A Schwarz-Pick lemma for the modulus of holomorphic mappings from the polydisk into the unit ball

Yifei Pan
pan@ipfw.edu
This research is a product of the Department of Mathematical Sciences faculty at Indiana University-Purdue University Fort Wayne.

Follow this and additional works at: http://opus.ipfw.edu/math_facpubs

Part of the Mathematics Commons

Opus Citation
http://opus.ipfw.edu/math_facpubs/143

This Article is brought to you for free and open access by the Department of Mathematical Sciences at Opus: Research & Creativity at IPFW. It has been accepted for inclusion in Mathematical Sciences Faculty Publications by an authorized administrator of Opus: Research & Creativity at IPFW. For more information, please contact admin@lib.ipfw.edu.
A SCHWARZ-PICK LEMMA FOR THE MODULUS OF HOLOMORPHIC MAPPINGS FROM THE POLYDISK INTO THE UNIT BALL

SHAOYU DAI AND YIFEI PAN

Abstract. In this paper we prove a Schwarz-Pick lemma for the modulus of holomorphic mappings from the polydisk into the unit ball. This result extends some related results.

Keywords: holomorphic mappings; Schwarz-Pick lemma; the polydisk.

1. Introduction

Let D be the unit disk in \mathbb{C}, D^n and B_n be the polydisk and the unit ball in \mathbb{C}^n respectively. For $z = (z_1, \ldots, z_n)$ and $z' = (z'_1, \ldots, z'_n) \in \mathbb{C}^n$, denote $(z, z') = z_1\overline{z'_1} + \cdots + z_n\overline{z'_n}$ and $|z| = (z, z)^{1/2}$. Let $\Omega_{X,Y}$ be the class of all holomorphic mappings f from X into Y, where X is a domain in \mathbb{C}^n and Y is a domain in \mathbb{C}^m. For $f \in \Omega_{X,Y}$ and $j = 1, \ldots, n$, define

$$|\nabla f|(z) = \sup_{\beta \in \mathbb{C}, |\beta|=1} \left(\lim_{t \to 0^+} \frac{|f|(z+t\beta)-|f|(z)}{t} \right), \quad z \in X; \tag{1.1}$$

$$|\nabla_j f|(z) = \sup_{\beta \in \mathbb{C}, |\beta|=1} \left(\lim_{t \to 0^+} \frac{|f|(z, z_1, \ldots, z_{j-1}, z_j+t\beta, z_{j+1}, \ldots, z_n)-|f|(z)}{t} \right), \quad z \in X, \tag{1.2}$$

where $f = (f_1, \ldots, f_m)$, $|f| = (|f_1|^2 + \cdots + |f_m|^2)^{1/2}$ and $z = (z_1, \ldots, z_n)$. Some calculation for $|\nabla f|$ and $|\nabla_j f|$ will be given in Section 2.

For $f \in \Omega_{D,D}$, the classical Schwarz-Pick lemma says that

$$|f'(z)| \leq \frac{1-|f(z)|^2}{1-|z|^2}, \quad z \in D. \tag{1.3}$$

This inequality does not hold for $f \in \Omega_{D,B_m}$ with $m \geq 2$. For instance, the mapping $f(z) = \frac{1}{\sqrt{2}}(z, 1)$ satisfies

$$|f'(0)| = \sqrt{1-|f(0)|^2} > 1 - |f(0)|^2.$$

However Pavlović [3] found that (1.3) can also be written as

$$|\nabla f|(z) \leq \frac{1-|f(z)|^2}{1-|z|^2}, \quad z \in D, \tag{1.4}$$

since (2.3). In [3], Pavlović proved that this form (1.4) can be extended to Ω_{D,B_m} and obtained the same inequality for $f \in \Omega_{D,B_m}$. Recently, we [1] proved that the form (1.4) also can be extended to Ω_{B_n,B_m} and obtained the following inequality for $f \in \Omega_{B_n,B_m}$:

$$|\nabla f|(z) \leq \frac{1-|f(z)|^2}{1-|z|^2}, \quad z \in B_n. \tag{1.5}$$

In view of the above results, it is interesting for us to consider that if there are some similar results for $f \in \Omega_{D^n,B_m}$. }

