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Abstract

Predictive state representations (PSRs) represent the
state of a dynamical system as a set of predictions about
future events. The parameters of a PSR model consist
of several matrices and vectors, but not all values for
those parameters result in valid PSR models. Our work
starts with a general definition of what it means to be
a valid PSR model and derives necessary and sufficient
constraints for the model parameters to constitute a valid
PSR. These same constraints also define the set of valid
state vectors for a given PSR model, which we prove
to be a convex set. We also derive a set of simplified
constraints on the PSR parameters, and we prove that
any PSR model has an equivalent parameterization that
satisfies those simplified constraints. Lastly, we demon-
strate one simple application of our constraints: prevent-
ing overflow or underflow of the PSR state as it changes
over time.

Predictive state representations (PSRs) (Littman, Sut-
ton, & Singh 2001) are a class of models that represent
the state of a dynamical system as a set of predictions
about future events. PSRs are capable of representing
partially observable, stochastic dynamical systems, in-
cluding any system that can be modeled by a finite par-
tially observable Markov decision process (POMDP)
(Singh, James, & Rudary 2004). There is evidence that
predictive state is useful for generalization (Rafols et
al. 2005) and helps to learn more accurate models than
the state representation of a POMDP (Wolfe, James, &
Singh 2005).

Both POMDPs and PSRs have constraints on the ma-
trices that constitute their parameters. For POMDPs,
the constraints on the parameters are well known: par-
ticular subsets of the parameters must form stochastic
vectors (i.e., vector elements are between 0.0 and 1.0
and sum to 1.0). In contrast, the nature of the con-
straints on PSR parameters has not been explicitly stud-
ied. Thus, current algorithms for learning PSR models
from data disregard the fact that there are constraints
on the PSR parameters (e.g., James & Singh (2004),
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Wolfe, James, & Singh (2005), or Rosencrantz, Gordon,
& Thrun (2004)). This can lead to invalid parameters
and invalid state vectors that cause the PSR model to
make predictions outside the range [0,1] of valid proba-
bilities (Wolfe, James, & Singh 2005). This issue moti-
vates the need to define the sets of valid parameters and
state vectors so that future learning algorithms can find
valid PSR parameters.

This work provides a set of necessary and sufficient
constraints on the parameters for a class of PSRs. In
addition, these same constraints define the set of valid
state vectors for a PSR. Thus, the constraints could
be used both for ensuring that a learning algorithm
produces valid PSR parameters and for checking that
the state vectors used during the model’s operation are
valid.

1 Background

This work deals with models of discrete-time dynam-
ical systems which have a set of discrete actions A
and a set of discrete observations O. At each time
step x, the agent chooses some action ax ∈ A to ex-
ecute and then receives some observation ox ∈ O.
A history is a possible sequence of actions and ob-
servations a1o1a2o2 . . . aτoτ from the beginning of
time. A test is a sequence of possible future ac-
tions and observations aτ+1oτ+1 . . . aτ+koτ+k, where
τ is the current time step. The prediction for a test
t = aτ+1oτ+1 . . . aτ+koτ+k from a history h =
a1o1 . . . aτoτ is defined as the probability of seeing the
observations of t when the actions of t are taken from
history h. Formally, this prediction is

p(t|h)
def
=

τ+k
∏

i=τ+1

Pr(oi|a1, o1, a2, o2, . . . , ai)

where ax represents the event “ax is the action at time
x,” and ox represents the event “ox is the observation at
time x.”

System-dynamics matrix: This work focuses upon
linear PSRs (Littman, Sutton, & Singh 2001), a class



of PSR models that we describe using the concept of a
system-dynamics matrix, introduced by Singh, James,
& Rudary (2004). A system-dynamics matrix D fully
specifies a dynamical system, and any system com-
pletely defines some system-dynamics matrix D. The
matrix D has one row for each possible history (includ-
ing the empty or null history φ) and one column for
each possible test.1 The entry in a particular row and
column is the prediction for that column’s test from that
row’s history. Despite the fact that D has infinite size, it
will have a finite rank n for a large class of systems, in-
cluding POMDPs with a finite number of latent states;
the rank n is no greater than the number of latent states
in the POMDP (Singh, James, & Rudary 2004). For
systems with a finite rank n, one can find a set Q of n
linearly independent columns of D such that all other
columns are linearly dependent upon Q. The tests cor-
responding to these columns (also denoted Q) are called
core tests. At any history h, the prediction for any test
t is a history-independent linear function of the predic-
tions for Q. In other words, the predictions for Q are
a sufficient statistic for computing the prediction of any
other test.

