation of an 

aminoalkoxysilane with a silica source to form the functionalized silica material,16 or 

they are synthesized by grafting an aminoalkoxysilane onto an already synthesized solid 

silica surface.17 This work utilizes only the second method, whereby the 

aminoalkoxysilane is grafted on the silica material after its synthesis and characterization. 

Traditionally, 3-(aminopropyl)trimethoxysilane is the most common aminoalkoxysilane 

used, and it is grafted to the surface by stirring the silane together with the silica material 

in a toluene solution at either room temperature or under reflux conditions (Figure 4.1). 
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Figure 4.1. Traditional synthesis of amine functionalized silica material. 
 

 

 Previous research in our group has demonstrated that the traditional aminosilica 

synthesis leads to multiple types of amine environments on the surface.6,18,19 Some 

amines may hydrogen bond with the surface, other amines may hydrogen bond with one 

another, and some amines may be isolated (Figure 4.2). The isolated amine groups are 

preferred as support structures, as they are the most accessible and the most reactive 

toward further modification. To prevent the formation of the hydrogen bonded amine 

groups on the surface, two techniques were developed to protect the amine groups during 

grafting and to isolate them on the silica surface.6,18 The first technique uses a trityl 

aldehyde as a protecting group for the aminoalkoxysilane during grafting, and the second 

technique uses a benzyl aldehyde as a protecting group for the aminoalkoxysilane during 

grafting (Figure 4.3). Once the protected amines are grafted, the surface silanol 

functionalities are capped, and the protecting groups are cleaved to leave spaced, isolated 

amine groups. The degree of spacing is dependent on the size of the protecting group that 

was used in the synthesis.19  
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Figure 4.2. Multiple types of amine environments on traditionally grafted aminosilicas. 
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Figure 4.3. Synthesis of trityl de-protected and benzyl de-protected aminosilica materials 
to generate spaced, isolated amine groups. 

 

 

 One of the overarching goals of this dissertation is to examine how 

immobilization onto a solid support effects a catalyst’s activity and selectivity, and so an 

important parameter to probe is the support scaffold onto which the catalyst is grafted. 

Since these aminosilica materials possess reactive functional groups with different 

degrees of isolation, or different surface environments, they seemed ideal for further 

examination in the study of immobilized metal salen catalysts to see how the starting 

scaffold might impact the catalytic properties. As previously mentioned, salen catalysts 

are widely studied because they find application in many different reactions including 
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alkene epoxidation, hydrolytic kinetic resolution of epoxides, addition of carbon dioxide 

to epoxides, cyanide addition to α,β-unsaturated imides, Hetero-Diels-Alder reactions, 

and many more.20 Different metals are used in the salen ligand to modulate the reactivity 

toward the most active catalyst for the desired reaction. Because of the number of 

possible catalytic reactions and the variety of salen catalysts of interest, gaining insight 

into the effects of the support material could potentially find wide applicability in catalyst 

design. 

 Although salen catalysts promote these many reactions, the reaction mechanisms 

are not the same in all cases. It has been shown that some of the reactions proceed 

through the catalytic cycle utilizing only one metal center,21,22 whereas other reactions 

require the presence of two metal salens to complete the catalytic cycle.23,24 Therefore, it 

would be particularly desirable to use the isolated aminosilica materials mentioned above 

as well as traditionally grafted aminosilicas as supports for well-defined salen catalyst 

analogs because it might provide insight into what support will work best for a specific 

reaction mechanism. For instance, a reaction involving only one active site in the 

catalytic cycle might show decreased activity due to limiting reactant accessibility or one 

site deactivating another site if the catalytic sites can interact with one another. Likewise, 

if two catalytic sites are required and the sites on the surface are not close enough 

together, the reactivity would be decreased. Therefore, grafting the salen catalyst on the 

more isolated or spaced aminosilicas (trityl de-protected and benzyl de-protected) might 

allow catalytic sites to be isolated from one another thereby increasing reactivity for 

single-site reactions. Similarly, grafting the salen catalyst on the traditional or closely 

packed aminosilicas might allow the catalytic sites to come into close proximity to one 
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another more frequently thereby increasing reactivity for dual-site reactions. Finally, the 

aminosilica immobilized catalysts could provide an analytical tool to help elucidate the 

nature of a single-site vs. a dual-site cycle for a reaction of unknown mechanism. If the 

reactivity of the catalyst grafted to all three aminosilica materials was determined, a 

spacing-dependent trend could provide evidence for the nature of the cycle. 

 In order to utilize the aminosilica materials, a modified salen ligand with a 

functional group reactive toward surface amine groups is required. There have been 

previous reports in the literature of salen ligand analogs which can react with surface 

amine groups. The three main approaches that have been used are step-wise grafting 

using an aldehyde/amine coupling, or Schiff base reaction (Figure 4.4),9-12 one-pot or 

single step grafting using a chloromethyl/amine coupling (Figure 4.5),13-15,25 and grafting 

using a protected carboxylic acid/amine coupling (Figure 4.6).26  
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Figure 4.4. Step-wise grafting of a salen catalyst to an aminosilica surface using an 

aldehyde/amine or Schiff base reaction. 
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Figure 4.5. Grafting of a salen catalyst to an aminosilica surface using a 

chloromethyl/amine reaction. 
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Figure 4.6. Grafting of a salen catalyst to an aminosilica surface using a protected 
carboxylic acid/amine reaction. 

 

 

 This chapter will outline my work toward grafting salen catalysts to traditional 

and spaced aminosilicas. The three approaches shown in Figures 4.4, 4.5, and 4.6 will be 

used as starting points, but they will be modified so as to create more well-defined 

surfaces. The grafted catalysts will then be probed for catalytic activity.   
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4.2. Experimental 

4.2.1. Materials 

 3,5-di-tert-Butyl-2-hydroxybenzaldehyde (Aldrich), triethylamine (Alfa Aesar), 

4-tert-butyl-2,6-diformylphenol (Aldrich), Florisil 60-100 mesh particle size (Aldrich), 

anhydrous ethanol, anhydrous methanol, and anhydrous diethyl ether were used as 

received. (1R,2R)-(-)-1,2-Diaminocyclohexane (Aldrich) was used as received and stored 

in a nitrogen dry box. Aminosilica materials were prepared on SBA-15 according to 

previously published procedures.6,18,27 Anhydrous methylene chloride was further dried 

via a packed bed solvent system by passing the solvent through dual alumina columns.28 

4.2.2. Characterization methods 

 Solution 1H and 13C NMR were conducted on a Varian Mercury Vx 400 

spectrometer. Elemental analysis was performed by Desert Analytics, Tucson, AZ. FT-

Raman spectra were collected on a Bruker FRA-106. Three thousand scans were 

collected with a resolution of 2-4 cm-1. Thermogravimetric analyses (TGA) were 

performed on a Netzsch STA409. Samples, under an air blanket, were heated from 30 °C 

to 900 °C at a rate of 10 °C/min. The organic loading was determined from the weight 

loss between 200 °C and 700 °C. Gas chromatography for monitoring the hydrolytic 

kinetic resolution of epichlorohydrin was conducted on a Shimadzu GC 17-A equipped 

with a flame-ionization detector and a Chiraldex γ-TA column (length = 40 m, inner 

diameter = 0.25 mm, and film thickness = 0.25 μm). The temperature profile was as 

follows: heat to 65 °C, wait 15 minutes, ramp to 170 °C at a rate of 10 °C/min, and hold 

for 4.5 minutes. 
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Figure 4.7. Synthesis of unsymmetrical functionalized salen ligands 1, 2, and 3. 

