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Chapter 1: Introduction

Moore’s law predicted that it will take two years to step from a technological node to the next one.
Even though this pace has been kept until recently, the trend starts to slow down as declared by Intel
CEO in 2015 [1]. Thus, pursuing MOSFET scaling trend becomes harder as the time passes. This loss
of speed is due to many factors. First, the length associated with the technological node is supposed to
reflect the average half-pitch of a memory cell, which is the size of a pattern in an array of transistor
used to build memory cells. In fact, what it has been observed between the 90 and the 30 nm nodes is
that each time a node is crossed, the area of the chip is scaled by %2, but the gate pitch is actually scaled
by 0.7 and the physical gate length by only 0.9. In the meantime, source-drain junction optimization
succeeded to reduce sufficiently the overlap distance so that the effective channel length did not
change at all between the 90 nm down to the 30 nm technology node as shown in Figure 1-1 [2].

—e—Lgate, logic —e—S/D overlap
—e—Leff, logic Linear trend

ITRS '03-'08 e+« |TRS 2009
Gate pitch

- 70

- 60

- 50

40

Size, nm
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9 80 70 60 50 40 30 20 10

Technology node, nm

Figure 1-1: Transistor Size Evolution: ITRS 2009

So by reducing the gate pitch and the gate length with a proper source drain junction engineering, it
has been possible to keep the same effective length (Lew) down to the 30 nm node. However, in order
to go forward, this condition could not hold and L had to be reduced, inducing new challenges such
as increased short channel effect due to the loss of control of channel’s electrostatic. These challenges
are part of the reason why the development time is longer.

In addition variability is increasing and becomes a greater challenge. Indeed, the number of variability
sources and their impact increase as shown by R. Sitte comparing 1.5 pm and 0.1 pm bulk MOSFETs
[3][4], by Fu-Liang Yang comparing 45, 32, 22 and 16 nm technology node [5] and by Samar K. Saha
using ITRS roadmap [6][21]. However performance uniformity of elementary devices like transistors
is a priority for microelectronic manufacturers. Indeed, any dispersion in this performance will be
propagated on the next circuit level (e.g. SRAM). From one circuit level to the other the impact of
performance dispersion is often increased. As a consequence, a small dispersion of performance at the
lowest architecture level can jeopardize the highest circuit level functionality. Large dispersions lead
to large yield loss and an increase in the circuit production cost. This is why huge effort is done to
bring MOSFET performance dispersion down to a reasonable range.
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Chapter 1: Introduction

Considering variability, its sources are differentiated depending on their autocorrelation length and
their statistical nature [14][15]. In particular we distinguish global from local variability (considering
the autocorrelation length) [16][17][25] and statistical from systematic variability (considering the
statistical nature) [18]:

o Global variability encompasses every sources of variability that has a larger autocorrelation
length than die dimension. Hence, it comprises within-wafer, wafer-to-wafer, lot-to-lot and
across-factory variability (e.g. deposited insulating layer thickness across the wafer, anneal
temperature ...).

o Local variability only encompasses within-die variability sources (e.g. Random Discrete
Dopant (RDD), Line Edge Roughness (LER), transistor orientation with respect to
crystalline orientation, well proximity effect)...

o Systematic variability arises from sources that can be predicted (e.g. transistor orientation
with respect to crystalline orientation, well proximity effect ...).

° Statistical variability, in contrast with systematic variability, is characterized by its
stochastic nature. It can only be comprehended using statistical modeling (e.g. anneal
temperature, Random Discrete Dopant, Line Edge Roughness...).

Typical source of local random variability are RDD, LER, polysilicon and metal gate granularity
(PSG/MGG), Trapped Interface Charges (TIC) and interface roughness. Local random variability can
hardly be controlled by process adjustment because of its stochastic nature. Indeed corresponding
sources are stochastic phenomena that impact each device independently one from another at the
atomistic scale. Since these phenomena are random, it is neither possible to accurately predict their
impact at the device level nor to counteract them by process optimization. Only stochastic variability
model can be used to predict the dispersion of the transistor’s performance. Even though a lot of work
has been done to limit its impact by circuit design optimization [19][20], this source is intrinsic to the
technology used. This is why it is considered as the bottom line in terms of variability. Thus, adopting
new architectures or using advanced process techniques like extreme UV are the only ways to reduce
local random variability. Consequently, a large amount of work has been dedicated to systematically
investigate local random variability sources for every technology node [21]-[29].

—

Box SOI

BULK FD-SOI
]

Figure 1-2: Comparison between Bulk and FD-SOI architecture.

In order to meet both local random variability and gate length reduction requirement, new
architectures and techniques have been introduced like Fully Depleted Silicon on Insulator (FD-SOI)
[10], FinFet [11], double gate [12] or Gate All-Around (GAA) MOSFETSs [13], extreme UV etching,
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Chapter 1: Introduction

SiGe and I11-V components. As an example, we show the case of FD-SOI MOSFET in Figure 1-2
comparing the FD-SOI and bulk architecture.

This architecture meets the gate length reduction requirement by improving significantly the
electrostatic control of the channel thanks to the buried oxide layer (BOXx) beneath the channel. To
another extend, it enables controlling the threshold voltage by tuning the back interface voltage,
enabling low power applications. FD-SOI technology addresses local random variability issue using
intrinsic channel. In addition, it has been shown to be less sensitive to Line Edge Roughness (LER)
[21]. So this technology enables reducing significantly the impact of local random variability. Due to
these advantages, it has been chosen by STMicroelectronics for the 28 nm technological node and
beyond.

Global variability also limits the yield. Indeed, large process dispersion at wafer or lot scale can
compromise the functionality of a large number of die. Thus process and device performance should
be monitored at the die scale. In order to fulfill this task, performance indicators have been
determined. These indicators are continuously controlled with in-line measurements called Parametric
Tests (PT). A reasonable dispersion of performance is then obtained if every one of these indicators lie
within predetermined boundaries called Statistical Process Control (SPC). Performance indicators are
chosen as critical quantities that will limit the next circuit level performance. For example cell current
is a performance indicator for SRAM circuits. This cell current is directly related to the saturation
current of the transfer (access) transistor and pull-down (driver) transistor [7][8]. This is why SPC
have been created for the saturation drain current (Ips). Another example is the frequency of ring
oscillator at operating voltage. This frequency is linked to the switching speed of CMOS inverters that
are themselves related to the peak current obtained during inverter switching, commonly defined as the
average between I and I where 1y=1p(V¢=Vpp, Vb=0.5Vpp) and I = Ip(Vs=0.5Vpp, Vo=Vpp) [9].
Ve, Vp and Vpp are the gate, drain and operating voltage respectively. Ip is the drain current.
Consequently SPC includes Iy and I, as well. Similarly to performance control, process control is
carried continuously using Fault Detection and Classification (FDC). This technique continuously
monitors equipment parameters against preconfigured limits using statistical analysis techniques to
provide proactive and rapid feedback on equipment health.

However new architectures and techniques are more complex solutions. It requires more process steps
and thus more photo-lithography masks. Extreme UV lithography requires specific tools that are more
expensive. These options are very different from the tradition way used to build transistors. Increased
process complexity also induces larger global variability. For example, the SOI thickness variability,
absent in bulk architecture, is a new contribution to the global variability. All these facts tend to
increase the time and investment required to develop and optimize the next generation of device. In
order to limit the development cost and ensure the profitability and competitiveness of these new
devices it is mandatory to rely on more efficient approach for the device development and
optimization at industrial stage. This thesis aims at offering a determinist and robust approach able to
meet these expectations.

Indeed its goal is to demonstrate how it is possible to model the relationships between process
parameters (accessible to tool engineers) and the transistor performances. Such a model is called
Process Compact Model (PCM). A sufficiently robust and predictive PCM can be used for optimizing
the performance and global variability of the transistor thanks to an appropriate optimization
algorithm. This approach is different from traditional methods that heavily rely on expert knowledge
and successive trials in order to improve the device since it brings a deterministic and robust
mathematical frame to the problem.

12



Chapter 1: Introduction

The task is not trivial and faces many constraints. First, there are hundreds of process steps required
only for the front-end-of-line and at least as much process parameters can be distinguished from this.
This implies dealing with a large amount of data. Thus robust and adapted statistical tools are required
to manage this issue. Second, the physical relation between process and electrical parameters are
complex. Many models describing the MOSFET electrical parameters exist in the literature, but since
we deal with a large amount of data and intend to use it for optimization, only simple compact
analytical model can be used.

The PCM investigated in this thesis copes with these constraints. It is composed of two stages. Starting
from process parameters, the first stage is formed of multiple polynomial formulas that relate process
with the model parameters of a typical threshold based compact model. The second stage is the
compact model. Using model parameters as inputs, it yields electrical parameters as output. An
input/output scheme of this two-stage PCM is presented in Figure 1-3.

) 1% stage: ( ‘ (
Process Analytical Model 2ud gtage:
parameters: function S

P parameter: Threshold Electrical
T » ‘ » d » based » para{meter:
Wsp w ¢ compact

. | Wo- Cox
Tox 1 %&

model

N oo

~— /S

Figure 1-3: Scheme of the two-stage PCM

This manuscript starts by introducing the compact model used. Analytical formulation of linear and
saturation drain currents are drawn from the physics of semiconductors. This stage aims at splitting a
complicated global parameter that is drain current into simpler and physically meaningful sub
parameters such as access resistance, threshold voltage, carrier mobility and so on. Theoretical
derivation of the model is done in chapter 2 where the physics of the transistor is developed with an
emphasis on the specificity of FD-SOI technology.

Using a compact model for drain current implies to rely on an extraction procedure in order to get
model parameters and calibrate the model. An extraction procedure is proposed in chapter 3, based on
a nonlinear optimization algorithm. The method robustness is tested against data sample size and
range as well as the effect of noise. Then, in the same chapter, the extraction procedure is tested on a
TCAD simulated Design Of Experiment (DOE). This DOE exhibits process parameters variations in
order to investigate their effects on extracted model parameters. This is a first approach to examine the
link that we miss yet to model the process and electrical parameters relations. The physical relevance
of the model parameters sensitivity to process variation is demonstrated to ensure that model
parameters are physically meaningful and that extraction procedure is robust.

Extractions are then performed on silicon (using 28 nm FD-SOI and 14 nm FD-SOI technologies) in
chapter 4. Lots have been processed with various kinds on process variations. These lots have been
measured and from these measurements, model parameters have been extracted. It is then shown how
results can be interpreted to give insights into the device characteristics. While being a simple
approach, this method can already produce valuable results and indicate how to optimize the device
efficiently.

In order to complete the PCM construction, a map of the process and model parameters relationships
are required. This topic is investigated in chapter 5. Model parameters are much more elementary than
drain current. This advantage enables us to build simple model such as empirical polynomial model.
However, process parameters are numerous and all of them have not necessarily a significant impact

13



Chapter 1: Introduction

on model parameters. Moreover, the impact of noise in measurements and local stochastic variability
in devices induces an increased uncertainty in model parameters. This is why statistical methods are
introduced in order to efficiently build polynomial model dealing with ill-posed problem and noisy
observables. These methods are tested against synthetic data and applied on TCAD extractions to
build PCMs. The impact of noise and local stochastic variability is discussed and solutions to deal
with those issues are investigated.

Finally, based on this PCM, a methodology to optimize both electrical performances and variability is
suggested. It has been applied using TCAD simulation to indicate how to reduce drain current global
variability efficiently.
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Chapter 2: Transistor’s drain current compact modeling

This chapter is devoted to detail the compact model used for the PCM. It derives the drain current
equations, starting with the derivation of inversion carrier concentration and threshold voltage of
Metal Oxide Semiconductor (MOS) capacitance in 82.1. Carrier mobility is investigated in §2.2.
Paragraphs 2.3 and 2.4 introduce the linear and saturation drain current approach respectively. Access
resistance effect is introduced in 82.5. The drain current equations derived here will be reused for the
model extraction procedure detailed in Chapter 3.

2.1 The MOS capacitance and its electrostatics

In this section we derive the MOS capacitance equations of the inversion carrier charge Q; and the
threshold voltage (V;) in the case of the Bulk structure. Then we discuss the case of Fully Depleted
Silicon On Insulator (FD-SOI) with doped and undoped channel and show to which extent the same
compact equations for Q; can be used. Only the threshold voltage dependence should be adapted and
we will show how and why. Notice that in further derivation, interface and oxide charges are
neglected. However considering it would add only small corrections and the derivation would still
hold.

2.1.1 Inversion in bulk MOS transistors

The MOS capacitance is first treated in order to derive the inversion charge density in the long channel
bulk transistor. The corresponding band diagram is shown in Figure 2-1 where elements are isolated:

qds

Metalgate  Insulating Silicon
layer

Figure 2-1: Energy band diagram of a classical MOS structure with a P doped silicon layer. Shaded area represents
the electron populated energy levels.

Left part of the MOS structure in this figure is the metal gate. It is separated from the p-doped silicon
bulk (right part) by an insulating layer (gate oxide). In Figure 2-1, E¢ petais Ef siticon, Eir E¢, Ey and
Evacuum are respectively the metal and silicon Fermi energy, the intrinsic, conduction band, valence
band and vacuum energies for isolated parts. Eq is the semiconductor gap energy (E.-E,). ¢s and ¢y,
are the silicon and metal work functions. The gate and bulk biases are V;; and V. Every voltage are
referenced to a hypothetical unbiased neutral body where there is no band bending. This reference
potential is Ef ¢;1ic0n/q and, in this case, is equal to V. Later we will see that in the case of transistor,
this potential reference depends on the position in the channel and is no longer equal to Vg. This
diagram shows that, when taken separately, Fermi levels of metal and semiconductor are not matched.

Thus when building a MOS structure, charges (holes for p-doped silicon) will be repealed at the
Si/SiO; interface, creating a potential drop across the insulator and a space charge region in the silicon
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channel in order to reach the equilibrium state where Fermi levels of metal and silicon are aligned (see
Figure 2-2).

EVacuum
/
1 |a®s
qom qups J E,
1T _L
Ef,metal %///7////7////7///}////}////%_ - _:/; ______ _/-< Ef,silicon

/

Metal gate  Insulating Silicon
layer

Figure 2-2: Energy band diagram of a classical MOS structure at equilibrium for grounded electrodes (metal and silicon)

Thus without applying any bias between the gate and the back electrode (V; = Vz = 0), there already
is a potential drop across the MOS structure that is equal to work function difference between metal
and silicon (Veg = ¢y — ¢s). Space charge region in silicon contains no free carrier but ionized
dopants. The total charge density in this case is called the depletion charge density.

If now, for the case of p-doped silicon, a positive bias V; between gate and bulk is applied, then
Ef metar decreases and the bands bend even more until a certain point where minority carrier
concentration equals majority carrier concentration at the Si/Si0, interface. This point characterizes
the beginning of the inversion regime where free carriers appear at the Si/Si0O, interface (see Figure
2-3 left). In that case the total charge density is the sum of inversion and depletion charge (Q = Q4 +
Q).

On the contrary if a negative bias is applied to the gate, V;; tends to compensate the built-in voltage
across the oxide capacitance ¢, and the silicon bands bend less. If V; = Vg5 then the MOS structure

reaches the flat band condition (see Figure 2-3 right), no potential drop occurs across the structure and
the channel is electrostatically neutral.

q-$um qops

Ef%//%///%///%//;%/{%

Metal gate  Insulating Silicon
layer

Metal gate  Insulating Silicon
layer

Figure 2-3: MOS band diagram in inversion (left) and flat band (right) regime
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Driving further V,; toward negative values will accumulate holes at the Si/Si0, interface. This is the
accumulation regime. This qualitative approach enables a global understanding of the relationship
between V; and carrier concentration in the channel. The quantitative and rigorous derivation of the
carrier density depending on gate voltage and doping concentration in the channel has been done by R.
H. Kingston and S. F. Neustadter [30]. However, here, we will use an alternative approach sufficiently
accurate for our purpose. First the potential drop in the structure is the sum of the potential drop in the
oxide V. plus the potential drop in the silicon [31]:

Ve = Vip = Vox + s 1)
where Vg is the flat band voltage, ¢, is the surface potential at the Si/SiO, interface referenced to a

hypothetical unbiased neutral body where there is no band bending (as depicted in Figure 2-2 Figure
2-3). The electric field in the oxide E,, is constant because there is no \charge in the oxide:

S~
2

Epp = 2

(o]

o~

&

where to is the insulating layer thickness. At the Si/SiO, interface, in the silicon but before reaching
any charge, the displacement field is constant and the electrical field E;, at the silicon interface is:

€oxE,
ES — ox*™ox (3)
€s
Then we can write E; as a function of V;:
_ . Vox _
esEs - eoxt_ - ox(VG - VFB - (ps) (4)
ox
where C,, = jﬂ is the gate oxide capacitance. In absence of any interfacial charges, using Gauss
ox

theorem over an area going from Si/SiO, interface up to x = oo in the silicon bulk where the reference
is taken, we get the following relation:

—€sEs = Qq + Q; (5)
Thus the inversion carrier density reads:

Qi = —Cox(Vg — Vep — ¢5) — Qq (6)

The threshold is reached when the minority carrier concentration equals the majority carrier one. This
is achieved when the band bending ¢, reaches 2¢, [32] where ¢, is the difference between the
intrinsic silicon Fermi level and quasi Fermi level of doped silicon. From this we can deduce V, from
(6) where Q;=0:

1 (7)
Ve = Vep + 2|¢pp| + C_\/4€sqNa|¢b|

ox

Then Q; above threshold is deduced from equation (6) where ¢, = 2¢;, and becomes:
Qi = _Cox(VG - VFB - 2|¢b|) + Y 4‘EsqNa|¢b| (8)
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It can be expressed in terms of V,as:
Qi ~ _Cox(VG - Vt) (9)
2.1.2 Inversion in FD-SOI MOS transistors

FD-SOI denomination is employed for transistors built on SOI substrate and that has a fully depleted
channel at operating condition. This is the kind of structure that is used by STMicroelectronics for
their 28 and 14 nm technological nodes. In this structure the simple MOS capacitance cannot be used
to calculate the charge density in the channel since the Buried Oxide (BOx) adds another capacitance
contribution that shall be taken into account when applying gauss law. The following paragraph
explains the SOI structure and derives the necessary conditions to have a FD-SOI structure. Then we
will adapt previous derivation of inversion charge and threshold voltage to FD-SOI structure. The
results will depend on the characteristics of the device. First, for the derivation of bulk MOS
capacitance we consider a doped channel but state-of-the-art industrial FD-SOI devices have intrinsic
channel. It implies that the surface potential is no longer clamped to 2¢,, in strong inversion regime
and that Q4 can be neglected. Second, FD-SOI devices built by STMicroelectronics are made of ultra-
thin substrates and BOx. We will see that ultra-thin SOI induces front to back super coupling effect
that does not allow inversion at one interface along with accumulation at the other. Finally, with ultra-
thin BOX, we will see that the ground plane regime also affects the threshold voltage, depending on its
doping concentration.

2.1.2.1 Structure presentation

The capacitance structure we consider is a cross section of the FD-SOI MOSFET in the middle of the
channel. This structure is shown in Figure 2-4:

Gate oxide Inversion charges location

\ Qe Qp

~
S

V, == Metal Silicon Box §111c0n Silicon L.y,
oxide ground plan

—

Esf Esb

Figure 2-4: MOS SOI capacitance structure considered for inversion carrier concentration derivation. Egand Eg, are
front and back Si/SiO, interfaces electric field respectively.

Basically we see that SOI capacitance is no more than one MOS and one semiconductor-oxide-
semiconductor capacitance (assuming that gate and BOx oxide thicknesses can be different) assembled
head to tail sharing the same FD substrate. Thus in the following we will talk about front and back
interface to designate the gate oxide/SOI and the SOI/BOx interface respectively. Considering a thick
SOl layer for the channel, corresponding band diagram is shown in Figure 2-5.
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Depleted zone

] I

Bt s (}Eﬁ;}t'f'f ________________________________ -
G

/ > — |
. Tdep-Ox Tdep-an .
Metal gate Insulating Silicon Si0; Box Sificon
layer ground plan

Figure 2-5: Band diagram of a partially depleted SOl MOSFET at equilibrium. ¢, and ¢, are the front and back
interface potential respectively.

This is the case of Partially Depleted Silicon On Insulator (PD-SOI) MOSFET. In Figure 2-5 tge, ox
and tgp sox are the maximum depletion thickness at the front and back gate. The difference between
PD-SOI and FD-SOI lies in the silicon channel thickness. Indeed, in order to have a fully depleted
silicon channel the silicon channel thickness (Ts) should be lower than tgep-oxtteep-sox. Thereafter, we
derive the critical channel thickness that differentiates PD-SOI from FD-SOI structure. tge, ox and tgep
Box quantities are derived from the expression of the depletion charge [33]:

Qq = — 265Ny s (10)

where N, is the acceptor concentration. Let’s focus on the front gate depletion thickness (tgep 0x). From
equation (2) to (6) we have the following relationship between Vo, and tg, at onset of strong inversion
(where Q;=0):

& — vV qNazes(ps — qNatdep-Ox (11)

Vox =~ Cox Cox
qNatéep-ox 12)
Ps = T
and between V;; and tgep:
Ve = Vepr + @5 + Vox (13)

where Vigr = ¢y — @ is the flat band voltage of the MOS capacitance. On the other hand, the flat
band voltage of BOx capacitance will be labeled Vegg. Then replacing Vo, and ¢, in (13) by their
expression in (10) and (11), tqp is deduced as a function of V; and the doping concentration:

2V, =V, C?
€s \/ (G FBF) Ox-l—l—l (14)

taep-ox = 7+
epox Cox qNaesi
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taep-8ox fOrmulation is identical to (14) except that C,y, Vg and Vegr should be replaced by Cgoy, Vg and
Vegg. If 1< taep ox + taep Box » the Unbiased region in the middle of the channel disappear and the
device becomes fully depleted. Critical silicon thickness to have a fully depleted device is calculated
from the following formula:

si-crit = tdep-ox T tdep-Box

€ 2(Vg — Vpgg)C3
+1-1 ]+ Si (B FBB) BOx_}_1
CBOx qNaes

2(V = Vrpr)Cox (15)

qNg€s

_ Esi
tsi—crit - C
ox

-1

tgicrie Fanges from 3.1 pm down to 51 nm for 10*® < N, < 10'° cm?, Vg = Vg = 1V, Tox = 1.3 nm,
Teox=25 nm, Vpgr = —0.52 V and Vggg = 0.84 V at room temperature. The ground plan doping has
been set to 101° cm™3. Below this thickness, the back and front interfaces become coupled and the
band diagram becomes more complex. Figure 2-6 shows the band diagram at V; = 1.5V and Vj
[—6,0,6]V.
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Figure 2-6: MOS SOI band diagram for V; = 1.5V and V3 = —6V (a), Vg = 0V (b) and Vg = 6V (c). Band diagram
has been generated using UTOXPP Poisson-Schrédinger solver [34].

We see from this plot that the back interface goes from depletion to inversion depending on V. Figure
2-7 shows the minority carrier concentration depending on the position in the SOI for many Vg
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ranging from -10 up to 10V. In this case the SOI is lightly p-doped (5.10" atoms/cm®) and the BOX is
25 nm thick. Vg is still set to 1.5V.

x 10°°

Silicon channel |

Charge [m™3]

051

0 s A
Increasing Vp
XPOSITION

-0.5

Figure 2-7: Minority carrier concentration in the SOI for Vg going from -10 up to 10V at V; = 1.5V. Charge
concentration has been calculated using UTOXPP Poisson-Schrédinger solver [34].

This figure shows that the inversion layer is not concentrated at the front interface as it was the case
for bulk devices. Now we have to consider the possibility of having a back interface inversion layer
induced by Vg. In any case we see that the electrostatics of one interface is influenced by the other one
through back to front interface coupling.

2.1.2.2 Inversion charge density and threshold voltage derivation

In the following paragraph we will investigate the expression of Q; and V; for the case of back
interface accumulation, depletion and inversion. Following derivations assume the delta-depletion
approximation, that is, any inverted charge is at the Si surface in a Dirac delta function as depicted in
Figure 2-4. In order to adapt bulk inversion charge density and threshold voltage derivation to FD-SOI
structure, we consider a doped channel FD-SOI structure with thick SOI (but thin enough to deal with
FD-SOI structure, that is SOI thickness < tg., o as mentioned in (14)) and BOx. We will see in the
next paragraphs the effect of thin BOx and channel and intrinsic channel. This investigation has been
conducted by H-K Lim and J. G. Fossum [35]. Following the same approach as for bulk MOS
capacitance we can derive the potential drop across both front and back oxide (as in (1)):

Ve = Vigr = Vox + @5y (16)

Vs = Vege = Vpox + @sp (17)

where Vigr and Vipgp are the flat band voltages of front and back gates respectively. ¢ and ¢, are
the surface potentials at the front and back Si/SiO; interfaces respectively, referenced to a hypothetical
unbiased neutral body. Solving the Poisson equation across the silicon film yields:

Vi _ _ qtsiNy

=F
Si o ngi

(18)

(el
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where Vs; = @gr — @gp is the potential drop across the SOI film, E is the field at the front interface

of the SOI, tg; is the silicon film thickness, gg; is silicon dielectric permittivity, Na is the doping
concentration in the channel. The field in the front oxide is:

Ve —Vegr — @
E,, = S (19)

tox

Then, applying Gauss theorem across the front oxide, taking the inversion charge into account, yields:

EoxEox — gsiEsf = _Qif (20)

where Q;f is the inversion layer at the front side. Equation (18) to (20) can be adapted for the back
interface. To sum up, the four following equations are available (following Lundstrém [36]):

_go_xVG_VFBF_(psf_l_%

E.r = 21
o Esi tox Esi ( )
£ = €ox ~Vp + Vrpp + s Qup (22)
P Esi tbox Esi

- tsiN, 23
Esf _ Pst — Psh + qlsiiNg ( )

tsi zgsi
E. = Psf — QPsp _ qtsiNA (24)

P Lsi 2eg

where Q;;, is the inversion layer at the back side. Combining (21) with (23) and (22) with (24) yields
the general equations that rule the electrostatic of the SOI capacitance with doped SOI:

Qi + % -
VG = VFBF + §05f - C— + C_Sl(gosf - (psb) (25)
ox ox
26
Qip + % Cs; (26)
Vg = Vppp + @sp — C + C (Psp — Ps5)
box box

where Cg; = ? and Q; = —qN,t; is the depletion-region areal charge density. Combining these two

equations yields the back and front coupling equation. Then the total inversion carrier concentration is
simply the sum of Q;r and Q;,:

Q; = sf€si — Cox(VG — Vegr — q)sf) — Esp&si — Coox (Ve — Ve — @sp) (27)

Replacing E,f and E;, by their expression (23)(24) yields:
Qi = - ox(VG - VFBF - q)sf) - Cbox(VB - VFBB - (psb) - Qd (28)
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Let’s now discuss the expression of the threshold voltage. In order to derive it we need a clear
definition of this threshold voltage. The subtlety we are facing here is that there are two gates. Thus
considering one electrode with a fixed bias, the threshold voltage is the other electrode voltage
required to switch the transistor from off to on state (or from on to off). Notice that this is not the
definition used by Lim and Fossum [35]. Instead they defined the threshold voltage as V for which
@sf = 2¢pp no matter the back interface regime. This definition fails to match ours when the back
interface is inverted. However our definition reflects the threshold voltage that is extracted by most of
the extraction procedure, which is not the case of Lim and Fossum definition.