Research supported by the National Natural Science Foundation of China (No. 11201199) and by the Scientific Research Foundation of Jinling Institute of Technology (No. Jit-b-201221).
For $f \in \Omega_{D^n, B_2}$, it is well known [1, 2] that
\[
\sum_{j=1}^{n} (1 - |z_j|^2)|f'_{z_j}(z)| \leq 1 - |f(z)|^2
\] (1.6)
for any $z = (z_1, \ldots, z_n) \in \mathbb{D}^n$. This inequality does not hold for $f \in \Omega_{D^n, B_m}$ with $m \geq 2$. For instance, the mapping $f(z) = \frac{1}{\sqrt{3}}(z_1, z_2 + 0.1) \in \Omega_{D^2, B_2}$ satisfies
\[
\sum_{j=1}^{2} |f'_{z_j}(0)| = \frac{2}{\sqrt{3}} > 1 - |f(0)|^2.
\]
Similarly to (1.4), we find that (1.6) can be written as
\[
\sum_{j=1}^{n} (1 - |z_j|^2)|\nabla_j f|(z) \leq 1 - |f(z)|^2
\] (1.7)
for any $z = (z_1, \ldots, z_n) \in \mathbb{D}^n$, since (2.5). In view of (1.4) and (1.5), the obvious question is that if the form (1.7) can not completely be extended to Ω_{D^n, B_m} with $m \geq 2$. The following example shows that the form (1.7) can not completely be extended to Ω_{D^n, B_m} with $m \geq 2$: the mapping $f(z) = \frac{1}{\sqrt{2}}(z_1, z_2) \in \Omega_{D^2, B_2}$ satisfies
\[
\sum_{j=1}^{2} |\nabla_j f|(0) = \sqrt{2} > 1 - |f(0)|^2,
\]
since $f(0) = 0$ and $|\nabla_j f|(0)| = |f'_{z_j}(0)|$ for $j = 1, 2$ by (2.4). However we find that the form (1.7) holds for $f \in \Omega_{D^n, B_m}$ at the point $z \in \mathbb{D}^n$ with $f(z) \neq 0$. Precisely:

Theorem 1. Let $f : \mathbb{D}^n \rightarrow \mathbb{B}_m$ be a holomorphic mapping with $m \geq 2$. Then
\[
\sum_{j=1}^{n} (1 - |z_j|^2)|\nabla_j f|(z) \leq 1 - |f(z)|^2, \quad \text{if } f(z) \neq 0
\] (1.8)
and
\[
\sum_{j=1}^{n} (1 - |z_j|^2)^2|\nabla_j f|(z)^2 \leq 1, \quad \text{if } f(z) = 0
\] (1.9)
for any $z = (z_1, \ldots, z_n) \in \mathbb{D}^n$.

The above theorem is the main result in this paper. Note that the inequality in (1.9) always holds whether if $f(z) = 0$ or $f(z) \neq 0$. When $f(z) \neq 0$, there is a better inequality, which is (1.8). Theorem 1 is coincident with (1.5) when $n = 1$. In addition, (1.8) and (1.9) are sharp. For example, the mapping $f(z) = \frac{1}{\sqrt{2}}(\frac{z_1}{1 - z_1}, \frac{z_2}{1 - z_2}) \in \Omega_{D^2, B_2}$ satisfies the equality in (1.8) at $z = 0$; the mapping $f(z) = \frac{1}{\sqrt{2}}(z_1, z_2) \in \Omega_{D^2, B_2}$ satisfies the equality in (1.9) at $z = 0$.

In Section 2, some calculation for $|\nabla f|$ and $|\nabla_j f|$ will be given. In Section 3, we will give the proof of Theorem 1 and some remarks for the equality cases in Theorem 1.