 

 

4.2.3. Synthesis of aldehyde functionalized salen ligand (1)  

 Compound 1 was synthesized similarly to other reported literature procedures for 

unsymmetrical salen analogs (Figure 4.7).29,30 A solution of (1R,2R)-1,2-

diaminocyclohexane monohydrochloride salt (0.75 g, 5 mmol) and activated 4Å 

molecular sieves (2 g) was prepared in anhydrous ethanol (20 ml) and anhydrous 

methanol (20 ml). 3,5-di-tert-Butyl-2-hydroxybenzaldehyde (1.17 g, 5 mmol) was then 

added, and the solution was stirred at room temperature for 4 hours. At the end of this 

time period, a solution of 4-tert-butyl-2,6-diformylphenol (1.03 g, 5 mmol) in anhydrous 

methylene chloride (40 ml) was added to the reaction mixture. Triethylamine (1.4 ml, 10 

mmol) was then slowly added to the solution, and the mixture was stirred for an 

additional 4 hours. The solution was filtered to remove the sieves, and then the solvents 

were removed. The residue was re-dissolved in methylene chloride (50 ml) and was 

washed with aqueous hydrochloric acid (1M, 25 ml) and deionized water (2 x 25 ml). 

The organic phase was then dried with magnesium sulfate. Flash chromatography of the 
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crude product over Florisil with ethyl acetate/hexanes (first 1:15 then followed by 1:10) 

gave compound 1 as a yellow solid.  

1: Yield 44 %. 1H NMR (400 MHz, CDCl3): δ 1.24 (s, 9H), δ 1.24 (s, 9H), δ 1.41 (s, 9H), 

δ 1.45-1.53 (m, 2H), δ 1.66-1.82 (m, 2H), δ 1.84-2.04 (m, 4H), δ 3.26-3.44 (m, 2H), δ 

7.00 (d, J = 2.20 Hz, 1H), δ 7.32 (d, J = 2.16 Hz, 1H), δ 7.38 (d, J = 2.44 Hz, 1H), δ 7.84 

(d, J = 2.44 Hz, 1H), δ 8.29 (s, 1H),  δ 8.35 (s, 1H), δ 10.48 (s, 1H), δ 13.60 (s, 1H), 

δ 14.41 (s, 1H). 13C NMR (101 MHz, CDCl3): δ 24.5, 24.6, 29.7, 31.4, 31.7, 33.1, 33.7, 

34.3, 34.4, 35.3, 72.4, 72.7, 117.8, 119.4, 123.7, 126.1, 127.1, 128.5, 135.0, 136.5, 140.2, 

140.9, 157.9, 163.1, 164.7, 166.0, 189.6. Elemental analysis calcd. (%) for C33H46N2O3: 

C 76.41, H 8.94, N 5.40, Found: C 76.36, H 8.96, N 5.39. MS (FAB): m/z 519.4 [M + 

H]+. Accurate mass: calcd., 519.3587; found, 519.3515. 

4.2.4. Synthesis of chloromethyl functionalized salen ligand (2) 

 Compound 2 was prepared similarly to compound 1 (Figure 4.7). A solution of 

(1R,2R)-1,2-diaminocyclohexane monohydrochloride salt (0.75 g, 5mmol) and activated 

4Å molecular sieves was also prepared in anhydrous ethanol (20 ml) and anhydrous 

methanol (20 ml). 3,5-di-tert-Butyl-2-hydroxybenzaldehyde (1.17 g, 5 mmol) was then 

added and the solution was stirred at room temperature for 4 hours. At the end of this 

time period, a solution of 3-tert-butyl-5-(chloromethyl)-2-hydroxybenzaldehyde31 (1.13 

g, 5 mmol) in anhydrous methylene chloride (40 ml) was added to the reaction mixture. 

Triethylamine (1.4 ml, 10 mmol) was then slowly added to the solution, and the mixture 

was stirred for an additional 4 hours. The solution was filtered to remove the residual 

sieves, and then the solvents were removed. The residue was re-dissolved in methylene 

chloride (50 ml) and was washed with aqueous hydrochloric acid (1M, 25 ml) and 

 92



deionized water (2 x 25 ml). The organic phase was then dried with magnesium sulfate. 

Although compound 2 was verified to be in the crude product mixture and various 

purification methods were attempted, successful isolation of the pure product in 

reasonable yields was not achieved. Further information regarding the purification 

difficulties associated with this compound may be found in section 4.3.2. 

4.2.5. Synthesis of carboxylic acid functionalized salen ligand (3)  

 2-(3-tert-Butyl-5-formyl-4-hydroxyphenyl)acetic acid (subsequently referred to as 

carboxylic acid functionalized aldehyde) was synthesized following literature 

procedures.26  Synthesis of compound 3 was attempted using this carboxylic acid 

functionalized aldehyde as indicated in Figure 4.7. This did not produce a sufficiently 

pure salen catalyst for further studies. As an alternative, a self-protecting synthesis was 

evaluated following a literature report for similar compounds (Figure 4.8).32 The 

carboxylic acid functionalized aldehyde (591 mg, 2.5 mmol) and (1R,2R)-1,2-

diaminocyclohexane (285 mg, 2.5 mmol) were stirred under reflux conditions in 

methanol for 2 hours. The zwitterionic product was unable to be isolated. Further 

information regarding the difficulties associated with synthesizing compound 3 may be 

found in section 4.3.3. 
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Figure 4.8. Synthesis of self-protecting carboxylic acid functionalized salen ligand. 
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4.3. Results and Discussion 

4.3.1. Aldehyde functionalized salen ligand (1)  

 As mentioned in the introduction, the reports of using an aldehyde/amine reaction, 

or Schiff base reaction, as a method to graft salen ligands to aminosilica surfaces build 

the metal complexes in a stepwise manner off of the aminosilica surfaces. However, it is 

generally desired to have a well-defined immobilized catalyst so as to be able to properly 

assign catalytic behavior and more clearly understand the properties of the supported 

catalyst. For this reason, the stepwise grafting approach for the aldehyde functionalized 

salen has a number of disadvantages. Using this approach, undesirable side reactions can 

take place during the synthesis of the immobilized catalyst, particularly since excess 

reactant is often added during each grafting step.9,10 Specifically, during the first grafting 

step in Figure 4.4, the di-aldehyde could react with two adjacent amine sites rendering it 

unreactive toward the remaining catalyst grafting steps (Figure 4.9 b). Likewise, during 

the addition of the cyclohexanediamine, two adjacent aldehyde functionalities could be 

linked (Figure 4.9 c). The result is an immobilized catalyst that is poorly defined with 

many different species on the surface. 
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Figure 4.9. Possible products of step-wise grafting approach using a Schiff base linker, 

where (a) is the desired moiety and (b) and (c) are undesired side products. 
 