A consequence of this definition is that at threshold, Q; = 0. Thus considering V5 fixed, the threshold
voltage can be deduced from V; expression (25), depending on ¢, and ¢ ¢, where Q; = 0.

Csi
| st~ o) (29)

Ve :VFBF+(psf_ﬁ C
" Hox ox

From this definition, Q; expression can be simplified using V..

Qi = —Cox(Vo = Vt) (30)

So we see that Q; expression is similar to bulk one (9) except for the definition of V, and is valid
whatever the value of ¢y, and ¢gr, hence whatever Vg value. Next, V, expression is developed,

clarifying @¢r and @, depending on Vg and whether the back interface is accumulated, depleted or
inverted.

o Threshold voltage when the back interface is accumulated

In the case of an accumulated back interface, accumulated charges screen the back bias and ¢y, is
virtually pinned at 0. Threshold at front interface is then reached when ¢ = 2¢,, as in bulk case.
Then Q;f is small and V. is deduced from (25):

Qa
2C,,

C .
m:mﬁ:wm+(ywiﬂ&%— (31)

COX
Vt does not depend on the back potential in this case.
° Threshold voltage when the back interface is inverted

If the back interface is assumed inverted, then ¢, equals 2¢;, and a conducting back channel exists.
The current flows if V; = 0. Thus V, is the required gate bias to suppress the back channel inversion.
If when Vi =V, the front interface is depleted, ¢ is deduced from (26):

C Cc
box) _ 28 () Vi) — (32)
St

=2 (1+
(psf ¢b CSl 2 CSl

Then V, is deduced from (25):
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Cbox(Csi + Cox) Cox + 2Csi

Ve = Vipr + 26y — Ve — Vegp — 2¢0p) — Qp - 25t 33
t rer + 2¢p C.Ca (Vg — Vegp dp) — Qp 2C.Con (33)

If, when V;; equals V, the front interface is accumulated, then ¢, = 0 and V, is clamped to:

Csi
Ve = Vipr — C_2¢b (34)

ox

o Threshold voltage when the back interface is depleted

In the case of a depleted back interface, ¢, depends on Vg and ranges from 0 up to 2¢,
corresponding to the limit case of back interface accumulation and inversion respectively as we have
seen previously. Isolating ¢, from (26) and introducing it in (25), letting Q;f = 0 and Q;;, = 0, we
get:

CsiCbox Qd ZCsi + Cbox (35)

(Vs = Ve — 2¢p) — -
Cox(Csi + Cbox) 5 FBB b 2 Cox(Csi + Cbox)

Vi = Vepr + 2¢pp —

. Threshold voltage summary depending on back bias

To conclude there are four cases to consider as reported by F. Andrieu [37] (see Figure 2-8):
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Figure 2-8: Theoretical V-Vg curve with the different channel regimes.

When the back interface is accumulated, V, does not depend on Vg and is expressed as (31). When the
CsiChox
Cox(csi‘l'cbox)
is inverted, there are two options: i) either the front interface is depleted, then V, is expressed as (33)
and the V-Vg slopes shift to — Chox(CsitCox)

CoxCsi

back interface is depleted, V-Vg slope is — (see equation (35)). When the back interface

or ii) the front interface accumulated and then V, does not

depend on Vg (as expressed in (34)).
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2.1.2.3 Effect of intrinsic instead of doped channel

In order to reduce random dopant fluctuations and enable a better scalability of FD-SOI technology
[38], intrinsic channel has been preferred and is the actual option used by STMicroelectronics. The
main difference is that the depletion charge @, is now almost zero and the depletion approximation
that implies Q4 > Q; is not valid anymore. V. P. Trivedi et al. [39] have refined H-K Lim and J. G.
Fossum [35] approach (developed in §2.1.2.2) and made it suitable for undoped channel. In particular,

led

they showed that for subthreshold condition c is smaller than |¢s¢| and the influence of

ox

subthreshold or weak inversion charge on ¢, can be neglected irrespective of the channel doping
condition. Thus, simplification used thanks to depletion approximation still holds for intrinsic
channels. The master equations (25) and (26) are identical except that Q; and Q,; becomes negligible in
weak inversion.

Another consequence of the lack of impurity in the channel is that the quasi Fermi level in silicon is
close to the intrinsic Fermi level, dropping ¢, to 0. Thus at threshold, ¢z = ¢y is substantially
greater than —2¢, and a better definition of ¢, should be found. Lee and Young [40] and V. P.
Trivedi et al. [39] have adapted Lim and Fossum [35] approach by defining a critical surface electron
concentration n needed for the channel to be conductive. Then ¢, yields:

Ot = Qo — Py (36)

Where @y = —¢,, if Ny > np and @ = 1%Tln (?) otherwise. While being simple and efficient, this
1

approach requires to arbitrarily set ny to a specific value. This approach is similar to the constant
current threshold voltage definition and has been reported by Q. Chen et al. [41]. Another approach
similar to maximum of transconductance criterion has been suggested by J. Lacord et al. [42] and
yields:

kT KT
Pth = qln <—q C ) (37)

2 ox
n; T;

if the inversion layer thickness is equal to the silicon film thickness. Here are two examples of
threshold surface potential definition but many others have been published.

Beside the fact that 2¢;, should be replaced by ¢, and that Q; can be neglected, Trivedi et al. [39]
showed that the general Vt expression is similar to the case of doped channel for depleted back
interface.

2.1.2.4 BOx and channel thickness limiting effects: the case of Ultra-Thin Body and
BOx (UTBB) structure.

Previous derivations hold if the back to front coupling is weak enough to enable inversion at one
interface and accumulation at the other. However S. Eminente [43] showed that for ultra-thin tg;, due to
the strong back to front electrostatic coupling, the required electric field in the BOx to induce
accumulated charges at the back interface while having the front interface inverted would not be
supported by the BOx oxide. Thus the back accumulation regime is not worth investigating. Figure
2-9a shows that even for thick BOx (that sustains higher voltage), considering front channel at
threshold, back interface accumulation is reached only when Vg<-40V and back interface inversion
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(with front interface accumulation) when Vg>60V. These voltages are very far from the operating
voltage, making it unusable.
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Figure 2-9: Threshold voltage extracted for different gate lengths as a function of the substrate bias voltage and for
two BOX thicknesses: (a) for UTB and (b) for UTBB . Vp is varying from -3 V to +3 V for UTBB and from -80 V to

+80V for UTB.[44]

2.1.2.5 Effect of substrate depletion on threshold voltage

Another difference in the case of Ultra-Thin Body and BOx (UTBB) is the influence of substrate
regime. In the case of ultra-thin BOx, it appears that the BOx/substrate interface regime has a
noticeable influence on the threshold voltage. S. Burignat [44] showed this effect using double
derivative method to extract V,; depending on Vg on both Ultra-Thin Body (UTB) and UTBB devices.
Result is shown in Figure 2-9b. From this figure we see that V, is almost constant when the substrate is
depleted. In this case the back bias sweep is partially compensated by the variation of the potential
drop in the substrate depletion region, flattening the V-Vg curve.

2.1.3 Inversion charge summary

After deriving Q; and V, for the bulk case, we have then adapted the approach for the case of FD-SOI.
We showed in all cases that we can model Q; according to the equation below in strong inversion:

Qi =—Cox(Vg = V) (38)

We have investigate the impact of using intrinsic or doped channel, the effect of BOx and channel
thickness as well as the substrate depletion for the case of UTBB devices. The V-Vg behavior of FD-
SOI UTBB structure with intrinsic channel has five different regimes with two that are not physically
reachable (only mathematical derivation and numerical simulations can assess it). These are the case
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of front inversion with back accumulation and front accumulation with back inversion. Regimes that
are physically feasible are depicted by S. Burignat [44] equivalent capacitance model in Figure 2-10:
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Channel Csib zcsr:lzean TYmean
BOX Ceox CeBox ——Ceox
°
Si substrate e Tc’“b Vs
B Accumulation
Inversion Vs
Depletion

Figure 2-10: Schematic presenting the effective capacitances for the three main substrate regimes.[44]

In this figure, the three regimes are distinguished by the position of the inversion layer in the silicon
channel. The charge centroid moves from the front to back side when Vg goes from negative to
positive values. This is modeled by considering the charge centroid Y s, in the channel and the silicon
capacitance film on both sides of it (C;;, and C,;¢). Thereafter we summarize V; equation depending

on these regimes.
. Front channel, back interface depletion, substrate inversion.

In this case the inversion layer is confined at the front interface and the back interface is depleted. This
situation is depicted in Figure 2-10 (left side) and V; is deduced from (35) where 2¢, is replaced by
@¢n and Qg is neglected:

CsiCbox
Cox(Csi + Cbox)

Vi = Vegr + Gen — (Vg — Vegp — Pen) - (39)

. Channel in the middle of the silicon film, back and front interface depletion, substrate
depletion

When the substrate is depleted, C,, and C,, are replaced by equivalent capacitance. The equivalent
BOx capacitance yields:

Cboxcsub
=—" " 40
boxeq Cbox + Csub ( )

and the equivalent oxide capacitance yields:
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CoxCsi
o — ox“sil (41)
e Csil + Cox
Where Cs; = €i/Ymean- Csub IS the substrate depletion. V, equation is deduced from (39) where Coy
and Cgox are replaced by their equivalent formulation and Cy; = &4;/(Tsi — Ymean):

CsiCbox Csub (Cox + Csil)
Coszil (CsiCBOx + CsiCsub + Cboszub)

Vi = Vegr + Gen — (Vg — Vegp — @) - (42)

. Back channel, front interface depletion, substrate accumulation

In this case the inversion layer is confined at the back interface and the front interface is depleted. This
situation is depicted in Figure 2-10 (right side) and V. is deduced from (33) where 2¢,, is replaced by
@¢n and Qg is neglected:

Cbox (Csi + Cox)
Coszi

Ve = Vegr + ¢en — (Vg — Vegp — Pen) (43)

To conclude, expected dependence of threshold voltage on back bias for UTBB devices is shown in
Figure 2-11:

|
| Front inversion

Front inversion .
® | Back depletion
Back accumulation| . .
Substrate inversios

| | |

I | Front depletion I
I Back inversion

nI Substrate accumulation Theoretical derivation,
I ph)-fsically impossible
| in UTBB devices

Fox (Csi + Cbox) |

Inversion channel in the middl
of the silicon film

Front interface V,

|Front accumulation

. | Back inversion
Substrate depletion |
| |
| | _ Cbox(csi + Cox) |
I I Cox Csi |

Back interface bias

Figure 2-11: Theoretical Vt-VB curve with the different channel regimes for UTBB devices.

This figure represents the three physically common regimes (white areas) and the two physically
unreachable regimes (shaded areas).

2.2 Channel carrier mobility

In previous section we have investigated the inversion layer carrier concentration in both bulk and FD-
SOl transistors. It will be the basis for drain current formulation. But before, this section is devoted to
the effective mobility experienced by inversion layer carriers. We will go through the main physical
phenomenon that limit the mobility and then propose a compact model to address it, which will be
used for the drain current formulation in section 2.3 and 2.4.
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2.2.1 The effective mobility

Carrier mobility is limited by scattering phenomenon of different natures. Each phenomenon is
characterized by a scattering time T and can be written under the form: u = e.t/m* where m* is the
effective mass. Resulting effective mobility of all these scattering mechanisms is expressed following
the Mathiessen rule:

1 1
= — 44
Htotal 7 25 ( )

The three main scattering mechanisms are phonon, Coulomb scattering and surface roughness limited
mobility. The limiting scattering mechanism is the one that has the smallest intrinsic mobility and each
of them depends on the effective transversal field and/or on the inversion charge density. This
formulation leads to the well-known universal mobility as illustrated in Figure 2-12:

Totabaiobility ' /v Coulomb scattering
~ /

A

Figure 2-12: Universal mobility depending on effective field strength.

Phonon limited mobility has the following formulation [45]:
pn = A Eg2. T~ (45)

where T is the temperature and E the effective transversal electric field and —1 < @ < —1.75.
Surface roughness limited mobility has the following formulation [45]:

hsr = B.Egfy

(46)
A and B are experimental fitting parameters and —2 < § < —2.6. Finally Coulomb limited mobility is
usually experimentally extracted from measured effective mobility and universal mobility that
accounts for surface roughness and phonon scattering, following [45]:

P-;olul = p-;flf - uarlliversal (47)

There are two types of Coulomb scattering to be considered: scattering with ionized dopants located in
the channel and scattering with charges located in the gate stack or at the interface between materials,
also called Remote Coulomb Scattering (RCS). Since we are working with undoped SOI MOSFET,
we expect the first mechanism to be of little importance. However UTBB devices involve thin silicon
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channel and thus increase the effect of RCS limited mobility as shown by D. Esseni [46] and C.
Fenouillet-Beranger [47]. In these publications, the carrier mobility is almost only impacted by remote
Coulomb scattering. A compact formulation for RCS limited mobility has been proposed by G. Hiblot
[48] that is a trade-off between J. Koga [49] and F. Boeuf [46] approaches:

Heie _ +/Qi+0.1y/1q1Dy

“2,1’1& 0.1y/1q|D;;

(48)

where p ;¢ is the RCS mobility due to interface charge, Dy is the surface density of interface charges,
and pg ;; is the unscreened interface traps mobility.

To conclude, the mobility can be expressed as a function of the effective field following Matthiessen
rule and neglecting Coulomb limited mobility:

1
H= A_l.Eg}'c?}. T175 4+ B_l'Eeszf +C-1, Qi—O.S (49)

11

where C = 545ﬁcmz/V/s is a fitting parameter.
Diey/lalDit

2.2.2 Mobility compact modeling
As we are considering the FD-SOI transistors, effective field is expressed as [50]:
Qa +10;
Sl

Qg4 can be neglected considering undoped channel. n equals 1/2 for electrons and 1/3 for holes [51].

. . dE, . . .
Considering % constant, a second order expansion of 1/u as a function of Q; yields:

1
E=D+E.Qi+F.Qi2 (51)

where D, E and F are factors that depend on Eg, n and &g;. Then knowing that Q; < (V; — V), U
yields:

_ Mo
14+ 0,(Vg — V) + 0,(Vg — V)2

n (52)

where y, is the low field mobility and 6; and 6, account for effective field dependent mobility
correction. These parameters depend on C, Eg, n and &g;. This formulation will be kept for later

model since it is compact and handy. However a rigorous derivation of this effective mobility can be
performes analytically. Replacing Q; by (38), E,p, by (22), the transverse electric field reduces to:

Cox C
2% g — v — 2%

€si Si

Eerr = (Ve — Vegg + 9sp) (53)
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Then @, is replaced by its expression derived from (26) at threshold (Q;=0 and Qg is neglected):

Cbox ( Csi )
=——-|\Vg =V, + — 54
Psp Coi + Cpox B FBB Chox Pth (54)

Vg can be expressed as a function of V, following (39) and (43).

1
Vg = p Vegr — Ve + @en) + Vepg + @1 (55)

Where a = % when the channel is at the front interface and the back interface is depleted
ox\bsi box.

Epox(Csi*Cox) \yhen the back interface is inverted and the front is depleted. Finally inserting

CoxCsi

(55) and (54) into (53), E, s reduces to:

and a =

nC T
Eoff =6—‘f"<VG + V, (ﬁ_ 1)) +s (56)
St

where r depends on capacitances and the back interface regime. r formulas are written below
depending on the back interface regime:

(back

2C
interface r= % +1 (57)
depleted) st
(back Csi(Csi + 2C
interface r= si(Csi box) (58)
inverted) (Csi + Cox)(Csi + Chox)
and s depends on flatband voltages, ¢;; and the back channel regime:
-(baCk 2Csicbox
interface s = (Csi + 2Cphox + C—) @en + (Csi + 2Cpox)VipE (59)
depleted) ox
_(back s — <2Cgox + 4Cox Cpox " 2Ch0x n Csi(Cox + ZCbox)> 0 + (Cs;
interface Cox Csi Cox (60)
inverted) + 2Chox)Vrpr

To conclude, the effective mobility depends on E that is proportional to Vg + (% - 1)Vt as shown in

(56) and Q; that is proportional to V; — V;. This conclusion has been verified by simulation [52] where
we can see a universal behavior of mobility depending on Q; (on E.) only where Coulomb scattering
dominates (is negligible). So, the compact model for p in (52) is a rough approximation and
considering E¢ expression (56) and the mobility expression (49), it can be shown that 6,, 6, and o
fitting parameters in expression (52) depend on Coy, Csi, Cpox, Vsr and V¢ Thus 6, and 8, have neither
universal behavior nor physical meaning.
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2.2.3 Mobility degradation for short channel devices

Mobility degradation of short channel devices has been widely investigated in literature. Multiple
explanations have been proposed for that phenomenon. First, Ghibaudo [53], Barral [54], Pappas [55]
and Guarnay [56] investigated the effect of ballistic transport on the effective mobility in linear
regime. Carriers experience ballistic transport if no scattering mechanism affects their transport. It
occurs in very short channel devices. Indeed, considering that scattering events occur periodically, if
time needed for the carriers to cross the channel is smaller or comparable to the relaxation time of
scattering mechanisms, then carriers can experience no scattering. Ghibaudo [53] addresses ballistic
transport using quantum mechanics. His ballistic drain formulation yields:

w qVp
IDbal = ?Coxvinj(VG -V ﬁ (61)

where

Vinj = 2kpT/(mm,) (62)

V;nj IS the injection velocity. m, is the transverse electron mass (m, = 0.19m, where m, is the free

electron mass), kg is the Boltzmann constant and T the temperature. In this case, equivalent mobility
formulation yields:

qVin;L
Hea = 0 T (63)
where L is the channel length. Equation (63) shows that . is proportional to L, thus the shorter is the
channel, the lower is the apparent mobility. However Ghibaudo [53], Fleury [57], Barral[54],
Pappas[55] and Shin [58] showed that the proportion of ballistic transport is rather low even for the
shortest devices and ballistic mobility cannot explain the entire apparent mobility degradation. Finally
recent Monte-Carlo studies [56], [59] and [60] suggested that ballistic transport contribution could be
underestimated depending on the extraction method used for the backscattering coefficient extraction
from mobility measurements.

The second explanation for mobility degradation is saturation velocity. It limits the mobility at high
lateral field (thus more important for short channel devices). Carrier may reach the saturation velocity
Vs if the lateral field is high enough (Ei.>Ei=10"V/cm). Indeed, when the carrier reaches v it has
sufficient energy to generate a phonon. The energy required to create the phonon is taken from the
carrier, reducing its velocity. Average carriers velocity is then clamped to v, Experimental saturation
velocity measurements have first been done by Ryder [61]. Further investigations to reach vg; have
been done on P-N junctions by Norris and Gibbons [62], Duh, Moll [63] and Rodriguez, Ruegg and
Nicolet [64]. Average values are ve;=10"cm/s for electrons and 6.10° cm/s for holes in silicon crystal.

However this phenomenon appears at equilibrium state. Indeed, the carrier velocity is only constant
when averaged over a time much longer than the scattering time (z). In short devices, the time required
for an electron to cross the channel is comparable to 7. Thus the carrier can cross the channel in a
transient state enabling a velocity larger than v, this phenomenon is called velocity overshoot. Ruch
[65] used Monte Carlo simulations to demonstrate this effect on GaAs transistors. Recent
investigations done by Kim et al. [66] showed experimental observations of carrier reaching velocity
overshoot.
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Lundstrom [67] suggested that drain saturation current can be modeled easily using barrier scattering
theory. Moreover he suggests that velocity overshoot should not be the prominent effect in ultimately
scaled MOSFET since carrier are cold injected at the source and may only overshoot v, if the channel
is sufficiently long. His drain current formulation yields:

wc
ID_Vsat = 1 oxl (VG - Vt) (64)

+
vinj Ueff€(0+)

where €(0™) is the maximum potential barrier height at the virtual source and v;,; = /2kgT/(mm,).
His interpretation is close to Natori’s one in (61) that addresses ballistic transport. Thus distinguishing
ballistic transport and velocity saturation is not easy. The relevance of these approaches is discussed
by Yang et al. [68]. They showed some contradictions with experiments in particular about
temperature dependencies. To overcome this, they investigated which saturation effect intervenes
depending on the device geometries and the operating conditions and proposed a unified model for
saturation velocity and ballistic transport, mixing Lundstrom [67] (64) and Natori’s one [69] (61) that
yields:

WC,,
I = Ve —V,)
D_Vsat 3y Jqrld, R 1 G t (65)

4hJC,, (Vo —V,) Merr€(07)

Where M, is the product of the lowest valley degeneracy and the reciprocal of the fraction of the
carrier population in the lowest energy level. In their study it is shown that determining whether the
drain current is Viy, Vs, Velocity overshoot or pinch off limited is a tricky task and requires
comprehensive characterization including temperature dependence.

In order to meet our goal we only need phenomenological approach. Thus saturation velocity effect is
accounted for by introducing it through the mobility such as:

1
Hshort = 1 N % (66)
poovt
where p is the mobility as formulated in (52) and E;,; is the lateral field. This approach has been
reported in many compact models as in [70]-[72]. As mentioned previously, ballistic and velocity
saturation limited currents have the same form, thus v* can account for both v;,; and v, as

suggested by Fleury [57].

Another effect involves extra scattering mechanisms induced by neutral or charged defects at the S/D
channel junction. These defects are induced by S/D dopants implantation. For long channel devices,
most of the channel is defect free but for short channel devices, S/D junction is a significant part of the
transport region thus apparent mobility is driven by neutral defects scattering mechanism. Ghibaudo
[53] used temperature dependent mobility extraction on FD-SOI, double gate and gate-all-around
MOSFET as well as FinFET transistors. This approach enables distinguishing the contribution of
neutral defects scattering from other scattering mechanisms, revealing its dominant effect. Pham-
Nguyen [73] confirmed these results using different gate stacks, Cassé [74] and Chaisantikulwat [75],
Shin [76][58] confirmed it using magnetoresistance measurements. Finally, Barral [54] and Pappas
[55] confirmed it by extracting the backscattering coefficient from mobility measurements. It should
be noted that recent extraction done on 14 nm FD-SOI MOSFETSs with in situ doped raised source

32



Chapter 2: Transistor’s drain current compact modeling

drain technology showed the same gate length mobility roll-down [77][78]. However, in situ doping is
expected to reduce the formation of neutral defect since there is no implantation during the process.
Thus the mobility reduction cannot be explained only by the presence of neutral defects.

As a conclusion, guantifying precisely the contribution of each physical mechanism to the channel
length mobility roll down is a tricky task. However Shin [58] showed that the apparent mobility
degradation measured using magnetoresistance can be modeled as:

u

Hshort = I,
L¢
1+ 1

(67)

Where p is expressed as in (52) and L. is the critical length at which gy, is half the long channel
mobility p. This empirical model fit well the apparent mobility. Combining (52), (67) and (66) yields
the effective mobility accounting for remote Coulomb and phonon scattering, surface roughness,
velocity saturation, ballistic transport and neutral defects:

Ho

Eiar. L (68)
146, (Vg — V) + 0,(Vg — V)2 + Ltk (1 4 5¢)

Hefr = (

2.3 Linear regime model

In this section we derive the linear drain current equation based on previously investigated quantities
like V4, Q; and . The transistor structure is depicted in Figure 2-13.
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Figure 2-13: Basic element of FD-SOI MOSFET architecture.

In our case the transistor is in strong inversion regime (V; > V;). An inversion layer is created in SOI.
Considering the case of NMOS where Vs = 0, if V, > 0, electrons start to drift toward the drain end
with a mobility as described in 82.2. A current flows through the MOS. The total current is constant
along the y direction. Then at a point y in the channel, the inversion charge is Q;(y) and the mobility
is Her(Y). The potential drop across an infinitesimal section dy induces a current expressed as:

Ipiin = Qi * Mefs " Erar (69)

with E;,; = dV./dy being the electric field in the y direction. The current is conserved along the
channel, thus, integrating the expression along the width direction, the drain current yields:
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av
Iptin = =W+ Qi(¥) * Uesr (V) ] (70)

where W is the width of the transistor, U is the effective carrier mobility reported in (68) and Q; is
the inversion layer carrier density and dV. is the potential drop across the channel section, V. being the
quasi Fermi potential along the channel. If we assume that Q; and p, s do not explicitly depend on y
but only on V., then y and V. variables can be separated following:

Ipiindy = =W - Q;(V2) " bepr (V) - dV; (71)

This assumption is valid if E;,; is constant along the channel, that is true in linear regime. The drain
current is then obtained by integrating (71) from the source to the drain:

L vd
f Ipndy = =W [ 1o (V)Qu(V)AVC (72)
0 Vs

Equation (72) shows that I, calculation requires the inversion carrier concentration Q;. To use
previously derived equation for Q; in 82.1, a variable change should be operated. Indeed V; and ¢
biases were referred to a hypothetical unbiased neutral body that was E#/q=V;z in the case of MOS
capacitor. Here E{/q=V. is no longer equal to the back bias but is driven by the source-drain bias and
goes linearly (for the case of strong inversion) from Vsup to Vp. From now on, we will use Vs as the
reference potential. Thus ¢, shall become ¢, + V; and V; become Vs — V.. Depending on whether
we consider or not 6, and 8, parameters, Ip,;,, yields the formulas listed in Table 2-1.

w.c,,. Wo- VD VD
6,=0,=0 Ipiin = (Ll-):—L)A (VG -V - 7) (73)
c
- wW.cC,,. Vp0
6,=0 _ ox- Ho ( ( DY1 ) )
Ipjin =——————(In|1— A+Vp.0 74
6, %0 P = (L + L.). 62 A+60,(Vg— V) bs-71 (74)
6, =0 I = W. Cox- Mo n 0,(Vg — Ve —Vp)* + A (75)
0, #0 Plin =2 (L + L,). 0, 0,(Vg — V)2 + A
Idpiin = I'piin(Vd) = I' pin(0)
) WeCony 0, 1 1
piin@ = YL, (n(a) —n(p)) 26, |2 —4a0, 28, (n(a) +In(b))
0, %0
9; #0 6, 07 1 (76)
a=Vt—VG+u—2—92+ 2—92—214 —m
b=V, — Vgt u— 2 1 24
T e TU T o0 7\ 20, 44.0, — 62
In above formulas A = 1 + % (77)

Table 2-1: Ipji, formulation for long channel devices with and without 61 and 62 parameters.

