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Abstract

Let G be a finite simple graph of order n, maximum degree ∆, and minimum
degree δ. A compact regularization of G is a ∆-regular graph H of which G is an
induced subgraph: H is symmetric if every automorphism of G can be extended
to an automorphism of H. The index |H : G| of a regularization H of G is the
ratio |V (H)|/|V (G)|. Let mcr(G) denote the index of a minimum compact regular-
ization of G and let mcsr(G) denote the index of a minimum compact symmetric
regularization of G.

Erdős and Kelly proved that every graph G has a compact regularization and
mcr(G) 6 2. Building on a result of König, Chartrand and Lesniak showed that
every graph has a compact symmetric regularization and mcsr(G) 6 2∆−δ. Using
a partial Cartesian product construction, we improve this to mcsr(G) 6 ∆− δ + 2
and give examples to show this bound cannot be reduced below ∆− δ + 1.

Keywords: Graph automorphism; regular graph; regularization.

1 Definitions and history

For any simple graph G, define the discrepancy dG of G by dG = ∆(G)− δ(G); a regular
graph is one with discrepancy 0. For any G which is not regular (and hence has positive
discrepancy), we say that a regularization of G is a regular graph H which contains G
as an induced subgraph. A regularization H of G is compact if ∆(H) = ∆(G); it is
symmetric if every automorphism of G can be extended to an automorphism of H. The
index |H : G| of a regularization H of G is the ratio |V (H)|/|V (G)|.

In his 1936 book on graph theory [11], König gave a construction for a compact
symmetric regularization of index 2 for any graph G: take two isomorphic copies G1, G2

of G, and for any deficient vertex v ∈ V (G) link its images v1 ∈ V (G1), v2 ∈ V (G2) with
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∆(G) − dG(v) parallel edges. (This is the only place in this paper where parallel edges
are allowed.) Chartrand and Lesniak [3] have a version of this proof (that they attribute
to König) that results in a simple graph at the cost of increasing the index to 2dG .

The most important result in regularizations is that of Erdős and Kelly [4, 5] who
gave conditions for minimum compact regularizations of a graph, and showed that these
have index at most 2. Shastri [12] extended this to regularizations that are not necessarily
compact, showing that any graph G on n vertices is an induced subgraph of some regular
graph H on at most 2n− 2 vertices where ∆(H) > ∆(G), and that this is best possible.

In another direction, Akiyama, Era, and Harary [1] showed that for each graph G
there is a ∆(G)-regular graph H of index at most (|V (G)|+ ∆(G) + 2)/|V (G)| containing
G as a subgraph, and that this bound is best possible. Here G is not required to be an
induced subgraph of H.

One may also consider certain graph representations as a variation on this theme; the
problem of finding a modular representation (see [7]) or a Kneser representation (see [10])
can be construed as finding a symmetric (though not necessarily compact) regularization
H of G where H is vertex-transitive. In both of the cases above the search is limited to
a single family of highly symmetric supergraphs; we are not aware of any results on the
general version of the problem.

Our concern in this paper is with improving the Chartrand-Lesniak(-König?) result
on compact symmetric regularizations. We begin by reviewing Erdős and Kelly’s result
in section 2; in section 3 we give a construction for a broad family of compact symmetric
regularizations for a graph G, which encompasses the one from [3]. At its best, this
technique yields an index of dG + 1; we show that this is best possible with a family of
graphs that asymptotically approaches this bound in section 4. In the final section we look
at some examples of graphs that admit constructions with small indices, and conjecture
that mcsr(G) 6 2 for every connected graph G.

2 The Erdős-Kelly Theorem

Let G be a graph. For each vertex v, define the deficiency ev = ∆(G)− deg(v); ev is the
number of edges necessary to join with v in order to bring it up to full degree. Let m(G)
be the minimum value of |V (H)| − |V (G)| where H is a compact regularization of G.

Theorem 1. Let G be a graph of order n and maximum degree ∆. Let Σ be the sum of
the deficiencies of the vertices of G. Then G has a compact regularization of order m+n
if and only if m satisfies the following conditions:

(A) m > Σ/∆;
(B) m2 − (∆ + 1)m+ Σ > 0;
(C) m > dG;
(D) (m+ n)∆ is even.

Such an m exists, and the minimum value m(G) satisfies m(G) 6 n.

In [4, 5], Erdős and Kelly were only concerned with finding m(G), but their proof of
Theorem 1 makes clear that any value ofm satisfying the four conditions is |V (H)|−|V (G)|
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for some compact regularization H of G. Our construction below follows those of [4, 5] but
is more explicit, in the hope that for specific graphs G this will allow the reader to see for
which m the construction can be adapted to produce an H to which the automorphisms
of G extend.

