Indiana University – Purdue University Fort Wayne Opus: Research & Creativity at IPFW

Masters' Theses

Graduate Student Research

5-2013

Isolation and Characterization of Active Elderberry Fractions that Inhibit Melanoma Growth in vitro and in vivo

Alexandra M. Okihiro Indiana University - Purdue University Fort Wayne

Follow this and additional works at: http://opus.ipfw.edu/masters_theses
Part of the Cancer Biology Commons, Food Chemistry Commons, and the Immunity Commons

Recommended Citation

Alexandra M. Okihiro (2013). Isolation and Characterization of Active Elderberry Fractions that Inhibit Melanoma Growth in vitro and in vivo. http://opus.ipfw.edu/masters_theses/24

This Master's Research is brought to you for free and open access by the Graduate Student Research at Opus: Research & Creativity at IPFW. It has been accepted for inclusion in Masters' Theses by an authorized administrator of Opus: Research & Creativity at IPFW. For more information, please contact admin@lib.ipfw.edu.

PURDUE UNIVERSITY GRADUATE SCHOOL Thesis/Dissertation Acceptance

This is to certify that the thesis/dissertation prepared

 $_{Bv}$ Alexandra M. Okihiro

Entitled

Isolation and Characterization of Active Elderberry Fractions that Inhibit Melanoma Growth in vitro and in vivo

For the degree of Master of Science

Is approved by the final examining committee:

Elliott J. Blumenthal

Chair

Robert B. Gillespie

Tanya T. Soule

To the best of my knowledge and as understood by the student in the *Research Integrity and Copyright Disclaimer (Graduate School Form 20)*, this thesis/dissertation adheres to the provisions of Purdue University's "Policy on Integrity in Research" and the use of copyrighted material.

Approved by Major Professor(s): Elliott J. Blumenthal

Approved by: Frank V. Paladino

04/19/2013

Head of the Graduate Program

Date

ISOLATION AND CHARACTERIZATION OF ACTIVE ELDERBERRY FRACTIONS THAT INHIBIT MELANOMA GROWTH IN VITRO AND IN VIVO

A Thesis

Submitted to the Faculty

of

Purdue University

by

Alexandra M. Okihiro

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science

May 2013

Purdue University

Fort Wayne, Indiana

Dedicated to my parents, Pam and Walt Okihiro, for their unwavering love and support. I could not have done this without you.

ACKNOWLEDGMENTS

First and foremost, I would like to thank my committee chair Dr. Elliott Blumenthal, for his support and guidance throughout my entire collegiate career at IPFW. As an undergraduate, Dr. Blumenthal motivated me to excel in all aspects of college life and facilitated my very first research experience in his laboratory, sparking my interest in research as a new aspect of academia. Due to his professionalism, approachable nature and unrivaled support and patience, pursuing research under his direction in graduate school was an easy decision. Dr. Blumenthal's positive attitude, encouraging words, and confidence in my abilities were continuous throughout my graduate studies, which empowered me to achieve far beyond what I could have possibly imagined for myself as a student. I am so honored to have had the opportunity to work in Dr. Blumenthal's lab.

I would also like to express my sincerest thanks to committee members Dr. Robert Gillespie and Dr. Tanya Soule. Dr. Gillespie has played a significant role in my development as a critical thinker ever since I was a freshman. I could always count on Dr. Gillespie's encouragement in all of my academic endeavors, and I value this support tremendously. I clearly remember my very first biology class taught by Dr. G., and he has played a vital role in inspiring the biologist within me ever since. Some of my fondest memories will be collecting field data with the CEAP crew! Though I have only known Dr. Soule for a few years, she has made all the difference in my graduate studies. Aside from being a wonderful mentor to me, she has also provided me with opportunities to further my development as a researcher by encouraging me to attend scientific conferences. Her investment in my thesis research has been irreplaceable, as all of her suggestions have made my project cohesive and balanced. Without the assistance of my entire thesis committee, I could not have achieved all that I have.

I also need to thank Dr. Peng Jing from the Chemistry Department for all of his help using HPLC. Rather than simply running my samples for me, Dr. Jing made a tremendous effort to teach me about the different kinds of HPLC elution and gave me what I consider the best "crash-course" in analytical chemistry. The investigative research skills I have acquired from his teachings are invaluable, and speak volumes about him as an educator. Dr. Jing is exceptionally kind and patient and I could always count on a celebratory fist-bump when sample peaks separated with good retention times.

I would also like to thank Dar, Glenda, Arlis, Bruce, and the rest of the Biology Department staff for their continuous support and guidance, and Barbara Lloyd for her time and patience in helping me format my thesis. I would also like to acknowledge valuable product contributions by Artemis International Inc. in Fort Wayne, IN, as well as Dr. Robert Ross and Dr. Robert Visalli for contributing cancer cell lines to my research materials.

Lastly, I would like to thank my wonderful support network of friends and family. I am so fortunate to have so many caring individuals in my life. Even though I was far from home, their encouragement, genuine interest in my studies, and belief in me made it possible to continue working hard (late into the night!) to achieve my goals.

TABLE OF CONTENTS

LIST OF TABLES	viii
LIST OF FIGURES	xi
ABSTRACT	xiii
INTRODUCTION	1
Melanoma Etiology of Melanoma Development Components of the Immune System Tumor Suppressive Function of the Immune System Current Treatments of Melanoma Bioactive Components of Berries European Black Elder (<i>Sambucus nigra</i>) Aim	1 5 5
METHODS	19
Elderberry Extraction of Elderberry Samples Cell Lines Preparation of Spleen Cells Cell Harvesting and Liquid Scintillation Counting Mouse Habitat Conditions and Handling Tumor Cell Proliferation Assays with Separated Elderberry Samples Pooling of Assumed Active Elderberry Samples MeWo Cell Proliferation Assay with Pooled Elderberry Fractions B16-F10 Cell Proliferation Assay with Pooled Elderberry Fractions SH-SY5Y Cell Proliferation Assay with Pooled Elderberry Fractions CHO-K1 Cell Proliferation Assay with Pooled Elderberry Fractions Middle Aged Mouse Spleen Cell Proliferation Assay with Pooled Elderberry Fractions	19 23 25 26 27 28 29 30 31 31 32

Page

vi

Young and Old Mouse Comparative Spleen Cell Proliferation Assay	34
Modulation of Cytokine II -2 by Pooled Elderberry Fractions	
Old Mouse in vivo Murine Melanoma Assay with Crude Elderberry	36
Young Mouse <i>in vivo</i> Murine Melanoma Assay with Crude Elderberry	
Middle Aged Mouse <i>in vivo</i> Murine Melanoma Assay with Active	
Pooled Elderberry Fractions	38
Preliminary Identification of Active Pooled Elderberry Fractions	
by Heat-Induced Denaturation in a B16-E10 Cell Proliferation Assay	30
Preliminary Identification of Active Pooled Elderberry Fractions	
by Heat-Induced Denaturation in a Spleen Cell Proliferation Assay	40
Identification of Active Pooled Elderberry Fractions by Reversed-Phase	
High-Performance Liquid Chromatography (HPLC)	41
Then Terrormance Enquite Enrormatography (Th Le)	
RESULTS	43
Extraction of Elderberry Samples	43
Tumor Cell Proliferation Assays with Separated Elderberry Samples	
Pooling of Assumed Active Elderberry Samples	
MeWo Cell Proliferation Assay with Pooled Elderberry Fractions	
B16-F10 Cell Proliferation Assay with Pooled Elderberry Fractions	50
SH-SY5Y Cell Proliferation Assay with Pooled Elderberry Fractions	52
CHO-K1 Cell Proliferation Assay with Pooled Elderberry Fractions	53
Middle Aged Mouse Spleen Cell Proliferation Assay with Pooled	
Elderberry Fractions	55
Young and Old Mouse Comparative Spleen Cell Proliferation Assay	
with Pooled Elderberry Fractions	56
Modulation of Cytokine IL-2 by Pooled Elderberry Fractions	58
Old Mouse in vivo Murine Melanoma Assay with Crude Elderberry	59
Young Mouse in vivo Murine Melanoma Assay with Crude Elderberry	62
Middle Aged Mouse in vivo Murine Melanoma Assay with Active	
Pooled Elderberry Fractions	65
Preliminary Identification of Active Pooled Elderberry Fractions	
by Heat-Induced Denaturation in a B16-F10 Cell Proliferation Assay	66
Preliminary Identification of Active Pooled Elderberry Fractions	
by Heat-Induced Denaturation in a Spleen Cell Proliferation Assay	68
Identification of Active Pooled Elderberry Fractions by Reversed-Phase	
High-Performance Liquid Chromatography (HPLC)	69
DISCUSSION	74
LIST OF REFERENCES	82

