ESI MINIMAL ENERGY POINT SETS, LATTICES AND DESIGNS, 2014

Universal lower bounds for potential energy of spherical codes

Peter Dragnev
Indiana University-Purdue University Fort Wayne

Joint work with:
P. Boyvalenkov (IMI, Sofia); D. Hardin, E. Saff (Vanderbilt University); and M. Stoyanova (Sofia University) (BDHSS)

Outline

- Why minimize energy?
- Delsarte-Yudin LP approach
- DGS bounds for spherical τ-desings
- Levenshtein bounds for codes
- $1 / N$ quadrature and Levenshtein nodes
- Universal lower bound for energy (ULB)
- Improvements of ULB and LP universality
- Examples
- Conclusions and summary of future work

Why Minimize Potential Energy? Electrostatics:

Thomson Problem (1904) -
("plum pudding" model of an atom)
Find the (most) stable (ground state) energy configuration (code) of N classical electrons (Coulomb law) constrained to move on the sphere \mathbb{S}^{2}.

Why Minimize Potential Energy? Electrostatics:

Thomson Problem (1904) -
 ("plum pudding" model of an atom)

Find the (most) stable (ground state) energy configuration (code) of N classical electrons (Coulomb law) constrained to move on the sphere \mathbb{S}^{2}.

Generalized Thomson Problem ($1 / r^{s}$ potentials and $\log (1 / r)$)
A code $C:=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right\} \subset \mathbb{S}^{n-1}$ that minimizes Riesz s-energy

$$
E_{s}(C):=\sum_{j \neq k} \frac{1}{\left|\mathbf{x}_{j}-\mathbf{x}_{k}\right|^{s}}, \quad s>0, \quad E_{\log }\left(\omega_{N}\right):=\sum_{j \neq k} \log \frac{1}{\left|\mathbf{x}_{j}-\mathbf{x}_{k}\right|}
$$

is called an optimal s-energy code.

Why Minimize Potential Energy? Coding:

Tammes Problem (1930)

A Dutch botanist that studied modeling of the distribution of the orifices in pollen grain asked the following.

Why Minimize Potential Energy? Coding:

Tammes Problem (1930)

A Dutch botanist that studied modeling of the distribution of the orifices in pollen grain asked the following.

Tammes Problem (Best-Packing, $s=\infty$)
Place N points on the unit sphere so as to maximize the minimum distance between any pair of points.

Why Minimize Potential Energy? Coding:

Tammes Problem (1930)

A Dutch botanist that studied modeling of the distribution of the orifices in pollen grain asked the following.

Tammes Problem (Best-Packing, $s=\infty$)
Place N points on the unit sphere so as to maximize the minimum distance between any pair of points.

Definition

Codes that maximize the minimum distance are called optimal (maximal) codes. Hence our choice of terms.

Why Minimize Potential Energy? Nanotechnology:

Fullerenes (1985) - (Buckyballs)

Vaporizing graphite, Curl, Kroto, Smalley, Heath, and O'Brian discovered C_{60} (Chemistry 1996 Nobel prize)

Why Minimize Potential Energy? Nanotechnology:

Fullerenes (1985) - (Buckyballs)

Vaporizing graphite, Curl, Kroto, Smalley, Heath, and O'Brian discovered C_{60} (Chemistry 1996 Nobel prize)

Duality structure: 32 electrons and C_{60}.

Optimal s-energy codes on \mathbb{S}^{2}

Known optimal s-energy codes on \mathbb{S}^{2}

- $s=\log$, Smale's problem, logarithmic points (known for $N=2-6,12$);
- $s=1$, Thomson Problem (known for $N=2-6,12$)
- $s=-1$, Fejes-Toth Problem (known for $N=2-6,12$)
- $s \rightarrow \infty$, Tammes Problem (known for $N=1-12,13,24$)

Limiting case - Best packing

For fixed N, any limit as $s \rightarrow \infty$ of optimal s-energy codes is an optimal (maximal) code.

Universally optimal codes

The codes with cardinality $N=2,3,4,6,12$ are special (sharp codes) and minimize large class of potential energies. First "non-sharp" is $N=5$ and very little is rigorously proven.

Optimal five point log and Riesz s-energy code on \mathbb{S}^{2}

Figure : 'Optimal' 5 -point codes on \mathbb{S}^{2} : (a) bipyramid BP, (b) optimal square-base pyramid SBP $(s=1)$, (c) 'optimal’ SBP ($s=16$).

Optimal five point log and Riesz s-energy code on \mathbb{S}^{2}

(a)

(b)

(c)

Figure : 'Optimal' 5-point codes on \mathbb{S}^{2} : (a) bipyramid BP, (b) optimal square-base pyramid SBP $(s=1)$, (c) 'optimal' SBP $(s=16)$.

- P. Dragnev, D. Legg, and D. Townsend, Discrete logarithmic energy on the sphere, Pacific J. Math. 207 (2002), 345-357.
- X. Hou, J. Shao, Spherical Distribution of 5 Points with Maximal Distance Sum, Discr. Comp. Geometry, 46 (2011), 156-174
- R. E. Schwartz, The Five-Electron Case of Thomson's Problem, Exp. Math. 22 (2013), 157-186.

Optimal five point log and Riesz s-energy code on \mathbb{S}^{2}

(a)

(b)

(c)

Figure : ‘Optimal’ 5-point code on \mathbb{S}^{2} : (a) bipyramid BP, (b) optimal square-base pyramid SBP $(s=1)$, (c) 'optimal' SBP $(s=16)$.

Figure : 5 points energy ratio

Optimal five point log and Riesz s-energy code on \mathbb{S}^{2}

(a) ByPyramid

(b) Square Pyramid

Theorem (Bondarenko-Hardin-Saff)

Any limit as $s \rightarrow \infty$ of optimal s-energy codes of 5 points is a square pyramid with the square base in the Equator.