Proof. (That for any positive integer m satisfying conditions (A)-(D), there is a compact
regularization H of order m+n.) Let h, r be integers with Σ = hm+r and 0 6 r < m. Let
a1, . . . , am be new vertices, which we consider to be arranged in a circle. Fill the deficient
vertices of G cyclically; that is, vertex p1 of deficiency d1 is joined to a1, a2, . . . , ad1 , then
vertex p2 of deficiency d2 is joined to ad1+1, . . . , ad1+d2 (addition modulo m), and so on.
By condition (C), there are no parallel edges, and by (A) each ai will have degree at most
∆ at the end of this process. In fact a1, . . . , ar have degree h + 1 and ar+1, . . . , am have
degree h at this point. We now have to bring the degrees of the ai’s up to ∆.

Set ` = ∆ − h. Using (A), hm 6 Σ 6 m∆ so l > 0. Then a1, . . . , ar currently
have deficiency ` − 1 and ar+1, . . . , am currently have deficiency `. We need two facts to
proceed.

Claim 1: ` < m. To see this, note that by the definition of r, 0 > r−m, so (B) implies
m2 − (∆ + 1)m+ Σ > r −m. Then the claim follows from Σ = hm+ r.

Claim 2: If ` is even then r is even, and if ` is odd then m − r is even. To see this,
note that the sum of all vertex degrees of G is n∆−Σ, which thus is even, and (m+n)∆
is even by (D). Together these imply m∆ − Σ is even, and then the claim follows from
the equation r(`− 1) + (m− r)` = m∆− Σ.

If ` is even, for each i we join ai to ai±k for 1 6 k 6 `/2, which is possible by Claim 1.
Since r is even by Claim 2, we can remove the matching a1a2, . . . , ar−1ar, and are done.

If ` is odd, by Claim 2 we can begin by adding the matching ar+1ar+2, . . . ,
am−1am.

If then m is even, by Claim 1 we have `− 1 6 m− 2 so no ai need be joined to all the
other aj’s. For each i we join ai to ai±k for 2 6 k 6 (`− 1)/2, to ai+(m/2), and to ai−1 if i
odd, to ai+1 if i even, and are done.

If instead m is odd, then since by Claim 1 we have ` 6 m− 1, parity implies `+ 1 6
m− 1. So for each i, we can join ai to ai±k for 2 6 k 6 (`+ 1)/2 and are done.

In discussions involving m(G) we will sometimes use M(G) to denote the minimum
value of |V (H)| − |V (G)| where H is a compact symmetric regularization of G. Clearly
m(G) 6 M(G). Let mcr(G) denote the index of a minimum compact regularization of
G and let mcsr(G) denote the index of a minimum compact symmetric regularization of
G, with index as defined earlier. Then mcr(G) = 1 + (m(G)/|V (G)|) and mcsr(G) =
1 + (M(G)/|V (G)|).

We will be interested in graphs G for which M(G) = m(G), and can already identify
one situation where this occurs.

Proposition 2. If every deficient vertex of a graph G has deficiency m(G), then every
minimum compact regularization of G is a minimum compact symmetric regularization,
so M(G) = m(G).

the electronic journal of combinatorics 21(3) (2014), #P3.31 3



Proof. LetH be a minimum compact regularization of G, with u1, . . . , um(G) the vertices of
H not in G. Then every deficient vertex of G is joined to every ui, so any automorphism
θ of G can be extended to H by defining θ(ui) = ui for all i. Thus H is a minimum
compact symmetric regularization of G.

3 Partial Cartesian products of graphs

Recall that the Cartesian product G�L of simple graphs G and L is defined as follows:

V (G�L) = V (G)× V (L),

E(G�L) = {(u, v)(u,w) : vw ∈ E(L)} ∪ {(u,w)(v, w) : uv ∈ E(G)}.

Suppose that G is a graph with positive discrepancy. Let E = {ev > 0 : v ∈ V (G)}
be the set of positive deficiencies of vertices of G. Find a regular graph L with degree at
least dG which admits a factorization F = {F1, . . . , Fk} where Fi is fi-regular and there
is a choice function c from E to the power set of {1, . . . , k} such that for every e ∈ E,
e =

∑
i∈c(e) fi.

Then define the partial Cartesian product G
F ,c
� L as follows:

V (G
F ,c
� L) =V (G)× V (L),

E(G
F ,c
� L) ={(u, v)(u,w) : eu > 0 and vw ∈ E(Fi) for some i ∈ c(eu)}

∪ {(u,w)(v, w) : uv ∈ E(G)}.

Theorem 3. The graph H = G
F ,c
� L is a compact symmetric regularization of G.