APPENDICES

Appendix A	
Appendix B	
Appendix C	

Page

LIST OF TABLES

Table		Page
1.	The collection times for elutants resolved by column chromatography using prepared standard elderberry powder (Column #1)	44
2.	The evaporation times for elutants resolved from column chromatography to 1-1.5 mL by rotary evaporator (Column #1)	44
3.	The collection times for elutants resolved by column chromatography using prepared standard elderberry powder (Column #2)	45
4.	The complete evaporation times for elutants resolved from column chromatography by rotary evaporator (Column #2)	46
5.	The average collection times for elutants resolved by column chromatography using prepared standard elderberry powder (Column #3-24)	47
6.	The average complete evaporation times for elutants resolved from column chromatography by rotary evaporator (Column #3-24)	47
7.	Average middle aged mouse spleen cell proliferation elicited by pooled fractions incubated with Con A	56
8.	Average tumor weight and volume for all tumor-bearing mice in the old mouse <i>in vivo</i> murine model assay with crude elderberry	61
9.	Senescent mouse spleen cell stimulation by Con A in the old mouse <i>in vivo</i> murine model assay with crude elderberry	62
10.	Average tumor weight and volume for all tumor-bearing mice in the young mouse <i>in vivo</i> murine model assay with crude elderberry	64
11.	Young mouse spleen cell stimulation by Con A in the young mouse <i>in vivo</i> murine model assay with crude elderberry	65

Appendix Table

A1.	Results for B16-F10 cell proliferation assay with Column #2 individual samples	89
A2.	Results for B16-F10 cell proliferation assay with Column #3 individual samples	92
A3.	Results for B16-F10 cell proliferation assay with Column #4 individual samples	95
A4.	Results for B16-F10 cell proliferation assay with Column #5 individual samples	98
A5.	Results for B16-F10 cell proliferation assay with Column #6 individual samples	101
A6.	Results for B16-F10 cell proliferation assay with Column #7 individual samples	104
A7.	Results for B16-F10 cell proliferation assay with Column #8 individual samples	107
A8.	Results for B16-F10 cell proliferation assay with Column #9 individual samples	110
A9.	Results for B16-F10 cell proliferation assay with Column #10 individual samples	113
A10.	Results for B16-F10 cell proliferation assay with Column #11 individual samples	116
A11.	Results for B16-F10 cell proliferation assay with Column #12 individual samples	119
A12.	Results for B16-F10 cell proliferation assay with Column #13 individual samples	122
A13.	Results for B16-F10 cell proliferation assay with Column #14 individual samples	125
A14.	Results for B16-F10 cell proliferation assay with Column #15 individual samples	128
A15.	Results for B16-F10 cell proliferation assay with Column #16 individual samples	131

Page

Appendix Table

A16.	Results for B16-F10 cell proliferation assay with Column #17 individual samples	134
A17.	Results for B16-F10 cell proliferation assay with Column #18 individual samples	137
A18.	Results for B16-F10 cell proliferation assay with Column #19 individual samples	140
A19.	Results for B16-F10 cell proliferation assay with Column #20 individual samples	143
A20.	Results for B16-F10 cell proliferation assay with Column #21 individual samples	145
A21.	Results for B16-F10 cell proliferation assay with Column #22 individual samples	148
A22.	Results for B16-F10 cell proliferation assay with Column #23 individual samples	151
A23.	Results for B16-F10 cell proliferation assay with Column #24 individual samples	153
A24.	Pooling of Column #1 samples	155
A25.	Column #2-24 samples pooled to generate P16, P24, and P29	156

Page

LIST OF FIGURES

Figure]	Page
1.	The structure of common anthocyanidins	14
2.	Separation and solvent removal techniques	22
3.	Cell harvesting and counting techniques	27
4.	MeWo cell suppression by individually separated elderberry samples (n=3)	48
5.	MeWo cell suppression by pooled elderberry fractions (n=2)	50
6.	B16-F10 cell suppression by pooled elderberry fractions	51
7.	SH-SY5Y cell suppression by pooled elderberry fractions	53
8.	CHO-K1 cell suppression by pooled elderberry fractions	54
9.	Senescent and young mouse spleen cell growth stimulation by pooled elderberry fractions	57
10.	Stimulation of IL-2 secretion from spleen cells treated with pooled elderberry fractions	59
11.	Body weight results for old tumor-bearing mice given control and elderberry treatments	60
12.	Body weight results for young tumor-bearing mice given control and elderberry treatments	63
13.	Tumor weight results for young tumor-bearing mice given control and elderberry treatments (n=3)	64
14.	B16-F10 cell suppression by heated active pooled elderberry fractions	67

Figure

15.	Senescent mouse spleen cell proliferation by heated active pooled elderberry fractions
16.	HPLC chromatogram of crude elderberry anthocyanins measured at 520 nm
17.	HPLC chromatogram of 1:50 diluted pooled fraction P16 anthocyanins measured at 520 nm
18.	HPLC chromatogram of 1:50 diluted pooled fraction P24 anthocyanins measured at 520 nm
19.	HPLC chromatogram of 1:50 diluted pooled fraction P29 anthocyanins measured at 520 nm
Appen	dix Figure Page
B1.	Optimal concentration of trypsin addition before harvesting for tumor cell proliferation assays
B2.	Optimal concentration of Con A on spleen cell proliferation 157
B3.	Standard IL-2 curve generated from the Quantikine murine IL-2 ELISA 158

Page

ABSTRACT

Okihiro, Alexandra M. M.S., Purdue University, May 2013. Isolation and Characterization of Active Elderberry Fractions that Inhibit Melanoma Growth *in vitro* and *in vivo*. Major Professor: Elliott J. Blumenthal.

The incidence rates of melanoma continue to rise annually despite recent progression in cancer treatments. Cancer is the most prevalent amongst elderly individuals, where immunosenescence has compromised some immune function, and therefore decreased certain tumor detection abilities. Current tumor removal strategies include radiation, chemotherapy and surgical excision: treatments that aim to lower cancer cells, but may also affect normal cells in the process. In the case of chemotherapy, which targets and kills rapidly dividing cells, many immune cells are lowered as a side effect, leaving many patients immune-suppressed and more susceptible to infection. There is a need for naturopathic treatments capable of decreasing tumor cell proliferation without compromising the body's normal immune function. Extracts from elderberry (*Sambucus nigra*) may be able to satisfy this need. Previous reports suggest that phytochemicals, such as the ones present in elderberry, may stimulate the immune response by secretion of cytokines, provide antioxidant protection to prevent cellular damage, and inhibit tumor growth directly. Our primary goal was to separate the active components of elderberry and assess their inhibitory effects on the growth of multiple cancerous and transformed cell lines, as well as characterize their effects on stimulation of T lymphocyte proliferation and IL-2 secretion *in vitro*. Murine melanoma model experiments were also performed with crude elderberry and elderberry fractions to analyze the tumor-suppressive activity of elderberry treatments *in vivo*. Spleen cell proliferation and *in vivo* experiments were also performed with different aged groups of mice to uncover the tumor –inhibiting and immune-inducing effects of elderberry and active elderberry fractions on aged mice. Active elderberry fractions were then preliminarily identified.

All separated elderberry fractions were able to significantly suppress the growth of B16-F10 murine melanoma and SH-SY5Y human neuroblastoma cells *in vitro*. Several separated fractions also inhibited growth of a human melanoma cell line, MeWo, and a transformed non-cancerous line, CHO-K1. When incubated with concanavalin A (Con A, a known mitogen) and spleen cells from a middle aged and old mouse, separated fractions of elderberry did not increase proliferation above the positive control (cells incubated with con A only), however, they induced a larger proliferation response in the older mouse spleen cells. Three active fractions induced secretion of IL-2 from spleen cells above the positive control. In general, mice induced to produce tumors developed smaller, localized tumors when treated with crude elderberry compared to mice treated with water, whose tumors were larger and metastatic. The active elderberry fractions were too potent to be successfully implemented in an *in vivo* experiment, and need to be diluted for future mouse model experiments. Of the four primary anthocyanins in elderberry, cyanidin 3-sambubioside and cyanidin 3-glucoside were identified as the

major tumor-inhibiting, immune-inducing components in different active fractions separated from elderberry.

The positive benefits of active fractions on tumor suppression and potentially on modulation of immune-inducing mechanisms provide further support for the use of bioactive phytochemicals in preventative cancer treatment.

