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ABSTRACT 
 

We propose a high-yield (~ 90%) fabrication route to obtain suspended graphene devices. 
Importantly, we focus on the scalability of the process as well as its compatibility with existing Si 
technologies. To address these issues, we developed a fabrication scheme based on graphene grown 
by chemical vapor deposition (CVD). 
  

The most crucial step in the fabrication process relates to the etching of the underlying SiO2 
substrate to suspend the graphene ribbons. It is often reported in the literature that at this stage, 
capillary forces can lead to the collapse of the graphene beams. We have found that apart from this 
effect, the quality of the interface between the etch mask and the substrate is key to successfully 
suspend graphene devices. Only when the quality of this interface was improved, were we able to 
achieve remarkably high yields of approximately 90%. Characterization by Raman spectroscopy, 
scanning electron microscopy (SEM) and atomic force microscopy (AFM), performed after each step 
of fabrication, attested that our methodology does not impact the quality of the graphene. 
  

We have subsequently employed Raman spectroscopy to investigate doping and strain in 
our CVD graphene devices. While we did observe a strong p-type doping of graphene supported on 
SiO2 in air, doping alone cannot account for the observed spectra. Instead, we conclude that the 
measured graphene samples display a compressive internal strain, which does not fully relax during 
fabrication. We attribute this strain to the large temperature budget of the CVD process and to the 
rigid transfer polymer. 
  

Finally, we have studied the electrical characteristics of our devices at room temperature as 
well as at low temperatures. The measurements confirmed the strong p-type doping of graphene, 
and as a result, back-gating only resulted in a weak current modulation. Magneto-transport 
measurements performed at 4 and 20 K were used to extract the carrier density and the mobility of 
devices supported on SiO2. Low mobility values are attributed to scattering through grain 
boundaries. At low magnetic fields, we have observed signatures of weak localization, which implies 
that intervalley scattering is the dominant mechanism in our samples. At higher magnetic fields, the 
longitudinal resistivity showed temperature-robust oscillations which could be identified as Landau 
levels. 
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Chapter 1 
 

1. INTRODUCTION 
 
Graphene has entered research fields through the wonders of a scotch-tape. As it is simply 

one of the many layers which make up graphite, it should not be surprising that it was isolated 
simply by rubbing an adhesive tape full of cleaved graphite pieces against a Si wafer. Yet, it was 
surprising. Despite of how simple it sounds, its isolation was not trivial considering that it could not 
be achieved until 2004. It was even once proven by Landau that it cannot exist on its own to begin 
with. In fact, graphene had been part of various theoretical studies since the study of graphite by 
Wallace in 1937 with several predictions on its properties. Thus, its experimental isolation brought 
excitement since scientists finally had the possibility to study its remarkable electrical, mechanical, 
optical and thermal properties of this first truly two dimensional material not only in theory, but also 
in experiments. The wondrous material awarded the Manchester team with the Nobel Prize in 2010. 

 

 
Figure 1. The number of articles within the topic “graphene” 
shown for every year between 2000 – 2014. The number for the 
year 2014 is recorded in August 2014 and is therefore 
incomplete. All data is taken from Web of Science. 

 
Figure 1 gives an idea on how the field grew with the discovery of the isolation method in 

2004 and the support that came in later years by wafer-scale synthesis techniques. As simple as the 
procedure was in theory, it should be noted that the sudden avalanche of the number of studies on 
graphene is significantly owed to the presence of clean room facilities, ebeam lithography and the 
existing knowledge of fullerenes.  

 
In this chapter, we firstly would like to introduce you the different types of carbon and the 

emergence of graphene followed by presenting its various exceptional properties and the possible 
applications that can be developed from them. 
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1.1. Carbon allotropes 
 

Carbon is the basis of all kinds of life forms. This originates from its unique position in the 
periodic table granting it four valence electrons. Depending on the hybridization, it is capable of 
single, double and triple bonds. This freedom gave way to the diversity of the possible forms of 
carbon, man-made as well as found in nature. 

 

(a) 

(b) 
Figure 2. a) The atomic orbitals s, px, py and pz. b) sp, sp

2
 and sp

3
 

hybridization and the bond angles they lead to. [1] 

The electron configuration of carbon goes as 1s2 2s2 2p2. The four valence electrons take 
part in the chemical bonds. Due to the small energy difference between the 2s and 2p (2px, 2py and 
2pz) orbitals, (Figure 2a) their wave functions easily mix and create new orbitals in the form of sp, 
sp2 or sp3, depending on the number of p atomic orbitals participating in the mixing with the s 
atomic orbital. (Figure 2b) The phenomenon is first introduced by Pauling [2] as hybridization. 
Hybridization is the origin of the diverse geometries possible for C-C bonding. This unique ability 
allows carbon to form 0D, 1D, 2D as well as 3D structures. 

 
The two most common allotropes of carbon are diamond and graphite. Diamond has a face-

centered cubic unit cell as a result of sp3 hybridization giving way to bonding angles of 109.5°. 
(Figure 2b and Figure 3a) The C-C covalent bond is one of the strongest bonds in nature and thus 
leads to a high Young’s modulus and high thermal conductivity. As diamond is the hardest natural 
mineral known to man, it generally finds use in industry in the fields of drilling and cutting. Graphite, 
on the other hand, is the result of sp2 bonding with bond angles of 120°. (Figure 2b) This, along with 
the interaction of the pz orbitals leads to a set of stable hexagonal layers as in Figure 3b. Each 
individual layer is called graphene. A noticeable from Figure 3b, these layers are strong in the lateral 
direction where the atoms are chemically bonded and they can, at the same time, slide past each 
other. Van der Waals interaction is responsible for the weak vertical bonding. Graphene is not just a 
layer from the most thermodynamically stable form of carbon, it is a good electrical conductor 
through the delocalization of the electrons in π orbitals. Diamond, on the other hand, is an electrical 
insulator with a band gap of ~ 5.5 eV. Carbon can also come in a non-crystalline form, as the so-
called “amorphous carbon”. (Figure 3g) While one can find entirely amorphous carbon, it is also 



 

3 
 

possible to produce the type preserving short-range order which is comprised of small crystallites of 
graphite or diamond.  [3] [4] 

 

Figure 3. Sketches 
of several allotropes 
of carbon:  
a) diamond,  
b) graphite,  
c) lonsdaleite,  
d) C60 (buckyball),  
e) C540, f) C70, 
g) amorphous 
carbon,  
h) single-walled 
carbon nanotube. 
[4] 

 
The not-so-common forms of carbon have been studied heavily since 1985 with the 

discovery of buckminsterfullerenes or “buckyballs”, by a team of scientists from Rice University and 
the University of Sussex. [5] The buckyball clusters are 0D crystals of carbon, the smallest of which 
can consist of 20 carbon atoms forming the C20. Figure 3d depicts the most well-known form, the C60 
which awarded the scientists with a Nobel Prize in 1996. 
 

The studies on 0D fullerenes led to an interest on their 1D derivatives, the carbon nanotube 
(CNT). A CNT is a sheet of graphene, rolled up into a cylinder capped with half buckyballs as in Figure 

3h.  Even though there is evidence that the CNTs had been observed by several scientists earlier, the 
CNTs owe the buzz to the work by Ijima et al. in 1991. [6] With the extraordinary electrical and 
mechanical properties, the field quickly grew. The CNTs have dominated the research headlines in 
the 90s and 00s. 

 
Graphene, the 2D carbon crystal, is simply one layer isolated from the stacking of graphite as 

in Figure 3b. The σ bonds in the hexagonal plane serve as the rigid backbone while the atomic pz 
orbitals are responsible for the electrically conducting nature.  In fact, for a long time its isolated 
existence was thought to be impossible. Landau has shown in 1937 that strictly 2D crystals were 
thermodynamically unstable. [7] As a 2D material and the consequent remarkable properties, 
graphene has always been interesting to scientists. However, the challenge in isolating a single 
graphene sheet had prevent it study until 2004.  

 

A series of papers in 2004/5 by the Manchester [8], Columbia [9] and Georgia Tech [10] 
groups has brought graphene into spotlight. The researchers developed an impressively simple 
method to isolate graphene layers from graphite. A freshly cleaved highly ordered pyrolytic graphite 
(HOPG) was rubbed against a Si wafer. Owing to the thin film interference effects, the correct oxide 
thickness (~ 300 nm) helped differentiating between single layer and the multilayer graphene pieces 
on the oxide under the optical microscope. [8] With all the experience that existed in the scientific 
groups who have been working with CNTs and fullerenes, all that know-how could be easily 
transferred into graphene research with minimal investment in time and resources.  
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Today, there are two more main sources for pristine graphene; graphene on SiC and CVD 
graphene. Films of graphene can be formed by evaporating Si atoms from either the C or Si 
terminated side of the SiC wafer. [11] And highly monolayer films can be grown on metal catalytic 
surfaces by chemical vapor deposition (CVD). [12] Other sources such as reduced graphene oxide 
can be discontinuous, have embedded oxygen or be comprised of more than one layer. We will 
present graphene sources in Chapter 2, Device fabrication, more in detail. 

 

1.2. Properties of graphene 
 

1.2.1. The band structure of graphene 
 

Each carbon in the honeycomb-like graphene lattice is bonded to 3 other sp2 hybridized 

carbon. All atoms lie in-plane with an angle of 120°. The atomic structure and the unit vectors ܽଵሬሬሬሬറ 
and ܽଶሬሬሬሬറ of the graphene lattice are depicted in Figure 4. The unit cells make an angle of 60° and 
enclose the area of the unit cell which has two atoms, A and B from each sublattice. The nearest-

neighbor distance is ܽ଴ ൌ 1.42Å. Reciprocal vectors ܾଵሬሬሬറ and ܾଶሬሬሬሬറ can be derived from the unit vectors. 
[13]   

 (a)  (b) 

Figure 4. a) Graphene unit cell in real 
space with unit vectors  ࢇ૚ሬሬሬሬറ and ࢇ૛ሬሬሬሬറ. 
The unit cell encompasses two 
atoms, one from each sublattice.     
b) Reciprocal lattice with the 

reciprocal lattice vectors  ࢈૚ሬሬሬሬറ and ࢈૛ሬሬሬሬറ. 
The first Brillouin zone is highlighted 
with the high symmetry points Γ, K 

and K’.  

 
Only the electrons from the pz orbitals contribute to transport in graphene by forming the π 

and π* bands. Regular transport experiments only probe the vicinity of the Dirac point. For low 
energies, the dispersion relation of the π and π* can be well-approximated by tight binding 
calculations. The result is the following when the second nearest neighbor hopping is incorporated:  

ሬሬԦ൯࢑൫∓ࡱ ൌ ට૜൅࢚∓ ሬሬԦ൯࢑൫ࢌ െ  ሬሬԦሻ   (1. 1)࢑ሺࢌᇱ࢚

with 

ሬሬԦ൯࢑൫ࢌ ൌ ૛ܛܗ܋൫√૜ࢇ࢟࢑૙൯ ൅ ૝	࢙࢕ࢉ ቀ√
૜

૛
૙ቁࢇ࢟࢑ ሺ	ܛܗ܋

૜

૛
 ૙ሻ   (1. 2)ࢇ࢞࢑

where t is the nearest neighbor hopping energy and t’ is the next nearest neighbor hopping energy. 
Figure 5 is the resulting band structure of graphene. As we can observe, the π and π* bands touch 
each other at K and K’ points, at the corners of the Brillouin zone, at Dirac points. The dispersion 

relation close to the K point is linear. For ሬ݇Ԧ ൌ ሬሬԦܭ ൅ |Ԧݍ| Ԧ withݍ ≪ หܭሬሬԦห and ݐᇱ ൌ 0 the following holds 

true: 

∓ࡱ ൎ ∓԰ࢗ|ࡲ࣏ሬሬԦ|൅  ሬሬሬԦሻ૛ሿ     (1. 3)ࡷ/|ሬሬԦࢗ|ሾሺࡻ
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where ߭ி ൌ
ଷ௧௔

ଶ
ൎ  In the case of an ideal and undoped graphene, the Fermi energy is .ݏ/݉	10଺	ݔ	1

found exactly at the Dirac point, where the valence and conduction bands touch each other thus, 
making the so-called “zero-gap semiconductor”. The lack of a parabolic band structure and a real 
gap in-between the bands is the main difference of graphene from a regular semiconductor. The 
linear band structure makes it possible to describe the electrons in graphene as massless Dirac 
fermions at low energies. [14] 

 
Figure 5. The electronic band structure of 

graphene (courtesy of by A. Cresti in 2012.) 

 

1.2.2. Electrical properties 

 
Before graphene, there have been 2D systems in electronic research. Even though these 

were not truly 2D materials, two dimensional electron gases provided ways to study 2D systems. A 
two-dimensional electron gas (2DEG) is a system where electrons can freely move in two 
dimensions, but are confined in the third. This system is commonly encountered in MOSFETs. The 
knowledge paved the basis for investigating the electrical properties of graphene.   

 
The electron transport in graphene is directed by the relativistic Dirac equation. Charge 

carriers act as massless relativistic particles with a “speed of light” of ~106 m/s. [15] Figure 6 is the 
plot from one of the first gated devices made of graphene. One characteristic that draws the 
attention right away of is the ambipolarity of charge carriers. Novoselov et al. showed in 2004 that 
graphene FET on SiO2 has ambipolar characteristics with electron and hole concentrations of 
1013 cm-2 and a mobility of 10 000 cm2/Vs at room temperature. That is to say, it is possible to 
continuously tune charge carriers from electrons to holes and vice versa. Secondly, as expected from 
the lack of the band gap, graphene shows little change in resistivity between the on and off stage of 
the transistor. [8] [15] 
 

Another consequence of charge carriers posing as Dirac fermions is the high carrier mobility. 
Mobility of graphene on SiO2 can reach 15 000 cm2/Vs with a corresponding sheet resistivity of 
~	106 Ω cm. [8] To put in perspective, we should note that this value is lower than  the resistivity of 
silver, the material with lowest resistivity at room temperature. [16] [8] And when there is no 
substrate to interfere with the transport properties, i.e. for the case of suspended graphene, 
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mobility can reach 40 000 cm2/Vs at room temperature and even 200 000 cm2/Vs at low 
temperature. [17] [18] Furthermore, the first measurements of graphene on SiO2 devices have 
presented ballistic transport at submicron distances. Later studies showed that the mean free path 
of charge carriers can reach up to 0.5 mm.  [19] 

 

 

Figure 6. The 
change in the 
resistivity of 
few layer 
graphene with 
gate voltage. 
The image is 
adapted from 
reference. [8] 

 
In addition to the favorably high values for mobility, graphene shows low electronic noise 

from thermal agitation of charge carriers in an electrical conductor at equilibrium, regardless of the 
voltage applied. Combined with the high values for mobility, it is interesting for graphene to 
participate in nanoelectromechanical systems (NEMS). 

 
Graphene FETs are tainted with the low on/off ratio. For graphene to ever participate in 

logic applications, a band gap is needed. Therefore, there have been various studies on how to open 
a band gap. Two main methods have been suggested; graphene nanoribbons (GNRs) or bilayer 
graphene. In contrast to the massless Dirac fermions in monolayer graphene, bilayer graphene has 
massive Dirac fermions. A gate voltage introduces asymmetry between the layers and forms an 
energy gap. [20] [21] The second way to create an energy gap is through a lateral quantum 
confinement; i.e. patterning graphene into very narrow ribbons. Depending on their configuration, 
GNRs show different electronic properties; zigzag GNRs are, in theory, metallic while the armchair 
GNRs can be either semiconducting or metallic. The energy gap is inversely proportional to their 
width. [16] For real applications, however, GNRs need to have smooth edges which has been a great 
challenge in GNR research so far. Several approaches have been presented which involve top-down 
etching techniques as well as bottom up CNT opening. [22] [23] Yet edge defects still appear to 
dominate the experimental results related to the realization of possible GNR FETs. Moreover, it was 
also shown that it is possible to open a band gap of 0.26 eV in epitaxial graphene grown on SiC. The 
origin of the band gap is attributed the interaction of graphene with the substrate. [24] 
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Figure 7. Change in the band structure of graphene with strain in the indicated directions. (Courtesy of A. 
Cresti, 2012)  

Another way to open up a band gap is strain. Figure 7 , shows how strain modifies the 
electronic structure of graphene by breaking the sublattice symmetry. The two carbon sublattices 
are inequivalent under uniaxial strain. When one is tensed, the other contracts. A large uniaxial 
strain in the armchair direction can open an effective band gap as in Figure 7.  

 
Strain is relevant not only for researchers aiming to open a band gap in graphene, but for 

electronic applications in general. It clearly modifies the electronic structure of graphene; 
consequently it will have an effect on electrical properties as well. We discussed externally applied 
strain, but synthesis and fabrication can lead to a built-in strain in the final graphene device. 
Therefore, it is important to study the evolution of strain in the graphene device and its 
consequences. We will investigate this in the next chapters more in detail. 

 

1.2.3. Mechanical properties 

 
The strength of graphene has been modeled by atomistic simulation method and measured 

by nanoindentation technique. A Young’s modulus of ca. 1.0 TPa, which corresponds to the 
theoretically calculated value, [25] has been deduced from a measured 2D elastic stiffness of 
340 N/m. [26] The interlayer spacing of graphite is customarily taken as the sheet thickness. 
Moreover, a breaking strength of 42 N/m has been measured which translates into a bulk value of 
130 GPa. [26] Graphene owes these remarkable values to the strong C-C covalent bond.  

 

1.2.4. Optical properties 

 
The unique electronic properties of graphene generate an unexpectedly high opacity for one 

atomic monolayer in spite of a rather low white light absorption of 2.3%. [27] The light adsorption 
increases linearly with the number of layers. [28] The contrast of graphene on 300 nm SiO 2 increases 

no strain 

݊݅ܽݎݐݏ ൌ 10%; ߠ	 ൌ 0 

݊݅ܽݎݐݏ ൌ 20%; ߠ	 ൌ 0 

݊݅ܽݎݐݏ ൌ 10%; ߠ	 ൌ  ߨ0.5

݊݅ܽݎݐݏ ൌ 20%; ߠ	 ൌ  ߨ0.5
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with the layers as well which was the key in locating single layer graphene during mechanical 
exfoliation.  

1.2.5. Thermal properties 

 
Most materials expand upon heating and contract upon cooling, i.e. they have positive 

thermal expansion coefficients (TEC). Ultra-thin suspended films, on the other hand, have the 
opposite situation. Many compounds in the form of a layer have a negative TEC which stems from 
the fact that the frequency of the out-of-plane acoustic phonons increases when the inter-atomic 
distance is increased. [29] Already before measurements, graphene was predicted to demonstrate a 
negative TEC. [30] The TEC determined experimentally exceeded theoretical predictions by 2 - 3 
times as ~ 7 x 10-6 K-1 at room temperature. This value is larger than the in-plane TEC of graphite. 
[29] 
 

Through the strong C-C covalent bond and the high phonon speed (~ 2 x 104m/s), phonons 
dominate the thermal conductivity of graphene at room temperature. The thermal conductivity of 
suspended graphene is estimated as ~ 2000 - 5000 W/mK around room temperature. [31] [32] To 
put these values in perspective, the thermal conductivity of Cu is ~	400 W/mK and of 
Si ~	150 W/mK. Not only the electrical properties, but also thermal properties of graphene degrade 
on a substrate. Phonon leakage to the substrate and scattering reduce the thermal conductivity of 
graphene down to ~ 600 W/mK. [33] 

 

1.3. Potential applications 
 
Here, we present an outlook on potential applications of graphene. These are neither 

exhaustive nor in industrial production. That is to say, we aim to give examples of the incorporation 
of graphene into different fields. The applications are not yet maturely developed such that 
graphene is in an industrial product. A vast amount of research is done to uncover its properties and 
still an extensive research into the understanding and control of these properties is necessary to 
translate them into real applications. 

  

1.3.1. Logic devices vs RF devices 

 
The very commonly known Moore’s law states that the number of transistors on a chip 

doubles once every two years driven by the demand for faster and more affordable computers and 
mobile devices. Now that the Si technology is reaching its limits, two new fields emerged in which 
the semiconductor industry is investing in heavily: Beyond CMOS and More than Moore. Beyond 
CMOS covers all the technologies that might replace CMOS in future and More than Moore focuses 
on incorporating new functionalities into existing device architectures.  

 
Carbon electronics have the advantage of retaining FET architecture but replacing the 

conductive channel with a carbon nanomaterial. Graphene transistors can be divided into two 
categories; logic devices and RF devices. They have quite different design demands. Logic 
applications must have low energy consumption in static state. This translates into that the 
graphene device must be switched off completely to a non-conducting state, i.e. it needs to have a 
band gap. Another necessary yet debated phenomenon is the current saturation. It is argued that 
electron-electron interactions in graphene might make velocity saturation impossible. Additionally, 
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high current bias is demonstrated to cause hot spots which interfere with current transport into 
non-uniformity. [34] [35] 

 
(a) 

 
(b) 

Figure 8. Examples of a) back-gated and b) top-gated graphene field effect devices. 

As we mentioned, the zero band gap does not permit graphene to be employed in logic 
applications. In fact, IBM stated that it is unlikely for graphene to replace Si technology in future. 
[34]  Yet again, studies on graphene primarily focused on graphene FETs. Generally, it is simpler to 
fabricate the transistor with a back-gate for research purposes by choosing the underneath layer as 
heavily doped Si. (Figure 8a) In that case, graphene is separated from the gate by the dielectric, 
(mostly a 300 nm of) SiO2. The large parasitic capacitance of the 300 nm oxide interferes with 
measurements, thus top-gated devices have been fabricated as in Figure 8b.  

 
For graphene to have a share in logic applications, it needs to beat CMOS in the parameters 

of room temperature operation, speed, scalability, size, device gain and cost. For RF devices, 
however, there is less requirement for a complete device switch-off. Instead, high speed and low 
noise are demanded. RF transistors play a key role in wireless communication by amplifying signals 
and offer gain at high frequencies. They commonly experience problems from series resistance and 
short channel effects. These could be overcome by employing graphene since it has intrinsically an 
atomically thin channel which improves electrostatistics.  

 
(a) 

(b) 

Figure 9. a) SEM image of GNR 
devices. [23] b) Graphene devices 
on a 2 inch wafer and schematic 
cross-section of a top gated 
graphene device. [36]  

 
Beyond academic research [37] [38], companies such as IBM [23] [39] (Figure 9a) Samsung 

[40] (Figure 11b) and Intel [11] [41]  have been doing research in the field of graphene field effect 
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transistors. IBM presented a 100 GHz graphene transistor on SiC with a higher cut-off than Si 
MOSFETs of the same length. [36] (Figure 9b) 

 
 

1.3.2. NEMS sensors
 

The field of NEMS looks into shrinking device dimensions since low dimensions improve 
resonant frequency, sensitivity of force and mass. [42] At the same time, narrowing the dimensions 
can degrade device characteristics and make transduction difficult. The well-known technologies of 
Si make it an eligible material to fabricate clamped beams and cantilevers by top-down approach. 
[43] [44] In recent years, nanowires and nanotubes have caught interest in the field of NEMS as a 
bottom-up approach. Graphene is intrinsically nanoscale and it can be fabricated over large areas 
allowing for standard lithographic techniques. Thus, it brings together top-down and bottom-up 
approaches.  

 (a) (b)

 (c) 

Figure 10. a) Tilted SEM image of an array of 
suspended graphene resonators over trenches 
in SiO2. [45] b) Tilted SEM image of a 
suspended graphene NEMS resonator [46] c) 
SEM image of resonators made from one 
graphene flake. [47] 

 
Graphene has a combination of properties that makes it well-suited for NEMS. It is 

chemically inert which enables atomically thin devices. Its high stiffness and low mass result in high 
resonant frequencies. Furthermore, its frequency is tunable over a large range due to its 
extraordinary values of strength. Graphene NEMS which have a small built-in tension can be 
employed in applications which require frequency tuning and a high force sensitivity. Devices which 
have a large built-in strain, on the other hand, can serve in mass sensing applications which require 
a high frequency and high quality factor. [47] [46] [45] Examples of graphene made into NEMS 
devices are given in Figure 10.  

 
Combining extraordinary electrical properties with low thermal noise makes graphene 

devices excellent candidates for sensors. Considering that it is entirely made of surface, its 2D nature 
makes it very efficient in detecting adsorbed molecules. Adsorbed molecules act as donors or 
acceptors and alter the local carrier concentration which then appears as a change in the resistance. 
Gases such as CO, H2O, NH3 and NO2 were successfully detected by micro-level gas sensor in the 
form of the truly 2D NEMS made of graphene. [48] [49] Moreover, another study demonstrated that 
dinitrotoluene (DNT) can also be detected which is of interest in terms of explosive detecting. [50] 
Next to chemicals, graphene has potential employment in the detection of biological substances as 
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well. One study showed the possibility of glucose sensing by graphene through an enzyme model of 
glucose oxidase. [51] Additionally, a study demonstrated graphene as a viable dopamine and 
serotonine sensor just as its predecessor, the CNT was. [52] Another study focused on Cadmium 
detection, which is a substance commonly used in several industrial areas while being severely 
damaging to human body. [53] 
 

1.3.3. Transparent electrodes 
 

Transparent electrodes are in demand for in touchscreens, liquid crystal displays, organic 
photovoltaic cells and organic light-emitting diodes. The combination of the electrical conductivity 
with high optical transparency promotes the employment of graphene as transparent conducting 
electrodes as presented in Figure 11b. [16] [40] At the moment, indium tin oxide (ITO) dominates 
the industry as a conducting transparent material. However, it is brittle, high-cost and scarce in 
nature. This has driven the research into finding ITO replacements, preferably of flexible nature. 
Graphene is a promising candidate for this job considering that it is inert to water and oxygen while 
having high surface area and mobility. [40] [54] [55] An example was given as a dye-sensitized solar 
cell made of reduced graphene oxide has already been presented. [55] Transparent films made of 
graphene have also been used in organic solar cells. (Figure 11a) [56] 

 

 
 

(a) 

          (b) 
Figure 11. a) Synthetic nanographene is 
cross-linked and fused into larger 
graphene sheets. The resulting 
transparent film of graphene serves as 
window electrodes in solar cells. [56]      
b) Graphene transferred onto PDMS 
substrates demonstrating its use as a 
transparent and flexible electrode. [40] 

 

1.3.4. Photonics 

 
Optical transitions of graphene can be tuned by gate voltage. This and the electrical injection 

have the potential towards graphene-based optoelectronic devices such as tunable IR detectors, 
modulators and emitters. [57] Furthermore, when the zero gap is combined with the large surface 
area, graphene FETs can be used as ultrafast photodetectors. (Figure 12) [58] 
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(a) 

 
(b) 

Figure 12. a) SEM 
and optical images 
of high-bandwidth 
photodetectors 
made of graphene. 
b) Illustration of the 
device and electrical 
model of graphene 
photodetectors in 
the high-frequency 
domain. [58] 

 
 

1.3.5. Biotechnology 

 
Graphene is searching for its way in biotechnological applications. The fact that it can be 

functionalized easily has prompted its use in biotechnology. One research made an effort to 
understand its interaction with DNA nucleobases and nucleosides. [59] 

 

1.3.6. Electrochemistry 

 
Few-layer graphene has been proposed as a part of composite electrodes in Li-ion batteries. 

Graphite and activated carbon are already embedded in electrochemical systems since they are 
reversible materials with reasonable specific capacity. And graphene displayed equal or better 
kinetics for the same task. It possesses superior in conductivity, surface area and chemical tolerance. 
Thus, it has the potential to replace such materials in energy storage devices such as batteries and 
supercapacitors. (Figure 13) [60] [61] 

 

Figure 13. 
Schematics for 
the synthesis and 
the structure of 
SnO2/graphene 
nanosheets to 
demonstrate the 
possible 
incorporation of 
graphene into Li 
ion batteries. [60] 
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1.4. Objective of this thesis 
 
Its various potential applications in diverse fields have proven graphene to be worthy of 

more detailed studies for the behavior of its extraordinary properties and large-scale manufacturing 
capabilities. CVD technique made it possible for graphene to be a serious candidate to integrate in 
electronic applications by providing i)wafer-scale continuous material and ii) the possibility of 
transfer onto a desired substrate. Since the beginning of our thesis work, CVD techniques have been 
improved to produce wafer-scale, high-quality and highly-monolayer graphene. However, there are 
still issues to be addressed for the safe transfer of graphene into the industrial world.  
 

The desire is to exploit the outstanding electronic properties of graphene to the fullest. For 
that, graphene sheet must be isolated; in other words the substrate interaction needs to be 
eliminated. Furthermore, in the field of NEMS, which can profit additionally from the exceptional 
mechanical properties of graphene, a suspended structure is required.   
 

A reliable and reproducible fabrication route of suspended graphene devices with a high 
output is vital for graphene employment in industry. Most of the works on suspended graphene so 
far have been interested in assessing an extraordinary property. There are not many studies which 
study the interference of synthesis and fabrication techniques with the resulting device. Because of 
their immediate impact, the first two main factors which we addressed are the residual compressive 
strain from CVD techniques and beam collapse due to the fabrication route.  
 

This thesis aims to study the fabrication of suspended and supported graphene devices and 
develop a high yield route within a realistic approach to the integration of graphene in industry. To 
that end, we employ CVD graphene which we obtain through our collaboration with Prof. 
Duesberg’s team in CRANN, Dublin. The thesis is organized as follows:  
In Chapter 2, we start by reviewing the existing fabrication techniques for suspended graphene 
ribbons to this date. We follow by the issues which, following our experience, interfere with 
suspension. We analyze their origin and explain the high-yield process that we developed. 
Characterizations by scanning electron microscopy (SEM) and atomic force microscopy (AFM) were 
used to assess morphological quality and suspension. We continue by investigating the strain and 
electrical properties in our devices. 
 
For that, we devote an entire chapter to Raman measurements, where we discuss the effects of 
doping and strain in our devices and how they are influenced from temperature.  
 
We finish by presenting the electrical properties such as contact resistance, carrier density and 
mobility as well as temperature-dependent resistivity and quantum interference and confinement 
effects under magnetic field. 
 

The dissertation ends with conclusions and outlook of future work. 
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Chapter 2 
 

2. DEVICE FABRICATION FROM GRAPHENE 
 
This thesis concentrates on the successful fabrication of graphene devices, both supported 

and suspended, with an emphasis on how to achieve suspended graphene.  Substrates are known to 
shadow over the extraordinary thermal and electrical properties of graphene; not to mention the 
fact that most mechanical properties cannot be accessed unless graphene is suspended.  In this 
chapter, we present the details of the fabrication route for supported and suspended graphene 
devices, the latter of which poses greater challenge.  