Linear PSR: A linear PSR represents the state of
the system at h as the vector of predictions for Q from
h. This vector is called the prediction vector, written as
p(Q|h). A linear PSR model is composed of the pre-
dictions for Q from the null history (the initial predic-
tion vector), and the parameters M used to update the
prediction vector as the agent moves to new histories.
We use mt to denote the history-independent vector of
weights such that ∀h : p(t|h) = p⊤(Q|h)mt; such an
mt exists for any t by definition of Q. The parame-
ters for a linear PSR are the mt’s for each one-step test
(ao) and each one-step extension (aoqi) of each core
test qi ∈ Q.

The state update procedure is to calculate p(Q|hao)
from p(Q|h) after taking the action a and seeing the ob-
servation o from the history h. For any qi ∈ Q, one can
use the existing state vector p(Q|h) and the parameters
mao and maoqi

to calculate

p(qi|hao) =
p(aoqi|h)

p(ao|h)
=

p⊤(Q|h)maoqi

p⊤(Q|h)mao

.

Let Mao be the matrix with maoqi
as its ith column.

Then the state update in matrix form is

p⊤(Q|hao) =
p⊤(Q|h)Mao

p⊤(Q|h)mao

.

From these parameters, one can calculate the
mt vector for any test t = a1o1 . . . akok as
Ma1o1

Ma2o2
. . . Mak−1ok−1

makok
.

1The tests (and histories) can be arranged in length-
lexicographical ordering to make a countable list.

2 The Parameter Constraints

We call a linear PSR valid if its predictions satisfy the
axioms of probability. The prediction for any test t from
any history2 h is equal to the ratio of two predictions
from the null history φ:

p(t|h) =
p(ht|φ)

p(h|φ)
.

Thus, if a linear PSR’s predictions from the null history
satisfy the axioms of probability, then all of its predic-
tions will satisfy the axioms of probability, making the
model valid. This definition of valid does not place any
constraints upon the state vector of the model (e.g., that
the state vector should correspond to predictions about
core tests). Thus, the results we develop apply to both
linear PSRs and transformed PSRs (TPSRs) (Rosen-
crantz, Gordon, & Thrun 2004). TPSRs have the same
parametric form as linear PSRs, but the state vector is
allowed to be a linear function of core tests’ predictions
(rather than the predictions themselves, as in a linear
PSR). Hereafter, we use “PSR” to refer generically to
a linear PSR or a TPSR, and we use sh to refer to the
state vector of the PSR at history h. We use t to refer
to an arbitrary test a1o1 . . . akok of length k, where the
subscripts indicate the time step relative to the current
time.

Given parameters M and initial state sφ, the predic-
tion for t from φ is defined as

p(t|φ)
def
= s⊤φ mt

= s⊤φ Ma1o1
Ma2o2

. . . Mak−1ok−1
makok

.

We say that the parameters M are valid if and only if
there exists some vector sφ such that the predictions
given M and sφ satisfy the axioms of probability.

There are three sets of constraints on the predictions
in order for them to be valid. The domains of the vari-
ables in these (and subsequent) constraints are as fol-
lows: k : integers; t : sequences of length k; a vari-
ables: actions; o variables: observations. The first set of
constraints requires the predictions to be non-negative:

∀k ≥ 1, t, p(t|φ) ≥ 0. (1)

Second, the predictions for all tests with a particular ac-
tion sequence must sum to one, since those predictions
form a multinomial distribution over the observation se-
quences of the same length as the action sequence:

∀k ≥ 1, a1a2 . . . ak,
∑

o1o2...ok

p(a1o1 . . . akok|φ) = 1.

(2)

These constraints are necessary and sufficient to ensure
that the predictions for any action sequence satisfy the

2Predictions from impossible histories are not defined.



axioms of probability. However, predictions for differ-
ent action sequences are related when one action se-
quence is a prefix of the other. To ensure consistency
among such predictions, Equation 3 requires that for
each sequence t, the predictions (given some action a)
for all possible observations o after t sum to the predic-
tion for t itself:

∀k ≥ 0, t, a, p(t|φ) =
∑

o

p(tao|φ). (3)

Equations 1, 2 and 3 are necessary and sufficient con-
straints for a set of parameters to be valid. However,
each set of constraints is infinite, since t and k can each
take on an infinite number of values. The remainder
of this section reduces each of Equations 2 and 3 to an
equivalent, finite set of constraints, given Equation 1.