- A. V. Bondarenko, D. P. Hardin, E. B. Saff, Mesh ratios for best-packing and limits of minimal energy configurations, Acta Math. Hungarica, 142(1), (2014) 118-131.

Minimal h-energy - preliminaries

- Spherical Code: A finite set $C \subset \mathbb{S}^{n-1}$ with cardinality $|C|$;
- Let the interaction potential $h:[-1,1] \rightarrow \mathbb{R} \cup\{+\infty\}$ be an absolutely monotone ${ }^{1}$ function;
- The h-energy of a spherical code C :

$$
E(n, C ; h):=\sum_{x, y \in C, y \neq x} h(\langle x, y\rangle), \quad|x-y|^{2}=2-2\langle x, y\rangle=2(1-t),
$$

where $t=\langle x, y\rangle$ denotes Euclidean inner product of x and y.

Problem

Determine

$$
\mathcal{E}(n, N ; h):=\min \left\{E(n, C ; h):|C|=N, C \subset \mathbb{S}^{n-1}\right\}
$$

and find (prove) optimal h-energy codes.

[^0]
Absolutely monotone potentials - examples

- Riesz s-potential: $h(t)=(2-2 t)^{-s / 2}=|x-y|^{-s}$;
- Log potential: $h(t)=-\log (2-2 t)=-\log |x-y| ;$
- Gaussian potential: $h(t)=\exp (2 t-2)=\exp \left(-|x-y|^{2}\right)$;
- Korevaar potential: $h(t)=\left(1+r^{2}-2 r t\right)^{-(n-2)}, 0<r<1$.

Other potentials (low. semicont.);
'Kissing' potential: $h(t)= \begin{cases}0, & -1 \leq t \leq 1 / 2 \\ \infty, & 1 / 2 \leq t \leq 1\end{cases}$

Remark

Even if one 'knows' an optimal code, it is usually difficult to prove optimality-need lower bounds on $\mathcal{E}(n, N ; h)$.

Delsarte-Yudin linear programming bounds: Find a potential f such that $h \geq f$ for which we can obtain lower bounds for the minimal f-energy $\mathcal{E}(n, N ; f)$.

Spherical Harmonics and Gegenbauer polynomials

- $\operatorname{Harm}(k)$: homogeneous harmonic polynomials in n variables of degree k restricted to \mathbb{S}^{n-1} with

$$
r_{k}:=\operatorname{dim} \operatorname{Harm}(k)=\binom{k+n-3}{n-2}\left(\frac{2 k+n-2}{k}\right) .
$$

- Spherical harmonics (degree k): $\left\{Y_{k j}(x): j=1,2, \ldots, r_{k}\right\}$ orthonormal basis of $\operatorname{Harm}(k)$ with respect to integration using $(n-1)$-dimensional surface area measure on \mathbb{S}^{n-1}.
- For fixed dimension n, the Gegenbauer polynomials are defined by

$$
P_{0}^{(n)}=1, \quad P_{1}^{(n)}=t
$$

and the three-term recurrence relation (for $k \geq 1$)

$$
(k+n-2) P_{k+1}^{(n)}(t)=(2 k+n-2) t P_{k}^{(n)}(t)-k P_{k-1}^{(n)}(t) .
$$

- Gegenbauer polynomials are orthogonal with respect to the weight $\left(1-t^{2}\right)^{(n-3) / 2}$ on $[-1,1]$ (observe that $P_{k}^{(n)}(1)=1$).

Spherical Harmonics and Gegenbauer polynomials

- The Gegenbauer polynomials and spherical harmonics are related through the well-known Addition Formula:

$$
\frac{1}{r_{k}} \sum_{j=1}^{r_{k}} Y_{k j}(x) Y_{k j}(y)=P_{k}^{(n)}(t), \quad t=\langle x, y\rangle, x, y \in \mathbb{S}^{n-1}
$$

- Consequence: If C is a spherical code of N points on \mathbb{S}^{n-1},

$$
\begin{aligned}
\sum_{x, y \in C} P_{k}^{(n)}(\langle x, y\rangle) & =\frac{1}{r_{k}} \sum_{j=1}^{r_{k}} \sum_{x \in C} \sum_{y \in C} Y_{k j}(x) Y_{k j}(y) \\
& =\frac{1}{r_{k}} \sum_{j=1}^{r_{k}}\left(\sum_{x \in C} Y_{k j}(x)\right)^{2} \geq 0
\end{aligned}
$$

'Good' potentials for lower bounds - Delsarte-Yudin LP

Suppose $f:[-1,1] \rightarrow \mathbf{R}$ is of the form

$$
\begin{equation*}
f(t)=\sum_{k=0}^{\infty} f_{k} P_{k}^{(n)}(t), \quad f_{k} \geq 0 \text { for all } k \geq 1 \tag{1}
\end{equation*}
$$

$f(1)=\sum_{k=0}^{\infty} f_{k}<\infty \Longrightarrow$ convergence is absolute and uniform.
Then:

$$
\begin{aligned}
E(n, C ; f) & =\sum_{x, y \in C} f(\langle x, y\rangle)-f(1) N \\
& =\sum_{k=0}^{\infty} f_{k} \sum_{x, y \in C} P_{k}^{(n)}(\langle x, y\rangle)-f(1) N \\
& \geq f_{0} N^{2}-f(1) N=N^{2}\left(f_{0}-\frac{f(1)}{N}\right) .
\end{aligned}
$$

Thm (Delsarte-Yudin LP Bound)

Let $A_{n, h}=\left\{f: f(t) \leq h(t), t \in[-1,1], f_{k} \geq 0, k=1,2, \ldots\right\}$. Then

$$
\begin{equation*}
\mathcal{E}(n, N ; h) \geq N^{2}\left(f_{0}-f(1) / N\right), \quad f \in A_{n, h} . \tag{2}
\end{equation*}
$$

An N-point spherical code C satisfies $E(n, C ; h)=N^{2}\left(f_{0}-f(1) / N\right)$ if and only if both of the following hold:
(a) $f(t)=h(t)$ for all $t \in\{\langle x, y\rangle: x \neq y, x, y \in C\}$.
(b) for all $k \geq 1$, either $f_{k}=0$ or $\sum_{x, y \in C} P_{k}^{(n)}(\langle x, y\rangle)=0$.