 
 We start by reviewing the state of art for the fabrication of suspended graphene devices. As 
the reader will see, there is great variety in presented fabrication methods. The first experiments on 
suspended graphene dates back to as early as 2007. Thus, there exists a series of publications which 
studied the characteristics of suspended graphene. However, at the same time, we see that some 
researchers have gone to great lengths to find creative techniques to achieve batch fabrication of 
free-standing graphene. This on its own is evidence enough that repeatable mass-production of 
suspended graphene devices is not as a trivial process as it appears.  
 

Throughout the chapter, there is an emphasis towards the methods involving mechanical 
exfoliation and chemical vapor deposition (CVD). This stems simply from the fact that our graphene 
of choice is CVD graphene. And the fabrication techniques of exfoliated graphene are transferrable 
to CVD graphene. Therefore, the fabrication routes proposed for these two types of graphene is our 
interest.  

 
Fabrication techniques for suspended graphene devices have inherited basic techniques 

from NEMS technologies and modified them to its needs. Firstly, we present some of the existing 
methods for obtaining graphene and fabricating it into suspended devices. We then introduce our 
graphene source and present the route we propose for high-yield fabrication of devices with free-
standing graphene, at the same time being scalable and compatible with existing Si technologies. 
Additionally, we demonstrate the characterization of the fabrication stages. 

 

2.1. Different sources of graphene 
 

In Chapter 1: Introduction, we mentioned that there are different methods developed for 
obtaining graphene by now.  The main techniques for mostly single layer, pristine and/or continuous 
sheets come from i) mechanical exfoliation from highly ordered pyrolytic graphite (HOPG), ii) 
graphene from sublimation of Si atoms on SiC wafer and iii) graphene from chemical vapor 
deposition on catalytic metal substrates, listed in historical order. There have been other sources 
presented such as the “so-called” chemical exfoliation which involves intercalation compounds on 
graphite and reducing graphene oxide. However, we concentrate on methods that result in rather 
continuous films with little flaws. This is generally required for electronic applications. Reducing an 
already oxidized graphene, for example, does not fit this criterion since a 100% reduction is not 
quite possible from graphene oxide. 
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2.1.1. Mechanical Exfoliation 
 
The best quality graphene is obtained by mechanical exfoliation of highly oriented pyrolytic 

graphite (HOPG). In 2004, Novoselov et al. obtained few layer graphene by repeatedly peeling highly 
ordered pyrolytic graphite (HOPG). Firstly, the authors prepared mesas of 5 µm on the platelets in 
squares of different sizes. The patterned surface was pressed against a glass substrate with 
photoresist on it and baked. Baking helped attaching layers from the HOPG onto the resist. A scotch 
tape was used to peel off layers on the resist into fewer layers. Resist is removed in acetone where 
flakes from the resist were left floating in the solution. Si wafer with an oxide of 300 nm was dipped 
in the solution and flakes landed on the wafer. Layer thickness is determined by optical microscopy, 
electron microscopy and AFM. Graphene on a 300 nm oxide wafer gives a particular color contrast 
which helped the scientists to locate few layer graphene non-invasively via optical lithography such 
as in Figure 14. [8] [62] The method has spread in the scientific community fast due to its simplicity 
leading to a boom in graphene-related research in physics, chemistry and biology. 

 

 

Figure 14. Graphene of different number of layers placed on a Si wafer 
with a 300 nm oxide layer under an optical microscope illuminated by 
white light. There is a clear contrast between graphene and the oxide 
layer due to constructive interference effects for certain oxide 
thicknesses and it changes with the number of graphene layers. This 
helped scientists to isolate single layer graphene at the start of the 
research. [62] 

 

2.1.2. Chemical Exfoliation 
 

Another method for graphene fabrication is derived from colloidal suspensions of graphite 
and graphite oxide. Graphite can be oxidized with strong acids and oxidants. The oxidation level is 
defined by type of method, reaction conditions and the graphite precursor. By sonicating graphite 
oxide, it is possible to obtain homogeneous colloidal suspensions of graphene oxide in a variety of 
organic solvents. In contrast to graphene, graphene oxide is hydrophilic and can therefore be 
dispersed in water as well as several polar solvents. Additionally, these suspensions enable chemical 
modifications to graphene oxide through organic molecules. [63]  

 
The resulting graphene oxide is electrically insulating. Its thermal, UV-assisted or chemical 

reduction through products such as hydrazine, dimethylhydrazine, hydroquinone and NaBH leads to 
an electrically conducting material, the so-called “reduced graphene oxide”. Combustions analysis 
uncovered continuing presence of significant amount of oxide; thus reduced graphene oxide is not 
the same thing as graphene. It is difficult to remove the remaining hydroxyl groups. [63] 

 

2.1.3. Graphene synthesis from SiC 
 
SiC is a wide gap semiconductor suited to high temperatures and high electric fields. It has 

many crystalline forms out of which two types stand out for electronic applications: the hexagonal 
4H and 6H polytypes. They are formed from stacks from alternating bilayers of Si and C. [11] [64] 
Epitaxial growth of graphene is demonstrated from SiC(0001) wafers through sublimation of Si 
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atoms and graphitization of C atoms when the substrate is annealed at temperatures 1000 – 1800°C. 
(Figure 15) Multilayer epitaxial graphene on SiC is reported to have high mobility. [65] Devices made 
of SiC graphene were generally made on a SiC wafer. Transferring graphene from SiC onto another 
substrate is difficult since SiC is chemically inert to most etchants therefore cannot be easily etched 
away. Also, the dry techniques that involve peeling are not suitable either due to the great adhesion 
between the SiC and graphene.  

 

Figure 15. Illustration of graphene 
growth on SiC with a side-view 
representation of a SiC wafer. 
Yellow and green spheres are Si and 
C atoms, respectively. At high 
temperatures, the Si atoms 
evaporate indicated by arrows. This 
results in graphene sheets in the 
form of few-layers on the Si-
terminated side and multilayers on 

the C-terminated side. [64] 

 

2.1.4. Graphene synthesis by chemical vapor 
deposition 

 
To this date, the best quality graphene comes from mechanical exfoliation. However, this 

method is without doubt not appropriate for mass production. The flake size is limited to tens of 
micrometers; neither the location nor the number of layers can be controlled. Chemical vapor 
deposition (CVD) has great potential to address these problems.  

 
During experiments to grow diamond via CVD on metal catalysts in 1991, scientists 

unintentionally synthesized multilayers of graphene. The experiments used Cu surfaces after carbon 
implantation. The substrates were heated to 800 - 1000°C to diffuse carbon out and form graphite. 
In fact, graphite formation with all known metal catalysts has been heavily studied since 1960s for 
the need of high quality graphite as moderators in nuclear reactors. [65] 

 
First attempts on graphene synthesis via CVD were reported by Somani et al. in 2006, which 

by now has developed into a technique to yield large-area, highly monolayer graphene. [66] 
Research on the CVD technique focuses on controlling domain size, number of layers and presence 
of defects.  

 
The CVD technique activates gaseous reactants followed by a chemical reaction which leads 

to the deposition of the solid product over a substrate. The deposition can be of powder form as 
well as thin films depending on the nature of the reactions which can come either in homogeneous 
gas-phase form or heterogeneously on a surface. Since graphene is a thin film, we are interested in 
heterogeneous reactions on a substrate.  

 
Carbon source 
 
There have been studies on liquid and solid phase sources for carbon to fabricate graphene. 

While the choice of liquid source is toluene with its weak bonds to the advantage, polymer films, 
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evaporated solids, even food, insects and waste have been demonstrated as a solid source to 
synthesize graphene. [67] As more conventional solid sources, PMMA, fluorine or sucrose deposited 
on Cu at temperatures 800°C - 1000°C leading to graphene synthesis have been reported. 
However,the essential carbon source for CVD is in gas phase and mostly methane. In fact, Graphene 
thickness is directly governed by the gas flow rate. [68] 

 
Description of chemical vapor deposition process for graphene production 

(a) 

 

(b) 
Figure 16. Binary phase diagram of a) Ni – C; b) Cu – C. L stands for the liquid phase. The x-axis of both phase 
diagrams describe the amount of carbon in copper in terms of weight percentage. “Ni + graphite” or “Cu + C” 
means that the metal and graphene are present in the system as separate entities, i.e. they do not form a 
solution. We also should draw attention to the fact that the x-scale of the two graphs are not the same. The 
low solubility of carbon in Cu is further emphasized in b) by showing the 0.008% solubility of carbon in Cu at 
1084°C. That is to say, carbon is a part of a solution in Cu up to a weight percentage of only 0.008% even at a 
temperature as high as 1084°C. Any additional amount will precipitate out.  [65] 

A typical carbon source for CVD graphene is methane (CH4). C-H bonds are strong 
(440 kJ/mol) and therefore require temperatures higher than 1200°C to decompose which is over 
the temperature range of a typical CVD furnace. To decrease the reaction temperature to values 
lower than 900°C, transition metal surfaces are employed as catalyst. If the reaction mainly takes 
place on the surface, it comes to an end after monolayer graphene coverage due to catalyst 
poisoning. That is to say, for a surface-based reaction, once the entire surface is covered with a layer 
of graphene, there are no longer eligible sites available for the reaction to occur. The nature of such 
surface reactions, therefore, prevents the formation of additional layers after the first one. 
Transition metals are commonly used as catalysts for CVD reactions. Among different transition 
metals such as Ni, Pd, Pt, Ir and Cu; copper is favored due to its catalytic ability and carbon solubility. 
The “self-limiting” system we just described is observed in the case of Cu as catalyst which is so far 
the only metal leading to highly monolayer CVD graphene. On other transition metals, of which Ni is 
heavily studied, graphene growth happens via bulk diffusion, i.e. not on the surface, since carbon is 
highly soluble in Ni. This is revealed in the phase diagram of Ni and C (Figure 16a) Graphene 
formation on Ni is therefore a diffusion-precipitation process. [65] Thus, the product graphene 
depends heavily on the reaction kinetics where a fast cooling is exercised to suppress the formation 
of multilayers. [40] [69] The phase diagram of Cu and C on the other hand (Figure 16b) shows a 
lower solubility of C. The low reactivity is related to the fact that Cu has a filled 3d shell. Therefore C 
can bond to Cu softly only by charge transfer from π of the sp2 hybridized carbon into the empty 4s
orbitals of Cu. [65] 
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Growth on Cu 
 
We firstly focus on metals with a low carbon solubility such as Cu. As the catalyst, the 

properties of the metal of choice play a role in modifying the CVD process. The size and orientation 
of the metal grains, for instance, are thought to have significant influence on the defect density of 
graphene. Large grain sizes lead to better quality in graphene. [70] Furthermore, the crystallographic 
orientation of the metal affects graphene growth as well. It is reported that the (111) orientation of 
Cu results in pristine monolayer graphene. [71] Therefore, it is important to anneal Cu surface to the 
lowest energy (111) facets. Clearly, the properties of the surface have likewise strong impacts on 
graphene growth. The surface roughness of the metal can interfere with the uniformity of CVD 
graphene. Electro-polishing Cu surface helps the growth of a uniform graphene film. [72] 
Furthermore, it is known that graphene first nucleates at the impurities and imperfections of the 
surface. Thus, decreasing the amount of surface impurities, i.e. decreasing the number of nucleation 
sites increases the domain size of the synthesized graphene. [73] The little interaction between C 
and Cu leads to a polycrystalline yet continuous film expanding over the grain boundaries of the 
substrate. [65] 

 
Growth on Ni 
 
The metal choice has an impact not only through its carbon solubility, but also through its 

lattice parameters. Lattice mismatch between graphene and Co(0001) and Ni(111) is less than 1% 
whereas the lattice of Cu(111), Pt(111), Pd(111) and Ir(111) differs from graphene by more than 1%. 
[65] Fast cooling rates are essential for suppressing carbon migration into bulk in the case of high 
solubility metals such as Ni. For both high and low solubility metals, the temperature gradient during 
cooling has a direct impact on the number of layers as well as their quality. [74] [75] 

 

(a) (c) 

(b) (d) 
Figure 17. Graphene growth mechanism on a) Ni(111); b) polycrystalline Ni. Optical image 
of graphene grown c) on Ni(111) and d) on polycrystalline Ni. [76] 
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For the case of polycrystalline Ni films as catalyst, which have a high carbon solubility, the 
film is first annealed in Ar/H2 at elevated temperatures such as 900 - 1000°C to expand grains which 
is then followed by gas flow of H2/CH4. The carbon decomposes and diffuses into the film followed 
by a precipitation during cooling. Precipitation principally occurs at grain boundaries and leads to 
multilayer graphene especially at these regions as depicted in Figure 17b and d [76] Therefore 
employing a single crystal Ni instead of a polycrystalline one can significantly improve the 
suppression of multilayer formation as shown in Figure 17a, c. For the case of Cu, polycrystalline 
films can be used. The Cu film is first annealed in hydrogen at 1000°C followed by a gas flow of 
H2/CH4 to grow graphene. The surface reaction is illustrated in Figure 18 for comparison. [76] 

 

(a) (b) 

(c) (d) 
Figure 18. Graphene growth mechanism on a) Ni and c) Cu. Optical images of 

graphene transferred to SiO2/Si b) from Ni and d) from Cu. [76] 

 
The effect of hydrogen 
 
Just as the carbon source, hydrogen content of the recipe is equally important. Hydrogen is 

employed to clean and crystallize metal substrates during annealing and oxygen reduction as well as 
to dilute the carbon precursor. Its interaction with the substrate plays a role in the chemisorption 
kinetics of the following methane in the sense that hydrogen can i) diffuse in the metal and change 
solubility for methane, ii) remove hydrogen from the surface if it comes in the atomic form and 
create adsorption sites for methane, iii) passivate defects and grain boundaries where nucleation is 
thought to start. Thus, the hydrogen flow needs to be optimized for monolayer CVD graphene 
recipe. [77] [78] 
 

2.2. Graphene transfer & transfer-free processes: 
 
In general, CVD graphene is transferred with the help of polymers onto a dielectric 

substrate. The routine procedure is depicted in Figure 19. A polymer, commonly PMMA, is 



 

21 
 

spincoated on graphene on metal and heated to evaporate the solvent. The metal layer underneath 
is then chemically etched leaving a structure of PMMA on graphene. Acid residues are cleaned in 
water. Without the polymer layer, graphene alone would disintegrate into flakes during transfer. 
With the help of the polymer, the floating form has sufficient structural integrity for transfer from 
water over the desired substrate.  The substrate of choice is generally an oxidized Si wafer for in the 
field of graphene for electronic applications. The PMMA/graphene/oxidized wafer stack is heated to 
dispose of the probable water stuck in-between the layers. This is followed by the final step, the 
PMMA stripping in acetone. The resulting structure is graphene on a dielectric. [76] [79] 

 

 
Figure 19. CVD graphene transfer. [76] 

 
While this is a very neat method to have large-scale graphene on a dielectric, there are 

several reports on the contamination of graphene from the transfer polymer. The general consensus 
is that polymers cannot be cleaned off of the graphene surface completely. Thus, it is of great 
interest to grow graphene directly on dielectric substrates. [80] [81] [82] So far, there have been 
several attempts to fabricate graphene on SiO2; however it has been difficult to synthesize 
continuous and highly conductive films. One method is proposed by Ismach et al. by using a 
sacrificial Cu layer. Customarily, thick copper foils are used for CVD. However, for the sake of direct 
growth on dielectrics, a thin film of Cu is deposited on the dielectric of choice. One primary 
challenge with this process is the control of the film thickness. Films that are too thin will experience 
dewetting at high temperatures. [65] One study, on the other hand, proposed to turn this issue into 
their advantage. They use dewetting to remove Cu completely from the dielectric by applying long 
processing times. However, the obtained graphene showed defects and graphitic-like material at 
places. That is to say, the idea is interesting to start a discussion, but the results are not yet 
competing with polymeric transfer of CVD graphene. [83] Another idea is to etch the Cu layer on the 
dielectric chemically and land graphene directly on the dielectric. The issue with this approach is the 
fact that Cu films are not stable at temperatures higher than 800°C, i.e. at temperatures of CVD 
process. Cu diffuses into SiO2/Si, thus diffusion barriers such as W, Cr, Ni, Al2O3 are required to be 
put in-between Cu and the wafer. In any case, a complete suppression has not been possible until 
now. [84] Plasma-assisted growth decreases synthesis temperature and is therefore promising for 
such applications. [85] 

 

2.3. Wrinkle and fold formation in CVD graphene 
 
CVD graphene is known to have wrinkles, ripples or folds after transfer on a substrate or 

after device fabrication. For the sake of identifying the different forms, we use the wrinkle, ripple 
and fold as indicated in Figure 20. These structures, especially sharp folds, have been predicted to 
modify the electronic properties and chemical reactivity of graphene. [86] Therefore, it is important 
to understand them and control their formation, if possible.  
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 (a) 

Figure 20. a) Wrinkle/ripple 
(top) to fold (bottom) formation 
depicted for graphene. [86]        
b) Folds can collapse and make 
local multilayers. [87] 

 (b) 

 
Zhang et al. showed that folds originate from the nonlinearity in the van der Waals 

interaction between the graphene and the substrate. They characterized fold formations in term of 
adhesion and friction parameters and conclude that friction is the selecting factor for the separation 
between folds. They based this on the fact that the formation of folds which are far apart from each 
other would cost friction work. [86] 

 
CVD graphene on a substrate typically shows networks of folds. CVD graphene is 

acknowledged to show wrinkles. These are generally attributed to the difference in the thermal 
expansion coefficients of the metal (ߙே௜ ൌ 12.89െ 21.0 ∗ 	10ି଺/ܭ	for ܶ ൌ 0െ  ;ܥ1000°
஼௨ߙ ൌ 24 ∗	10ି଺/ܭ) and graphene (ீߙ௥௔௣௛௘௡௘ ൌ െ6 ∗ 	10ି଺/ܭ	at ܶ ൌ  The [90] [89] [88] (ܥ27°

folds primarily form during transfer and generally argued to depend on the transfer type and the 
topography and polycrystallinity of the growth metal. [86] 

 
Considering that the substrate is planar, any fold formation must include delamination. The 

uniform spacing in-between folds was argued to be due to friction. Transition of a wrinkled state to 
a localized fold state happens through the sliding of the graphene sheet. Folds that are separated by 
a large distance were argued to be energetically favorable to smaller folds that are closer to each 
other. But they would have to spend a larger frictional work. That is to say, adhesion, i.e. the 
potential energy and frictional work are competing. In a rectangular graphene with a given length, 
the most energetically favorable number of folds are determined by friction. For instance, the lack of 
friction can favor the formation of one fold while high friction values would favor bi- or tri-fold 
formations. Furthermore, the folds can differ in size. When the strain was increased further, they did 
not move but grew in size. [86] 
 

2.4. Device fabrication: State of art 
 
Our devices are made from CVD graphene due to its scalability and compatibility with 

existing Si technologies. Here we focus on mainly fabrication techniques for exfoliated or CVD 
graphene since methods for exfoliated graphene are directly applicable on CVD fabrication 
techniques. 
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2.4.1. Transfer over existing trenches 
 
While basic clean room techniques can engineer graphene devices supported on a substrate 

effortlessly, caution is called for when the device has to be suspended. First generation of free-
standing graphene devices was fabricated through mechanical exfoliation over existing trenches. 
Trenches were pre-patterned in SiO2 in a wafer followed by electrode realization next to trenches. 
Resulting devices looked as in Figure 21a-b. The adhesion between SiO2 and graphene is high; the 
van der Waals forces keep the graphene attached to the substrate with no additional clamping 
required. These first devices were intended as resonators. Vibrations in MHz frequencies were 
optically and electrically actuated and detected optically by interferometry. This type of fabrication 
has no additional processing done on graphene, i.e. it keeps graphene as clean as possible. The 
disadvantage is though that the exfoliation method has little control over the beam size and is not 
applicable large scale. [48] [91] Still, it is the best method to show a certain physical property of 
graphene. Therefore even after scalable synthesis methods are discovered, scientists keep using this 
method as in the example of the work by Xu et al. in 2010. After patterning a gate electrode 
followed by PECVD of a gate oxide layer, Xu et al. opened a trench between the source and drain 
electrodes. Graphene is then exfoliated over this trench to investigate radio frequency electrical 
readout of mechanical resonators. [92] 

 

 (a) (c) 

(b) 

Figure 21. a) Schematic of a 
suspended graphene resonator. [48] 
b) SEM image of a suspended 
graphene resonator, scale bar is 
1µm. [48] c) Schematic of graphene 

sealed microchamber. [48]

 
Frank et al. attempted to increase the control over suspended device fabrication from 

mechanical exfoliation. To that end, they employ a “pencil”. Kish graphite is comprised of flakes 
which are few mm on a side. The authors attached these flakes to a probe which is then acting as a 
“pencil”. As the graphite is cleaved, an atomically smooth surface on the tip of the surface is 
released. This is followed dragging this pencil over SiO2 trenches leaving exfoliated pieces. The 
suspended sheets appear as “vivid shades of purple” under optical microscope. [93] 
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(a) 

 
 

 

(b) 
Figure 22. a) Device fabrication steps 
by [94]; b) SEM image of a wire-bonded 
device fabricated by Smith et al. [94] 

 
Besides resonators, pressure sensors are made from exfoliated graphene during the early 

stages of the research. The application relied on the gas impermeability of graphene. To that 
purpose, graphene was mechanically exfoliated such that it covers an entire trench as in Figure 21c. 
[95] 

 
Within the objective of suspended graphene devices, CVD graphene inherited the technique 

of predefined trenches from exfoliated graphene. Similar to the case of Bunch et al. 2008, Smith et 
al. etched trenches in SiO2 with electrical contacts to realize pressure sensors from graphene as 
demonstrated in Figure 22. CVD graphene is transferred over trenches and contacts followed by 
patterning by lithography and oxygen plasma. [94] 

 
Generally, lithography techniques are utilized if there is a desire to pattern graphene into a 

certain geometry. Morin et al. presented an unconventional method using focused ion beam (FIB). 
[96] The authors carved nanopores into suspended graphene sheets via a gallium ion beam after a 
work of direct patterning of low dimensional and high quality nanobeam structures down to 20 nm 
by gallium ions. [97] SEM images of the resulting free-standing ribbons are shown in Figure 23c .The 
origin of graphene is HOPG exfoliation. Additionally, they report rolling at beam edges. [96] 

 
We brought up before how CVD graphene inherited fabrication techniques from exfoliated 

graphene. Zhang et al. apply the process of FIB patterning to CVD graphene. The authors transferred 
CVD graphene over a groove array in Si realized by deep reactive ion etching (DRIE). The transfer 
was followed by patterning of suspended graphene by FIB as explained in Figure 23a leading to SEM 
images in Figure 23b, d. [98] 
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(a) 
 

(c) 

 

 (b) (d) 
Figure 23. a) FIB patterning of graphene a)a. ICP etching of array, b. Graphene 
growth on Cu by CVD, c. Spincoating PMMA, d. Cu etching, e. Transfer to 
substrate, f. PMMA removal, g. Graphene patterning by FIB [98]; b, d) SEM 
images of free-standing CVD graphene ribbon fabricated via FIB [98]; c) SEM 
images of free-standing exfoliated graphene ribbon fabricated via FIB [96] 

 
 

2.4.2. Suspending by substrate etch 
 
Another method employed since the early stages of the study of suspended graphene was 

the simple idea of removing partially the substrate underneath graphene. Removing the SiO2 layer 
with the objective of free-standing beams is no news to the MEMS community. Since exfoliated 
graphene was the monopoly of graphene sources for many years, the first free-standing graphene 
by substrate etch was done on mechanically exfoliated graphene. The process started by firstly 
locating single layer flakes from mechanically exfoliated graphene over SiO2/Si. Electrodes were 
realized at these points. The oxide layer underneath was etched chemically which was followed by 
drying in critical point dryer (CPD). CPD is employed, in general, to eliminate surface tension which 
would collapse the beam during the phase transition of water, i.e. during drying. In fact, CPD is no 
news to the MEMS community either; it is quite often used to realize free-standing beams. During 
chemical etching, the electrodes acted as etch mask and they were, therefore, also etched 
underneath as seen in Figure 24a-b. [47] If the electrodes are fully suspended, they can buckle under 
pressure. [46] Thus, if the electrodes are intended to serve as a chemical etch mask, too, it is 
important to fabricate sufficiently large and thick electrodes to add to the rigidity of the structure. 
As we mentioned, if demonstrating a particular property of graphene is the goal of the study, 
exfoliated graphene is preferred over CVD graphene since the latter involves a polymer assisted 
transfer process. Similarly, to prevent graphene having contact with the polymeric resists of 
lithography, graphene patterning was particularly avoided in early studies. Patterning can introduce 
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not only polymeric impurities, but also additional defects and dangling bonds at the edges. Instead, 
rectangular shaped flakes suitable for fabrication were selected. [18] 

 

 
(a) 

 
(b) 

Figure 24. a) SEM image of several 
resonators made from a single 
graphene flake. [47] b) Angled SEM 
image of a suspended graphene 
device and the electrical contacts for 
actuation and detection of the 
mechanical motion of the membrane. 
[46] 

 
 Dorgan et al. used the same method to fabricate devices both from mechanical exfoliation 
and CVD graphene. After exfoliating or transferring the graphene over Si wafer with an oxide layer 
of 300 nm, graphene was patterned into rectangles by e-beam lithography followed by oxygen 
plasma etch. Metal contacts of Cr/Au were realized. The device was then dipped in buffered HF (or 
more commonly known as BOE as in buffered oxide etching) followed by rinsing in deionized water. 
Water was slowly replaced by isopropanol and the sample is transferred to CPD. The suspended 
sample was annealed at 200°C in vacuum. [99] 
 

(a)  (b) 
Figure 25. a) SEM image of suspended graphene device by Tombros et al. after current annealing in 
vacuum at 4.2 K along with the schematic representation of its cross-section. The scale is 2 µm. [100] 
b) Suspended graphene device technique via LOR developed by Tombros et al. [101] 

 
Tombros et al. aimed at demonstrating the quantized conductance of graphene at low 

temperature. As others have done before them, they chose exfoliated graphene as the source. 
However, they developed a different technique from two of the initial basic ideas; transferring over 
trenches in SiO2 or chemically removing the SiO2. Instead, they developed a polymer-assisted 
method for suspending. (Figure 25a) [100] This technique is mainly developed to avoid metal 
restriction in suspending graphene devices. Most methods involve etching the SiO 2 layer in HF, i.e. 
the electrode metals are exposed to HF. Only a handful of metals such as Au, Pd, Pt, Cr and Nb are 
resistant to HF. The idea makes use of a polymer as a spacer layer which is then sacrificed in an 
organic solvent to release graphene. (Figure 25b) The chosen polymer needs to resist to a wide 
range of solvents and to high temperature to able to use lithography resist during the process. LOR 
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is a suitable polymer for this purpose. It was spin-coated on a SiO2/Si wafer with a thickness of 
1.150 µm which provided a good visibility for graphene. Graphene was exfoliated from HOPG onto 
LOR. Electrodes were realized by ebeam lithography and evaporation. Lift-off was done at hot 
xylene at 80°C which at this temperature dissolves PMMA, the ebeam resist, but does not attack the 
LOR. Finally, LOR was exposed by ebeam and dissolved in hexane releasing graphene. The sample 
was dried in nitrogen. [101] 

        (a) 

 (b) 
Figure 26. a) Fabrication process of suspended graphene devices by 
Neumann et al. b) SEM image of a suspended graphene device by 

Neumann et al. [102] 
 
Substrate etching is usually done by exposing the device to powerful acids. And not all 

metals can survive this exposure. This is not an issue for electrical studies, i.e. there are several 
resilient metals eligible for electrical application. However, for spintronic applications, the eligible 
metals are also the ones that are attacked by HF. Thus, using spintronic electrodes as an etch mask 
is not possible. Having this in mind, Neumann et al. propose a different route to suspend graphene 
for spintronic applications. They exfoliated graphene onto an oxidized Si wafer with PMMA spun on 
top. The appropriate flakes were localized with the help of optical microscope and Raman 
spectroscopy. Subsequently, PMMA was overexposed by ebeam which then acts as negative resist 
at large doses, i.e. certain areas of PMMA are cross-linked as in Figure 26a. A second layer of PMMA 
was spincoated to realize metal electrodes by ebeam whose positions coincide with the PMMA 
pillars from the first layer of resist. During the step of lift-off, PMMA at both layers are removed 
except for the cross-linked areas. The graphene was thus suspended over the cross-linked pillars. 
(Figure 26b) Furthermore, the authors reported that CPD was unnecessary for drying. The authors 
claimed that this method is superior to the method involving LOR due to two main reasons: i) 
Graphene area to be suspended is exposed to high doses of ebeam in the case of LOR process. This 
can induce damage to graphene or deposit amorphous carbon. The deposited amorphous carbon 
cannot be removed by current annealing; instead, it is crystallized leading to the formation of 
multilayer graphene. ii) The device is exposed to chemicals of a regular fabrication process instead 
of additional foreign chemicals such as LOR [102].  
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(a) (b) 
Figure 27. a-b) SEM image of suspended epitaxial graphene on SiC. [103]  

Suspended structures were formed from epitaxial graphene on SiC as well. Graphene grown 
on 4H-SiC was suspended by wet etching of SiC. In fact, wet etching of SiC is not common. SiC is 
conventionally etched by plasma techniques which in this case would clearly damage graphene. 
Shivaraman et al. have used a wet etching technique developed by Kato et al., 2003 [104]. Firstly, 
they realized metal contacts on each side of the patterned graphene beam serving as etch masks. 
Graphene was patterned into ribbons by lithography and oxygen plasma. SiC was afterwards etched 
in the electrolyte KOH (1%) under a 100 W UV lamp for 4 h releasing the graphene beams as in 
Figure 27a-b. [103]  

 
The first extensive study focusing on the various methods of fabrication of suspended 

devices from CVD graphene was done by van der Zande et al. in 2010. The authors employed several 
techniques and compared the results. The first type of membrane they fabricated is patterned by 
oxygen plasma while graphene is still on Cu foil, i.e. before transfer. The graphene strips are 
patterned by contact lithography and then transferred on predefined trenches in SiO 2. A second 
type of membranes was square and fully clamped on all sides. For this type, CVD graphene is 
transferred unpatterned onto a silicon nitride membrane with square holes. The PMMA is baked off 
at 300°C in air for 2 h. This suspending process did not involve liquids.  A third type of membranes 
was suspended over electrical contacts. Graphene was transferred unpatterned over a wafer and 
patterned into small bars followed by electrode deposition. The bars were suspended by wet 
etching the oxide in BHF followed by critical point drying. Authors presented the SEM images of 
successfully suspended samples as in Figure 28a-b as well as of possible types of failures that 
occurred for the first set of suspended beams in Figure 28c. [45] 

 

(a)  (b) 

 (c) 

Figure 28. a) Angled SEM image of suspended graphene over trenches 
in SiO2. [45] b)  Angled SEM image of and array of suspended 
graphene [45]. c)  Angled SEM image of failed attempts in suspending
graphene over trenches in SiO2.  [105]  
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When metal electrodes are used as the etch mask during oxide etching, it is not possible to 
define a trench in a desired geometry; i.e. the acid will etch the entire wafer surface except under 
the electrodes. To circumvent this and avoid CPD in the first place, Traversi et al. proposed a 
sandwich structure of graphene in PMMA as in Figure 29a. A PMMA resist was spincoated on a Si 
wafer with an oxide layer of 300 nm onto which graphene was exfoliated from HOPG. Flakes in 
appropriate shapes were spotted by optical microscope. A second layer of PMMA was spincoated 
over the graphene layer and exposed by ebeam on selected areas into rectangles and developed. 
Thus, graphene was released in-between PMMA layers. [106] 

 
We mentioned now several times that photo or ebeam resists contaminate graphene. Bao 

et al., 2010 proposed a resist-free process where they adopted an evaporation technique through Si 
hard shadow masks as in Figure 29b to realize metallic electrodes. They etched structures in the 
form of electrodes in Si wafers which was then aligned onto exfoliated graphene flakes for metal 
deposition. The electrodes served as an etch mask during HF etching and critical point drying. [107] 

 (a)  

 
 

  (b) 
 

Figure 29. a) Fabrication steps for 
suspended graphene on polymer by 
Traversi et al. [106]; b) Direct 
deposition of metal electrodes 

through Si shadow masks. [107] 

 
Depending on the application, it was shown to be possible to suspend graphene in a 

transfer-free method. Aleman et al. employ Cu CVD graphene to suspend graphene already at the 
stage when it is still on the CVD metal. As the nature of CVD process, graphene is grown on both 
sides of the metal catalyst. The graphene on one side of the metal is usually etched away by oxygen 
plasma. The authors modified the part of the transfer where the entire metal catalyst is exposed to 
an etchant and removed. Instead, they placed a photomask onto the etched side of Cu to etch Cu 
only partially in aqueous FeCl3 into the desired membrane shape. At this step, it was critical to 
expose the structure to etchant for the correct amount of time to prevent overetching. This was 
followed by rinsing in water and stripping the resist in acetone giving the structure in Figure 30. 
[108] 
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Figure 30. Fabrication mechanism for suspended graphene membrane on 
Cu. [108] 

Another transfer-free technique was proposed by Bharadwaj et al. They deposited Cu on the 
desired substrate. Since good quality CVD graphene is grown close to the melting temperatures of 
Cu, the thin film needs to be sufficiently thick, i.e. 400 - 500 nm. To that end, the authors chose 
electro-deposition of Cu over physical vapor deposition techniques. Growth parameters and heat 
treatment of the Cu films needed to be optimized. The authors illustrated the subsequent 
suspending procedure as in Figure 31. CVD graphene was patterned by lithography and mild oxygen 
plasma. The underlying Cu layer was later etched chemically without stripping the photoresist which 
was used earlier during oxygen plasma. Graphene pattern was thereon released with the 
photoresist which supported graphene and prevented stiction - related damage. Finally, graphene 
pattern was suspended via critical point dryer after resist removal. [109] 

 

 
Figure 31. Transfer free process proposed by Bharadwaj et al. and its comparison to conventional process. A1: 
CVD grown graphene, A2: lithography, A3: suspended polymer and graphene composite, A4: suspended 
graphene with contacts; B1: graphene on Cu, B2: polymer on graphene/Cu, B3: polymer on graphene, B4: 
patterned SiO2, B5: polymer and graphene suspended on patterned SiO2, B6: suspended graphene. [109] 

 
We summarized the techniques we reviewed in Table 1. It is intended to give a general idea 

about how the fabrication evolved over the years.  
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Year 
 

Study 
 

Graphene source 
 

Fabrication 
 

2007 Bunch et al. [48] exfoliation 
Graphene was exfoliated over prepatterned 
trenches in SiO2. 

2007 Frank et al. [93] exfoliation 
Graphene was exfoliated from Kish graphite over 
trenches in SiO2 by using a probe as a “pencil”.  