2. SOME CALCULATION FOR $|\nabla f|$ AND $|\nabla_j f|$

For $f \in \Omega_{X,Y}$ with $X \subset \mathbb{C}^n$ and $Y \subset \mathbb{C}^m$, by (1.11) we know that if $|f|(z) \neq 0$ then f is \mathbb{R}-differentiable at z and ∇f is the ordinary gradient; if $|f|(z) = 0$ then f is not \mathbb{R}-differentiable at z and ∇f is not the ordinary gradient. From Section 2 in [1], we have the following (2.1)-(2.3).

For $f \in \Omega_{X,Y}$,
\[
|\nabla f|(z) = \begin{cases}
\frac{1}{|f(z)|} \left| \langle f'_{z_1}(z), f(z) \rangle, \ldots, \langle f'_{z_n}(z), f(z) \rangle \rangle \right|, & \text{if } f(z) \neq 0; \\
\sup_{\beta \in \mathbb{C}^n, |\beta|=1} |Df(z) \cdot \beta|, & \text{if } f(z) = 0,
\end{cases}
\] (2.1)
where \(z = (z_1, \cdots, z_n) \in X \) and \(Df(z) \cdot \beta \) is the Fréchet derivative of \(f \) at \(z \) in the direction \(\beta \). Then for \(f \in \Omega_{X,Y} \) with \(X \subset \mathbb{C} \),

\[
|\nabla f|(z) = \begin{cases} \frac{1}{|f(z)|} |\langle f'(z), f(z) \rangle|, & \text{if } f(z) \neq 0; \\ |f'(z)|, & \text{if } f(z) = 0. \end{cases} \tag{2.2}
\]

In particular, for \(f \in \Omega_{X,Y} \) with \(X \subset \mathbb{C} \) and \(Y \subset \mathbb{C} \),

\[
|\nabla f|(z) = |f'(z)|. \tag{2.3}
\]

Then by (2.2) and (2.2), we get that for \(f \in \Omega_{X,Y} \) and \(j = 1, \cdots, n \),

\[
|\nabla_j f|(z) = \begin{cases} \frac{1}{|f(z)|} |\langle f'_j(z), f(z) \rangle|, & \text{if } f(z) \neq 0; \\ |f'_j(z)|, & \text{if } f(z) = 0, \end{cases} \tag{2.4}
\]

where \(z = (z_1, \cdots, z_n) \in X \). Note that for the case that \(f(z) \neq 0 \), if \(f'_j(z) \) and \(f(z) \) are collinear, then \(|\nabla_j f|(z) = |f'_j(z)| \); if not, then \(|\nabla_j f|(z) \neq |f'_j(z)| \). In particular, for \(f \in \Omega_{X,Y} \) with \(Y \subset \mathbb{C} \),

\[
|\nabla_j f|(z) = |f'_j(z)|. \tag{2.5}
\]

3. Proof of Theorem 1

First we give one lemma.

Lemma 1. Let \(f(z) = \sum_{\alpha} a_{\alpha} z^\alpha \in \Omega_{B^n, B_m}, \) where \(z = (z_1, \cdots, z_n) \in \mathbb{C}^n, \) \(\alpha = (\alpha_1, \cdots, \alpha_n), \) \(z^\alpha = z_1^{\alpha_1} \cdots z_n^{\alpha_n} \), \(f = (f_1, \cdots, f_m), \) \(f_j(z) = \sum_{\alpha} a_{j,\alpha} z^\alpha \) and \(a_{\alpha} = (a_{1,\alpha}, \cdots, a_{m,\alpha}). \) Then

\[
\sum_{\alpha} |a_{\alpha}|^2 \leq 1. \tag{3.1}
\]