Thm (Delsarte-Yudin LP Bound)

Let $A_{n, h}=\left\{f: f(t) \leq h(t), t \in[-1,1], f_{k} \geq 0, k=1,2, \ldots\right\}$. Then

$$
\begin{equation*}
\mathcal{E}(n, N ; h) \geq N^{2}\left(f_{0}-f(1) / N\right), \quad f \in A_{n, h} . \tag{2}
\end{equation*}
$$

An N-point spherical code C satisfies $E(n, C ; h)=N^{2}\left(f_{0}-f(1) / N\right)$ if and only if both of the following hold:
(a) $f(t)=h(t)$ for all $t \in\{\langle x, y\rangle: x \neq y, x, y \in C\}$.
(b) for all $k \geq 1$, either $f_{k}=0$ or $\sum_{x, y \in C} P_{k}^{(n)}(\langle x, y\rangle)=0$.

Maximizing the lower bound (2) can be written as maximizing the objective function

$$
F\left(f_{0}, f_{1}, \ldots\right):=N\left(f_{0}(N-1)-\sum_{k=1}^{\infty} f_{k}\right),
$$

subject to $f \in A_{n, h}$.

Thm (Delsarte-Yudin LP Bound)

Let $A_{n, h}=\left\{f: f(t) \leq h(t), t \in[-1,1], f_{k} \geq 0, k=1,2, \ldots\right\}$. Then

$$
\begin{equation*}
\mathcal{E}(n, N ; h) \geq N^{2}\left(f_{0}-f(1) / N\right), \quad f \in A_{n, h} . \tag{2}
\end{equation*}
$$

An N-point spherical code C satisfies $E(n, C ; h)=N^{2}\left(f_{0}-f(1) / N\right)$ if and only if both of the following hold:
(a) $f(t)=h(t)$ for all $t \in\{\langle x, y\rangle: x \neq y, x, y \in C\}$.
(b) for all $k \geq 1$, either $f_{k}=0$ or $\sum_{x, y \in C} P_{k}^{(n)}(\langle x, y\rangle)=0$.

Infinite linear programming is too ambitious, truncate the program
$(L P) \quad$ Maximize $F_{m}\left(f_{0}, f_{1}, \ldots, f_{m}\right):=N\left(f_{0}(N-1)-\sum_{k=1}^{m} f_{k}\right)$,
subject to $f \in \mathcal{P}_{m} \cap A_{n, h}$.
Given n and N we shall solve the program for all $m \leq m(N, n)$.

Spherical designs and DGS Bound

- P. Delsarte, J.-M. Goethals, J. J. Seidel, Spherical codes and designs, Geom. Dedicata 6, 1977, 363-388.

Definition

A spherical τ-design $C \subset \mathbb{S}^{n-1}$ is a finite nonempty subset of \mathbb{S}^{n-1} such that

$$
\frac{1}{\mu\left(\mathbb{S}^{n-1}\right)} \int_{\mathbb{S}^{n-1}} f(x) d \mu(x)=\frac{1}{|C|} \sum_{x \in C} f(x)
$$

($\mu(x)$ is the Lebesgue measure) holds for all polynomials $f(x)=f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ of degree at most τ.

The strength of C is the maximal number $\tau=\tau(C)$ such that C is a spherical τ-design.

Spherical designs and DGS Bound

- P. Delsarte, J.-M. Goethals, J. J. Seidel, Spherical codes and designs, Geom. Dedicata 6, 1977, 363-388.

Theorem (DGS - 1977)

For fixed strength τ and dimension n denote by

$$
B(n, \tau)=\min \left\{|C|: \exists \tau \text {-design } C \subset \mathbb{S}^{n-1}\right\}
$$

the minimum possible cardinality of spherical τ-designs $C \subset \mathbb{S}^{n-1}$.

$$
B(n, \tau) \geq D(n, \tau)= \begin{cases}2\binom{n+k-2}{n-1}, & \text { if } \tau=2 k-1, \\ \binom{n+k-1}{n-1}+\binom{n+k-2}{n-1}, & \text { if } \tau=2 k .\end{cases}
$$

Levenshtein bounds for spherical codes (1)

- V.I.Levenshtein, Designs as maximum codes in polynomial metric spaces, Acta Appl. Math. 25, 1992, 1-82.
- For every positive integer m we consider the intervals

$$
\mathcal{I}_{m}= \begin{cases}{\left[t_{e-1}^{1,1}, t_{e}^{1,0}\right],} & \text { if } m=2 e-1, \\ {\left[t_{e}^{1,0}, t_{e}^{1,1}\right],} & \text { if } m=2 e\end{cases}
$$

- Here $t_{0}^{1,1}=-1, t_{i}^{a, b}, a, b \in\{0,1\}, i \geq 1$, is the greatest zero of the Jacobi polynomial $P_{i}^{\left(a+\frac{n-3}{2}, b+\frac{n-3}{2}\right)}(t)$.
- The intervals \mathcal{I}_{m} define partition of $\mathcal{I}=[-1,1)$ to countably many nonoverlapping closed subintervals.