2008 
Garcia-Sanchez et al. 
[91] 

exfoliation 
Graphene was exfoliated over prepatterned 
trenches in SiO2. 

2009 Bolotin et al. [18] exfoliation 
Rectangular shaped flakes of exfoliated graphene 
were located. Metal electrodes served as etch 
mask during HF dipping + CPD. 

2009 Shivaraman et al. [103] SiC 
Graphene ribbons were patterned on SiC. SiC was 
partially etched in electrolyte KOH (1%) under UV 
source. 

2010 Xu et al. [92] exfoliation 
Graphene was exfoliated over prepatterned 
trenches in SiO2. 

2010 
 

van der Zande et al. 
[45] 

CVD 

1. Ribbons were patterned while graphene was 
still on Cu. They were transferred onto Si wafer 
with predefined trenches. 2. CVD graphene was 
transferred unpatterned onto a silicon nitride 
membrane with square holes. The technique was 
“liquid-free”. 

2010 Traversi et al. [106] exfoliation 
Graphene was suspended in a PMMA sandwich 
structure on Si wafer. 

2010 Bao et al. [107] exfoliation 
Metal electrodes/etch masks were deposited via 
shadow masks. The sample was suspended by HF 
etching + CPD. The fabrication was “resist-free”. 

2010 Aleman et al. [108] CVD  
Ribbon was patterned and suspended on Cu by 
etching Cu. The technique was “transfer-free”. 

2011 Tombros et al. [101] exfolation 
After exfoliation onto LOR/SiO2/Si, graphene was 
suspended over pillars in LOR. Metal electrodes 
were realized on the pillars. 

2012 Morin et al. [96] exfoliation 
Graphene was exfoliated onto trenches and 
patterned into suspended ribbons via FIB. 

2013 Zhang et al. [98] CVD 
Trenches were realized in Si via DRIE. Graphene 
was transferred onto trenches and patterned into 
suspended ribbons via FIB. 

2013 Smith et al. [94] CVD 
Graphene was transferred over existing trenches 
followed by patterning in oxygen plasma. 

2013 Dorgan et al. [99] exfoliation, CVD 

Graphene was exfoliated/transferred onto Si 
wafer followed by patterning. Metal electrodes 
were realized which serve as etch mask during HF 
dipping + CPD.  

2013 Neuman et al. [102] exfoliation 
After exfoliation onto PMMA/SiO2/Si, graphene 
was suspended over cross-linked regions of 
PMMA. Metal electrodes were added as clamps. 

2014 Bharadwaj et al. [109] CVD 

Ribbon was patterned on Cu/Wafer by 
lithography. The resist was not removed. 
Graphene ribbon/Resist stack was released by 
etching Cu layer. The technique was “transfer-
free”. 

Table 1. Evolution of the state of art of fabrication techniques for devices with free-standing graphene. 



32 
 

2.5. Driving lines for our process 
 

This review of the fabrication methods of suspended graphene is not exhaustive; yet we can 
observe how highly varying and creative techniques have been developed so far. When we started 
this study (in 2010), some of the works presented in this review of the fabrication methods had not 
yet been published. Moreover, studies on suspended graphene generally focus on presenting or 
exploiting a particular characteristic; however they hardly investigate the failure mechanisms of 
fabrication or disclose yield. Thus, we had to develop our own process. 

 
Our objective is to develop a high yield and scalable fabrication route. With this in mind, we 

followed the following driving rules: 
 

•� We categorized the fabrication techniques of state of art in two; transfer over existing 
trenches and post-patterning substrate etch. Even if it provided the possibility to study certain 
physical phenomena, the former technique does not allow post-processing. Therefore, we believe 
that the latter technique is more suitable to industry-oriented device fabrication. Thus, we focus our 
efforts into the latter. 

 

•� We aim to keep the fabrication as simple as possible. In other words, we choose a 
minimal number of steps for the route and stay within the simplest context of suspended graphene 
fabrication. For example, we only use standard photoresists and wafers.  

 

•� We also attempt to keep the number of times graphene comes into contact with a 
resist minimal. And when it does, we make sure that there is no additional foreign contaminant 
other than polymers. 

 

•� We focus our experiments on the type of graphene devices which are scalable and 
compatible with existing Si technologies according to the state of art. Therefore we limit our 
fabrication to substrate etching techniques where CVD is the source of graphene. 

 
Next section will present the issues encountered during this development. We studied the 

failure mechanisms and investigated their reasons. And we achieved a process able to provide 
suspended beams with high yield. 

2.6. Proposed synthesis and fabrication 
techniques 

 

2.6.1. CVD synthesis  
 
We obtain CVD graphene through our collaboration with the group of Prof. Duesberg in 

CRANN, Trinity College, Dublin. Graphene was synthesized on Cu with a LP-CVD process. Cu was 
firstly electrochemically polished in phosphoric acid until the surface reached a roughness below 
10 nm. Cu foils were heated at 1000°C under a hydrogen flow of 10 sccm for 15 min in a quartz tube 
furnace followed by a methane flow of 20 sccm at a pressure of 310 mTorr for 20 min. The sample 
was cooled under hydrogen flow via compressed air. [79] [110] 
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Raman measurements were employed in CRANN to verify the highly monolayer graphene 
where certain isolated patches showed formation of double and triple layers. This was explained by 
the minimal yet present segregation taking place on Cu. Prolonged methane flow lead to additional 
formation of PyC. [79] 

 

2.6.2. Transfer onto SiO2/Si 
 
As we explained earlier, polymer assisted transfer is a routine mechanism for processing 

CVD graphene for electronic applications. The most common choice of polymer is PMMA. Our 
collaborators from CRANN, Trinity College addressed the contamination issues related to PMMA 
assisted transfer and responded by employing a modified version of this technique.  

 

 

Figure 32. Chemical structure 
and molecular weights of the 
polymers employed for 

transfer. [110] 

 
Conventionally, the stack of PMMA/graphene/Cu catalyst is exposed to FeCl3 or APS solution 

to remove the Cu layer. The FeCl3 is known to leave residual metal ions which can be electrically 
interfering while the APS crosslinks PMMA and makes it even more difficult to remove. [111] [112]. 
One suggested route to eliminate PMMA residues was vacuum annealing of the transferred 
structure [113] or chemically removing the residues in Choloroform [114]. Alternatively, even more 
aggressive methods have been adopted such as plasma [115] or annealing in oxygen [116]. Our 
collaborators, on the other hand, proposed to fully desert PMMA and use cellulose instead for the 
reasons we will explain. [110] 

 
We had mentioned the difference of the thermal expansion coefficients of Cu and graphene 

leading to a residual stress in the graphene layer that this stress is relaxed to some extent via 
wrinkles. Depending on the plasticity of the transfer polymer, stress relaxes into further 
rearrangement of graphene.   

 
Cellulose nitrate (NC) is a short chain, rigid polymer with bulky groups and ample hydrogen 

bonding. (Figure 32) It can be smoothly dissolved in acetone and alcohols. Cellulose acetate butyrate 
(CAB) is a long chain polymer with acetate side chains. Compared to NC, CAB can be polymerized 
more controllably into longer chains. Hence, it is less rigid than NC. 
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Figure 33. a) Average Raman G band frequency shifts for graphene transferred by PMMA, NC and CAB; b) 
Schematic illustrations of different types of possible folds present; c-e) AFM images of graphene transferred 
by PMMA, NC and CAB with Raman G band frequency shift overlaps; f-h) Height profiles of the corresponding 
AFM images at purple lines; j-k) AFM images of graphene transferred by PMMA, NC and CAB with the overlay 
of Raman intensity ratios of D and G band, ID/IG. [110] 

 
The team of Prof. Duesberg compared the two cellulose polymers with PMMA as a 

candidate for assisting graphene transfer. PMMA, NC and CAB were spincoated as 100 nm films and 



 

35 
 

rigidized further with thermal tape. Cu was etched in 1M APS for 60 min. The structure was rinsed in 
DI water for 20 min followed by floating onto the desired destination. The stack was dried in vacuum 
at 80°C in 0.1 bar. The polymer was stripped in acetone after 8h. Transferred graphene was 
investigated under AFM and Raman in terms of the differences of stress relaxation through the 
different transfer polymers. After eliminating the effects from doping, Raman spectra as well as the 
presence of folds and bubbles revealed the differences between the polymers in terms of stress 
release. As the most rigid polymer, NC releases less stress in comparison, i.e. there are fewer folds 
seen in the graphene transferred (Figure 33) In addition, XPS measurements are done on samples to 
extract the relative amount of sp2 hybridization which can be directly related to the amount of ratio 
of residues/graphene. With this, it was possible to conclude that NC and CAB leave much less 
residues than PMMA does. Thus, for planar applications with little polymeric residue, NC is the right 
choice for transfer polymer. [110] 

 

2.6.3. Device fabrication  
 

2.6.3.1. Issues with the existing fabrication techniques 
 
The most intuitive method towards a free-standing graphene ribbon is comprised of two 

steps: i) patterning the graphene into a ribbon and ii) etching the underlying SiO2 layer in liquid HF. 
Even though this type of fabrication is quite common in MEMS technologies, it does not follow as 
smoothly as it sounds in theory. Graphene has indeed a reputation of mechanical stability; however, 
there are several issues which reduce the yield through tearing and/or collapsing of graphene 
beams. 

 �
The most commonly discussed factor is the capillary forces during air drying. The layer 

underneath the graphene beam is etched in buffered HF followed by rinsing in water. If the sample 
is then dried in air or via compressed air/nitrogen strong capillary forces of water pull graphene 
towards trench walls. Subsequently, the graphene beam sticks to trench walls and tears and/or 
collapses. This problem is commonly known in MEMS. In fact, this was the driving force towards 
using critical point driers in MEMS fabrication. 

 
The sole attention to capillary forces will not be sufficient to successfully suspend beams. 

That is to say, even if one replaces air-drying with CPD, free-standing ribbons are not guaranteed. 
Our studies show that there is a key player in the fabrication of suspended beams: the interface. 
During the oxide etch, HF can quickly penetrate into the interface between the etch mask and 
graphene. This penetration prevents a successfully definition of a step at the wall of the desired 
trench and therefore results in beam collapse (Figure 34c and Figure 36a) It might go as far as 
peeling off of the metal contacts. (Figure 34a-b) Any contaminant or residue will act like a bump 
under the etch-mask facilitating the HF penetration. Therefore, it is crucial to have a clean interface, 
i.e. a pristine graphene surface.  
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(a) 

 
(b) 

 
(c) 

Figure 34. a-b) SEM image of devices  fabricated by 
ebeam lithography where the metal etch mask or 
electrodes peeled off during HF vapor process; c) 
SEM image of a device fabricated by using a 
polymeric resist and dipping in BOE to define 
trenches at beam region.  The beam collapses 
because the HF penetrates under the resist such that 

the intended trench turns into a smooth basin.   

 
Every time graphene comes into contact with a polymeric resist, it is contaminated. 

Conventional cleaning methods in MEMS fabrication such as ultrasound or oxygen plasma are too 
aggressive and can remove graphene as well. Furthermore, the common plasma etching step to 
pattern graphene can significantly harden the photoresist making it even more difficult to fully 
remove as observed in Figure 35. 

 

 
Figure 35. SEM images of graphene patterned by lithography and oxygen plasma. Plasma hardened the 
polymeric resist and made it impossible to remove by simple immersion in acetone. The plasma-hardened 
polymeric residues are charging and lead to unclear images.  
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As much as the steps involving polymer coating, imaging needs caution as well. SEM imaging 
of a device before the final step can result in beam collapse at the final step because it, in fact, 
interferes with the interface, i.e. graphene surface. For instance, during imaging a device after 
graphene patterning step, the electron beam can further crosslink the polymeric residues on the 
graphene and/or lead to carbon deposition. Carbon deposition is a common problem of electron 
microscopy. While it can be ignored for most applications, here, it can have destroying effects at 
final fabrication step. In general, we suggest avoiding altogether imaging in-between fabrication 
steps.  

 

 
(a) (b) 

Figure 36. a) SEM image of a device fabricated by using a polymeric resist and dipping in BOE followed by CPD 
to define trenches at beam region. This device is fabricated in Stanford University with our photomasks during 
a short collaboration. At the time,  a successful route was not achieved.  The beam collapses because the HF 
penetrates under the resist such that the trench is not defined. b) Optical image of a test sample where the 
resist AZ1512 is spun onto an oxidized Si wafer and dipped in BOE for 6 min corresponding to an etch depth of 
500 nm. The HF penetrated through the resist/oxide interface.  

We now consider a perfectly clean graphene surface with no wrinkles, bubbles or residues 
to interfere with the resist interface. That is to say, there is no additional bump under the carpet 
accelerating HF penetration. And we demonstrate how difficult it is to prevent HF penetration even 
under such circumstances. For starter, there are different types of liquid HF available such as the HF 
49% (aq), HF diluted to various degrees and buffered HF. Buffered HF (BHF or BOE) is developed to 
have control over the oxide etching rate. Another reason for its popularity is its conservation of the 
photoresist. The mechanism for regular HF etching is predicted as the following:  

ܱܵ݅ଶ ൅ ܨܪ4 → ସሺ௚ሻܨ݅ܵ ൅ ଶܱ  or   ܱܵ݅ଶܪ2 ൅ ܨܪ6 → ଺ܨଶܵ݅ܪ ൅  ଶܱܪ2

while the reactions that take place during buffered oxide etch are the following: 
ܱܵ݅ଶ ൅ ܨܪ4 → ସܨ݅ܵ ൅ ܨସܪܰ  ଶܱ  andܪ2 ↔ ଷܪܰ ൅  .ܨܪ

The buffering agent, ammonium fluoride (NH4F), maintains the HF concentration, controls the pH 
and aids in keeping the reaction rate constant. Additionally, it minimizes the attack of HF on the 
photoresist. Figure 36b is an optical image of a test sample where a photoresist is spun and 
developed to have trenches on a Si wafer with 5µm oxide layer. The sample was dipped in BOE for 
6min which corresponds roughly to an oxide etch of 500 nm. As clearly seen in the image, the 
etching was not confined to the developed area. Even though the surface of the test sample was 
perfectly clean (the wafers had no processing done on them) BOE penetrated into the 
resist/substrate interface after 5 min. Therefore, we believe that it is more suitable to use different 
types of etch mask instead of polymeric resist.  
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We conclude that suspending graphene needs more care than simply avoiding capillary 
effects. We propose a fabrication route in the light of solving all the issues we have mentioned, i.e. 
paying attention to the mask interface.  

 

 
(a) 

 
(b) 

Figure 37. a-b) Optical images of 
samples which are exposed to 
the HF vapor equipment with a 
patterned polymeric resist to 
etch rectangular trenches under 
graphene beam. The cycles of 
ethanol and HF vapor removed 
the polymeric resist and peeled 
off the metal electrodes which 
were deposited after graphene 
transfer and therefore did not 
have a tight interface to the 
wafer surface. c-d) The same 
samples are cleaned in acetone 
which removed the electrodes 
entirely. However, the alignment 
marks stayed. The alignment 
marks we realized on pristine 
wafers as a first fabrication step 
and therefore have a clean 
interface to the wafer. This 
underlines once more the 
importance of interface and 
adhesion in HF processes.  

(c) 
 

(d) 

 
 

2.6.3.2. Key process steps developed 
 
All fabrication is done in the clean room facilities of Plateforme Technologique Amont (PTA), 

Grenoble. At the time of our study, there was no ready recipe for device fabrication from graphene 
in the facility. 

 
In this section, we firstly discuss each step which we modified and improved. We follow by 

proposing an exact recipe towards a successful suspending of graphene devices.  
Figure 39 illustrates the entire set of fabrication steps. 
 
At the step of transfer 
 
We have explained in Section 2.6.2 how we choose cellulose nitrate over the conventional 

PMMA to lessen the polymeric residues from transfer. We have also mentioned in Section 2.6.3.1 
how graphene is contaminated every time it comes into contact with a polymer. We employ an 
additional acetic acid cleaning after every immersion step in acetone. This cleaning technique has 
been initially proposed by Her et al. [117]  
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At the step of graphene patterning 
 
The energetic ions penetrate into the resist and introduce cross-linking effects into the 

polymer similar to post-bake via energy transfer. In fact, along with post-baking on a hot plate for a 
few minutes, a light oxygen plasma is exploited to intentionally strengthen the photoresist for deep 
reactive ion etching applications and to prevent its easy removal. For the case of optical lithography 
processes, photoresists are usually sufficiently thick to overcome the hardening issue. We observe 
that a resist with a thickness over 1µm is sufficient to solve this problem. The ions cannot penetrate 
all the way into the resist; they are stopped closer to the surface. Thus, acetone can attack the 
bottom of the resist and remove it. If finer structures are desired, however, it is not possible to use 
such thick resists in ebeam lithography. Depending on the sought resolution, resist thickness might 
be required to be reduced down to as little as tens of nanometers. Thus, the resist will easily be 
hardened in the entire volume. At this point, the first reaction is to forgo the ease of polymeric 
resists entirely and switch to hard masks. Metal deposition, aluminum in particular, and lift-off are 
typically adopted as ebeam hard mask. After the plasma treatment the metal mask can be removed 
via acids. We do not prefer this option since we do not want graphene to come into contact with an 
additional foreign material considering that it would be nearly impossible to clean it 100%. Residues 
of metal atoms on graphene could potentially interfere with the electronic properties of graphene. 
Thus, we move on to a Silicon based ebeam resist: hydrogen silsesquioxane (HSQ). The monomer is 
a cubic molecule where one Si atom sits in each corner and oxygen atoms link the corners to each 
other. (Figure 38) This negative ebeam resist is commonly used for high resolution requirements. At 
the same time, it can be a hard mask for plasma etching. The resist is removed via HF which is not 
convenient for two reasons: i) HF is a dangerous substance whose manipulation is best minimized 
when possible, ii) HF would not only remove the HSQ resist, it would also etch the underlying oxide 
partially or fully which might even lead partial peeling of the some structures on the oxide layer. 
Bearing all of these in mind, we propose a double layer approach: HSQ + polymeric resist for ebeam 
lithography. While HSQ layer prevents resist hardening, the polymeric aids easy resist removal in 
solvents.  

Figure 38. 
Chemical 
structure of 
HSQ. [118] 

Here, we find it worth to discuss the step of resist removal in solvent. We emphasize the 
importance of a slow dissolution. It is known that there is a strong adhesion between graphene and 
photoresists. At any aggressive attack, the resist can be removed while it still attached to graphene, 
i.e. taking graphene partially or fully with it. We observe that slow and patient removals result in 
better yield. Instead of dissolving the resist via hot acetone and/or ultra-sound assistance we prefer 
to immerse the samples in cold acetone overnight.  
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Graphene is grown on 
both sides of Cu foils 
via CVD processes. 

  

 

 
 

Graphene on the 
bottom side of the cu 

foil is etched in oxygen 
plasma. Cellulose
nitrate is spun on 

graphene on Cu for 
transfer. 

  

 

Cu foiled is etched 
chemically. Cellulose 
nitrate and graphene 

are let to float in water 
for transfer onto Si 

wafer. Metal contacts 
are realized by 

lithography and lift-off 
on the oxidized Si 

wafer prior to transfer. 

 

Sample is removed 
in acetone for 24 h 
followed by rinsing 
in isopropanol and 

immersion in glacial 
acetic acid for 24 h. 

 
 
 

Graphene with 
polymer is fished out 
of the water onto the 
wafer. The structure is 
heated to evaporate 

water and ensure 
graphene adhesion on 

the wafer. 
 

Additional metal 
layer is patterned by 
lithography and lift-

off to clamp the 
beam and to serve 

as etch mask during 
HF exposure. 

 

Polymer is removed in 
acetone. The resist is 

spincoated onto 
graphene depending
on the desired beam
dimensions. AZ1512 

for optical lithography 
and PMMA/HSQ for 

ebeam lithography are 
patterned followed by 

oxygen plasma 
etching. 

 

The sample is put in 
the equipment of 
HF vapor. SiO2 is 

etched everywhere 
except for the areas 

under metals. 
Graphene beam is 

thereof suspended. 

 

Figure 39. Process flow of the proposed fabrication for suspended graphene devices 
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Additionally, we should address the choice of the resist type as well. Unless there is a special 
case, such as HSQ, we believe in avoiding any negative resists altogether. Negative resists tend to 
crosslink further when they are exposed to the plasma energy. Compared to positive resists, they 
are by nature more difficult to dissolve after processing.  

 
All of the points we mentioned assist having as clean a graphene as possible. The last factor 

on this subject is the plasma parameters of a reactive ion etching (RIE) system. Graphene is etched 
away under oxygen environment exceedingly fast. To have control over the etch rate, one can adjust 
the parameters such as coil power, RF power, flows of the gas mixture O2/Ar and the etching time. 
Even when we secure the conditions for a stabilized and light chemical plasma, the exposed time is 
critical. 30 seconds short or in excess can fail to remove all the desired graphene area or can harden 
the photoresist too much. Bearing in mind that the plasma conditions can change in the equipment 
depending on a variety of practical reasons such as cleaning time, plasma stabilization time, recent 
repairs etc., it is advisable to re-calibrate the plasma time on each new day of plasma etching.  

 
At the step of HF release 
 
The final stage of fabrication is beam release by etching the underneath SiO2 layer in HF. We 

have discussed in the Section 2.6.3.1 the challenges of this step. As we said, we firstly desert 
polymeric resists altogether. Instead, we define a second metal layer through evaporation and lift-
off. This Cr/Au layer serves as etch mask as well as clamps to prevent the beam from sliding. For 
etching, we choose HF vapor. The HF vapor equipment is well-sealed and therefore can be easily 
manipulated. The vapor phase eliminates any capillary effects already. The HF in the equipment is 
not buffered, i.e. would attack the resist. Furthermore, the system works on cycles of HF and 
ethanol flow. Ethanol assists drying the sample from the water which is a side product of the HF and 
SiO2 reaction. By clearing away water, the reaction rate is kept under control. However, ethanol 
dissolves polymeric resist as well. (Figure 37) 

 
Thus, this type of HF vapor equipment is not suitable to use with polymeric resists. In 

comparison with the wet etching in BOE followed by CPD, HF vapor is simpler as a one-step process. 
The thickness and area of Cr/Au clamps needs caution as well. The etching in HF vapor is isotropic. 
Thus, a portion of the metal layer on the sides equal to the amount of the etch depth will be free-
standing. The metal area needs to be designed appropriate to the planned etch depth. Depending 
on the thickness the metals might buckle or peel out. A thickness of ca. 100 nm is sufficient for 
strongly free-standing metal structures.  

 

2.6.3.3. Mask design 
 
The designs of our devices are presented in Figure 40. First layer (blue) is intended for 

alignment marks. Second layer is to realize metal electrodes. Third layer is to pattern graphene. 
Fourth layer add metal clamps which serve as an etch mask during HF etching. 

 
Large structures designed for transmission line measurements are not intended for free-

standing devices. Smaller structures are designed in a way that allows 4 probe measurements on 
SiO2, i.e. before suspending. The ribbon in-between the source and drain electrodes of the 4 probe 
device is intended to free-stand at the end of the fabrication steps. 
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(a) (b) 

      (c) 
Figure 40. Photomask designs for a) ebeam lithography and b) optical lithography. c) A general look on 
the device design. Pink is graphene and yellow is metal electrodes. Mask layers are indicated as 
numbers when applicable. To eliminate contact resistance, we design devices suitable to 4-probe 
measurements. In addition, we design two large graphene devices per sample which can be used for 
transmission line measurements (TLM) as well as Hall bar measurements. 
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2.6.3.4. Final recipe proposed 
 

1.� Alignment marks 
 
We used two different types of heavily doped Si wafers: i) both sides polished Si wafer 

(݀	 ൌ 	100 ± 0.5	݉݉; ݐ ൌ 525 ± 25	μ݉; ߪ	 ൌ 5െ 10	Ωܿ݉) with a wet thermal oxide of 500 nm, i) 

both sides polished Si wafer (݀	 ൌ 	100 ± 0.5	݉݉; ݐ ൌ 525 ± 25	μ݉; ߪ	 ൌ 5െ 10	Ωܿ݉) with a wet 
thermal oxide of 5 µm. Alignment marks were realized via ebeam lithography with the resist ZEP 
520A for the subsequent optical as well as ebeam lithography steps. ZEP 520A was spin-coated on 
the wafer with a speed of 4000 rpm for 60 s followed by heating on a hot plate at 180°C for 5 min to 
evaporate the solvent. These conditions lead to a thickness of ca. 350 nm. The sample was exposed 
with a beam of 400 µC*cm2 for 100 kV and developed in a solution of MIBK : IPA [1:1] for 60 s 
followed by dipping in MIBK : IPA [89:11] for 15 s.  

 
For all the steps involving metal deposition, the metals of choice are gold and chromium. 

Following the lithography, layers of Cr/Au (10 nm/100 nm) were deposited with rates of 0.2 nm/s 
and 0.25 nm/s. The vacuum environment in the chamber was ~ 10-8 mbar and we kept the pressure 
in the loadluck at ~ 10-6 mbar. Prior to the evaporation, a very short Ar etching was passed on the 
sample for 10 s at 250 V to ensure well-defined “valleys” and “hills” at the resist. The transferred 
pattern can have imperfections due to the development which then would result in partial failure of 
alignment marks. The evaporation was followed by lift-off in sonicated acetone. The wafer was 
rinsed in isopropanol and dried with compressed air. 

 
Most resist do not adhere well onto an oxidized full size wafer due to the hydrophilic ends of 

the SiO2 layer. This issue is usually solved by applying hexamethyldisilazane (HMDS) for the case of 
photolithography. HMDS modifies the SiO2 surface and makes it more hydrophobic. Through that, it 
improves resist adhesion to wafer surface. For the case of ebeam lithography, it can be solved by 
using the resist ZEP instead of typical PMMA based materials. ZEP adheres well onto oxide surfaces. 

 
 We explained that only a few metals are resistant to HF. This does not only affect the metal 

choice for the electrodes, but it equally limits the choice for the metals at the alignment marks. 
Considering that the final stage of the fabrication involves HF, the alignments marks should not peel 
off.  We chose gold for alignment marks as well as electrodes and chromium as adherent layer.  And 
the thickness of the metallic alignment marks was set by the rule of thumb of easy lift-off: 
evaporated metal thickness needs to be equal to or less than 1/3 of the thickness of the resist.  

 
If graphene devices are integrated at the front end of the line, the drawback of a Cr/Au stack 

is that it is not compatible with the Si technology. However, changing the metal requires a full study 
which was beyond the scope of this thesis. 