INTRODUCTION

<u>Melanoma</u>

Cancer is a disease characterized by the uncontrolled growth and decreased regulation of cell function, resulting in abnormal and atypical cell behavior. Often, these abnormal cells invade adjacent tissues or even migrate to other organs in a process known as metastasis, which can greatly increase the severity of the disease. In 2010, it was predicted that 1,500 individuals in the United States would die each day from cancerous diseases. Currently, cancer claims the second highest number of lives in America each year, exceeded only by heart disease. However, the trend in comparably developed countries, such as England and Canada, suggest that cancer will soon overtake heart disease as the number one cause of fatalities in the United States. The lifetime risk of developing cancer is slightly less than 50% in men, and slightly above 1 in 3 in women. Cancer is most often diagnosed in individuals who are middle aged or older. Approximately 77% of cancers are found in individuals aged 55 or older (American Cancer Society, 2013). The natural process of aging brings about changes to the immune system known as immunosenescence: a catch-all term describing the general decline of immune efficiency that correlates with maturation, which makes elderly people an at-risk population for many illnesses, including cancer. Genetically, cancer arises from DNA mutations that cause malfunction in important cell growth, division and modulation

processes. Skin, being the body's largest organ, has a high incidence rate of cancer. Basal cell and squamous cell cancers (nonmelanoma cancers) make up the majority of skin cancer diagnoses; an estimated 3.5 million cases were diagnosed in the United States in 2006. Basal cell and squamous cell cancers are often highly curable and do not account for many cancer fatalities, especially when detected in early stages of the disease. Melanoma (or cutaneous melanoma, or malignant melanoma) is far less common, however it is the skin cancer type that claims the most lives compared to all other forms of skin cancer. It is estimated that melanoma causes 71-80% of skin cancer deaths (Brozyna et al., 2007). Melanoma begins in the melanin pigment forming cells (melanocytes) found in the deepest layer of the epidermis. The normal function of melanocytes is to increase melanin production in a protective response against ultra violet (UV) radiation. Melanin is also responsible for skin color phenotype. Faulty repair of DNA damage in melanocytes ultimately leads to aberrant cell function, which can lead to transformation of cells into cancerous ones. According to the American Cancer Society, incidence rates of melanoma have been increasing over the past 30 years and mortality due to melanoma increases approximately 0.4% annually (Linos et. al, 2009). In 2000, the lifetime risk of developing malignant melanoma was 1 in 74, and the trend has been steadily increasing since 1935 (Rigel & Carucci, 2000) despite advances in cancer treatments and declining incidence rates of other cancers.

Etiology of Melanoma Development

Certain induction agents, such as chemical carcinogens, viruses, and radiation, have been shown to increase cancer risk. The most well known risk for melanoma

development is chronic UV radiation exposure. Substantial buildup of reactive oxygen species (ROS) consequent of UV radiation can cause oxidative stress in active melanocytes, increasing creation of free radicals capable of damaging DNA and increasing the likelihood of a DNA-repair error mutation, which may lead to aberrant cell function. The DNA mutations consequent of UV exposure in spontaneous melanoma cases can cause mutations in the important cell cycle tumor suppressor protein p53 and proteins from the Cyclin-dependent kinase inhibitor 2A gene (CDKN2A), a gene important in familial melanoma and some sporadic melanoma cases as well. The p53 protein, encoded by the TP53 gene on the short arm of chromosome 17, has a variety of normal functions, including initiation of apoptosis (programmed cell death) and induction of DNA repair in genetically damaged cells. It is one of the key proteins in a cell that maintains genomic stability. In melanoma, abnormal p53 function causes the melanocyte to proceed through a cell cycle 'check-point', even if DNA has been damaged, resulting in survival of the genetically abnormal cell. The CDKN2A gene (Cyclin-dependent kinase inhibitor 2A) is located on the short arm of chromosome 9 and has two reading frames, producing proteins p16^{INK4} and p14ARF. Both proteins function to inhibit cvclindependent kinases, enzymes that promote cellular growth and progression within the cell cycle by binding to their respective cyclin counterparts. P16^{INK4} inhibits cyclin-dependent kinase 4 by causing a conformational change to the kinases' active site, thus decreasing its phosphorylating ability and overall function. P14ARF functions by inhibiting murine double minute (MDM2), a negative regulator of p53, thus freeing p53 to maintain cellular integrity of the melanocyte (Brozyna et al., 2007). Therefore mutation in the CDKN2A gene increases the risk of improper cell cycle regulation that may lead to cancer.

Melanoma can also be the result of genetic disposition. Approximately 10% of melanoma cases are familial (Tung, 2011). A rare genetic disorder (autosomal recessive) called xeroderma pigmentosum (XP) affects an individual's ability to repair damaged DNA consequent of UV exposure, greatly increasing lifetime likelihood of melanoma development. Approximately 90% of XP patients have mutations in p53, which greatly increases the risk of melanoma, as well as other skin cancers (Brozyna, et al., 2007). Many familial melanoma cases involve mutations in p16, the tumor suppressor gene essential in cell-cycle arrest encoded by the CDKN2A gene.

Over 50% of melanomas can be traced back to a DNA mutation in the V-raf murine sarcoma virus oncogene homolog B1 (BRAF) gene, located on the long arm of chromosome 7 in humans. A common mutation in this gene protein is the point mutation of valine to glutamine at amino acid codon 600 (BRAF^{V600E}). This mutation has been found in other cancers (such as papillary thyroid carcinomas); however it is the most common in melanoma. In normal melanocytes, BRAF functions as a modulator of the Mek/Erk pathway. The Mek/Erk pathway begins when a ligand binds a cellular receptor, activating Ras protein, which creates a cascade of phosphorylation events, ultimately leading to increased cellular proliferation. The point mutation in BRAF causes continuous kinase activation (phosphorylation at the active site) which results in Rasindependent activation of the Mek/Erk pathway with the end result being continuous cell division and avoidance of apoptosis (Brozyna et al., 2007). It is currently unclear whether or not UV exposure directly contributes to the acquisition of BRAF mutations, as a correlation between the two is uncommon. Individuals with a certain skin phenotype have an increased lifetime risk for melanoma development. Individuals with fair skin (less melanin), possession of multiple nevi and freckles, and individuals prone to sunburning are more likely to develop melanoma. Increased age is also a factor in assessing lifetime risk of melanoma. Alterations to the immune system consequent of immunosenescence in elderly individuals may decrease immunosurveillance against cancerous cells, which contributes to tumor development. Immunosuppressed individuals, such as recent organ transplant patients, also exhibit increased risk of cancers including melanoma, suggesting that a functional immune system may play a vital role in suppressing the onset of cancer (Kubica & Brewer, 2012).

Components of the Immune System

The immune system is a highly adaptable, dynamic network of cells and molecules specialized in identifying and eliminating foreign pathogens from the body. There are two systems of immunity that function together to provide this protection. *Innate immunity* is the body's first line of defense consisting of physical, chemical, and cellular barriers present before the onset of infection, such as skin, mucosal membrane enzymes, and stomach acidity. Beyond these barriers are a number of nonspecific leukocyte host cells ready to engulf, neutralize and kill any foreign invaders who breach the immunological barriers, such as macrophages, neutrophils, dendritic cells and natural killer (NK) cells. Certain molecular patterns on invaders may activate the nonspecific complement system, which promotes opsonization of foreign agents and recruitment of phagocytic cells by inflammation (Goldsby et al., 2003). Generation of cytokines such as interferon, tumor necrosis factor and interleukin is also the result of innate immunity. Cytokines are proteins or glycoproteins that bind to specific membrane receptors and induce a cascade of events via signal-transduction, ultimately resulting in gene expression alteration in specific cells. Cytokines secreted by injured cells or nonspecific leukocytes act in an antigen-nonspecific manner to promote cell proliferation and differentiation, regulate inflammation, and influence *adaptive immunity*, the second, and more specific, line of immune defense (Goldsby et al., 2003).

Adaptive immunity serves as a specific responsive against foreign pathogens that are able to evade the innate immunity mechanisms, and is therefore activated after onset of the infection. Whereas innate immunity recognizes large-scale molecular patterns on foreign invaders, adaptive immunity recognizes small immunologically active substances on pathogens known as "antigens". B lymphocytes (white blood cells that mature in the bone marrow) and T lymphocytes (white blood cells that mature in the thymus) are the main cellular components of adaptive immunity. B lymphocytes play a large role in humoral immunity: immunity by non-cellular substances, such as antibodies, present in humours (body fluids). Antibodies are able to activate complement, promote antigen phagocytosis and induce death in antibody-bound foreign target cells. When an antigen binds the surface antibody of a naïve B lymphocyte, the cell undergoes clonal expansion and differentiation into effector plasma cells (which secrete antibodies) and long-lived memory cells. Following a secondary response to an identical or similar antigen, memory cells secrete high affinity antibodies to bind and clear the antigen quickly and effectively.

T lymphocytes are the major cell type involved in attacking cancer cells and play a large role in cell-mediated immunity. They function by interacting with other host cells

by binding antigenic peptides and major histocompatibility complex (MHC) presented by designated antigen-presented cells (APCs), which have phagocytized the foreign pathogen and displayed it on their surface. During maturation in the thymus, T lymphocytes are permitted to survive only if their T-cell receptor (TCR) can recognize self-major histocompatibility complex (MHC) and react to it at an appropriate affinity (Goldsby et al., 2003). If recognition of self-MHC is too strong, the T lymphocyte will be killed. Presence of MHC is necessary for a T lymphocyte to be activated. Two important subsets of mature T lymphocytes are CD4+ T-helper cells (T_H) and CD8+ T-cytotoxic cells (T_C). T_H cells bind MHC class II, which is frequently found on the surface of dendrites, macrophages and other specialized phagocytic APCs. Once bound, the T_H cell induces multiple intracellular signals, including release of IL-2, which causes autocrine and paracrine proliferation of T_H cells, which ultimately leads to differentiation into effector, regulatory, and memory $T_{\rm H}$ cells, secretion of multiple other cytokines and recruitment of helpful B lymphocytes and T_C cells. T_C cells bind MHC class I, which is present on all nucleated cells, and is able to directly kill a target cell expressing a foreign antigen, such as a host cell infected by a virus. The T_C cell killing process can occur by many mechanisms, including receptor-ligand binding of the FAS death receptor molecules which induces programmed steps to cell death and exocytosis of perforin, granzymes, and other lytic proteins leading to necrosis or apoptosis of the target cell by activation of caspases (Groscurth & Filgueira, 1998). Once activated, $T_{\rm C}$ cells also proliferate and differentiate in response to cytokine signals to increase the immune response. The major difficulty in attacking cancerous cells is that, although they function abnormally, they are self-cells.