Theorem 1. Given Equation 3, Equation 2 is equiva-
lent to

∀a, s⊤φ

∑

o

mao = 1 (4)

Proof. We start with the left hand side of Equation 2
and show that it reduces to the left hand side of Equa-
tion 4 (given Equation 3). Thus, the left-hand sides will
equal 1 for exactly the same parameters.

For any k ≥ 1 and any a1 . . . ak,
∑

o1...ok

p(a1o1a2o2 . . . akok|φ)

=
∑

o1...ok−1

∑

ok

s⊤φ Ma1o1
. . . Mak−1ok−1

makok

=
∑

o1...ok−1

s⊤φ Ma1o1
. . . Mak−2ok−2

mak−1ok−1

where the last step applies Equation 3 for t =
a1o1a2o2 . . . ak−1ok−1. Repeatedly applying Equation
3 for each prefix a1o1 . . . ak−iok−i reduces the sum to

∑

o1

s⊤φ ma1o1
,

which is the left hand side of Equation 4.

The second part of this section reduces Equation 3 to
a finite set of constraints. In particular, the upcoming
Theorem 3 proves that checking Equation 3 for a finite
set of sequences (instead of all sequences t) is sufficient,
given the other constraints. The constraints of Equation
3 for the sequences t = hao that are one-step extensions
of a single sequence h are

∀a, o, a′, p(hao|φ) =
∑

o′

p(haoa′o′|φ). (5)

To describe the set of sequences one needs to check,
we use the following definitions:

u⊤
h

def
= s⊤φ Ma1o1

Ma2o2
. . . Makok

for any sequence h = a1o1 . . . akok. Two properties of
the u vectors worth noting are uφ = sφ and p(hao|φ) =
u⊤

h mao. We define a set of histories {h1, . . . , hj} to be
a history basis if and only if uh1

, . . . , uhj
are linearly

independent and, for any h, uh is linearly dependent
upon uh1

, . . . , uhj
. We use H∗ to denote an arbitrary

history basis.

Lemma 2. Equation 5 holds for all histories if and only
if it holds for all h ∈ H∗.

Proof. The “only if” direction is trivial (“all histories”
includes those in H∗). For the “if” direction, let H∗ =
{h1, . . . , hj}, and let U be the matrix with ith row equal

to u⊤
hi

. For any history h, there exists a vector wh such

that u⊤
h = w⊤

h U (because uh is linearly dependent upon
the rows of U ).

Then for any a, o,

p(hao|φ) = s⊤φ Ma1o1
Ma2o2

. . . Makok
mao

= u⊤
h mao = w⊤

h Umao

= w⊤
h











− u⊤
h1

−
− u⊤

h2
−

...

− u⊤
hj

−











mao = w⊤
h









p(h1ao|φ)
p(h2ao|φ)

...
p(hjao|φ)









by definition of the u’s. Using the premise that Equation
5 holds for all hi ∈ H∗, this is equal to

=
∑

o′

w⊤
h









p(h1aoa′o′|φ)
p(h2aoa′o′|φ)

...
p(hjaoa′o′|φ)









=
∑

o′

w⊤
h UMaoma′o′ =

∑

o′

u⊤
haoma′o′ ,

where the last step uses the fact that u⊤
hao =

u⊤
h Mao = (w⊤

h U)Mao. The resulting sum is just
∑

o′ p(haoa′o′|φ), which completes the proof that
Equation 5 for all h ∈ H∗ implies Equation 5 for all
histories h.

The following theorem reduces Equation 3 to a finite
set of constraints. The set is finite because H∗ is never
larger than the length of the u vectors (which is also the
length of the mao vectors).3

Theorem 3. Given Equation 4, Equation 3 is equiva-
lent to Equation 5 for all h ∈ H∗.

Proof. Lemma 2 proved that Equation 5 for all h ∈ H∗

is equivalent to Equation 5 for all histories. Equation 5
for all h (including the null history) is exactly the same

3This is because one cannot construct a set of more than n

linearly independent vectors when the vectors have length n.



as Equation 3 for all t of length at least 1. The empty
test is the only test of length less than 1, and Equation 4
ensures that Equation 3 is satisfied for that test.