Notice that I, formulation when 68, and 6, are not null, yields only real values if 446, < 62.
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In order to simplify these expressions, Mk can be assumed independent of the position along the
channel and replaced by its average value in the channel [32]. Initially, M iS expressed as in (68),
including the variable change for Vg:

Ho

Vpbs. L 78
(14 00 (Vas = Ve = V) + 0,05 — Ve — V)2 + 12510 (14 5y (19

Hefr =

A good approximation of the average mobility along the channel is obtained by replacing V. by Vps/2.
It can then be taken out from the integral (72) and the drain current yields:

MerfW (V@
Ioiin = = [ o5 = Vi~ va, (79)
Vs
Integrating (79) yields:
WerrW Vbs
Ipiin = %Cox (Vcs —Ve— T) Vpbs (80)

In this formula the effective mobility has been replaced by (68) where V; — V; has been replaced by
Ves — Vi — % The potential drop % is the average of 1 along the channel. The lateral electric field
E.. in (68) has been replaced by its average E.=Vps/L.

This equation is valid in strong inversion regime (Vg5 > V;) and a second order high field mobility
reduction formulation is assumed here. This equation does not take into account the effect of access
resistance. This restriction will be discussed in §2.5.

We shall see later for the parameters extraction that the linearized formulation of Iy, (80) is more
convenient and will be preferred over (76). The error between Ipy;, approximated in (80) and not
approximated in (76) is shown in Figure 2-14 against Vg with different channel lengths. We see that
the error in the right plot is low (below 0.1%) and depends slightly on L.
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Figure 2-14: I, against Vg using the approximated (72) and the not approximated (76) formula for L € [1;0.02] um.
For the calculation, the following parameters have been used: p=200 cm?/V/s, COX:3*10'6 Flcm?, Vt=0.3V, 0, =
1Vt 0, = 1V 2 Vps=0.05V.
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Notice that saturation velocity effect is driven by the lateral field. Thus its effect will only be
significant at high Vps, in saturation regime. Hence, v* contribution is neglected in linear regime. TO
conclude, the general formulation for the linear drain current we will use is:

i _ w HOCox (V V. VDS)
Dlin = >\ Ves = Ve —— | Vbs 81
L+1L v, V, 2 (81)
140, (Vos — Ve = 755) + 8, (Vos — V. — 755)

This formulation is derived using simplification but these are fully justified, as shown in Figure 2-14.

2.4 Saturation regime model

In this section we will introduce the saturation mechanism that occurs at high V. We will show that in
the case of long channel devices, the saturation is caused by pinch-off phenomenon. From the linear
drain current model we will derive a saturation drain voltage Vps: and deduce the saturation drain
current.

2.4.1 Effect of high drain voltage: pinch off saturation

In the case of long channel transistors, the saturation mechanism that occurs is called pinch-off [79].
This phenomenon can be explained with the help of Figure 2-15. In linear (Vs << Vg — V;) and
strong inversion (Vs > V;) regimes, the inversion layer is uniform in the channel. The channel acts as
a resistor and the drain current verifies equation (81). Then, as the drain voltage rises, the depletion
area around the drain increases, reducing Qj,y at the drain end. When Vps = Vpg the inversion charge
is null at the channel drain junction. This is the pinch off point. Then if Vps is even more increased,
the inversion layer continues to shrink and the pinch off point drifts from the drain channel junction
toward the source side. Any increase in drain voltage is compensated by a voltage drop across the
depletion region at the drain end and not by an increase of the current. This is why the current
saturates beyond the pinch off point.

Ves > vth,lin Ves> Vth,sat

‘%S >>Vpsat

Pinch-off
Depletioni—
region

Depletion
p-well region

Figure 2-15: NMOS transistor operating in (a) the linear model, (b) the onset of saturation, and (c) beyond saturation
where the effective channel length Legg is reduced. Vi i, and Vi o¢ are the linear threshold voltage and the saturation

threshold voltage, respectively. Q;py is the inversion charge. [68]

Mathematical formulation of the saturation drain current is derived from the linear one (72) where v*
is accounted in the effective mobility since Vps and E4 are high in this case. Ipji, reaches a maximum
at Vp = Vpgqe @S shown in Figure 2-16. Thus, a common practice to derive Vpg,: iS to calculate

Gps = % and find Vp where Gps = 0. Using Ipji, equation (76), no analytical formula for Vpg, and
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the saturation drain current can be found. A first approximation consists in replacing E;,; by % Then

Ipsat formulation can be found by taking Ip;;, formula in Table 2-1 and replacing Vps by Vps derived
from Gps = 0. This yield:

w Vpsat
Iosae == | HepGQURIAVe (82)
Vs

=100
¢ _.,.-"" Mg.‘. ‘__ Saturation region
sl '_."' ", | (Ipg, equation not valid anymore)
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Figure 2-16: Width normalized Ip-Vp curves from equation (81) with Vs = 1V. L=[0.024, 0.031, 0.078, 0.105, 0.267,
0.897]um. V; = 0.3V, g = 200% ,0;, =0, = 0V~ Effects of v* and L are neglected here.

However Vpg formulation is not analytical making Ips; time consuming to compute, thus we shall
find an analytical approximation. This is done following the same approach but starting with the
simplified Ip)i, expression as expressed in equation (81) instead of (76). If 6; = 6, = 0 and v* and L.
effects are neglected (long transistors), Vpsq: = Vs — Vi and the saturation drain current Ipg, Yields:

oW
Ipsat = 2L Cox (Vg — Vt:sat:)2 (83)

For the general case, Vs Yields:

(84)

, u-— Ju. (1 + 2.5 (Vg - Vtsat)>

2
91 - LII.;;O* + (VG - Vtsat)ez

Vpsat =

where u =1+ 0; (Vg — Vigar) + 02 (Vg — Visqr)? and Vg, is the threshold voltage at the operating
VOItage VDS =VDD-

To conclude the general formulation for the saturation drain current yields:

VDsat

HoCox (Vcs -V, - T) Vbsat (85)

2
146, (Vs =V, - M) 40, (Vs =V, - VDsat) + Vsat- 1o

ldsa, = L+ Lc

2 2 Lv*

This equation is valid in strong inversion regime (Vs > V;) with no access resistance. This restriction
will be discussed in 82.5.
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Notice that if saturation velocity, ballistic transport and neutral defects effects are small (long
transistors), then Idg,; tends to have quadratic dependence with Vi —V, as in (83) (pinch off
saturation mechanism). However if saturation velocity limits the current, then Id,, has a linear
dependence with V;s — V;. This agrees with theory, following equations (64)-(65) for velocity
saturation and ballistic transport and (83) for pinch off saturation. Hence, expression (85) is suited for
saturation. L. account for neutral defects and v* accounts for velocity saturation and ballistic transport.

2.5 Effect of access resistance. ..

2.5.1 ...in linear regime

In the previous paragraph, the drain current equation has been derived considering no effect of source
drain (S/D) and contacts region. This assumption is valid for long channel devices (case where the
access resistance is small compared to channel resistance). In this section we will investigate the
impact of access resistance in short channel devices and include it into our model.

The first studies used to consider constant access resistance [80]-[82]. Including a constant access
resistance in the drain formulation is done by substituting Vgs and Vpg respectively by Vgs — Rg. Ip
and Vps — (Rg + Rp).Ip where Rg and R, are the S/D resistance. Considering equation (81) for the
access resistance free linear drain current, Ip;;, With access resistance yields:

B (Vs — Ve — 85) Vs

Ipiin = Vs Vps 2 Le
(1 + (81 + Reaff) (Vs — Ve =35 + 6, (Vos — Ve —-55) )(1 +7)

(86)

With 8 = %uocox and Rgq = Rg+ Rp. In terms of resistance, the width normalized total MOS
resistance is:

v
+91+92(VGS—Vt—ﬂ)

: ®7)

B\ (Ves—ve-"%9)

DopingConcentration (em”-3)
. 1.536e+21
2.309e+20

3.470e+19
I5.2|69+18
7.841e+17
1.179e+17
I 1.771e+16
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Figure 2-17: TCAD simulated MOS scheme with dopant concentration in silicon regions
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Other studies have claimed that access resistance has a 1/(V; — V;) dependence [83]-[87][88]. The
subtlety between these two hypotheses mostly lay in the definition of channel and access region. In
order to demonstrate it, let’s consider two cases. One case is where the channel is the region that
encompasses all silicon regions where N, < N, qx Where Ni,., 1S the maximum inversion carrier
density that could be induced by electric field. N4, = 10*°cm™3 [84]. The other case is where the
channel is considered to be the intrinsic region of the channel that lies below the gate. These two
situations are illustrated in Figure 2-17 and Figure 2-18.
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Figure 2-18: Local resistivity variation w.r.t Vg against the position along the current path. Sq refers to the W/L
normalization of the resistance.

Let’s consider the first limit case. Here the access region carrier concentration can’t be modulated by
the gate bias and the access resistance is constant. In this case, the channel region can spread much
beyond the physical gate length, encompassing lightly doped regions (LDR) and the average mobility
in the channel will depend on the channel length due to Coulomb scattering at both ends of the
channel.

In the second case the lightly doped regions are part of the access resistance where carriers will be
accumulated as Vg increases, reducing its resistivity. Thus in this case the access region is modulated
by the gate voltage.

Figure 2-18 shows the local resistivity variation of the silicon at position y along the current path with
respect to a small gate voltage variation (left axis). This curve shows where the silicon electrostatic is
modulated by the gate potential. Obviously the silicon electrostatic is strongly dependent on the gate
potential wherever the doping concentration is lower than 10*° atoms/cm®. Doping concentration is
shown in dark, referenced on the right vertical axis. This figure also shows that the physical gate
extension, the intrinsic channel and the region under the gate electrostatic influence are not of the same
size because the junctions are not perfectly sharp and aligned with the gate. Thus depending on the
channel length that is considered, the access resistance will depend or not on the gate voltage. If we
consider that L is smaller than the region under the gate electrostatic influence, then the access
resistance is made of three contributions. The contact resistance, the highly doped source and drain
resistance and the LDR resistance. Only the last contribution depends on V. Kim [89] and Taur [90]
showed that the carriers in this region are accumulated and their concentration can be expressed as:

Qacc = _CoxLDR (VGS - VtLDR) (88)
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Vipr 18 null if we are considering that carriers are ideally accumulated. However in the LDR, the
doping concentration is not constant and depending on the position along the conduction path this
V:pr Will range from O (close to the highly doped region) up to V, (close to the channel), as explained
by Taur [90] and Sheu [88]. Nevertheless, this conclusion can be shaded. Indeed, this is true if we
consider that the gate electrostatic field is uniforme along the conduction path up to the highy doped
region. However in practical cases, lightly doped region can spread away from the gate (if the
transistor is underlaped). In this configuration, LDR becomes hard to invert since it benefits from a
weaker gate field. Consequently Vt,pr can becomes higher than V.. While Hu [83] considers V;; pr =
V; when extracting Rgp and Ly depending on Vg (what was justified considering the technology
used at this time), Kim [91] showed that for more recent technologies, this simplification does not hold
anymore. The consequence is that L.t calculated using Ri-Lyoy Curves gives unphysical effective
channel length. This emphasizes the necessity to use Viy.pr # V; for the extraction. Thus the width
normalized access resistance yields:

Lipr
wprCox pr Vs — ViLpr)

Rgq = Ry + (89)
with Ry the width normalized contact resistance, L, pr and p, pr the extension and the average carrier
mobility of the LDR. Here V;;pr is the LDR average threshold voltage. For our study we consider that
L is the physical gate length, thus the width normalized total resistance yield:

Riot = Ry +
ot 0 VGS - VtLDR
L
w(1+T) Vs (%0)
+ 5 7 +01+92(VG Vt_T)
(e -ve-%)
To simplify the equation we used ¢ = LLDR averaged over the lightly doped region. o is small if
HLDRCOXLDR

the MOS is overlapped and large otherwise. This access resistance formulation has been reported and
justified using TCAD simulation by Monsieur [86].

2.5.2 ...in saturation regime

In order to derive Ipg rigorously, we consider Ipg formula (82). Then Rg and R, are accounted for by
substituting Vs by Vigs — Rs. Ipsat iN Ipsatr €quation (82). Ipsy: is then found by solving this complex
equation. Here Vps = Vpsat, thus we do not add access resistance through Vp but instead Vg is
substituted by Vg — Rg. Ipsat IN Vpsat €Xpression.

There is no analytical expression for Ipg,:, Mmaking it time consuming to compute. However it can be
simplified by assuming equation (85) for the intrinsic saturation drain current Ip,.. Then Rg effect is
added using a first order expansion following:

Ibsat
I = 91
Dsat =1 + G,, - Rg 1)
Where I, is the expression of intrinsic saturation drain current (see equation (85)) and G, = g‘l/ﬂ.
GS

Analytical formulation of G, yields:
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w
4—

Gm = L+L, HefrCoxVps- (A -0, (VGS

2

V)
_y, — Vos

(92)

)

where .z is the effective mobility as described in (78) and A =1 +% Vpsat 1S USEd in G,

expression instead of Vps in order to get Ips, expression (91).

Ipsat and Vpsy values from (91) have been compared with the numerical solution of Ipg,: using

formula (72) with access resistances. Results are shown in Figure 2-19.

A good match is obtained

using realistic model parameters. This comparison shows that approximating the effect of access
resistance using (91) and considering a constant mobility along the channel are suited approximations.
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Figure 2-19: Ipg (2) calculated numerically using equation (85) with access resistance against simplified analytical
expression (91). Model error in percentage is shown in (b). Model parameters used to compute g, are gathered in

2.6 Conclusion

Table (c).

This chapter has provided an introduction to the basic equations that describe the drain current of
MOSFET transistors. These equations will be used for further parameters extraction of our compact

model.

41



Chapter 2: Transistor’s drain current compact modeling

Firstly, the MOS capacitance structure has been investigated to derive the inversion carrier
concentration as well as the threshold voltage for the case of bulk devices. Then these equations have
been adapted for the case of UTBB devices. The effects of channel doping concentration, ultra-thin
channel and box on V; and inversion charge density have been treated. A compact model for carrier
mobility has been suggested, where surface roughness, remote Coulomb and phonon scattering as well
as neutral defects, ballistic transport and saturation velocity are accounted for. Then linear drain
current formulation has been introduced, based upon proposed mobility, threshold voltage and
inversion carrier concentration formulations. We have then reviewed the major saturation effects, as
pinch off for long channel transistor and velocity saturation, injection velocity and ballistic transport
for short channel devices. A compact model of saturation drain current that accounts for theses
phenomena has been proposed afterward. In real devices, compact models have to account for access
resistance. Hence this aspect has been treated and analytical compact models for linear and saturation
regimes have been adapted. Further extraction will thus be based on the following formulation for
linear drain current:

ldjjp = — (93)

where the width normalized total transistor resistance R;,; is:

R =R, +
tot 0 VGS - VtLDR
L
w (1 + TC) Vps (94)
+— - +91+92<VG—Vt—T>
(==

The total resistance is simply the sum of contact and source-drain resistance represented by R, term,
the LDR resistance and the channel resistance.

Saturation drain current is expressed as:

ldsqq

ldgge = ————— 95
sat 1 + Gm . RS ( )
Ro"’# . Lo . .
where R; = % Idg,, is the intrinsic saturation drain current:
w V
Idgay = TLC ueffcox (VGS -V = M) Vbsat (96)
Gnis the V; derivative of 1d;,,:

W VDSat 2 97
Gm = 4TLC p-effCoxVDsat- A—0,(Ves— Vi — ) 97)

where A =1 +%(%) and p.sr is the effective mobility as described in (78), accounting for

*

scattering mechanisms, velocity saturation and ballistic transport:
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Ho
Herr = 2
v v Vpsat- (98)
1+ 6y (Vos — Ve — -25%8) + 0, (Vos — Ve —-B52) + “Rsatko
and Vpsy IS the drain saturation voltage and is derived as Vpg such asd;‘iﬂ = 0 where Id;;, is the
DS
intrinsic linear drain current. Vpq,; Yields:
u—Ju <1+2&(V -V, ))
' v*. L G tsat
Vpsat = 2 (99)

2

01— 1

I.:-JO* + (VG - Vtsat)ez

where u =1+ 0, (Vg — Visar) + 02(Vg — Visqr)?. These formulations are valid in strong inversion
regime. Advantages of this formulation are that it is analytical and fast to compute. This is required to
make it applicable at industrial scale and to extract parameters on a large amount of devices with very
limited measured data. However, simplifications have been required in order to meet these constraints.
Impacts of these simplifications have been shown to be acceptable compared to numerical
calculations.

Previous formulations of drain current are reformulated here without the contribution of 8, and 8,:

° For linear regime (from (94)):

o w(1+ %)
B (Ve -7 =5
o For saturation regime (from (95), (97) and (99)):
ldsqq
ldggy = ——— 101
sat 1 + Gm . RS ( )
w Ho (102)
Gn, =4 . CoxVpsar-4
m L+ L, 1+ 1 (VDsat- HO) ox"bsat
L v*
(103)

v* Ve =V,
VDsatzL-u_ \]1'{'2%—1
0 .
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Chapter 3: Compact modeling: Extraction procedure and application to TCAD simulations

The aim of the compact model developed in previous chapter is to model the drain current in order to
investigate device properties and their relationships with process parameters. To do so, the model will
be used to fit silicon measurements and TCAD simulations in chapter 4. This step requires a method to
extract model parameters. This method is detailed in paragraph §3.1. It will be applied on both TCAD
simulations (in order to validate the model and the extraction method) and silicon measurements (in
order to investigate devices properties). Different types of measurements are regularly performed on
silicon. Modeling team performs comprehensive characterizations of transistors in order to calibrate
their model. Since these measurements are time consuming, they are performed on few lots only.
These characterizations include full Io-V¢ measurements on devices with different gate lengths. In the
meantime, Parametric Tests (PT) are performed in line for every wafer of every lot, each wafer being
measured on 17 sites. These parametric tests consist in a reduced number of measurements (few drain
current measurements) in order to reduce the measurement time down to a reasonable threshold.

In order to ensure that the extraction method is robust and reliable, we use full 15-Vs measured on
silicon. Accuracy of the extraction method is check considering the fitting quality and the uncertainty
about model parameters. This is the purpose of paragraph §3.2.

Monitoring process fluctuations using parameter extraction requires measurements that include all
wafer and all lots. Thus full Ip-Vg characterizations from modeling team cannot be used for this
purpose. Instead we will use PT. Extraction method being validated using full 1p-Vg, the influence of
data sample size and range is then tested before any application on PT data. These tests are gathered in
83.3. They include tests about the influence of noise on measurements as well. Their purpose is to
evaluate the uncertainty about extracted parameters depending on the considered sample size, range
and noise level. It brings insights into the data amount and quality required to ensure a proper
extraction.

The extraction method being set, it is then applied on TCAD simulations in 83.4. A design of
experiment has been simulated in order to investigate the influence of critical process parameters on
model parameters. To this end, simulation results are used for model parameters extraction. Model
parameters responses to process variations are investigated and we will see if they are consistent with
the physics underlying model parameters, as introduced in chapter 2.

3.1 Model parameter extraction method

In the previous chapter we have derived the linear drain current equation and we have seen that there
are a limited number of model parameters that are to be extracted (Ro, o, lo. Cox, 01, 02, Vi and Vi pr,
L.). Linear drain current equation is recalled here for convenience:

Vps
Idy, = z (104)
tot
With Ry, expressed as:
_ o L+1L, 1 Vps
RtOt'W —_ RO + + V + 91 + 92 VG - Vt - 7 (105)
Ves = Vitpr ~ MoCox (VG —V, - %S)

Model parameters will be extracted based on drain current data. This section describes the extraction
method that will be used. In term of model parameter extraction, two different approaches exist: direct
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extraction (involving linear regression, derivation or integration of electrical characteristics such as
Cs-Vs and Ip-Vg) and nonlinear optimization algorithms where an objective function, that is the error
between model and measurements, is being minimized as the model parameters converge toward there
optimal value through an iterative procedure. Our approach relies first on linear least square fit in
order to get a first approximation of model parameters. Then these values are used as input to a
nonlinear optimization algorithm to refine their value. 83.1.1 and §3.1.2 explain the procedure to
extract Vt;, and the other linear parameters respectively, using least square regression. §3.1.3 and
83.1.4 details the nonlinear optimization algorithm used to finalize the extraction in linear and
saturation regime respectively.

3.1.1 Threshold voltage

In literature, the threshold voltage definition is quite ambiguous and there are at least as many
extraction methods as definitions of V, available. Most common ones are Hamer’s method [92],
constant current or constant charge method [93], Ip-Vs linear extrapolation [94], maximum of
transconductance derivative [95] that is equivalent to the maximum of capacitance derivative [96] and
the Y function [97]. A comprehensive study of extraction methods has been done by Ortiz-Conde [98].
For our purpose we will choose a method that is suitable considering linear drain current equations
(104)-(105) and that requires as less measurement points as possible. Every method mentioned above
requires full Ip-Vg or Cs-Vg measurements in order to extract the threshold voltage (making them
unsuitable for process monitoring at industrial scale) except Hamer’s method. Thus, in the following
section, we will adapt Hamer’s method to extract the threshold voltage that suits equations (104)-
(105).

Hamer’s method brings the solution of a, b and ¢ considering the following equation:

X,—b
Y,—c

Zn=a (106)

where Z,, are the drain currents and X,, = Y,, are the gate voltages withn € [1; 3]. If we consider the
case where Ry is constant and 6, = 0, then Ip;i, (104) can be rearranged to match (106):

V
I _ BWVDS VGS - Vt - %S 107
Dlm_el"'deBV _V_@_F; ( )
GS t 2 0, + RyqP
Thena = M, b=V, + Yps and ¢ = V. + Yos __ 1 Knowing b we can then deduce V.. The
91+deﬁ 2 2 91+deﬁ

other parameters cannot be extracted though since there are 4 unknowns (V;, 6,1, Rgq and ) and only 3
equations provided by Hamer’s method. If now we consider that Rggq depends on Vg with Vi pr = Vi
then Ipyin equation (104)-(105) can be rearranged to match (106) as:

V
I BWVps Ves = Ve — % 108
"T8,+Rf, _, Vps, L1+Po_ (108)
GS t 2 0, + Ryf
_ BWVDS _ @ _ @ _ 1+B0’ - -
and a = bR’ b=V, + o andc =V, + 5 T Then knowing b, Vcan be easily deduced.

Although this adaptation of Hamer’s method is not the state-of-the-art method to extract threshold
voltage, this approach is perfectly consistent with our formulation of drain current if 8, is neglected
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and Vt pr equals Vi, This consistency is the critical point for this kind of task as discussed by
McAndrew and Layman [99].

If Vipr # Vi and 6, # 0, Hamer’s method cannot be used to extract accurately Vy;, but it can be used
to have an approximation of its value. In order to get an accurate value of Vi, and V;; pr, a nonlinear
optimization algorithm will be used as a successive step of linear least square regression.

3.1.2  Access resistance, effective channel length and mobility extraction

In this section, a review of published extraction method based on the same linear drain equation as
(104)-(105), knowing Vt;,, is reported. Their differences will be analyzed in order to determine the
method to be used for our purpose.

In our model, the concept of access resistance is linked to parameters R, and o. In contrast, . Cpy,
0., 6,, and Lc are related to channel conductivity. In order to extract these parameters we review the
different methods published in the literature. Brews [100] and McAndrew [101] made a review of the
main characterization methods (up to eleven of them) to extract Rgp, Lesr, Vi, B and 6,. Among them
we find Suciu and Johnston [102], peak gm [103][104], 1/8, Rji,-L [105][106] (that is similar to TMC
[107][108]), De La Moneda [109], Peng [110], Sheu [88], Peng and Afromowitz [112], Whitfield
[113] and Chang and Berg [114] methods. To that list we can add Ghibaudo’s Y function [115]-[120],
Taur’s shift and ratio [121], Biesemans [122], Sanchez [123] and Jeppson and Karlsson’s [124][125]
methods. All these methods are direct extraction methods based on derivatives and linear regression of
Ib-V¢ characteristics. The difference between them lies in the assumptions made beforehand and the
regression they use to extract parameters, but drain current equations are equivalent. Table 3-1
provides a summary in term of assumptions and extracted parameters.

Table 3-1: Model parameter extraction method summary

Method Assumptions Extracted parameters
1/ Rgp = 0, W constant with L u(Ve), AL
Chang and Berg [114] Rgp = 0, p constant W, AL

Suciu and Johnston [102]
Jeppson and Karlsson’s method

[124][125] Rgp constant, p = L_
Sanchez [123] 1401 (V—Ve) Rsp, Ho, 01, AL
Mo constant with L
peak gm [103][104]
De La Moneda [109]
Rsp =R
SD ot Ve =V,
Riin-L [105][106 —— Mo
| Sh(EU [8]8[] : " 146, (Vg—Vp) o, U, 01

L constant with L,
L constant with V.

Hu [106] u constant Rsp(Vy), Lesy
Rgp constant, g constant with
TMC [107][108] sD E (Vg — V). u(Ve), AL, Rgp
Rgp constant, P constant with
Peng [110] L H(VG), Lerr, Rsp
Peng and Afromowitz [112] Rgp constant, Ip.Rsp << Vpg, Rgp, AL
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L constant with L

Rgp constant, g constant with

Whitfield [113] .