Tumor Suppressive Function of the Immune System

Of the multiple components of the immune system, the most important functional component is the systems' ability to provide self-nonself discrimination, effectively distinguishing the body's own cells from foreign agents and altered host cells, therefore being especially important in detection and elimination of cancerous cells. Evidence of tumor immunology is rapidly accumulating; however the basic concepts and mechanisms are continuously being debated and revised (Weinberg, 2007). Cancer cells may possess two different types of antigen, differentiating them from host cells. The first is a tumorspecific transplantation antigen (TSTA), which is an antigen unique to the tumor cell due to a genetic event such as a mutation. $T_{\rm C}$ cells can recognize these novel proteins if present in conjunction with MHC class I and are able to mount a cell-mediated immune response and effectively kill the tumor cell. The second tumor antigen type is a tumorassociated transplantation antigen (TATA) and occurs more frequently than TSTAs. TATAs are not unique to the tumor cell; rather they are proteins expressed by normal cells, but at much higher levels in tumor cells, which can also be identified and targeted by $T_{\rm C}$ cells. Nonspecific immune system components such as macrophages, NK cells and cytokines also play a prominent role in the immune response to tumors. Both activated macrophages and NK cells are able to act against tumor cells in an MHC-independent mechanism, and are observed to surround tumor cells and mediate antibody-dependent cell-mediated cytotoxicity (Goldsby et al., 2003). NK cells in particular are important in recognizing cancer cells that are only slightly aberrant, sometimes by lacking only a single MHC-I allele, and can induce cytotoxicity rapidly due to their constitutively expressed lytic machinery (Zamai et al., 2007). IL-2 is a cytokine of particular interest for cancer immunotherapy due to its ability to cause proliferation, recruitment, activation and differentiation of several key immunological cells, including tumor-specific T_C cells, capable of recognizing tumor cells. The presence of tumor-specific antibodies and T lymphocytes, as well as abundance of macrophages, in patients with tumors also confirms the immune systems active response to aberrant cells. Therefore, it is convincing that both innate and adaptive immunity components are important in maintaining cell integrity and suppressing tumor cell growth.

Despite the vast array of protective mechanisms contributed by the immune system against tumors, some cancer cells use strategies of immunoevasion to remain undetected. If continuous expression of a TATA or TSTA is not essential to neoplastic growth, the simplest way for a cancer cell to avoid immune detection is to stop displaying the antigen. Antigen-negative variants of the cancer cell would therefore be more successful in evading immune reactivity (Weinberg, 2007). If continuous expression of tumor-antigens is required for tumor proliferation, cancer cells are able to escape immune response by other mechanisms, such as down-regulation of MHC class I, increased resistance to caspase and Fas-ligand (FASL) mediated apoptosis, and secretion of immunosuppressive chemokines such as CCL22, which increases the number of Tregulatory cells, a line of T-lymphocytes that directly inhibit or kill T_C and T_H cells, (Weinberg, 2007). Melanoma cells in particular demonstrate many ways to evade suppression by the immune system. By secreting large amounts of transforming growth factor-beta (TGF- β), melanoma cells are able to transform CD4⁺CD25⁻T cells into Tregulatory cells (Liu et al., 2007). The BRAF^{V600E} mutation seen in the majority of melanoma tumors causes secretion of immunosuppressive vascular endothelial growth

factor (VEGF), IL-10 and IL-6, as well as a decreased production of inflammatory cytokines IL-12 and tumor necrosis factor-alpha (TNF- α) (Sumimoto et al., 2006).

Current Treatments of Melanoma

Current treatments available for melanoma include surgical excision of cancerous tumors, radiation therapy and chemotherapy, all invasive procedures that affect both cancerous and noncancerous cells. Surgical excision remains the primary treatment for melanoma tumor removal. During this procedure, the cancerous mass and surrounding healthy tissue, and in some cases adjacent lymph nodes, are removed from the body, often leading to scarring and possible bleeding or infection around the excision site. This treatment does not guarantee permanent removal of the cancer, as local recurrence and distant metastasis are both possible following surgical treatment. Therefore, surgical excision is most effective before the cancerous cells have metastasized to other locations. Radiation therapy of melanoma uses high doses of radiation to reduce tumor size, which often leads to damage of normal surrounding cells, causing nausea and potential abdominal region problems. Another treatment for melanoma that can be administered primarily, or in conjunction with other treatments, is chemotherapy. Chemotherapy in the form of anticancer drugs, such as Dacarbazine, act by targeting DNA replication in rapidly proliferating cells. The toxicity of anticancer drugs cause apoptosis of cancerous cells, but may also kill healthy cells. Undesirable side effects of chemotherapy include, but are not limited to, fatigue, vomiting, stomatitis and diarrhea in the patient. Recently, two new drugs have been FDA approved for use to treat melanoma in conjunction with chemotherapy. The first is Zelboraf (vemurafenib), a small molecular inhibitor of the

active site of BRAF protein that contains the V600E mutation, a mutation commonly seen in melanoma patients. Zelboraf binds the active site with greater affinity than ATP, which inhibits the kinase's ability to phosphorylate other substrates in the Mek/Erk pathway (Davis & Schlessinger, 2012). Zelboraf has also shown inhibitory activity on BRAF mutations that are V600K substitutions, a mutation that occurs in 5% of BRAF mutations (Chapman, 2012). The second drug recently FDA-approved for the treatment of metastatic melanoma is Ipilimumab (Yervoy), an anti-CTLA-4 monoclonal antibody. CTLA-4 stands for cytotoxic T lymphocyte antigen 4, and it is a negative modulator of Tcell response, which can decrease the immune response to a tumor. By blocking this antigen, which is present on T-cells, antitumor activity of T lymphocytes is not inhibited by cancer cell mechanisms (Weber, 2007). Adverse effects of these new drugs include fatigue, rash, inflamed intestines (colitis) and a higher rate of serious side effects in patients versus treatment with radiation and chemotherapy alone. Using monoclonal antibodies to bind target cells and stimulate a cytotoxic reaction is not uncommon in the discussion of cancer therapies; however there are limits to their effectiveness. Some TSTAs cannot be purified for monoclonal antibody preparation, and if they can be, it is likely that the monoclonal antibody would target only syngeneic tumor cells with high affinity.

Bioactive Components of Berries

The use of bioactive food components in naturopathic therapies is a growing field of interest. Utilization of extracts from dark-pigmented berries, such as chokeberry, blueberry, bilberry and elderberry, is one of the areas receiving considerable attention due

to their diverse positive health benefits, global availability and attainability. For example, recent studies link increased consumption active berry extracts with decreased neuronal and behavioral changes related to aging, decreased risk of hypertension and cardiovascular disease, and increased protection against viral and bacterial infection (Joseph et al., 2009) (Zafra-Stone et al., 2007). Several berry extracts also show promise as a preventative strategy against human cancer cell growth, angiogenesis and metastasis (Zafra-Stone et al., 2007) (Matchett et al., 2005). One of the most important physiological functions of active berry extracts is their antioxidant activity. Cells can incur oxidative stress from environmental pollutants as well as through cellular processes, potentially causing oxidative damage to DNA, lipids, and proteins (Trachootham et al., 2009). Reactive oxygen species (ROS) activate essential components of the immune system by stimulating release of cytokines and mediating the inflammatory response; therefore, a small quantity of ROS is necessary in sustaining functional biological systems. Moderate increases in ROS are capable of modulating cell growth and cell differentiation by influencing important cell growth signal transduction pathways, which can play a role in eliminating foreign pathogens (Trachootham et al., 2009). Certain cellular antioxidants, such as superoxide dismutase (SOD) function to maintain a homeostasis of ROS. Excessive increases in ROS may offset the biological equilibrium and cause permanent damage to important cellular molecules, including DNA, which may cause apoptosis of the cell, or a mutation that leads to cell transformation. The latter may be a precursor event to the onset of cancer.