 

 To circumvent this problem and create a more well-defined surface, a synthesis 

was developed to generate an unsymmetrical salen ligand that could be preassembled 

prior to grafting but would still possess the aldehyde functionality for reaction with the 

surface. This ligand is shown in Figure 4.7 as compound 1. After synthesis, this molecule 

was extensively characterized using 1H and 13C NMR spectroscopy, elemental analysis, 

and mass spectroscopy. Indeed, these techniques verified that the desired molecule was 

produced.  

 After synthesis and characterization, the ligand was metalated. This was 

accomplished by dissolving compound 1 in methylene chloride and then adding one 

equivalent of cobalt(II) acetate dissolved in methanol. The brick red solid product 

precipitated from solution and was recovered via filtration. The cobalt(II) salen was then 

oxidized to the cobalt(III) salen by stirring the compound with two equivalents of glacial 

acetic acid in toluene until the solution changed from brick red to dark brown in color.   

In these studies, cobalt was selected for the metal because cobalt salen catalysts are used 
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in the hydrolytic kinetic resolution of epoxides (Figure 4.10). This reaction is well-known 

to require two catalytic sites to promote the kinetic resolution, and therefore it could 

indicate if the spacing of the amine sites on the silica materials had an effect on the 

immobilized catalyst’s reactivity. The trityl de-protected and the traditionally grafted 

aminosilicas were tested first. 
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Figure 4.10. Hydrolytic kinetic resolution of epichlorohydrin using cobalt salen catalyst. 
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Figure 4.11. FT-Raman spectra for the aldehyde functionalized ligand 1 and the cobalt 
salen catalyst grafted to trityl de-protected aminosilica. 

 

 

 The metalated ligand was grafted to the surface by refluxing (using a Dean Stark 

trap) the metal complex and the desired aminosilica in toluene overnight. The solid 

materials were then filtered, washed, and dried, and the immobilized catalysts were 

characterized using FT-Raman spectroscopy. The results obtained for the ligand prior to 

grafting, compound 1, and the cobalt salen catalyst grafted to the trityl de-protected 

aminosilica are shown above (Figure 4.11). It should be noted that the intensity of the 

spectrum of the immobilized catalyst is decreased because the sample contains mostly 

silica, whereas the other spectrum results from the pure organic compound.  The main 

resonances of interest are the aliphatic and aromatic resonances from 2800-3100 cm-1 in 

both spectra, the aldehyde resonance at 1684 cm-1 in only the ligand prior to grafting, and 
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the imine resonance at 1630 cm-1 in both spectra. This data provides evidence that the 

desired catalyst is in fact grafted to the surface. Similar results were obtained for the 

catalyst grafted onto traditionally prepared aminosilica. 

 It was also noted that the efficiency of the catalyst loading onto the amine sites 

was much higher on the trityl de-protected aminosilica, showing more than 95% of the 

amines to be reacted with the cobalt catalyst (Table 4.1). In contrast, only 36% of the 

amines on the traditionally synthesized aminosilica had reacted with the catalyst. This 

result is expected as it previously has been shown that the de-protected aminosilicas 

display more uniform reactivity toward further functionalization.33,34  

 

 

Table 4.1. Efficiency of catalyst loading onto aminosilicas. 

Catalyst Amine Loadinga Cobalt Loadingb % Amines 
Reacted 

Cobalt(III) salen on 
trityl de-protected 

aminosilica 

0.45 mmol NH2/ 
g SiO2 

0.43 mmol Co/       
g SiO2 

> 95% 

Cobalt(III) salen on 
traditionally grafted 

aminosilica 

2.02 mmol NH2/ 
g SiO2 

0.73 mmol Co/       
g SiO2 

36% 

a – Determined by TGA. b – Determined by elemental analysis. 

 

 

 Once the cobalt loading was determined, the catalysts were tested in the 

hydrolytic kinetic resolution of epichlorohydrin. It was hypothesized that the catalyst 

immobilized on the trityl de-protected aminosilica should possess less reactivity since it 

would be less likely for two catalytic sites to be in close enough proximity to complete 

the reaction. Indeed, when this material was used in the HKR reaction, no activity was 
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observed. Conversely, the catalyst grafted onto the traditionally prepared aminosilica was 

expected to perform well in this reaction as the active sites should be in close proximity 

to one another. However, when this material was tested, it also showed no reactivity 

toward the HKR of epichlorohydrin. 

 Two main possibilities were seen as potential explanations for the absence of 

reactivity with this material. First, there could be some constraint or accessibility issue 

caused by the anchoring of the catalyst onto the solid surface. Otherwise, there could be 

active site blocking due to the proximity of the tethering point to the metal center. In 

order to determine which of these effects were in play, a homogeneous analog of the 

surface species was synthesized by reacting the aldehyde functionalized cobalt salen 

catalyst with n-propylamine (Figure 4.12). This catalyst also showed minimal reactivity 

in the HKR of epichlorohydrin, achieving less than 5% conversion of the starting epoxide 

and no enhancement in the enantiomeric excess. It is hypothesized that the imine nitrogen 

of the linker is close enough to the metal center that it is able to block the coordination of 

the epoxide. 
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Figure 4.12. Reaction of the aldehyde functionalized salen with n-propylamine to form a 
homogeneous catalyst with a similar metal environment as the immobilized catalyst. 
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 Therefore, this data indicates that contrary to published reports, grafting of the 

cobalt salen catalyst via a Schiff base reaction with an aldehyde in this position and an 

amine does not yield an active catalyst for the HKR of epichlorohydrin.11 It may be that 

some other moiety generated during the step-wise grafting approach exists on the surface 

that promotes the reaction. This may also provide insight into why this grafting approach 

failed to produce very active or selective catalysts in other reactions reported in the 

literature.9,10,12 

4.3.2. Chloromethyl functionalized salen ligand (2)  

 Since the aldehyde functionalized salen ligand was found to be unsuitable in 

terms of activity and selectivity, a second amine-reactive salen ligand was investigated. 

Reports in the literature indicated that a chloromethyl functionality on the 5 position of 

one of the salen phenyl rings was capable of reacting with aminosilica materials under 

relatively mild reaction conditions.13-15,25 However, in most of these cases, the synthesis 

procedure leads to multiple types of sites on the aminosilica surfaces (Figure 4.13).13,14,25 

This again makes accurate assignment of catalytic activity difficult, as demonstrated in 

section 4.3.1. To minimize the multiple surface moieties, a synthesis was developed to 

generate the pre-assembled chloromethyl salen catalyst via a method similar to the one 

reported by Kureshy and co-workers.15  
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Figure 4.13. Possible products of literature methods for grafting salen catalysts using a 
chloromethyl/amine reaction, where (a) is the desired functionality and (b) and (c) are 

undesired side products. 
 