AL, Rgp

Rgp is constant in the first
papers. Generalization of the

¥ function [115]-[120] method canceled this

Rsp (V). mo(Vg, L), 04, 6.

assumption.
_ . Rgp constant, Ls
) ) Rsp, L
Taur’s shift and ratio [121] independent of Vs SDs Leff
Brut [126], Yamaguchi[127], L constant with L Rsp(Vs): Lesr (V)

Biesemans[122]

The two first methods of Table 1-1 have inappropriate assumptions since nowadays, access resistance
represents up to 70% of the total resistance for shortest devices [128]. In line 3, all the proposed
methods assume a constant access resistance and extract AL whereas line 4 (to which our approach

belongs to if it is assumed that Vy pr=V4yin and 8, = 0) assumes Rgp = Ry + " GV
GVt

However, these formulations are equivalent. Indeed, in linear regime, the width normalized total
resistance formula yields:

and L constant.

o L+L, 1

+
" Ves—Vior  HoCox (VG —V, - %)

Vps
+0,+0,(V,—v,— 25 (109)

In this expression, L. is not distinguishable from AL. So even if their physical meaning is different,
these parameters are the same considering extraction. In the particular case where Vi pr = Vyin and

6, is neglected, o cannot be distinguished from L. either. Indeed, R}, expression (109) where Lc=0
and 6, = 0 can be rearranged as:

L+ opyCyy 1

Mo Cox (VGS _ Vt _ %)

Rlin-W = RO - (791 +

+ 0, (110)

In this expression Ry — g8, is similar to the constant access resistance term and L. = oyC,y. Thus,
extracting Ry and AL using method of line 3 is equivalent to extract Ry — d6; and opyC,, using
methods of line 4. Thus these methods only differ from the extraction method used. This equivalence
of o and AL makes simultaneous extraction of Rsp(Vgs) and Legr(Vgs), as proposed by Hu [106], Brut
[126] and Yamaguchi [127] meaningless unless a clear and physical definition of the channel length is
provided (involving for example critical carrier density as mentioned by Biesemans [122] or the
metallurgical junction as mentioned by Lou [129]). In other words, if Vit pr=Vuin, using linear
regression, these parameters can’t be distinguished mathematically and any workaround would yield
highly correlated parameter values as demonstrated by Brut [126]. TMC [107][108], Peng and
Afromowitz [112], Taur’s shift and ratio [121] and Whitfield [113] methods at least assumes that Rsp
is constant, thus their model are equivalent to ours.

More recent publications have proposed iterative procedures in order to extract both Rsd(Vgs) and
M(Ves) (Fleury [118][119] and Subramanian [120]) or Rsd(Vegs) and AL(Vs) (Kim [91]). However we
have seen that Lc accounts for both AL and p(L) roll down. Moreover, there is an equivalence between
Lc and o if Vyin=Vupr and 8, = 0. Thus extracting both R;; and p (or AL) depending on the gate
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voltage, without alleviating the ambiguity about the access/channel region splitting, leads to results
that are strongly dependent on the initial guess (that will determine the access/channel region
splitting).

Thus for our extraction we will test whether L, and ¢ can be distinguished (depending on the
discrepancy between Vy pr and Vy;,). If they are, equation (105) will be used for parameter extraction.
If not, the equation will be simplified (by either using only o or L. or even removing both of these
terms if access resistance is constant and Lc close to 0).

3.1.3 Linear model parameter extraction method

Let us now introduce the method of our own [105][128][131]. The extraction procedure is based on
the linear drain current equation (105). This formulation does not allow any linearization for a direct
extraction procedure and Hamer’s method cannot be used “as is” as discussed in §3.1.1. In order to
alleviate this difficulty, we first consider L, = 0, Vi pr = Vuin and 6, = 0 and extract Vt;, using
Hamer’s method. Then every other parameter is extracted at once using the following system of linear
equation [131]:

1 L
. =1 — — L . .
Rin(Vg, L) ( Vor Vo L Vgt) 0, (111)

Mo * Cox

This first step yields an initial guess for the model parameters. Then we use it as input to a nonlinear
optimization method to extract the suited values of Ry, o, 01,605, Wo " Coxs Virpr: Le and Viin.
Nonlinear optimization algorithms have been first used by McAndrew [101] who showed that this
approach is more robust than typical direct extraction method. It is nowadays widely spread and used
for complex compact model parameter extraction such as BSIM4 [132] or PSP [133]-[135]. Nonlinear
optimizer we use is a built-in Matlab function based on trust-region-reflective and conjugate-gradient
algorithm [136]-[138]. An excerpt of the code is available in Appendix A.

The strength of nonlinear optimization method compared with direct extraction methods (apart from
being able to handle nonlinear problem) is that they are less sensitive to ill-conditioned problems. In
our case, depending on the chosen Vgs and L values, column two, three and four of equation (111)
matrix can be more or less correlated. For extreme cases, this can lead to singularity of the matrix and
make (111) unsolvable. The other drawback of linear least square problem (111) is that it minimizes
the square of the difference between measured and modeled Ry, and this resistance is larger for long
transistors than short ones. Thus, extracted parameters will advantageously fit long transistors at the
expense of the short ones (that are actually the one of interest), biasing the extraction. On the contrary,
nonlinear optimization methods can either optimize the drain current model error or the resistance
model error. It can even be used to optimize the normalized error between model and measurements,
leading to a uniform model error across the whole range of V¢ and L data.
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3.1.4 Saturation model parameter extraction method

This section explains the method used to extract model parameters in saturation regime. Saturation
drain current introduced in chapter 2 is recalled here:

1d"
Id., = ——>2% 112
st =136 Re (112)

RO++ ’ . . .. . .
where Ry, = —E5=75t and [dq, is the intrinsic saturation drain current:

’ w VDsat
ldgge = L+L, HefrCox (Vcs V= T) Vpsat (113)
Gnis the Vg derivative of 1d},,:
W VDsat z
G = 4 Wers CoxVous (A — B2 (Vos = Ve~ 5% (114)
where A =1+ —— VDS ”0 and p.ss is the effective mobility, accounting for scattering mechanisms and

velocity saturatlon.

Mo
Herr = 2
Vbsa Vpsa Vpsat- (115)
146y (Vs — Ve —52) + 0, (Vos — V, —-52) 4+ -Bsacko
and Vps is the drain saturation voltage and is derived as the V5 value such as ddd“"" 0 where
Vps
Id,ino is the intrinsic linear drain current. Vpey Yields:
u- \/u. (1 +2.-H (. — Vtsat))
v*.L
Vpsat = 2 (116)

2
0, — Ll-lo + (Vg = Visar) 02

whereu =1 + 91 (VG - Vtsat) + 92 (VG - Vtsat)z'

Saturation drain current equation is not linearizable. Thus nonlinear optimization is used as the only
step for extracting saturation parameters. Saturation parameters are C,, * v* and Vs, Hopefully v* is a
fairly stable parameter and its value is close to saturation velocity or injection velocity. Both of these
guantities have been accurately measured and reported in literature and are very close to each other.
Thus we can safely use it as first guess for the optimizer. First guess for v* is set to 10”cm/s for
nMOS and 6.10¢ cm/s for pMOS. C,, is calculated knowing the equivalent gate oxide thickness
deposited during the process. For nMOS, C,, = 3.21-107°F/cm? and for pMOS C,, = 2.84 -
107°F /cm?. Vi, is chosen as the first guess for Vs extraction.

3.1.5 Summary of the extraction method

To sum up, the extraction procedure starts with linear regime measurements. Ry, g, ly. Coyx, 61, 6, and
Vuin parameters are first approximated using a linear least square regression and Hamer’s method.
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Then these values are used as a first guess of a nonlinear optimizer to refine these model parameters
and extract L, Vypr. Based on these extracted parameters, saturation model parameters v* and Vi
are extracted using the same nonlinear optimizer. Values from literature and Vy;, are taken as first
guess of v* and Vg respectively.

3.2 Extraction on full 1p-V¢ curves measured on silicon

In order to assess the functionality of the extraction method as well as the validity of the model, in this
paragraph we perform extraction on silicon measurements of 28 and 14 nm FD-SOI devices. Here,
extraction is performed using full 15-Vg in strong inversion regime. Extraction method efficiency is
assessed by the fitting quality and the uncertainty about extracted parameters. Depending on each
device type, different gate length as well as gate biases are used to measure drain current. Data
samples are detailed in Table 3-2.

Extraction results are detailed for 28 nm FD-SOI nMOS devices. Figure 3-1 shows the measured and
modeled Ip-V curves in linear and saturation regime for every gate lengths. Extracted parameters are
gathered in Figure 3-2 and Table 3-3.

Gate length [um]
28 FD-SOI 14 FD-SOI
(Silicon) (Silicon)
nMOS | pMOS | nMOS | pMOS
0.024 | 0.024 | 0.022 | 0.022
0.0276 | 0.0276 | 0.024 | 0.024
0.0312 | 0.0312 | 0.026 | 0.026
0.078 | 0.078 | 0.028 | 0.028 Gate voltage [V]
0.105 | 0.105 0.03 0.03 8 FD-SOI 14 FD-SOI
0.447 0.447 0.032 0.032 (Silicon) (Silicon)
0.897 | 0.897 | 0.034 | 0.034 nMOS | pMOS | nMOS | pMOS
8.997 | 8997 | 0.038 | 0.038 Min[V] | 055 | 0.7 | 0.614 | 0.614
0.042 | 0.042 Step [mV] | 275 20 26 26
0.064 | 0.064 Max [V] 1.1 1.1 0.9 0.9
0.104 | 0.104
0.154 | 0.154
0.164 | 0.164
0.504 | 0.504
1.004 | 1.004
2.004 | 2.004
3.004 | 3.004
(a) (b)

Table 3-2: Gate length and biases used to measure I, and Ips,; depending on the device type considered.
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Figure 3-1: Modeled and measured 28 nm FD-SOI nMOS Ip;i, (2) and Ipg (b) against gate voltage for different gate
length.
Parameters Values
0.46
Ro 121 [Q- ym] 044 | | Somamion
o 23.6 [Q.um. V] 0421
. % 0.4}
o- Cox 2.41-107* [—] 038
V.s =
2036
01 —-1.40 [V7'] -‘Z 0.34
=
0.32
0, 1.23 [V‘Z]
0.3
Vtipr 0.519V 028 |
0.26 = ; ;
L, 12.6 [nm] 107 10" 10° 10’

Gate length [pm]

v*. Cpy 4.55- 1073 [F/um/s]

Table 3-3: Extracted model parameters for 28
nm FD-SOI nMOS transistors measured on
silicon.

Figure 3-2: Extracted Vyi, and Vi against gate length for 28 nm
FD-SOI nMOS devices measured on silicon.

The quality of fit is appropriate. In order to estimate the uncertainty about extracted parameters and the
robustness of extracted parameters, a cross validation method is applied. This method consists in
withdrawing few measurements from the data sample and performing the extraction procedure again.
The higher the discrepancy between the two results, the more uncertain the extraction results are. The
last step can be repeated many times, each time withdrawing a different subset of data, in order to
estimate this uncertainty (see chapter 5 for more information about cross validation methods). In the
current case, full data sample consist in 224 measurements in linear and saturation regime. The
extraction procedure is repeated 500 times, each time withdrawing a different data subset of 20
measurements. Data subsets are chosen randomly among the measurements. Histograms of extracted
parameters distributions are shown in Figure 3-3.
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Figure 3-3: Histograms of extracted parameter distribution using cross validation method.

Along with histograms, the root mean square model error is plotted in Figure 3-3. This error is
calculated using equation (117) where Idling,,, is the synthetized drain current and Idlin,, g, is the
modeled one.

(117)

RMS = jZ Z[ldlinsynth(Vgi,Lj) - Idlinmodel(Vgi'Lj)]z
i

This error is calculated over the full data sample (including withdrawn data subset for extraction). It
evaluates the predictability of the model depending on the parameter value. Error bars represents the
standard deviation of the model error. In each plot, the green line represents the value extracted using
the whole data set. Studying carefully the different plots we see that results are gathered around 2
distinct solutions. The most observed solution yields ¢ = Vt;pr = 0 and Ry = 163 Q. um whereas the
most accurate solution (with the lowest model error) is the one found using the whole dataset for
extraction and has non zeros ¢ and Vt;pr With a lower Ro. Thus we see that in the first case the Vg
dependent access resistance has been substituted by a constant access resistance. However this results
is less accurate than the second where access resistance depends on the gate voltage. This Vg
dependent access resistance seems touchy to extract properly. This is partly due to the fact that its
influence on model error is limited since it only drops it from 220 pA/um down to 180 pA/um.
Moreover the error is located on the short channel devices drain current at low V. Thus removing one
measurement point from these devices can easily bias the extraction and steer the nonlinear solver to
converge toward the local minimum where access resistance does not depend on gate voltage. This
extraction issue will be investigated in §3.3.

As a counterexample, the case of 28 nm FD-SOI pMOS devices is studied and results shows that the
access resistance does not depends on Vg and the results are robust. Measurements against model are
shown in Figure 3-4 for linear and saturation regime. A good fit is obtained. Model parameters are
gathered in Figure 3-5 and Table 3-4.
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Figure 3-4: Modeled and measured 28 nm FD-SOI pMOS Ip;i, (a) and Ips (b) against gate voltage for different gate
lengths.
0.62
Linear
0.6 | | ——— Saturation
Parameters Values 0.58 |
Ry 374 [Q. pm] —0.56
o ~0 [Q.um.V
21 ]F 20 .54
Ho- Cox 7.51-107° [ﬂ] ;3 0.52
6, —1.53 [V7'] 2 0.5
-2 =
0, L79[v7"] Foas|
Vtipr ~0[V] 046
20 T
L, 3.9 [nm]
v Cox 4.4-10"3 0.44
0.42

I

i 1o 10" 10’
Gate length [pm]

Table 3-4: Extracted model parameters for 28
nm FD-SOI pMOS transistors measured on
silicon.

Figure 3-5: Extracted Vyi, and Vi, against gate length for 28 nm
FD-SOI pMOS devices measured on silicon.

Cross validation test results are shown in Figure 3-6. Extracted parameters are all regrouped around
the solution found using the whole dataset. Model error also shows that the best solution is close to the
one extracted using the whole dataset.

The reason why nMOS has an access resistance that depends on V¢ contrary to the pMOS is that
pMOS is overlapped and nMOS underlapped in the considered devices. This point is confirmed by
TCAD simulation calibrated on 28 nm FD-SOI devices (see Figure 3-24 in §83.4). The Vs dependent
access resistance region lies at both channel ends. In overlapped devices, these ends are highly doped,
thus the corresponding resistance is low. This is the case of pMOS. The contrary occurs for nMOS.
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Figure 3-6: Histograms of extracted parameter distribution using cross validation method.
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Figure 3-7: Extracted model parameters using measured full 15-Vg for nMOS and pMOS, 28 and 14 nm FD-SOI
technologies.

A summary of model parameters extracted on 28 and 14 nm FD-SOI devices using full 1p-Vg
measurements is shown in Figure 3-7. In this figure, the error bars represent the parameter dispersion
calculated using cross validation test. These results emphasize the fact that model parameters depend
on the technology used. An enhanced mobility with lower 6 parameters has been found for 14 nm FD-
SOI devices. This can be due to the in-situ doped epitaxial raised source drain that induces fewer
defects compared with sputtering implanted dopant used for 28 nm FD-SOI devices. It can also be due
to SiGe mobility booster for the case of pMOS devices. Ry is higher for pMOS than nMOS since
hole’s mobility is lower than electron’s mobility and source drain are less doped for pMOS devices
because of silicon solubility limit. For 14 nm FD-SOI technology, physical gate length is estimated
using the drawn gate length corrected by systematic effect like OPC enabling the most accurate
estimation of the physical gate length. Moreover, for 14 nm FD-SOI technology, in situ doped source
drain technology prevents neutral defects formation. This is why Lc is globally close to 0. An
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exception is to be noticed for 14 nm FD-SOI pMOS technology where Lc is significant. This is due to
the presence of SiGe source drain boosters that induces stress in the channel. This stress is not uniform
in the channel due to stress relaxation mechanisms and the average stress over the channel depends on
the channel length [139][140]. Finally, as it has been discussed previously, pMOS 28 nm FD-SOI
devices have no Vs dependent access resistance since they are overlapped.

To conclude we have extracted model parameters on different technologies. The model has shown
its accuracy. Model parameters are dependent on the technology considered. In some cases, model
parameters can be neglected. In addition, the extraction has also shown to be robust against cross
validation test for the case of 28 nm FD-SOI pMOS device. However nMOS device extraction is quite
unstable and two distinct solutions are found. Cross validation is required in order to discriminate the
most accurate solution.

3.3 Test for extraction procedure robustness depending on data
sampling

In order to monitor model parameters sensitivity to process variations, the extraction procedure should
be applied on every wafer of every lot that includes process variations, using PT (spotted data) instead
of full Io-V¢ curves in order to reduce measurement time. Before doing so, we must verify that the
extraction procedure is still adapted using a limited amount of measurements. In this section we test
the ability of the code to extract the proper model parameters values based on synthetic data depending
on the data sampling. Synthetic data are artificial data created using the drain current equation and
arbitrary model parameter values. This procedure is trivial but required in order to verify that:

e The method is properly implemented (no bug)

o Parameters are extractible (no redundant parameters and data sample size and range are large
enough)

e The nonlinear algorithm converges properly. That is to say, it enables verifying if the
termination tolerance is small enough to enable an accurate extraction of model parameters.
There are two termination criterions: the minimum change in the value of the objective
function during a step and the minimum size of a step in the model parameters space.

One of the major constraints of the work is that data sample size is small since PT only includes few
points per curves. Data sampling is defined in 83.3.1. Thus the ability of the method to properly
extract model parameters with the data sample size and range available in PT is tested in 83.3.2. Then
the extraction procedure robustness is tested against artificial noise following the work done by
McAndrew [101] in §3.3.3.

3.3.1 Definition of data sampling

Table 3-5 gathers the device gate lengths for which data are available depending on the technology
considered. TCAD simulations have been designed such that data sample is comparable to available
silicon data sample. For each of these gate lengths, drain currents has been measured in linear and
saturation regimes at different gate voltages. These gate voltages are summarized in Table 3-6. The
smallest data sample is available for 28 nm FD-SOI technologies where linear and saturation drain
currents are measured on 6 devices with different gate lengths, each devices being measured at 3
different gate voltages. It will be refered to as “silicon data sample”.

59



Chapter 3: Compact modeling: Extraction procedure and application to TCAD simulations

Technology 28 nm FD-SOI 14nm FD-SOI TCAD
0.028 0.02 0.030
0.030 0.024 0.034
o 0.034 0.03 0.038
S E 0.12 0.06 0.090
= E 0.3 0.1 0.1
s g 1 0.3 0.12
< - 1 0.15
0.3
1
Table 3-5: Device gate lengths for which data are available (for nMOS and pMOS).
Technology 28 nm FD-SOI 14nm FD-SOI TCAD
Drain bias VDIin VDsat VDIin VDsat VDIin VDsat
Gate 0.7 0.7 V1, +0.3 0.4 0.7 0.7
voltages for 1 1 Vi, +0.5 0.8 1 1
which data are 1.1 1.1 0.8 1.1 1.1
available [V] Vi +0.7

Table 3-6: Absolute device gate voltages for which data are available (for nMOS and pMOS).

3.3.2 Influence of data sampling

This section focuses on the influence of data sampling. We demonstrate the requirements about the
model and data sample to be used in order to ensure an accurate extraction. It will be demonstrated
that model extraction using synthetic data with a large data sample works. However extraction is not
robust against sample range variations. We will show how to discriminate redundant parameters that
can be fixed in order to improve significantly the extraction robustness without compromising the
model accuracy.

3.3.2.1 Influence of data sample size and range

In order to illustrate the influence of data sample size and range, we first focus on 14 nm FD-SOI
nMOS case. Results will be generalized to other technologies afterward. Synthetic data are generated
using parameters close to those found for 14 nm FD-SOI nMOS devices. Values are regrouped in
Table 3-7 and Figure 3-8. Parameter extraction is tested using a large data sample, similar to the one
provided by full Ip-Vs measurements, harnessed in §3.2.

Synthetic data generation and model parameter extraction have been done using Ipji, calculated for 20
gate lengths ranging from 22 nm up to 3 pm and 20 gate biases for each gate length (V; € [0.6,1] V).
First guess for nonlinear extraction is provided by linear extraction as described in 8§3.1 for parameters
Ro, 7, Mo.Cox, 81, 8, and V. First guess for Vit pr and Lc are arbitrarily set to 1 mV and 1 nm. Figure
3-9 shows synthetic data and model against gate voltage. A perfect match is obtained and errors on
model parameters are small. Thus in this case, data sample size is sufficient for extraction, model
parameters are not redundant and the nonlinear algorithm converges properly.
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-1 s
0, —1.15[V71] 2025
0, 1.20 [V~74] Z 02
=
Vtipr 0.476 [V] ol
! Extracted on linear measurements
LC 7.9 [nm] i Extracted on saturation measurements
0.1r i — — — Linear regime synthetic data
" —4 — — — Saturation regime synthetic data
V. Coy 4.58-10
0.05 = : -
0.1 1o 1o 10" 10’
Veiin 0.4 — F Gate length [um]
25-1073
Visat Viin ——
Table 3-7: Model parameters values for Figure 3-8: Vt;;, and Vit as extracted on measurements along with those
synthetic data generation. L is the gate used for synthetic data generation.
length in nm.
<10 :
3 : : - - - - - Relative error
O Synthetic data MOdeI H
Moddl parameters from extraction
25 ; [%]
; Ry 1.98-10712
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Figure 3-9: Id;j, modeled and synthetized against gate length, Table 3-8: Relative error made on model
using Table 3-7 model parameters. parameters from extraction.

In order to investigate the influence of the sample size and which one is required to extract properly
model parameters, a test has been performed. It consists in running extraction using different sample
size with a fixed range (the range used above). The size goes from the 800 data points (corresponding
to 20 gate lengths and 20 gate biases in linear and saturation regimes) down to 24 data points (4 gate
lengths measures at 3 different gate biases in both regimes). Figure 3-10 (a) shows the root mean
square (RMS) error made on extracted model parameters against L and Vg ranges. RMS error on
model parameters is calculated following (118) where Para is the vector of model parameters. synth
and model subscripts stand for model parameters used as input to synthetized data and extracted
model parameters respectively.
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Parasynthj - Pa?’amodel]- 2
RMS = Z 100 (118)
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Figure 3-10: Error o(n )extracted model parameters depending on the data sampling s)ize (a) and range (b).
In order to test whether silicon data sample range is large enough to ensure a proper extraction,
extraction is performed with various sample ranges. For each sample range, the sample size is constant
(20 Vg and 20 L). Results in Figure 3-10 show that the extraction is unstable and depending on the
data sample considered two solutions can be found. This problem is similar to the one revealed in 83.2
when performing cross validation tests on 28 nm nMOS device extractions.

The problem mainly stems from Vit and Lc parameters. In fact, if Vit pg is in the range of Vi,
then it can be difficult to distinguish one from another, leading to noisy extractions. Moreover, in this
case, Lc becomes hardly distinguishable from sigma as well, making them redundant (see §3.1.2 and
equation (110)). Thus, in this condition, extracting o, Vt.pr and L. leads to unstable results. To
demonstrate that numerically, Figure 3-11 shows the extraction accuracy depending on the value of
ViLpr chosen for synthetic data generation. In this case Vt;;, has been set to 0.35V for all gate lengths.
Figures shows that, considering this synthetic dataset, when V;; pr reaches Vy,, the error rises and o,
Lc and Vt;pr Ccannot be extracted anymore if Vt, pr = Vijiy.

Vtior = Viiin
nnls e 0 ¢
— ) ., 40 ;- }
:;':. E —r =] Extracted
= -
™ =~z 3 S 0.4 As input )
=t hat = -
2 0.01 B 1 @~
- gy b=
A i % 0.2
] : o
g 210 g
it} = =
- - w
0005 @0 o
0 0Ol 02 03 04 05 0 01 02 03 04 05 0 01 02 03 04 05
1V Al I v
Inpu Lk b | Input ".|”H|"~ ] Input Ve, [V]

Figure 3-11: Extracted model parameters using synthetic data, depending on Vt, pg.

This case study does not prove that extraction will systematically fail if Vit pr is greater or equal to
Vi, but in some case, this can pose problems and cause extraction to fail. In these cases, the problem
that is faced is that some parameters are partially redundant. The best way to cope with this issue is to
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remove or fix the redundant parameters. However, simplifying the model leads to make
approximations. In order to minimize the error created, the importance of each parameter in the model
is evaluated by running test on synthetic data. The test consists in reducing the model complexity by
removing each parameter one by one and calculating each time the discrepancy between the full and
the reduced model. Based on model parameters obtained applying extraction on full Ip-Vg
measurements on every technology, the root mean square error between full and reduced models is
shown in Figure 3-12:

60 T T T T T T T T 70

—&— nMOS 28FD —&— nMOS 28FD
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50 nMOS 14FD| | 60 nM()E% 14FD
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Figure 3-12: RMS error between reduced and full model, removing one parameter at a time.

Depending on the technology, model parameters are more or less important. However we see that o,
6., Vi pr and Lc are the least important one considering both linear and saturation regime. Thus fixing
some of these parameters will improve the robustness of the extraction procedure while inducing a
minimum bias in the result. Considering the silicon data sample size and range, extractions have been
performed using 5 different cases. In the first case, all parameters are considered. This is the model as
described in chapter 2. In the second case, Lc has been set to 0 and is not extracted. In the third case,
we assume that access resistance is constant and thus o is set to 0. In the fourth case, access resistance

is considered inversely proportional to V; — V; — % as suggested by Hu [106], thus Vit pr is replaced
by V; + % and is not extracted. Lc is set to 0 as well. In the last case access resistance is considered
constant and Lc=0.
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Figure 3-13: Error on extracted model parameter, using synthetic data, depending on the model used
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Figure 3-13 shows the error made on extracted model parameters considering the 5 cases. Each case
has been treated for each technology, using model parameters found after extraction on full 15-Vg
curves for synthetic data generation. We see that the extraction perform poorly only if every model
parameters are taken into account. In addition, 28 nm FD-SOI pMOS technology is also badly
extracted if only Lc is set to 0. 28 nm nMOS FD-SOI model parameters are well extracted no matter
the technology considered. Thus, depending on the technology considered it may be mandatory to
remove one or two parameters in order to ensure a proper extraction.

As an example, we show in Figure 3-14 the impact of sample range and size on 14 nm FD-SOI nMOS
model parameters extraction, as it has been shown in Figure 3-10. However this time, Lc has been set
to 0. In addition, the effect of the sample rang has been tested with only 3 gate lengths measured at 3
Vs. We see that now the error is in range of numerical noise. Thus withdrawing only one parameter

can fix the problem.
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Figure 3-14: Error on extracted model parameters depending on the data sampling size (a) and range (b).
However, since the extraction stability depends on the technology considered, we suggeste the
following procedure to ensure the extraction robustness. Every time an extraction is performed, this

test with synthetic data should be run, based on extracted model parameters. A good result assesses the
stability and reliability of the results.