 
2.� Metal contacts 
 
Optical lithography was employed at the level of metal contacts. The wafer was spincoated 

with the commercial photoresist AZ1512 at a rate of 4000 rpm for 60 s leading to a thickness of ca. 
1.2 µm. The resist was exposed by the equipment SUSS MicroTech MJB4 under UV for 25 s and 
developed in the commercial AZ developer for 30 s followed by rinsing well in water. The wafer was 
dried with compressed air. 
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Layers of Cr/Au (10 nm/100 nm) were evaporated with rates of 0.2 nm/s and 0.25 nm/s 
after a 10 s Ar etch at 250 V. The vacuum environment in the chamber was ~ 10-8 mbar as the step 
for alignment marks. But we further lowered the pressure in the loadlock to ~ 10-7 mbar. Lift-off was 
carried out in acetone under ultrasound. The wafer was rinsed in isopropanol and dried with 
compressed air. 

 
3.� Graphene transfer 

 
The wafer was cut into pieces of 1x1 cm which correspond to the sizes of graphene sheets 

produced on Cu by CRANN, Trinity College. Graphene on Cu was transferred onto wafer pieces in 
CRANN as explained earlier. Cellulose nitrate was removed by immersing the sample in acetone for 
24 h followed by rinsing in isopropanol. For additional cleaning, the sample was transferred into 
glacial acetic acid for 24 h and rinsed in water. The sample was dried by compressed air.  

 
Graphene on the wafer with an oxide layer of 500 nm shows a clear color contrast under 

optical microscope whereas it is very difficult to differentiate graphene on the wafer with an oxide 
layer of 5 µm. 

 
4.� Graphene patterning  
 
We prepared two different sets of samples: i) by optical lithography and ii) ebeam 

lithography. The width of the beams was varied in the range of 2 – 4 µm for optical lithography and 
in the range of 200 nm – 1 µm for ebeam lithography. The length of the beams was varied in the 
range of 6 – 12 µm for optical lithography and in the range of 2 – 4 µm for ebeam lithography.   

 
To fabricate the larger ribbons, we used either the resists AZ1512 or UV5. AZ1512 was 

spincoated with a rate of 4000 rpm for 60 s resulting in a thickness of 1.2 µm. The resist was 
exposed by the equipment SUSS MicroTech MJB4 (UV 365, i-line, 8 mW/cm2) under UV for 25 s and 
developed in the commercial AZ developer for 30 s followed by rinsing well in water. The sample 
was dried with compressed air.  

 
UV5 was spun with a rate of 4000 rpm for 60 s leading to a thickness of ~500 nm. Solvents 

were evaporated by heating at 130°C for 90 s. Sample was exposed under MJB4 Deep UV (240 nm, 
4mW/cm2) for 1.3 s followed by post-exposure bake for 60 s at 130°C. The resist was developed in 
the commercial AZ326MF for 30 s and well-rinsed in water. The sample was dried with compressed 
air.   

Devices with finer structures were realized by spincoating a layer of the ebeam resist PMMA 
4% (by Allresist) at a rate of 2000 rpm for 60 s resulting in a thickness of ~300 nm. The sample was 

heated at 180°C for 3 min to evaporate the solvent in the resist mixture. After cooling down the 
sample to room temperature, the ebeam resist HSQ (commercial name: XR1541) was spun on the 
sample at a rate of 4000 rpm for 60 s leading to a thickness of ca. 130 nm. The sample was heated at 
180°C for 3 min. The double layer of ebeam resist was exposed in ebeam and developed in the 
commercial MF26 for 1min followed by rinsing in water. The sample was dried with compressed air. 
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Patterns were realized by etching graphene under oxygen plasma with an oxygen flow of 
20 sccm and an Ar flow of 80 sccm for 75 s. The coil power was kept at 400 W and the RF power is 
kept at zero.  Prior to etching, the chamber was cleaned by oxygen plasma for 10 min followed by 
applying the graphene etching conditions on a dummy wafer for 10 min for process stabilization. 
After etching, the sample was immersed in acetone for 24 h to remove the resist, rinsed in 
isopropanol and put in glacial acetic acid for 24 h.  

 

 
(a) 

 
(b) 

(c) 
 

(d) 
Figure 41. SEM images of devices prepared by ebeam lithography at the stage after graphene patterning.  

 
5.� Metal clamps  
 
We deposited a second layer of metal to serve as clamps for the beam as well as HF etch 

mask. As we can see for the samples in Figure 40a, the clamps were very close to each other and 
therefore cannot afford even small failures of lift-off. After pattering graphene, it was crucial that 
we do not expose the sample to any aggressive cleaning which even includes sonication in acetone 
for short time. To ensure that this is not necessary, we aimed to ease the lift-off of this metal layer 
by using a double layer resist.  

 
We used a double PMMA process to benefit from the uneven resist structure due to the 

difference in the two molecular weights. PMMA 4% (200K) was spun at a rate of 4000 rpm for 60 s 
and heated 180°C for 3 min for solvent evaporation. After cooling, PMMA 4% (950K) was spun at a 

2 µm 2 µm 

1 µm 1 µm 
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rate of 4000 rpm for 60 s followed by heating at 180°C for 3 min. The sample was exposed by ebeam 
lithography and developed in a solution of MIBK:IPA for 45 s and in pure isopropanol for 30 s. The 
sample was gently dried very with compressed air. 

 
Layers of Cr/Au (10 nm/100 nm or 10 nm/50 nm) were then evaporated with corresponding 

rates of 0.2 nm/s and 0.25 nm/s. The vacuum environment in the chamber was ~ 10-8 mbar and we 
kept the pressure in the loadlock at ~ 10-7 mbar.  The evaporation was followed by lift-off in acetone 
for 24 h. The wafer was rinsed in isopropanol and immersed in glacial acetic acid for 24 h followed 
by rinse in water. The sample was dried very gently with compressed air. 

 
6.� HF etching 
 
To etch the oxide layer and release the graphene beam, an HF vapor equipment Primaxx 

Monarch 3 is employed. An automated recipe is carried out by slow etching in ca. 90 minutes by 
alternating vapors of HF and ethanol. 

 

2.7. Characterizations  

 

2.7.1. Fabrication yield 

 
We have taken images via SEM and AFM to ensure that our fabrication results in successfully 

suspended graphene devices. In Figure 42, we present SEM images of all of the 14 devices on one 
sample. This sample is representative of other samples in the study. All of those images were taken 
on a tilted sample holder to show clearly if a beam was suspended or collapsed. As we can see, only 
one of these devices was collapsed. Thus we conclude that this fabrication route has a yield over 
90%. We suggested that attention to interface is the key towards successfully free-standing devices 
through a conventional fabrication. Our results confirm this assumption.  The graphene in the 
sample from Figure 42a-n was patterned by optical lithography. In addition to this, we present more 
complicated structures with finer dimension in Figure 42o-p which were patterned by ebeam 
lithography. As observed, even such complicated structures could be suspended by employing this 
fabrication technique.  
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 (a) (b) 

 (c)   (d) 

 (e)    (f) 

 (g)    (h)  

1 µm 1 µm 

1 µm 1 µm 

1 µm 1 µm 

1 µm 1 µm 
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 (i)   (j) 

 (k)   (l) 

 (m)   (n) 

 (o)   (p) 
Figure 42. a-n) Tilted SEM images of devices from the same sample to demonstrate the yield of our proposed 
route. Each 1x1 cm sample is comprised of 14 devices with a graphene beam. As observed, only one graphene 
beam out of 14 is collapsed. The graphene beams are patterned by optical lithography via the resist UV5. o-p) 
SEM images of suspended devices with more complicated structures. The beams are patterned by ebeam 
lithography. 

 

1 µm 1 µm 

1 µm 1 µm 

1 µm 1 µm 

1 µm 1 µm 
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To confirm the free-standing structure, we present an AFM image along with a height profile 
in Figure 43 a and b. The suspended region does not appear clearly due to the fact that the tip 
interaction at that point is complicated. The blue and red lines indicate where the height profiles are 
taken from in the AFM image. The difference in the profiles is attributed to the fact that beam is 
standing higher than the trench bottom. In order to rule out completely the possibility that some 
residual SiO2 was still supporting the beam, due to incomplete under-etching, we probed the rigidity 
of the suspended regions using AFM approach/withdrawal curves. The graphene beam displayed a 
different behavior from rigid Si surfaces (Figure 43d), with a smaller slope proving that the beam 
was completely self-supported. 

 

(a) (c) 

(b) (d) 
Figure 43. AFM characterization. a) Height mapping of a suspended beam, b) Cross-
sections along the cutlines of 4b, c) A supported graphene stripe showing a regular 
folds pattern, d) deflection curves on rigid region (blue) and at the middle of the 
suspended beam (red) confirming that the graphene beam is fully self-supported.  

 
We investigated the influence of acid treatment by comparing AFM images of two samples, 

one subjected to acetone cleaning only while the second one is additionally cleaned by acetic acid as 
well. In Figure 44, we deliberately set the color scale to 50 nm for a better demonstration of the two 
different sets of height distribution. In Figure 44a, next to the traditional folds of CVD graphene, we 
observe circular structures most of which are higher than 50 nm (therefore out-of-scale). We 
interpret them as polymeric residues still present on graphene after a thorough acetone cleaning 
during transfer process. In contrast to this, there are no such structures present in Figure 44b. Thus, 
we conclude that the acetic acid treatment is an effective tool to further remove polymeric residue 
on graphene.  
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Acetone alone 

 
(a) 

Acetone + acetic acid 

 
(b) 

 
 

 
 

 
(c) 

Figure 44. AFM images (top) and corresponding 
cross-sectional graphs (bottom) of graphene 
cleaned with a) acetone for 24h, b) additionally 
with acetic acid for 24h after transfer. For 
comparison, color scale (maps) and height scale 
(profiles) are set the same for a) and b). c) A 
portion of the Raman spectrum after i) the 

transfer followed by acetone cleaning of 24h (ii) 

additional acetic acid cleaning of 24h (iii) beam release. 
The spectrum focuses on the the intensity of the 
D band to compare the amount of disorder introduced 

at each fabrication step.� 

 
In addition, we inspected if the acid treatment degraded graphene via Raman spectroscopy. 

We present an entire chapter on Raman measurements. Here, we only insert an explanation 
regarding the acid treatment. We explain Raman spectra later more in detail. In the Raman 
spectrum of graphene, the relative intensity of the D band (ID/IG) is taken a useful figure of merit for 
evaluating disorder in graphene because it only appears in the presence of defects. In Figure 44c, we 
observe that the acid treatment indeed might have introduced some disorder. However, we find the 
increase in ID/IG not alarming and prefer to benefit from the influence of the acid treatment. 
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Furthermore, a weak D band also appears in the spectrum of the final device. While it can have 
originated from the fabrication steps, it can as easily come from the ribbon edges. The edges of 
graphene are comprised of unsatisfied dangling bonds which break the symmetry of the honeycomb 
lattice.  The ribbon dimensions are comparable to the laser spot size. Thus, the edges participate in 
the measurement. That is to say, even though our fabrication might introduce some amount of 
defects on graphene, we believe that a significant portion of the D band can be attributed to the 
beam edges.  

2.7.2. Periodic fold formation 

 

   

 
 

 
Figure 45. SEM image of a TLM device on the same sample as the one shown in Figure 47. 
Graphene is patterned with optical lithography using the commercial resist UV5. The samples 
have undergone thermal Raman measurements, i.e. they were heated up to 200°C and cooled 
down to room temperature. The suspended beams stay suspended and the systematic folds did 
not unfold after the thermal treatment. The distance between the folds changes with the 
ribbon width. 

We had explained the formation of wrinkles and folds in CVD graphene in Section 2.3. We 
believe that their formation is strongly correlated to strain relaxation mechanisms. Figure 43c is the 
AFM image of the graphene strip in the supported area of a device. We clearly observe systematical 
folds perpendicular to the length of the strips with a 2 – 4 µm distance from each other. In addition, 
we see this pattern with quasi-periodic folds in Figure 45. Considering the facts that they are strictly 
perpendicular to the ribbon length and that the distance in-between the folds change with the 
ribbon width, they must have undoubtedly formed after or during the graphene patterning step, i.e. 
once the strip was patterned. Furthermore, we see that these folds are observed on the suspended 
beams in Figure 42; i.e. they do not unfold after suspending the beam. On the other hand, we show 
that no such systematic folds are present in the images in Figure 46. At this point, we should 
underline that the graphene in Figure 42 was patterned with the resist UV5 whereas the graphene in 
Figure 46 was patterned either with AZ1512 or PMMA/HSQ. Hence, we conclude that the formation 
of this type of systematic folds perpendicular to the strip length is strongly influenced by the choice 
of the patterning resist. We already explained that the transfer polymer cellulose nitrate is 
considerably rigid and does not lead to a full relaxation of the stress built up during the CVD process. 
Thus, a part of this stress relaxes during patterning with UV5 in the form of such a regular pattern 
while it does not if AZ1512 or PMMA/HSQ are used instead. We attribute the difference to a variety 
of factors. Firstly, the adhesion characteristics of UV5 to graphene can be different from the one of 
AZ1512 or PMMA/HSQ. If the adhesion of graphene to UV5 overcomes its adhesion to the wafer 
surface, graphene can slide and relax in this fold pattern. Or a difference in the rigidity of the 

20 µm 



52 
 

polymers of UV5, PMMA and AZ1512 can lead to a relaxation for the case of the former while 
preventing it for the case of the letters. A third explanation can be given by the presence of post 
exposure baking in the recipe UV5, there is no such baking process for using the other two resists. 
During this baking at 130°C for 60 s, graphene could have relaxed as well. 

 (a)  (b) 

 (c) 

Figure 46. SEM images of a) a sample at the 
fabrication step where the graphene is patterned by 
optical lithography with AZ1512, b) a sample at the 
fabrication step where the graphene is patterned by 
ebeam lithography with HSQ/PMMA, c) b) a sample at 
the fabrication step where the graphene is patterned 
by ebeam lithography with HSQ/PMMA and metal 
clamps are realized by ebeam lithography.  

 
Figure 47 are the SEM images of several devices belonging to the same sample. Raman 

measurements are done on the devices of this sample at elevated temperatures; the sample is 
heated up to 200°C and cooled down to room temperature. Here, we firstly present that the 
suspended beams did not collapse even after thermal treatments. And secondly, we observe that 
the fold patterns stayed after thermal treatments as well, on the regions of the suspended beam as 
well as on the supported regions. In view of strain relaxation as well as in view of interlayer 
interactions, we believe that the graphene strips with folds present a low energy status of the 
system. By forming folds, the system is relaxed, i.e. at lower energy. Similarly, when a fold is formed 
in the form of a bulb in Figure 33b, the graphene monolayer layer interacts with itself such that the 
system is put to a lower energy as well. Thus, in both perspectives, fold formation appears to be 
energetically favorable.  

 

  (a) 

1 µm 10 µm 

10 µm 1 µm 

1 µm 
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  (b)  

  (c)  

  (d)  

  (e) 
Figure 47. SEM images of devices on the same sample. Graphene is patterned with optical lithography 
using the commercial resist UV5. The samples have undergone thermal Raman measurements, i.e. they 
were heated up to 200°C and cooled down to room temperature. The suspended beams stay 
suspended and the systematic wrinkles did not unfold after the thermal treatment. 

 
 

1 µm 

1 µm 

1 µm 

1 µm 

10 µm 

10 µm 

10 µm 

10 µm 
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2.8. Conclusions 
 
We have presented the state of art of fabricating suspended graphene devices. Suspending 

graphene is not a straightforward process and this has driven researchers towards employing quite 
unconventional techniques and materials such as polymer sandwich structures or pillars of LOR. For 
our route, we preferred keeping to conventional techniques, investigating its issues and proposing 
solutions. Conventional techniques permit our device fabrication to stay compatible with industrial 
applications.  

 
The challenge of conventional fabrication lies at the oxide etching step. While most 

attention has been drawn to overcoming the difficulty of capillary effects by using CPD or vapor HF 
techniques, we have shown that there is an equally important factor: the etch mask interface. 
Regardless of the choice of the etch mask, i.e. be it a polymeric resist or a metal layer, we found that 
the HF penetrates quickly into the graphene/etch mask interface. This does not only prevent the 
formation of steep edges, it can collapse the beam as well and might go as far as peeling off metal 
layers. Buffering the etching agent does not help this situation. Therefore, we focused on having a 
pristine etch mask interface. That is to say, we worked on eliminating impurities which interfere 
with a perfect adhesion of the etch mask and therefore serve as accelerators of HF penetration. 

  
To that end, we concentrated on having a clean surface after each step of fabrication. We 

firstly switched to a transfer polymer proven to leave residue, the cellulose nitrate. Then, we added 
an additional cleaning step, immersion in acetic acid after every time graphene comes into contact 
with a polymer. After demonstrating that HF penetrates under a polymeric resist even on pristine 
wafer surfaces after an etch depth of ca. 500 nm, we deserted the idea of polymeric resist entirely 
and turn to exploiting metal clamps as etch mask. Finally, we used HF vapor equipment over liquid 
HF followed by CPD due to comparative ease of use as well as smaller number of total fabrication 
steps. We present that a yield over 90% was possible to achieve through the suggested fabrication 
route.  

 
Additionally, we discovered that periodic patterns of folds could be formed during the 

graphene patterning step with a periodicity that depends on the beam width. These folds were very 
stable and they “survived” suspension or heating. We found that their formation was the result of 
the choice of resist used for patterning, probably combined with the fact that cellulose nitrate used 
for transfer leaves a high amount of compressive strain in graphene – as will be discussed more in 
detail in the next chapter. The fabrication of graphene ribbons with such periodic patterns of folds 
may present interesting properties which will require further work, beyond the scope of this thesis. 
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Chapter 3 
 

3. RAMAN  CHARACTERIZATIONS 
 

At first, we would like to introduce Raman spectroscopy. This is followed by the Raman 
fingerprint of graphene and the different types of information which can be extracted from a 
graphene spectrum. Finally, we present the Raman spectra of our devices at different fabrication 
stages and relate spectrum modifications to the presence of the internal and environmental factors 
such as adsorbates, strain or temperature.  

 

3.1. Introduction to Raman spectroscopy 
 

Raman spectroscopy relies on the inelastic scattering of photons by phonons. The incoming 
photon causes a time-dependent perturbation on the Hamiltonian of the system. Electrons respond 
to the fast changing electric field of the photon. It is possible to write the wave functions of the 
perturbed system with time dependent linear combinations of the unperturbed system where the 
final energy of the system is increased by ћݓ௅ to ீܧௌ ൅ ћݓ௅ (EGS is the ground state energy) as 
depicted in Figure 48. This new state is not stationary which is why one talks of a virtual state the 
system now is in. The system cannot stay in this non-stationary state and therefore falls back to one 
of it stationary states which can be higher, lower or the same in energy in comparison to the initial 
unperturbed state by emitting a photon (Figure 48). [119] 

 

 

Figure 48. 
Illustration of 
Rayleigh and 
Raman scattering 
in resonant and 
non-resonant 

conditions. [119] 
 
If the system falls back to the initial state, i.e. if the energy of the emitted photon is equal to 

the energy of the incoming photon, this elastic scattering is called Rayleigh scattering. The photon 
direction is changed.  
 

With a much lower probability in comparison with Rayleigh scattering, the photon might 
lose a part of its energy in the interaction with the system. The system does not fall back into the 
ground state energy level, but it falls to an excited stationary state. The difference between the 
incident and scattered photon energies therefore correspond to the phonon energy of the excited 
system: 

 ћ߱௅ െ ћ߱ௌ௖ ൌ ћΩ      (3. 1) 
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 This is called Stokes scattering. (Figure 48a) If the system was initially in an excited state, the 
incident photon can force the state into the vibrational ground state. In this case, the scattered 
photon leaves the matter with higher energy than the incident photon: 

	ћ߱௅ ൅ ћ߱ௌ௖ ൌ ћΩ     (3. 2) 

This is called Anti-Stokes scattering. Raman measurements make use of these two types of inelastic 
scattering processes: Stokes and Anti-Stokes. [119]   

 
Considering that it is more likely to find the matter in the vibrational ground state than in an 

excited state, Raman measurements are conventionally done by taking the Stokes shift into account. 
The intensity of the scattered light is plotted against the energy difference of the incident photon 
and the scattered photon, i.e. the Raman shift, as an indication of the phonon energies in the 
system. Instead of energy units, Raman measurements are plotted with cm-1, which then can be 
converted to energy with the equation: 1 meV = 8.0655447 cm-1. The ratio of Stokes/Anti-Stokes 
shift gives an indication of the temperature of the sample analyzed. [120] During an attempt to 
extract the temperature this way, it is important to consider resonant windows of the material as 
well. The resonances for the Stokes and anti-Stokes shifts might not be at the same energy interval.  
 

Besides the standard Raman spectroscopy, there are other types of Raman setting 
developed to provide additional information. The resonant or surface-enhanced Raman 
spectroscopy are among those. Indeed, for most materials, the total energy of the photon excitation 
and the initial state of the material does not correspond to a stationary state. However, if it does, 
the Raman signal is greatly enhanced. If the incident photon energy is chosen in a way that the total 
energy fits a stationary state, resonant Raman measurements can be performed. [121] Surface-
enhanced Raman spectroscopy, on the other hand, exploits the fact that the presence of metals can 
enhance the Raman signal through surface plasmons. [119]  

 
In the range from IR to UV, the laser energy is too large for purely phononic interactions. 

The scattering process involves electrons as well, especially for carbon allotropes. Therefore, Raman 
spectra carry information not only on phonons in the carbon material, but also on its electronic 
behavior. [122], [123] For instance, graphene can lead to resonances for any laser energy due to its 
zero-gap linear energy dispersion.  [124] 

 
The intensity of Raman scattering depends on the square of the incident field amplitude. 

Therefore it can be enhanced depending on the chosen substrate as an appropriate spacer. This 
circumstance corresponds to an “interference-enhanced” Raman scattering. [125] [126] As a result, 
when intensity ratios are compared, it is important to verify that the compared graphene systems 
are placed on the same substrate material with the same thickness.  

 

3.2. Raman bands of graphene 
 

A typical Raman spectrum of graphene is shown in Figure 50. Several peaks are marked on 
the spectrum such as D, G, D’, 2D and 2D’. They are directly related to the phonon dispersion of 
graphene and carry information on the material characteristics of a particular type of graphene.  

 
 Interpretations of Raman spectra of graphene are based on the phonon dispersion which is 

as shown in Figure 49a. It is made of 3 acoustic and 3 optical branches. Graphene has 2 atoms per 
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unit cell and therefore 6 normal modes at the Brillouin zone center Γ, two of which are degenerate. 
One acoustic branch and one optical branch are out-of-plane modes (o); i.e. the atomic vibrations 
are perpendicular to the graphene plane, while two acoustic and two optical branches are in-plane 
(i) modes. Each in-plane mode has one longitudinal (L) and one transverse (T) mode. The modes are 
classified with respect to the direction of the nearest neighbors. Thus, the longitudinal modes are 
vibrations that are parallel to the A-B carbon direction while the transverse modes are perpendicular 
to the A-B carbon atom direction. Following the high symmetry directions ΓK and ΓM, the 6 branches 
go as: LO, iTO, oTO, LA, iTA, oTA. [127] [128] 

 

 
(a) 

 
(b) 

 Figure 49. a) Phonon dispersion of single layer graphene.  [128] b) First order G band process, 1-phonon 
second order double resonance process giving the intervalley D band and the intravalley D’ band, 2-phonon 
second order process giving the 2D band with a double resonance and triple resonance. 2D band is r as G’. 
[128] 

At the Γ point, i.e. the center of the zone, the two degenerate in-plane optic modes, iTO and 
LO are the vibrations of the sublattice A against the sublattice B. (Figure 49a) In group theory, these 
modes are represented as E2g..This is a Raman active mode and results in the G band. [128] 

 
The two other most investigated Raman bands, the D and the 2D bands, originate from the K 

point. (Figure 49a) The iTO branch is non-degenerate at K point and is represented with the group 
theory notation D3h. The LO and LA branches, on the other hand, lead to a doubly degenerate 
phonon. [128] 

 
The phonon dispersions of the iTO and LO branches involve a creation of an electron-hole 

pair. This electron-phonon coupling leads to this so-called “Kohn anomaly”, which is, in fact, the 
reason for the softening of some phonons at Γ and K points. This will be explained more in detail in 
Section 3.3.3. [128] 

 
The G band is a normal first order Raman scattering process while the 2D and D bands come 

from a second-order process including two iTO phonons at K point for the 2D band and one iTO 
phonon and one defect for the D band. There is a double resonance process for the creation of the D 
and 2D bands. The wave vectors q from the associated phonon couple preferentially to the 
electronic states with a wave vector k where ݍ ≅ 2݇.  

 
The double resonance processes, as shown in Figure 49b, can be broken down as the 

following: The electron with a wave vector k absorbs a photon from the laser. This electron is 
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scattered inelastically by a phonon (2D band) or a defect (D band) of wave vector q and of energy 
Ephonon to a place at K’ point with a wave vector k + q. Afterwards, the electron is scattered back to a 
state of k while emitting a photon during recombination with a hole at a state of k. For D band, the 
two described scatterings are comprised of one elastic scattering by the defect and one inelastic 
scattering by photon emission/absorption. For 2D band, the process is done by 2 phonons and there 
are two inelastic scatterings. These double resonance processes connect two inequivalent points, K 
and K’ in the first Brillouin zone and therefore are called an “intervalley” process. For the creation of 
the G band, however, the process revolves around the K point and is therefore called an 
“intravalley” process. (Figure 49b) [128] 

           
Figure 50. a) Exemplary Raman spectra of single layer graphene, graphite, 
metallic SWCNT, semiconducting SWCNT, amorphous carbon and diamond. [127]  

In Table 2, we present the most relevant peaks that are found in a graphene spectrum 
(Figure 50). While the given values would help to identify the peaks in a typical graphene spectrum, 
the positions, line widths and intensities of these bands are strongly affected from a variety of 
factors. We will address each of them. 

 Origin  Position 

G band the doubly degenerate E2g phonon at Γ, the Brillouin zone 
center 

~1580 cm
-1 

[129] 

D band TO phonons at the Brillouin zone corner K 
Intervalley double resonance process 
defect required for activation 

~1350 cm
-1 

[122] [129] [130] [131] 

2D band overtone of D 
Intervalley double resonance process with phonons of 
opposite wave vectors 
 

~2680 cm-1 (slightly lower than 
2ωD) [119] 

D’ band Intravalley double resonance process at K ~1625 cm
-1 

[132] [129] 

2D’ band overtone of D’ ~3250 cm
-1 

(2ωD’) [119]
 

D’’ defect required for activation 
can be observed under visible light 

~1100 cm
-1 

[133] 

D+D’’ an overtone ~2450 cm
-1 

(ωD’+ ωD’’) [134] 

Table 2.  Summary of the most relevant peak positions as a guideline for peak identification in a Raman 
spectrum of graphene. 
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3.3. Factors influencing Raman spectrum of graphene 
 

Several factors can influence the position, intensity and the full width half maximum 
(FWHM) of the peaks of graphene spectrum. Among those are number of layers, doping, strain and 
temperature. 

 

3.3.1. Number of layers 
 
In the early stages of especially CVD graphene research, Raman spectroscopy was heavily 

employed to resolve the number of layers of a grown sample. From a Raman spectrum, it is possible 
to know if the analyzed graphene is single, double, triple, quadruple or multilayer.  As the number of 
graphene layers increase, the G band shifts with the manner in Figure 51a. In addition, the intensity 
of the G band increases as well (Figure 51b). This directly changes the I2D/IG ratio.  In a perfect 
graphene with more than one layer which is under no other effect such as doping, this ratio is 
expected to be 2.  As graphene moves away from single layer, the I2D/IG ratio moves away from 2. 
However, neither observation is a clear evidence of the number of layers of the sample. In other 
words, the number of layers of a graphene sample cannot be determined by solely considering the G 
band frequency and the I2D/IG ratio. Both are influenced by factors other than the sample thickness. 
The intensity ratio can be altered by doping while the position of the G band can be altered by 
doping or strain. [135] The shape of the 2D band, on the other hand, is a more reliable indicator of 
the number of layers (up to 4 layers). As in Figure 51c, the 2D of a single layer graphene fits one 
Lorentzian curve whereas the fitting requires several Lorentzian curves for layers 2-4.  