Proof. For any v ∈ V (L), the graph induced in H by the vertices {(u, v) : u ∈ V (G)} is
isomorphic to G. To see that H is regular, note that by construction each vertex (u, v)
has degG(u) neighbors of the form (w, v); its neighbors of the form (u,w) correspond
to the edges of the factors Fi where i ∈ c(eu), and by construction there are exactly
eu = ∆(G) − degG(u) such edges. Hence H is a regularization of G, and since H is
∆(G)-regular it is compact.

To prove symmetry, note that every automorphism of G extends in a natural way to
H: if σ ∈ Aut(G) then construct σ′ : V (H) → V (H) by σ′(u, v) = (σ(u), v). If vertices
(u1, v1) and (u2, v2) are adjacent in H, then either u1 = u2 = u or v1 = v2 = v. If the
latter, then clearly (σ(u1), v) and (σ(u2), v) are adjacent because they rest in the same
induced copy of G, and σ is an automorphism of G. If the former, then u and σ(u) have
the same degree and hence the same deficiency; therefore the edge (σ(u), v1)(σ(u), v2)
comes from the same factor Fi that its pre-image does. Thus σ′ is an automorphism
of H.

Remarks. (1) The construction of a compact symmetric regularization in [3] is an in-
stance of this construction, using the hypercube of dimension dG as L.
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(2) The graph G
F ,c
� L contains |L| disjoint copies of G: the graphs G�{w} for

w ∈ V (L). If G contains a copy of K∆+1, necessarily a connected component, then the

corresponding |L| copies of K∆+1 in G
F ,c
� L may all be identified to give a smaller compact

symmetric regularization of G.

The partial Cartesian product gives an upper bound for mcsr(G).

Corollary 4. Let G be a graph with discrepancy dG. Then mcsr(G) 6 dG + 2, and if dG
is odd, or dG is even and no vertex of G has odd deficiency, then mcsr(G) 6 dG + 1.

Proof. For a graph G, the partial Cartesian product construction described above gives

a compact symmetric regularization H = G
F ,c
� L; the index of H is |V (L)|.

If dG is odd, then we can take L = KdG+1, since this complete graph has a 1-
factorization. If dG is even, then KdG+1 does not have factors of odd degree, but has
a 2-factorization. So if no vertex of G has odd deficiency, we can take L = KdG+1, but if
some vertex has odd deficiency then we have to go up to L = KdG+2.

Since the regular graph L used in the partial Cartesian product has degree at least
dG, L has at least dG + 1 vertices. Thus this construction cannot produce a compact
symmetric regularization of index less than dG + 1.

4 An extremal class of graphs

In the study of symmetric regularizations, the following lemma is useful in considering
neighborhoods and degrees of vertices. For a vertex v of a graph H with subgraph G,
NG(v) denotes the open neighborhood of v in G.

Lemma 5. Suppose G is an induced subgraph of H and every automorphism of G extends
to an automorphism of H. Let Γ = {α ∈ Aut(H) : α(G) = G}, a subgroup of Aut(H).

(a) For every vertex v of H not in G, Γv contains at least |{σ(NG(v)) : σ ∈ Aut(G)}|
vertices (necessarily in V (H) \ V (G)).

(b) Let H be a compact symmetric regularization of G, let v be a vertex of H but
not G, and let w ∈ NG(v). Then |{σ(NG(v)) : σ ∈ Aut(G) and w ∈ σ(NG(v))}| cannot
exceed the deficiency of w.

Proof. To establish (a), choose σ1, . . . , σk ∈ Aut(G) such that the σi(NG(v)) are the
distinct images of NG(v) under the automorphisms of G. For each i, let θi be an extension
of σi to H. If for some i, j with i 6= j we have θi(v) = θj(v) then θ−1

j θi fixes v and fixes
V (G) setwise, so fixes NG(v) = NH(v) ∩ V (G). This implies σi(NG(v)) = σj(NG(v)), a
contradiction. Thus the θi(v)’s are distinct.

For (b), choose σ1, . . . , σm ∈ Aut(G) such that the σi(NG(v)) are the distinct images of
NG(v) (under the automorphisms of G) that contain w. For each i, let θi be an extension
of σi to H. By the proof of part (a), θ1(v), . . . , θm(v) are distinct vertices of H that are
not in G. For each i, w ∈ σi(NG(v)) = θi(NG(v)) = NG(θi(v)), so w is adjacent to θi(v)
for i = 1, . . . ,m.
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We now give examples of graphs G with mcsr(G) arbitrarily close to dG + 1.

Theorem 6. Let ∆, h be positive integers. Let G = G(∆, h) be the disjoint union of K∆+1

with h isolated vertices. Then

m(G(∆, h)) =

{
∆ + 1 if h < ∆,∆ odd, and h even,
max{∆, h} otherwise,

M(G(∆, h)) =

{
m(G(∆, h)) if h 6 ∆ + 1 or ∆ = 1,
h∆ otherwise.