3.3.3 Robustness against artificial noise

Conditions about the minimum data sample range and size required for a proper extraction have been
set in previous paragraph. Now, considering a proper data sample for extraction, we investigate here
the effect of artificial noise. To illustrate this test, we use synthetic data generated thanks to the
compact model with Lc=0 and Vt;pg = V; + % and with model parameters extracted on 14 nm FD-
SOI nMOS technology. These parameters are regrouped in Table 3-7 and Figure 3-8. A generalization
of the method to other technologies is done afterward. In order to model noise, the drain current values
are modulated by a normally distributed random amount (the noise) with dispersion (30)
corresponding to the noise level. Model parameters are then extracted and error between the modeled
and the synthetized current is calculated as well as the error between extracted model parameters and

the one used as input for synthetic data generation. The extraction is performed using silicon data
sample.

In practical situation, noise can arise from different sources. One source is directly linked to the
measurement setup. PT uses short time measurements (few milliseconds). It means that the measure is
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averaged over this period of time. Thus every high frequency noises (F > 1 MHz) are deleted. Low
frequency noise (LFN) [141] only remains. In our setup and considering our technology, measurement
noise does not exceed 1% of the measure. Another source that can be assimilated to “noise” is the
local variability. Indeed, in our extraction, we assume that every model parameters are common for all
transistors of the same die (except threshold voltage). This is only true if the local variability is
neglected. In this paragraph we only focus on measurement noise. Impact of local variability effect
will be treated in chapter 4 and 5.
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Figure 3-15: (a) RMS error against artificial noise induced in the synthetized data.

Figure 3-15 (a) shows Ipji, RMS error against the noise level for each extraction. We see that the error
rarely exceeds 20% with noise level up to 1%. Figure 3-15 (b) shows the worst fit obtained with 1%
noise on synthetic data. This error is large and can lead to build strongly biased compact model. This
is due to the limited size and range of the sample (the silicon data sample). The uncertainty about
model parameter extraction mainly arises from the mobility reduction factors 6. Indeed, in linear
regime (where velocity saturation and ballistic transport is neglected), the mobility compact model

used is expressed as a second order expansion of V; — Vi — VTD The inverse of the mobility is thus
fitted as a second order polynomial expression following:

1 1 Vp Vp\?
=—(1+0 (V —V——)+9 (V —V——)) (119)
p-eff IJ-O( 1 G t 2 2 G t 2

In order to illustrate the extraction robustness of such a compact model, we simulate the mobility
against gate voltage using TCAD tool on nMOS FD-SOI device. Figure 3-16 shows the inverse of the
electron mobility half way between source and drain, against the gate overdrive. TCAD simulated
mobility has been averaged across the SOI layer thickness, weighted by the inversion carrier density in
order to get the effective mobility. Equation used to calculate this mobility is shown below:

fOTSi M- Qi ~dx

120
fy* Qi dx 1)

Werr(aty = L/2) =
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Figure 3-16: Inverse of the mobility half way between source and drain, TCAD simulated and modeled using first and
second order model.

Considering the whole gate bias range of strong inversion regime, we see that the mobility has a

square dependence with respect to V; — V; — VDZ”". This conclusion is obvious considering the whole

range of gate bias in strong inversion. However extraction will only benefit from a reduced gate bias
range (0.4V) and a reduce sample size. Thus depending on the position of this range, Figure 3-16
shows that effective mobility model can be simplified using only either 6, or 6,. Moreover there are 3
model parameters to be extracted and 3 drain currents measured. The problem is square but extraction

results can be very noisy. Thus, considering a second order model involves too many parameters. It
shall be reduced to 2 model parameters, removing either 6, or 6,.
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Figure 3-17: Effective mobility simulated and modeled using first and second order approximation.

Figure 3-17 shows first and second order effective mobility model along with the simulated one
against gate overdrive. The range of gate overdrive is restricted to the extraction range. The best fit
against the mobility curve is used to decide which parameter to remove. Model with only 8, is slightly
better considering the fitting quality but very close to the model with only 8,. Values of extracted p,,
6, and 6, are regrouped in Table 3-9 depending on the extraction range.
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Extraction using Extraction with Extraction with Extraction with
Parameters the whole Vg 0.7<Vg<l.lV 0.7<Vg<l.lV 0.7<Vg<l.1lV
range using 6, and 6, using 6, using 6,
wo[cm?/V /s] 173 225 440 333
6:[V™1] -1.88 -1.26 1.3 0
0, [V72] 2.16 1.76 0 0.92

Table 3-9: Extracted parameters for mobility compact model, using first and second order, depending on the

extraction range.

It should be noted that even if the fitting accuracy is acceptable, respective values of y,, 6, and 6,
strongly depend on the model used. It emphasizes the fact that these parameters are only fitting
parameters. Thus removing either 6, or 8, would make the model extraction more robust without
making the parameter less meaningful. It should be noted that the limited range used for extraction
also induces a correlation between o and 8 parameters. Figure 3-18 show the correlation plot between
Mo and 6,, extracted with 20 different data samples. A correlation is observed between them.
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Figure 3-18: Correlation plot of |, and 6, extracted using different data samples.
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Figure 3-20: RMS error on (a) Ry, (b) sigma, (¢) Ko.Cox, (d) 85 (€) Vi;in, () Vig against artificial noise level.

Figure 3-12 show that 8, has less impact on the model than 8,. Removing 6, in the model, the effect
of noise on extraction accuracy using synthetic data has been investigated and shows reduced impact
on noise compared to the model with 8, and 6, as shown in Figure 3-19, Figure 3-20 and Figure 3-21.
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Figure 3-21: RMS error on v*. C,, against artificial noise.

The error made on the modeled drain current remains now below 7%. The improvement brought by
removing 6, in the model is important. This emphasizes the need to remove 6,. Error on extracted
model parameter is also well controlled.

In order to generalize these results, we have run the same test considering model parameters extracted
on all technologies and considering four different models. These models are those considered in
previous paragraph. Errors on model parameters are gathered in Figure 3-22. In these plots, we show
the standard deviation of the error. Considered noise level is set to 1% and 6, is set to 0.
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Figure 3-22: Standard deviation of error on extracted model parameters with 1% noise in measurements, depending
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Results show that generally speaking, the more complex the model is, the noisier results are. Serious
issues arises, when considering the first model (Lc=0) used to extract 14 nm pMOS FD-SOI model
parameters. In this case, v*.C,, extraction diverges and yields unphysical results due to the noise.
Otherwise, noise results remain reasonable.

3.3.4 Conclusion about model parameter extraction method

The study of extraction robustness against synthetic data has revealed that the full model proposed in
previous chapter cannot be used as is, considering redundant parameters and the limited amount of
data measured in line. Redundant parameters like V't pr and Vt;;, or Lc and ¢ have been found to be
tricky to extract.

It has been shown on silicon model that fixing these parameters leads to a minimum increase of the
model error on silicon extraction. This extraction test has been run considering model parameters
extracted on full Ip-Vg of NMOS and pMOS devices of 28 and 14 nm FD-SOI technologies. It has
revealed that the model cannot be extracted if all parameters are considered. However as soon as a one
parameter is removed, the extraction works fine. An exception must be mentioned for 28 nm pMQOS
FD-SOI technology where model parameters are badly extracted if only Lc is fixed.

Following that study the effect of artificial noise has been investigated. It revealed that, a small
amount of noise can lead to strong error in model extraction. TCAD investigation of the mobility
compact model showed that using both 8, and 8, in the model can lead to a high uncertainty about
extraction results. Removing 6, allow more robust extractions against noise without making the
parameter less meaningful. Noise test has been conducted considering model parameters extracted on
full Ip-Vg of nMOS and pMOS devices of 28 and 14 nm FD-SOI technologies and setting 6, to 0.
Results showed reasonable level of noise in extracted model parameters considering 1% of noise in
electrical parameters.

To sum up, attention must be paid to the model used for extraction. If available data for extraction is
those of the silicon data sample, we first suggest setting 6;to 0 in order to reduce the impact of noise
in measurements. Then, depending on the device, one or two parameters must be removed. In order to
verify the validity of such simplifications, extraction results must be checked. Extraction robustness
can be assessed by running the sample size and range test with synthetique data, as it has been done in
8§3.3.2.1. Then, performing extraction on TCAD simulations, the physical coherence of the results will
be checked against the process variations. This will be done in next paragraph. Considering silicon
extraction, since many dies are extracted on the same wafer, correlation plots will be performed.
Uncorrelated extracted parameters ensure the robustness of the extraction and enable drawing
inferences of model parameter’s variation impact on drain current. This approach will be used in
Chapter 4.

Finally, in order to improve the robustness of the approach, we recommand using a larger data sample
size, using more gate biases. This will reduce the effect of noise measurements.

3.4 Application to TCAD simulations

In this paragraph, extractions have been applied on TCAD simulated Ipji, and lpg: Where different
process variations have been considered. Results are discussed. The aim of this study is to illustrate,
using simulations, how a process variation impacts model parameters. We will demonstrate that model
parameters variations can be explained by their physical meaning.
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3.4.1 Simulation setup and DOE presentation

TCAD simulations deck is calibrated on 28 nm FD-SOI MOS technology provided by
STMuicroelectronics. The geometry of the Process Of Reference (POR) is shown in Figure 3-23.
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Figure 3-23: Simulated structure using TCAD tools with dimensions in nm

The doping profile for pMOS and nMOS devices is plotted in Figure 3-24. In this plot we see that
nNMOS device is rather underlapped in contrast with pMOS that is overlapped. We will see later the
consequence on extracted model parameters.
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Figure 3-24: Absolute doping level depending on the position along the current path for nMOS and pMOS simulated
devices.

Based on this geometry, other simulations have been run with small process parameters variations
including:

o Raised source drain epitaxial height (Tepi) [12,14,16] hm

e SOl thickness (Tsi) [5, 6, 6.6, 8] nm

e Spacer width (Wsp) [8,10.35,12] nm

¢ Implanted dopant dose (fdose)[0.5, 0.7, 1, 1.2, 1.5] (All source-drain

and LDD implant are multiplied by this factor)
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mobility model accounts for velocity saturation.

o Interfacial layer (IL) thickness
IL/High K interfacial charges
e Contact resistance

e Spike anneal

(Ti

) [08,

1.05,1.2, 1.8, 2.5, 4] nm

(Qhk) [10%, 10™, 10%, 3.10%, 10%*] cm™
(Rext) [20, reference, 200, 500, 2000]
(Reference values are 90 and 212 Q for nMOS and pMOS respectively)

(Tspike) [800, 1000, 1052, 1100]

TCAD data sampling used for extraction is gathered in Table 3-5 and Table 3-6 in 83.3.1. This choice
of bias conditions is based on available silicon data, in order to keep coherence between both silicon
measurements and simulations conclusions. In these simulations, Philips unified model proposed by
Klaassen [142] is used for the mobility in combination with high field saturation and thin layer
Lombardi model [143]. Neither ballistic transport nor velocity overshoot is simulated here. However

3.4.2 Influence of process variation on extracted model parameters

In this paragraph we present the result of the extraction routine for all experiments of the DOE
presented in §3.4.1. We will show that process related model parameters variations are expected based
on physical reasoning. Then we will be able to quantify these dependencies using extraction results.

3.4.2.1 Case of NMOS

For the case of nMOS devices Vt, pr, Lc and 6, are not considered for data extraction. This model has
been chosen for extraction since it yields the most physically coherent results regarding process
variations. Using data sample exposed in Table 3-5 and Table 3-6, extraction has been performed on
simulated nMOS devices drain current. Results of R, extraction are gathered in Figure 3-25 for each
experiment of the DOE. Extraction has been performed using silicon data sample. Red dots are the
reference experiments. Blue dots are simulated experiments with one process variation with respect to
the reference process flow. White and shaded strips gather experiment according to their common
variable process parameter.
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Figure 3-25: (a) Rq extracted on TCAD simulated 1p-V including experiment with process variations. (b) Extracted
Ry against added external resistances on TCAD simulations.

In Figure 3-25 (a), we see that, as expected, R, is mostly sensitive to external resistance. Quantitative
variations of Ry against added external resistance are shown in Figure 3-25 (b). It is shown that
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extracted parameters track well the implemented one. From the linear extrapolation of that scatter plot,
we can deduce the highly doped source-drain region resistance that is 44.4 Q.um. Results of o
extraction depending on the process variation of the DOE presented beforehand are gathered in Figure
3-26.
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Figure 3-26: o extracted on TCAD simulated 1p-V¢ including experiment with process variations.

o parameter is related to the V¢ dependent part of the access resistance. It is shown in that plot that o
depends on every parameter except the external resistance. In chapter 2 we have seen that gate voltage
dependent access resistance depends on LDR doping level. Consequently, the more the transistor is
underlapped, the greater a. Thus when Tepi or Wsp is large, the junction is moved away from the gate.
The transistor becomes underlapped and o rises. Tsi influences o as well. The dopant dose used for
implant (f dose) acts directly on the LDR doping concentration thus the lower the dose, the higher o.
Thick T; reduces the field from the gate. Thus the higher is Ty, the higher is o. When the anneal
temperature is increased, dopants migrate farther. Thus LDR becomes more doped and ¢ diminishes.
However ¢ does not depend on external resistance since this resistance does not impact the LDR. This
enphasises the robustness of the extraction and is a validation about o physical interpretation. It
validates its implementation.
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Figure 3-27: po. C,, (2) and 0, (b) extracted on TCAD simulated -V including experiment with process variations.
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Figure 3-27 presents Wo.Cox and 6, extracted for all the simulated experiments. As it has been
discussed in Chapter 2, U and 8, are complex functions that depend on C,, Cs (and thus on Vg and
Thox). Consequently L,.Cox and 6, depend on Tsi and T;. In addition 8, and y,.C,, depend on Qhk
that are the charged defect at the high K interface. This is the effect of remote Coulomb that could be
captured through u, and/or 6,. The most influent process parameter is T;, that is inversely

proportional to Coy, thus to Ho.Cox.

Figure 3-28 (a) and Figure 3-28 (b) represent Vt;, for short and long channel transistors respectively.
These two parameters essentially depend on channel related process parameters (Tsi, T; and Qhk). In
contrast with long channel Vt;, short channel Vt;, is slightly impacted by access related process
parameters. Indeed, since the access plays a major role in the current drain characteristics of short
channel devices, it induces parasitic effects in the extraction.
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Figure 3-28: Vty;, for short (a) and long (b) channel devices extracted on TCAD simulation against process variations.

Figure 3-37 shows Vt;;, against process variations for long channel devices as well as Short Channel
Effect (SCE) coefficient. SCE coefficient is calculated according to the following equation.

Viiin-short — thin-long = AV, = SCE (121)

SCE reflects the loss of electrostatic control on the channel with decreasing gate length. It depends on
the source-drain junction position. If the transistor is overlapped, electrostatic control will be lost more
quickly with decreasing gate length. Indeed in this case, the distance between the junctions is shorter.
Thus, considering the same gate length, an overlapped transistor will have less electrostatic control
than a transistor with junctions well aligned with the gate. As a consequence, narrow spacers induce
greater negative SCE by overlapping the transistor. SCE also depends on Til and and Qhk. Indeed, a

thick Til reduces the gate electrostatic field in the channel,

thus the electrostatic control of the channel

is weaker. Interfacial charges Qhk shield the gate electrostatic and increase SCE as well.
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Figure 3-29: vg,. Cox (@) and Vtg,, (b) extracted on TCAD simulated 1p-Vg including experiment with process
variations.

Figure 3-29 (a), (b) and (c) show the variations of v".C,,, Vi and Drain Induced Barrier Lowering
(DIBL) respectively. DIBL has been calculated following:

pipL = Lhin = Visar (122)

Vaa = Vdiin

Vv'.Cox should only depend on T through C,, parameter. However it is also slightly sensitive to other
parameters. This inconsistency could be due to the fact the self-heating is not taken into account in our
model while it is simulated in TCAD. The same consideration holds for V't and DIBL. v".C,, could
not be extracted when Ry is greater than 500 Q. pum. Indeed when R,,; = 2000 Q. um, the external
resistance drives the saturation drain current and v* has no significant impact anymore and cannot be
extracted properly.

In order to investigate the self heating effect, POR has been simulated with and without self-heating.
Extraction has then been performed for both cases. The difference between model parameters without
and with self heat has been calculated. Results shown in Figure 3-30 reveal that self-heating mostly
reduces v*. C,, and Vt,; by a non-negligible amount. Thus self-heating does not impact linear model
parameters extraction but only saturation model parameters.
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Figure 3-30: Discrepancies between model parameters extracted with and without self-heating (SH)

Figure 3-31 shows modeled and simulated saturation drain current against Vs for different gate length
with and without self heating. We see that self-heating tends to reduce drain current at high V. In
presence of self-heating, the second derivative of Ips; With respect to Vg is negative but the model
cannot account for such a behavior. Thus self-heating effect is accounted for though v*. C,, and Vi
parameters.
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Figure 3-31: Saturation drain current simulated and modeled with (a) and without (b) self-heating (SH).

Figure 3-32 (a) and Figure 3-32 (b) show simulated and modeled linear and saturation drain current
respectively. A good fit is obtained. Linear drain current is slightly overestimated for short channel
devices at high gate voltage. This is due to the simplification of the model (ho Vt pgr, N0 Lc and no
0,).

Figure 3-33 plots the relative error made by the model depending on the experiment considered. Even
though the error is experiment dependent, it remains relatively low, assessing the robustness of the
approach.
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Figure 3-32: Linear (a) and saturation (b) drain current modeled and simulated against L for different Vg.
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Figure 3-33: Model error on linear (a) and saturation (b) drain current

3.4.2.2 Case of pMOS

In this paragraph we expose the results of model parameters extraction on pMOS devices. The main
difference between nMOS and pMOS devices is the carrier mobility (that is lower for pMOS since
holes effective mass is greater than electrons) and the doping profile (for our case); see Figure 3-24.

We will see how these differences affect model parameters.

The equation used to model pMOS TCAD simulation is the same than nMOS. Thus Vt pg, Lc and 6,
are not considered for data extraction. Using data sample exposed in Table 3-5 and Table 3-6,
extraction has been performed on simulated pMOS devices drain current. First of all, Figure 3-34 (a)
shows the extracted Ro. Again here we see that R, drives Rq value, and the highly doped source-drain
resistance can be extrapolated from R, against R, plot. This resistance is much higher than the one of
nNMOS devices (147.7 Q.um compared to 44.4 Q.um). Indeed we can see from Figure 3-24 that
doping concentration in this region is lower in pMOS than nMOS (102° cm ™3 for pMOS compared to
2.3+102° ¢m™=3 for nMOS). Moreover, hole mobility is lower than electron ones.
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R, is also sensitive to some other parameters. Increasing implant dose or increasing the annealing
temperature reduces Ry since it increases the amount of active dopants in the highly doped source-

drain regions. Increasing Tepi or Wsp increases Rq since it lengthen the path from the silicide contact
point to the entry of the channel.
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(@)

(b)

Figure 3-36: pg. €, (2) and 0, (b) extracted on TCAD simulated 15-Vg including experiment with process variations.

Figure 3-35 (a) shows extracted o against process variations. pMOS is much more overlapped that
nMOS, thus LDR is more sensitive to the gate properties. This explains the strong dependence on T
compared to other parameters. However R, does not influence o value as expected. As it has been
explained previously, in linear regime, there is a perfect equivalence between o and Lc if Vi pr =

thin +

Vp

2

Wo.Cox and 0, variations are shown in Figure 3-36. Process dependence is similar to the case of
nMOS: T;, Tsi and Qhk are the only parameters that impact 8, and p,. C,, as expected.
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Figure 3-37: Vty, for short (a) and long (b) channel devices extracted on TCAD simulation against process variations.

Figure 3-37 shows Vt;;, against process variation for long channel devices as well as SCE coefficient.
SCE is weaker in nMOS (~5.1073 V.um) than pMOS (~30.1073 V.um). Indeed, pMOS is more
overlapped than nMOS. Considering long channel threshold voltage, channel related process
parameters (T, Tsi and Qhk) are by far the most influent process parameters.
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Figure 3-38

ShOws vga. Coxs Vi @and the DIBL against process variations. Again, vgai.Coxs Visae @and DIBL
depends on access parameters due to self-heating that is not accounted for in the model. However T;

remains the most influent parameter on v*.C,, since it has a direct impact on C,. pMOS is half
nMOS one due to different position of the junction.
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Figure 3-39: pMOS linear drain current modeled and simulated against L for different V. Plotted L and Vg are the
one used for the extraction procedure.

Figure 3-39 shows modeled and simulated drain currents against channel length for reference

experiment. We see a very good fit. The model simplifications does not impact the fitting accuracy,
thus Lc and V't pr are not influent model parameters in this case.
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Figure 3-40: Model error on linear (a) and saturation (b) drain current

Figure 3-40 shows the linear and saturation drain current RMS error against process variations. We see

that this error remains low no matter the experiment, confirming the robustness of the model and the
extraction method.

3.5 Conclusion

Following the introduction of the compact model in chapter 2, a method to extract model parameters
has been introduced in this chapter. The method is decomposed into 3 steps. First step consists in
extracting linear model parameters using linear least square fit. Then these values are used as a first

guess for a nonlinear optimizer that refines parameters value. Finally, saturation model parameters are
extracted using nonlinear least square fit.

This method has been tested to assess its robustness before applying it on PT silicon measurements.
Tests have been conducted on synthetized data against sample size and range considering model
parameters extracted on full I5-Vg of nMOS and pMOS devices of 28 and 14 nm FD-SOI
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technologies. We have seen that data sample ranges and sizes available in silicon measurements are
too small to properly extract all model parameters. Removing successively each parameters from the
model showed that 6,, Vit pr and Lc are the least significant model parameters. Extraction test has
been run once again considering cases where some of these parameters have been fixed. It showed that
as soon as one parameter is removed, the extraction works fine. An exception must be mentioned for
28 nm pMOS FD-SOI technology where model parameters are badly extracted if Lc is the only fixed
parameter. Thus removing one parameter allows robust extraction with a minimum error in the model.

Following that study, the effect of artificial noise has been investigated. It revealed that, a small
amount of noise can lead to strong errors in model extraction. TCAD investigation of the mobility
compact model showed that using both 6, and 8, in the model can lead to a high uncertainty about
extraction results. Removing 6; allows more robust extractions against noise without making the
parameter meaningless. Noise test has been conducted considering model parameters extracted on full
Ib-V¢ of NnMOS and pMOS devices of 28 and 14 nm FD-SOI technologies and setting 8, to 0. Results
showed reasonable level of noise in extracted model parameters considering 1% of noise in electrical
parameters.

To sum up, attention must be paid to the model used for extraction. First we suggest setting 6,to 0 in
order to reduce the impact of noise in measurements. Then, depending on the device, one or two
parameters must be removed. In order to verify the validity of such simplifications, extraction results
must be checked. Considering TCAD simulations, the physical coherence of the results will be
checked against the process variations. Considering silicon extraction, since many dies are extracted
on the same wafer, correlation plots will be performed. Uncorrelated extracted parameters ensure the
robustness of the extraction and enable drawing inferences of model parameter’s variation impact on
drain current.

The extraction procedure has been run on a TCAD simulated DOE. The DOE account for different
process parameters (External resistance, epitaxial thickness, SOI thickness, spacer width, implanted
dose, annealing temperature, insulating layer thickness and defects at the high K interface). We have
shown that model parameters response to process variations is physically coherent, testifying on model
parameters physical meaning and extraction robustness. Extractions have been run for nMOS and
pMOS enabling a quantification of the impact of active dopant dose in the source-drain region as well
as the junction profile on the drain current and model parameters.
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Chapter 4: Compact modeling: application to 28 nm and 14 nm FD-SOI technologies

In this chapter, the extraction method developed in previous chapter is applied to 28 and 14 nm FD-
SOl silicon devices measurements. Model parameters variations with process variations are
investigated and we will see how model extraction helps getting more insights into the device
characteristics and help interpreting the relation between process parameters and device performances.
The chapter starts with extraction on 28 nm FD-SOI technology in § 4.1. Effect of Dynamic Surface
Anneal (DSA) and source drain implant dose and energy are studied. In the same trend, in §4.2, we
apply extraction method on 14 nm FD-SOI silicon data. Effect of source-drain dopant concentration,
HF clean before epitaxy and epitaxial thickness are investigated. In addition, within-wafer variability
is addressed in 84.3. Forward and backward propagation of variance as well as Monte Carlo draws are
used to model this variability.

4.1 Application to 28 nm FD-SOI technology

In this paragraph, we show the results of extraction applied to 28 nm FD-SOI devices measurements.
Extractions are carried on several wafers with process variations. Details of the DOE and experimental
setup is discussed in 84.1.1. In 84.1.2 the extraction accuracy will be assessed and we will see how the
extraction enables a clear quantification of the process impact on device characteristics. We will then
bring a physical interpretation of the variations and we will see that model parameters variations
depending on process variations are well correlated with extraction results based on TCAD
simulations.

In order to model the device drain current we use equations developed in chapter 2 where Lc and
6, have been set to zero. Contrary to extractions performed on TCAD simulations, here we extract
Vipr parameter as well. We will show that extraction performe well using this model thanks to
correlation plots of model parameters. The extraction robustness using this equation will be tested
using correlation plots of extracted model parameters. As a reminder, we recall here the model that
will be used in further extraction for linear drain current:

Idy, = — (123)
where the total width normalized transistor resistance R is:

o L 1

+
Ves = VeLpr -~ Mo- Cox (VG —V, - %)

Riot = Ro + + 6, (VG -V —— (124)

The total resistance is simply the sum of contact and source-drain resistance represented by R, term,
the LDR resistance and the channel resistance.

Saturation drain current is expressed as:

ldsq;

ldsat = 777G R

(125)

a

Roty—pr— o , :
where Ry, = —ES=LDR, 1d( i the intrinsic saturation drain current:

86



Chapter 4: Compact modeling: application to 28 nm and 14 nm FD-SOI technologies

’ w VDsat
ldgge = T ueffcox (VGS V= —) Vbsat (126)
Gnis the V¢ derivative of Id;;,:
w Vpsar\
Gm = 4 Hers CoxVpsat: <A = 0, (Vs — v, - 2%) ) 20

*

where A =1 +%(%) and p.yy is the effective mobility, accounting for scattering mechanisms,
velocity saturation and ballistic transport:

Ho
Herr = >
VDsat VDsat- Mo (128)
1+92(VGS_Vt_ 2 ) + Lo
and Vs, iS the drain saturation voltage and is derived as Vj¢ such as —d;g”” =0:
DS
u— Ju. (1 +2. vthL (Vg — Vtsat))
Vpsat = 2 (129)

2
- L.FLO* + (VG - Vtsat)BZ

where u = 1+ 6,(Vg — Vigar) %
4.1.1 Process flow and design of experiment

For this work, 2 lots have been studied. They all carry different process variations. Process flow of 28
nm FD-SOI technology is detailed in Figure 4-1.