 

 (a) (b) 

�(c) 

Figure 51. a) G peak position change with 
the number of graphene layers. b) G peak 
intensity change with the number of 
layers. c) Change in the 2D band shape 
with the number of layers [136]
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3.3.2. Laser energy 
 
The energy of the incident photon can influence the 2D band frequency while it has no 

effect on the G band. The reason for the influence of the laser energy on the 2D band is the fact that 
it originates from a double resonance process. [128] The 2D band, which is usually seen in a range of 
2680 – 2710 cm-1, is related to a phonon at K + Δk points of the Brillouin zone. The laser energy 
alters the value of Δk due to a double resonance process with the linear dispersion of phonon 
around K. [131]  The 2D band frequency changes with the excitation laser wavelength with a slope 
of ≅∂∂ ������ ��2 100 eV/cm. [137] [138] 

 

3.3.3. Doping and Kohn anomaly 
 
Graphene is a zero-gap semiconductor and therefore its lattice vibrations are partially 

screened by electrons. Kohn demonstrated that the screening changes very fast as a function of q 
for the case of phonons with certain wave vectors q which then results in a divergence in the 
phonon dispersion ω(q) at such points. This is the so-called “Kohn anomaly”. This happens for a 
vector which fulfills the following condition: 

ࢗ ൌ ૚࢑ െ ૛࢑ ൅  (3 .3)     ࢈

where k1 and k2 belong to electronic states at Fermi level and b is a reciprocal state vector which 
bring the phonon q into the first Brillouin zone. For graphene, the wave vectors are the ones at 
Brilouin zone corners K and K’. Kohn anomaly happens to certain phonons at points Γ and K which 
correspond to the G band and the 2D band. In fact, the slope of the phonon dispersion at these 
points is proportional to the electron-phonon coupling. [128] 
 

Kohn anomaly occurs in graphene where an electron in the valence band absorbs a phonon 
and is excited to the conduction band by creating an electron-hole pair. The hole and electron 
recombine and emit a phonon. The frequency and the lifetime of the phonon are heavily influenced 
by this process. The contribution of this electron-hole process is negative and therefore it results in 
a softening of the phonon energy compared to an unperturbed phonon. [128] 

 
The effect of doping can be quite dramatic for the case of very high doping levels such that: 

≪|ிܧ| ԰߱௅/2       (3. 4) 

Since doping changes the occupations of the electronic state, such a high doping can exclude some 
regions in k to partake in the Raman process. This stems from the fact that the transition from an 
empty state or to a filled state is impossible. The destructive interference is suppressed and 
therefore the G peak is enhanced if: 

|ிܧ| ൌ ԰߱௅/2       (3. 5) 

The influence of doping on the 2D band is higher than that of the G band. It can, in fact, be 
completely suppressed if the conduction band is filled at the energy accessed by the laser excitation.  
The conditions can be broken down as the following, considering that ωL is the absorbed photon 
from the laser and ωSc is the emitted photon and Pos(2D) is the position of the 2D band as: 

߱ௌ௖ ൌ ߱௅ െ  ሻ      (3. 6)ܦሺ2ݏ݋ܲ

There are three scenarios: 
i)	߱௅,߱ௌ௖ >  ி|/԰    (3. 7)ܧ|2
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All processes are allowed. The 2D band appears in the Raman spectrum. 

ii) ߱ௌ௖ <
ଶ|ாಷ|

԰
< ߱௅      (3. 8) 

The absorption of the photon is allowed. The emission of the phonon is prohibited by Pauli blocking. 
iii) ߱௅,߱ௌ௖ <  ி|/԰      (3. 9)ܧ|2

The absorption of the photon and the emission of the phonon is prohibited. As we see that there is a 
relation between the 2D band, the excitation wavelength and the Fermi level.  If the 2D band does 
not appear for a spectrum taken with a laser at a certain wavelength, it is possible to conclude that 
Fermi level must be a higher than a certain value.  This situation applied to all of the other bands 
that stem from a double or triple resonance process such as D, D’, 2D’ and D+D”. [119] 

 
The area of the 2D band is very sensitive to the electronic inelastic scattering rate which has 

contributions both from electron-phonon and electron-electron scattering. Electron-electron 
scattering increases with carrier concentration, i.e. Fermi level. The 2D band area decreases as the 
Fermi level moves farther from the Dirac point. The electronic states that mostly take part in the 
formation of the 2D band are near the K – M direction. And in this direction, the interband part of 
the electron-electron scattering is inhibited by trigonal warping. [119] 
 

The fact that phonon frequencies and decay rates are influenced from their interaction with 
π electrons determines their slopes at Γ and K points. This directly results in a dependence of the 
phonon frequency and decay rate on the doping level. And this translates to a Raman spectrum as a 
blueshift of the G band and narrowing of its width. [119] 

 
Frequency shift 
 
In fact, this phonon energy heavily depends on the Fermi level as well. If the Fermi level is 

moved, the interaction between the phonons and the interband electron-hole pairs decreases. 
Consequently, this changes the effective force constant of the atomic vibrations. The described 
Kohn process has a great influence when the Fermi level is at the Dirac point. However, when it is 
moved more than half of the G-band phonon energy, it can be completely suppressed by the Pauli 
exclusion principle as depicted in Figure 52a. When the movement is less than half of the phonon 
energy, there is a logarithmic dependence of phonon softening on the Fermi level. In a real sample, 
with imperfections and temperature, the logarithmic softening is smoothed out. (Figure 52b) 
Besides the dependence of the phonon energy, the phonon lifetime is expected to increase because 
its decay into the electron-hole pair is suppressed. In Figure 52 the dependence of the phonon 
linewidth is shown with the change in the Fermi level as a consequence of Kohn anomaly. [128] 

 
In fact, the doping-related shift of the Fermi level has two consequences: (i) phonon 

stiffening or softening with the change of the lattice parameter, (ii) modifying of the phonon 
dispersion close to Kohn anomalies by the onset of effects beyond the adiabatic Born –
 Oppenheimer approximation. [139] [140] The excess charge can expand or contract the lattice. 
Positive doping removes electrons from anti-bonding orbitals, and with that it hardens the G peak 
while negative doping adds electrons to the anti-bonding orbitals which then softens the G peak. 
[133] 
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 (a)  

 (b) 

Figure 52. a) The 
renormalization of the 
phonon energy is allowed 

when  ߳ி <
԰ఠಸ
ଶ
	 and is 

suppressed for ߳ி >
԰ఠಸ

ଶ
	 .  

b) Linewidth and Frequency 
of the Raman G band as a 
function of the electron 
concentration which is 
proportional to the square 
of the Fermi level energy. 
[128] 

 
We explained how the position of the G and the 2D bands are affected by doping levels due 

to strong electron – phonon coupling. [141] As demonstrated by Das et al., 2008 in Figure 53a, p-
type doping leads to a blueshift of the G and 2D bands while n-type doping leads to a blueshift of 
the G band and a redshift of the 2D band. [142] [143] 

 
Intensity  
 
Since the positions of the G and 2D bands depend on a variety of factors, one needs another 

parameter to verify the existence of doping. The intensity ratio of the I2D/IG is reported to decrease 
rapidly regardless of the type of carriers as in Figure 53a. It is demonstrated clearly that I2D/IG is a 
strong function of the gate voltage. While the absolute intensities might differ in different dielectric 
environments due to an optical etalon effect, the ratio will not be influenced highly since the 
scattered phonon wavelengths of the G and 2D bands are very close to each other (such as ~560 
and 597 nm respectively). [141] [135] [144] [133]  
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We recall that the probing of the 2D band of strongly depends on the excitation wavelength. 
In fact, depending on the amount of doping, the frequency of the adsorbed photon might not be 
sufficiently high to excite the system to an unfilled electronic state. Consequently, the 2D band 
might not appear in spectra taken with an energetically lower laser. To make sure that the 2D band 
is probed even for highly doped graphene, one should abide by the blue and green energies. (Figure 
53b) [124] 

(a) 

        (b) 

     (c)�
Figure 53. a) Change in the position and 
intensity of G and 2D bands with gate 
voltage. [135] b) Schemetic 
representation of 2D Raman process in 
the band structure of doped graphene, 
[124] c) Mapping of I2D/IG over supported 
and suspended regions of graphene. 
[141] 

 
As the intensity of 2D band is strongly suppressed due to the substrate as explained above, 

the intensity of the G band stays unaffected from the presence of charged impurities. The G band 
comes from the E2g phonon as explained earlier and has a wave vector of zero. Thus, the process can 
take place even under non-resonant conditions. [145] 

 
Line width 
 
We also mentioned that not only the frequency of the G band, but also its width is 

susceptible to changes. The line width of the G band decreases with doping as the G mode phonons 
stiffen. It is reported that the fwhm(G) increases as the fwhm(2D) decreases at the suspended 
region in comparison to the supported region regardless of the type of dopants. Berciaud et al. 
extracted low doping levels using the line width with the following formula: 

߁ீ ൌ ଴߁ ൅ ሾ்݂߁߂ ሺെ ћఠಸ

ଶିாಷ
ሻሿ     (3. 10) 
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where ߁߂ is the maximum phonon broadening from electron-hole pair generation (Landau 
damping) at zero temperature, ்݂  is the Fermi-Dirac distribution at temperature T, ܧி is the Fermi 
energy relative to the Dirac point and ߁଴ is the contribution to the line width from mainly the 
phonon – phonon coupling. At room temperature, the maximum contribution to the broadening 
from the electron-hole pair coupling was reported as ∼0.95ΔΓ.  [141] 
  

So far, there is a consensus on the fact that graphene exhibits p-type doping in devices on an 
oxidized silicon wafer in ambient conditions. However, there is no agreement on the mechanism of 
this doping. We find that the explanations from the various studies in this subject show four basic 
patterns: i) Doping is due to the defects of the SiO2 surface. ii) Doping is, in fact, related to water 
layer on the SiO2 surface.  iii) Doping originates from the molecules in air, mainly oxygen. iv) It is the 
SiO2 substrate that attracts the oxygen in air. One or all of these mechanisms can be true. And we 
aim to take all possibilities into account. 

 
3.3.3.1. Substrate-induced doping 

 
Several publications focusing on different types of characterizations demonstrated that 

exfoliated graphene exhibits inhomogeneous doping on SiO2 substrates. [141] A series of factors 
were argued to be involved in the doping mechanism. Sample preparation has an influence on the G 
band, even in the case of mechanically exfoliated graphene. [146] With impurities of the dangling 
bonds at the surface, it is believed that the method of growing and/or cleaning process of SiO2 
influences the surface potential. The charge exchange at the graphene/SiO2 interface leads to a 
dipole with a direction depending on the contact potential difference at the interface. This inflicts an 
effective electron injection, i.e. n doping or an effective depletion, i.e. p doping on graphene. [147] 

 
When graphene/SiO2 is compared with suspended graphene, a blueshift and a decrease in 

fwhm(G) were observed. Berciaud et al. interpreted this as an indication of substrate related doping 
of graphene layers where they assumed that the suspended graphene is undoped. They support 
their claim by the fact that the supported areas of graphene show a systematic decrease in I 2D/IG. 
[141]  

 
Ni et al. based on their investigation of doping in graphene on the I2D/IG ratio. The authors 

explained the decrease in I2D/IG ratio by the decrease in the 2D intensity. And this decrease is argued 
to stem from the increase of electron-electron collisions and the increase in inelastic scattering rate 

with the presence of charged impurities in the SiO2 layer. ܫଶ஽~
ଵ

ఊమ
, where 2γ is the inelastic scattering 

rate of holes or electrons. As the amount of charged impurities increase, the probability of 
electron – electron collisions and the inelastic scattering rate increase as well. It is known that in 
suspended graphene, the mobility is enhanced greatly with the absence of long range scattering due 
to the lack of substrate, i.e. the lack of substrate – related charged impurities. [145] 

 
While we mostly focus on SiO2/Si as a substrate, we would like to note that the choice of 

substrate is reported in general to have a direct influence on the Raman spectrum of graphene. In 
comparison to the typical SiO2/Si substrate for graphene, ITO as a substrate, for instance, was 
revealed to cause a slight redshift (~6 cm-1) of the G band and a large redshift (~20 cm-1) of the 2D 
band.  
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3.3.3.2. Doping by adsorbates 
 
Graphene is entirely made of surface. Any molecule on its surface can directly modify the 

electronic structure. Adsorbates can be on top or below graphene, i.e. at the graphene/SiO 2 
interface. Residual molecules from synthesis and fabrication as well as molecules from air can attach 
themselves on top of graphene layer. In addition, molecules, especially water, can attach 
themselves on the SiO2 surface before graphene transfer. In this case, the electronic structure is 
influenced by adsorbates, a thin layer of water in particular, from below. The adsorbates are 
affected from external factors differently due to their location. For instance, air molecules could 
leave the surface via evacuation whereas heating the sample might help removing the thin water 
layer at the SiO2 interface.  

 
O2 molecules are known to interact with aromatic molecules. Earlier studies on carbon 

nanotubes show evidence of O2 adsorption and consequent effective hole doping. Short range 
distortion of graphene through annealing accentuates reversible or irreversible O2 binding. 
Distortion of graphene in the form of ripples distorts the planarity of the πZ orbitals. It is argued that 
the SiO2 substrate plays an essential role in the O2 binding and consequent doping. On the other 
hand, a study claimed that even suspended graphene showed O2 doping with or without annealing. 
[148] 

Unless otherwise treated, the surface of an oxidized wafer is terminated by silanol groups 
which are hydrophilic. The hydrophilic surface attracts water which is then sandwiched between 
graphene and SiO2 for supported graphene devices. Just as the adsorbates on top, the water layer is 
demonstrated to lead to doping of graphene from underneath. [149] 

�
3.3.3.3. Self-doping 

 
It has been argued that defects have the capability of doping graphene. [150] One has to 

take this into account in analyzing the shift of the G and the 2D bands if, simultaneously, there is an 
intense D band present. 

 
At the edges of a graphene ribbon or flake, for instance, the shift in the G and 2D band 

frequencies appear larger due to the so-called “self-doping” effect. This was explained as follows: 
Dirac fermions have poor screening properties, thus the Coulomb interactions stay long ranged. 
Consequently, an electrostatic potential forms at the edges. This shifts the position of surface states 
making the charge transfer to and from them difficult. To remain neutral, the system transfers 
charge to and from extended defects. The charging stops when the kinetic energy of electrons is 
paid off by the charging energy of the edges. [151] 

 

3.3.4. Strain 
 

Strain can be detected by Raman spectroscopy since, microscopically, it is the deviation of 
the crystal lattice out of equilibrium by stretching or compressing. This changes the interaction of 
phonons with one another or with the incident photon and gives a slightly different response to 
Raman probing in comparison to what the system in ground state would. We will focus on the 
responses of the G band and the 2D band under strain.  
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Tensile (compressive) strain leads to phonon softening (hardening). In other words, tensile 
strain leads to a redshift of the G and the 2D band positions whereas compression leads to a 
blueshift of the same band positions. The rate in which the peak positions change with strain is given 
by Grüneisen parameters. (Figure 54a-c)  [129] [152] [137] [119] 

 

 (a) 

 
(d) 

 (b) 

 (c) 
 

Figure 54. a) Change in the position and intensity of G and 2D bands and G band splitting with uniaxial 
strain [153] b) 2D band plot as a function of compression and tension. [152] c) G and 2D peaks as a 
function of uniaxial strain. [129] d)  Perpendicular eigenvectors of G

+
 G

-
 modes, G

-
 is polarized along the 

strain axis. [129] 

 
In addition, as tension/compression is increased to high values, a splitting in the G band can 

be observed. More accurately, under uniaxial strain, the doubly degenerate E2g is reported to split in 
two peaks one of which is polarized along the strain and the other is perpendicular, similar to the G 
bands of a carbon nanotube. The split bands are commonly referred to as the G+, located at higher 
wavenumber and G-, located at lower wavenumber, analogous to carbon nanotubes. (Figure 54d) 
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The G peak does not split under biaxial strain. [129]  [153] One thing to comment on in the two 
examples of G band splitting in Figure 54 is the actual values of strain. The strain value that split the 
G band in Figure 54c is 0.66% whereas the strain value that split the G band in Figure 54a is 0.21%.  
The difference might come from how the strain was evaluated or the fact that built-in strain might 
not have been taken into account. In any case, this shows that a reverse-engineering to extract the 
strain values from the G band shift would not be reliable. In other words, looking at our Raman 
spectrum and deducing quantitative information by using the equations with Gruneisen parameters 
from these studies would not be dependable.  

 
The phonon vectors ܧଶ௚

ା  and ܧଶ௚
ି 	are orthogonal as seen Figure 54d.	ܧଶ௚

ା 	is perpendicular to 

the strain direction and therefore softens less than the ܧଶ௚
ା  which is parallel to the strain. The G 

peak splitting can be explained through the loss of degeneracy similarly to the electron confinement 
and curvature of carbon nanotubes. When graphene is rolled into a tube, the sp2 bonds become 
longer in the direction perpendicular to the axis and therefore they soften. With the effect of 
curvature, nanotubes have a TO G- peak and a LO G+ peak. TO G- peak is softer than the latter and 
more sensitive to diameter changes. [129] In uniaxially strained graphene, The G+ originates from a 
phonon which is perpendicular to the strain and therefore experiences smaller softening. The G- 
comes from a phonon which is parallel to strain and therefore experiences larger softening. [119] 

 
In addition, the biaxial strain does not change the relative positions of the Dirac cones, 

uniaxial strain does. This has additional consequences for the phonons which come from double or 
triple resonance processes such as the 2D band that have intervalley scattering, i.e. from one cone 
to another. The wave vector is described by the relative distance of the Dirac cones and by the laser 
energy. At a certain laser energy, when one measures the change 2D band under uniaxial strain, one 
measures a combination of two effects; from strain and from the relative movement of the Dirac 
cones. An asymmetric movement of the Dirac cones would broaden the peak and can even split it. 
[119] 

 
The D and the D’ peaks are at the boundaries of the zone and are activated by double 

resonance as well. Any change which the strain might cause on the double resonance process will 
change the actual phonon which will be probed. Hence, the D and D’ peaks vary with strain in a 
more complex manner than the G peak does. The D’ process connects two points of the same cone 
around K or K’, i.e. it is an intravalley process. On the other hand, just as the case of the 2D peak, the 
D peak is the result of a scattering from the cone at K to the cone at K’. As a consequence, the 
relative distance of the Dirac cones has a direct impact on the wave vector of the D peak. The D peak 
comes from an intervalley process. [129] 

 
We now turn the discussion to 2D and 2D’ bands. The 2D’ band is also an intravalley process 

and therefore is not influenced by the relative movement of the Dirac cones. The 2D band, on the 
other hand, is affected from strain is a more complicated manner. In graphite, the 2D peak varies 
linearly with strain as opposed to graphene. The difference is attributed to the fact that the 
graphene layers in graphite are straight while graphene shows wrinkling when it is a single layer.  
[152] Moreover, the shift of the 2D peak in graphene is two-fold: A portion of the shift comes 
directly from the uniaxial strain while another portion is related to the relative movement of the 
Dirac cones which changes the wave vector. In the case of an asymmetric movement of the cones, 
there is a possibility for the line width to increase. [129] 
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Raman spectroscopy can help identifying the type of strain further. Anistropic strain can be 
verified by altering the polarization dependence of the scattered light with respect to the pumped 
laser. In the presence of anisotropic strain, the G band is expected to appear at different frequencies 
with the change of polarization. It might go as far as splitting the G band. [141] 

 
The relative intensities of the split peaks of the G band can change with light polarization, 

i.e. the crystallographic orientation of the probed graphene domain. As explained earlier, the 
incident light interacts with the graphene phonon via electrons. The electrons sense the 
crystallographic directions to contribute to the G peak. At zero strain, the vibrations in two 
crystallographic directions are equivalent. Under strain, the two subbands are resolved in the 
spectrum. They are vibrations with different orientation with respect to the strain axis. With that, 
the spectrum changes with the polarization of the incident light with the contribution from the 
electrons sensing the crystallographic directions and with phonons defined by the strain direction. 
Figure 55c is an example of a Raman measurement demonstrating how the relative intensities of the 
G+ and the G- peaks change with the change in polarization.  [129] 

 
Polarization can favor certain paths. Incoming light excites the electrons or holes stronger 

that have a momentum perpendicular to the polarization. The same is true for emission.  While the 
G band splitting under the influence of strain is reported several times, it is not as common to see 
results showing a splitting in the 2D. Such a splitting was reported by Huang et al. The authors 
observed that graphene samples with no clear crystallographic orientation showed no 2D band 
splitting with strain, the band only broadened. However, when large strains were applied along high-
symmetry directions, the 2D band splitted. Both for the purely armchair and purely zigzag samples, 
the 2D band appeared at different positions under both of the circumstances: i) when the incident 
light polarization was parallel to the applied strain and ii) when it was perpendicular to the applied 
strain as shown in Figure 55a-b. While the armchair graphene showed no splitting in 2D band, peak 
splitting was observed for the case of the zigzag graphene. When the angle between the incident 
light polarization and the large uniaxial strain was varied, the 2D band exhibited changes in the 
intensities of the 2D+ and the 2D- peaks as in Figure 55a-b. The polarization dependence of the 2D 
peak splitting in the zigzag case was reported to correspond to the relative movement of the Dirac 
cones with strain. [154]  
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��
(a)  

��

 (b)  

  

Figure 55. a) 2D band 
splitting under uniaxial 
strain. The polarized light is 
either parallel (red) or 
perpendicular (blue) to the 
applied strain for i) zigzag 
ii) armchair graphene. 
[154] b) Evolution of 2D 
band with sample 
orientation under constant 
uniaxial strain. The angle
between the incident light 
polarization and the strain 
axis is varied for i) zigzag 
and ii) armchair graphene. 
[154] c) Raman spectra and 
polar plot of the G

+
 and G

-
 

bands evolution as a 
function of the angle 
between the incident light 
polarization and the strain 
axis. [129] 

 

 

i) 

ii) ii) 

i) 

(c) 



70 
 

3.3.5. Temperature 
 
Theoretically, it is possible to read the actual temperature of a material via Raman 

spectroscopy. In fact, the temperature can be determined by the ratio of intensities of Stokes and 
anti-Stokes shifts since this would correspond to the ratio of the ground state vibrational states and 
the excited vibrational states. And the occupation of these states is directly related to temperature. 
Therefore, even for the case of a standard Raman measurement (i.e. only the Stokes shift), it would 
be safe to assume that the band parameters will be influenced by temperature. 

 
When trying to understand the temperature-related effects, it is important to differentiate 

between the changes in doping and the changes in the lattice parameters in terms of thermal 
expansion or strain. All of these phenomena happen at the same time when the temperature is 
increased or when the sample is thermally cycled. Thus, isolating the influence of each factor is not 
trivial. We present below the studies that have been published on this subject so far. We see that 
each study looks from a different perspective, makes different assumptions and focuses on a 
different factor. 

 
Anharmonic effects and phonon-phonon interactions change the positions of the bands and 

their width when temperature is increased. The line width of the G band has been reported to show 
a slight decrease at low temperature and an increase for T > 700 K. The width of the G band can be 
broken into two parts; from the interaction with electron-hole pairs, i.e. electron-phonon coupling 
and from anharmonic contribution from the interaction with other phonons. Partial Pauli blocking 
can happen at increased temperature and decrease the damping of the G band phonons due to e-h 
pair decay. In terms of temperature-dependence, the position of the G band can be broken into two 
parts; a quasi-harmonic term from thermal expansion and an anharmonic term term from phonon-
phonon scattering. [119] 

 
 If we assume a “no strain” condition, bands shift with temperature due to elementary 

anharmonic processes as electron-phonon and phonon-phonon scattering and also due to changes 
in the lattice parameters with expansion. Anharmonic terms contribute larger at high temperatures.. 
[127] 

 
In addition, one has to pay attention to the interaction of graphene with the substrate as 

well. Generally, thermally cycled graphene was reported to exhibit significantly larger G peak shifts 
on supported regions as opposed to suspended regions. There have been two perspectives to 
explain this: doping [141] and strain relaxation [155]. We will look at both explanations more in 
detail.  

 
Calizo et. al made an attempt to model the Raman shift solely due to the temperature as the 

following:  
 

߱ ൌ	߱଴ ൅ 	߯ܶ, where߯	 ൎ 	െ0.016	ܿ݉ିଵ/ܭ	ሾ156ሿ�     (3. 11) 

 
for single layer exfoliated graphene on SiO2. According to Calizo et al., 2007, any higher shift needs 
to be explained by strain or doping. ሾ156ሿ� 	
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3.3.5.1. Heat treatment changes doping levels 
 

If we assume that heating leads to desorption of O2 molecules and not to the incorporation 
of them into the crystal lattice of graphene, the p-type doping-related symptoms should decrease at 
elevated temperatures. Consequently, G band frequency and line width should change. However, 
heating has a more complicated influence on doping. The G band broadening has two contributions: 
from electron-phonon coupling and phonon-phonon coupling under heating. Thermal smearing of 
electron energy distribution increases population above the Dirac point and decreases below. This 
decreases the width contribution from the electron-phonon coupling at high temperature. 
Therefore, if the O2 effect is removed, it is possible to observe temperature-enhanced reduction of 
electron – phonon coupling at the decrease of G band line width. [157] 

 
Understanding the electron-phonon coupling and phonon anharmonicites is important to 

predict the performance of graphene devices at high temperatures. Ar annealing, for instance, was 
reported to result in an increase in the linewidth of G band and a decrease in the G peak frequency. 
[158] [157] This implied a shift of the Fermi level back towards the Dirac point. Graphene and CNTs 
are known to have intense electron – phonon coupling when EF is at Dirac point where this 
additional scattering broadens the G band. [159] [160] Furthermore, a reduction in the carrier 
concentration decreases the Fermi surface wavevector kF and softens wG by the Kohn anomaly 
condition q = 2kF, where q is the wavevector of phonons susceptible to electron – phonon coupling. 
Both behaviors are independent of the type of doping. According to Abdula et al., substrate-related 
p-type doping originates, in fact, from adsorbant O2 molecules. That is to say, the SiO2 substrate 
enhances the O2 attachment to graphene. An annealing in Ar is thought to lead to desorption of O2 
and a subsequent decrease in the p-type doping. Blueshifting of the G peak position simultaneously 
with peak narrowing is argued to stand as evidence to this explanation. [157] If the graphene is 
heavily doped, Kohn anomaly broadening cannot have a high influence. [157]  

 
The 2D band is not broadened with the electron-phonon coupling because the energy of 2D 

band phonons is too high. [161] However, the removal of p-type doping is reported to lead to a 
redshift in the 2D frequency in small amounts. [157] 

 

3.3.5.2. Heat treatment changes strain 
 

 Temperature-related changes in the lattice manifest themselves in a Raman spectrum as 
two different perspectives; changes in phonons and changes in the strain. The former is a direct 
derivative of the temperature. The latter is a consequence from the combination of built-in strain 
and interaction with a substrate/trench walls.  
 

Carbon nanostructures have negative thermal expansion, i.e. they contract when they are 
heated contrary to general 3D materials. [162] [163] Chen et al. estimated the thermal expansion 
coefficient of graphene as -5.3 x 10-6 K. [155] The authors showed that thermal cycling induces 
ripples into suspended graphene and claim that they stem from the difference in the thermal 
expansion coefficients of SiO2 and graphene. In this example, graphene was suspended over a 
trench in SiO2. We explained how the change in tension/compression influences the frequencies of 
the G and 2D bands. While the strain relaxes in the form of ripples, it can lead to significant shifts in 
the G band of graphene on the supported region as reported in Figure 56. Suspended graphene was 
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reported to be tensed at temperatures higher than 600 K with the expansion of SiO2 substrate and 
contraction of graphene. [155]  

(a) 

                                                                              (b) 

Figure 56. a) Optical microscope image and the corresponding 
mapping G peak position of suspended and supported areas of 
exfoliated graphene taken before and after thermal cycling up to 
700 K. [155] b) SEM image and the corresponding mapping of I2D 

of graphene transferred over Au coated SiNx holey membrane. 
The red and green arrows point at wrinkles and cracks
respectively. [164] 

Not only, the frequency, but also the width of the G band was claimed to be affected from 
the temperature. While the broadening of the G band of thermally cycled suspended graphene was 
taken as evidence for the removal of doping by molecules in, it was attributed to strain phenomena 
as well by Chen et al. The authors emphasized the ripple formation at the suspended regions of 
graphene and argued that the Raman frequency was spatially averaged over these ripples 
considering that the ripple size was smaller than laser spot. Thus, the G band was broadened at the 
suspended region due to strain relaxation. While the narrowing of the G band for thermally cycled 
graphene on SiO2 was argued to be the result of a compression-induced band gap, we believe that 
this idea is a little far-fetched bearing in mind that such a band gap opening would require 
significant levels of compression. [155]  

 
  As in their previous work, Chen et al. reported that thermally cycled graphene on SiO 2 
showed significant amounts of irreversible blueshifts (ca. 25 cm-1) in G and 2D bands while the 
suspended regions showed no change in peak positions after thermal cycles in air. So far, we talked 
about two factors, (i) compression induced by the thermal expansion difference between graphene 
and substrate as well as (ii) doping effects due to trapped surface charge from underlying substrate. 
In this work, the authors argued that thermal cycling in Ar atmosphere, both suspended and 
supported regions helped separating between the two types of doping, from the substrate and from 
gas molecules in air as well as thermally induced strain. The authors reported that the region that 
was supported on SiO2 showed significant compression after thermal cycling. [165]  
 

Raman mapping is an efficient method to study graphene, especially CVD graphene, where it 
serves to identify cracks, wrinkles and suspended regions. An example is shown in Figure 56b  where 
the integrated intensity of the 2D band has been plotted. As we can see, it is possible to identify the 
locations of wrinkles and cracks in graphene from this Raman mapping. Furthermore, the image of 
the mapping corresponds exactly to the SEM image with holes in the grid. Thus, it was possible 
identify the suspended and supported regions of graphene as well. [164] 
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 It is somewhat possible to separate different types of doping, substrate-induced or air-
induced by using Ar environment.  It is equally necessary to separate the influences of substrate-
doping and lattice parameters. Nguyen et al., suggested a method to separate them by applying a 
gate voltage to graphene while heating in Ar. This way, it was possible to bring the Fermi level back 
to Dirac point. Under this circumstance, any shift in the peak positions becomes independent of 
substrate-induced doping. The evolution of G and 2D bands were as in Figure 57a when the Fermi 
level was kept at the Dirac point. The G band softening at Dirac point due to Kohn anomaly was 
observed at all temperatures. The first thermal cycle in Ar was argued to remove p-type doping by 
removing the ambient O2 molecules. [166] 

 
When the Fermi level was kept at Dirac point, the G band linewidth showed a decrease with 

heating as in Figure 57b. However, doped graphene showed the opposite trend as in Figure 57b. The 
G and 2D peak positions of undoped graphene redshifted with heating as in Figure 57a-d, where the 
frequency shift of the 2D band was half that of the G band. Furthermore, the linewidth of the G 
band increased irreversibly with annealing. Since the doping factor was eliminated, the increased 
linewidth was argued to be due to structural deformations due to interaction of graphene with the 
substrate. The authors showed that the 2D band did not vary largely with the gate voltage, in fact it 
only showed a shift of 2 cm-1. Therefore, they assigned a large portion of the frequency shifts to 
structural deformation. Additionally, they showed that 2D band linewidth was slightly broadened 
with temperature, independent from doping. Pointing at the same cause, the 2D band position was 
reported to redshift irreversibly by 7 cm-1 after cycling. [166]  

 (a) 
 

(b) 

 
 (c) 

  
(d) 

Figure 57. a) G and 2D band shift at the indicated temperatures with the Fermi level fixed at 
Dirac point by gate voltage b) Temperature dependence of the G band linewidth at a gate 
voltage of -30 V and where the Fermi level is fixed at Dirac point c) G band frequency shift with 
temperature belonging to two different graphene samples d)  Temperature dependence of the 
2D band where the Fermi level is kept at Dirac point, at first, second and third thermal cycles 
[166] 
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3.3.5.3. High temperature changes defects 
   

The D band is generally used to verify the defect density in a graphene sample. While the D 
band can stand for the quality of the analyzed graphene, it can equally originate from the edges of 
ribbons or flakes. The polarized Raman measurements of Xu et al. demonstrated alterations in 
graphene edges at temperatures as low as 200°C. The zigzag edges rearranged into armchair 
segments. The armchair edges dominated up to 500°C. Therefore, attention to the D band can help 
determining the type of edges present. The exchanged momentum from zigzag edges cannot 
connect the adjacent Dirac cones as demonstrated in Figure 58. Thus, it cannot fulfill the double 
resonance condition while the intervalley process from armchair edges does. It is the armchair 
edges that contribute to the D band intensity. Furthermore, the D band caused by armchair edges is 
polarization dependent in the following manner:  

஽ܫ ∝  ߠଶݏ݋ܿ	
where ߠ is the angle between the laser polarization and edge direction. [167] Therefore, while the 
change in the D band with the temperature can be taken as evidence to degradations in graphene, it 
can come from edge rearrangements. 

 

Figure 58. Schematic 
Illustration of intervalley 
electron scattering in 
double resonance process 
for the case of zigzag and 

armchair egdes [167] 

From all of the studies we presented, we collected some general information in Table 3 to 
help analyzing a Raman spectrum. We present this as a guideline for distinguishing between the 
various effects on the spectrum of graphene. 