Over the past 20 years, anticancer researchers have been studying minimally invasive cancer treatments to address the severity of the many current treatment side effects. A proposed treatment in the forefront is utilization of dark-pigmented berry extracts that are able to selectively target and suppress cancer cell growth (Katsube et al., 2003). The anticancer potential of dark-pigmented berries comes from the phytochemical properties of their extracts, most of which are phenolic components (Seeram, 2008). Flavanoids, including classes such as flavanols, flavonols and anthocyanins, act via multiple cellular mechanisms to modulate events associated with cancer cell development (Kanadaswami et al., 2005). Anthocyanins in particular have been the sub group of flavonoids most widely studied for their suppression of human cancer cell growth. Proposed mechanisms of cancer cell growth inhibition by anthocyanins include initiating apoptotic pathways, initiating cell cycle arrest, and inhibiting expression of tumorassociated enzymes in human cancer cells (Seeram, 2008). There are hundreds of different anthocyanins distributed throughout the plant kingdom, with the most abundant being cyanidin, delphinidin, malvidin, petunidin, peonidin and pelargonidin derivatives. Anthocyanins are water-soluble pigments responsible for the bright coloring of berries, ranging from orange and scarlet to blue and purple. All anthocyanins share the same basic 3-ring molecular skeleton (Figure 1), and are commonly glycosylated at position C-3. Naturally occurring anthocyanins are always glycosylated at position C-3. Glycosylation at position C-5 also occurs, and glycosylation at position C-7 is rare. The aglycone of an anthocyanin is referred to as an anthocyanidin.

Aglycone	R ₁ Substitution	R ₂ Substitution
Cyanidin	-OH	-H
Delphinidin	-OH	-OH
Malvidin	- OCH ₃	- OCH ₃
Petunidin	-OCH ₃	-OH
Peonidin	-OCH ₃	-H
Pelargonidin	-H	-H

Figure 1. The structure of common anthocyanidins.

In many *in vitro* and recently *in vivo* studies, it has been found that certain anthocyanins exhibit significant anticancer benefits, and are proposed to function by affecting a broad range of cellular mechanisms. Anthocyanins block cancer cell proliferation during various stages of the cell cycle, effecting important regulator proteins such as p53 and cyclin A, and have also been shown to induce apoptosis in cancerous cells via caspase activation or modulation of FAS and FASL expression on cancer cells (Wang & Stoner, 2008). Some anthocyanins are able to inhibit aberrant increases of nuclear factor-kappa B (NF-κB) and cyclooxygenase-2 (COX-2), two proteins commonly up-regulated in cancers (Wang & Stoner, 2008). There have also been reports suggesting that anthocyanins are capable of decreasing metastatic risk and angiogenesis of cancer cells by inhibiting extracellular matrix degradation by matrix metalloproteinases (MMPs) and VEGF receptor and ligand expression on endothelial cells (Wang & Stoner, 2008). The antioxidant nature of anthocyanins is extremely important as a chemopreventative strategy to reduce risk of cancer, and it is also suggested that anthocyanins can induce ROS-mediated mitochondrial caspase-independent pathways, leading to tumor cell death (Wang & Stoner, 2008). The multiple number of anticancer benefits resultant of anthocyanin treatment and the increasing body of evidence supporting their activity warrants further study in this discipline.

European Black Elder (Sambucus nigra)

Sambucus is a genus consisting of approximately 20 different fruit-bearing small trees and shrubs, with European black elder (*Sambucus nigra* L) being the most common species of elder, a flowering plant in the Adoxaceae family, used in complementary and alternative medicine (Atkinson & Atkinson, 2002). Although native to Europe, Africa and Asia, European black elder has become widespread and commercially grown in the United States, found in the form of syrups, wines and jams. The elder tree native to North America (*Sambucus canadensis*) is closely related to the European black elder; however the medicinal benefits of this particular species are not yet well-defined. Future mention of 'elderberry' in this thesis should be assumed to be the berry product of European black elder unless otherwise notified.

Elderberry has been used previously in traditional and folk medicine for the treatment of multiple viral infections, including the common cold (acute viral nasopharyngitis), influenza, and herpes virus. Recent studies confirm the benefits of elderberry as an antiviral. In a 2009 randomized, double-blind, placebo-controlled pilot clinical study, it was concluded that elderberry extract given in the form of a slowdissolve lozenge was able to significantly relieve multiple influenza symptoms within 24 hours of treatment compared to the placebo (Kong, 2009). In the same year, flavonoids isolated from elderberry proved to inhibit Human influenza A (H1N1) infection in vitro by binding directly to H1N1 virions, effectively blocking their ability to bind and enter host cells (Roschek et al., 2009). Multiple current studies now support the use of elderberry extracts for treatment of not only flu-like symptoms, but for treatment and prevention of diabetes, cardiovascular disease, open wounds, and cancers. Studies indicate that active components present in elderberry are capable of stimulating and modulating immune response, as well as providing anti-oxidant protection against cellular damage (Roxas & Jurenka, 2007). Sambucol, an elderberry extract product, has been shown to increase production of inflammatory cytokines IL-1b, TNF- α , IL-6 and IL-8, thereby stimulating a number of immune effector cells (Barak et al., 2001). Elderberry anthocyanins can be incorporated into vascular endothelial cells and exhibit significant oxidative protection against a number of oxidative stressors, thereby maintaining cellular integrity and preventing DNA mutation (Youdim et al., 2000). The benefits previously reported of elderberry extracts, and in particular of elderberry anthocyanins, are promising as a naturopathic treatment for many infections and diseases.

The anticancer potential of certain anthocyanins *in vitro* is now widely accepted (Wang & Stoner, 2008); however, anticancer studies of specific elderberry anthocyanins *in vitro* and *in vivo* have been limited. Elderberry contains four primary anthocyanins: cyanidin 3-sambubioside-5-glucoside, cyanidin 3,5-diglucoside, cyanidin 3sambubioside, and cyanidin 3-glucoside, all of which are 100% nonacylated with minimal glycosylation (Youdim et al., 2000) (Jing et al., 2008). It was found that nonacylated monoglycosylated anthocyanins have a great effect on inhibition of colon cancer cell growth *in vitro* (Jing et al., 2008). Cyanidin 3-glucoside in particular has a strong inhibitory effect on the cellular growth of metastatic breast cancer in vivo (Chen et al., 2005). It has also recently been shown that the glycosylated structures of anthocyanins in elderberry can be absorbed in humans, despite previous claims that anthocyanin form is changed prior to absorption (Cao et al., 2001)(Milbury et al., 2002). One study showed that certain elderberry fractions demonstrate inhibition of COX-2 (anticancer function) and induction of quinone reductase (antioxidant function) in vitro. Based on these findings, it is reasonable to assume that elderberry anthocyanins may be able to prevent the onset of cancer by antioxidant activity, and also modulate a variety of cellular mechanisms capable of inducing cancer cell death.

<u>Aim</u>

The goal of this research endeavor is to obtain evidence that further supports the use of natural berry extracts in a therapeutic manner to help treat and prevent incidence of melanoma. This research aims to separate and identify the individual components of elderberry by column chromatography and examine their effects on human melanoma tumor cell growth *in vitro*. Active elderberry fractions will be pooled and assessed for suppressive activity against many cell lines, including human and murine melanoma lines, a human neuroblastoma line, void of caspase-8 (a pro-apoptotic protein), and a noncancerous transformed cell line derived from the ovary of a Chinese hamster. Additionally, pooled active column fractions will be evaluated for stimulatory activity of spleen cells from young and old mice, as well as induction of cytokine IL-2. Pooled active fractions that demonstrate increased immune response in elderly (immunosenescent) mice and significant tumor suppressive ability will be used in a murine melanoma model to evaluate tumor suppressive ability *in vivo*. Final identification of active fraction components will be achieved through high-performance liquid chromatography (HPLC). Proper identification of melanoma-suppressing, immune-inducing elderberry fractions may lead to diet-based strategies for natural prevention and suppression of melanoma.

METHODS

Elderberry

The elderberry preparation used for experimentation was 13% standardized *Sambucus nigra* elderberry powder, generously provided by Artemis International, Inc. (Fort Wayne, IN). To prepare the powder, pure elderberry was concentrated by a physical process without solvent, then spray dried onto an excipient (Artemis International, Inc., 2005). Anthocyanin and polyphenol contents were expressed as a minimum 13g/100g and 17g-29g/100g, respectively (Artemis International, Inc., 2005). When not in use, the elderberry powder was stored in a cool, dry area to avoid moisture absorption and to maintain the integrity of the chemicals. 10 mg/mL and 1mg/mL crude elderberry stocks were prepared, filter-sterilized using a 0.2µm Nalgene filter, and stored at 4°C until use.

Extraction of Elderberry Samples

Gravity column chromatography was used to separate the components of *Sambucus nigra* elderberry powder. In this procedure, elderberry powder components are eluted through a solid polyamide stationary phase by a series of liquid mobile phases. Polarity of the components, polarity of the stationary phase, polarity of the mobile phases and hydrostatic pressure due to gravity are the driving forces behind the elution. It is well established that phenolic compounds, such as the ones present in berries, can be well
resolved using polyvinylpyrrolidone (PVP) as the stationary phase and varying concentrations of water-methanol mobile phases for gradient elution (Strack & Mansell, 1975). The retention times for the different components are generally determined by the difference in between the polarity of the stationary phase and mobile phases. By running mobile phases in order of decreasing polarity by gradient elution, strongly retained (lateeluting) components will elute from the column at a reasonable retention time.