Levenshtein bounds for spherical codes (2)

Theorem (Levenshtein - 1979)

For every $s \in \mathcal{I}_{m}$, Levenshtein used $f_{m}^{(n, s)}(t)=\sum_{k=0}^{m} f_{k} P_{k}^{(n)}(t)$:

$$
\text { (i) } f_{m}^{(n, s)}(t) \leq 0 \text { on }[-1, s] \text { and (ii) } f_{k} \geq 0 \text { for } 1 \leq k \leq m
$$

to derive the bound

$$
A(n, s) \leq\left\{\begin{array}{r}
L_{2 e-1}(n, s)=\binom{e+n-3}{e-1}\left[\frac{2 e+n-3}{n-1}-\frac{P_{e-1}^{(n)}(s)-P_{e}^{(n)}(s)}{(1-s) P_{e}^{(n)}(s)}\right] \\
\text { for } s \in \mathcal{I}_{2 e-1}, \\
L_{2 e}(n, s)=\binom{e+n-2}{e}\left[\frac{2 e+n-1}{n-1}-\frac{(1+s)\left(P_{e}^{(n)}(s)-P_{e+1}^{(n)}(s)\right)}{(1-s)\left(P_{e}^{(n)}(s)+P_{e+1}^{(n)}(s)\right)}\right] \\
\text { for } s \in \mathcal{I}_{2 e}
\end{array}\right.
$$

where $A(n, s)=\max \{|C|:\langle x, y\rangle \leq s$ for all $x \neq y \in C$,

Connections between DGS- and L-bounds

- For every fixed dimension n each bound $L_{m}(n, s)$ is smooth and strictly increasing with respect to s. The function

$$
L(n, s)= \begin{cases}L_{2 e-1}(n, s), & \text { if } s \in \mathcal{I}_{2 e-1} \\ L_{2 e}(n, s), & \text { if } s \in \mathcal{I}_{2 e}\end{cases}
$$

is continuous in s.

- The connection between the Delsarte-Goethals-Seidel bound and the Levenshtein bounds are given by the equalities

$$
\begin{gathered}
L_{2 e-2}\left(n, t_{e-1}^{1,1}\right)=L_{2 e-1}\left(n, t_{e-1}^{1,1}\right)=D(n, 2 e-1) \\
L_{2 e-1}\left(n, t_{e}^{1,0}\right)=L_{2 e}\left(n, t_{e}^{1,0}\right)=D(n, 2 e)
\end{gathered}
$$

at the ends of the intervals \mathcal{I}_{m}.

Levenshtein Function $-n=4$

Figure : The Levenshtein function $L(4, s)$.

Lower Bounds and 1/N-Quadrature Rules

- Recall that $A_{n, h}$ is the set of functions f having positive Gegenbauer coefficients and $f \leq h$ on $[-1,1]$.
- For a subspace Λ of $C([-1,1])$ of real-valued functions continuous on [-1, 1], let

$$
\begin{equation*}
\mathcal{W}(n, N, \Lambda ; h):=\sup _{f \in \Lambda \cap A_{n, h}} N^{2}\left(f_{0}-f(1) / N\right) . \tag{3}
\end{equation*}
$$

- For a subspace $\Lambda \subset C([-1,1])$ and $N>1$, we say $\left\{\left(\alpha_{i}, \rho_{i}\right)\right\}_{i=0}^{e-1}$ is a $1 / N$-quadrature rule exact for Λ if $-1 \leq \alpha_{i}<1$ and $\rho_{i}>0$ for $i=0,1, \ldots, e-1$ if

$$
f_{0}=\gamma_{n} \int_{-1}^{1} f(t)\left(1-t^{2}\right)^{(n-3) / 2} d t=\frac{f(1)}{N}+\sum_{i=0}^{e-1} \rho_{i} f\left(\alpha_{i}\right), \quad(f \in \Lambda) .
$$

Proposition

Let $\left\{\left(\alpha_{i}, \rho_{i}\right)\right\}_{i=0}^{e-1}$ be a $1 / N$-quadrature rule that is exact for a subspace $\wedge \subset C([-1,1])$.
(a) If $f \in \Lambda \cap A_{n, h}$,

$$
\begin{equation*}
\mathcal{E}(n, N ; h) \geq N^{2}\left(f_{0}-\frac{f(1)}{N}\right)=N^{2} \sum_{i=0}^{e-1} \rho_{i} f\left(\alpha_{i}\right) . \tag{4}
\end{equation*}
$$

(b) We have

$$
\begin{equation*}
\mathcal{W}(n, N, \Lambda ; h) \leq N^{2} \sum_{i=0}^{e-1} \rho_{i} h\left(\alpha_{i}\right) . \tag{5}
\end{equation*}
$$

If there is some $f \in \Lambda \cap A_{n, h}$ such that $f\left(\alpha_{i}\right)=h\left(\alpha_{i}\right)$ for $i=1, \ldots, e-1$, then equality holds in (5).

1/N-Quadrature Rules

Quadrature Rules from Spherical Designs

If $C \subset \mathbb{S}^{n-1}$ is a spherical τ design, then choosing
$\left\{\alpha_{0}, \ldots, \alpha_{e-1}, 1\right\}=\{\langle x, y\rangle: x, y \in C\}$ and $\rho_{i}=$ fraction of times α_{i} occurs in $\{\langle x, y\rangle: x, y \in C\}$ gives a $1 / N$ quadrature rule exact for $\Lambda=\mathcal{P}_{\tau}$.

Levenshtein Quadrature Rules

Of particular interest is when the number of nodes e satisfies $m=2 e-1$ or $m=2 e$. Levenshtein gives bounds on N and m for the existence of such quadrature rules.