 

 Although this previous report indicated a yield of ~80% for the chloromethyl 

functionalized unsymmetrical salen ligand, these results were not able to be reproduced 

in this work. When the reported synthesis procedure was attempted, more than 50% of 

the crude product was found to be un-reacted starting materials. Since this approach was 

not successful, the synthesis of compound 2 was attempted using the same protocol as 

used for the aldehyde functionalized salen (Figure 4.7). During the synthesis of the 

ligand, a mixture of un-reacted aldehydes as well as both symmetrical salen ligands was 

generated (Figure 4.14).  Many attempts were made to improve the synthesis method as 

well as the purification procedures. If the chloromethyl aldehyde was added first to the 

protected cyclohexane diamine, a reaction between the chloromethyl group and the 

cyclohexane diamine was observed. When a smaller equivalent of the chloromethyl 

aldehyde was added to the mono-functionalized cyclohexane diamine, the product was 

not able to be purified sufficiently. To improve the purification procedure, different silica 

gels were tried including standard silica gel, premium silica gel, and Florisil. Also, if the 

columns were pre-treated with methanol to remove water, some of the chloromethyl 

 101



groups were exchanged to hydroxymethyl groups. Despite great effort, the desired 

compound was never obtained in greater than 10% yield. For this reason, this grafting 

method was ultimately abandoned. 

 

 

t-Bu

HO t-Bu

NN

OH

t-Bu

t-Bu

t-Bu

OH

O

Cl

t-Bu

t-Bu

OH

O

t-Bu

HO

NN

OH

t-Bu

t-Bu

t-Bu

HO

NN

OH

t-Bu
Cl ClCl

 
 
Figure 4.14. Mixture of compounds obtained using synthesis from Figure 4.7 to produce 

the chloromethyl functionalized salen. 
 

 

 However, in order to provide a rough test of the utility of the spaced aminosilicas, 

the statistical mixture method reported by Baleizao and co-workers was used to 

functionalize aminosilica materials with the salen ligand (Figure 4.15).13 The mixture of 

salen ligands was metalated with cobalt for use in the hydrolytic kinetic resolution (HKR) 

of epichlorohydrin and then immobilized. All three aminosilica materials were 

functionalized: the trityl de-protected aminosilica, the benzyl de-protected aminosilica, 

and the traditionally grafted aminosilica.  
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Figure 4.15. Statistical mixture method for immobilizing a chloromethyl functionalized 

salen catalyst onto an aminosilica. 
 

 

 When used in the HKR reaction, the materials were not exceptionally active 

catalysts. However, differences between the aminosilica scaffolds were observed (Figure 

4.16). The catalyst which was grafted onto the trityl de-protected aminosilica (most 

opportunity for isolation) exhibited the least reactivity in the HKR reaction. Again, due to 

the bi-metallic nature of the reaction pathway, this result indicates that the catalytic sites 

are likely too far apart for two sites to be able to efficiently come together to complete the 

reaction. The benzyl de-protected aminosilica showed slightly more activity than the 

trityl de-protected material, which can be explained by the fact that, while isolated, the 

amine sites are still closer together than on the trityl de-protected aminosilica. Finally, the 

traditionally grafted aminosilica material exhibited the highest reactivity for the HKR of 
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epichlorohydrin. As this scaffold allows the most opportunity for the grafting of salen 

catalytic sites in close proximity, this result is in line with the initial hypothesis. 
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Figure 4.16. Conversion of R-epichlorohydrin (0.5 mol% catalyst) using a cobalt(III) 
salen catalyst grafted onto three aminosilica scaffolds. 

 

 

 Although these results show that the starting scaffolds onto which the catalyst is 

grafted can influence activity, the inability to thoroughly characterize the surface species 

on these materials rendered this method undesirable. The statistical nature of the 

synthesis procedure coupled with the difficulty in purifying the desired species in 

sufficient yield for study led to the exploration of a third technique for grafting the salen 

catalyst onto aminosilica surfaces. However, valuable information was obtained which 

showed that these materials could be included in an immobilized catalyst’s design criteria 

if a suitable analog could be synthesized. 
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4.3.3. Carboxylic acid functionalized salen ligand (3)  

 In a last effort to synthesize a well-defined salen catalyst on an aminosilica 

surface, a method reported in the literature utilizing a carboxylic acid functionalized salen 

ligand was explored.26 While reaction results were reported, no characterization of the 

immobilized catalyst was provided. Therefore, the isolation of products at individual 

steps was attempted in this work so as to be able to more thoroughly characterize the 

immobilized catalyst. Two paths were explored, with the first being the synthesis of the 

salen catalyst with an unprotected carboxylic acid functionality (Figure 4.7) and the 

second being the synthesis of the salen catalyst using a self-protecting method (Figure 

4.8).32  

 In the first case, the carboxylic acid functionalized aldehyde was reacted in the 

same manner as the aldehyde and chloromethyl functionalized aldehydes used for 

compounds 1 and 2. The crude product mixture was purified by column chromatography, 

and the resulting fractions showed a mixture of the desired product, symmetrical di-tert-

butyl substituted salen, and un-reacted starting aldehydes. The least impure fraction of the 

target compound still contained 30% un-reacted starting materials. Additional attempts 

were made to purify the product with column chromatography, but the pure product was 

not isolated in >10% yield. 

 The second synthesis that was attempted was a self-protecting method whereby 

the carboxylic acid functionalized aldehyde was reacted with cyclohexane diamine to 

generate a zwitterionic product.32 The reaction was attempted multiple times, but in each 

case, the zwitterionic solid product never precipitated from the methanol solution. The 

solution phase was analyzed by 1H NMR, and the result showed that some Schiff base 
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formation had occurred. Considering that the product might simply be soluble in 

methanol, the methanol was removed, and a portion of the residue was re-dissolved in 

methylene chloride and another portion in ether in attempts to precipitate the desired 

product. These solvents did cause the precipitation of some solid material, but it was not 

at all pure. Attempts to further purify the product were unsuccessful. In the original report 

of this procedure, the carbonyl carbon of the acid functionality was directly off the 

phenyl ring (a benzoic acid), whereas in this work, there is a methylene group between 

the phenyl ring and the carboxylic acid functionality (a phenyl acetic acid). It is 

hypothesized that the change in chemical environment due to the extra methylene group 

may prevent the efficient formation of the desired zwitterion. 

 Since compound 3 was not able to be synthesized in a pure form, this method of 

grafting to aminosilicas was not pursued further. 

4.4. Conclusions 

 The results presented in this chapter highlight efforts toward the synthesis of well-

defined salen catalysts immobilized onto aminosilica materials. While the three methods 

that were attempted did not achieve the complete goal of a defined, active, and selective 

immobilized catalyst, the results that were obtained did reveal a number of important 

findings. First, although reported to be a successful catalyst, the aldehyde functionalized 

cobalt salen catalyst was shown to be inactive toward the HKR reaction once reacted with 

an amine group either on a surface or in solution. This may explain why other literature 

reports where this grafting method was utilized for other catalysts/reactions did not 

produce highly active catalysts. The second important result revealed that even with a 

multi-sited immobilized catalyst, a trend was seen in reactivity based on the aminosilica 
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scaffold that was used. This lends credence to the original hypothesis that the differently 

spaced aminosilicas could be included in the design parameters when immobilizing a 

catalyst with a known mechanism, or they could be used to help establish a previously 

unknown reaction mechanism. Lastly, some synthetic challenges were highlighted to 

provide guidance for future work in this area. 
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CHAPTER 5 

SUMMARY, CONCLUSIONS, AND FUTURE WORK 

5.1. Summary 

 The main goals of this dissertation were: 1) to synthesize, characterize, and 

evaluate the reactivity of immobilized catalysts for different applications so that new 

catalysts would be made available, and 2) to compare the different catalyst systems to 

gain insight on how immobilization parameters effect catalytic activity. To this end, 

immobilized catalysts were developed and tested for application in the formation of 

cyclic carbonates from epoxides and carbon dioxide, the oxidative kinetic resolution of 

α-hydroxy esters, and the exploitation of aminosilica scaffolds with varied degrees of 

grafting site isolation. 