The protocol used for gravity column chromatography was taken from Rizvi (2012); an adaptation from the protocol first published by Strack & Mansell (1975). A 250-mL Kimex® chromatography column (Internal Diameter ~2.5 cm) was used for the first extraction. Following addition of a sterile cotton ball (Diameter ~2.5 cm) placed at the base of the column, 25 g of dry PVP was added to fill the column to an approximate height of 18.4 cm. Suitable elderberry solute for extraction was prepared by adding 2 g 13% standardized elderberry powder to 4 mL of 0.01N hydrochloric acid (HCl). The elderberry powder-HCl preparation was added to the column on top of the stationary phase. Gradient elution was carried out using mobile phases of sterile deionized water, methanol, and a consistent amount of 0.01 N HCL (Figure 2a). The first solvent was 100% sterile deionized water with 15 mL 0.01 N HCL, and 10 other mobile phases were added sequentially in order of decreasing polarity after the preceding mobile phase was eluted. See Appendix for a complete list of mobile phases.

14.5 mL increments of elderberry samples were sequentially collected from the column into 15 mL sterile vials (Figure 2) and stored at -18°C to preserve elutant chemical integrity. After collection of elutants was complete, the majority of the mobile phase solvent was evaporated from each individual samples by Buchi rotary evaporator

(Figure 2b). The samples were concentrated down to 1-1.5 mL volumes on medium water bath heat (40-50°C) and collected into autoclaved 1.5 mL microcentrifuge tubes. To fully eliminate the presence of all methanol solvent, the elderberry samples in 1.5 mL microcentrifuge tubes were evaporated dry using a vacuum centrifuge on medium (36°C) heat (Figure 2c). Each sample was first covered with parafilm, and small holes were poked through the parafilm using a sterile needle to allow evaporated solvent escape. Once fractions were completely dry, they were re-dissolved in 0.5 mL filter-sterile phosphate buffered saline (PBS), agitated until homogenous, and stored at -18°C until further use.

Figure 2. Separation and solvent removal techniques. (a) Column chromatography, (b) rotary evaporation and (c) vacuum centrifugation.

Two additional 250-mL columns (Internal Diameter ~2.5 cm) were purchased from C-Tech Glassware (New Jersey; Item #: CL-0009-016) to collect large quantities of elderberry samples for analysis. Following the same gravity column chromatography protocol previously described, 23 additional columns were run using the 250-mL

Kimax[®] chromatography column and the two 250-mL chromatography columns from C-Tech Glassware. The PVP stationary phase reached an approximate height of 16.2 cm in the C-Tech Glassware columns. Column elution for Columns #3-24 was ended after completion of the 20% Water/80% Methanol mobile phase, because samples of interest for future experiments elute before addition of the 10% Water/90% Methanol and 0% Water/100% Methanol mobile phases. 14.5 mL increments of elderberry samples were sequentially collected from the columns into 15 mL sterile vials and stored at -18° C to preserve chemical integrity. After collection of elutants was complete, the mobile phase solvent was evaporated from each individual samples by Buchi rotary evaporator on medium water bath heat $(40-50^{\circ}C)$. The fractions were evaporated dry in 100-mL round bottom flasks, re-dissolved in 0.5 mL PBS, and collected into autoclaved 1.5 mL microcentrifuge tubes, which were stored at -18° C until further use. This method of completely removing methanol from the samples can be validated by Escribano-Bailón et al. who also used a combination of column chromatography and rotary evaporation to achieve organic solvent-free samples for further analysis (2006).

Cell Lines

Multiple cells lines were used over the course of this study. The human melanoma line, MeWo, used to measure individual sample tumor suppressive ability was obtained from Dr. Robert Visalli (IPFW, Department of Biology, IN) and was maintained in Eagle minimum essential media (MEM) supplemented with 10% fetal bovine serum (FBA) and 1% NEAA nutrient mixture. MeWo cells were kept in 75 cm³ flasks in a 7.5% CO₂ incubator at a constant temperature of 37.5°C, and were sub-cultured every 3-4 days

based on confluence. The murine melanoma line, B16-F10, was obtained from ATCC (Manassas, VA; #CRL-6475) and selected for its' well-established use in murine melanoma models. B16-F10 cells are syngeneic to C57BL/6J mice. The B16-F10 cells were maintained in RPMI-1640 media supplemented with 10% FBS and 1% Penicillin-Streptomycin-Amphotericin, and were sub-cultured every 2-3 days based on confluence. The B16-F10 lines were also used to determine tumor suppressive ability of elderberry fractions, and were kept in 75 cm³ flasks in a 7.5% CO₂ incubator at a constant temperature of 37.5°C. Chinese hamster ovary (CHO-K1) cells, a commonly cell line derived from a line of transformed cells taken from a Chinese hamster ovary, were obtained from ATCC (Manassas, VA; #CCL-61) for use in a noncancerous, transformed cell proliferation assay with active elderberry fractions. The CHO-K1 cells were maintained in RPMI-1640 media supplemented with 10% FBS and 1% Penicillin-Streptomycin-Amphotericin, incubated in 75 cm³ flasks at 37.5°C and 7.5% CO₂, and were sub-cultured every 1-2 days based on confluence. To determine whether active fractions also suppressed tumor growth of another cancer line, SH-SY5Y neuroblastoma cells were generously provided by Dr. Robert Ross (Fordham University, Department of Neurobiology, NY) for use in this assay. SH-SY5Y cells lack caspase-8, and are therefore resistant to apoptosis induction through caspase-8 pathways. The SH-SY5Y cells were maintained in RPMI-1640 media supplemented with 10% FBS and 1% Penicillin-Streptomycin-Amphotericin, incubated in 75 cm³ flasks at 37.5°C and 7.5% CO₂, and were sub-cultured every 4-5 days based on confluence. To assess immunological response induced by active fractions, spleen cells were obtained from BALB/c male mice or C57BL/6J male mice. The C57BL/6J mouse strain was used when comparing the

immunological response of young and old mice. When it was possible, having two different cell lines in the CO₂ incubator was avoided to reduce the risk of crosscontamination. If two or more cell lines were being used in different experiments simultaneously, the flasks were kept on different levels of the CO₂ incubator. When cell lines were not in use, they were appropriately prepared for cryopreservation in 1.5 mL cryovials, and were quickly transferred into a liquid nitrogen tank after 1-2 days of slow cooling at -80°C. Biocidal ZFTM disinfectant and AquaClean microbiocidal additive for heating bath fluids from ConTaFree Liquids was generously provided by Dr. Shree Dhawale (IPFW, Department of Biology, IN) for cleaning of the CO₂ incubator.

Preparation of Spleen Cells

BALB/c male mice or C57BL/6J male mice were used to prepare spleen cells for proliferative assays. Mice were sacrificed through cervical dislocation, and laid ventral side up in a dissecting pan. A few drops of 70% ethanol were used to wet the fur and eliminate interference during dissection. Using heat-sterilized scissors and heat-sterilized forceps, a small left paramedical incision was made in the abdominal region to expose the parietal peritoneum. A second careful incision through the parietal peritoneum exposes the abdominal organs contained within the mesenteries, including the spleen. The spleen was dissected out of the abdominal cavity with heat-sterilized forceps, and any additional visceral peritoneum and fatty tissue was removed. The spleen was placed into a sterile petri dish on top of a heat-sterilized mesh screen. 1 mL of RPMI-1640 media supplemented with 10% FBS and 1% Penicillin-Streptomycin-Amphotericin was pipetted over the spleen into the petri dish. Using the plunger from a 1 mL syringe, the spleen was gently massaged into the mesh screen, creating a single cell suspension. A 26 gauge needle was used to collect the cell suspension. The spleen cells were immediately used in experimental assays.

Cell Harvesting and Liquid Scintillation Counting

Cell harvesting was accomplished with a Brandel (Model# M-24) cell harvester (Figure 3a). Due to their adherent ability, tumor cells and transformed cells in 96-well tissue culture plates were treated with 2 µL trypsin EDTA, 1X 5 minutes prior to cell harvest, to release the cells from the plate and increase accuracy of cell counting. Preliminary studies with MeWo cells and trypsin EDTA, 1X identified 2 μ L as the optimal volume for increasing the release of cancer cells (Appendix, Figure B1). Trypsin EDTA, 1X was not added prior to spleen cell harvesting. To harvest, the cells were washed 25-30 times with PBS and precipitated onto WhatmanTM filter paper sheets with 10% trichloroacetic acid (TCA). After drying (approximately 30 minutes after harvesting) the filter paper discs were placed into individual 6 mL vials, filled with 3 mL EcolumeTM scintillation cocktail, and were tightly capped. Tritiated thymidine is not strong enough to be counted by a Geiger counter. Addition of scintillation cocktail, which contains fluors, allows the radioisotope-containing nuclei to be counted by scintillation counter in counts per minute (CPM). A Beckman CoulterTM LS 6500 Multi-Purpose Scintillation Counter was used for all cell counting assays (Figure 3b).