Theorems 1 and 3 prove that the following constraints
are necessary and sufficient for PSR parameters to be
valid.

∀k ≥ 1, t, p(t|φ) ≥ 0 (1)

∀a, s⊤φ

∑

o

mao = 1 (4)

∀h ∈ H∗, a, o, a′, p(hao|φ) =
∑

o′

p(haoa′o′|φ) (6)

3 Simplification of Constraints

In this section, we replace Equation 6 with a set of con-
straints that does not depend upon a history basis H∗.
This leads to the following set of simplified constraints:

∀k ≥ 1, t, p(t|φ) ≥ 0 (1)

∀a, s⊤φ

∑

o

mao = 1 (4)

∀a, o, a′, mao = Mao

∑

o′

ma′o′ . (7)

The simplified constraints are still sufficient for deter-
mining valid PSR parameters, but they are not neces-
sary. Nevertheless, Theorem 8 (in Section 3.2) proves
that for any valid PSR parameters, there exists a set of
PSR parameters of the same size that make the same
predictions and satisfy the simplified constraints. Thus,
one loses no modeling power by using the simplified
constraints, even though they are not strictly necessary.

We define the size of a set of parameters as the length
of the m vectors (which is also the length of the u vec-
tors and the dimensions of the M matrices). Using this
definition, the following theorem establishes a relation-
ship between Equations 6 and 7.

Theorem 4. For a set of parameters with size n, if the
size of a history basis H∗ is n, then Equation 7 is equiv-
alent to Equation 6.

Proof. For a given h, Equation 6 is equal to

∀a, o, a′, u⊤
h mao =

∑

o′

u⊤
h Maoma′o′ .

For a history basis H∗ = {h1, . . . , hn}, let U be the
n × n matrix with ith row equal to u⊤

hi
. Then Equation

6 in matrix form is equal to

∀a, o, a′, Umao = UMao

∑

o′

ma′o′ .

Left-multiplying by U−1 yields Equation 7. (By defini-
tion of history basis, U is invertible.)

To prove that replacing Equation 6 with Equation 7
loses no modeling power (Theorem 8), we take the fol-
lowing steps: Section 3.1 proves that there always ex-
ists an equivalent set of parameters with size equal to
the size of a history basis; then Section 3.2 uses those
equivalent parameters to construct equivalent parame-
ters that satisfy Equation 7 and have the same size as
the original parameters.

3.1 Existence of Minimal Parameters

The remaining discussion uses some additional defini-
tions and notation. For brevity, we include the initial
state vector in the definition of a set of parameters for
the rest of Section 3. We use M to refer to a set of pa-
rameters {uφ,mao,Mao : ∀a, o}, and we use Z to re-
fer to another set of parameters {yφ, zao, Zao : ∀a, o},
where the z’s and Z’s correspond to m’s and M ’s. Two
sets of parameters are equivalent if they make the same
predictions for any test; note that equivalent parameters
need not be the same size. A test basis for a set of pa-
rameters M is a set of tests {t1, . . . , tk} such that the
vectors {mt1 , . . . ,mtk

} are linearly independent and
form a linear basis of the mt vectors (for all t). The
rank of parameters is the smaller of the history basis
size and the test basis size. Parameters are minimal if
their size equals their rank. The use of the term “mini-
mal” is justified by the fact that when a set of parameters
is minimal, there is no equivalent set of parameters of
smaller size (proven in the Appendix).

The primary result of this section is that, for any set
of parameters, there exists an equivalent, minimal set
of parameters (Theorem 7). We use the following two
lemmas to prove this result.

Lemma 5. Let M be a set of parameters with size n
that has a history basis H of size k. Then there exists
an equivalent set of parameters Z of size k.

Proof. The first piece of the proof defines Z in terms of
M. Let H = {h1, . . . , hk} be a history basis for M,
and let U be the matrix with ith row equal to u⊤

hi
. Since

U has rank k, it has k linearly independent columns,
which we assume are the first k columns (without loss
of generality). Let Ψ be the matrix equal to the first k
columns of U . Because the columns of Ψ form a basis
of R

k, there exists a matrix X such that

ΨX = U.

For any history h, let w⊤
h be the vector such that u⊤

h =
w⊤

h U . Such a wh exists because the rows of U are a
basis for all the uh.

The parameters Z are

y⊤
φ

def
= w⊤

φ Ψ

zao
def
= Xmao

Zao
def
= XMaoX

†



where X† is the Moore-Penrose pseudoinverse of X .