 In the first application, a new immobilized Lewis base catalyst was developed on 

SBA-15 mesoporous silica for the reaction of propylene oxide with carbon dioxide.1 The 

homogeneous base selected for immobilization was 4-(dimethylamino)pyridine (DMAP) 

due to its high activity in this reaction as well as its use in many other organic 

transformations. While previously reported to function only as a co-catalyst, the results 

presented in this work show that the base gives yields of 80-85% with no additional 

catalyst present. The reaction, which was conducted at 120 °C and 17.2 bar CO2 pressure, 

was tested with homogeneous DMAP, the new silica supported DMAP, and a 

commercially available poly(styrene) supported DMAP. All three catalysts performed 

similarly in the first runs. However, the recycle performance of the silica supported 

catalyst, while not as high as the initial run, was superior to that of the polymer supported 

catalyst. This could potentially be attributed to degradation of the polymer catalyst 
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caused by the elevated reaction temperature and pressure. This work served to clarify the 

importance of the Lewis base in this reaction as well as to provide a comparison of 

support materials for high temperature/pressure reactions. 

 The second application for which new immobilized catalysts were developed is 

the oxidative kinetic resolution of α-hydroxy esters. Since enantiomerically pure α-

hydroxy esters are used in pharmaceutical and fine chemical production, enantioselective 

reactions are attractive because they facilitate the separation of enantiomers. The 

homogeneous catalyst selected for immobilization in this case was a tridentate Schiff 

base vanadium catalyst derived from salicylaldehyde and S-tert-leucinol.2 One silica 

supported and two polymer supported catalysts were created. The polymer supported 

catalysts were synthesized via the polymerization of a styryl functionalized catalyst 

monomer alone (homopolymer) or with styrene (copolymer). Other parameters that were 

studied for this reaction system included the method of polymer metalation (in situ or 

prior to reaction) and the reaction solvent. All three immobilized catalysts were active for 

the resolution reaction, although the polymer catalysts outperformed the silica supported 

catalyst, with the copolymer being the most active catalyst. Acetone was found to be the 

optimal reaction solvent for all of the catalysts studied, and the most effective metalation 

protocol was found to depend on the polymer catalyst used. 

 The final area which was studied was the utilization of support scaffold materials 

with varied degrees of grafting site isolation to create spaced salen catalysts anchored to 

silica surfaces. Previous researchers in our group had developed protocols for the 

syntheses of amine functionalized mesoporous silicas with increasing degrees of amine 

group isolation on the surface.3,4 The homogeneous catalyst selected for immobilization 
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on these materials was the salen catalyst due to its activity for many types of reactions.5,6 

It was also selected because salen catalysts are known to function in a bimetallic manner 

in some reactions (catalytic cycle involves two active sites)7 and in a monometallic 

manner in other reactions (catalytic cycle involves one active site).8 It was surmised that 

the same salen catalyst grafted on different amine scaffolds would exhibit differences in 

activity depending on the reaction mechanism that was occurring, with greater spacing 

favoring monometallic reactions and less spacing favoring bimetallic reactions. A 

number of difficulties in the syntheses of amine reactive salen catalyst analogs were 

discussed, most of which related to the development of analogs that could be thoroughly 

characterized prior to grafting. One such analog was shown to be completely ineffective 

when the pure compound was used, contrary to reports that indicated its activity when 

grafted onto silica in a step-wise manner. However, tests were conducted with other 

spaced salen materials that did show decreasing activity with increasing catalyst isolation 

in the hydrolytic kinetic resolution of epichlorohydrin, a bimetallic reaction. 

5.2. Conclusions 

 While a concrete algorithm for designing new immobilized catalysts does not yet 

exist, there are a number of design parameters which can be ascertained from a review of 

the results found in this work. One factor that complicates this analysis in the reported 

literature is the considerable variation in the degree of characterization of immobilized 

catalysts. Particularly if the immobilization procedure involves multiple surface 

reactions, it can be extremely difficult to properly assign catalytic behavior. This is 

because most readily available characterization techniques for solid materials do not have 

the resolution to detect or quantify small amounts of impurities which can alter the 
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catalytic properties of the material. Therefore, in this work, every attempt was made to 

synthesize the supported catalysts in such a way as to minimize the number of surface 

reactions and to produce well-defined materials. 

 There are three general components to immobilized catalysts that are made from 

the grafting of catalyst analogs onto support structures or from the incorporation of 

catalyst analogs into the support structure.9 These are the support, the linker, and the 

catalyst analog. When selecting a support, the most important considerations are the 

reaction temperature and pressure. In general, polymer supports are very attractive for 

mild reaction conditions. Their properties can be tuned for a specific application more 

easily than silica materials.10 For instance, altering the catalyst loading and the degree of 

isolation between two sites can be accomplished simply by changing the monomer ratios 

in a copolymer. Also, the polymer backbone can be altered to adjust the catalyst’s 

solubility in the reaction solvent. If a totally heterogeneous process is desired, the 

polymer can be made insoluble. If higher reaction rates are desired, the polymer 

backbone can be selected so that it will be dissolved during the reaction but easily 

precipitated after the reaction. However, polymer catalysts are more susceptible to 

degradation under high temperatures and pressures than inorganic materials. Even a very 

active polymer catalyst would fail to be an “ideal” immobilized catalyst if degradation 

during the initial reaction rendered it unable to be recycled. For these conditions, silica 

materials are more appropriate supports.11,12 Mesoporous silicas have very high thermal 

stabilities, high surface areas, and are easy to functionalize. Although there is less 

opportunity to tune the support structure itself, the surface can be tailored to a specific 

application through processes which can adjust the isolation of grafting sites.  
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 The linker, or group which connects the catalyst analog to the support structure, is 

the next important consideration when designing a new immobilized catalyst. With both 

polymer and silica supports, the linker is typically the component which most affects the 

mobility of the catalytic sites. A rigid linker that minimizes interactions between two 

catalytic sites would be appropriate for monometallic reactions as it should increase 

accessibility to the active site and minimize site deactivation by other active sites. A long, 

flexible linker would be appropriate when two catalytic sites must interact during the 

course of the reaction. The exact linker length that is optimal may be different for each 

catalyst/reaction combination, though.9,13 Here, two options exist to address this problem. 

The first option is to test similarly flexible linkers of different lengths until the optimized 

distance is found. This can be very synthetically taxing. The second option is to combine 

modeling of the reaction transition state with modeling of the linker length to hone in on 

an ideal length. This method is rarely reported, but it is anticipated to become 

increasingly important as this field continues to mature.  