Source 
 

Effect on the Raman spectrum 
 

Number of layers Redshift of the G band 
Decrease in the 2D band intensity 
Change in the shape of the 2D band 
 

Disorder 
 

Appearance of / increase in the intensity of the D band 

Any type of doping 
 
 

Decrease in the line width of the G band 
Significant decrease in the 2D band intensity 

p-type doping 
 

Blueshift of the G and 2D bands  

n-type doping 
 

Blueshift of the G band and a redshift of the 2D band 

Tensile strain 
 

Redshift of the G and 2D bands 

Compressive strain Blueshift of the G and 2D bands 
  

Table 3. Guideline for analyzing the Raman spectrum of graphene. 
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3.4. Results & Discussion 
 

We characterized graphene samples with a Raman setup of the grating x1800. The spectra 
were taken with a 488 nm, the blue line, unless stated otherwise. The laser beam can be focused 
down to few µm onto the sample. That is to say, the plotted Raman spectrum is an average over the 
area which the laser beam was interacting with. The utilized objectives were 100x for room 
temperature measurements and 50x for elevated temperatures. During all measurements, the laser 
power on sample was kept below 2 mW to avoid laser heating. This limit was set by taking Raman 
measurements on the same location on graphene and varying the power until the spectrum started 
showing changes. The compared spectra belong to following samples: i) Graphene transferred on 
SiO2/Si, ii) graphene patterned into a ribbon on SiO2/Si, iii) graphene ribbon on Si, iv) suspended 
graphene beam. All spectra were normalized according to the intensity of the corresponding G peak. 
All spectra have undergone baseline correction to eliminate fluorescence, principally belonging to 
samples at final stage of fabrication, i.e. which have metallic clamps near Raman laser spot. For 
graphics displayed in this chapter, all spectra were cut in the wavenumber axis to better display the 
G and 2D bands. We focus on the D, G and 2D bands to infer disorder, doping or strain presence in 
the sample. The 

 
In the graphs of Raman spectra, the symbols are experimental data and the lines are 

Lorentzian fits used to extract peak position and line width. Additionally, we inserted SEM or AFM 
images from the fabrication chapter with a blue spot marking the area of measurement. They do not 
belong to the same sample the spectrum is taken from. And neither is the blue spot the exact area 
of the measurement. They are intended to remind the reader of the fabrication stage and clarify the 
difference between the plots.  

 

3.4.1. Uniformity of Raman spectra of graphene 
 
We took several spectra at different locations of graphene on SiO2. In addition, we took 

spectra from different devices on the same sample, both suspended or supported types. This way, 
we have the chance to firstly investigate the uniformity at different stages of fabrication. We can 
find out if the CVD and transfer processes or the fabrication method influence the graphene in an 
inhomogeneous way; i.e. if their influence changes with the location on graphene.  

 
Figure 59 and Figure 60 are Raman spectra representative of different stages of fabrication. 

It is important to emphasize for both plots that all spectra on the same plot have undergone the 
exact same fabrication conditions. In other words, each plot was made from one sample.   

 
 Figure 59a shows 3 Raman spectra of CVD graphene/SiO2 measured after transfer and 

before processing. For each of the plots from Figure 59a-b and Figure 60a-b, the different spectra 
were taken a different positions on the same sample. Figure 59b plots 3 Raman spectra of CVD 
graphene patterned into a ribbon on SiO2. Figure 60a and b belong to different ribbons on the 
sample after the HF etching step. Therefore, the measured areas were either free-standing between 
two metal clamp or they laid on Si (not on SiO2); i.e. the graphene beam was either supported on Si 
(Figure 60a) or free-standing (Figure 60b)  
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On each spectrum we drew a “guide to the eye” in the form of a red dashed line. This was 
designated to give an idea of the frequencies of the G and 2D bands for perfect and pristine 
graphene according to literature. Furthermore, we included peak positions of the G and 2D bands as 
Pos(G) and Pos(2D), their line widths in the form of full width at half maximum (fwhm), intensity 
ratios of I2D/IG and ID/IG. In addition to the red dashed line, these values were intended to help 
clarifying the interpretations. 

 
When we compare the G and 2D positions, fwhm values and intensity ratios of Figure 61, we 

see that they vary little for each figure.  In Figure 61, the G peak frequencies of different areas on as 
transferred graphene vary by 2 cm-1 as do the fwhm(G). The 2D peak does not vary at all and its 
fwhm show a difference of 2 cm-1. In none of these 3 plots, the G peak frequency varies more than 
by 3 cm-1 while its fwhm changes more than 2 cm-1. And the 2D peak position does not vary more 
than 4 cm-1 while its fwhm does not change more than 2 cm-1. Thus, we conclude that the spectrum 
of transferred CVD graphene or supported CVD graphene ribbon measured at one point is likely to 
represent the entire sample.  

 
In contrast, the suspended beams differ greatly in peak positions, intensity and width as 

seen in Figure 61,. Therefore, we conclude that each beam is influenced from factors such as doping 
and strain in a different manner.   

 

3.4.2. Raman signal enhancement 
 
By taking advantage from an appropriate spacer, such as an oxide layer as in the case of 

optical imaging of graphene, one can enhance the field amplitude and even use the elastic 
scattering for determining the number of layers. [124] We observe this phenomenon when we 
compare the signal we get from graphene on SiO2, on Si and suspended graphene. The intensity we 
get from suspended samples is significantly larger than the graphene on SiO2 while graphene on SiO2 
shows significantly higher intensities than graphene on Si. We present normalized data; thus we do 
not show a direct comparison of these intensities. However, we observe the effects of the 
enhancement in terms of roughness of plots in Figure 63. The spectral points on the plot of the 
suspended sample result in the smoothest and clearest peaks while the spectrum of graphene on Si 
suffers from noise. 

 

3.4.3. Number of layers 
 
The CVD fabrication is developed and practiced in CRANN laboratories, Dublin. The CVD 

process is already studied in these laboratories in detail. The finalized synthesis results in highly 
monolayer graphene. [79] [110] Thus, we do not expect that the shifts of G band originate from a 
multilayer area on the sample. Furthermore, the 2D band shape can be fitted to one Lorentzian 
curve which indicates monolayer samples as explained before. However, as demonstrated in AFM 
images earlier, folds can be found on certain samples which can behave as a bilayer or even a 
multilayer area if they coincide with the Raman laser spot. Averaged over the entire Raman spot 
including certain folds, a sort of increase in the number of layers could influence the G band position 
slightly.  
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At rT, in air 

 (a) 

 

 

At rT, in air 

 (b) 
Figure 59. Raman spectra of CVD graphene a) transferred onto SiO2 b) and patterned into a beam.  
Measurements are taken at different areas/beams for statistical analysis.  

 

Graphene ribbon 
on SiO2 

G 2D 

2D G 
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At rT, in air 

 (a) 

 

 

At rT, in air 

 (b) 
Figure 60. Raman spectra of graphene beams after HF etching a) at supported regions, i.e. on Si b) at 
suspended regions. Measurements are taken at different positions for statistical analysis.  

 
 
 

Graphene ribbon 
on Si 

G 

G 

2D 

2D 
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 (a) 

 (b) 
Figure 61. G and 2D peak positions and the G band linewidth are re-plotted from Figure 59 
and Figure 60 to better demonstrate the difference in the uniformity at different fabrication 
stages. While supported graphene is rather uniform at different areas, suspended graphene 
shows a larger variability in peak positions and linewidth.  
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3.4.4. Influence of laser energy 
 
The values for the G and 2D peak positions that make up the red dashed line are taken from 

literature where mostly a green laser line is used. We use a blue line with a wavelength of 488 nm. 
While we know the laser energy has no influence on the position of the G band, the 2D band 
position changes with the excitation laser wavelength with a slope of ≅∂∂ ������ ��2 100 eV/cm. 

Hence, a portion of roughly 12 cm-1 in the deviation from the 2D red dashed line can be attributed to 
laser energy. To confirm, we took Raman spectra with the green laser as well and the comparison in 
Figure 62 confirms our calculation. Nonetheless, the plots show a deviation larger than 12 cm-1 from 
the red dashed line. More accurately, after subtracting the laser influence, there is still roughly a 
deviation of 12 cm-1 left to account for.   

 

Figure 62 
Raman spectra 
of suspended 
graphene taken 
at laser 
wavelengths of 
488 nm (blue) 
and 512 nm 
(green).  

 

3.4.5. Defects 
 
As mentioned before, pristine graphene does not show a D band. Thus, its intensity is taken 

as evidence for the presence of defects. While these defects can be vacancies or impurities, there is 
equally the chance for the D band to appear due to edges. The edges of graphene are comprised of 
non-satisfied dangling bonds which are some sort of defects, too. In fact, when we compare the 
Figure 59a and b, i.e. as-transferred graphene on SiO2 vs graphene ribbons on SiO2, there is a general 
slight increase in the D band intensity. The dimensions of the beams are comparable to the spot size 
of the laser. Thus, it is safe to assume that the edges took place in the measurement as well. Even 
though our fabrication might have introduced defects, we believe that a significant portion in the 
band can be assigned to beam edges. And overall, there is no alarming increase in the D band 
intensity at the final suspended devices. (Figure 60b) In addition to the D band, a small D’ band at 
1620 cm-1 appears as a shoulder to the G band in samples patterned into a beam. (Figure 60b) 

 

3.4.6. Influence of doping 
 
We mentioned that the substrate or the molecules in air can induce doping in graphene. 

Doping changes the peak positions of G and 2D band, the G band width as well as intensity ratio.  

2D G 
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When we compare the graphene ribbons on Si in Figure 60a and the graphene ribbon on 

SiO2 in Figure 59b, we see a systematic small decrease of 2 – 4 cm-1 in width of the G band for SiO2. 
The spectra are re-plotted in Figure 63 for better observing the differences and important features 
are presented in Figure 64. This can be explained by the different influences of substrates. The SiO 2 
evidently leads to a higher p-type doping than the Si does. On the one hand, this might be due to a 
higher number of traps at the oxide surface, an enhanced attraction of water or a larger difference 
in their work potential. On the other hand, we explained that SiO2 promotes the O2 attachment to 
the graphene surface. P-type doping might have been enhanced through this increase in O 2 
adsorption. When the substrate is removed, the doping originating from the substrate is removed as 
well. Thus, the G peak is broadened by 7 – 10 cm-1.  

 

 
 

 

At rT, in air 
Figure 63 Comparison of Raman spectra of graphene beam on Si, on SiO2 and suspended graphene beam. 
There are 2 spectra for each type of sample taken at different beams on the same sample.  

As we see in Figure 63, there is a deviation towards higher energy from the red dashed lines 
at all stages of fabrication. The inhomogeneity of values for the suspended samples prevents us 
from making general conclusions on substrate-related doping. However, if the substrate-related 
doping was the only cause of blueshift of G and 2D bands, the positions of the red line must coincide 
with the G and 2D peaks at the suspended region. Yet, compared to the supported regions, the 
suspended samples show a decrease in the blueshift even though they do not reach the dashed red 
line. (Figure 64) Additionally, they exhibit a broadening of G band. Thus, the removal of the 
substrate has indeed a crucial effect on the decrease of doping. Still, there must be more factors 
causing the deviation of peak positions. Furthermore, we do not observe a suppression of the I2D/IG 
ratio in relation to doping even though it was shown clearly by the work of Das et al. and explained 
in Section 3.3.3.  

Suspended 
graphene  
beam  

Graphene 
ribbon on 
Si  

Graphene 
ribbon on 
SiO2 

2D 
G 
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            (a) 

          (b) 
Figure 64. a) G and 2D peak positions and b) the G band linewidth are re-plotted from Figure 
63 to better demonstrate the change in doping levels. P-doping is higher on SiO2 substrate 
compared to Si substrate. Substrate-induced doping is removed at suspended samples. 
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Next to the substrate, the O2 molecules in air are known to lead to doping of graphene as 
well. This doping is argued to be enhanced by SiO2 substrate. To verify O2 doping, we did additional 
Raman measurements in Ar atmosphere as opposed to air. Figure 65 and Figure 66 compare spectra 
taken in air and Ar environments for samples on Si or SiO2 as well as suspended samples. Baring in 
mind that the values of suspended sample can vary widely, nearly all samples show a systematic 
decrease in the blueshift of G and 2D band frequencies in Ar compared to their counterparts in air. 
While the change in peak positions can have different sources, there is a systematic broadening of 
the G band for every type of sample in Ar compared to samples at the same fabrication stage in air. 
Therefore, we can conclude that doping via O2 adsorption is evidently an important factor in our 
Raman spectra of graphene. 

 

3.4.7. Influence of strain 
 
Suspended graphene beams in Ar (Figure 65c and Figure 66) are, in theory, devoid of the 

influences of a substrate and O2 adsorption, i.e. doping. And yet it shows a blueshift of the G and the 
2D bands from literature values even after subtracting the shift due to laser energy difference.  
Thus, we turn to the other source of blueshift; the compressive strain. The blueshift in the G band 
position with a relatively larger shift in the 2D band position is indicative of compression. Bearing in 
mind that we do not apply any external compressive stress on the sample, the compression must be 
internal. In Chapter 2, we explained how CVD process can lead to internal compression. [168] We 
also talked about the rigidity of the transfer polymer and how it partially prevents strain relaxation 
during transfer.   These Raman spectra confirm the residual compression present in our CVD 
graphene and demonstrate that it does not fully relax neither during transfer, nor device fabrication 
or suspending. 

 
Additionally, we think it is worthy to consider the differences in the interaction of graphene 

with the substrate as well as trench walls.  We analyzed the Figure 59a-b, Figure 60a and Figure 65a-
b in terms of doping, i.e. we assigned the decrease in blueshifting in suspended samples with 
respect to the supported samples to the removal of substrate doping. While the sharpening of the G 
band at graphene/SiO2 clearly indicates doping, we believe that the change in the shifts must be a 
combination of the two factors: doping and strain. It is known that the suspended graphene beam is 
known to attach itself to the trench walls. This can relax part of the compressive strain. This could 
lead to a decrease in blueshifting, too.  

 
Furthermore, graphene adhesion differs with the type of substrate which would change the 

strain in graphene. Therefore, the difference in spectra of graphene beam/SiO2 and graphene 
beam/Si could also be somewhat influenced both by doping and strain.  
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At rT in Ar 
 and in air 

 (a) 

At rT in Ar 
and in air  

At rT in Ar 
and in air  

 
(b) 

 
(c) 

Figure 65. Comparisons of the D, G and 2D bands in Ar and in air, a) graphene on Si at two different position 
on the same sample, b) graphene beam on SiO2 c) suspended graphene beam. Each set of 2 plots are taken 
from roughly the same location on the same sample.  

 
The SEM images show that folds do not unfold during device fabrication or suspending once 

they are formed. The residual compression must act in a complex manner around folds. Thus, the 
presence of folds and their interaction with strain might add to the inhomogeneity of the values of G 
and 2D band positions for suspended graphene beams. 

Graphene 
ribbon on 
Si in Ar 

Graphene 
ribbon on 
Si in air 

Graphene 
ribbon on 
Si in Ar 

Graphene 
ribbon on 
Si in air 

Graphene on SiO2 in Ar 

Graphene on SiO2 in air 

Suspended graphene in Ar 

Suspended graphene in air 

2D 

2D 2D G G 
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           (a)

           (b)
Figure 66 a) G and 2D peak positions and b) the G band linewidth are re-plotted from Figure 65 
to better demonstrate the change in doping levels. In theory, suspended graphene in Ar is no 
longer under the influence of dopants. The persistent significant blueshift indicates the presence 
of internal compression. 
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3.4.8. Influence of temperature 
 

We took additional Raman measurements at elevated temperatures. Bearing in mind the 
work by Nan et al., which demonstrated that heating graphene in air up to 500°C does not introduce 
defects, we believe that our samples were safe at temperatures up to 200°C. [169] We compared 
the behavior of graphene beam on Si and suspended graphene beam at room temperature, at 200°C 
and after cooling back to room temperature. In addition, we measured graphene beams on SiO2 in 
air at room temperature, at 100°C, 200°C, cooled down to 100°C and cooled down to room 
temperature.  

Firstly, we focus on the thermal Raman behavior of graphene ribbons on Si and suspended 
graphene beam heated under Ar environment. Figure 67a is a comparison of supported graphene 
before & after thermal treatment up to 200°C in Ar. The samples are measured in air at room 
temperature before and after heat treatment. However, the heating and cooling is done in Ar 
atmosphere. We present 3 different graphene beams on Si and 3 different suspended beams from 
the same sample. It is important to note that the spectra after thermal treatment are taken after 
letting the sample in air for 24h.  

 
Graphene ribbons on Si in air after thermal cycling in Ar 
 
For ribbons on Si, we firstly observe a systematic and irreversible blueshift of 3 to 6 cm-1 in 

the G band and a blueshift of 2 to 6 cm-1 in the 2D band frequency after thermal cycling. (Figure 67a) 
Additionally, for two out of three ribbons, there is no increase in the fwhm of G bands after heating. 
(The orange plot appears to show the G band merging with another peak on the lower energy side 
and therefore we find its fwhm value unreliable for comparison here.) With that, we can make first 
conclusions about doping. The absence of significant change in the fwhm of G band already hints at 
no change in doping levels. Hence, the substrates were not significantly altered after thermal cycle. 
And, while heating the sample under Ar environment surely led to desorption of oxygen and water 
molecules from top and underneath graphene, the final measurement was taken after 24h in air. 
That is to say, we believe that there was plenty of time to re-establish the adsorbants on top of 
graphene. With the lack of significant change in the line width, we do not believe that change is 
doping is the main factor causing the shift. Doping appears to be restored after the thermal 
treatment.  

 
The blueshift in both bands accompanied with the lack of change in the fwhm(G) point 

towards compression as the main factor. We mentioned in Section 3.3.5.2 the difference in thermal 
expansion coefficients of graphene and the substrate. We also presented studies which 
demonstrated that supported graphene was argued to leave the thermal cycle with a significant 
compression. Thus, thermal treatments of graphene, even at as low as 200°C are capable of 
increasing compression in graphene. This is not only significant in terms of operational temperatures 
of future graphene devices, but also with regard to the fabrication steps of graphene. During 
fabrication, it is common to heat graphene shortly at temperatures up to 200°C to evaporate water 
and increase adhesion to substrate. Thus, this must be done with caution as well.  
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Before and after 
thermal cycling 

in Ar, 
Mesurements 

done at rT in air 

 (a) 

 

 

Before and after 
thermal cycling 

in Ar, 
Mesurements 

done at rT in air 

 (b) 
Figure 67. a) Comparisons of G and 2D bands of supported graphene before & after thermal treatment up to 
200°C in Ar. 3 upper sets of before & after spectra belong to 3 different graphene beams on Si from the same 
sample, 1 bottom set belongs to as-transferred graphene on SiO2. b) Comparisons of G and 2D bands of 
suspended graphene before & after thermal treatment up to 200°C in Ar. 3 sets of before & after spectra 
belong to 3 different suspended beams from the same sample. All are taken at room temperature in air. 
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Suspended graphene ribbons in air after thermal cycling in Ar 
 
We now turn to the behavior of suspended samples with temperature shown in Figure 67b. 

We start by evaluating doping. For all plots, there is a broadening in the G band after thermal 
cycling. However, we have to be cautious when assigning this broadening directly to the removal of 
doping in this case. All plots on Figure 67 belong to the same sample which has undergone the same 
fabrication steps and the thermal cycling conditions. We talked about how the line widths of the 
supported ribbons did not change indicating that there were no changes in doping levels. Thus, we 
do expect that the line broadening in suspended beams are due to doping. Besides, for both water 
and oxygen doping, there were strong arguments in literature saying that they are attracted because 
of the SiO2 substrate in the first place. With the lack of the SiO2 substrate under the Ar environment, 
we do not believe that doping can have a high impact. Thus, we assign this broadening to strain. In 
Section 3.3.5.2, we refer to a study which argued that averaging of the G band over an area can lead 
to its broadening. We believe that thermal cycling led to inhomogeneous stress relaxation in the 
measured ribbon. The folds are known to be temperature-robust while ripples can form during 
thermal cycling as we presented in Section 3.3.5.2. This resulted in a complicated strain which varied 
over the ribbon.  

 
  Furthermore, at suspended samples, we observe a redshift of 4 – 6 cm-1 in the G peak 

frequency for the first two sets caused by thermal treatment in Ar. The third set displays a small 
blueshift of 2 cm-1. And the first and third plots show a small blueshift in the 2D band of 1 – 2 cm-1 
while the second one has a redshift of 5 cm-1. The lack of uniformity in the shifts of Figure 67b tells 
us that the thermally induced strain relaxation has a much more complex behavior in suspended 
samples. Structural deformations are not resolved in a spatially averaged signal of a complex 
behavior. Raman mapping over these beams would be desired to have a more in depth analysis.   

 
Graphene ribbons on SiO2 in air after thermal cycling in air 
 
In the two out of three sets of graphene ribbons on SiO2 in Figure 68a, we observe a 

significant broadening in the line width of 3 – 6 cm-1 after thermal cycling. Doping must have been 
indeed reduced during this thermal treatment. Thermal treatments would mainly lead to desorption 
of molecules; oxygen and water in this case. The fact that this change is more visible for the samples 
on SiO2 then for the samples on Si, even if the treatment for the case of SiO2 was done in air, shows 
that the substrate SiO2 indeed has an important role in the attachment of molecules on graphene 
surface. 

 
Furthermore, there is a blueshift of 4 – 8 cm-1 in the G band and a blueshift of 3 – 6 cm-1 in 

the 2D band for ribbons on SiO2 after thermal cycling. This is consistent with the compression 
induced during thermal cycling on supported samples in Section 3.3.5.2. as well as our samples on 
Si. Therefore we conclude that any heat treatments such as annealing for device improvement 
should be done with caution. While it can indeed improve mobility and decrease doping, it can also 
add a significant amount of compressive stress on graphene. 
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Before and 
after thermal 
cycling in air, 

Measurements 
done at rT in air 

(a) 

 

During thermal 
cycle in air 

 (b) 
Figure 68. a) Comparisons of G and 2D bands of graphene beam on SiO2 before & after thermal treatment up 
to 200°C in air. 3 sets of before & after spectra are taken at 3 different beams on the same sample. b) 
Evolution of G and 2D bands of graphene beam on SiO2 during thermal treatment up to 200°C in Ar. All spectra 

are taken in air.  
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Graphene ribbons at high temperature 
 
In Figure 68b and Figure 69a-b, we study the behavior of the Raman spectra at elevated 

temperatures.  One common feature we observe for ribbons on Si or SiO2 or suspended beams is the 

suppression of the 2D band at 200°C. The fact that the intensity is restored once the sample is 
cooled down to room temperature hints at reversible temporary changes at high temperature as the 
source of this suppression. The 2D band is generated by a double resonance process which we 
explained in Section. And therefore, it is very sensitive to the changes in the relative distances of the 
Dirac cones which can be moved due to anharmonic effects at high temperatures. Therefore, the 
double resonance process is inhibited leading to a smearing of the 2D band.  

 
G band, however, can occur under non-resonant conditions. We expect a general 

broadening of the peaks due to anharmonic effects and electron-phonon coupling at elevated 
temperatures. Thermal smearing of electron energy distribution increases population above the 
Dirac point and decreases below. It is expected to observe a damping of the E2g phonons due to 
partial Pauli blocking with the decay in electron – hole pairs at high temperature. [170] [128] The 
broadening is restored for all ribbons when they are cooled back to room temperature. (In Figure 
68b and Figure 69a-b) 

 
While this general pattern is true for the different types of ribbons, the ribbons on SiO 2 

differ in one aspect in Figure 69b. There is a gradual splitting of the G band as the temperature is 
increased. The split bands recombine after cooling down to room temperature. The lower energy 
band is lower in in intensity and is more smeared out compared to the higher energy band. To 
analyze this, we first recall that the main difference between the ribbons on SiO2 and the rest is the 
fact that it displays higher doping levels and that it is influenced from doping changes more 
pronouncedly. The G band is created when an electron in the valence band absorbs a phonon and is 
excited to the conduction band by creating an electron-hole pair. Therefore, it is very sensitive to 
the spatially inhomogeneous thermal smearing of the electron energy distribution around the Fermi 
level. 
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 at rT and at 

200°°°°C in Ar 

 (a) 

 

 

at rT and at 

200°°°°C in Ar  
(b) 

Figure 69. a) Comparisons of G and 2D bands of supported graphene at room temperature (rT) and at 200°C in 
Ar. 3 upper sets of rT and 200°C belong to 3 different graphene beams on Si from the same sample, 1 bottom 
set belongs to as-transferred graphene on SiO2. b) Comparisons of G and 2D bands of suspended graphene at 
room temperature (rT) and at 200°C in Ar. 3 sets of rT and 200°C belong to 3 different suspended beams from 
the same sample. 

2D 

2D 

G 
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3.5. Conclusion 
 
We analyzed the fabrication stages as well as the final devices via Raman spectroscopy. The 

measurements allowed us to have an idea about the influence of fabrication and environmental 
factors on graphene. We took spectra of as-transferred graphene, graphene ribbon on SiO2, 
graphene ribbon on Si and suspended graphene samples and studied them in terms of the G and 2D 
band frequency, the I2D/IG intensity ratio and the D band intensity. We experimented by changing 
the atmosphere to Ar and inspected the consequences. Additionally, we evaluated the temperature-
dependent changes of graphene in air and Ar. For that, we chose to increase the temperature up 
200°C which is a relevant range in terms of device fabrication and operation; but low enough not to 
significantly degrade graphene. All of these measurements permitted us to understand the interplay 
of doping and strain on a Raman spectrum.  

 
The SiO2 substrate clearly has an important role in the p-type doping of graphene. Be it from 

its attraction of oxygen or water, we observed significant broadening of the G band once the 
substrate was removed. Already, compared to the Si substrate, the SiO2 substrate showed evidence 
of increased doping each time in the same environment, air or Ar. Considering that the conditions 
for adsorbates were similar, the triumph of SiO2 over Si in doping indeed points towards the 
enhanced attraction of adsorbates by SiO2. 

 
Recent studies address stress building in CVD graphene due to the high thermal budget 

during synthesis. This stress is partially relaxed during polymer-assisted transfer or lithography 
processes depending on the rigidity of the polymers used. The suspended regions in our final 
devices under Ar atmosphere are largely devoid of doping effects. And yet again, the spectra 
showed deviations in the frequencies of certain bands. As doping is eliminated, we believe that it is 
safe to assign the deviations to built-in strain. It appears that the residual strain from the CVD 
process does not fully relax during fabrication despite wrinkle and fold forming. The folds of the 
ribbon unfold neither when suspended nor heated.  Even the suspended ribbon in the final device is 
slightly under compression.  

 
Graphene can be heated up to 200°C during device fabrication or up to even higher 

temperatures during annealing for device improvement. The studies on annealing vary on the 
subject if it decreases doping or if improves mobility. We observed that heating graphene on s 
substrate even to temperatures as low as 200°C introduced significant compression. Therefore, we 
believe that heating graphene even up to temperatures as low as 200°C should be done with 
caution. 
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Chapter 4 
 

4. ELECTRICAL CHARACTERIZATION 
 
We studied the electrical properties of graphene devices. Room temperature measurements 

were done to assess the electrical operation of the devices; in particular to extract contact 
resistance and verify hysteresis in electrical properties. Because our devices feature no top gate and 
either no back gate (suspended beams) or a very thick back-gate oxide (supported beams), current 
control capability was limited.  Therefore, we extracted information about carrier density and 
mobility by Hall measurements at low temperatures. In addition, Hall measurements have the 
advantage of allowing independent extraction of the two. 

  

4.1. Contact Resistance 
 

4.1.1. Measurement configuration  
 

To measure the real channel resistance or to extract the contract resistance, several 
methods are developed among which are the four-probe technique and transmission line method 
(TLM).  The TLM technique is based on measuring the two-probe resistance of devices with different 
contact separation. Contact resistance can be obtained by extrapolating the two probe resistance 
from devices with different contact-contact lengths to L=0. The four-probe technique, on the other 
hand, has two outer current-carrying electrodes and two inner voltage-sensing electrodes. The force 
current generates a voltage drop across the channel which is measured by the two inner voltage 
probes. This allows to separate channel properties from contact properties. This is the method we 
used to extract contact resistance in our devices. (Figure 70) 

 
In a four-probe device, contact resistance can be obtained with the following simple set of 

formula. The voltage drop across the current leads can be measured with Ohm’s law: 
ܸ ൌ  (1 .4)      ܴܫ

The two-probe resistance of a graphene device is the following: 
ܴଶ௣ ൌ 2ܴ஼ ൅ ܴீ       (4. 2) 

where RC is the contact resistance, R2p is the total resistance in 2 probe measurement and RG is the 
resistance from graphene as: 

 ܴீ ൌ  (3 .4)      ܹ/ܮீߩ

Our devices are fabricated in the pattern from Figure 70. Their four-probe geometry permits 
us to distinguish between channel and contact properties. We characterized supported devices 
where graphene is patterned by optical lithography as described in Chapter 2 and our metal stack of 
choice for electrodes is Cr/Au.  
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(a) 

 
(b) 

Figure 70. a) SEM image of a sample at the fabrication step where the graphene is patterned by optical 
lithography with AZ1512, b) Photomask design for optical lithography. Pink is graphene and yellow is metal 
electrodes.  