The Z have size k by construction, but it remains to
show that they are equivalent to M. To do so, let yh

be the analogue to the uh in the parameters M. That
is, for any h, a, o, the vector yhao is defined recursively
as yhZao; the base case yφ is defined as part of Z . To

prove parameter equivalence, we first show that y⊤
h =

w⊤
h Ψ for any history h, using induction on the length of

h. The base case h = φ follows from the definition of
yφ. The inductive step is to prove that y⊤

hao = w⊤
haoΨ

for an arbitrary hao:

y⊤
hao = y⊤

h Zao

= w⊤
h ΨXMaoX

† (by inductive hyp.)

= w⊤
h UMaoX

†

= u⊤
h MaoX

†

= u⊤
haoX

†

= w⊤
haoUX†

= w⊤
haoΨXX†

= w⊤
haoΨ.

The last step here uses the fact that (XX†)⊤ =
(X⊤)†X⊤ is the matrix of the orthogonal projection
onto the image of X . Since X has full row rank, this
image is R

k, so (XX†)⊤ = Ik = XX†.

We now prove that Z and M make the same predic-
tions. For any h, a, o, the prediction p(hao|φ) accord-
ing to Z is y⊤

h zao = w⊤
h ΨXmao (using y⊤

h = w⊤
h Ψ).

This is equal to w⊤
h Umao = u⊤

h mao, which is the pre-
diction p(hao|φ) according to M. Thus, Z and M are
equivalent.

Lemma 6. Let M be a set of parameters with size n
with a test basis T of size k. Then there exists an equiv-
alent set of parameters Z of size k.

Proof. The proof is similar to that of Lemma 5. The
first piece of the proof defines Z in terms of M. Let
T = {t1, . . . , tk} be a history basis for M, and let M
be the matrix with ith column equal to mti

. Since M
has rank k, it has k linearly independent rows, which
we assume are the first k rows (without loss of general-
ity). Let Ψ be the matrix equal to the first k rows of M .
Because the rows of Ψ form a basis of R

k, there exists
a matrix X such that

XΨ = M.

For any test t, let wt be the vector such that mt = Mwt.
Such a wt exists because the columns of M are a basis
for all the mt.

The parameters Z are

y⊤
φ

def
= u⊤

φ X

zao
def
= Ψwao

Zao
def
= X†MaoX

where X† is the Moore-Penrose pseudoinverse of X .
The Z have size k by construction, but it remains to

show that they are equivalent to M. To do so, let zt be
the analogue to the mt in the old parameters. That is,
the vector zaot is defined recursively as Zaozt. To prove
parameter equivalence, we first show that zt = Ψwt

for any test t, using induction on the length of t. The
base case t = ao follows from the definition of zao.
The inductive step is to prove that zaot = Ψwaot for an
arbitrary aot:

zaot = Zaozt

= X†MaoXΨwt (by inductive hyp.)

= X†MaoMwt

= X†Maomt

= X†maot

= X†Mwaot

= X†XΨwaot

= Ψwaot.

The last step here uses the fact that X†X is the matrix of
the orthogonal projection onto the image of X⊤. Since
X⊤ has full row rank, this image is R

k, so X†X = Ik.
We now prove that Z and M make the same predic-

tions. For any test t, the prediction p(t|φ) according to
Z is y⊤

φ zt = u⊤
φ XΨwt (using zt = Ψwt). This is equal

to u⊤
φ Mwt = u⊤

φ mt, which is the prediction p(t|φ) ac-

cording to M. Thus, Z and M are equivalent.

Theorem 7. For any set of parameters there is an
equivalent, minimal set of parameters.

Proof. We prove this by describing a procedure to iter-
atively transform a set of parameters into an equivalent,
minimal set of parameters. Let Z be the parameters on
the current iteration, and let k be the smaller of (1) the
size of a history basis for Z and (2) the size of a test
basis for Z . If k is equal to the size of Z , then Z are
minimal parameters, so the procedure is done. Other-
wise, the procedure transforms Z into equivalent pa-
rameters of size k using the method of Lemma 5 (if the
history basis is smaller) or Lemma 6 (if the test basis is
smaller). Those transformed parameters are used in the
next iteration.

The correctness of this procedure follows from these
facts: it only returns when it finds minimal parameters;



it always returns (because the size of the parameters is
strictly decreasing on each iteration); and equivalence
to the original parameters is preserved with every trans-
formation.