 The last consideration in designing supported catalysts is the structure of the 

catalyst analog itself. This area is likely to be the last for which true, a priori criteria can 

be developed. Even the design of new homogeneous catalysts often requires trial and 

error when determining the most active ligand structures.14 However, it can be said that 

ensuring that the point of attachment is far away from the active site is desirable because 

it decreases the opportunity for the linker to coordinate with or otherwise block access to 

the active site. So, while general guidelines can be offered for the design of immobilized 

catalysts, more detailed criteria must continue to be determined from on-going research 

in this area. 

 114



5.3. Recommendations for Future Work 

5.3.1. Aluminum salen catalyzed formation of cyclic carbonates  

 In chapter 2, it was demonstrated that a Lewis base alone could catalyze the 

reaction of propylene oxide with carbon dioxide in moderate yields (~80%). However, 

the yield can be increased to almost quantitative values with the use of metal catalysts. 

Specifically, metal salen catalysts have been shown to give excellent yields and high 

selectivity toward the desired cyclic carbonate.15-21 Nonetheless, most of these systems 

still require elevated carbon dioxide pressures and the use co-catalysts to be effective. 

The following paragraphs outline research opportunities to address these issues using 

supported catalysts.  

5.3.1.1. Macrocyclic oligomeric aluminum salen catalysts  

 A recent publication by Melendez and coworkers reported the use of an aluminum 

salen catalyst for the reaction of epoxides with carbon dioxide at room temperature and 

atmospheric carbon dioxide pressure.22 In this report, the authors claim based on mass 

spectroscopy results that the added aluminum salen (with an ethoxide counterion) forms a 

dimeric species in solution (Figure 5.1). They hypothesize that the formation of the dimer 

is the cause of its catalytic efficiency.  
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Figure 5.1. Proposed dimer formation from an aluminum salen catalyst with an ethoxide 
counterion. 

 

 

 If the catalysis is truly enhanced by the aluminum salen existing in dimeric versus 

monomeric form, it would be of interest to investigate other aluminum salen catalysts 

where multiple active sites are forced to be in close proximity to one another. Previous 

research in our group has led to the discovery of cyclic, oligomeric, cobalt salen catalysts 

which are highly effective for the hydrolytic kinetic resolution of epoxides.23 These 

oligomeric ligands are excellent candidates for use in a more detailed study of the 

aluminum salen catalyzed cyclic carbonate reaction. 

 A preliminary investigation was conducted using two macrocyclic oligomeric 

catalysts (Figure 5.2). For the conversion of styrene oxide using the small molecule 

aluminum salen catalyst (Figure 5.1) and tetrabutylammonium bromide as a co-catalyst, 

Melendez reported an epoxide conversion of 62% in 3 h. With oligomeric catalysts a and 

b (Figure 5.2), styrene oxide conversions of 42% and 13% respectively were observed 

after 3 h under the same reaction conditions. While these initial results show the reported 

catalyst to be more active, it must be noted that the oligomeric catalysts were prepared 

with chloride counter-ions. When the reported aluminum salen catalyst (Figure 5.1) was 
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synthesized with a chloride counter-ion and re-tested, no reaction occurred, indicating the 

oligomeric catalysts outperformed their homogeneous counterpart. 
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Figure 5.2. Oligomeric aluminum salen catalysts used for cyclic carbonate synthesis. 
 

 

 Based on these findings, it is hypothesized that replacement of the chloride 

counter-ions on the oligomeric catalysts will increase their activities, quite possibly 

beyond that of the reported catalyst. Also, the activity might further be increased with the 

addition of a co-solvent such as methylene chloride. In the preliminary studies, the 

oligomeric catalysts were only partially soluble in the starting epoxide, potentially 

limiting their efficiency. Since the reaction is effective with a wide range of epoxides and 

occurs at ambient temperature and pressure, the optimized catalysts would be broadly 

applicable and attractive. 
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5.3.1.2. Catalyst/co-catalyst copolymers 

 As stated, Lewis basic co-catalysts are almost always required to achieve 

quantitative yields of cyclic carbonates even with the use of metal salen catalysts.15,16,24,25 

There are many reports of immobilized metal salen catalysts for this reaction, although 

the co-catalyst is still typically dissolved in the liquid phase.24-26 It would be desirable for 

a heterogeneous system to have both the catalyst and co-catalyst immobilized, 

particularly if both species were present on the same support.  

 To this end, a copolymer system of an aluminum salen catalyst and a 4-

(dimethylamino)pyridine (DMAP) analog could potentially promote the formation of 

cyclic carbonates at atmospheric pressure with very high activity, selectivity, and catalyst 

recoverability (Figure 5.3). Early research in our group on polymer supported salen 

catalysts focused on the direct polymerization of a styryl functionalized salen monomer 

either alone or with styrene.27 Later studies investigated more flexible monomers by 

introducing ethylene glycol spacer units in the linker (Figure 5.4).13  Both of these 

monomer structures are suitable for copolymerization with a co-catalyst, and comparison 

of the resulting polymers could lead to the determination of an optimal structure. Metals 

other than aluminum, such as cobalt and chromium, could also be used in the salen 

ligand, as these previously have been reported to produce active cyclic carbonate 

catalysts. However, carbon dioxide pressures above atmospheric would likely be required 

to obtain sufficient carbonate yields. 
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Figure 5.3. Conceptual schematic of a catalyst/co-catalyst copolymer for cyclic carbonate 
synthesis. 
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Figure 5.4. Polymerizable salen monomers. 
 

 

 A 4-(dimethylamino)pyridine (DMAP) analog functionalized with a styryl group 

could provide the necessary Lewis base functionality in the copolymer. In order to 

increase the ability of the base and salen to interact, the DMAP analog could be 

synthesized with a propyl spacer as the linker. This could be accomplished through the 

deprotonation of 4-(methylamino)pyridine (MAP) followed by its reaction with 4-(3-
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chloropropyl)styrene (Figure 5.5). MAP is commercially available, and 4-(3-

chloropropyl)styrene can be prepared in two steps following literature procedures.28  
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Figure 5.5. Proposed synthesis of flexible, styryl functionalized DMAP analog. 
 

 

5.3.2. Tridentate Schiff base vanadium catalysts 

5.3.2.1. Optimization of vanadium copolymer catalyst 

 In Chapter 3 of this dissertation, polymeric, tridentate vanadium Schiff base 

catalysts were developed for the oxidative kinetic resolution of secondary alcohols. Two 

polymers were tested, with the first being a homopolymer of the monomer functionalized 

catalyst, and the second being a copolymer of the same monomer and styrene (Figure 

5.6). The reactivity results showed that the copolymer (2:5 catalyst:styrene ratio) was a 

more active catalyst than the homopolymer. However, the ratio of catalyst monomer to 

styrene was not varied. One possibility for the improvement of the polymer catalyst is to 

synthesize copolymers with incrementally increasing styrene ratios to determine if there 

exists an optimal copolymer ratio for maximum catalytic activity.  
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Figure 5.6. Vanadium polymer catalyst for oxidative kinetic resolution. Homopolymer: 
m=0; copolymer: m=0, n varied. 