 
4.1.2. Contact resistance on graphene 

 
Contact resistance in graphene electronics is in general considered as a potential 

performance killer for both analog and future possible digital applications by limiting the on-current. 
[36] [171] In graphene optoelectronics, however, it is a strong source of photocurrent due to large 
band bending at metal-graphene junction. [172] [173] 

 
Due to the limited density of states (DOS) in graphene, current injection from the metal can 

be suppressed. The linear dispersion relation of graphene leads to a high Fermi velocity of 
~	108 cm/s and a very small DOS around the Fermi energy. Thus, even though the carriers have high 
mobility, the very small DOS can restrain current.  [174] 

  

 

Figure 71. Energy band 
diagrams at contacts of 
a) metal/semiconductor, 
b) metal/metal and c) 
metal graphene. EC and 
EV are energies of 
conduction and valence 
bands respectively. φ is 
the work function of the 
corresponding material. 
χ is the electron affinity. 
[174] 

 
To address the influence of the DOS of graphene on contact resistance, Nagashio et al. 

looked at the contact of metal/metal, metal/semiconductor firstly and compared these to the case 
of metal/graphene as in Figure 71. When a metal and a semiconductor come into contact where an 
external wire permits the Fermi levels to equilibrate, a Schottky barrier forms as: 

Current 
lead 

Current 
lead 

Voltage 
sensing 

Voltage 
sensing 
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 ߶஻ ൌ ߶ଵ െ ߯        (4. 4) 

 
where φ1 is the work function of the metal and χ is the electron affinity of the semiconductor. In 
Figure 71, a depletion layer of wdp appears since the semiconductor has lower carrier density. In 
contrast to this, no barrier forms at the metal/metal contact except for the screening of a small 
redistribution of the electron cloud due to the large carrier density. The screening length is defined 
as: 

ߣ  ൌ ሾ4ܰߨሺܧிሻሿିଵ/ଶ      (4. 5) 

where ܰሺܧிሻ is the DOS at the Fermi level. This length is as short as less than 1 nm in metals. Similar 
to a metal, graphene does not have a band gap. Figure 72 illustrates the charge transfer at the 
metal-graphene interface. As one moves away from the interface, the amount of charge transfer 
from graphene into metal decreases. (Figure 71c) Even a very small transfer of charge changes the 
Fermi level in graphene powerfully. This transfer leads to a dipole layer at the interface of which the 
potential difference is shown as ΔV in Figure 71c. The small DOS results in a large screening length. 
The potential difference ΔV at the metal/graphene interface is not the same as: 

 ߶ଵீ ൌ ߶ଵ െ ߶ீ,             (4. 6) 

but it depends on the interaction of the graphene and metal. [174]

 

Figure 72. The 
influence of DOS 
on the energy 
bands at the 
vicinity of the 
metal/graphene 
contact a) before 
the contact and 
b) after the 
contact. [174] 

 
In Figure 73, Nagashio et al. sketched the band diagram of a graphene FET including the 

charge transfer region in the case of hole-doping. The dash-dotted and dash-double-dotted lines are 
the evolution of the Dirac point at different gate voltages in Figure 73b. In Figure 73c, the change in 
the resistivity is shown. In the case of a positive gate voltage, a p-n-p junction can be seen at the 
contact which adds to the resistance. This increase does not take place in the case of a negative gate 
voltage since no p-n-p junction is formed. Such difference gives the asymmetric behavior of 
resistivity with the change of gate voltage depicted in Figure 73d. [174] 
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Figure 73. a) Illustration of a 
graphene device on Si wafer 
with back-gating. b) Energy 
band diagram of the 
illustrated device to 
demonstrate the influence of 
metallic contacts. The broken 
line, the dash-dotted line and 
the dash-double-dotted line 
represent Dirac points at 
different color-coded gate 
voltages. c) The change in 
resistivity is represented 
corresponding to the areas in 
the device. d) Conductivity for 
the case with no charge 
transfer (left) and with charge 
transfer (right) The additional 
resistance from the p-n 
junction leads to the 
asymmetry in the conduction 
curve. [174] 

 
 Contact resistivity is defined by the contact resistance and the contact area or the contact 
width. Therefore, understanding the current flow path is important when deducing contact 
resistivity from contact resistance. It is shown that the current mainly flows from the edge of the 
metal contact into graphene layer. Contact resistivity is thereof better defined by the channel width 
as: 

஼ߩ 
௪ ൌ ܴ஼(7 .4)          ݓ 

instead of contact area as: 

஼ߩ 
஺ ൌ ܴ஼(8 .4)         ܣ 

Nagashio et al. argued that in reality, the current does not exactly flow at the contact edge. They 
estimated a transfer length through the magnitude of the resistance of the channel and the contact 
resistivity via a cross-bridge Kelvin probe structure. In Figure 74, they plotted the change in the 
transfer length with gate voltage for low and high mobility cases. As we see, the transfer length is 

~1	μ݉. And current crowding was reported for contacts larger than the transfer length. For devices 
where the contact length was shorter than the transfer length, area conduction and therefore area 
resistivity needed to be taken into account. [174] Here, we present another perspective by Gong et 
al. which argued that the metal (Pd an Ti) is not simply deposited as a layer onto graphene. 
According to them, the metal either undergoes a strong chemical intercalation resulting in a metal-
carbide; or it is driven into oxidation and carbidization by the oxygen or carbon in the evaporation 
chamber or by graphene resulting in a metal-oxide or a metal-carbide graphene contact. [175] 
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There has been a variety of conclusions on the gate voltage dependence of the contact 
resistivity. For instance, the ρC measured by TLM was reported to be constant with gate voltage for 
Ti/Au and Ni contacts where all contacts were assumed equivalent. [176] [177] On the other hand, 
Nagashio et al. observed a negative branch of the ρC when gate voltage was swept. They explained 
this with schematics from Figure 75. When four-probe measurements were used to determine total 
resistance Rtotal and channel resistance Rch, the Dirac points for the total device area and the channel 
area do not always coincide. When they do not, they give way to the situation in Figure 75a where 
ρC is negative at one side of the Dirac point. If the Dirac points do coincide ρC behavior has the shape 
in Figure 75b. [174]  

 

Figure 74. a) A schematic 
of the electric potential 
drop at the 
graphene/metal contact. 
b) the contact resistivity 
and transfer length 
determined as a function 
of gate voltage. [174] 

A variety of factors have been reported to influence the magnitude of contact resistance in a 
graphene device. They can be listed as the following: i) The mobility of the chosen graphene is one 
of the factors. Higher mobility can lead to better carrier injection efficiency from metal to graphene. 
[178] ii) The choice of metal or metal stack for the contacts was reported to have a large influence as 
well. Metals leading to a higher metal-induced doping concentration in the area of graphene under 
the contact can improve contact properties. [178]  For instance, a stack of Ti/Pd/Au is demonstrated 
to perform better than Ti/Au or Ni/Au contacts. [179] Additionally, Ni was claimed to be a good 
choice in reducing the contact resistance due to its comparatively high work function. The contact 
resistivity for Ti/Au and Cr/Au contacts were generally reported as largely varying as 103 to 
106 Ω µm. Ni contacts, on the other hand showed a low and uniform resistivity.  [174] [180] iii) The 
method of choice for the realization of the contacts is another factor. Sputtering was claimed to 
produce significantly larger contact resistance in comparison to evaporation. The explanation was 
given by the fact that sputtered metal atoms have higher kinetic energies which remove carbon 
atoms from graphene; i.e. introduce defects into the graphene layer. [175] And the parameters of 
the evaporation technique have an influence as well.  Russo et al. showed that lower background 
pressure during metal evaporation led to lower contact resistance for contacts involving Ti. They 
argued that molecule adsorption on graphene before evaporation or the partial oxidation of Ti 
during evaporation are possible explanations. As the background pressure, metal deposition rate is 

(a) 

(b) 
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another parameter of contact realization. The deposition rate leads to a [176] certain grain size for 
each type of metal. Watanabe et al. argued that metal grain size affects the contact area where 
smaller grains have more contact area with graphene and therefore lead to an improved contact. 
[181] iv) Another factor is the interface. Graphene surface can have polymeric residues from 
fabrication which interfere with the contact. In the work by Hsu et al., a sacrificial layer of Al was 
deposited in-between the photoresist layer and graphene such that the graphene was prevented 
from coming into contact with polymers. The authors showed that eliminating photoresist residues 
led to a fourfold decrease of contact resistance. [182] 

 

Figure 75. 
Representations of 
different types of 
contact resistivity 
change with gate 
voltage. a) The relative 
positions of Dirac 
points are different for 
the total resistance 
and the channel 
resistance. b) They are 

almost equal. [174] 

 

4.1.3. Measurement results 

 
Figure 76 is a representative two-probe I-V measurement from our devices. The linear 

behavior states that there were good Ohmic contacts between the metal and graphene. The voltage 
was swept up and down for two cycles where all measurements followed each other perfectly, i.e. 
no hysteresis was observed during Id/Vd measurements. 

 
We extracted a contact resistance of ~ 100 – 150 Ω. We base the subsequent calculation of 

contact resistivity on the Equation 4.7, considering that the current in graphene was reported to 
flow mainly at the edge of the contact. Our devices demonstrated a channel resistivity of 0.9 -
 2.1 kΩ/□ and a contact resistivity of approximately ~ 2 – 3 x 103 Ω μm where the voltage is swept 
from -1 to 1 mV. 

 
In Section 4.1.2, we mentioned that the contact resistivity of Cr/Au has been reported to 

vary between ~ 103 - 106 Ω µm. Our fabrication clearly resulted in a contact resistivity at the lower 
end of this variation. We believe that low contact resistance is achieved by two main effects from 
our fabrication method. In the same section, we summarized several opinions and studies on the 
influence of the interface and electrode realization on the contact resistance of the final device. As 
we explained while describing the fabrication process in Chapter 2, the methods we employed have 
a particular focus on the improvement of the interface. While this was intended to successfully 
suspend the graphene ribbon, it also decreased the polymeric residues at the graphene/metal 
contact.  Avoiding the influence of plasma hardening on the resist and adding the acetic acid 
cleaning helped towards a pristine interface. In addition to the interface, we talked about a study 
which discussed the effect of chamber pressure on the metal evaporation. Molecule adsorption on 
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graphene before evaporation or the partial oxidation of Ti during evaporation can deteriorate the 
electrode partially under insufficient vacuum levels. The standard user parameters for our 
evaporation equipment involve a pressure of ~ 10-8 mbar in the evaporation chamber and a 
pressure of 10-6 mbar in the load lock. To improve contact properties, we further decreased the load 
lock pressure down to 10-7 mbar such that it interferes with the chamber pressure even less at the 
transfer of sample holder. Additionally, we deposited 20 nm of Ti while the shutter is closed, i.e. Ti 
did not land on the sample. Ti is known to trap the remaining oxygen atoms and further improve the 
chamber vacuum. Thus, we believe that these measures along with the care of the interface 
resulted in the low contact resistance of our devices.  

 

Figure 76. I-V curve of a 
2-probe measurement 
from a representative 
graphene device on SiO2. 
The voltage is swept 
from -1 mV to 1 mV in 
increments of 0.5 µV in 
two cycles. The cycles 
coincide perfectly and 
the linear relation of 
Id/Vd indicates good 
Ohmic contacts.

 

4.2. Hysteresis 
 

4.2.1. Possible origins for hysteresis from literature 
 

Ideally, the charge neutrality point (CNP) of graphene must be located at zero gate voltage. 
Under ambient conditions and on a SiO2 substrate, however, graphene devices demonstrate p-type 
doping as we mentioned during the analysis of Raman measurements in Section. The origin of this 
doping has often been related to adsorbates on top and underneath graphene. [149] [183]  

 
It is possible to observe hysteresis in either direction as sketched in Figure 77. The CNP can 

move towards negative voltages or towards more positive voltages. Wang et al. suggested two 
mechanisms which explain the CNP movement in each direction: capacitive gating and charge 
transfer. Capacitive gating occurs when there is a dipole layer between graphene and the back-gate. 
Usually, this layer is made of adsorbed water molecules under ambient conditions which lead to 
charge trapping. The accumulation of charge in trap centers, such as the surface states between 
graphene and the oxide, can screen the electric field of the back-gate. [183] A study by Lee et al. 
showed that the surface states at Si/SiO2 and the bulk states in SiO2 do not participate in such 
trapping. [184] As illustrated in Figure 77c. charges can move to graphene and align in dipoles under 
external electric field. Through this, the electrical field in graphene is enhanced locally which attracts 
even more majority carriers from metal contacts. Thus, the carrier density of graphene is higher and 
a hysteresis shift is observed in the form of Figure 77d. Capacitive gating is observed commonly in 
devices that are gates by electrolytes. [183] 

Vd (mV) 
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µ
A
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(a) (b) 

Figure 77. Illustrations for the 
two mechanisms which affect 
the carrier density and 
hysteresis in graphene devices. 
a) Sketch of the charge transfer 
mechanism which leads to the 
type of hysteresis [183] 
depicted in b). If a charge is 
transferred from graphene 
towards charge traps at the 
interface the conductance 
upshifts as shown in b). c) 
Sketch of the capacitive 
mechanism [183] which leads to 
the type of hysteresis depicted 
in d). A charged ion modifies 
the local electrostatic potential 
around graphene which attracts 
more positive charges from 
metal contacts. 

 
(c) (d) 

 
Charge transfer, on the other hand, leads to a hysteresis in the opposite direction as in 

Figure 77b. When back-gating at negative voltage regime, the holes in graphene get trapped in trap 
centers such that in time, graphene “feels” a more positive gate voltage than the applied gate 
voltage. These charges lead to an opposite-doping of graphene as in Figure 77a. Thus, in negative 
regime, the gate voltage sweeping downshifts the CNP as represented in Figure 77b. Following this, 
the gate voltage sweeping in the positive regime injects electrons into the traps centers leading to 
an upshifting of the CNP. The charges continue being trapped until the gate polarity is reversed in 
direct current.  When a total charge ∆ݍ is transferred to or from graphene a positive shift of 
conductance takes places as in ∆ݍ ൌ   where C is the dielectric capacitance. [183] , ܸ∆ܥ

 
Charge transfer is related to the dissociation of oxygen and water on graphene surface. 

When water is in equilibrium with air, it is slightly acidic with a pH of 6. The electrochemical 
potential of graphene is therefore higher than that which leads to electron transfer from graphene. 
Dissolved oxygen assists this transfer. Thus, if the pH is increased, the transfer could be reversed to 
opposite direction. The redox reaction, which is the origin of the unintentional p-doping of graphene 
FETs, is affected by the back-gate. There is a disagreement on the charge transfer mechanism on if 
the charge transfer takes place directly between graphene and water or if there is a mediating 
neighbor such as an oxide or polymeric residues which present the hydroxyl groups. Such a neighbor 
can give or take protons to and from the solution resulting in a bound surface charge. Furthermore, 
gate voltage has been observed to be capable of changing the pH of the water layer next to an 
oxide. Veligura et al. argued that, regardless of the type, both mechanisms lead to a hysteresis with 
the same direction. (Figure 77b) [185] 
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Figure 78. 
Illustration of 
the doping 
mechanism in 
graphene from 
O2/H2O. The 
arrow shows 
the direction of 
charge 
transfer. [186]

 
It is commonly known that on the surface of a SiO2, hydroxyl groups couple to dangling 

bonds of Si and result in the hydrophilic silanol groups on SiO2 layer. Lafkioti et al. argued that 
loosely bound molecules such as water attached to the silanol groups must be the source of doping 
and hysteresis since both can be suppressed when graphene is pumped to vacuum atmosphere 
without additional heating. [149]   

 
Xu et al. emphasized that a mixture of O2 and H2O exposure brings heavier doping than the 

species individually under the same partial pressures. They further argued that a lone exposure to 
either O2 or H2O results in no doping. In contrast to Lafkioti et al., the authors added that simple 
evacuation cannot remove the doping after H2O exposure and that heating is indeed necessary. 
They further added that the presence of SiO2 is vital for doping to occur; the authors claimed that 
they observed no doping for the case of free-standing graphene devices. This supports their claim 
that the doping species O2 and H2O are placed in-between graphene and SiO2 instead of on top of 
the hydrophobic graphene. Also, in a theoretical perspective, the electron affinity of O 2 (0.44 eV) is 
significantly lower than the Fermi level of graphene (4.6 eV). Thus, a direct charge transfer is not 
favorable. Instead, a mechanism has been proposed which involve O2/H2O and graphene as a redox 
couple. The Fermi level of graphene (-4.6 eV) is higher than the electrochemical potential of the 
redox couple O2/H2O. This was presented as the necessary driving force to transfer electrons from 
graphene into the unoccupied states of O2/H2O as depicted in Figure 78. While a direct charge 
exchange is not expected to lead to hysteresis, redox reactions of O2/H2O and graphene give way to 
hysteresis. [186] 

 
The two mechanisms of charge transfer and capacitive gating have been suggested to be 

competing in a graphene device. Moreover, they are influenced by gate sweeping rate differently. 
Slow gate sweeping can enhance the hysteresis due to charge trapping and suppress the hysteresis 
due to capacitive gating. [183] 

 
Current annealing can be a method which helps suppressing hysteresis. [183] Additionally, 

ensuring that there is no water layer accumulating in-between the graphene and SiO 2 interface is 
another method. Depositing a layer of HMDS before graphene transfer, which is a substance leading 
to hydrophobicity, can be of assistance in decreasing hysteresis as well as p-type doping. [149] 
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4.2.2. Measurement results 
 

We back-gated a device in the same pattern as in Figure 70. This device had an oxide layer of 
500 nm on each side of the Si wafer which decreased the influence of the back-gate significantly. 
100 V is the highest value our equipment can safely go up to, thus our measurements were 
restricted to ∓ 100 V for the back-gate voltage. As expected from graphene devices on SiO2 under 
ambient conditions, the device was clearly far from the CNP and in the p-type doping regime (Figure 
79). As the device was depleted in holes, i.e. in the positive regime of Vbg, (Figure 79a) the 
conductance decreased.  We presented several theories on the doping mechanism of graphene with 
a combined influence from the SiO2 surface and the O2/H2O adsorbants below or above graphene. 
These findings were consistent with our interpretations of the behavior of the G and 2D bands in 
Raman spectra from Section.  

 
In general, a non-annealed graphene device shows little current modulation with back-

gating. [183] Therefore, along with the rather thick oxide layer on our samples, the lack of annealing 
led to the expected limited modulation of current. (Figure 79) 

 (a) 
 

(b) 
Figure 79. Hysteresis Id/Vbg curves from a back-gated device a) where the gate voltage is swept from 0 V to 
100 V and b) where the gate voltage is swept in opposite direction from 0 V to -100 V. The arrows show the 
direction of the sweeping. For the cycles in a), the curve that is higher in Id follows the curve that is lower in Id. 
For the cycles in b), the curve that is lower in Id follows the curve that is higher in Id. 

The charges continued being trapped as long as the gate voltage direction was preserved. 
This explains the lack of the large hysteresis for cycles after the first one, both in Figure 79a and b. In 
both graphs, the cycles after the first one follow the backwards sweeping curve from the first cycle. 
This supports the idea of holding the charges trapped in the gate voltage region of the same 
polarity. 

 
Hysteresis can be clearly observed at the first cycle both at the positive (Figure 79a) or 

negative (Figure 79b) gate voltage regime. For both regimes, the hysteresis disappears at later 
cycles. Even though the device was far from the CNP, the decrease/increase in the conductance 
enables us to distinguish the dominating mechanism causing the hysteresis. The behavior of 
conductance at the hole depletion/injection regions is similar to the sketch from Figure 77b. Thus, 
charge transfer must be the origin of hysteresis. At negative gate voltages, the device was exposed 
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to a more positive voltage when holes from graphene were trapped in trap centers. It was explained 
earlier that the O2/H2O attached to the silanol groups of the oxide layer have the capability of 
obtaining/donating protons. The system then most likely created a redox couple with graphene as 
explained and functions as a charge trap center.   

 
One solution that is generally proposed to suppress hysteresis is annealing. However, we did 

not anneal our devices. At this moment, there is not a consensus on the influence of annealing on 
the doping of graphene devices. While it can clearly be efficient in removing adsorbates such as 
oxygen and water molecules as well as reducing the amount of fabrication residues from graphene 
surface and the SiO2/graphene interface, it can suppress or promote p-type doping. Therefore, we 
believe that we need to characterize the devices thoroughly before introducing annealing into our 
fabrication steps. In Chapter 3, we found out that heating up to 200C did decrease doping for a 
device on SiO2, however it also added significant compression. Moreover, annealing is proposed to 
be carried out in Ar, N2 or vacuum atmospheres, even traces of oxygen at elevated temperatures 
can degrade graphene partially. Therefore, annealing is only safely implemented under ultra-high 
vacuum (UHV) conditions. Even if access to UHV furnaces is considerably difficult in comparison to 
flowing Ar or N2 in a furnace, it is the most secure choice.  

 

4.3. Hall mobility at low temperature 
 

4.3.1. Mobility in graphene 
 

Mobility is often taken as a figure of merit of graphene. When comparing the mobility from 
different devices, the first point to factor in is the substrate. The substrate is known to generally 
interfere with transport properties of graphene. [187] This has been proven when Bolotin et al. 
showed that suspended devices from exfoliated graphene can reach to mobilities of 200 000 cm2V-

1s-1.  
We focus on the mobility of devices on SiO2 with graphene from two different sources by 

giving some numbers as guidance for graphene/SiO2. Mobility for exfoliated graphene has been 
reported as approximately 10 000 cm2V-1s-1. [8] Mobility for CVD can vary greatly depending on the 
cleaning methods, annealing and grain size. Reported values differ between 800 – 5000 cm2V-1s-1. 
[188] [189] [190] [191] In comparison to exfoliated graphene, devices made of CVD graphene 
exhibited lower mobility, higher impurity doping and higher asymmetry between electron and hole 
conduction. [192] 

 
CVD graphene devices are known to have three main sources of disorder: i) grain boundaries 

due to synthesis conditions, ii) contamination due to fabrication conditions and iii) point defects, 
Grain boundaries have the greatest influence on lowering mobility. [188] Graphene grows on metal 
catalytic surface at random nucleation points which then merge to form a continuous surface. Grain 
boundaries are line defects between disoriented grains and can act as barriers with a width of a few 
nm which interfere with the propagation of charge carriers, both for electrons and holes. [193] The 
influence of grain boundaries on the mobility has been investigated by growing grains which are 
significantly larger than the device size (of ca. 250 µm). Mobility extracted from the devices made of 
such large grains has been compared against mobility from devices made of small grains. In other 
words, devices with and without grain boundaries were compared. This comparison came to 
revealing that the grain boundary has indeed a large effect on mobility. Another study defined two 
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types of mobility in devices made of CVD graphene as “inter-domain” and “intra-domain” mobility. It 
was revealed that the latter is 3 times as high as the former reaching the values of devices made of 
exfoliated graphene. [194] This was taken as evidence that the grain boundary is the main factor in 
lowering mobility.  

 
Another study had a different perspective on the effect of grain boundaries. It interpreted 

the behavior of mobility at grain boundaries as “n-type inversion channels” in p-type graphene on 
SiO2 leading to p-n junctions. The Dirac point has been mapped over CVD graphene via measuring 
the spatial distribution of tunnel conductivity (LDOS) minima. The study revealed that the Dirac 
point was located at a pronounced n-type region over grain boundaries in contrast to the p-doped 
grains. The origin of this behavior has been debated; it is argued to originate from self-doping 
through a charge transfer between the line defects and the defect-free area or adsorbates which 
preferably attach themselves to grain boundaries. [193] A line defect can disrupt the sp2 bonding 
and enhance the surface chemical activity, i.e. promote surface reactions with adsorbates. [195] 

 
The influence of point defects were compared against the one of line defects on lowering 

mobility. Graphene solely with point defects is produced by treating exfoliated graphene with 
oxygen plasma. Exfoliated graphene is taken for comparison since it is single crystal, i.e. with no 
grain boundaries.  The increase in point defects by plasma is verified through Raman measurement 
by measuring the ID/IG ratio. [188] 

 
The most common procedure to increase mobility has been proposed to be annealing. It has 

been often employed to improve the transport qualities of graphene which has undergone 
fabrication processes. During fabrication, contaminants from photoresists cannot always be fully 
removed from the hydrophobic graphene surface by conventional solvents. These can act as 
external scattering centers and degrade transport properties. Heating at 300 – 400°C in Ar/H 2 [196] 
atmosphere or nitrogen atmosphere [188] or in ultrahigh vacuum [197] is among proposed 
processes. Another method is Joule heating where current is conducted through graphene with the 
intention of removing contaminants. [198] However, it has also been reported that this heating 
process increased the interaction between graphene and the SiO2 substrate. This added to the 
existing p-type doping by intensifying the influence of charged impurities at substrate interface.  
However, the opposite has been proposed as well. Heating was reported to clearly restore charge 
neutrality point, but actually lead to lower mobility. [188]   

 

4.3.2. Mobility extraction from Hall measurements  

 
When a magnetic field is applied to an electrical conductor perpendicular to the current, 

there is a voltage drop across the conductor transverse to the current. In Figure 80b, when magnetic 
field is applied in the z-direction during a current flow in x-direction, the resulting Lorenz force 
accelerates electrons in the (–y) direction. This voltage is called the Hall voltage and the behavior is 
called the Hall effect. The effect can be used to extract carrier mobility and carrier concentration 
separately.  We use a 3D example as sketched in Figure 80 to demonstrate mobility extraction from 
classical Hall effect. 
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Figure 80. Hall measurement setup for a) holes and b) electrons. Vx is the longitudinal voltage, VH is the Hall 

voltage. Bz is the external magnetic field, ξx and ξy are the electrical field in the corresponding directions. [199]  

The Lorenz force is defined for electrons (n) and for holes (p) as the following: 

ு௡ሬሬሬሬሬሬሬԦܨ ൌ െݍሺ Ԧ߭௡ܤݔሬԦ௭ሻ      (4. 9) 

 

ு௣ሬሬሬሬሬሬሬԦܨ ൌ ൅ݍሺ Ԧ߭௣ܤݔሬԦ௭ሻ                 (4. 10) 

FሬԦୌ is the Lorentz force,  q is the charge, υ is the carrier velocity and B is the magnetic field. The 
Lorenz force is countered by a force originating from the Hall voltage leading to a zero net force on 
the carriers. For electrons, the following holds true: 

௬ሬሬሬԦܨ ൌ ሺെݍሻߦ௬ሬሬሬሬԦ ൅ ሺെݍሻൣ߭௡ሬሬሬሬԦ	ݔ	ܤ௭ሬሬሬሬԦ൧ ൌ 0    (4. 11) 

௬ߦ ൌ ߭௫ܤ௭     (4. 12) 

Introducing the electron sheet density ns (integral of electron concentration n on the film thickness 
t), the electron current is described as follows: 

ܫ ൌ െ݊ݍ௦߭௫(13 .4)     ݓ 

where w is the width as shown in Figure 80. When the carrier velocity υx from equation 4.12 is 
introduced into the Equation 4.13 and keeping in mind that 

௬ߦ ൌ ுܸ/(14 .4)     ݓ 

it is possible to obtain electron sheet concentration as: 

݊௦ ൌ െ ூ஻೥
௤௏೓

      (4. 15) 

Usually, ns is thus extracted from the slope of VH variation with magnetic field, which is expected to 
be linear. A similar equation holds for holes. Mobility is then extracted from the simultaneous 

measurement of the resistivity or –rather in the case of thin films– of the sheet resistivity ρs 
measured in Ohms per square, Ω/□. (per units of L/W).  
Indeed, following, 

௫ܸ ൌ ௫ܧ଴ߤ ൌ െߤ௡ߩ௡௦(16 .4)     ܹ/ܫ 

which can be equaled to the value deduced from 4.12 

௫ܸ ൌ
௏ಹ
ௐ஻೥

     (4. 17) 

This allows mobility to be extracted as: 
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௡ߤ ൌ െ ௏ಹ೙
ద೙ೞூ஻

      (4. 18) 

 
Similarly, it is possible to obtain the hole mobility ߤ௣	as: 

 

௣ߤ ൌ െ
௏ಹ೛
ద೙ೞூ஻

             (4. 19) 

where ߷௡௦ and ߷௣௦	are the sheet resistivity for electrons and holes, respectively. For 2D materials, 

the thickness t is discarded. Instead, the resistivity is defined in the units of Ω per square instead of 
Ω cm.  
  

4.3.3. Measurement results 

 
We have fabricated Hall bar structures with the methods we explained in the Chapter 4. An 

SEM of the device type we used to extract mobility is shown in Figure 81a. We could only mount two 
samples in the cryostat and had time to measure one. On this device, we performed electrical 
measurements in the presence of magnetic field at low temperatures. We swept the magnetic field 
from -5 T to 11 T back and forth while measuring the longitudinal resistance Rxx between contacts 3-
5 and the Hall resistance Rxy between contacts 3-4 and passing current through 1-2 at 4 K and 20 K. 
These measurements give us an insight on the mobility and magnetoresistance of our samples. 

 
(a) 

(c) 

 
(b) 

 
Figure 81. a) SEM image of a Hall bar structure. 
Numbers correspond to b) the sketch for Hall bar 
measurements. b) Electrodes are illustrated to explain 
the way Hall mobility is extracted. c) Hall resistance 
and longitudinal resistivity are plotted against 
magnetic field at 4 K. Magnetic field is swept from -5 
to 11 T passing through zero field for corrections. The 
grids in the left and right y-axis have the same scale. 
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We present the raw data from our measurements at 4 K in Figure 81c. When ρxx and Rxy 
were plotted with the same grid space in y-axis, the ρxx appears sufficiently flat to calculate mobility 
from carrier density. Considering that for a 3D material: 

ܴ௫௬ ൌ
௏ಹ
ூ
ൌ ஻

௡௧௘
      (4. 20) 

where e is the elementary charge,  it is possible to extract the carrier concentration n from the slope 
the Hall resistance as a function of magnetic field as ܴ݀௫௬/݀ܤ. And by inserting the carrier 

concentration into equation 4.17, we obtained Hall mobility. 
 

Our device displayed a carrier density of 9×1012 cm-2 and through that a mobility of 
~500 cm2V-1s-1. Here, we must point to a necessary correction. In Figure 81a we can observe that the 
contacts 3 and 4 were fairly close to the contact 1. Therefore, the Hall voltage measured at the 
vicinity of the current contact did not correspond to the maximum Hall voltage in the ribbon. That is 
to say, corrections were necessary. We simulated the variation of the Hall voltage across the Hall bar 
ribbon via Finite Element Method (FEM) in software FlexPDE based on the classical Drude’s model as 
in Figure 82 and calculated the necessary correction for the Hall voltage and through that the Hall 
resistivity. For the calculation we needed to take into account the uncertainty of the distance 3 and 4 
from the contact 1 due to alignment error during lithography process. We came to a corrected mean 
value of 3.6 * 1012 cm-2 for carrier density and 1200 cm2V-1s-1 for mobility where the minimum 
necessary correction was calculated as 5.6 * 1012 cm-2 for carrier density and 800 cm2V-1s-1 for 
mobility. 

Among graphene devices on a substrate, it is known that the mobility of CVD devices cannot 
compare to the ones made of exfoliated graphene. [188] Impurities and defects are possible reasons 
recognized for low mobility. Among those are surface contaminants, point defects and grain 
boundaries, or in other words “line defects”. The formers can be introduced during any step of device 
production from all types of graphene while the latter, grain boundaries, are intrinsic to CVD 
synthesis. [188] [194] We have mentioned earlier that Song et al., 2012 have demonstrated that the 
presence of grain boundaries have the largest impact on mobility. These line defects are described to 
act like a high resistivity potential barrier. [194] Therefore, regardless of how clean and defect-free 
the graphene is in our samples, the devices will have a comparatively low mobility as long as the 
graphene source is polycrystalline. 

 
Our sample was heavily p-doped as expected for graphene on SiO2 in air. Several 

mechanisms have been  proposed to cause p-type doping for graphene on SiO2 among which there 
are charge-transfer doping from H2O and O2 molecules, [200] increase in the number of scattering 
sites with polymeric residue [196] [197] and influence of metal contacts. [201] It is worthy to add 
that no annealing has been done to our samples which could help removing adsorbants/impurities 
and bringing the charge neutrality point closer to Dirac point.  
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Figure 82. Simulation 
results for the Hall 
voltage variation over 
the ribbon length. ‘a’ 
represents the position 
along the ribbon, 
normalized to its entire 
length. The absolute 
value of VH depends on 
the resistivity chosen 
but its relative variation 
with respect to the 
maximum value does 
not. 