High-K
18 _ Nitride
- Insulating layer spacer

Raised Source-Drain by Source-Drain implant and
epitaxy annealing

Source-drain

epitaxy Implanted

source-drain

Figure 4-1: Schematic process flow of tested devices

Experiments focus on source-drain implant and anneal temperature. DOE summary is given in Figure
4-1.

Lot A B
Process Low S-D implant POR (800°C)
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variations POR
High S-D implant

DSA 840°C
DSA 880°C

Table 4-1: Lot name related with process parameters modulation from POR

In Figure 4-1 POR stands for Process Of Reference. There is one POR for each lot. PORs are not
identical since they belong to different lots that have not been treated at the same time. Thus, a POR is
to be compared with process variation within the same lot. S-D implant stands for source-drain
implant dose and energy. It refers to the last step in Figure 4-1 schematic when the dopants are
implanted in the source and drain region. DSA stands for Dynamic Surface Anneal and is a rapid laser
annealing treatment done after dopant implant [144]. Its aim is to activate implanted dopants without
diffusing them. POR is exempted of this step.

Every process variation has been tested on several wafers (between one and three) and each wafer has
been probed at least on 17 dies. Each site embeds many devices with different gate lengths. Each
device drain current is probed a different gate biases. Gate length and probing biases of each device
are summarized in Table 4-2 and Table 4-3.

Technology 28 nm FD-SOI 14 nm FD-SOI
0.028 0.02
= 0.030 0.024
= 0.034 0.03
g £ 0.12 0.06
= 0.3 0.1
> o
g - 1 0.3
1

Table 4-2: Device gate length for which data are available.

For each of these gate lengths, drain currents have been measured in linear and saturation regimes at
different gate voltages. These gate voltages are gathered in Table 4-3.

Technology 28 nm FD-SOI 14 nm FD-SOI
Drain bias 0.05V 1V 0.05V 1V
Gate 0.7 0.7 Vt;,+0.3 0.4
voltages for 1 1 Vi, +0.5 0.8
which data are 1.1 1.1 0.8
available [V] Vtiin+0.7

Table 4-3: Device gate voltages for which data are available.

Extraction is performed site by site. Thus we obtain for each wafer a distribution of model parameter.
This dispersion gives an idea about the model parameters uncertainty at wafer scale.

4.1.2 Inference on process parameters effects on performance variations

4.1.2.1 Impact of source-drain implant energy and dose

Here we investigate the effect of source-drain implant energy and dose variations, focusing on the
results yield by lot A for nMOS devices. Changing the dose and energy of source-drain implant should
only influence access region. Indeed, since transistor are built with a gate first process, implant only
reaches the source and drain region. We might see a shift in the threshold voltage and in the carrier
mobility if the dopants penetrate the metal gate as shown in [145]. These hypotheses will be discussed
along with the extraction results.
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Figure 4-2: nMOS linear drain current against gate length (a) and gate voltage (b).

First, in order to assess the extraction robustness, Figure 4-2 shows the linear drain current model error
(error bars) as a function of gate voltage (a) and channel length (b). For this figure, extraction has been
performed on each site. Each point represents the median drain current value observed over the whole
POR wafer and each error bar represents the standard deviation of the model error. A good adequacy

is found.
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Figure 4-3: Distribution of channel resistance (a), access resistance (b) and short channel device linear drain current
at Vg = Vyq (c) for each wafer of lot A.
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Figure 4-3 shows the box plot of access resistance, channel resistance and linear drain current for each
wafer of lot A. Channel resistance is the length dependent part of the total resistance whereas access
resistance is what remains. This splitting of the total resistance is illustrated in (130)

L 1 Vv
Riin-W =|Ry + ——1+ +0 (V _V__Ds)
tin O " Ves—Verpr| ' [MoCox (VG—Vt—VZﬂ) 2\’ t 2

Access resistance

(130)

Channel resistance

Isolated dots are outliers. Data is spot as outlier if its distance to the median is larger than g3 + 1.5 -

(q3-q4), where g; and g are the 25" and 75" percentiles, respectively. Figure 4-3 (c) shows a clear
impact of process variation on linear drain current. This process variation affects only access and not

channel resistance as shown in Figure 4-3 (a) and (b) as expected.
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Figure 4-4: R, (a) and o (b) distribution for each wafer of lot A.

In order to go deeper in the understanding of the impact of this process parameters, Figure 4-4 shows
the distribution of Ry, and o for each wafer. As expected, R, is clearly impacted by source-drain
implantation and varies from 270 Q. ym for lightly doped source-drain, down to 200 Q. um for heavily
doped source-drain region. ¢ is impacted as well (from about 30 Q. um.V down to 10 Q. um. V).

Figure 4-5 shows distribution of p,. C,,, 6, long and short channel Vt;;, for each wafer. As suggested
by Figure 4-3 (a), channel model parameters are not affected by the process variation. Especially,
Figure 4-5 (c) shows that long channel Vt;;, does not vary with process varaitions. Thus, dopants don’t
go through the gate to reach the channel.
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Figure 4-5: yg. C,y (a), 8 (b), long channel Vi, (¢) and SCE (d) distribution for each wafer of lot A.

V1t pr distribution for each wafer is presented in Figure 4-6. We see that it slightly depends on process
variation, indicating that the LDR doping concentration has changed. This is coherent with process
variation, thus for this case Vt, pr extraction seems working.
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Figure 4-6: Vt, pg distribution for each wafer of lot A.

Figure 4-7 shows the correlation between linear model parameters. The strong correlation between 6,
and py. C,, implies that we cannot distinguish their contribution to electrical parameters variations.
This correlation has been explained by the extraction range in §3.3.3. Since these parameters are not
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implicated in above conclusions, the analysis still holds. On the contrary, other parameters are
uncorrelated, confirming the robustness of the extraction and the reinforcing previous conclusions.

R vs o correlation plot R“ Vs Ruh correlation plot
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Figure 4-7: Linear model parameters correlation plot extracted over lot A.
4.1.2.2 Impact of DSA

In this section we investigate the effect of DSA on model parameters. DSA is aimed at activating
dopants, avoiding migration. Thus R, should be lowered. LDR might be impacted by DSA through
dopants activation but since no dopant migration is expected, this impact should be relatively low.
Here we use the same equation to model the drain current than the one used previously. To verify the
extraction robustness for this new lot, Figure 4-8 shows the correlation plot for model parameters.
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Figure 4-8: Model parameters correlation plot extracted over lot B.
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Again we see that parameters are uncorrelated except for Wo.Cox and 6,. Thus these parameters will not
be distinguished in later analysis. Figure 4-9 shows Ip;, variations against process variations. DSA
tend to increase linear drain current.
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Figure 4-9: Short channel linear drain current distribution for each wafer of lot B.
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Figure 4-10: Ry (a), a (b), e. C,x (c) and 0, (d), dispersion for each wafer of lot B.
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Figure 4-10 shows Ry, o, U,. C,, and 6, variation against process variation. Rq is significantly reduced
thanks to DSA meaning that all implanted dopant have not been activated during regular anneal steps.
DSA helps activating them significantly. ¢ is not sensitive to DSA meaning that the junction did not
move as expected and LDR dopants are already activated. Channel parameters are not sensitive to
DSA either.

Figure 4-11 shows V1t pr distribution for each wafer. Vi pr is steady confirming the hypothesis that
the junction has not moved. Since DSA does not induce dopant migration, it is expected. This is to be
compared with Figure 4-6 where Vt, pr changed due to higher implant does and energy.
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Figure 4-11: Vt, pr distribution for each wafer of lot B.

Figure 4-12 shows the results of Ips and v*.C,, extraction for each wafer. Ipg iS only slightly
impacted by DSA. v*.C,, seems to not be impact by DSA and there is no physical reason for v* or
C,, to depend on the DSA. Ryhas a limited impact on Ip but since it strongly depends on the DSA, it
can explain the small Ipsy dependence on DSA.
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Figure 4-12: Short channel saturation drain current and v*. C,, distribution for each wafer.

4.1.3 Conclusions about extraction on 28 nm FD-SOI devices measurements

In paragraph 4.1.2, we have applied the extraction procedure using 28 nm FD-SOI silicon devices
measurements including variation of source-drain implant dose and energy as well as DSA. We have
seen that extractions yield physically coherent results. R, is lowered by higher dose and energy
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implant and by DSA. Both of these process parameters directly influence the active dopant
concentration. ¢ only depends on dose and energy implant. If the dose is increased, the LDR is more
doped. Moreover higher energy might have moved down the pic concentration of implanted dopants in
the source drain region. This pic becomes then closer to the channel and dopants diffuse farther under
the spacer and gate considering the same anneal treatment. Vt pr extraction has evidenced that the
junction position is sensitive to implant energy and dose. On the contrary, DSA does not change the
junction position and LDR doping concentration. This has been evidenced showing constant ¢ and
V1t pr N0 matter if a DSA has been applied or not. Finaly, we can notice in both cases that Vt_ pr>Vtin.
This suggests that LDR requires higher gate voltage to be inverted as discussed in §2.5.1. Thus the
transistor could be underlapped.

4.2  Application to 14 nm FD-SOI technology

In this section, the extraction method is applied on 14 nm FD-SOI technology. For this work, a 16-
wafers lot has been investigated. Process Of Reference (POR) wafer has been probed on 68 sites and
the others are probed on 17 sites. First the model accuracy is assessed with correlation plots and model
error evaluation in 84.2.1. The DOE along with the experimental setup are detailed in 8§4.2.2 along
with the results and their interpretation.

4.2.1 Extraction accuracy assessment

In order to validate the capability of the extraction method to properly extract model parameters
independently of each other, Figure 4-13 shows correlation plot of model parameters as well as access
and channel resistance. In this figure, only the most strongly correlated couple of parameters are
shown. Low correlation coefficients are found, emphasizing the robustness of the approach.
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Figure 4-13: Correlation plot between channel and access resistance on POR wafer.
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Figure 4-14: nMOS linear (a) and saturation (b) drain current against gate length. Symbols and lines represent measurements
averaged over the POR wafer and error bars represent 3. of model error.

Figure 4-14 (a) shows the linear drain current model accuracy over the POR wafer for nMOS devices.
Measured drain current is plotted against gate length for all V. Error bars show the standard deviation
of the model error calculated over the 68 dies. In the same way as Figure 4-14 (a), Figure 4-14 (b)
shows the saturation drain current model accuracy over the POR wafer for nMOS devices. Error is
small confirming the ability of the model to predict measurements.
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Figure 4-15: (a) Extracted linear and saturation threshold voltage averaged over the POR wafer. (b) Corresponding
DIBL against gate length.

Figure 4-15 (a) shows the threshold voltage against the gate length, averaged over the POR wafer. A
rough approximation of drain induced barrier lowering has been calculated using the following
equation.
pipy, = Ltin = VEsar (131)
Vaa = Vdn
Values for DIBL against gate length are shown in Figure 4-15 (b). These values are close to the one
found in literature for FD-SOI technologies [146].

Table 4-4 regroups the average model parameters extracted over the POR wafer. v" value is close to
Ve Value found in literature [147]. A good mobility value is found as well.
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Parameters Values
Ry [Q. um] 103
o [Q.um. V] 374
wo[cm? /V/s] 199
0, [V~2] 0.46
v* [cm/s] 9.92-10°

Table 4-4: Extracted model parameters averaged over the POR wafer.

4.2.2  Process flow and design of experiment

Process parameters have been varied from wafer to wafer. Figure 4-16 (a) shows the common process
flow used to build devices under test. Process variations are localized at the end of the flow, during HF
treatment and source drain epitaxial step. Modulated process parameters are the HF clean before
source-drain epitaxy, epitaxial thickness, carbon and phosphorous dose injected during the epitaxial
growth. Figure 4-16 (b) relates the wafer number with the process parameters modulation.

STI ~
N Box 1
> POR (reference)
3 HF-
Raised Source-Drain by HF treatment before source drain
SRR High-K 4 epitaxy is shortened
Insulating layer HE- -
5 HF treatment before source drain
epitaxy is more shortened
6 SICP C+
7 Carbon is added during source drain
Raised Source-Drain by 8 epitaxy
epitaxy Nitride 9 SICP C&P+ _
spacer 10 Carbon and extra Ph dose is added
during source drain epitaxy
11 SiCP C&Pmax
Box 12 Carbon and maximum Ph dose is
- ), 13 added during source drain epitaxy
Raised Source-Drain by 14 S_ICP _thiCk_ .
epitaxy In situ doped 15 source dralq eplta>_<y is thicker
HF clean source-drain 16 _SICP_thIn o
before epitaxy source drain epitaxy is thinner
epitaxy
(a) (b)

Figure 4-16: (a) Schematic process flow of tested devices [148]. (b) Wafer number related with process parameters
modulation from POR

4.2.3 Inference on process parameters effects on performance variations

The impact of some specific process parameters on device performance is investigated here. To do so
we use the extraction method introduced previously. Figure 4-17 (a) shows that drain current is rather
sensitive to carbon and phosphorous dose. HF clean may induce a decrease in device performance but
the effect is limited. Epitaxial thickness shows no major impact on drain current. Figure 4-17 (b) and
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Figure 4-17 (c) focus on access resistance response with parameters Ry and o. Figure 4-17 (d) and
Figure 4-17 (e) focus on channel resistance. We clearly see that R is by far the first parameter that
drives Id;;, wafer-to-wafer variation. Channel resistance is not much sensitive to process variations as
expected since all process variations affect mainly the access region. Observed variations are in the
range of wafer-to-wafer variability extraction accuracy. However the trend is clear for access
resistance. Carbon raises R, since it slows down the dopant migration, whereas phosphorous dose
reduces it by increasing the carrier concentration in the access region. ¢ seems only correlated to HF
clean, indicating that it influences the junction position and the under spacer region. Short HF clean
tends to degrade the contact quality between SOI and epitaxial raised source drain [149] creating
silicon-oxide residues at the SOl/epitaxial interface. These residues act as defect sinks and can fix a
large number of dopant and may induce cluster creation. Since these defects are fixed, they do not
induce TED. Thus we expect dopants migration to be degraded. In our case, we see that shorter HF
clean increases . TCAD extraction has shown that an increase of ¢ is due to a displacement of the
junction away from the gate. Thus, it seems that shorter HF clean tends to move the junction away
from the gate. This agrees with the hypothesis of enhanced cluster formation or sink for dopants,
preventing them to diffuse toward the channel.
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Figure 4-17: Drain current box plot (a), mean channel resistance (b) and mean access resistance (c) over each wafer
for nMOS devices. Sq refers to an L/W normalization of the channel resistance. Only L=20nm shown.
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Figure 4-18: Wafer-to-wafer v*. Coy () and Ipg; (b) variations.
Figure 4-18 shows that v*. Cox and Ip Variations are different depending on the process. In addition
Ipsat FESPONSE to process variations is really close to I, response and v Cyy is not correlated to Ry as
shown in Figure 4-13. Thus Ipsy, as well as Ipi, variations are mostly driven by R, variations.

4.2.4 Conclusion about 14 nm FD-SOI technology extraction

The model has been used to evaluate the impact of process variations on average MOS performance
(Ron) over 16 wafers. A good fitting quality, as well as uncorrelated and physically relevant model
parameter values, validates the model accuracy. Process variations considered are HF clean before
epitaxial, carbon and phosphorous dose in source-drain region and epitaxial height. We have seen that
considered process variations mainly affect R, and o parameters (i.e. access resistance). Poor HF clean
tends to act as a dopant sink, preventing them from migrating toward the channel. Thus it tends to
make underlapped transistors and raises o parameter. Carbon raises R, since it slows down the dopant
migration, whereas phosphorous dose reduces it by increasing the carrier concentration in the access

region.
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4.3 Within-wafer variability modeling

In this section, we attempt to understand the relation between electrical and model parameters within-
wafer variability. In order to address the within-wafer variability challenge, we will investigate three
approaches: Monte Carlo draws, Forward and Backward Propagation of Variance (MC, FPV and BPV
respectively). The last two methods have been widely investigated by McAndrew et al. [150]-[151] on
BJT devices and MOSFET using PSP SPICE model [152]. We here apply them to model the transistor
total resistance standard deviation on the POR wafer based on previously introduced device model.
Results yield by different methods will then be compared.

4.3.1 Definition
4.3.1.1 Monte Carlo

In previous paragraph, we have introduced the analytical model and calibrated it on silicon based on
the results yield by parameter extraction. Knowing the variability of model parameters, Monte Carlo
method predicts the variability of electrical parameters (i.e. drain currents) by successively drawing
normally distributed random sets of model parameters and computing electrical parameters using the
analytical model. If the normality assumption is verified and the model parameters statistics is
sufficiently accurate, electrical parameters statistics obtained by Monte Carlo should match silicon
data.

4.3.1.2 Forward propagation of variance

Using Monte Carlo, the standard error of electrical parameters statistics is inversely proportional to the
square root of the number of experiments. In other words, the larger the number of experiments, the
more accurate the results is. This can lead to time consuming calculations. On the contrary, FPV
formalizes Monte Carlo approach, giving the mathematical expression of electrical parameters
statistics, knowing the model parameters statistics. We recall the basic equation of variance
propagation here. Let’s first call e; the linear drain current (with j going over the 7 different channel
lengths measured at 4 different gate voltages) and m; the model parameters (with i going from 1 to 11
accounting for parameters Ry, o, 1o.Cox, 82 and the 7 Vt;, of each channel length). Equation (132)
relates model parameters covariance matrix o2, to electrical parameters covariance matrix o2:

0.62 — ]T . O-T%l -] (132)

where J is the sensitivity matrix of e with respect to m:
_ de]
dml-

ij (133)
This method propagates model parameters standard deviation using a first order expansion of the
model. Thus model parameters variations should be small enough so that the model can be linearly
approximated around the model parameters average. In addition, this limitation can be overcome by
using second order sensitivity matrix. This approach has been investigated by McAndrew et al.
[153][154], however we will see that, in our case, a first order approximation is sufficient by
comparing it with Monte Carlo which do not suffer from this drawback.
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4.3.1.3 Backward propagation of variance

The two previous methods assumed that model parameters statistics are known with sufficient
accuracy. Indeed, it can be accessed using extraction procedure introduced previously, based on full
wafer electrical measurements. However, extracted statistics can be biased by the imperfection of
extraction procedure. BPV is an alternative solution to estimate the statistic distributions of model
parameters based on electrical parameters statistics without relying on extraction procedure. BPV
provides o2, by mean of least square fit following (134):

om =) ] 0dWg L) J -7 -J)7! (134)

This equation is simply the inverse function of (132), thus BPV require the same assumptions than
FPV. This calculation is straight forward but depending on the size and condition number of J, the
results can be numerically unstable. Thus, the results will be checked against Monte Carlo that does
not suffer from such a problem.

4.3.2 Results of Monte Carlo vs FPV vs BPV vs silicon
4.3.2.1 Linear regime

In this section we compare the results yield by previously introduced methods in linear regime. Results
are regrouped in Figure 4-19, where measurements are shown in blue. First, Monte Carlo method is
applied using 10° draws of model parameter set. Random draws are based on model parameters
statistics extracted using nonlinear extraction method (red symbols), using BPV (green symbols) and
using linear least square fit (avoiding the second step of the extraction procedure: dark symbols).
Statistics includes cross correlation between model parameters. Then FPV is applied with parameters
statistics obtained using nonlinear extraction (red line), and using BPV (green line). Error bars
represents the standard error about Ry;, standard deviation.
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Figure 4-19: R;;, NMOS standard deviation over the POR wafer against gate length. Results include Monte Carlo,
FPV based on parameters statistics extracted with nonlinear and linear least square fit and BPV.

First we see that nonlinear least square fit improves the results significantly compared to linear least
square fit. It illustrates the bias that a poor extraction method can induce. Then Monte Carlo yields the
same results than FPV. This means that model parameters dispersion is small enough to enable the
first order approximation of the model done by FPV and BPV and the computational complexity is
well handled. Figure 4-20 shows discrepancies between extracted model parameters using nonlinear
and linear least square fit and BPV. Results don’t match and BPV tend to yield larger model parameter
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variability than direct extraction except for Vt;;,. Thus these three approaches are different even though
BPV and nonlinear regression give close results for R;;, standard deviation.
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Figure 4-20: Model parameters standard deviation extracted using nonlinear optimization method and BPV.
Comparing modeled and measured Ry, variability shows that the model makes systematical
underestimation. Indeed the whole variability is not taken into account with this method. First the
channel length is assumed to not suffer from any variability source. Second, using extraction
procedure, within-die variability is not accounted for because all model parameters except V, are

unique and fixed for every devices of each site. The second point is not relevant for BPV because it
does not rely on extraction procedure.

4.3.2.2 Saturation regime

Previous method has been applied here with measured saturation drain current to model R,
variability. In this case, BPV has been applied using Ry, and R,, measurements in g2(V g, L) in order
to compute ¢ that includes v*.C,,. The system is poorly conditioned compared with the case of

linear regime. Indeed, singular value decomposition had to be applied to solve (134) because J - JT
becomes singular.
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Figure 4-21: Ry, (a) and Vit (b) standard deviation depending on channel length using Monte Carlo and FPV and
BPV against measurements.

Rqn variability model results are shown in Figure 4-21 (a) where error bars represents the standard
error of measured R,, standard deviation. We see here that the fit between model and measurements is
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much better, suggesting a reduced impact of local variability on the saturation resistance. BPV vyields
poorer results compared to MC. This discrepancy arises from the calculation complexity.

Vit standard deviation is plotted against gate length in Figure 4-21 (b). We see that again BPV
method is not equivalent to extraction method.

4.3.3 Addressing channel length and local variability

In this section we investigate the influence of channel length and local variability on the different
methods using synthetic data. To do so, three dataset of synthetic R;;, are randomly generated based on
model parameters statistics found using nonlinear extraction over the POR wafer. The first set
considers neither channel length nor local variability. The second considers channel length die-to-die
variability (¢L = 10 nm) and the last consider both intra-die variability for all model parameters
except Vyin and die-to-die channel length variability. For intra die variability, device to device model
parameters have been modulated by 100% of the within-wafer variability.
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Figure 4-22: Synthetic R, variability against channel length. Synthetic data are generated with, (a) neither local nor
gate length variability, (b) die-to-die gate length variability and (c) local and gate length variability.

Figure 4-22 shows synthetics Ry, variability against L along with the predicted variability using MC,
FPV and BPV methods as in Figure 4-19. Figure 4-23 shows Vi, variability used as input to the
synthetic data generation along with the one predicted by extraction and the one predicted by BPV
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method. Plots have been done based on the three synthetic data sets. We see that if there is no local
variability, every method works fine and model parameters are well extracted. However when gate
length and local variability is introduced, methods fail to track R;;, and Vt;;, variability properly.
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Figure 4-23: Synthetic Vt;, variability against channel length. Synthetic data are generated with, (a) neither local nor
gate length variability, (b) die-to-die gate length variability and (c) local and gate length variability.

Figure 4-24 shows the error on extracted model parameters using the three set of synthetic data. We
see that without variability, model parameters are perfectly extracted as expected. Gate length
variability only biases extraction of Ry, o and Vt;;,,. Local variability biases extraction of all model
parameters. Thus local and gate length variability along with the simplicity of the model can explain
the small discrepancies observed between measurements and model in Figure 4-19 and Figure 4-21

(a).
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Figure 4-24: Root mean square error on extracted model parameters using synthetic data. Error is plotted in
percentage of the input model parameters.

4.4 Conclusion

Following the introduction of model parameter extraction procedure in chapter 3, we have applied it
on silicon measurements. 28 nm FD-SOI and 14 nm FD-SOI technologies have been investigated. It
has been shown that model parameters variations depending on process variations are coherent and
have been physically interpreted. A clear quantification of the impact of process variations has been
enabled, showing that the method is efficient and robust while requiring only few measurements,
making it suitable for industrial application.

Studying 28 nm FD-SOI using model parameter extraction enabled quantifying the impact of source
drain implant dose and energy as well as DSA step. We have seen that extractions yield physically
coherent results. Highly doped source-drain region resistance R, is lowered by higher implant dose
and energy and by DSA. Both of these process parameters directly influence the active dopant
concentration. This means that highly doped source-drain region has remaining inactivated dopant
before DSA. DSA activates them successfully. On the contrary LDR resistivity represented by o is
only dependent on implant dose and energy. Indeed DSA does not induce dopant migration and thus
doesn’t move the junction further toward the channel. Moreover this means that LDR dopants are
already well activated before DSA and DSA has no activation effect. However Vt, pr extraction has
evidenced that the junction position is sensitive to implant energy and dose. p,. C,y, 8, and Vt;, have
been shown to be constant, meaning that dopant does not penetrate into the metal gate or channel. All
these sensitivities can be quantified easily using this technique, bringing valuable information in terms
of device optimization.

Studying 14 nm FD-SOI technology, it has been possible to evaluated the impact of HF cleaning time
before epitaxy, carbon and phosphorous dose during in situ doped raised source-drain epitaxial as well
as epitaxial thickness. Carbon has shown to increase R, by reducing dopant migration whereas
increased phosphorous dose decreases Ry by raising the active dopant in the highly doped source drain
region. Poor HF clean tends to act as a dopant sink, preventing them from migrating toward the
channel. Thus it tends to make underlapped transistors and raises o parameter

In a second step, within-wafer variability has been investigated on 14 nm FD-SOI technology. Monte
Carlo, forward and backward propagation of variance have been conducted in order to model this
variability. It has been shown that linear model linear drain current variability is slightly
underestimated. BPV and direct extraction showed close results in term of linear drain current
variability however corresponding model parameters variability yield different results. It has thus been
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suggested that local variability and channel length variability are responsible for these discrepancies
(that are not properly taken into account using direct extraction or BPV). This interpretation has been
reinforced by the fact Monte Carlo draws used to forward propagate the model parameters variability
extracted using BPV and direct extraction gives the same results than FPV. This leads to infer that the
discrepancy does not come from a violation of normality and linear local approximation hypothesis. In
order to verify that channel length and local variability are responsible for observed discrepancies
between measurements and model, their impact on the model has been assed using synthetic data and
showing that it induces errors and can thus explain it.
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In the previous chapter we have successfully built the required tools to map the relation between
model parameters and electrical performances. We have shown how to draw all the benefits of these
tools. In particular it has been possible to get valuable insights into the device characteristics and
understanding of process variations impact on the device functionalities. One last step is required in
order to complete the model construction that relates electrical and process parameters. Indeed we
miss the link between model parameters and process parameters (see the first stage of the PCM
diagram in the introduction chapter of this manuscript Figure 1-3). The aim of this chapter is to show
how to build this kind of model that is called Process Compact Model (PCM) in our context. Three
methods to build PCM will be tackled: i) stepwise regression, ii) LASSO and iii) LARS. PCM
construction is a thorny task and should be carried out cautiously. A misuse of these methods can lead
to strongly biased and unreliable PCM. Indeed, in order to ensure a proper output, each of these
methods requires to be calibrated before use. In order to calibrate and test the model efficiency, we
will use cross validation tests. We have kept three variants of this kind of test: k-fold Cross-Validation
(k-fold CV), Leave-One-Out Cross-Validation (LOOCV) and bootstrap. These methods give an
estimate of the PCM accuracy and propensity to be predictive. Thus calibrating stepwise regression,
LARS or LASSO consists in running these tests using different calibrations. The best calibration is the
one that optimizes both accuracy and the propensity to be predictive. PCM construction process is
depicted in Figure 5-1.