Figure 3. Cell harvesting and counting techniques. (a) Cell harvester and (b) WhatmanTM filter paper collection and scintillation counter.

Mouse Habitat Conditions and Handling

BALB/c male mice and C57BL/6J mice were housed in cages and fed a dry pellet diet and water *ad* libitum. A 12-hour light/dark cycle was maintained for the duration of all experiments. Certain C57BL/6J mice exude social dominance by removing pelage and whiskers from other mice that share the same habitat in a behavior known as barbering. Any C57BL/6J mice seen barbering or fighting other mice were placed in their own separate cage, to eliminate possible speculation that physical pelage abnormalities was caused by experimental treatment. Prior to any experimentation, mice were acclimatized for no less than three weeks in this environment. When working with the mice, hands were washed before and after handling, and gloves and a lab coat were worn at all times for sanitary purposes.

Tumor Cell Proliferation Assays with Separated Elderberry Samples

To assess the tumor suppressing ability of elderberry samples from Column #1, an assay was set up to measure percent proliferation of MeWo cells following elderberry treatment in a 72-hour thymidine uptake assay in vitro. MeWo cells were collected from culture flasks, counted using a hemocytometer, and diluted with Eagle MEM X media supplemented with 10% FBS and 1% NEAA to a final concentration of 5 x 10⁵ cells/mL. In a MICROTESTTM 96-well tissue culture plate, each experimental well was filled with $100 \,\mu\text{L}$ MeWo cell dilution and $100 \,\mu\text{L}$ additional Eagle MEM X media supplemented with 10% FBS and 1% NEAA, bringing the final cell concentration of each well to 5 x 10⁴ cells/200 µL supplemented media. After 24 hours of incubation at 37.5°C and 7.5% CO₂, 10 µL of crude 10mg/mL elderberry, crude 1mg/mL elderberry, or elderberry fraction was added to the appropriate wells and incubated for another 24 hours. At 48 hours, each well was given 1 mCi/mL tritiated thymidine and incubated for an additional 24 hours. This radioisotope is incorporated into DNA replication events of dividing cellular nuclei. At 72 hours, the cells were harvested and counted. This experiment was repeated three times validate results.

To assess the tumor-suppressing ability of the individual fractions collected from columns #2-24, a B16-F10 cell proliferation assay was performed for the fractions of each column. Since the separated fractions of interest were between the approximate

range of sample 45-90, only samples 45-90 were used in the column #23 and column #24 B16-F10 cell proliferation assays. B16-F10 cells were diluted with RPMI-1640 media supplemented with 10% FBS and 1% Penicillin-Streptomycin-Amphotericin to a final concentration of 5 x 10^5 cells/mL. In a MICROTESTTM 96-well tissue culture plate, each experimental well was filled with 100 µL B16-F10 cell dilution and 100 µL additional RPMI-1640 media supplemented with 10% FBS and 1% Penicillin-Streptomycin-Amphotericin, bringing the final cell concentration of each well to 5 x 10^4 cells/200 µL supplemented media. After 24 hours of incubation at 37.5°C and 7.5% CO₂, 10 µL of crude 10mg/mL elderberry 10 µL of separated elderberry fraction was added to the appropriate plate wells and incubated for another 24 hours. At 48 hours, each well was given 1 mCi/mL tritiated thymidine and incubated for an additional 24 hours. At 72 hours, the cells were harvested and counted. This experiment was performed once for each column.

Pooling of Assumed Active Elderberry Samples

Individual elderberry samples from Column #1 that showed similar MeWo cell proliferation inhibition were pooled together in equal concentrations to make pooled fractions.

Three pooled fractions from column #1 were chosen as active pooled fractions of interest for future analysis, due to their high tumor-suppressive activity and stimulation of immune response. Using the results from the MeWo cell proliferation assay with separated fractions from column #1 as a guide, separated fractions from column 2-24 were appropriately pooled with neighboring active fractions to create pools with the same

activity pattern as the pooled fractions from column #1. The pools from column #2-24 that matched the activity of the pools of interest from column #1 were stored at -18°C until further use. The recreated pooled fractions 16, 24, and 29 were renamed P16, P24, and P29 respectively to avoid confusion with the terms "pool 16", "pool 24", and "pool 29", which refer exclusively to the fractions pooled from column #1.

MeWo Cell Proliferation Assay with Pooled Elderberry Fractions

To assess the tumor suppressing ability of pooled fractions from Column #1, an assay was set up to measure percent proliferation of MeWo cells following pooled elderberry treatment in a 72-hour thymidine uptake assay *in vitro*. MeWo cells were diluted with Eagle MEM X media supplemented with 10%FBS and 1% NEAA to a final concentration of 5 x 10^5 cells/mL. In a MICROTESTTM 96-well tissue culture plate, each experimental well was filled with 100 µL MeWo cell dilution and 100 µL additional Eagle MEM X media supplemented with 10%FBS and 1% NEAA, bringing the final cell concentration of each well to 5 x 10^4 cells/200 µL supplemented media. After 24 hours of incubation at 37.5°C and 7.5% CO₂, 10 µL of crude 10mg/mL elderberry, 10 µL of crude 1mg/mL elderberry, or 10 µL of pooled elderberry fraction was added to the appropriate plate wells and incubated for another 24 hours. At 48 hours, each well was given 1 mCi/mL tritiated thymidine and incubated for an additional 24 hours. At 72 hours, the cells were harvested and counted. This experiment was repeated twice.

B16-F10 Cell Proliferation Assay with Pooled Elderberry Fractions

Similar to the MeWo cell proliferation assay with pooled elderberry fractions from Column #1, this assay implements the same method using B16-F10 melanoma cells as the target cells. B16-F10 cells were diluted with RPMI-1640 media supplemented with 10% FBS and 1% Penicillin-Streptomycin-Amphotericin to a final concentration of 5 x 10^5 cells/mL. In a MICROTESTTM 96-well tissue culture plate, each experimental well was filled with 100 µL B16-F10 cell dilution and 100 µL additional RPMI-1640 media supplemented with 10% FBS and 1% Penicillin-Streptomycin-Amphotericin, bringing the final cell concentration of each well to 5 x 10^4 cells/200 µL supplemented media. After 24 hours of incubation at 37.5°C and 7.5% CO₂, 10 µL of crude 10mg/mL elderberry, 10 µL of crude 1mg/mL elderberry, or 10 µL of pooled elderberry fraction was added to the appropriate plate wells and incubated for another 24 hours. At 48 hours, each well was given 1 mCi/mL tritiated thymidine and incubated for an additional 24 hours. At 72 hours, the cells were harvested and counted. The experiment was performed three times for validation.

SH-SY5Y Cell Proliferation Assay with Pooled Elderberry Fractions

Similar to the B16-F10 cell proliferation assay with pooled elderberry fractions from Column #1, this assay implements the same method using SH-SY5Y neuroblastoma cells as the target cells. SH-SY5Y cells were diluted with RPMI-1640 media supplemented with 10% FBS and 1% Penicillin-Streptomycin-Amphotericin to a final concentration of 5 x 10^5 cells/mL. In a MICROTESTTM 96-well tissue culture plate, each experimental well was filled with 100 µL B16-F10 cell dilution and 100 µL additional RPMI-1640 media supplemented with 10% FBS and 1% Penicillin-Streptomycin-Amphotericin, bringing the final cell concentration of each well to 5 x 10^4 cells/200 µL supplemented media. After 24 hours of incubation at 37.5°C and 7.5% CO₂, 10 µL of crude 10mg/mL elderberry, 10 µL of crude 1mg/mL elderberry, or 10 µL of pooled elderberry fraction was added to the appropriate plate wells and incubated for another 24 hours. At 48 hours, each well was given 1 mCi/mL tritiated thymidine and incubated for an additional 24 hours. At 72 hours, the cells were harvested and counted. The experiment was performed three times for validation.

CHO-K1 Cell Proliferation Assay with Pooled Elderberry Fractions

This assay implements the same method as the SH-SY5Y neuroblastoma and B16-F10 melanoma cell proliferation assay with pooled fractions using CHO-K1 cells as the target cells to determine the effect of pooled fractions from Column #1 on the growth of a noncancerous transformed cell line. CHO-K1 cells were diluted with RPMI-1640 media supplemented with 10% FBS and 1% Penicillin-Streptomycin-Amphotericin to a final concentration of 5 x 10^5 cells/mL. In a MICROTESTTM 96-well tissue culture plate, each experimental well was filled with 100 µL B16-F10 cell dilution and 100 µL additional RPMI-1640 media supplemented with 10% FBS and 1% Penicillin-Streptomycin-Amphotericin, bringing the final cell concentration of each well to 5 x 10^4 cells/200 µL supplemented media. After 24 hours of incubation at 37.5°C and 7.5% CO₂, 10 µL of crude 10mg/mL elderberry, 10 µL of crude 1mg/mL elderberry, or 10 µL of pooled elderberry fraction was added to the appropriate plate wells in triplicate and incubated for another 24 hours. At 48 hours, each well was given 1 mCi/mL tritiated

thymidine and incubated for an additional 24 hours. At 72 hours, the cells were harvested and counted. The experiment was performed three times.