Sharp Codes

Definition

A spherical code $C \subset \mathbb{S}^{n-1}$ is a sharp configuration if there are exactly m inner products between distinct points in it and it is a spherical ($2 m-1$)-design.

Theorem (Cohn and Kumar, 2007)

If $C \subset \mathbb{S}^{n-1}$ is a sharp code, then C is universally optimal; i.e., C is h-energy optimal for any h that is absolutely monotone on $[-1,1]$.

Theorem (Cohn and Kumar, 2007)

Let C be the 600-cell (120 in \mathbf{R}^{n}). Then there is $f \in \Lambda \cap A_{n, h}$, s.t. $f(\langle x, y\rangle)=h(\langle x, y\rangle)$ for all $x \neq y \in C$, where
$\Lambda=\mathcal{P}_{17} \cap\left\{f_{11}=f_{12}=f_{13}=0\right\}$. Hence it is a universal code.

TABLE 1. The known sharp configurations, together with the 600 -cell.

n	N	M	Inner products	Name
2	N	$N-1$	$\cos (2 \pi j / N)(1 \leq j \leq N / 2)$	N-gon
n	$N \leq n$	1	$-1 /(N-1)$	simplex
n	$n+1$	2	$-1 / n$	simplex
n	$2 n$	3	$-1,0$	cross polytope
3	12	5	$-1, \pm 1 / \sqrt{5}$	icosahedron
4	120	11	$-1, \pm 1 / 2,0,(\pm 1 \pm \sqrt{5}) / 4$	600 -cell
8	240	7	$-1, \pm 1 / 2,0$	E_{8} roots
7	56	5	$-1, \pm 1 / 3$	kissing
6	27	4	$-1 / 2,1 / 4$	kissing/Schläfli
5	16	3	$-3 / 5,1 / 5$	kissing
24	196560	11	$-1, \pm 1 / 2, \pm 1 / 4,0$	Leech lattice
23	4600	7	$-1, \pm 1 / 3,0$	kissing
22	891	5	$-1 / 2,-1 / 8,1 / 4$	kissing
23	552	5	$-1, \pm 1 / 5$	equiangular lines
22	275	4	$-1 / 4,1 / 6$	kissing
21	162	3	$-2 / 7,1 / 7$	kissing
22	100	3	$-4 / 11,1 / 11$	Higman-Sims
$q \frac{q^{+}+1}{q+1}$	$(q+1)\left(q^{3}+1\right)$	3	$-1 / q, 1 / q^{2}$	isotropic subspaces
		$(4$ if $q=2)$		$(q$ a prime power $)$

Figure : From: H.Cohn, A.Kumar, JAMS 2007.

Levenshtein 1/N-Quadrature Rule - odd interval case

- For every fixed (cardinality) $N>D(n, 2 e-1)$ there exist uniquely determined real numbers $-1 \leq \alpha_{0}<\alpha_{1}<\cdots<\alpha_{e-1}<1$ and $\rho_{0}, \rho_{1}, \ldots, \rho_{e-1}, \rho_{i}>0$ for $i=0,1, \ldots, e-1$, such that the equality

$$
f_{0}=\frac{f(1)}{N}+\sum_{i=0}^{e-1} \rho_{i} f\left(\alpha_{i}\right)
$$

holds for every real polynomial $f(t)$ of degree at most $2 e-1$.

- The numbers $\alpha_{i}, i=0,1, \ldots, e-1$, are the roots of the equation

$$
P_{e}(t) P_{e-1}(s)-P_{e}(s) P_{e-1}(t)=0
$$

where $s=\alpha_{e-1}, P_{i}(t)=P_{i}^{(n-1) / 2,(n-3) / 2}(t)$ is a Jacobi polynomial.

- In fact, $\alpha_{i}, i=0,1, \ldots, e-1$, are the roots of the Levenshtein's polynomial $f_{2 e-1}^{\left(n, \alpha_{e-1}\right)}(t)$.

Levenshtein 1/N-Quadrature Rule - even interval case

- Similarly, for every fixed (cardinality) $N>D(n, 2 e)$ there exist uniquely determined real numbers $-1=\beta_{0}<\beta_{1}<\cdots<\beta_{e}<1$ and $\gamma_{0}, \gamma_{1}, \ldots, \gamma_{e-1}, \gamma_{i}>0$ for $i=0,1, \ldots, e$, such that the equality

$$
\begin{equation*}
f_{0}=\frac{f(1)}{N}+\sum_{i=0}^{e} \gamma_{i} f\left(\beta_{i}\right) \tag{6}
\end{equation*}
$$

is true for every real polynomial $f(t)$ of degree at most $2 e$.

- The numbers $\beta_{i}, i=0,1, \ldots, e$, are the roots of the Levenshtein's polynomial $f_{2 e}^{\left(n, \beta_{e}\right)}(t)$.
- Sidelnikov (1980) showed the optimality of the Levenshtein polynomials $f_{2 e-1}^{\left(n, \alpha_{e-1}\right)}(t)$ and $f_{2 e}^{\left(n, \beta_{e}\right)}(t)$.

Universal Lower Bound (ULB)

Main Theorem - (BDHSS - 2014)

Let h be a fixed absolutely monotone potential, N and n be fixed, and $m=m(N, n)$ be such that $N \in[D(n, m), D(n, m+1))$. Then the Levenshtein nodes $\left\{\alpha_{i}\right\}$, respectively $\left\{\beta_{i}\right\}$, provide the bounds

$$
\mathcal{E}(n, N, h) \geq N^{2} \sum_{i=0}^{e-1} \rho_{i} h\left(\alpha_{i}\right)
$$

respectively,

$$
\mathcal{E}(n, N, h) \geq N^{2} \sum_{i=0}^{e} \gamma_{i} h\left(\beta_{i}\right) .
$$

The Hermite interpolants at these nodes are the optimal polinomials which solve the finite LP in the class $\mathcal{P}_{m} \cap A_{n, h}$.