If 2 6 ∆ 6 h − 2, the unique minimum compact symmetric regularization of G(∆, h) is
isomorphic to the disjoint union of h+ 1 copies of K∆+1.

Proof. The graph G has ∆ + 1 + h vertices and maximum degree ∆. The maximum
deficiency of G is dG = ∆ and Aut(G) ∼= S∆+1 × Sh, a product of symmetric groups.

We use Theorem 1 to find m(G(∆, h)). Here dG = ∆ and Σ = h∆ so conditions (A)
and (C) of Theorem 1 together are equivalent to m > max{∆, h}. Any m > ∆ satisfies
condition (B), so we are left to consider the parity condition (D): (m+∆+1+h)∆ must be
even. Thus if h > ∆ then m(G(∆, h)) = h. If h < ∆ then m > ∆; the parity constraint
gives m(G(∆, h)) = ∆ unless ∆ is odd and h is even, when m(G(∆, h)) = ∆ + 1.

It remains to find M(G(∆, h)). Let x1, . . . , xh be the isolated vertices of G(∆, h).
If ∆ = 1 then we must connect each xi to a different new vertex, giving a perfect

matching, so M(G(∆, h)) = h = m(G(∆, h)) here. We assume ∆ > 2 for the remainder
of the proof.

Suppose h < ∆, ∆ is odd, and h is even, so m(G(∆, h)) = ∆ + 1 as determined above.
We can take ∆ new vertices v1, . . . , v∆ and join each to all the deficient vertices of G.
Take a further new vertex and join it to v1, . . . , v∆. We are left with vertices v1, . . . , v∆

each now having deficiency ∆−h− 1, which is even. If ∆ = h+ 1 we are done; otherwise
we can finish by putting the vi’s in a circle and joining each vi to the ∆− h− 1 nearest
vj’s. The resulting graph H is a compact symmetric regularization of G(∆, h) since any
automorphism θ of G(∆, h) can be extended to H by setting θ(w) = w for any vertex of
H not in G(∆, h).

If h 6 ∆ but we are not in the situation just discussed then m(G(∆, h)) = ∆ = dG(∆,h)

so M(G(∆, h)) = m(G(∆, h)) by Proposition 2.
If h = ∆ + 1 then m(G(∆, h)) = h. We can take new vertices y1, . . . , yh and join

every xi to every yj with i 6= j. This yields a compact symmetric regularization so again
M(G(∆, h)) = m(G(∆, h)).

Finally we consider the case 2 6 ∆ 6 h− 2.
Suppose in a compact symmetric regularization H of G some vertex v is adjacent

to exactly j of the xi’s, where 1 6 j 6 ∆. Let Γ = {α ∈ Aut(H) : α(G) = G}. By
renumbering the xi’s we may assume NG(v) = {x1, . . . , xj}. Lemma 5(a) implies that the
orbit of v under the action of Γ contains at least

(
h
j

)
vertices, corresponding to images of

{x1, . . . , xj} under automorphisms of G. Of these images,
(
h−1
j−1

)
contain x1, so by Lemma

5(b) the degree of x1 in H is at least
(
h−1
j−1

)
, implying

(
h−1
j−1

)
6 ∆. Since also ∆ 6 h − 2,
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this implies j = 1. Therefore no u in V (H) is adjacent to more than one of the xi’s, so
h∆ vertices of H are required to bring the xi’s up to degree ∆.

For each i, k with 1 6 i 6 h and 1 6 k 6 ∆, let xik be a vertex of H adjacent to xi.
We may complete all the xik’s by adding edges xikxim for every i and 1 6 k < m 6 ∆,
which proves the last claim.

In the case 2 6 ∆ 6 h−2 of Theorem 6, we can employ the partial Cartesian product
with L = K∆+1 and then identify copies of K∆+1 as in the second remark after Proposition
3 to reach the compact symmetric regularization H(∆, h) just found.

The index of H(∆, h) is

|H(∆, h) : G(∆, h)| = (h+ 1)(∆ + 1)

∆ + 1 + h
=

∆ + 1
∆
h+1

+ 1
.

Fix ∆ > 2. We note that for h = ∆,∆ + 1 we have mcsr(G(∆, h)) = 1 + h
∆+1+h

< 2.

As we go to h = ∆ + 2, mcsr(G(∆, h)) jumps to ∆2+4∆+3
2∆+3

, which is not quite (2∆ + 5)/4.
Then as h increases, mcsr(G(∆, h)) approaches ∆ + 1, which is dG + 1. This establishes:

Corollary 7. The bound mcsr(G) 6 dG + 1 cannot be reduced.

Note that this bound may not be sufficient, since Theorem 4 allows for the possibility
of some graphs G with dG + 1 < mscr(G) 6 dG + 2. However we have not found any G
with mscr(G) in this range.