 

 

 Another possibility for improvement of the polymer catalysts is to use a different 

linker between the Schiff base ligand and styryl functionalities on the catalyst monomer 

to potentially improve solubility. Currently, the metalated polymers are insoluble in 

common organic solvents, including those in which the catalytic reactions take place. A 

salicylaldehyde derivative with an ethylene glycol functionality has been reported which 

could be used in the polymer and copolymer syntheses to alter the solubilities (Figure 

5.7).  
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Figure 5.7. Styryl functionalized monomer with ethylene glycol linker. 
 

 

 

 121



5.3.2.2. Other asymmetric reactions utilizing tridentate Schiff base vanadium catalysts 

 There are other asymmetric reactions of interest which use similar catalysts to the 

vanadium Schiff base catalyst used in this work. Two specific examples are the oxidative 

kinetic resolution of α-hydroxy amides and the oxidative kinetic resolution of α-hydroxy 

phosphonates, which are both reported to occur with high yields and enantiomeric 

excesses (Figure 5.8).29,30 These reactions use tridentate Schiff base catalysts derived 

from tert-leucine instead of tert-leucinol. The polymer and silica supported catalysts 

described in Chapter 3 could be easily synthesized with this functionality similarly to 

reported procedures.29 
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Figure 5.8. Asymmetric reactions utilizing a tridentate Schiff base vanadium catalyst. 
 

 

 Since the leucine derived catalyst (Figure 5.8) is also active for the oxidative 

kinetic resolution of α-hydroxy esters, a study of the polymer and silica immobilized 
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catalysts for these three reactions would provide a basis set for comparison of 

immobilization effects across multiple support structures and reactions. Also, there is one 

known report of a similar catalyst grafted onto a poly(styrene) bead.31 This catalyst could 

be prepared and tested as well and would provide an additional comparison of a grafted 

polymer catalyst versus a polymerized catalyst monomer. 

5.3.3. Salen catalysts grafted on aminosilicas 

 Although the synthesis attempts outlined in Chapter 4 of this dissertation were not 

successful for immobilizing well-defined salen catalysts onto aminosilicas, the 

preliminary reaction results showed that the spaced amine scaffolds could be used to alter 

the grafted catalyst’s activity. This is still a very desirable quality, particularly when 

attempting to exploit a known catalytic mechanism or determine a new catalytic 

mechanism.  

 There are two paths toward the development of salen catalysts on aminosilicas 

that are promising. The first is an improved synthesis for the carboxylic acid 

functionalized salen ligand. As postulated, the use of a phenyl acetic acid functionalized 

aldehyde instead of a benzoic acid functionalized aldehyde may likely have interfered 

with the formation of the zwitterion, as all of the previously reported zwitterions did not 

have the methylene spacer (Figure 5.9).32  
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Figure 5.9. Carboxylic acid functionalized half-salen ligands. 
 

 

 Therefore, repeating the salen synthesis with 3-tert-butyl-5-formyl-4-

hydroxybenzoic acid might generate pure product yields in line with the reported 

compounds (75% - 99%). In this case, the benzoic acid functionalized salen could be 

coupled to the aminosilica surface using a N,N’-diisopropylcarbodiimide (DIC) coupling 

(Figure 5.10). N,N’-dicyclohexylcarbodiimide (DCC) is a more common activating agent 

for carboxylic acids than DIC, but the DCC urea by-product is insoluble in most organic 

solvents, making it difficult to remove from the silica surface. However, the DIC urea by-

product is soluble in organic solvents, making the removal of this by-product from the 

silica surface much easier. 
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Figure 5.10. DIC coupling of a carboxylic acid to aminosilica. 
 

 

 The second promising path toward the synthesis of salen catalysts on aminosilicas 

is significantly more synthetically challenging. A pyrrolidine–based salen catalyst grafted 

to an amine functionalized resin has been previously reported (Figure 5.11).33 Following 

a similar procedure, it is expected that the same ligand could be grafted to aminosilicas. 

The starting pyrrolidine dimesylate is first synthesized in three steps from L-tartaric 

acid.34 Then, through a series of transformations, the diamine functionalized pyrrolidine 

is obtained and subsequently reacted with 3,5-di-tert-butyl-2-hydroxybenzaldehyde to 

form the salen ligand.35,36 The pyrrolidine salen is then reacted with glutaric anhydride to 

add a carboxylic acid functionality to the ligand. Finally, this compound could then be 

anchored to the aminosilica using a DIC coupling.33 Obtaining the product in sufficient 

yield for study, however, could be difficult. 
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Figure 5.11. Synthesis of pyrrolidine salen for aminosilica grafting. 
 

 

 One particular application where “spaced” salen catalysts could provide useful 

information is the aluminum salen catalyzed reaction of epoxides with carbon dioxide. 

There is a great deal of disagreement in the existing literature concerning the mechanism 

of this reaction (see Appendix A). While it is generally accepted that the metal salen 

coordinates with the epoxide to activate it for ring-opening, it is unclear whether a second 

metal salen is required to activate the carbon dioxide before its attachment to the ring-

opened epoxide. Data from the use of spaced, aminosilica supported salen catalysts in 

conjunction with data from the oligomeric catalysts discussed in section 5.3.1.1 could 

provide valuable insight to establish the true reaction mechanism, which could allow for 

the design of even more active catalysts.  

 Another application where “spaced” salen catalysts could be used is the ring-

opening polymerization of lactide. Aluminum salen catalysts are known to promote this 

reaction through a coordination insertion mechanism, meaning that access to the 

aluminum center is critical for successful polymerization (Figure 5.12).37-39 Since there is 

a tradeoff between catalyst isolation and catalyst loading on the spaced aminosilica 
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surfaces, these materials could be used to determine an optimal balance between surface 

loading and active site accessibility for lactide polymerizations with silica immobilized 

catalysts. 
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Figure 5.12. Mechanism of the polymerization of lactide with an aluminum salen 
catalyst. 

 

 

 Overall, the development of immobilized catalysts has been significantly 

advanced by the research efforts of the past few decades. For some reactions, thorough 

examinations of many immobilized catalysts have brought to light design parameters 

which can be used to create highly active and selective “next generation” catalysts. For 

other reactions, much of the design of new catalysts is still left to some degree of trial and 

error. This dissertation has contributed to the study of new immobilized catalysts and 

offered perspectives on future opportunities for catalyst optimization and for the 

establishment of new design criteria. As the need for effective and recoverable catalysts 

only grows, it is anticipated that catalyst immobilization will be a continued topic of 

research for many years. 
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APPENDIX A 

COUPLING OF CARBON DIOXIDE WITH EPOXIDES USING 

SALEN CATALYSTS - MECHANISTIC CONSIDERATIONS 

 

 Salen catalysts are very active and selective catalysts for the formation of cyclic 

carbonates from carbon dioxide and epoxides. There are reports in the literature of salen 

or salen-like complexes of aluminum, cobalt, chromium, manganese, tin, zinc, ruthenium 

and copper which are used to synthesize cyclic carbonates with varying degrees of 

activity. These catalysts are typically used in conjunction with a nucleophilic co-catalyst 

such as a Lewis base or a quaternary ammonium salt, and in most if not all cases, control 

experiments with no co-catalyst generate greatly reduced or completely suppressed 

yields. These reports are summarized in Table A.1.  