Gaussian, Korevaar, and Newtonian potentials

ULB comparison - BBCGKS 2006 Newton Energy

N	Harmonic Energy	ULB Bound	$\%$
5	4.00	4.00	0.00%
6	6.50	6.42	1.28%
7	9.50	9.42	0.88%
8	13.00	13.00	0.00%
9	17.50	17.33	0.95%
10	22.50	22.33	0.74%
11	28.21	28.00	0.74%
12	34.42	34.33	0.26%
13	41.60	41.33	0.64%
14	49.26	49.00	0.53%
15	57.62	57.48	0.24%
16	66.95	66.67	0.42%
17	76.98	76.56	0.54%
18	87.62	87.17	0.51%
19	98.95	98.48	0.48%
20	110.80	110.50	0.27%
21	123.74	123.37	0.30%
22	137.52	137.00	0.38%
23	152.04	151.38	0.44%
24	167.00	166.50	0.30%

N	Harmonic Energy	ULB Bound	$\%$
25	182.99	182.38	0.34%
26	199.69	199.00	0.35%
27	217.15	216.38	0.36%
28	235.40	234.50	0.38%
29	254.38	253.38	0.39%
30	274.19	273.00	0.43%
31	294.79	293.51	0.43%
32	315.99	314.80	0.38%
33	337.79	336.86	0.28%
34	360.52	359.70	0.23%
35	384.54	383.31	0.32%
36	409.07	407.70	0.33%
37	434.19	432.86	0.31%
38	460.28	458.80	0.32%
39	487.25	485.51	0.36%
40	514.90	513.00	0.37%
41	543.16	541.40	0.32%
42	572.16	570.60	0.27%
43	601.93	600.60	0.22%
44	632.73	631.40	0.21%

N	Harmonic Energy	ULB Bound	$\%$
45	664.48	663.00	0.22%
46	697.26	695.40	0.27%
47	730.75	728.60	0.29%
48	764.59	762.60	0.26%
49	799.70	797.40	0.29%
50	835.12	833.00	0.25%
51	871.98	869.40	0.30%
52	909.19	906.60	0.28%
53	947.15	944.60	0.27%
54	985.88	983.40	0.25%
55	1025.76	1023.00	0.27%
56	1066.62	1063.53	0.29%
57	1108.17	1104.88	0.30%
58	1150.43	1147.05	0.29%
59	1193.38	1190.03	0.28%
60	1236.91	1233.83	0.25%
61	1281.38	1278.45	0.23%
62	1326.59	1323.88	0.20%
63	1373.09	1370.13	0.22%
64	1420.59	1417.20	0.24%

Newtonian energy comparison (BBCGKS 2006) $-N=5-64, n=4$.

ULB comparison - BBCGKS 2006 Gauss Energy

N	Gaussian Energy	ULB Bound	\%	N	Gaussian Energy	ULB Bound	\%	N	Gaussian Energy	ULB Bound	\%
5	0.82084999	0.82084999	0.0000\%	25	54.834017	54.814185	0.0362\%	45	195.47125	195.4631	0.0042\%
6	1.51673996	1.46902376	3.1460\%	26	59.8395	59.798598	0.0684\%	46	204.76757	204.7576	0.0049\%
7	2.35135701	2.30301138	2.0561\%	27	65.02733	64.998317	0.0446\%	47	214.28344	214.2674	0.0075\%
8	3.32130935	3.32130935	0.0000\%	28	70.43742	70.413294	0.0343\%	48	223.99398	223.9925	0.0007\%
9	4.67427716	4.61437099	1.2816\%	29	76.068713	76.043495	0.0332\%	49	233.94211	233.9328	0.0040\%
10	6.16258024	6.12366846	0.6314\%	30	81.918295	81.888894	0.0359\%	50	244.09388	244.0884	0.0022\%
11	7.91373588	7.85	0.8517\%	31	87.991423	87.953066	0.0436\%	51	254.46646	254.4593	0.0028\%
12	9.80409023	9.78080643	0.2375\%	32	94.267668	94.232601	0.0372\%	52	265.05852	265.0455	0.0049\%
13	11.9754345	11.9261471	0.4116\%	33	100.74997	100.72747	0.0223\%	53	275.85509	275.8469	0.0030\%
14	14.3536144	14.2817803	0.5005\%	34	107.44648	107.43767	0.0082\%	54	286.86944	286.8636	0.0020\%
15	16.9026095	16.8848736	0.1049\%	35	114.38622	114.36316	0.0202\%	55	298.10119	298.0956	0.0019\%
16	19.7421843	19.703455	0.1962\%	36	121.5266	121.50395	0.0186\%	56	309.55223	309.543	0.0030\%
17	22.7954372	22.7370274	0.2562\%	37	128.87404	128.86002	0.0109\%	57	321.2188	321.2056	0.0041\%
18	26.0460988	25.9852626	0.2336\%	38	136.45288	136.43137	136.431	58	333.09792	333.0836	0.0043\%
19	29.5106143	29.4479356	0.2124\%	39	144.24399	144.21799	0.0180\%	59	345.18817	345.1768	0.0033\%
20	33.1612211	33.124887	0.1096\%	40	152.24506	152.21987	0.0165\%	60	357.49695	357.4852	0.0033\%
21	37.0516229	37.0312077	0.0551\%	41	160.46282	160.43793	0.0155\%	61	370.02024	370.00899	0.0030\%
22	137.52	137.00	0.3753\%	42	168.88936	168.87128	0.0107\%	62	382.75512	382.748	0.0019\%
23	41.1775139	41.1535087	0.0583\%	43	177.5346	177.51993	0.0083\%	63	395.70391	395.7023	0.0004\%
24	45.5374314	45.4915404	0.1008\%	44	186.39278	186.38387	0.0048\%	64	408.88043	408.8719	0.0021\%

Gaussian energy comparison (BBCGKS 2006) $-N=5-64, n=4$.