5 Some graphs admitting smaller indices

We have shown that in general the bound of dG + 1 cannot be improved; however, in
general constructions with much smaller indices can be achieved.

Proposition 8. Almost all finite graphs admit compact symmetric regularizations with
index at most 2.

Proof. Erdős and Rényi [6] showed that almost all graphs have trivial automorphism
groups; any compact regularization of such a graph is clearly also symmetric.

Hence, we may distinguish between graphs with relatively small automorphism groups
(i.e. the vast majority of graphs) and those with plenty of automorphisms. In the former
case, we can generally manipulate the Erdős-Kelly construction to respect the automor-
phism group; in the latter, we may exploit the symmetries of the graph to organize our
addition of vertices. We give a construction and some examples to illustrate this.

Let G be a graph. Say that a predicate Q : V (G)× V (G)→ {T, F} is balanced if for
all a, b ∈ V (G) and all η ∈ Aut(G), Q(a, b) = Q(b, a) and Q(a, b) = Q(η(a), η(b)).

Let G′ be a copy of G, φ an isomorphism from G to G′, Q a balanced predicate for
G, and HQ the disjoint union of G and G′ with additional edges: for all a, b ∈ V (G), if
Q(a, b) then we join a to φ(b) and φ(a) to b.
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Proposition 9. For any graph G and balanced predicate Q on G, every automorphism
of G extends to an automorphism of HQ.

Proof. Given θ ∈ Aut(G), extend θ to Θ : HQ → HQ by defining Θ(φ(w)) = φ(θ(w))
for all w ∈ V (G). We check that Θ respects adjacency in HQ. It is clear that x ↔ y if
and only if Θ(x) ↔ Θ(y) for x, y ∈ V (G) and for x, y ∈ V (G′). Suppose x ∈ V (G) and
y ∈ V (G′). Then there is b ∈ V (G) with y = φ(b). By the definition of HQ, x↔ y if and
only if Q(x, b), and Θ(x)↔ Θ(y) if and only if θ(x)↔ φ(θ(b)), which is true if and only
if Q(θ(x), θ(b)). Since Q is balanced we are done.

For a nonregular graph G, we can attempt to construct a compact symmetric regular-
ization HQ of index 2 by taking Q to be the disjunction of several balanced predicates, as
shown next.

Note that as automorphisms respect vertex degree, there is a natural action of the
automorphism group of a graph on the set of deficient vertices of the graph.

Proposition 10. Suppose that G is a graph for which O1, . . . , Ok are the orbits of deficient
vertices under the action of Aut(G), with |Oi| = mi for each i. If the deficiency ei of the
vertices of Oi is a member of {1,mi − 1,mi} for each i, then mcsr(G) 6 2.

Proof. We use the above construction with the balanced predicate Q = Q1 ∨ · · · ∨ Qk,
where Qi(a, b) is “a = b and a ∈ Oi” if ei = 1, is “a, b ∈ Oi” if ei = mi, and is “a, b ∈ Oi

and a 6= b” if ei = mi − 1. Then HQ is a compact symmetric regularization of G by
Proposition 9.

The graphs in the following example are similar to those of Example 6 but have
compact symmetric regularizations of much smaller indices.

Example 11. Let d and h be positive integers. Let G be the graph consisting of a clique
of size d + 1 and h further vertices, each joined to all members of the clique. Then
mcsr(G) 6 2.

Proof. The graph G has ∆(G) = d + h and one orbit of deficient vertices, containing h
vertices of deficiency h− 1, so Proposition 10 applies.

In their proof [4, 5] of Theorem 1, Erdős and Kelly gave examples to show that none
of the four conditions could be omitted. But frequently the first condition (m > Σ/∆)
dominates: m(G) = dΣ/∆e. It is easily seen that M(Pn) = m(Pn) = dΣ/∆e, and one
may ask whether this property holds for more complex graphs. We show that it holds for
grid graphs, and for cylinder graphs of even circumference.

For integers n > 2, let Pn denote a path with n vertices. For integers n > 3, let Cn
denote a cycle with n vertices. Let Zn denote the group of integers modulo n. For n, k > 2
we say the Cartesian product Pn×Pk is a grid graph; for n > 3 and k > 2, the Cartesian
product Cn × Pk is a cylinder graph.

The constructions required to prove the next two theorems are straightforward exten-
sions of Proposition 10, and are given in the Appendix.
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Theorem 12. For n, k > 3, M(Pn × Pk) = m(Pn × Pk) =
⌈
n+k

2

⌉
= dΣ/∆e.

Theorem 13. For n, k > 3, m(Cn × Pk) = dn/2e = dΣ/∆e and

M(Cn × Pk) =


n/2 if n is even,
2n/3 if n is an odd multiple of 3,
n otherwise.