Create PCMs with various

calibrations

Stepwise
. LASSO LARS
regression
Y

Test PCMs

K-fold CV LOOCV Bootstrap

A

Find best calibration according to
test results

Figure 5-1: PCM construction process flow

PCM will first be defined in 85.1. We will see in which context this tool can be useful. Strategies to
calibrate and test the robustness of PCM such as K-fold CV, LOOCV and bootstrap are introduced in
85.2. PCM construction methods like stepwise regression, LASSO and LARS will be detailed in §5.3.
In 85.4 we will build PCM to link extracted model parameters using TCAD, introduced in previous
chapter, with process parameters. In this paragraph we will show that using the PCM construction
process flow (see Figure 5-1) is mandatory for silicon applications. Simpler approach would fail in this
task because it implies dealing with ill-posed problem that requires variable selection and dealing with
noise and variability. Using this PCM construction procedure, in §5.5, we will construct a PCM at the
wafer scale and show that it can model efficiently within-wafer variability. This model will be used
afterward in order to give guidelines to optimize within-wafer variability. We will see that wafer scale
PCM can only account for process parameters that exhibit large dispersion at wafer scale. In order to

108



Chapter 5: Process compact model

build PCM that includes larger process variations, the same procedure will be carried on a full DOE,
in 85.6, with process parameters variations. The impact of local random variability, within wafer
variability and measurement noise will be investigated using synthetic data. Recommendations will be
given about the experimental setup required in order to build PCM with sufficient robustness and
minimum error. A summary of this chapter is proposed in 85.7.

5.1 Process compact model (PCM) definition and context of use

5.1.1 Definition

Traditionally, definition of PCMs are models that relate process and device electrical parameters
through a set of analytical functions, allowing manufacturing engineers to gain insights into device
electrical parameters sensitivity to process variability in an extremely fast and robust manner [155].
This is agreement with the aim of this thesis. However, in the context of this chapter, “PCM” will also
be used to designate the model that maps the relationships between process and model parameters. The
simpler concept of PCM is illustrated in Figure 5-2:

~ 4 ' h 4 )
Process Aqalytlcal Model
paramsters function (PCM) parameter
statis }CS. statistics:
Tepi ’
‘ [\0
151 ()'
Wsp )
. Co s
o Ho 0X
< ) ) \- J

Figure 5-2: Illustration of the basic concept of PCM

As depicted, this PCM relates process and model parameters through analytical functions. This is not
to be confused with compact model that relates electrical parameters with model parameters, where
model parameters are not necessarily process parameters. Indeed compact models often relie on model
parameters such as threshold voltage, DIBL, or subthreshold slopes that can have complex
relationships with process. On the contrary, process parameters are geometrical or physical quantities
that can be straightforwardly accessed through process adjustment (i.e. the epitaxial layer thickness
Tepi can be modulated simply by varying the deposition time during the process). As well, PCM
should not be confused with process and electrical simulation tool such as TCAD which use finite
element algorithm to compute the physics and the electrical properties of the device. These
simulations rely on numerical computation of complex physical models whereas PCM only use
analytical fast computing models.

This kind of model (its construction and application) belongs to a mathematical field called data
mining or statistical learning. In order to introduce properly the different mathematical tools used in
this work, we provide some definitions here.

e Observations (noted Y): They are what we want to model. Depending on the model
considered, it can be either electrical measurements or simulations or quantities issued by
extraction procedure (e.g. Ry, 0, Ug.Coyxr Vu...). These quantities are not known unless
measured, simulated or extracted. In our case observations are extracted model parameters.
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o Responses (noted Y): They are outputs of the model. They are the same quantities as
observations and supposed to be as close as possible to them.

e Variables or predictors (noted P): They are inputs of the model (i.e. process parameters). They
are known beforehand and set by the user.

e PCM coefficients (noted B): Fixed parameters used to calibrate the PCM in order to fit
observations. These parameters are determined during the PCM building phase.

Following the mathematical formalism, parameters to be modeled called “observations” (noted ¥) and
process parameters called “predictors” (noted P) are related via the PCM (noted f) that satisfies:

?=F(P,B)+e (135)
And Y = f(P, ) (136)

where e is the residual between responses and observations. Residual can be due to model deficiency
or noise induced by measurements Y.

5.1.2 Applications and benefits

PCM have not been extensively used in literature. Thus it can be difficult to understand its benefits
and applications. In order to illustrate this, two studies found in literature are developed here. They use
different kind of PCM in order to model electrical parameters.

Considering the complexity of physical and electrical mechanisms underlying state-of-the-arts
MOSFETSs, simple analytical functions are not suited for PCM. Literature reports the use of Feed-
Forward Neural Network (FFNN) to overcome this complexity and build suitable PCM for emerging
devices [156]. This study was based on TCAD simulations and aimed at investigating process
variability in nanowire FinFets. The technology being not mature enough, only TCAD simulations can
provide a good prediction of electrical and process relationships for this kind of device. However
statistical investigations require a large amount of experiments and TCAD simulations are too much
time consuming to give timely answers. In this context PCM has been used since they can meet the
expectations. Their PCM could predict full 1p-Vg’s starting from model parameters such as channel
length, gate length and oxide thickness.

In another context, Kakehi et al. [157] have applied PCM to model the relationship between gate
length, halo dose, RTA spike and the threshold voltage. Although they did not explain precisely how
the PCM is built, it might be simpler than FFNN since it only relates 4 parameters. Moreover V, is
simpler to model that full 15-V. They used it in combination with feed-forward process control in
order to reduce die-to-die, wafer-to-wafer and lot-to-lot V, variability. In Feed-Forward Process
Control [158][159], process conditions at n+1 step are varied so that the impact of the n™ step
variability is minimized. Determining process variation at n+1 step is done using PCM.

To conclude, PCM provides a powerful tool for statistical analysis and process optimization. These
two cases introduced above showed that, depending on the context and which parameters are supposed
to be related, the strategy to build the PCM changes. In the first case the PCM is able to predict the full
Ib-Vg but is based on model parameters that cannot be straightforwardly accessed through process
adjustment (like electrical channel length). In the second case, PCM’s input parameters are truly
process parameters but its capability is limited to V, prediction. In our study we will see how we can
combine the efficiency of our compact model with a user friendly PCM that relates process and model
parameters to get the full mapping of the device, from process to electrical parameters.
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5.2 Methods to evaluate the accuracy of a model

Different methods to build PCMs will be introduced further. These methods need to be calibrated and
will not lead to the same results in most cases. Thus a method should be determined to select the best
model. Efficiency of the model is evaluated using two criterions: the mean square error (MSE)
between model and observations and the model variance (that is the variance on extracted model
coefficients ). This paragraph introduces some basic methods to evaluate the model efficiency.

5.2.1 Validation test

Considering a set of observations ¥ composed of n elements, the most straight forward way to evaluate
model error is to build the model using ¥ and then calculate the model error following:

n

1 )
MSE = EZ(YL' ~7) (137)

i=1

where Y is the model response and n the number of observations. However, using this technique, the
same observation set is used to build the model and to calculate the model error. Thus model error
does not reflect the ability of the model to predict observations not used to build the model within the
observation domain. Model efficiency estimation is thus strongly biased using only MSE as indicator.
The alternative is to split the observation set into a training dataset and a validation dataset. The model
is then built on the training dataset and the model error is calculated on the validation dataset, which is
different from the training dataset. This approach is called validation test. The training dataset domain
is similar to the test dataset domain in order to ensure a proper coherence of test with the model. The
respective size of training and validation dataset is set by the user. This choice leads to a tradeoff.
Indeed if the validation set is small then, the model is built upon almost all the observation set,
minimizing the model variability but model error estimation is subject to a large uncertainty. On the
other hand, if the validation test is large, the uncertainty about model error is minimized but model
variance increases.

5.2.2 Cross-validation [160]

Cross validation is an alternative to validation test. It consists in splitting the observation dataset into a
training and validation dataset many times to improve the estimation of model error and allow
estimation of model variance.

There are two common way to proceed. The first method is called Leave-One-Out Cross-Validation
(LOOCV) and the other is k-fold Cross-Validation (k-fold CV). These methods are explained in the
following paragraphs.

5.2.2.1 Leave-One-Out Cross-Validation (LOOCV) [160]

Considering n observations, LOOCV method assigns all but one observation to the training dataset.
Test dataset is composed of only one observable. This method ensures building the best model out of
available observations but leads to high uncertainty on model error since it is calculated on only one
observation. In order to get the most accurate model error estimate, the procedure is repeated n times,
each time choosing a different observation for the test dataset. The LOOCV estimates for the mean
square error is the average of these n error estimates, n being the number of observations:
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v 2
LOOCV MSE = EZ(Yi ~7) (138)
i=1

Although the first aim of LOOCYV is not to evaluate the model variance, it can be used to do so.
Indeed, at each iteration, the training test is different thus the method yields n models. It is then
possible to evaluate the model variance on this set of n models. To do so, the total model variance is
calculated as the average of each coefficient variance as:

n
1
LOOCV Model Variance = EZ Var(f;) (139)
i=1

where Var stands for variance. LOOCV MSE and LOOCV Model Variance are not used to build a
model by estimating 8 values but they are used to evaluate the model accuracy and variance. The
lower they are, the more accurate and less variable the model is.

5.2.2.2 K-fold Cross-Validation (k-fold CV) [160]

An alternative for LOOCV is k-fold CV. In this approach, the entire observation dataset is split into k
subset of the same size. One of them, called Y;, is taken as the test dataset and the other are regrouped
to form the training dataset. As LOOCYV method, this procedure is repeated k times, each time using a
different subset for test dataset. The k-fold CV estimate of the mean square error is the average of
these k error estimates:

—\2
k-fold CV MSE = £ %I, (Vi — %) (140)

If k=n then this method is perfectly identical to LOOCYV, however choosing k <« n ensure less
uncertainty in model error estimation. Meanwhile the model variance might increase significantly if k
becomes very small. In practice k-fold CV is applied using k=5 or k=10.

Model variance can be estimated using k-fold CV as well, following the same approach than LOOCV.
Here there are only k model generated thus, the model variance estimate is less accurate. The model
variance formula yields:

k-fold CV Model Variance = %ZﬁlVar(Bi) (141)

5.2.3 Bootstrapping [161]

Bootstrapping is a resampling method that aims at estimating properties of an estimator (e.g. mean,
variance, confidence interval, standard error ...) without assumption about the distribution.
Considering a sample ¥ of n observations, the method consists in resampling many times ¥ by
successively drawing n elements in ¥ with replacement. Bootstrap sample can have the same element
more than once. Thus every bootstrap sample can be different. For each new sample generated, the
estimator is calculated. This operation yields an empirical distribution for the estimator whose
properties can be estimated. For example, population mean can be estimated as the average of the
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bootstrap samples means, and standard error about population mean can be estimated as the standard
deviation of the bootstrap samples means.

If the population has a normal distribution, then bootstrap is just a more complicated way to derive
properties of the estimator distribution. However bootstrapping provides results that hold even if the
distribution is unknown.

In the context of building a PCM, bootstrap method will provide estimation about the model variance.
To do so let’s consider a dataset of k predictors P and n observations ¥

z; = [V, Piq . Pig] (142)

with i going from 1 up to n and k the number of different predictors. Model parameters £ can be
estimated building the PCM using z. Following bootstrap method, the observation z4, z,, ..., z,, can be
resampled B times. Bootstrap samples are collected and named z;4, zp5, ..., Z5, With b going from 1 up
to B. Model coefficients are then computed for each of the bootstrap samples, producing B set of
bootstrap model parameters, named ;. Using the model parameters distribution we can evaluate their
standard error.

However, directly resampling z implicitly treats the model parameters P as random rather than fixed.
We may want to treat it as fixed since we choose it beforehand and it is not subject to any uncertainty.
To do so the method consists in:

o Estimating the model parameters and calculate the response Y and residual E; for each
observation.

>

E=%-Y (143)

~

o Generating bootstrap samples of residual E},, E;;,.., Ey,.
o Calculating the bootstrap observation Yy; subtracting E;; to ¥;.
° Extracting the bootstrap model parameters g, from Y,; and P.

Standard errors on model parameters are then calculated from g, distributions. This alternative is valid
only if the functional form of the model is correct and if residues are identically distributed over P.

5.3 Methods to build PCM

In this paragraph, different approaches to build PCM are introduced. These methods consist in two
steps, first selecting the relevant predictors that will enter the model, second the model is created by
fitting observations with these predictors. The global approach is detailed in §5.3.1, then two
categories of methods are investigated, first subset selection in §5.3.2 and then shrinkage method in
85.3.3. More recently developed approach using hybridization of the two previous methods are
introduced in 85.3.4. These methods are systematically tested against synthetic data in order to
investigate their different behavior, strengths and weaknesses.

5.3.1 Global approach

Building a PCM consists in finding a model that relates output parameters with process parameters.
The most straightforward way to build empirical linear model based on observation is ordinary least
square fit. This approach is adapted only if predictors are all relevant (i.e. they are actually correlated
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with the observation) and not correlated between each other, the problem is not ill-posed (i.e. there are
much more observations than predictors) and observations are not subject to significant amount of
noise or uncertainty. However this is not our case since there are more than 300 process steps for the
Front-End-Of-Line (and thus at least as much process parameters). Moreover not all of these steps
have an impact on electrical properties. For example, different dopant implantations are used for
nMOS and pMOS devices. When pMOS source-drain implant is processed, nMOS devices are
protected. Thus considering the pMOS source-drain doping implantation energy or dose as an input
process parameter for nMOS device PCM is a mistake. This kind of selection is based on expert
knowledge and is the first selection that should be made. Then, if we consider only relevant process
parameters (those that actually play a part in the considered device building process), only a few of
them will have a significant impact on the output parameters. Considering that the amount of
observation is very limited the problem is ill-posed and ordinary least square is not an appropriate
method. Thus variable selection must be performed. There are different methods to achieve this kind
of task. Among them we distinguish two main categories: subset selection and shrinkage method.
These methods are introduced in the next paragraphs.

In order to test their ability to successfully find relevant predictor despite the presence of noise and
correlated parameters in an ill-posed problem, we build a predictor matrix P composed of 50 randomly
generated predictors and 25 observations. The polynomial formula that links P and Y is arbitrarily set
to:

{ Y=3+15-P,—2-P,+3-P;—P, +P; (144)
P .

.. Pso = random predictors not used to compute Y

Only 5 predictors are used to generate the observation. The others are fake predictors. Noise is then
simulated by adding a normally distributed amount to the observation. The noise level (i.e. the
standard deviation of noise signal) is set to 10% of the observation. All of these PCM construction
methods will be used on synthetic observations in order to check if they are able to find back the
polynomial formula. These methods rely on user defined parameters that must be calibrated. To do so
we will use cross validation and bootstrap methods introduced previously. It will also be used to
compare the efficiencies of each method.

5.3.2 Subset selection [162]

This approach consists in determining the minimum set of predictor that explains the observation
variance. Following approaches will be introduced: best subset selection, forward and backward
selection as well as a hybrid method that relies on both backward and forward selection.

5.3.2.1 Best subset selection [162]

Considering that our problem is to build the best PCM composed of p predictors, the most
straightforward way to do so is to compute every possible model and compare their efficiency. The
most efficient model will contain only relevant predictors. This technique is called best subset
selection. If the investigation is limited to linear model only, then the number of possible model
depending on p is given by the following formula:

p

Nimodets = Z (Il)) (145)

i=1
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In this formula i is the number of parameters included in the model. Considering all cases, i ranges
from 1 parameter (a constant for example) up to p parameters (the complete model that includes every

parameters). Then, if the model has i parameters, there are (IZ) possible combinations and as much

possible model. Thus, for 10 predictors (including the constant) there are 1023 possible models. This
is already large if the model is time consuming to compute and test. If we want to consider second
order polynomial models, then the possible number of models increases drastically and yields:

p+p?

Nmogets = Y. (PP (146)

- l
i=1

where p + p? is the sum of the linear (p) and quadratic (p2?) parameters. Again, if p=10, there are
1.3 - 1033 possible models. The problem is too large to be treated in a reasonable amount of time. This
is why this method will not be used in practice.

5.3.2.2 Forward stepwise regression [162]

In order to alleviate this problem, the stepwise regression has been proposed in the 60’s. We
distinguish forward and backward stepwise regression. Forward stepwise regression starts by the
simplest possible model that is a constant. Then predictors are added one by one, each time selecting
the one among the remaining predictors that best explains the residue (in other words that gives the
greatest additional improvement to the fit). There are many ways to determine the best predictors to be
included in the model. Usually, this takes the form of a sequence of F-tests or t-tests, but other
techniques are possible, such as adjusted R-square, Akaike information criterion, Bayesian
information criterion, Mallows's Cp, PRESS, or false discovery rate [163]. In our case we will use F-
test.

In order to compute F-test, three quantities related to the model are required: the Sum of Square Error
(SSE), the Sum of Square Regression (SSR) and the degree of freedom (df):

SSE=) (v, - %) (147)
2
L 2
SSR = Y; — mean(Y) (148)
2.( )
df =n—p (149)

In (147) and (148), n is the number of observations and p the number of predictors. At the i step of
the model construction, there are i predictors included in the model and p-i predictors not yet included.
SEE, SSR and df are calculated for the model with i parameters and for the model with i+1
parameters. The model with i+1 parameters is the model with i parameters to which we added a
selected predictor among the one not yet included in the model. These quantities are called SSE,,
SSR;, SSE,, SSR,, dfy, df,. Subscripted indices 1 and 2 stand for the model with i and i+1 parameters
respectively. Then the F value is calculated as

_ SSR, — SSR,

SSE, 2 (150)
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This F value is calculated p-i times, each time using a different predictor for the model with i+1
parameters. This is how a F value can be associated with each parameter not in the model. The
predictor to be added for the next step is the one that yields the smallest F value.

A criterion is needed in order to determine whether the next predictor to be added is relevant or not.
This is the stopping criterion. The simplest stopping criterion consists in comparing the smallest F
value with a critical F value F;:. Fei; is calculated as the inverse cumulative probability distribution of
Fisher statistic for a probability set by the user. Usually the probability is taken between 0.85 and 0.95.
if F<Fg; the algorithm can continue otherwise it stops because the predictor does not significantly
improve the model prediction. This probability threshold can be set using cross-validation method.

5.3.2.3 Backward stepwise regression [162]

As an alternative, F-test can be applied to decide which parameter to remove instead of being added.
This is called backward stepwise regression. This method starts by creating the most complete model
(that includes all the p predictors). Then for each predictor of the model, F-test is calculated
considering the full model and the one where the predictor under consideration is removed. The larger
F value designates the predictor to be removed.

In this case stopping criterion is reached if F<F.; (where Fq is calculated with a probability chosen
between 0.05 and 0.15). Alternatively it can be also checked using cross-validation.

5.3.2.4 Hybrid approach between forward and backward stepwise regression [162]

The main flaw of forward stepwise regression is that, adding a predictor to the model changes the F
value of every predictor already in the model. Thus, at the n" step, a predictor that has been previously
added to the model can, at this step, yield an F value larger than F;;. Even though this predictor used
to be the one that best explained the observation variance (at the step i < n), it might not explain it
anymore.

To overcome this kind of problem, based on forward stepwise regression, hybrid approach consists in
checking the F value of every predictor (including the one already in the model) at each step and
deciding whether to add or remove predictor depending on their respective F values. Different
approaches have been proposed to formalize this decision process. In our case, the predictor which has
the larger difference between its F value and F;; is chosen to be either removed (if F> Fg;) or added
(if F<Feqp).

Matlab implemented stepwise algorithm [164][165] has been used to perform stepwise regression on
synthetic data, using the whole dataset as a training dataset. In order to illustrate the behavior of this
method, Figure 5-3 shows the estimated predictor coefficient 8 depending on parameter F;.
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Figure 5-3: B values depending on chosen F; value for stepwise regression algorithm

In this picture, lines with marker represent 8 coefficients of predictor that have been used to generate
synthetic data. Other S coefficients are represented with black line. Dotted and solid lines with
markers represent the true and extracted g values respectively. We see that for small values of F
(below 0.07) only relevant predictors are selected. Thus F;; should lies in the interval ]0;0.07]. If Fi
is above 0.07 the method starts to extract non zero coefficient for predictor that are not in the model.
Using a suitable value for Fgy doesn’t lead to extract the correct B coefficients since we see
discrepancies between doted and solid lines. This is due the artificial noise added to the response
before performing stepwise regression. Bias in # values due to noise depends on the noise level and
the model itself. Figure 5-4 shows the k-fold CV MSE and model variance depending on parameter
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Figure 5-4: MSE (a) and model variance (b) extracted using k-fold CV test

K-fold CV test shows an optimal point for F.,.;; = 0.023. This optimal point minimizes both model
variance and MSE. This is a good result in view of Figure 5-3. K-fold CV test shows also that using
F.rit < 0.023 increases the average MSE and model variance. This implies that the method fails more
often in distinguishing relevant from irrelevant predictors. The result is more dependent on the training
test used. If F,.;; > 0.023 (especially if Fqi > 0.07), MSE does not rise significantly but model error
does. It suggests that relevant predictors are included in the model but as F; rises, the probability to
include an irrelevant predictor in the model rises as well, leading to overfit.
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Figure 5-5 shows the LOOCV MSE and model variance depending on parameter F;.
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Figure 5-5: MSE (a) and model variance (b) extracted using LOOCYV test
Optimal value for F is found to be 0.003, minimizing both MSE and model variance. This value lies
within the correct range of F;.. The same interpretations as for k-fold CV holds for LOOCV. The shift
in the minimum of F.;; between these two methods is only due to the respective size of training and
test dataset used. Both of these results are relevant.
Figure 5-6 shows the bootstrap MSE and model variance depending on parameter F;.
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Figure 5-6: Model variance against F; using bootstrap method

It can be noticed that bootstrap yields noisier results that LOOCV and k-fold CV. This can be
explained by the fact that bootstrap method randomly draws the bootstrap samples. Indeed, there are
too much possible bootstrap samples to compute all of them within a reasonable amount of time. With
25 observations, the number of different bootstrap combinations is 2.48 - 101*. We have limited the
computation to 150 bootstrap samples. However this noise also comes from the fact that stepwise
regression is a bit cumbersome as a method, making it strongly dependent on the training set used to
build the model. Thus for this method bootstrap is not suited to determine F;; value.
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To conclude, stepwise regression has been successfully calibrated using LOOCV, k-fold CV and
bootstrap. Using the calibration, stepwise regression found the five relevant predictors among the 50
ones with only 25 observations impacted by 10% of noise.

5.3.2.5 Conclusion about stepwise regression

Compared to best subset selection, stepwise regression offers an easy way to find a good model within
a reasonable amount of time. Indeed if the final model totalizes p-1 predictors among the p available,
then the number of model to be calculated is:

+1
Ninoger =1 + p(pz_) (151)
Thus for p=50, the algorithm will test 1327 models instead of 2.252 - 10> if we used best subset

selection.

The main drawback of this method is that the final model is not guaranteed to be optimal in any
specified sense. Moreover the procedure yields a single final model, although in practice there are
often several equally good models. Many alternatives have been proposed involving a mixture of
forward and backward stepwise regression but there are no convincing solutions since they yield
different results without bringing more confidence on the result accuracy. Moreover this technique has
been highly criticized in literature [166][167]. Thus this method should be used with care.

5.3.3 Shrinkage method [162]

As explained in previous paragraph, subset selection has drawbacks. In order to provide more robust
methods, another approach called shrinkage method has been developed. Instead of adding or
withdrawing successively variables from the model, this approach gradually reduces model
coefficients value of least significant predictors. The approach is more robust because the results does
not depends on any strategy chosen for the method (unlike stepwise regression) and is fast computed
since only a limited amount of model construction is needed (unlike best subset selection).

5.3.3.1 Ridge regression [162]

Ridge regression has been introduced by A. N. Tikhonov [168]. This method is directly derived from
ordinary least square regression. In least square regression, the solution minimizes the sum of square
error between model and observations, that is, it finds the set of predictor coefficients that minimizes
SSE, recalled here for convenience:

2
n 14
SSE = Z Y, — By — Z Bixi, (152)
i=1 =

In above equation, x are the predictors. 3, is the intercept.

To that equation, ridge regression adds a second constrain that forces the g coefficients to be as small
as possible. This constraint is introduced as a penalty called shrinkage penalty, calculated as the sum
of square 8 times a constant A that is set by the user. The ridge regression coefficient estimates SR are
the values that minimize
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14
SSE + AZ B? (153)
j=1

Thus, if A is set to 0, ridge regression is perfectly equivalent to ordinary least square. As A increases,
coefficients reduce and ultimately, if A = oo, then SR = 0. Since equation (153) is no more a linear
problem, it is usually minimized using Levenberg-Markard algorithm [169][170].

This method is probably one of the most widely used for ill-posed problems. However, even if
irrelevant predictor coefficients are quickly shrunk toward zero, these values cannot reach exactly
zero. Thus it does not perform a practical variable selection, thus its investigation is out of the scope of
this work.

5.3.3.2 Least Absolute Shrinkage and Selection method (LASSO)

This method has been introduced by R. Tibshirani [171]. It proposes an alternative to ridge regression
that enables setting irrelevant predictor coefficient to exactly zero. The principle of LASSO is the
same as ridge. The difference lies in the equation to be minimized. In this method the penalty is
calculated using L' norm instead of L? norm of predictor coefficient. The function to be minimized
becomes then:

p
SSE + AZ 1,1 (154)
=1

Again, in this method, 4 coefficient has to be chosen by the user. Typically this parameter is
determined using cross-validation or bootstrap methods.

In this work we used the Matlab implemented LASSO method [172][173]. In order to illustrate the
behavior of this method, Figure 5-7 shows the estimated predictor coefficient f depending on
parameter A.

3 values

12

0 2 4 6 8 10
A value

Figure 5-7: B values depending on chosen A value for LASSO algorithm.