Sketch of the proof $-\left\{\alpha_{i}\right\}$ case

- Let $f(t)$ be the Hermite's interpolant of degree $m=2 e-1$ s.t.

$$
f\left(\alpha_{i}\right)=h\left(\alpha_{i}\right), f^{\prime}\left(\alpha_{i}\right)=h^{\prime}\left(\alpha_{i}\right), i=0,1, \ldots, e-1 ;
$$

- The absolute monotonicity implies $f(t) \leq h(t)$ on $[-1,1]$;
- The nodes $\left\{\alpha_{i}\right\}$ are zeros of $P_{e}(t)+c P_{e-1}(t)$ with $c>0$;
- Since $\left\{P_{e}(t)\right\}$ are orthogonal (Jacobi) polynomials, the Hermite interpolant at these zeros has positive Gegenbauer coefficients (shown in Cohn-Kumar, 2007). So, $f(t) \in \mathcal{P}_{m} \cap A_{n, h}$;
- If $g(t) \in \mathcal{P}_{m} \cap A_{n, h}$, then by the quadrature formula

$$
g_{0}-\frac{g(1)}{N}=\sum_{i=0}^{e-1} \rho_{i} g\left(\alpha_{i}\right) \leq \sum_{i=0}^{e-1} \rho_{i} h\left(\alpha_{i}\right)=\sum_{i=0}^{e-1} \rho_{i} f\left(\alpha_{i}\right)
$$

Suboptimal LP solutions for $m \leq m(N, n)$

Theorem - (BDHSS - 2014)

The linear program (LP) can be solved for any $m \leq m(N, n)$ and the suboptimal solution in the class $\mathcal{P}_{m} \cap A_{n, h}$ is given by the Hermite interpolants at the Levenshtein nodes determined by $N=L_{m}(n, s)$.

Suboptimal LP solutions for $N=24, n=4, m=1-5$

$f_{1}(t)=.499 P_{0}(t)+.229 P_{1}(t)$
$f_{2}(t)=.581 P_{0}(t)+.305 P_{1}(t)+0.093 P_{2}(t)$
$f_{3}(t)=.658 P_{0}(t)+.395 P_{1}(t)+.183 P_{2}(t)+0.069 P_{3}(t)$
$f_{4}(t)=.69 P_{0}(t)+.43 P_{1}(t)+.23 P_{2}(t)+.10 P_{3}(t)+0.027 P_{4}(t)$
$f_{5}(t)=.71 P_{0}(t)+.46 P_{1}(t)+.26 P_{2}(t)+.13 P_{3}(t)+0.05 P_{4}(t)+0.01 P_{5}(t)$.

Some Remarks

- Analogous theorems hold for other polynomial metric spaces $\left(H_{q}^{n}, J_{w}^{n}, \mathbb{R P}^{n}, \mathbb{C P}^{n}, \mathbb{H}^{n}\right)$. We are pursuing this in a separate work.
- The bounds do not depend (in certain sense) from the potential function h.
- The bounds are attained by all configurations called universally optimal in the Cohn-Kumar's paper apart from the 600-cell (a 120-point 11-design in four dimensions).
- However, the bounds can be improved in other cases. There are necessary and sufficient conditions for their global optimality.

Improvement of ULB

P.B., D. Danev, S. Bumova, Upper bounds on the minimum distance of spherical codes, IEEE Trans. Inform. Theory, 41, 1996, 1576-1581.

- Let n and N be fixed, $N \in[D(n, 2 e-1), D(n, 2 e)), L_{m}(n, s)=N$ and j be positive integer.
- BDB introduce the following test functions in n and $s \in \mathcal{I}_{2 e-1}$

$$
\begin{equation*}
Q_{j}(n, s)=\frac{1}{N}+\sum_{i=0}^{e-1} \rho_{i} P_{j}^{(n)}\left(\alpha_{i}\right) \tag{7}
\end{equation*}
$$

(note that $P_{j}^{(n)}(1)=1$).

- Observe that $Q_{j}(n, s)=0$ for every $1 \leq j \leq 2 e-1$.
- We shall use the functions $Q_{j}(n, s)$ to give necessary and sufficient conditions for existence of improving polynomials of higher degrees.

Necessary and sufficient conditions (2)

Theorem (Optimality characterization (BDHSS-2014))

The ULB bound

$$
L(n, N, 2 e-1 ; h) \geq N^{2} \sum_{i=0}^{e-1} \rho_{i} h\left(\alpha_{i}\right)
$$

can be improved by a polynomial from $A_{n, h}$ of degree at least $2 e$ if and only if $Q_{j}(n, s)<0$ for some $j \geq 2 e$.

Moreover, if $Q_{j}(n, s)<0$ for some $j \geq 2 e$ and h is strictly absolutely monotone, then that bound can be improved by a polynomial from $A_{n, h}$ of degree exactly j.

Proof - follows ideas from BDB-1996 where the test functions were first introduced w.r.t. optimal/maximal codes.