Another class of examples that gives small values of mcsr(G) are subdivisions of regular
cubic graphs (where each edge is subdivided once). The Erdős-Kelly construction gives an
index of 6

5
for these graphs; König’s construction for a compact symmetric regularization

gives an index of 2 in this case. This is best possible, since subdivisions of K3,3, the
Tutte-Coxeter graph, and the Heawood graph all require constructions of index 2. (This
statement is established in Theorem A of the Appendix.)

These examples represent occasionally clever uses of combining Erdős-Kelly with
knowledge of a graph’s automorphism group, but they do not seem particularly atypi-
cal. We have yet to find any examples of connected graphs that require constructions
with indices higher than 2, which leads us to the following.

Conjecture 14. For any connected graph G, mcsr(G) 6 2.

Moreover, if we follow Shastri’s lead and allow ourselves the option of increasing the
maximum degree to achieve regularity we need to double the order at most:

Theorem 15. Every graph G on n vertices admits a symmetric regularization H on 2n
vertices with regularity n− 1.

Proof. Apply the construction given before Proposition 9 to G with the balanced predicate
Q(x, y) being “x is neither equal nor adjacent to y”. By Proposition 9, any automorphism
of G extends naturally to an automorphism of HQ, which is clearly (n− 1)-regular.

Of course ifG contains a “mastermind” vertex with degree n−1 then this regularization
is also compact.

References

[1] J. Akiyama, H. Era, and F. Harary, Regular graphs containing a given graph, Elem.
Math. 38(1983), no. 1, 15–17.

[2] N. Biggs, Algebraic Graph Theory, Second edition, Cambridge University Press, Cam-
bridge, 1993.

[3] G. Chartrand and L. Lesniak, Graphs and Digraphs, Fourth edition, Chapman &
Hall/CRC, Boca Raton, 2005.
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A Some proofs

Proof of Theorem 12. We will denote the vertices of Pn × Pk by ordered pairs (i, j), 1 6
i 6 n, 1 6 j 6 k ; the vertex (i, j) is adjacent to those vertices (i ± 1, j ± 1) that are
defined.

Here Σ = 4 · 2 + 2(n− 2) + 2(k − 2) = 2(n+ k) and ∆ = 4.
Condition (A) of Theorem 1 implies m(Pn×Pk) > dΣ/∆e, so to prove the theorem it

suffices to add dΣ/∆e vertices and appropriate edges to Pn × Pk and thereby produce a
compact symmetric regularization H of Pn×Pk. Note that when n 6= k, Aut(Pn×Pk) ∼=
Z2×Z2 is the group of symmetries of a rectangle, and Aut(Pn×Pn) is isomorphic to the
dihedral group of order 8, which is the group of symmetries of a square. Throughout the
remainder of the proof, let θ denote an arbitrary automorphism of Pn × Pk.

We start with bn/2c + bk/2c − 2 new vertices: for each j, 2 6 j 6 bk/2c, add a
new vertex whose neighborhood in Pn × Pk is Tj = {(1, j), (1, k − j), (n, j), (n, k − j)},
and for each i, 2 6 i 6 bn/2c, add a new vertex whose neighborhood in Pn × Pk is
Si = {(i, 1), (n − i, 1), (i, k), (n − i, k)}. If n 6= k then each Tj and each Si is an orbit of
V (Pn×Pk) under the action of Aut(Pn×Pk) and thus is fixed setwise by θ. If n = k then
for each i, 2 6 i 6 bn/2c, {Ti, Si} is permuted by θ.

Completing H depends on the parities of n and k.
If n ≡ k (mod 2), we add two more vertices, each with neighborhood C = {(1, 1), (n,

1), (1, k), (n, k)} in Pn × Pk. If n and k are odd, we also add a vertex with neighborhood
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M = {(1, (k+1)/2), (n, (k+1)/2), ((n+1)/2, 1), ((n+1)/2, k)} in Pn×Pk. Here θ(C) = C,
θ(M) = M , and the total number of new vertices is (n+ k)/2 = Σ/∆.

If n 6≡ k (mod 2), we may assume without loss of generality that n is odd. We complete
H by adding three more vertices. The first vertex has neighborhood C in Pn × Pk. Then
add a second vertex with neighborhood L = {(1, 1), ((n+1)/2, 1), (n, 1)} in Pn×Pk and a
third vertex with neighborhood R = {(1, k), ((n+1)/2, k), (n, k)} in Pn×Pk, and connect
the second and third vertices. Here θ permutes {L,R} and the total number of new
vertices is (n+ k + 1)/2 = dΣ/∆e.

In each case, H is a compact regularization of Pn × Pk with the desired number of
vertices. The automorphism θ induces a permutation of the neighborhoods in Pn × Pk of
the added vertices, and the corresponding permutation of the set of added vertices gives
an extension of θ to an automorphism of H. Thus H is a symmetric regularization.