Using LASSO, the number of eliminated predictor is proportional to 1. We see that for 1 < 1 < 3.5,
the model succeed to only select the relevant predictors. However including A also biases the
extraction of B coefficient, reducing their values. Thus, the method provides a powerful way to select
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predictor but A coefficient should be carefully chosen in order to optimize variable selection and
minimize coefficient bias.
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Figure 5-8: MSE (a) and model variance (b) extracted using k-fold CV test
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Figure 5-8 shows the k-fold CV MSE and model variance depending on parameter A. This figure
shows that a good tradeoff between MSE and model variance leads to an optimal A value of 1.5 that a
correct value since it would lead to select only relevant parameters.
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Figure 5-9: MSE (a) and model variance (b) extracted using LOOCYV test

Figure 5-9 shows the LOOCYV MSE and model variance depending on parameter A. In the same trend
that k-fold CV, LOOCV shows that a good tradeoff between model variance and MSE would lead to
an optimal A value of 1. It is slightly low and choosing this value might lead to a model that includes
irrelevant predictor (depending on the training set) but anyway, there will be only few of them and
their corresponding g coefficient would be very low compared to the others.
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Figure 5-10: Model variance against F;; using bootstrap method.

Figure 5-10 shows the MSE and model variance calculated bootstrap depending on parameter A.
Again, the optimal A can be deduced from a tradeoff between MSE and model variance. However this
time, the optimum is not obvious and strongly depends on the chosen tradeoff. Thus in this case k-fold
CV and LOOCYV would be preferred over bootstrap.

To conclude, it has been possible, using LASSO, k-fold CV and LOOCV, to extract only the 5
relevant predictors among the 50 ones. Using the average of the optimal A value found using k-fold
CV and LOOCYV leads to a reasonable choice.

5.3.4 Hybrid approaches

The two previous approaches that are subset selection and shrinkage method are very different at first
glance but there is actually a bond between them. Some hybrid algorithm have been developed that are
able (with a slight modification) to perform both these approaches. In this paragraph we introduce two
of them called stagewise and least angle regression.

5.3.4.1 Forward stagewise regression [174]

Forward stagewise regression is based on the same principle as forward stepwise regression. It starts
with all coefficients equal to zero, and iteratively updates the coefficient of the variable that achieves
the maximal absolute inner product with the current residual by a small amount €. This variable is
called “best candidate”. Thus the main difference with stepwise regression is that, at each step,
variable coefficients that are in the model are not calculated by OLS but instead the method only
increases one coefficient (making the approach continuous). It makes the approach less cumbersome
and avoids biased decision about variable inclusion and deletion. This procedure has an interesting
connection to the LASSO: under some conditions, it is known that the sequence of forward
stagewise estimates exactly coincide with the lasso path, as the step size € goes to zero. This method,
also being more robust than stepwise regression, needs much more step to yield the final results.
Moreover since it is identical to LASSO method if € = 0, advantages of this approach are limited, thus
its investigation is out of the scope of this thesis.
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5.3.4.2 Least angle regression [175]

Least Angle Regression (LARS, S suggesting LASSO) is based on forward stagewise regression. In
stagewise regression the e amount to be added to the best candidate is fixed. It is necessary to fix e
small in order to detect precisely when the best candidate changes. In LARS algorithm, the sum of
increment that should be added to the best candidate, before the best candidate shifts, is calculated at
once. This strongly reduces the computation time and makes it as efficient as stepwise regression.
Applying a simple modification of the algorithm enables LARS to perform either stagewise regression
or LASSO. LARS is thus an intermediate approach between LASSO and stagewise regression.

In this work we used the Matlab implemented LARS method [175][176] by Xiaohui Chen. In order to
illustrate the behavior of this method, Figure 5-11 shows the estimated predictor coefficient S
depending on the number of step 4.

Using LARS, the more steps the algorithm makes, the more predictors enter the model. If not stopping
criterion is set, then the algorithm yield a model that comprises every predictors. Hopefully it is
possible to set a maximum limit for the L; norm of predictor coefficients. This criterion is the
calibration parameter and it is quite similar to the inverse of LARS A parameter. Figure 5-11 shows
that the L; norm of predictor coefficients is a critical parameter and should be calibrated in order to
determine which model comprises only the relevant predictors. In this particular case, a correct
number of steps (that leads to only select relevant predictors) should be comprised between 13 and 22.
In this case even if the correct predictors are selected to enter the model, we see that their coefficients
are far from the exact value. This is due to the “least angle approach” that does not calculate § using
least square fit but instead it increments them gradually. However it is suited to perform variable
selection. B can then be calculated using least square fit after variable selection.

3
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Figure 5-11: B values depending on chosen L; norm value for LARS algorithm.
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Figure 5-12: MSE (a) and model variance (b) extracted using k-fold CV test
Figure 5-12 shows the k-fold CV MSE and model variance depending on number of step A. From this
figure, we see that enabling more or less 25 steps leads to a good trade of between MSE and model
variability. It is a bit too much in order to select only relevant predictors. But at this step, the selected
irrelevant predictors have very small coefficient. Thus their impact in the model is limited.

Figure 5-13 shows the LOOCYV MSE and model variance depending on number the L; norm of
predictor coefficients. Using LOOCV the same kind of trend is obtained compared to k-fold CV
method. Here the optimal value is rather around 22, what is satisfying since it would lead to select
only relevant predictors.

Figure 5-14 shows the bootstrap calculated model variance depending on the L; norm of predictor
coefficients. This figure shows that bootstrap can be used to determine the optimal the L; norm value
through a tradeoff between MSE and model dispersion. However, as in the case of LASSO, the results
will strongly depend on the chosen tradeoff. Thus it is safer to rely on k-fold CV and LOOCV.

To conclude about LARS algorithm, it has been successfully applied to extract the relevant predictors
as LASSO and stepwise regression.
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Figure 5-13: MSE (a) and model variance (b) extracted using LOOCYV test.

124

40



MSE

g

Bootstrap

Chapter 5: Process compact model

6000 |

5000 ¢

4000

[

3000 |

-~

2000 ¢

Bootstrap model dispersion

+ *

o“,uo m"
o 00 W WTNT ¢
A G I

-[) W

1000 ¢

+
* * e
’0'“%~‘~ . ‘”
*

5 10 15 20 25 30 35 40 5 10 15 M 75 30 15

L, norm of predictor coefficients L, norm of predictor coefficients

(a) (b)

Figure 5-14: Model error (a) and variance (b) against L, norme using bootstrap method.

5.3.5 Conclusion about variable selection methods

In this paragraph we have introduced and tested three methods to select relevant variables among a
large number of irrelevant one using a limited amount of noisy observations. Application showed that
k-fold CV and LOOCV method have been able to calibrate parameters for each method. The 5
relevant predictors used in the model to compute synthetized data have been discriminated by the three
methods among 50 variables using 25 observations impacted by 10% of artificial noise. This
application addresses the 2 main issues that one can face when building a PCM: ill-posed problem and
noise in the observable. It should be noted that even though predictor values have been randomly
drawn, the limited number of observation leads to correlations between some predictors (up to 0.51 for
the correlation factor between predictor P, and P,q). Thus the three models also deal with moderately
correlated predictors.

Every PCM construction method works fine in this case but the cross-validation methods can lead to
slightly different results. The best practice is to use the three cross-validation tests to calibrate the
PCM construction method, comparing their results. For example if k-fold CV test suggests the same
calibration than LOOCYV but a different calibration compared to bootstrap, then results drawn from k-
fold CV and LOOCYV can be considered more reliable and should be used instead of bootstrap results.
Considering PCM construction methods, there is no general rule in order to decide which one to use.
However it can be noticed that stepwise is the fastest, followed by LASSO and then LARS. However,
stepwise regression will fail more easily than LASSO and LARS if a large amount of noise is
considered. Moreover LARS and LASSO give a continuous trend of £ against the calibration
parameter. Thus it is possible to rank predictors in term of relevance. This is not possible with
stepwise regression since any predictor can enter or leave the model at any F;; increment. In practice
every PCM construction method should be tested in order to find the best model.

5.4 Application to TCAD simulations
In previous paragraphs we have introduced all the required tools on order to model build PCM
according to Figure 5-1. This paragraph aims at demonstrating that these tools are required in order to

build robust PCM. Indeed, the strategy is to use a two-stage PCM, as it has been shown in the
introduction (PCM scheme is recall in Figure 5-15 for convenience).
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Figure 5-15: Scheme of the two-stage PCM

First, one could think of a more simple approach that directly relates process and electrical parameters
without using a compact model (avoiding stage two). We will show that this simplification is less
advantageous than the two-stage PCM by comparing them in 8§5.4.1 and 85.4.2. In particular we will
show that building PCM that directly links electrical and process parameters is not handy and efficient.
Using the two-stage PCM in 85.4.2, we will be able to model the linear and saturation drain current
over the whole strong inversion range of V. In these two paragraph, every PCM will constructed
using TCAD simulations DOE introduced in §3.4 and Ordinary Least Square (OLS). Moreover, within
wafer variability, local variability and noise will not be considered.

Thereafter will demonstrate that, in practical case, using OLS is not efficient at all and variable
selection methods (stepwise regression, LASSO and LARS) should be used instead with the PCM
construction flow as depicted in Figure 5-1. This will be shown with a set of TCAD simulations that
mimics silicon measurements at die level across a wafer, including within-wafer process variability.
PCM construction using OLS with these data will not work at all since it will not be able to select
variables. Variable selection methods will be applied afterward on the same dataset, building proper
PCM successfully.

5.4.1 Building TCAD simulated Ipji, and Ipsst PCM using OLS

In this paragraph, we investigate the simple approach that directly relates process and electrical
parameters without using a compact model. We build a PCM for Ip);, and Ipg: using OLS and the
TCAD simulated DOE introduced in chapter 3. The DOE is a factorial design. Details about the DOE
are recalled here for convenience, listing each process parameter included in the DOE and their related
experimental values:

o Epitaxial height (Tepi) [12,14,16] nm

e Channel thickness (Tsi) [5,6, 6.6, 8] nm

e  Spacer width (Wsp) [8,10.35,12] nm

e Implanted dopant dose (fdose)[0.5,0.7, 1, 1.2, 1.5] (All source-drain and

LDD implant dose are multiplied by this factor)
Insulating layer (IL) thickness (Ty) [0.8,1.05,1.2,1.8,2.5,4] nm
e IL/High K interfacial charges (Qhk) [10%, 10™, 10", 3.10%, 10"] cm™

e Contact resistance (Rext) [20, reference, 200, 500] Q (Reference values
are 90 and 212 Q for nMOS and pMOS respectively)
e Spike anneal (Tspike) [800, 1000, 1052, 1100]

To this factorial design we have added some cross terms. Corresponding experiments are detailed in
Table 5-1. These experiences are referenced as “Mixed” in Figure 5-17. This simulation setup does
neither account for local or within-wafer variability nor for measurement noise. In order to model Ipyiy
and Ipsy dependence on process parameters we built their PCM upon simulation results using OLS.
OLS only accounts for process parameters included in the DOE. Since there is no variability, other
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process parameters are fixed and thus cannot play any role in Ip;i, and Ipgy Variations. Of course, in
practical cases, these assumptions do not hold. We shall see later the consequences.

Process parameters
Experience Wsp (nm) Tsi (nm)
1 8 5
2 8 8
3 12 5
4 12 8

Table 5-1: Cross terms experiences simulated by TCAD

Figure 5-16 shows the relations between process and electrical parameters depending if we are
constructing the PCM or if we exploit it.

Process Electrical
Parameters Parameters

OLS

Figure 5-16: Flow chart of process and electrical relations

This figure shows that, in the current application, we directly relate process parameters thanks to
polynomial formula. These polynomial formula are constructed using OLS.

10° (10

Dose Mixed Qhk % Ro Spike | Tepi il Tsi Wsp - 13F  Dose Mixed Qhk Ro Spike | Tepi Til Tsi | Wsp 1

ID\” [A/um]

0.6 F 4 .
4 Simulation 4 Simulation
e PCM —+—PCM

0.4 6 —
Experience Experience

a b
Figure 5-17: Iy, and IE,sa)t simulated and model using OLS for transistor of nominal éat)e length with Vg=Vpp.
Ioiin @and Ipgy are sensitive to every process parameter included in the DOE. Thus, their PCM account
for all of them. In Figure 5-17, results shows that the PCM is quite accurate although some process
parameter dependences are not linear in the considered range (especially for Re Tspike and Tsi).
However this approach is not satisfying since it provides a PCM that is suited for only one gate and
drain bias and one gate length. Thus, modeling the whole strong inversion regime in linear and
saturation regime for every channel length would require a large number of PCM, making the global
model discontinuous and not easy to handle. Ip;i, and Ips; PCM coefficients are gathered in Table 5-2.
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C‘V?tst? i?éi?icﬁﬁ?ﬁﬁ': Ipiin Coefficients Ipsat Coefficients
Constant [pA/pum] 0.35 2.30
Tepi [uA/um?] -9.03 -60.4
Wsp [uA/um?] -12.9 -91.2
Tsi [ud/um?] 2.27 15.2
Til [pA/pm?] -12.1 -101
f _dose [uA/um] 3.68- 1072 0.228
Tspike [MA/umM/°C] 6.63-107° 4.22-107*
Qhk [HA.umM] -1.29- 1077 -7.41-1077
Rext [pA/um/Q] -2.62- 1074 -8.37-107*

Table 5-2: Ipjin and Ips: PCM coefficients.

5.4.2 Building PCM for TCAD simulated model parameters using OLS

A solution to the issue raised in previous paragraph is to build a two-stage PCM as introduced in
Figure 5-1. This alternative is investigated here, where analytical model is created for the model
parameters introduced in chapter 2 (such as Ry, @, Wy.Coyxs 02, Vitin, Vi, v*.C,y) instead of drain

current. Modeling these parameters would enable modeling the whole strong inversion regime in
saturation and linear regime using only 7 PCMs.

Figure 5-18 shows the relations between process and electrical parameters depending if we are
constructing the PCM or if we exploit it.

PCM

Process
Parameters

Compact
model

Model
Parameters

Electrical
Parameters

Extraction
procedure

Figure 5-18: Flow chart of process and electrical relations

This figure is to be compared with Figure 5-16. It shows that, in this current application, we relate
process parameters via the compact model instead of relating them directly as we did in previous
paragraph. Figure 5-19 shows the PCM obtained using OLS for model parameters Ro, @, Wy. Cpyx, 62,

Viin, Vs and v, Cox-
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RO [Q. um] Coefficients
Constant [Q.um] | —7.65-10!
Tepi [Q] 8.79 - 103
Wsp [Q] 9.70 - 103
Tsi [Q] —4.68 - 102
Til [Q] —-7.13-103
f_dose [Q.um] —3.62- 10"
Tspike [Q.um/°C] | —5.99-1072
Qhk [Q. pm"3] 7.84-107°
Rext [pm] 1.11
o [Q.um.V] Coefficients
Constant [Q.pm.V] | —5.58- 101!
Tepi [Q.V] 511-
Wsp [Q.V] 6.70 - 103
Tsi [Q.V] —8.56 - 102
Til [Q.V] 1.34-10*
faose [Qum.V] —2.17-10%
Tspike [Q.uym.V/°C] | —=3.17 - 1072
Qhk [Q.um3.V] —4.01-107°
Rext [um.V] -3.49-1073

Wo-Cox [F/V /5] Coefficients
Constant [F/V/s] | 9.06-107*
Tepi[F/V/s/um] | —3.97-107*
Wsp [F/V/s/um] | —2.04-1073

Tsi[F/V/s/um] 4.94-1073

Til [F/V /s/um] —1.44-1071

faose [F/V/s] 3.23-107°
Tspike [F/V/s/°C] | —1.75-10711
Qhk [F.um?/V/s] | —2.09-10711

Rext [F/V /s/Q] 3.13-107°

Experience

(©)
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6, [V72] Coefficients
Constant [V 2] 1.10
Tepi [V~2/um] 6.23-1071
Wsp [V~2/um] -3.59

Tsi [V™2/um] -9.31
Til [V~2/um] —2.51-102
faose [V_Z] 2.99-1073
Tspike [V~2/°C] | —1.52-1075
Qhk [V~2.um?] 7.03-1077
Rext [V~2/Q] 2.15-107°
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Constant [V] 4.29-1071
Tepi [V /um] 1.58-1071
Wsp [V /um] 1.37

Tsi [V/um] -4.74
Til [V /um] —2.86-101
fdose [V] 2.69-1073
Tspike [V /°C] —3.99-107°
Qhk [V.um?] 7.09-1077
Rext [V /Q] 3.48-107°
Vigar [V] Coefficients
Constant [V] —3.63:1072
Tepi [V /um] 1.78- 10!
Wsp [V /um] 2.68- 10!
Tsi [V /um] —1.64- 101
Til [V /um] —6.47 - 101
faose [V] —5.62 1077
Tspike [V/°C] | —1.27-107*
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<107

Dose Mixed Qhk  Ro Spike Tepi  Til Tsi |Wsp v*.C,y [F/um/s] Coefficients
Constant [F/um/s] | 4.78-1073
Tepi [F/um?/s] | —8.54-1072
Wsp [F/um?/s] | —1.19-1071
Tsi [F/um?/s] —5.61-1072
Til [F/um?/s] —4.93-1071
faose [F/pm/s] 3.63-107*
Tspike [F/um/s/°C]| 5.36-1077
Qhk [F.um/s] 3.20-107°
®  Simulation | Rext [F/um/s/Q] | —1.92-1077
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Figure 5-19: PCM modeled and TCAD simulated R (2), o (b), pg. Cox (C), 82 (d), Vit i, (€), Visy (F), v*. Coyx (Q).

An overview of Figure 5-19 plots shows that PCMs are accurate. It can be noted that T; and Tspike
effects are not very well approximated with linear dependence. For example v*.C,,, 85, and pg. Coy
dependence on T; is not very accurate. As well v*. C,,, Vi, 0, and Ry dependence on Tspike is not
very accurate.

25| #  Simulation T
—+— PCM

20 ' '
00 B350 900 950 1000 1050 1100
Tspike [°C]
Figure 5-20: o extracted from simulations and modeled depending on anneal temperature.

A closer look at the last example shows that model parameters have an exponential dependence on
Tspike rather than a linear one. A empirical fit of o against Tspike with an exponential formulation is
shown in Figure 5-20.

0 =43.7 —1.75 107 - exp(0.021 - Typize) (155)

Thus PCM built using OLS are accurate except for modeling the impact of anneal temperature and
insulator layer thickness. However, impact of these two process parameters on model parameters can
be corrected using nonlinear empirical formula and variable shift (i.e. using exp(0.021.Tike) instead of
Tspike @S predictor for the PCM).
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Figure 5-21: Comparison between Ip;i, and Ipg,; model with PCM straightforwardly build upon Ipj, and Ipgg: oOr build
upon model parameters.

Figure 5-21 shows Ip;i, and Ips; modeled using OLS (same results have been shown in Figure 5-17)
and modeled using the compact model and PCMs for model parameters. We see that both models are
very close. Ip;;, PCM using the compact model is more accurate in the range of Ry. Thus using a two-
stage PCM has two advantages: i) it is slightly more accurate, ii) it enable a continuous modeling of
the full strong inversion regime in linear and strong inversion regime with only 7 PCM whereas a one
stage PCM would require as much PCM as gate biases making the model cumbersome and
discontinuous.

Even though, this simple approach works fine using TCAD simulations, it is not able to select
variables. And the constructed PCMs suggest some unphysical relationships. In order to get a more
reliable model, variable selection should be applied.

5.4.3 Building PCM in a silicon-like case, based on within wafer variability

In this section we demonstrate that OLS used in previous approach are not suited to build PCM.
Indeed, it has already shown limitations, as mentioned in previously. In addition, we will show that
this technique is even more limited if we want to apply it on silicon measurements. Indeed, went
processing an experiment on silicon, we have to face within wafer variability. This means that every
process parameters fluctuates more or less depending on the position on the wafer. This variability
strongly impact the drain current as it has been shown in chapter 4, where wafer level drain current
box plot displayed large dispersion. Hence, using OLS to build PCM with process and electrical
parameters averaged over each wafer would lead to a large uncertainty in the resulting PCM. Another
solution consists in monitoring parameters (electrical and process ones) at die level. The uncertainty
about monitored parameters will thus be limited to local variability. This leads to consider every
process parameter for PCM construction. Since the number of process parameters is large and only a
limited part of them are actually relevant, variable selection should be made. This is what we
demonstrate here, using TCAD simulations that mimics a wafer measured a die level. Simulations
include within-wafer variability for process parameters. Process parameters statistics are shown in
Table 5-3.

Process . : _ Tspike
Parameters Tepi [nm] | Wsp [nm] | Tsi[nm] | T;[nm] | f_dose [°C] Ry [ um] Qhk
Average 14 10.35 7 1.2 1 1050 22.5 1012
Standard | 5 13 05 025 | 024 2 225 | 2-10m
deviation

Table 5-3: Process parameters average and dispersion over the set of simulations
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The simulation setup consists in 100 sites simulated with random variations of Tepi, Wsp, Tsi, Ty,
fdose, Tspike, Rext and Qhk. Each site contains 5 channel lengths ranging from 30 nm up to 1 um.
Average values and standard deviations of process parameters are regrouped in Table 5-3.

Before building PCM, “fake” process parameters have been added to the predictor matrix in order to
simulate a more realistic situation where a large number of process parameters are accounted for. Fake
parameters represent process parameters that have no influence on drain current. Since they are as
much process parameters (predictors) than observations, the problem becomes ill-posed. “Fake”
process parameters are simply randomly generated predictors. They are in no way related with the
observation, but chance correlations can occur between them.

We will first attempt to build PCM using OLS and show that the approach completely fails because of
the issue mentioned before. Then we will build PCM using variable selection methods and show that
the approach is more efficient.

5.4.3.1 Using OLS

PCM construction is first done using OLS, as we did in §5.4.2. The flow chart of process and electrical

Compact
model

parameters relationship is shown in Figure 5-22.

Process Model
Parameters Parameters

Figure 5-22: Flow chart of process and electrical relations

Electrical
Parameters

Extraction
procedure

One PCM is built for each model parameter. Figure 5-23 shows the value of the different PCM
coefficients for each PCM.
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Figure 5-23: PCM coefficient of model parameters R, ((zg,)a (b), Wo- Cox (C), 2 (d), v*. Cpyx (€), Vyin (f) and Vi (9).
Figure 5-23 shows that using OLS, every predictor are included in the model. Moreover, fake
predictors are accounted for with non-negligible coefficients. It means that in this situation OLS
solution leads to overfit. The predictability and interpretability of such a model is very poor. Thus we
cannot use OLS to exploit measurements at die scale, accounting for a large number of process
parameters.
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5.4.3.2 Using stepwise, LASSO and LARS

In response to OLS flaws, stepwise, LASSO and LARS methods are applied here to build model
parameters PCM. Corresponding flow chart of process and electrical parameters relationships is
shown in Figure 5-24.

Process
Parameters

PCM Compact
model
Model Electrical
Parameters Parameters

Stewise regression -
LASSO Extraction
LARS procedure

Figure 5-24: Flow chart of process and electrical relations

Compared to previous approach, here we use variable selection methods instead of OLS. Since these
methods can handle ill-posed problem and perform variable selection, it will be more suited to build
PCM upon measurements at die level including a large amount of process parameters.
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Figure 5-25: Ry PCM constructed using stepwise regression (a), LASSO (b) and LARS (c) depending on their

respective calibration parameter.
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Figure 5-25 shows the result of R, PCM construction. Each subplot represents the results of one
method against its calibration parameter. The optimum value of calibration parameter is indicated by
the blue shaded area. This area has been determined using K-fold CV and LOOCV. Related plots are
available in Appendix B. We see that the three methods have selected Wsp, Tepi, Rext, T; and fyos as
predictors for R,. LASSO has included also 2 non relevant predictors. So comparing the results of the
three methods enable a clear distinction between the relevant and irrelevant predictors. It should be
noted that Tspike does not appear in the model but T; does. T; is not physically related to R, and we
expect it to not enter the model. However we have seen in Figure 5-19 (a) that Tj slightly impacts R,
because of the flaws in the model related to its simplification (see chapter 3). The reason why T is
accounted in the model and no Tspike is because of the relative dispersion of these parameters. Indeed
Ty dispersion in these simulations represents 15.6% of the total dispersion simulated in TCAD DOE.
This is large in comparison with Tspike dispersion that only represents 0.67% of Tspike total variation
simulated in TCAD DOE.

Figure 5-26 shows the results of ¢ PCM construction. All 3 model includes Ty, Wsp, Tepi and fdose.
This is in agreement with the PCM built using the TCAD simulated DOE. Again Tspike is missing in
the model because of its low dispersion. LASSO method includes 3 extra ‘fake’ predictors to the
model but their coefficients are very low compared to the others and these errors can be spotted by
comparing this result with the other methods.
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Figure 5-26: ¢ PCM constructed using stepwise regression (a), LASSO (b) and LARS (c) depending on their
respective calibration parameter.
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Figure 5-27 presents the results of p,.C,,, PCM construction. Stepwise regression and LARS method
only includes T; predictor, that is by far the most influent parameter on p,.C,, as shown in Figure
5-19 (c). LASSO mistakenly includes Tepi. K-Fold CV and LOOCYV indicate a large optimal area,
such that Tsi can be justifiably included in the model whereas stepwise regression and LARS
considered the effect of Tsi negligible.
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Figure 5-27: po. C,, PCM constructed using stepwise regression (a), LASSO (b) and LARS (c) depending on their
respective calibration parameter.

Figure 5-28 shows the result of 8, PCM building. It is very similar to p,.Coy as suggested by the
extraction of model parameters on the TCAD simulated DOE in Figure 5-19 (c) and (d). PCM only
includes T; parameter. Compared to [o.Coy, 6, extracted on TCAD simulated DOE strongly depends
on Qhk. This dependence is not accounted for by the PCM here. This is because of the small variance
of Qhk. Indeed in these simulations, Qhk dispersion represents only 2% of Qhk variation simulated in
the DOE.
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V4yin PCM construction results for short channel device are shown in Figure 5-29. We have seen that
Vyin is strongly dependent on T; and Qhk. In addition, short channel Vy;, also slightly depends on
Wsp. All these parameters are included in stepwise regression, LASSO and LARS PCMs. Tepi has
been also included in the PCMs although its influence is limited regarding the results of TCAD
simulated DOE. On the contrary, Tsi is not accounted in the model although its influence is not
negligible as suggested by TCAD simulated DOE results. This is due to the very limited variance of

Tsi in these simulations. LASSO and LARS may also mistakenly include fake predictors.
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Figure 5-29: Vy;i, PCM construct