Sketch of the proof - $\left\{\alpha_{i}\right\}$ case

$" \Longrightarrow$ " Suppose $Q_{j}(n, s) \geq 0, j \geq 2 e$. For any $f \in \mathcal{P}_{r} \cap A_{n, h}$ we write

$$
f(t)=g(t)+\sum_{2 e}^{r} f_{i} P_{i}^{(n)}(t)
$$

with $g \in \mathcal{P}_{2 e-1} \cap A_{n, h}$. Manipulation yields

$$
N f_{0}-f(1)=N \sum_{i=0}^{e-1} \rho_{i} f\left(\alpha_{i}\right)-N \sum_{j=2 e}^{r} f_{j} Q_{j}(n, s) \leq N \sum_{i=0}^{k} \rho_{i} h\left(\alpha_{i}\right) .
$$

$" \Longleftarrow$ $=$ " Let now $Q_{j}(n, s)<0, j \geq 2 e$. Select $\epsilon>0$ s.t. $h(t)-\epsilon P_{j}^{(n)}(t)$ is absolutely monotone. We improve using $f(t)=\epsilon P_{j}^{(n)}(t)+g(t)$, where

$$
g\left(\alpha_{i}\right)=h\left(\alpha_{i}\right)-\epsilon P_{j}^{(n)}\left(\alpha_{i}\right), g^{\prime}\left(\alpha_{i}\right)=h^{\prime}\left(\alpha_{i}\right)-\epsilon\left(P_{j}^{(n)}\right)^{\prime}\left(\alpha_{i}\right)
$$

\square

Examples

Definition

A universal configuration is called LP universal if it solves the finite LP problem.

Remark

Cohn et.el. conjecture two universal codes $(40,10)$ and $(64,14)$. Computational experiments show that all test functions $Q_{j}(n, s)>0$, which suggests that unlike the 600-cell, these configurations are not LP universally optimal.

Test functions - examples

$(24,4)$	$(40,10)$	$(64,14)$	$(128,15)$	$(182,7)$	$(120,4)$
1	1	1	1	1	1
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0.021943574	0.013744273	0.000659722	0	0
0	0.043584477	0.023867606	0.012122396		0
0.085714286	0.024962302	0.015879248	0.010927837	0	0
0.16	0.015883951	0.012369147	0.005957261	0	0
-0.024	0.026086948	0.015845575	0.006751842	0.022598277	0
-0.02048	0.02824122	0.016679926	0.008493915	0.011864096	0
0.064232727	0.024663991	0.015516168	0.00811866	-0.00835109	0
0.036864	0.024338487	0.015376208	0.007630277	0.003071311	0
0.059833108	0.024442076	0.01558101	0.007746238	0.009459538	0.053050398
0.06340608	0.024976926	0.015644873	0.007809405	0.0065461	0.066587396
0.054456422	0.025919671	0.015734138	0.007817465	0.005369545	-0.046646712
-0.003869491	0.02498472	0.015637274	0.007865499	0.006137772	-0.018428319
0.008598724	0.024214119	0.015521057	0.007815602	0.005268455	0.020868837
0.091970863	0.025123445	0.01562458	0.007761374	0.005134928	-0.000422871
0.049262707	0.025449746	0.015694798	0.007812225	0.004722806	0.012656294
0.035330484	0.024905002	0.015617497	0.00784714	0.003857119	0.006371173
0.048230925	0.024837415	0.015589583	0.00781076	0.007863772	0.011244953

Applications - asymptotic bounds (1)

- Let the dimension n and the cardinality N tend simultaneously to infinity in the relation

$$
\lim \frac{N}{n^{e-1}}=\frac{1}{(e-1)!}+\gamma
$$

where $\gamma \geq 0$ is a constant, i.e. $N \sim n^{e-1}\left(\frac{1}{(e-1)!}+\gamma\right)$.

- We know (Boumova-Danev, ACCT2002) the asymptotic behaviour of the parameters:

$$
\begin{gathered}
\alpha_{i} \sim 0, \text { for } i=1,2, \ldots, e-1, \\
\alpha_{0} \sim-\frac{1}{1+\gamma(e-1)!}, \\
\rho_{0} N \sim(1+\gamma(e-1)!)^{2 e-1} .
\end{gathered}
$$

Applications - asymptotic bounds (2)

- Now the bounds are easy to be calculated -

$$
\begin{aligned}
W(n, N, 2 e-1 ; h) & \geq N^{2} \sum_{i=0}^{e-1} \rho_{i} h\left(\alpha_{i}\right) \\
& \sim N^{2}\left(\rho_{0} h\left(\alpha_{0}\right)+h(0) \sum_{i=1}^{e-1} \rho_{i}\right) \sim h(0) N^{2}
\end{aligned}
$$

- Similarly, in the even case $W(n, N, 2 e ; h) \gtrsim h(0) N^{2}$.
- Kedrock codes mapped from the binary hamming space to the Euclidean sphere attain this bound.

Applications - asymptotic bounds (3)

- Let now n be fixed and $N \rightarrow \infty$. From $N \in[D(n, m), D(n, m+1))$ we have that $N \sim m^{n-1}$.
- For some special potentials, say Riesz $k_{\alpha}(t)=(2(1-t))^{-\alpha / 2}$ with $\alpha>n-1$ we can derive the energy asymptotics

$$
\mathcal{E}\left(n, N, k_{\alpha}\right) \sim N^{1+\frac{\alpha}{n-1}},
$$

from the ULB bound

Conclusions and future work

- ULB works for all absolutely monotone potentials
- Particularly good for analytic potentials
- Necessary and sufficient conditions for improvement of the bound

Future work:

- Other polynomial metric spaces, such as Binary Hamming, q-Hamming, Johnson, Projective
- Analytic investigation
- Relaxation of the inequality $f(t) \leq h(t)$ on $[-1,1]$

THANK YOU!

[^0]: ${ }^{1}$ A function f is absolutely monotone on I if $f(k)(t) \geq 0$ for $t \in I$ and $k=0,1,2, \ldots$..