Proof of Theorem 13. We will denote the vertices of Cn×Pk by ordered pairs (i, j), where
i ∈ Zn and j is an integer with 1 6 j 6 k ; the vertex (i, j) is adjacent to those vertices
(i± 1, j ± 1) that are defined.

The graph Cn × Pk has n(k − 2) vertices of degree 4 and 2n vertices of degree 3, so
∆ = 4, dCn×Pk

= 1, Σ = 2n, and Σ/∆ = n/2. The conditions of Theorem 1 here become
m > n/2, m2 − 5m + 2n > 0, m > 1, and (m + nk)4 is even. The minimum value of m
satisfying these is dn/2e, establishing the value of m(Cn×Pk), so we turn to M(Cn×Pk).

Each deficient vertex of Cn × Pk requires only one new edge. By Lemma 5(b), this
implies that for each new vertex v of a compact symmetric regularization of Cn × Pk, no
vertex of Cn×Pk is contained in more than one image of NG(v) under the automorphisms
of Cn × Pk. That is, each NG(v) is a block of the action of Aut(G) on the set of deficient
vertices of Cn×Pk: the images of NG(v) form a partition of the orbit that contains them.
This considerably restricts our search. Let B be a block with |B| 6 ∆ = 4.

The automorphism group of Cn × Pk has order 4n, and is isomorphic to the product
of a dihedral group of order 2n (from the automorphism group of Cn) and a Z2 (from
the automorphism group of Pn). The second factor yields σ ∈ Aut(Cn × Pk) defined by
σ(h, l) = (h, k + 1− l). From the first factor, for each i ∈ Zn, there is φi ∈ Aut(Cn × Pk)
defined by φi(h, l) = (2i− h, l).

A useful fact: For any (i, j) ∈ B, since φi(i, j) = (i, j), necessarily φi(B) = B.
This fact implies that blocks of size 4 exist if and only if n is even, in which case

the sets Fi = {(i, 1), (i, k), (i + (n/2), 1), (i + (n/2), k)}, i = 1, . . . , n/2, are four-blocks
forming a partition of D. We can then make these the neighborhoods in Cn × Pk of n/2
new vertices. The resulting graph is a compact regularization H of Cn × Pk; since each
new vertex has all neighbors in Cn × Pk, no smaller compact regularization is possible.
Any automorphism θ of Cn × Pk induces a permutation of {Fi : 1 6 i 6 n/2}, which
gives a permutation of the new vertices, thus defining an extension of θ to H, so H is
symmetric.

Assume then that n is odd, so no four-block of the action of Aut(Cn×Pk) on D exists.
We look for three-blocks; using the φi’s as before, we see that three-blocks exist if and
only if n is divisible by 3, in which case the sets Ei,1 = {(i, 1), (i+(n/3), 1), (i+(2n/3), 1)}
and Ei,k = {(i, k), (i+ (n/3), k), (i+ (2n/3), k)}, i = 1, . . . , n/3, are three-blocks forming
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a partition of D. For each i, 1 6 i 6 n/3, we take a vertex vi,1 with neighborhood Ei,1 in
Cn × Pk and a vertex vi,k with neighborhood Ei,k in Cn × Pk, and join vi,1 and vi,k. The
result is a compact regularization H of Cn × Pk, and it has minimum order since no new
vertex can cover more than three vertices of Cn × Pk.

For i = 1, . . . , n/3, σ switches Ei,1 and Ei,k, and for these i and all j ∈ Zn, φj(Ei,g) =
E2j−i,g for g ∈ {1, k}. Thus we can extend these automorphisms to H as follows: σ
switches v1,1 and vi,k for all i ∈ Zn, and φj(vi,g) = v2j−i,g for all j ∈ Zn and i = 1, . . . , n/3 in
Zn. As σ and the φi’s generate Aut(Cn×Pk), this shows H is symmetric as a regularization
of G.

Finally, assume that n is divisible by neither 2 nor 3. Then the largest blocks possible
are two-blocks, and the sets Zi = {(i, 1), (i, k)}, 1 6 i 6 n, are two-blocks forming a
partition of D. For each i ∈ Zn, we may take a vertex ti adjacent to the vertices of Zi
and also to ti−1 and ti+1. The resulting graph is a compact regularization of Cn × Pk; it
is isomorphic to Cn × Ck+1 and thus is visibly a symmetric regularization. Since no new
vertex can cover more than two vertices of Cn × Pk, it has minimum order.

The following theorem establishes the claim in the last sentence of the paragraph
following Theorem 13.

Theorem A. Let G be a connected cubic t-transitive graph for some integer t > 1. If
t > d = diam(L(G)) then t = d+ 1, |V (G)| = 2t − 2, mcsr(G∗) = 2, and G is isomorphic
to one of K3,3, the Heawood graph, and the Tutte-Coxeter graph.