 One aspect of this reaction about which literature reports are very inconsistent is 

the reaction mechanism. While it is generally accepted that the metal salen catalyst 

activates the epoxide, the role of the co-catalyst differs significantly among proposed 

mechanisms. The purpose of this appendix is to present a critical analysis of the most 

often cited proposed mechanisms. In addition, evidence from reported mechanisms for 

other catalytic systems for this reaction will be included where informative. Discussion of 

the mechanism for the copolymerization of epoxides and carbon dioxide with salen 

catalysts has been omitted. This mechanism is far more well-established, and a thorough 

explanation of it can be found in existing reviews on this topic.1-3 
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Table A.1. Salen or salen-like catalyst systems for cyclic carbonate production. 

* These reactions were conducted without co-catalyst addition.  

Metal Co-catalyst 
Homogeneous 

Systems 

Heterogeneous 

Systems 

Al Lewis base 4,5 6 

Al 
Quaternary ammonium 

salts or other nucleophiles 

4,5,7-10 
 

Co Lewis base 4,5,11-14  

Co 
Quaternary ammonium 

salts or other nucleophiles 

4,5,15-18* 18,19 

Cr Lewis base 4,5,20,21 22 

Cr 
Quaternary ammonium 

salts or other nucleophiles 

4,5 
 

Mn, Cu, 

Sn, Zn  
Lewis base 

14,23-25* 25* 

Ru 
Quaternary ammonium 

salts  

26 
 

 

 

Proposed Mechanism 1 

 The first reaction mechanism that is commonly proposed involves activation of 

the epoxide by the metal salen catalyst followed by attack of the nucleophilic co-catalyst 

to ring-open the epoxide at the least hindered carbon (Figure A.1).4,8,11,14,16,20,24,26 After 

this occurs, the ring-opened epoxide attacks the un-activated carbon dioxide. Finally, the 

molecule cyclizes to give the carbonate product, and the catalytic cycle repeats.  

 131



O

C
O

O

O O

O

M

O
O

Nuc M

Nuc

M Nuc

O

M

Nuc

O
O

 

Figure A.1. Proposed cyclic carbonate mechanism 1. 
 

 

 The main evidence offered for this mechanism comes from labeling studies.8,14 In 

these studies, trans-deuterio epoxide was synthesized and used in the carbonate reaction 

to test between two possible reaction paths (Figure A.2). Path A occurs by mechanism 1 

(Figure A.1), whereas path B occurs by activation of carbon dioxide by the nucleophile 

and its subsequent attack on the salen activated epoxide. The compound then cyclizes and 

gives the product with an inversion of configuration. Since the inversion product from 

path B was not observed, it was proposed that path A was the proper mechanism. The 

same labeling study has also been conducted with phenol or the metal free ligand in place 

of the metal salen with the same results.27,28 While these results suggest that the added co-

catalyst does not coordinate with the carbon dioxide, they do not rule out the possibility 
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that the co-catalyst may coordinate with the salen catalyst, or that the salen catalyst may 

activate the carbon dioxide. 
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Figure A.2. Labeling studies. Path A – retention of configuration; Path B – inversion of 
configuration. 

 

 

Proposed Mechanism 2 

 The second proposed mechanism cited in the literature involves coordination of 

both a Lewis base and the epoxide with the salen catalyst (Figure A.3).12,13 Here, the base 

serves dual roles of ring-opening the epoxide and coordinating with the metal salen to 

facilitate the carbon dioxide insertion. This is given as the reason why two equivalents of 

base are found to be optimal. It is also rationalized that the reason further increases in 
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base concentration slow the reaction is because of competitive binding between the base 

and the epoxide with the metal salen. The activation of carbon dioxide is not included in 

this mechanism, although a deactivation pathway is hypothesized in which a large 

fraction of base coordinates with carbon dioxide at high pressures which prevents the 

coordination of the base with the metal salen. 
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Figure A.3. Proposed cyclic carbonate mechanism 2. 
 

 

 One study has suggested that the Lewis base coordination with the metal salen 

proposed above is not a requirement in the catalytic cycle.6 In this work, both the salen 

catalyst and the base were supported on different solid materials. It was surmised that if 

the direct interaction between the metal salen and the base was a requirement of the 
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catalytic cycle, the yield of cyclic carbonate should be dramatically reduced due to the 

presence of two solid phases. However, the activity was only partially suppressed, 

indicating that this interaction may not be critical. This evidence could also be used in 

support of proposed mechanism 1. 

Proposed Mechanism 3 

 The third mechanism reported in the literature suggests a similar coordination 

between the nucleophile and the metal salen as in proposed mechanism 2, but in this case, 

this complex serves to activate the carbon dioxide (Figure A.4).21,23 The epoxide is 

activated by a salen catalyst not coordinated with the nucleophile. Here, the activated 

carbon dioxide ring-opens the epoxide and subsequently adds to it. The molecule then 

cyclizes and forms the carbonate. This proposed mechanism appears to be in direct 

opposition to the labeling studies presented for proposed mechanism 1 (Figure A.2). 

Also, there does not seem to be reason given as to why the nucleophile would not also 

coordinate with the salen which activates the epoxide. However, FT-IR,  UV-vis, and 

EPR spectroscopic results do indicate the presence of carbon dioxide bound to the salen 

and nucleophile, indicating this pathway may be plausible.23  
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Figure A.4. Proposed cyclic carbonate mechanism 3. 
 

 

Proposed Mechanism 4 

 The last reported mechanism which will be covered involves the use of an 

aluminum salen catalyst that is proposed to exist in dimeric form (Figure A.5).7 The 

mechanism is based on reactivity results which show that this catalyst is able to produce 

cyclic carbonates at much milder reaction conditions than other catalysts (25 °C, 1 atm 

carbon dioxide). 
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Figure A.5. Dimeric aluminum salen. 
 

 

 In this mechanism, one aluminum center binds the epoxide, which is subsequently 

ring-opened by a quaternary ammonium salt (Figure A.6). Then, the second aluminum 

center on the dimer binds and activates carbon dioxide. Intramolecular transfer of the 

alkoxide and cyclization of the carbonate complete the catalytic cycle. The suggested 

mode of CO2 binding on the second aluminum center is supported by previously reported 

theoretical and spectroscopic results.29,30 When the reaction was conducted without the 

ammonium salt, no carbonate was produced, indicating the activated carbon dioxide does 

not directly attack the epoxide ring. While a dual sited salen catalyst may not be required 

for cyclic carbonate production, it does appear to enhance the activity of the catalyst. 
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Figure A.6. Proposed cyclic carbonate mechanism 4. 
 

 

 The four mechanisms outlined here are the most commonly proposed, although 

other reaction mechanisms have been reported.4,5,10,15 As suggested by Lu, it appears that 

multiple reaction pathways can occur simultaneously, with one or more predominating 

under a given set of reaction conditions.31 However, close examination of these possible 

mechanisms could still prove useful in designing catalytic systems that take advantage of 

the most active and efficient pathways. 
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