Proof. For \(0 < \sigma < 1 \), we have

\[
1 \geq \frac{1}{(2\pi)^n} \int_0^{2\pi} \cdots \int_0^{2\pi} |f(\sigma e^{i\theta_1}, \cdots, \sigma e^{i\theta_n})|^2 d\theta_1 \cdots d\theta_n
= \frac{1}{(2\pi)^n} \sum_{j=1}^m \int_0^{2\pi} \cdots \int_0^{2\pi} |f_j(\sigma e^{i\theta_1}, \cdots, \sigma e^{i\theta_n})|^2 d\theta_1 \cdots d\theta_n
= \sum_{j=1}^m \sum_{\alpha} |a_{j,\alpha}|^2 \sigma^{2|\alpha|}
= \sum_{\alpha} |a_{\alpha}|^2 \sigma^{2|\alpha|},
\]

where \(|\alpha| = \sum_{j=1}^n \alpha_j \). Letting \(\sigma \to 1 \) gives (3.1). \(\square \)

Now we give the proof of Theorem 1.

Proof of Theorem 1. First we prove the case that \(z = 0 \).

Therefore we need to prove that

\[
\begin{cases} \sum_{j=1}^n |\nabla_j f|(0)| \leq 1 - |f(0)|^2, & \text{if } f(0) \neq 0; \\ \sum_{j=1}^n |\nabla_j f|(0)|^2 \leq 1, & \text{if } f(0) = 0. \end{cases} \tag{3.2}
\]

By (2.4), it suffices to prove that

\[
\sum_{j=1}^n \left| \frac{f'_j(0)}{f(0)} \right| \leq 1 - |f(0)|^2, \text{ if } f(0) \neq 0 \tag{3.3}
\]
\[\sum_{j=1}^{n} |f_{z_j}'(0)|^2 \leq 1, \quad \text{if} \quad f(0) = 0. \] (3.4)

Obviously, (3.4) holds by Lemma 1. For (3.3), let
\[h(z) = \left\langle f(z), \frac{f(0)}{|f(0)|} \right\rangle, \quad z \in \mathbb{D}^n. \]
Then \(h(z) \) is a holomorphic function from \(\mathbb{D}^n \) into \(\mathbb{D} \), \(h(0) = |f(0)| \), and for \(j = 1, \cdots, n \),
\[h_{z_j}'(0) = \left\langle f_{z_j}'(0), \frac{f(0)}{|f(0)|} \right\rangle, \quad (3.5) \]
where \(z = (z_1, \cdots, z_n) \). Applying (1.6) to \(h \) and by (3.5) we get
\[\sum_{j=1}^{n} \left| \left\langle f_{z_j}'(0), \frac{f(0)}{|f(0)|} \right\rangle \right| = \sum_{j=1}^{n} |h_{z_j}'(0)| \leq 1 - |h(0)|^2 \]
\[= 1 - |f(0)|^2. \]

Then (3.3) is proved. Therefore (3.2) is proved.

Now we prove the case that \(z = p \neq 0 \).

Let \(p = (p_1, \cdots, p_n) \) and
\[g(w) = f(\varphi(w)), \quad w = (w_1, \cdots, w_n) \in \mathbb{D}^n, \]
where \(\varphi(w) = (\varphi_1(w_1), \cdots, \varphi_n(w_n)) \), \(\varphi_j(w_j) = \frac{p_j - w_j}{p_j w_j} \) for \(j = 1, \cdots, n \). Then \(g(w) \) is a holomorphic mapping from \(\mathbb{D}^n \) into \(\mathbb{B}_m \), \(g(0) = f(p) \), and for \(j = 1, \cdots, n \),
\[g_{w_j}'(0) = f_{z_j}'(p)(-1 + |p_j|^2). \] (3.6)

For the case that \(f(p) \neq 0 \), applying (3.3) to \(g \) and by (2.4), (3.6) we get
\[\sum_{j=1}^{n} (1 - |p_j|^2) |\nabla_j |f(\cdot)|^2 = \sum_{j=1}^{n} (1 - |p_j|^2) \left| \left\langle f_{z_j}'(p), \frac{f(p)}{|f(p)|} \right\rangle \right| \]
\[= \sum_{j=1}^{n} \left| \left\langle g_{w_j}'(0), \frac{g(0)}{|g(0)|} \right\rangle \right| \leq 1 - |g(0)|^2 \]
\[= 1 - |f(p)|^2. \]