Proof. Fix an edge e of G and for i = 0, 1, . . . , d = diam(L(G)), let Si denote the set
of edges at distance i from e. Let G′ be the subgraph of G induced by ∪t−2

i=0Si. Since G
is t-transitive, [2, Proposition 17.2] says that the girth g of G is at least 2(t − 1), which
implies G′ is a tree. As G is cubic, induction on distance from e shows |Si| = 2i+1 for
1 6 i 6 t− 2. Thus G′ has 2t−1 vertices of degree one, each of which is incident in G to
one edge of St−2 and two edges of St−1. To count St−1, we require the following.

Claim. No vertex of G is incident to three edges of St−1.
Proof of claim: Suppose there is such a vertex, say x, with edges w1x, w2x, w3x ∈ St−1.

Each wix is the last edge in a t-arc Ai whose first edge is e = {y, z}. As there are three
edges incident at x and only two ends of e, at least two Ai’s must have the same initial
1-arc; we may assume that for j = 2, 3, Aj = [y1 = y, z, yj, . . .].

If A1 also began with y1, then since deg z = 3 we would have two (t− 2)-arcs with the
same initial vertex ending in x, and these would be distinct as they would pass through
different wi’s. This would imply g 6 2t− 4, a contradiction. Thus A1 = [z, y1, . . .].

As G is t-transitive, there is an automorphism θ of G with θ(A2) = A1. Then θ(w2) =
w1 so θ(w3) = wj for some j ∈ {2, 3}. Omitting the end edges of θ(A3) gives a path of
length t− 2 from y1 to wj, and Aj includes a path of length t− 1 from y1 to wj. Together
these imply the existence of a cycle of odd length at most 2t−3, contradicting g > 2(t−1).
This completes the proof of the claim.

The claim implies that each edge in St−1 is incident at each end to one edge in St−2

and one edge in St−1. An edge in St−2 cannot be incident only to edges in St−1, so the
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subgraph of G induced by St−1 is a disjoint union of cycles, with each vertex of each
cycle incident in G to one edge in St−2. It follows that |St−1| = |St−2| = 2t−1. As
d 6 t− 1 we have accounted for all edges of G, and d = t− 1. Then |E(G)| =

∑t−1
i=0 |Si| =

1+
∑t−2

i=1 2i+1 +2t−1 = 3·2t−1−3. Since G is a cubic graph, |V (G)| = (2/3)|E(G)| = 2t−2.
Let H be a compact symmetric regularization of G∗. We first show that each vertex in

H but not G∗ is adjacent to at most one vertex of G∗. If not, then since G is t-transitive
we may assume that the vertex v0 that subdivides edge e0 = e of G and the vertex v1 that
subdivides another edge e1 of G are adjacent to a vertex w of H. For some i, 1 6 i 6 t−1,
the distance from e0 to e1 in L(G) is i, and we have shown |Si| > 4. Then since G is
t-transitive, the automorphisms of G that fix e0 carry e1 to at least three other edges of
G. Thus if B is a block of the action of Aut(G∗) on V (G∗) and v0, v1 ∈ B then |B| > 5.
But then |NG∗(w)| > 5, contrary to H being a cubic graph.

It follows that we may define a one-to-one function f : E(G) → (V (H) \ V (G∗)) by
saying f(xy) is the unique vertex of H but not G∗ adjacent to the vertex of G∗ that
subdivides xy. We next show that there are no edges among vertices of f(E(G)). If there
is such an edge, the t-transitivity of G allows us to assume that H has an edge f(e0)f(e2)
for some edge e2 of G. As before, the automorphisms of G that fix e0 carry e2 to at
least three other edges of G. Since these automorphisms extend to H, the vertex f(e0) is
adjacent to at least four vertices of H, again contradicting H being a cubic graph.

Thus the |E(G)| vertices in f(E(G)) each require two more edges having one end
in neither V (G∗) nor f(E(G)). Therefore H has at least 2|E(G)|/3 = |V (G)| vertices
beyond those in V (G∗) ∪ f(E(G)), so |V (H)| > 2|V (G∗)|. Since dG∗ = 1, Corollary 4
implies mcsr(G∗) 6 2, so mcsr(G∗) = 2.

Finally, the conclusion d = t−1 reached above implies t > 3 and Tutte has shown [13]
that there are no cubic t-transitive graphs for t > 5, so t ∈ {3, 4, 5}. The Foster census of
symmetric cubic graphs ([8] or [9]) contains for each of t = 3, 4, 5 exactly one graph with
2t− 2 vertices: K3,3 for t = 3, the Heawood graph for t = 4, and the Tutte-Coxeter graph
for t = 5. Each satisfies d = t− 1.
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