Because minimal parameters satisfy the condition of
Theorem 4 (i.e., the size of a history basis is equal to
the size of the parameters), minimal parameters satisfy
the simplified constraints (Equations 1, 4, and 7). Thus,
for every set of valid PSR parameters, there is an equiv-
alent set of parameters that satisfies the simplified con-
straints.

3.2 Same-Size Equivalent Parameters

At this point, the only parameters we have proven to sat-
isfy the simplified constraints are minimal parameters.
The following theorem goes beyond this, proving that
there are non-minimal parameters that satisfy the sim-
plified constraints. Specifically, for any valid parame-
ters of any size, there exists equivalent parameters that
satisfy the simplified constraints and have the same size
as the original parameters. Thus, one need not change
the size of the parameters when searching to satisfy the
simplified constraints, even if the original parameters
are not minimal.

Theorem 8. For any valid parameters, there exist
equivalent parameters of the same size that satisfy
Equation 7.

Proof. Let n be the size of the original parameters.
There exists some equivalent minimal parameters M =
{uφ,mao,Mao : ∀a, o} (Theorem 7), which satisfy
Equation 7. This proof uses the minimal parame-
ters to construct a set of equivalent parameters Z =
{yφ, zao, Zao : ∀a, o} that have size n and satisfy Equa-
tion 7. These parameters are just the minimal parame-
ters padded with 0’s. Specifically,

yφ
def
=

[

uφ

0

]

zao
def
=

[

mao

0

]

Zao
def
=

[

Mao 0
0 0

]

.

The dimensions of the 0 vectors and matrices are deter-
mined by the fact that these new parameters have size
n. One property of these parameters worth noting ex-
plicitly is that for any sequence t,

zt =

[

mt

0

]

.

This can be easily verified from the definition of Z .
There are two things to prove about Z:

• The Z parameters are equivalent to the minimal pa-
rameters M. For any test t, the prediction p(t|φ)
according to Z is

y⊤
φ zt = [u⊤

φ 0]

[

mt

0

]

= u⊤
φ mt

which is equivalent to the prediction made by M.

• The Z parameters satisfy Equation 7:

∀a, o, a′, zao = Zao

∑

o′

za′o′ (7)

This can be seen with the following derivation:

Zao

∑

o′

za′o′ =

[

Mao 0
0 0

] [
∑

o′ ma′o′

0

]

=

[

Mao

∑

o′ ma′o′

0

]

=

[

mao

0

]

.

This last step uses the fact that the minimal param-
eters M satisfy Equation 7. The resulting vector is
equal to zao, by definition.

Theorem 8 proves that even though the simplified
constraints (Equations 1, 4, and 7) are not strictly nec-
essary, one does not lose modeling power by requiring
that the PSR parameters satisfy those constraints.

3.3 The Non-negativity Constraints

While Equations 4 and 7 specify a finite set of con-
straints, there remains one non-negativity constraint for
each test t (Equation 1): u⊤

φ mt ≥ 0. For a fixed set

of parameters, these non-negativity constraints define a
cone of acceptable initial states uφ (with a point at the
origin). The non-negativity constraint for each test t
(potentially) adds a face to this cone. We are explor-
ing a connection between the non-negativity constraints
and the geometric problem of determining if a cone
is closed under matrix multiplication (the matrices in
our case would be the Mao’s). As of yet, we have not
found a way to reduce Equation 1 to a finite set of con-
straints in general. However, for parameters that satisfy
the kth-order Markov property, one only needs to check
the non-negativity constraints for tests of length k or
less (proof omitted). Thus, in practice, one would ap-
proximate the full set of non-negativity constraints by
checking the subset of constraints for all tests shorter
than some fixed length. Checking non-negativity con-
straints for long tests is unlikely to be helpful because
as the length of the test t increases, the number of ma-
trix multiplications to compute mt increases, magnify-
ing numerical precision errors in the parameters.

4 Constraints for State Vectors

Up to this point, we have described Equations 1, 4, and
6 as constraints on PSR parameters. However, the same
equations can also be viewed as constraints on the set of



valid state vectors for a given set of parameters. In this
section, a set of parameters M will refer to the Mao

matrices and mao vectors, but not the initial state uφ.
We say that a vector uφ is a valid state vector for a
given a set of parameters M if uφ and M together sat-
isfy Equations 1, 4, and 6. While these equations were
derived in terms of the initial state vector uφ and pre-
dictions from the null history, they are also necessary
and sufficient constraints for the PSR state vector at any
history h. That is, the constraints on the set of all pre-
dictions {p(t|φ) : ∀t} from the null history also apply
to the predictions {p(t|h) : ∀t} from any history h.