For the case that \(f(p) = 0 \), applying (3.4) to \(g \) and by (2.4), (3.6) we get
\[\sum_{j=1}^{n} (1 - |p_j|^2)^2 |\nabla_j |f(\cdot)|^2 = \sum_{j=1}^{n} (1 - |p_j|^2)^2 |f_{z_j}'(p)|^2 \]
\[= \sum_{j=1}^{n} |g_{w_j}'(0)|^2 \leq 1. \]

Then the theorem is proved. \(\square \)

In the following, we give some remarks for the equality cases in Theorem 1.

Remark 1. When \(n = 1 \), (1.8) and (1.9) reduce to (1.5). The equality case in (1.5) has been discussed in [1].
Remark 2. When \(n \geq 2 \), if the equality in (1.9) holds at some point \(p = (p_1, \cdots, p_n) \), then the structure of the expression of \(f \) will be controlled. Precisely:

\[
f(z) = \sum_{j=1}^{n} f'_j(p)\left(-1 + |p_j|^2\right)\frac{p_j - z_j}{1 - \overline{p_j}z_j}, \quad z \in \mathbb{D}^n,
\]

which is obvious by the proof of Theorem 1, Lemma 1 and (2.4).

Remark 3. When \(n \geq 2 \), if the equality in (1.8) holds at some point \(p = (p_1, \cdots, p_n) \), then the following discussion shows that the equality at \(p \) is not enough to control the structure of the expression of \(f \). By the proof of Theorem 1, we know that the key to the extremal problem of (1.8) at \(z = 0 \) is to solve the extremal problem of (1.6) at \(z = 0 \). That is: for \(h \in \Omega_{\mathbb{D}^n, \mathbb{D}} \), if \(\sum_{j=1}^{n} |h'_j(0)| = 1 - |h(0)|^2 \), then what the structure of the expression of \(h \) is. By the proof of (1.6) in [4], we only need to consider this problem: for \(h \in \Omega_{\mathbb{D}^n, \mathbb{D}} \) with \(h(0) = 0 \), if \(\sum_{j=1}^{n} |h'_j(0)| = 1 \), then what the structure of the expression of \(h \) is. However, the following examples show that the condition \(\sum_{j=1}^{n} |h'_j(0)| = 1 \) cannot control the higher order terms in the expansion of \(h \). Consequently, the structure of the expression of \(h \) cannot be controlled.

Examples:

\[
g(z) = \frac{1}{2}z_1 + \frac{1}{2}z_2 \in \Omega_{\mathbb{D}^2, \mathbb{D}}; \quad g'(z) = \frac{\frac{1}{2}z_1 + \frac{1}{2}z_2 - z_1z_2}{1 - \frac{1}{2}z_1 - \frac{1}{2}z_2} \in \Omega_{\mathbb{D}^2, \mathbb{D}}.
\]

Although the above two functions satisfy \(g(0) = g'(0) = 0 \), \(g'_1(0) = g'(z_1)(0) \), \(g'_2(0) = g'(z_2)(0) \) and \(\sum_{j=1}^{n} |g'_j(0)| = \sum_{j=1}^{n} |g'(z_j)(0)| = 1 \), the expression of \(g \) has no higher order terms and the expression of \(g' \) has some higher order terms.

References

DEPARTMENT OF MATHEMATICS, JINLING INSTITUTE OF TECHNOLOGY, NANJING 211169, CHINA

E-mail address: dymdsy@163.com

SCHOOL OF MATHEMATICS AND INFORMATICS, JIANGXI NORMAL UNIVERSITY, NANCHANG 330022, CHINA

DEPARTMENT OF MATHEMATICAL SCIENCES, INDIANA UNIVERSITY - PURDUE UNIVERSITY FORT WAYNE, FORT WAYNE, IN 46805-1499, USA

E-mail address: pan@ipfw.edu