 
The longitudinal resistivity appears rather flat in Figure 81c. When it is expanded, however, 

we observe reproducible features, both at low and high magnetic fields. We will categorize and 
address them in the next section. 

 

4.4. Observation of quantum effects in 
magnetoresistance 

 
We expanded the scale of magnetoresistivity ρxx in Figure 87a and we see some features at the 
vicinity of zero magnetic field, large amplitude oscillations towards higher magnetic fields and small 
amplitude oscillations at all magnetic field values. To identify these, we introduce some basic 
phenomena stemming from quantum interference and quantum confinement effects.  
 

4.4.1. Weak localization 
 

4.4.1.1. Theory and weak localization in graphene 
 

Weak localization is a phenomenon observed at fairly low temperatures in disordered 
electronic systems where the transport is diffusive instead of ballistic. That is to say, the carrier 
passes through random scattering events while it moves in a straight line. The resistivity of a 
material is directly derived from the probability of a carrier to travel from point A to point B. The 
probability of travelling from point A to point B is comprised of two parts: the classical part which is 
the sum of the probabilities of the diffusive paths connecting the two points and the quantum 
mechanical part which is the interference of the amplitudes belonging to different paths. The 
classical part gives the Drude formula for the case of metallic conductivity. The interference part can 
induce a difference in the travelling where the path is identical, but the direction is different. Weak 
localization stems mainly from this part.  

 

V
H
 

a 
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Figure 83. Illustration of 
weak localization. The 
electron waves entering a 
loop of scatterers have the 
possibility of travelling in 
either direction. 

 
 
No lattice is perfect. At higher temperatures, vibrations distort the lattice. Dislocations are 

present at the least in the form of static disorder which remains present even at low temperatures. 
At high temperatures, it is not necessary to take into account the wave-like properties of electrons 
since inelastic scattering coming mainly from phonons prevents the electrons from keeping phase 
coherence over distances longer than the mean free path. This inelastic scattering is suppressed at 
low temperatures and elastic scattering dominates. This allows electrons to retain phase coherence 
over larger distances.  

 
In a three dimensional material, a large amount of disorder leads to electron localization at 

low temperature whereas a small amount will not. In a two dimensional material, even the presence 
of a small amount of disorder results in localization.  

 
If the wave function of an electron enters an array of point scatterers, it scatters 

isotropically off of every point. The scattered waves will scatter from other defect points leading to 
second, third order etc. waves.  The sum of all of these wave functions in a chosen direction will be 
incoherent and give the net scattering probability. However, this changes when we consider the 
case of waves depicted in Figure 83 where they travel the same closed loop but with opposite 
directions. At the exit of the loop, the outgoing waves are in phase since the travelled loop is 
identical even though the directions are different. This interference of these coherent paths added 
together gives rise to a large amount of backscattering. This value needs to be added to the 
mentioned isotropic scattering and it implies a lowering of conductivity. If the wave function of 
electrons stay phase-coherent over a long distance, then a certain amount of isotropic scatterers 
can result in more backscattering compared to the rest of the directions.  

 
To verify the presence of weak localization, one needs to insert a factor which influences the 

phase coherence without changing anything else in the system. If a magnetic field is applied 
perpendicular to the sheet, it will add a phase to both wave paths which is negative for one path and 
positive for the other. That is to say, under sufficient magnetic field, the phase coherent 
contribution to resistivity is removed.   

 
At low temperatures, the elastic scattering time is very short in comparison to the inelastic 

dephasing time. In fact, heat breaks down this localization effect just as the magnetic field does. And 
so does spin. Introducing spin-related effects can lead to weak “anti”-localization. In fact, for a set of 
electrons to stay truly in phase, their spins must be in phase as well. The two main factors affecting 
this are the spin-orbit coupling and the spin-flip interaction. The former is an interaction between 
the orbital angular momentum of an electron (between the scatterer and the electron) and its spin. 
During the conservation of the angular momentum, it can pass between the orbital and spin degrees 
of freedom. Thus, this changes the spin and with that, the coherence of backscattering. On the other 
hand, the angular momentum can also be passed between the scatterer and the electron (i.e. 
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without the orbital angular momentum). This is a spin-flip interaction. Light elements are expected 
to be influenced by spin-orbit scattering.   

 
Weak localization should depend only on the absolute magnitude of B and not its sign. Thus, 

it is of interest to verify negative field values as well.  
 
Weak localization in graphene 
 
 In fact, perfect graphene is expected to demonstrate weak antilocalization. The interference 

in graphene is influenced by chirality from pseudo-spin and through that the unconventional Berry 
phase of π. [9] In conventional metals, the Berry phase is 2π which leads to constructive 
interference. This way backscattering in enhanced. However, for the case of graphene, negative 
magnetoresistance and with that weak antilocalization is observed. We cannot stress enough that 
this is unique to the case of defect-free or suspended graphene. Ripples, grain boundaries and 
dislocations lead to weak localization instead. [202] [203] [204] The appearance of weak localization 
is interpreted as dominating intervalley scattering stemming from atomically sharp defects and 
impurities. The intervalley scattering takes place between the two Dirac cones (with opposite 
pseudo-spins). It is safe to say that the weak (anti)localization in graphene is directly related to the 
nature of defects. [205] 

 
A large amount of elastic intervalley scattering recovers weak localization. Chirality is 

reversed between the two valleys and therefore if a scattering involves intervalley scattering there is 
zero phase difference between the self-intersecting paths. Zero phase difference translates to 
constructive interference, i.e. weak localization. [206] 

 
Weak localization in graphene is not only sensitive to inelastic phase-breaking processes, but 

it is also influenced by elastic scattering. [203] McCann et al. proposed a formula for fitting weak 
(anti)localization in graphene as the following: 

 

Δߩሺܤሻ ൌ െ௘మఘమ
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ఛಳ
షభ

ఛക
షభ൰ െ ܨ ൬
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where ܨሺݖሻ ൌ ln ݖ ൅ ߰ ቀ
ଵ

ଶ
൅

ଵ

௭
ቁ     (4. 22) 

and ߰ is the digamma function. The formula takes into account contribution from different 
scattering terms such as dephasing rate ߬ఝ and elastic intervalley scattering rate ߬௜ from atomically 

sharp scattering and device edges. Also, it considers the inelastic intervalley trigonal warping and 
the elastic intravalley chirality symmetry breaking from dislocations and topological effects. The 
magnitude of the weak localization is defined by the decoherence length. For the interference to 
take place, phase coherence needs to be kept where τϕ controls the size of the loop in Figure 83. The 
formula predicts that no weak localization is observed when the intervalley scattering is slow such as 
߬௜ > ߬ఝ. When intervalley scattering is fast such as ߬௜ < ߬ఝ, the equation can be fitted to the weak 

localization peak. (Figure 84) [207] [206] 
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Figure 84. Sketch to 
demonstrate the formula 
fitting from the equation of 
McCann et al. When the 
intervalley scattering is slow 
such as ࢏࣎ >  the equation ,࣐࣎

predicts no weak localization. 
When intervalley scattering is 
fast such as ࢏࣎ <  the ,࣐࣎

equation can be fitted to the 
weak localization peak.  

The elastic intervalley scattering length strongly depends on device characteristics since it 
stems from short-range, atomically sharp scatterers and edges of the device. If no gating is present, 
charge carrier density is directly related to such defects. Highly doped CVD graphene samples show 
low elastic intervalley scattering lengths due to charged defects. [206] 

 
The sum of all the sublattice symmetry breaking terms is mostly influenced by the elastic intravalley 
trigonal warping (distortion of the dispersion relation at finite energy [208] scattering term and 
other chirality breaking terms. The degree of trigonal warping depends on the Fermi level. 
Therefore, increase in the carrier density leads to an increase in the trigonal warping term. The 
chirality breaking term is not influenced by carrier density; it is mainly influenced by topological 
effects. Temperature decreases this dephasing rate ߬ఝ. Therefore both localization types disappear 

at higher temperatures. [206] [208] 
 

4.4.1.2. Discussion of our results 

In Figure 87a and Figure 85a, we plotted the evolution of longitudinal resistivity with 
magnetic field at 4 K and 20 K. We swept the magnetic field well through zero field to make 
corrections to magnetic field shift if necessary. Firstly, we focus on the behavior of resistivity at low 
magnetic fields. Figure 85b depicts low magnetic field behavior of the curves where an overall 
negative magnetoresistance is immediately observed at low B. We had explained that such behavior 
is interpreted as weak localization which occurs when electrons regain phase coherence at low 
temperature. In fact, the so called “Berry’s phase” in graphene adds a phase difference of π to these 
paths and thus resulting in destructive interference, i.e. leading to weak antilocalization which we 
do not observe. We have explained that the presence of strong intervalley scattering in graphene 
restores weak localization. [206] Thus, it is safe to say that intervalley scattering dominates in our 
samples among the scaterring mechanisms which include elastic intravalley trigonal warping 
scattering and elastic intravalley chirality breaking scattering. Intervalley scattering is known to 
originate mainly from grain boundaries in CVD graphene. [193]  

 
Additional to the conventional weak localization in graphene, we observe side peaks near 

the zero magnetic field. (Figure 85a) These symmetrical peaks are partially suppressed at 20 K, 
however they are still present, i.e. they are robust with temperature and direction of magnetic field. 
Thus, we conclude that they are magnetically activated states. However, they prevent us from fitting 
the weak localization decay to the equation from the Section 4.4.1.1 to extract the different 
scattering times as described theoretically in [207]. 
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Universal conductance fluctuations can be recognized as reproducible oscillations in Figure 
85a for curves sweeping B up and down. They disappear partially at higher temperature as 
expected. (Figure 87a) [16] 

 
(a) 

 
(b) 

Figure 85. a) Hall resistance and longitudinal resistivity are plotted against magnetic field at 4 K. Magnetic field 
is swept from -5 to 11 T passing through zero field for corrections. The scale for the longitudinal resistivity is 
expanded to better demonstrate the features. The oscillations of the curves up and down follow each other 
closely. b) Detail from plot b is shown to better demonstrate weak localization. 

4.4.2. Quantum Hall Effect 
 

4.4.2.1. Theory and quantum Hall effect in graphene 
 

The Hall conductance is quantized in two dimensional systems usually at low temperature 
and under strong magnetic fields. The quantized values are defined as the following: 

ߪ ൌ ூ೎೓ೌ೙೙೐೗
௏ಹೌ೗೗

ൌ ߥ ௘
మ

௛
      (4. 23) 

 is known as the “filling factor” which can be integer or certain fractional values depending on ”ߥ“
which the effect takes the name “integer” quantum Hall effect or “fractional” quantum Hall effect. 
The integer QHE originates from single-particle orbitals of an electron in a magnetic field. The 
fractional QHE stems from electron-electron interactions. (Figure 86) 
 

 Electrons of two dimensional systems have circular cyclotron orbits in magnetic field. The 
energy levels of such orbits are called Landau levels and are quantized as the following: 

ேܧ ൌ ԰߱௖ሺܰ ൅ 1/2ሻ with ߱௖ ൌ  (24 .4)    .݉/ܤ݁

At low magnetic fields, Landau levels lead to Shubnikov de Haas oscillations. At high magnetic fields, 
the levels are highly degenerate since the number of electrons per level is proportional to the 
applied field. 

 
One can observe the quantum Hall effect in graphene at liquid He temperatures above a 

magnetic field of 1 T. [15] If higher magnetic fields are applied, it is possible to observe the effect at 
even higher temperatures. For instance, under a magnetic field of 45 T, the QHE appears at room 
temperature. In comparison, it is not easy to detect the fractional QHE as it is for the integer QHE. It 
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requires temperatures lower than 1 K. Up to 20 K, it is still possible to observe it under the condition 
that the sample is ultraclean. [209] 

 

 (a) 
 

(c) 

 (b) 

 

 (d)  
Figure 86. a) Illustration of Landau levels in the electronic band structure of graphene. b) Representation of 
quantized Hall conductance in graphene. DOS have peaks at Landau levels and they are broadened by 
disorder. [210] c) Quantum Hall effect. Hall conductivity σxy and longitudinal resistivity ρxx plotted against 
carrier concentration at B=14 T. [15] c) First measurements of Shubnikov de Haas oscillations in longitudinal 
resistivity ρxx and plateaus in Hall resistivity ρxy  from exfoliated few layer graphene. [8] 
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The energy levels of graphene are quantized under magnetic fields in the following way: 

ேܧ ൌ ிߥሺܰሻඥ2݁԰݊݃ݏ
ଶ|ܰ|, ܰ ൌ 0,∓1,∓2,…    (4. 25) 

In practice, Landau levels lead to Shubnikov de Haas oscillations in resistivity. These 
oscillations appear in longitudinal resistivity by changing carrier density under magnetic field. 

 
The minima of the peaks correspond to gaps in-between the quantized Landau levels. The 

carriers contributing to the current are solely on the edge states at the Fermi level. Additionally, in 
magnetic field the edges carry current in opposite directions. The scattering is suppressed since the 
carrier has to go from one edge to another for backscattering to happen which is not possible.  

 
At the integers where a minimum is found in longitudinal resistivity, one observes plateaus 

in Hall resistance as shown in Figure 86c. The plateaus are where ρxy stays constant as a multiple ν-1 
of h/e2, where ν is the filling factor. The filling factor stands for the levels up to the Fermi energy. 
[210] In the absence of backscattering, the quantum Hall effect is represented as: 

߭ ൌ
௛

ோೣ೤௘మ
       (4. 26) 

Under low magnetic field, the even filling factors appear because the Landau levels can be 
occupied by both with spin up and spin down electrons. Thus,  ߭ ൌ 2, 4, 6, 8… At high magnetic 
field, it is possible to remove this degeneracy through Zeeman interaction and observe all of the 
filling factors.  

 
Figure 86c is an example of QHE in graphene. The filling factor sequence goes as ߭ ൌ

∓2,∓6,∓10… The fact that both holes or electrons can be activated in graphene is the origin of 
positive as well as negative signs of filling factors. Due to the extra valley degeneracy, added to the 
spin degeneracy, the QHE plateaus appear with a factor of 4݁ଶ/ℎ instead of 2݁ଶ/ℎ. Furthermore, 
the absence of a plateau at zero carrier density confirms the Landau state at N=0 both for electrons 
and holes. [210] 

 

4.4.2.2. Observation of Landau levels in our 
measurements 

 
Resistivity is expected to show oscillations under magnetic field corresponding to Landau 

levels of graphene. In Figure 85a and Figure 87a, we plotted longitudinal resistivity and Hall 
resistance against magnetic field. As we see, the clear oscillations in ρxx with high amplitudes 
stemming from Landau levels are not present and neither are the plateaus of Hall resistance against 
magnetic field. We attribute the lack of them to disorder. We mentioned that defects in graphene 
are reported to break down the quantum Hall effect. Landau level broadening depends on the 
magnetic field and disorder, and it has a significant impact on the excitation gaps. [211] Even if they 
are not as clear as observed in exfoliated graphene samples as we have shown, [8] we observe 
temperature robust peaks in Figure 87a. Furthermore, peak positions show a linear trend against 
1/B. (Figure 87b) We approximated Landau levels with the equation: 

௡ܧ  ൌ 31.59	ܶିଵ/ଶܸ݉݁√݊(27 .4)     ܤ 

from the work by Cresti et al. [212] We believe that the general disorder originating from CVD 
synthesis and device fabrication prevents us to observe Landau states. In any case, we believe that 
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the peaks are sufficiently robust to be interpreted as magnetic states of the material additionally 
due to the fact that in Figure 87b the peak maxima show a linear behavior. 

 
(a) 

 
(b) 

Figure 87. a) Longitudinal resistivity is plotted against magnetic field at 4 K and 20 K. Temperature-robust 
states are pointed out. b) Resistivity peaks from plot b are plotted in the form of 1/B against equidistant 
numbers to demonstrate linear dependence.  

4.5. Temperature dependence 

 
The influence of temperature on the transport properties directly gives the fingerprint of 

scattering in graphene. Several mechanisms are competing to shape the temperature-dependence 
of graphene. 

 

4.5.1. Scattering mechanisms in graphene 
 

It is possible to deduce on the quality and crystallinity of graphene through the behavior of 
mobility with temperature. While certain scattering mechanisms are enhanced at low temperature, 
some are suppressed and others remain uninfluenced. [194] 

 
We categorize the scattering mechanisms in graphene in two types according to their origin: 

i) from phonons and ii) from defects. Phonon-induced scattering in graphene can occur due to the 
acoustic and optical phonons in graphene while they can also be due to the surface optical phonons 
of the SiO2 substrate. At low temperature phonons behave as if they are “frozen” such that mobility 
and thereof the conductivity of the device increases. Furthermore, linear dispersion relation of 
graphene predicts that the resistivity originating from isotropic scatterers such as phonons does not 
depend on carrier density. [213]. This is the dominant mechanism of scattering in a perfect 
exfoliated graphene. (Figure 88a)  

 
Acoustic phonon scattering, which leads to a linear temperature dependence, has been 

reported to contribute a small amount to resistivity unless for the case of graphene with high 
mobility and high carrier density. Additionally, it has been already known that transport in graphene 
is strongly coupled to surface optical phonons of the polar SiO2. Thus, when the temperature is 
sufficiently increased to absorb and emit phonons, surface phonons scattering has a large 
contribution to resistivity. [214] 
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We look at resistivity vs temperature plots from studies published as guidance. [213] [214] 
Figure 88a is a study on exfoliated graphene on SiO2 which demonstrated the change in resistivity 
with temperature. Taking into account the contribution from acoustic phonons and surface phonons 
from the substrate, the equation fitted the observed data well.   

 

 
(a) 

 
(b) 

Figure 88. a) Resistivity is plotted against temperature at logarithmic scale for 7 different gate voltages. Solid 
lines are fits with an equation from [213] which includes acoustic phonon scattering in graphene and optical 
phonon scattering from SiO2 substrate. [213] b) Resistivity is plotted against temperature at different gate 
voltages for CVD graphene samples. Lines are calculations fitting to data. [214] 

 
 “Defects” is an umbrella term for a series of different types of scattering sources in 

graphene. One of them is charged impurities. They contribute to shaping the temperature-
dependence of resistivity in two manners: i) charged impurity screening and ii) creating potential 
fluctuations. High carrier concentrations are known to result in the screening of charged impurities. 
This type of scattering is commonly referred as Coulomb scattering.  

 
The potential fluctuations which can stem from adsorbants, inhomogeneities  in graphene or 

at the substrate interface to name a few.  
 
Grain boundaries are another type of defects, otherwise referred as “line defects”. They are 

independent of temperature, too. Ogawa et al. presented a study proving this point for the case of 
graphene. The authors separated intra-domain and inter-domain mobility in CVD graphene and 
looked at their behavior with temperature. Similar to exfoliated devices, the intra-domain mobility 
has been found to decrease with temperature pointing towards dependence on mainly phonon 
scattering. On the other hand, inter-domain mobility is influenced by temperature in a weaker 
manner than the intra-domain mobility does. This mobility involves transport over grain boundaries. 
Tunneling as well as thermally activated hopping of the carriers over the defect region are expected 
to participate in transport through grain boundaries. [194]  

 
At low temperature regions, if the resistivity shows no dependence on temperature, this can 

be taken as an indication of the possibility of inter-grain transport even though the thermal energy is 
not sufficiently high to overcome the grain boundary potential. The proposed mechanism is 
tunneling. [215] [216] 
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There can be many other sources for defects such as roughness or edge inhomogeneities, 

for instance. In this section, with no intention to exclude those, we particularly focus on those that 
form the temperature dependence of the resistivity of graphene. 

 
Figure 88b is a study on CVD graphene. As observed, the low temperature behavior differs 

from exfoliated graphene where the resistivity has a negative slope with temperature at low values. 
Since the main difference between exfoliated and CVD graphene originates from defects, it is safe to 
relate the difference of the low temperature resistivity to defects. Heo et al. described that phonons 
give way to a “metallic” behavior, i.e. the resistivity has a positive slope with temperature, while 
carrier activation across fluctuating potentials lead to an “insulating” behavior, i.e. the resistivity has 
a negative slope with temperature. [214] 
 

In CVD graphene, three mechanisms have been reported to compete: i) thermal activation 
of carriers in electron-hole puddles created by charged impurities, ii) temperature-dependent 
screening of charged impurities and iii) phonon scattering. At low carrier densities and low 
temperature, the dominating factor is the carrier activation across potential fluctuations originating 
from random charged impurities. The strength of the “insulating” behavior depends on the strength 
of the potential fluctuation which, in return, is proportional to charged impurity density and 
inversely proportional to mobility. [214] 

 

4.5.2. Measurement Results 
 
In Figure 89, we plotted the resistivity change during heating to room temperature after 

measurements at 4 K. Three features can be observed; i) a resistivity decrease at low temperature, 
ii) followed by a plateau in a wide range of temperature and ii) the subsequent resistivity increase 
after 250 K. Just as in previous works before us as in Section 4.5.1, we refer to these two different 
regions as “insulating” or “metallic” depending on whether the slope dρ/dT is negative or positive. 
The resistivity behaves in an “insulating” way at very low temperature and in a “metallic” way as the 
temperature reaches room temperature. We explained in Section 4.5.1, that a combination of the 
two behaviors is characteristic to low mobility graphene devices with a high carrier density. The low 
mobility device is well in the diffusive regime.  

 
As expected from CVD graphene, different scattering mechanisms appear to be competing 

which are as follows: i) charged impurity screening, ii) thermal activation of carriers over potential 
fluctuations and iii) phonon scattering. At low temperatures, the dominating mechanism is the 
thermal activation of carriers over the fluctuations created by charged impurities. Furthermore, we 
believe that the plateau region is dominated by scattering due to grain boundaries and other 
uncharged structural defects. While they have often been reported to have significant influence in 
CVD graphene transport, they are also uninfluenced by temperature. At high temperatures, phonon 
scattering mechanisms prevail. Regardless of the graphene source, exfoliated or CVD, acoustic 
phonons from graphene and surface phonons from SiO2 result in an increase in the resistivity with 
increased temperature. In addition, charged impurity screening must be taking part in shaping the 
high temperature behavior considering that the device is heavily doped.  
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Figure 89. Sample is 
heated from 4 K to 
room temperature 
while longitudinal 
resistivity is measured. 
Increase in resistivity is 
observed for low and 
high temperature. 

 

4.6. Conclusion 
 
We characterized devices from graphene ribbons on SiO2 electrically at room temperature 

as well as at low temperatures.  At room temperature we extracted a channel resistivity of 0.9 -
 2.1 kΩ/□ and contact resistance of ~ 100 – 150 Ω which corresponds to a contact resistivity of ~ 2 –
 3 x 103 Ω μm.  This value is on the lower end among the reported contact resistivity range for Cr/Au 
contacts which is ~ 103 - 106 Ω µm. We believe that we owe such low contact resistance values to  
two main effects from our fabrication process: i) our care of the interface which is originally 
intended for successful suspending, ii) our attempt in keeping the chamber pressure low during 
metal contact evaporation by depositing Ti into the chamber. Additionally, we characterized same 
type of devices via back-gating. The results confirmed our interpretation of p-type doping from the 
Raman spectra despite the little gate modulation due to high oxide thickness and the lack of 
annealing. P-type doping is expected for graphene devices on SiO2 under ambient conditions. The 
direction of the hysteresis helped us to determine that the dominating mechanism in our devices 
was charge transfer. A O2/H2O layer attached to the silanol groups on the oxide could be acting as
charge traps where the charges were transferred to from graphene depending on the polarity of the 
gate voltage. 

 
At  temperatures as low as 20 K and 4 K, we characterized Hall bar structures while sweeping 

the magnetic field in both directions up to 11 T. We extracted average carrier density and mobility 
values as via the semi-Drude model as 9 x 1012 cm-2 and  500 cm2V-1s-1 respectively. The low mobility 
of devices of CVD graphene has generally been attributed largely to the presence of grain 
boundaries and lesser to fabrication-related defects. In addition, plotting the magnetoresistance 
enabled us to comment on weak localization and Landau levels of graphene. Even though weak 
antilocalization phenomenon is expected to appear in graphene at low magnetic field with the 
addition of a phase difference of π due to the so called “Berry’s phase”, we observed weak 
localization instead which has been reported to be restored under the condition of strong intervalley 
scattering. As for resolving the Landau levels, we did not observe the clear oscillations in longitudinal 
resistivity ρxx with high amplitudes or the plateaus of Hall resistance. We attributed the lack of them 
to disorder. Even if the peaks were not as clearly resolved, we could identify temperature-robust 
peaks and showed that the peak maxima had a linear behavior against 1/B. This indicates that they 
can indeed be stemming from Landau levels. Following these measurement, we additionally plotted 
the change in the resistance of the device as we heated it back to room temperature. The graph 
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demonstrates two distinct behaviors characteristic to low mobility graphene devices. At low 
temperature, we observe insulating behavior which we attributed to thermal activation of charge 
carriers over potential fluctuations. As the temperature is increased, on the other hand, to room 
temperature, the resistivity behaves more “metallic” influenced by the acoustic phonons in 
graphene as well as the closely coupled surface phonons from SiO2. 
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Chapter 5 
 

5. CONCLUSIONS & PROSPECTS 
 
During this thesis, we developed a fabrication route for scalable suspended graphene 

devices. This process was developed in the PTA clean room and in collaboration with Proof. Georg 
Duesberg for CVD graphene growth and transfer on our pre-processed wafers. The processing was 
then followed up in Grenoble again where we devised a route for two different sample types 
including ebeam lithography and optical (UV) lithography. The former is intended for narrower 
structures while the latter is a more conventional process. It is worth recalling that at the time 
where we started this thesis, there were only few publications about CVD graphene device 
fabrication. To help graphene’s pathway into industry, we kept to conventional methods from 
MEMS technologies and studied their interaction with graphene during fabrication. We studied the 
issues involved and suggested solutions. We identified that one of the key factors to high yield is a 
good interface between the etch mask and graphene during HF etch. By this way, we were able to 
reach a fabrication yield over 90%. Additionally, we showed that intentional periodical fold 
formation is possible in ribbons. The interplay between the photoresists and CVD process can lead 
to systematic folds during fabrication which are perpendicular to the ribbon length. Furthermore, 
we found that they do not unfold after thermal cycles. Although the role of these folds needs to be 
further explored, the fact that it is possible to control their formation by the choice of the process 
steps and their period by the choice of the ribbon width is an important result. It is promising to 
control strain relaxation in the final device. Additionally the presence of a periodical network of 
transverse folds along the beam may have interesting outcomes in the future. 
 

Raman spectroscopy permitted us to have insight on materials properties at different 
fabrication steps as well as at final devices. Firstly, we had the evidence that our fabrication 
technique did not introduce significant damage to graphene itself. We also concluded that the SiO 2 
is indeed responsible for a great portion of the p-type doping in supported graphene devices. By 
mostly eliminating the substrate, i.e. suspending graphene and changing the atmosphere from air to 
Ar, we had the opportunity to study the strain in Raman spectra. We observed that the built-in 
strain from the high thermal budget of CVD was not fully relaxed even at the stage of suspended 
beam. Additionally, the factors influencing Raman spectra led to a complex interplay for suspended 
devices such that the suspended beams varied greatly in their Raman spectra while the Raman 
spectra from supported graphene, be it on Si or SiO2, were quite uniform. We heated our samples to 
200°C in Ar and air which led us to believe that thermal treatments of graphene during fabrication 
or post-fabrication, with the intention of device improvement, are better done with caution. Even if 
200°C did not degrade our graphene, it did not improve in removing the p-type doping. In fact, it 
even hinted at a possible slight increase in p-doping.  

 
In addition to being the key of a safe and reproducible process, our insistence on having a 

clean surface after each step of fabrication was rewarded with a low contact resistance. We 
characterized supported devices electrically and observed a contact resistance of ~100 – 150 Ω 
which corresponds to a contact resistivity of ~2 – 3 x 103 Ω μm. The devices showed Ohmic behavior 
with a channel resistivity of 0.9 - 2.1 kΩ/□. The fact that our devices have a rather thick oxide layer 
did not permit us to modulate current highly via back-gating. However, the type of hysteresis we 
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observed through the limited current modulation pointed that charge transfer was the origin which 
involved a combination of oxygen from air and water at the SiO2 interface for doping mechanism.  

 
We further studied the magnetoresistivity data from sweeping the magnetic field up to 11 T 

at 20 K and 4 K while well-passing zero. From this study, we were able to firstly extract the Hall 
mobility of a device as 500 cm2V-1s-1and a carrier concentration of 9 x 1012 cm-2 at low temperature 
Although they are far from the records that have been obtained for exfoliated graphene, this values 
are in the range of published values for CVD graphene (especially for non-annealed samples). The 
grain boundaries of CVD graphene has been in general accounted for the low mobility. The high p-
doping is also consistent with what is expected for a device on SiO2. It is also consistent with our 
Raman measurements which pointed to the same conclusion, with a high p-doping for supported 
structures. Moreover, even if our device was far from perfect, considering that it has grain 
boundaries and fabrication-induced impurities and even if we failed to see a clear quantum Hall 
effect, we observed temperature-robust features which we interpreted as quantum interference 
and quantum confinement effects. We were able to fit Landau levels to the high magnetic field 
oscillations of the magnetoresistivity. In addition, we identified the low magnetic field behavior as 
weak localization which pointed towards strong intervalley scattering in our device.  

 
Finally, we looked at the behavior of the resistivity during heating after the low temperature 

measurements and observed two distinct behaviors in our first measurement. We concluded that 
the resistivity was strongly influenced by thermal activation of carriers over potential fluctuations at 
low temperatures. And at high temperatures, acoustics phonons from graphene and surface optical 
phonons from the SiO2 substrate along with charged impurity screening dominated the increase of 
resistivity. Between the two, a plateau was observed in a large range of resistivity. In this region, 
scattering with defects is probably the main limiting phenomenon. 

  
Based on these results, and especially the reliable and reproducible fabrication route along 

with control over fold patterns, several studies can now be carried out.  
 

First follow-ups of this work will continue by exploring the systematic folds. Furthermore, we 
plan on making more complicated structures such as entirely suspended Hall bars and study their 
electronic properties at room and low temperature, with and without folds. These devices will be 
fabricated with a thinner oxide to increase current modulation capabilities.  
 

We aim to study these folds under Raman spectroscopy, preferably by mapping. This way, 
we can gain insight of the influence of such folds on the distribution of strain in the ribbon and the 
interaction with the substrate. Additionally, we would like to study them at suspended regions as 
well. The devices will be characterized electrically in order to analyze the influence of the folds on 
the electrical and magnetoelectrical properties.  In addition, we plan on studying the influence of 
annealing on our devices, particularly the suspended ones.  
 

Moreover, we intend to combine in the same experiment electrical measurements and 
Raman spectroscopy. By applying gate voltage we want to investigate the changes in Raman spectra 
and better separate the effects of doping and strain. 
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