Constraints on the set of valid state vectors could be
used after the PSR parameters have been learned and an
agent is using the model to make predictions. In par-
ticular, due to errors in the parameters, the state of the
PSR can drift outside the space of valid state vectors.
By defining the space of valid state vectors, an agent
could detect such drifting and project the state vector
back into the valid space. (This is analogous to renor-
malizing the belief state of a POMDP model.) This pro-
jection can utilize the fact that the space of valid state
vectors for a PSR model is convex, as the following the-
orem proves.

Theorem 9. For any set of parameters M, the space of
PSR state vectors that are valid for those parameters is
convex.

Proof. This theorem follows immediately from the con-
straints of Equations 1, 4, and 6. Each of those con-
straints is linear in the state vector uφ, because any
prediction p(·|φ) is a linear function of uφ. As men-
tioned above, the space of valid initial state vectors uφ

is also the space of valid state vectors at any history.
This space is defined by linear equations and linear in-
equalities. Therefore, it is a convex space.

4.1 Experiments

This section presents results from experiments that ad-
just the PSR state vector after each state update. The
adjustment is based upon the constraints

∀a, s⊤φ

∑

o

mao = 1. (4)

After every time step, we take the updated state s and
compute the adjusted state s+ as

s+ =
s

1

|A|

∑

a s⊤
∑

o mao

. (8)

This adjustment ensures that the sum of all the predic-
tions for length-one tests will be |A|, which is implied
by Equation 4.

This scaling of the state vector prevents the entries in
the state vector from overflowing or underflowing (i.e.,
magnitudes growing too large or all dwindling to 0.0)

Domain Linear PSRs TPSRs

tiger 0.079710 0.318841

paint 0.040580 0.275362

shuttle 0.392754 0.956522

network 0.459420 0.739130

cheese 0.411594 0.521739

bridge 0.078261 0.594203

4x3 maze 0.214493 0.666667

Table 1: The fraction of learned models that suffered
from overflow or underflow during the 50000 time steps
of model evaluation. Adjusting the state vector based
upon our derived constraints eliminated all overflow or
underflow for both linear PSRs and TPSRs.

as the state is updated after each time step. Once the
state overflows or underflows, the model is unable to
make predictions. To test the effect of adjusting the
state vector, we learned linear PSR models using the
suffix-history algorithm and the POMDP domains from
Wolfe, James, & Singh (2005). For each domain, we
learned 30 PSR models for each of several amounts of
training data, ranging from 10 time steps up through
40 million time steps. After learning the models, we
evaluated their predictions for 50000 time steps. Table
1 presents the fraction of the models for each domain
that either overflowed or underflowed their state vectors
during the evaluation. As seen in the table, the over-
flow/underflow problem happens a significant fraction
of the time. In contrast, when scaling the state vectors
of the same models according to Equation 8, none of the
models suffered from overflow or underflow.

Because each element of a linear PSR state should
be a probability, another way to prevent the over-
flow/underflow problem is to clip the entries of the state
vector in the range [ǫ, 1.0] for some very small ǫ. Clip-
ping the state vector in this way is a limited applica-
tion of the non-negativity and marginal probability con-
straints. As when scaling the state vector, clipping the
state vector after every time step also prevents overflow
or underflow in all models.

We used a mean-squared error measure to evalu-
ate the models’ predictions, the same measure used by
Wolfe, James, & Singh (2005). For small amounts of
training data, clipping led to more accurate predictions
than scaling in three of the seven domains (up to one or-
der of magnitude lower error). Otherwise, clipping and
scaling were comparable. Combining both methods did
not produce any significant benefit over clipping.

As mentioned early in Section 2, the constraints we
derived apply to TPSRs as well as to linear PSRs. With
TPSRs, the clipping method for adjusting state is not
applicable, since the state vector is a linear function of
predictions. However, the constraints of Equation 4 still



apply to TPSRs, so scaling the state vector is a valid
method for preventing overflow/underflow. We ran the
same experiments with the TPSRs as with the linear
PSRs. Table 1 presents the fraction of TPSR models
for each domain that suffered from overflow or under-
flow when the state vector was not adjusted. The over-
flow/underflow problem is even more prevalent with
TPSRs than with linear PSRs, yet when scaling the state
vectors of the same TPSR models, none of the models
suffered from overflow or underflow.4

5 Summary and Future Work

We derived constraints that are necessary and sufficient
for parameters of a linear PSR or TPSR model to make
valid predictions. For a given set of parameters, these
same constraints also define the set of valid state vec-
tors, which we proved to be a convex set. We also de-
rived a set of simplified constraints, proving that, for
any valid parameters, there exist equivalent parameters
of the same size that satisfy the simplified constraints.
We demonstrated that using our constraints to adjust the
state vectors of linear PSRs and TPSRs prevents over-
flow and underflow that otherwise occurs frequently.

Another possible use of our constraints would be to
incorporate them into a learning algorithm for PSR pa-
rameters. Current algorithms ignore any constraints
on the PSR parameters, in part because the constraints
were not well-defined prior to this work (e.g., James &
Singh (2004), Wolfe, James, & Singh (2005), or Rosen-
crantz, Gordon, & Thrun (2004)). The current algo-
rithms use matrix pseudo-inverses to find the parame-
ters that best fit a set of estimated predictions. How-
ever, due to noise in the estimated predictions, the best-
fit parameters do not necessarily constitute a valid PSR
model. In future work, our constraints could be in-
corporated into a learning algorithm that solves a con-
strained optimization problem: find the parameters that
best fit the estimated predictions subject to the con-
straints. While this would not be as simple as comput-
ing a matrix pseudo-inverse, it would potentially yield
more accurate models.

Appendix

This appendix proves that minimal parameters have no
equivalent set of parameters of smaller size (Theorem
11). The following lemma is used in that proof.

Lemma 10. A minimal set of parameters with size n
has a history basis of size n and a test basis of size n.

4The TPSR error is comparable to the error of the linear
PSRs reported by Wolfe, James, & Singh (2005). Their er-
ror was sometimes lower than our linear PSR error because,
in addition to clipping the state vector, they hand-selected the
learning algorithm’s rank-estimation parameter. Our experi-
ments used a parameter value automatically chosen by cross-
validation.

Proof. A history basis can have size no less than n:
such a history basis would imply that the rank of the
parameters was less than n, making the parameters non-
minimal. A history basis can have size no greater than
n because the uh vectors are n-dimensional, and there
does not exist a set of more than n linearly independent
vectors in R

n. Thus, the history basis must have size
exactly n. The same argument applies to the test basis,
because the m-vectors are also n-dimensional.

Theorem 11. If a set of parameters M is minimal,
there is no equivalent set of parameters of smaller size.

Proof. Let M = {uφ,mao,Mao : ∀a, o} be a minimal
set of parameters with size n, and let H = {h1, . . . , hn}
and T = {t1, . . . , tn} be history and test bases, respec-
tively. Let U be the matrix with ith row equal to u⊤

hi
,

and let M be the matrix with ith column equal to mti
.

Finally, define the matrix

P
def
=









p(h1t1|φ) p(h1t2|φ) · · · p(h1tk|φ)
p(h2t1|φ) p(h2t2|φ) · · · p(h2tk|φ)

...
...

. . .
...

p(hkt1|φ) p(hkt2|φ) · · · p(hktk|φ)









where the predictions are computed according to the pa-
rameters M. Then

UM = P.

Since M is an n×n, full-rank matrix (Lemma 10), it is
invertible, so

U = PM−1.

Then P must also have rank n, because rank(A B) ≤
min(rank(A), rank(B)) for any matrices A and B.
Specifically, U has rank n (Lemma 10), so the rank of
P must be at least n. Since it is an n × n matrix, it has
rank exactly n.

Consider a set of equivalent parameters Z =
{yφ, zao, Zao : ∀a, o} with size n′. We show that n′

is no less than n, the size of the minimal parameters.
Let Y be the matrix with rows equal to the yhi

vectors,
and let Z be the matrix with columns equal to the zti

vectors. Because M and Z are equivalent,

Y Z = P.

Since P has rank n, each of Y and Z must also have
rank at least n. This means that the size n′ of the pa-
rameters Z must be at least n (because each of Y and Z
is n′ ×n′). This completes the proof that the equivalent
parameters have size no less than n.
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