Middle Aged Mouse Spleen Cell Proliferation Assay with Pooled Elderberry Fractions

To assess the immune-inducing effects of the pooled elderberry fractions, a spleen cell proliferation assay was performed. Spleen cells were incubated with and without concanavalin A (Con A), a known mitogen to induce proliferation of T lymphocytes. Rizvi (2012) showed that Con A addition was essential to demonstrate the immuneinducing effect of elderberry fractions. Optimal Con A concentration, $2.5 \,\mu\text{L}$ of 50 μ g/mL Con A (equivalent to 0.125 μ g/mL Con A), was determined in a preliminary study using the spleen from a BALB/c male mouse (Appendix, Figure B2). Spleen cells for this assay were prepared from a C57BL/6J male mouse (11 months old), and diluted with RPMI-1640 media supplemented with 10%FBS and 1% Penicillin-Streptomycin-Amphotericin to a final concentration of 10×10^6 cells/mL. In a MICROTESTTM 96well tissue culture plate, each experimental well was filled with 100 µL spleen cell dilution and 100 µL additional RPMI-1640 media supplemented with 10% FBS and 1% Penicillin-Streptomycin-Amphotericin, bringing the final cell concentration of each well to 1 x 10^6 cells/200 µL supplemented media. 2.5 µL of 50µg/mL con A was added to all wells, except for control wells, which remained spleen cells in supplemented media only. After 24 hours of incubation at 37.5°C and 7.5% CO₂, 10 µL pooled elderberry fractions were added to wells containing con A in duplicate, and were incubated for another 24 hours. The control and spleen cells + con A only wells were plated in triplicate. At 48

hours, each well was given 1 mCi/mL tritiated thymidine and incubated for an additional 24 hours. At 72 hours, the cells were harvested and counted.

Young and Old Mouse Comparative Spleen Cell Proliferation Assay with Pooled Elderberry Fractions

To compare the immunological effect of pooled elderberry fractions on spleen cell proliferation from a young and old mouse, a comparative spleen cell proliferation assay was performed. A young mouse (5 months old) and an old mouse (retired breeder, 18 months old) were sacrificed, and their spleens were appropriately prepared and diluted with RPMI-1640 media supplemented with 10% FBS and 1% Penicillin-Streptomycin-Amphotericin to a final concentration of 10×10^6 cells/mL. In two MICROTESTTM 96-well tissue culture plates, each experimental well was filled with 100 μ L of either young or old spleen cell dilution and 100 μ L additional RPMI-1640 media supplemented with 10% FBS and 1% Penicillin-Streptomycin-Amphotericin, bringing the final cell concentration of each well to $1 \ge 10^6$ cells/200 µL supplemented media. 2.5 µL of 50µg/mL Con A was added to all wells, except for control wells. After 24 hours of incubation at 37.5°C and 7.5% CO₂, 10 μ L of crude 10mg/mL elderberry, 10 μ L of crude 1mg/mL elderberry, or 10 μ L of pooled elderberry fractions were added to wells containing Con A in duplicate, for both young and old spleen cell plates, and were incubated for another 24 hours. At 48 hours, each well was given 1 mCi/mL tritiated thymidine and incubated for an additional 24 hours. At 72 hours, the cells were harvested and counted.

Modulation of Cytokine IL-2 by Pooled Elderberry Fractions

To assess the production of the immune modulating cytokine IL-2 by spleen cells treated with pooled fractions, a colorimetric assay was used. A Ouantikine[®] ELISA (enzyme-linked immunosorbant assay) kit for mouse IL-2 was obtained from R&D Systems (Minneapolis, MN). This assay employs the quantitative sandwich enzyme immunoassay technique, where a polyclonal antibody specific for mouse IL-2 is immobilized in each well of a 96-well microtiter plate. To prepare the samples, a C57BL/6J mouse (4 months old) was sacrificed and a single cell suspension of spleen cells was obtained and diluted to 10 x 10⁶ cells/mL. In 12-well costar[®] microtiter plates. 600 µL RPMI-1640 media supplemented with 10% FBS and 1% Penicillin-Streptomycin-Amphotericin and 400 µL of spleen cell dilution was added to each well. Excluding the negative control well and well designated for Con A only $(+12.5 \,\mu)$ 50µg/mL Con A), each well received an addition of 50 µl pooled fraction and 12.5 µl 50µg/mL Con A. The 12-well microtiter plates were incubated for 24 hours at 37.5°C and 7.5% CO_{2.} Following incubation, the contents of each well were gently centrifuged for 5 minutes and the supernatant was removed for use in the assay. The assay was performed by the manufacturer's instructions and treatments were plated in duplicate. A Packard SpectraCountTM was used to determine the optical density (O.D.) for each well at 405 nm, 490 nm and 570 nm wavelengths. Subtraction of the 570 nm reading from the average of the 405 nm and 490 nm readings allows for correction of optical imperfections present the microtiter plate.

Old Mouse *in vivo* Murine Melanoma Assay with Crude Elderberry

To assess the tumor-suppressive and immune-inducing activity of crude 10mg/mL elderberry in old (senescent) mice, an *in vivo* murine melanoma model was used. Six C57BL/6J male retired breeders (20 months old) were randomly grouped into a water treatment (control) group and a 10mg/mL elderberry treatment group. Each mouse was weighed on day 1, day 36 (successful tumor cell injection) and prior to sacrifice. For 36 consecutive days, each mouse received a daily i.p. injection of either 0.5 mL filtersterilized deionized water or 0.5 mL filter-sterilized crude 10mg/mL using a sterile 26 gauge needle. On day 36, each mouse received a 0.1 mL subcutaneous (s.c.) injection of 1×10^{6} cells/mL B16-F10 cells. Therefore, each mouse received 1×10^{5} B16-F10 cells. All mice were given daily i.p. injection of either 0.5 mL filter-sterilized deionized water or 0.5 mL filter-sterilized crude 10mg/mL for an additional 7 days (day 37-43), then were left undisturbed for an additional 7 days (day 44-50), and were sacrificed via cervical dislocation after tumors were formed, but were not burdensome to the mice. Additionally, two old mice were given daily i.p. injection of 0.5 mL filter-sterilized crude 10mg/mL elderberry for 36 days, were not given a s.c. injection of B16-F10 cells, and were sacrificed via cervical dislocation. Initial and final weights were recorded.

Tumor weight was recorded and tumor size was measured using calipers for all tumor-bearing mice. Spleens from all mice were dissected and prepared for a spleen cell proliferation assay. Spleen cells were counted using a hemocytometer, and diluted with RPMI-1640 media supplemented with 10%FBS and 1% Penicillin-Streptomycin-Amphotericin to a final concentration of 10 x 10⁶ cells/mL. In MICROTESTTM 96-well tissue culture plates, experimental wells were filled with 100 µL of spleen cell dilution

from each mouse and 100 μ L additional RPMI-1640 media supplemented with 10%FBS and 1% Penicillin-Streptomycin-Amphotericin, bringing the final cell concentration of each well to 1 x 10⁶ cells/200 μ L supplemented media. Either 0 μ L (control), 2.5 μ L or 5 μ L of a stock 50 μ g/mL Con A were added in triplicate for each mouse cell dilution. After 48 hours of incubation at 37.5°C and 7.5% CO₂, each well was given 1 mCi/mL tritiated thymidine and incubated for an additional 24 hours. At 72 hours, the cells were harvested and counted.

Young Mouse in vivo Murine Melanoma Assay with Crude Elderberry

To assess the tumor preventative ability of crude 10mg/mL elderberry in young mice, an *in vivo* murine melanoma model was used. Nine C57BL/6J male young mice (1.5 months old) were randomly grouped into a water treatment (control) group, a 10mg/mL elderberry treatment group, and a 10mg/mL group (no-cancer challenge). Each mouse was weighed on day 1, day 21 (tumor cell injection) and prior to sacrifice. From day 1 to day 7, each mouse received a daily i.p. injection of either 0.5 mL filter-sterilized deionized water or 0.5 mL filter-sterilized crude 10mg/mL using a 26 gauge sterile needle. On day 7, each mouse received 0.1 mL s.c. injection of 1 x 10⁵ cells/mL B16-F10 cells to the right flank. Therefore, each mouse received 1 x10⁴ B16-F10 cells. All mice were given daily i.p. injection of either 0.5 mL filter-sterilized deionized water or 0.5 mL filter 0.5 mL filter-sterilized deionized water or 0.5 mL filter 0.5 mL filter-sterilized deionized water or 0.5 mL filter-sterilized crude 1 x 10⁴ B16-F10 cells. All mice were given daily i.p. injection of either 0.5 mL filter-sterilized deionized water or 0.5 mL filter 1 x 10⁵ days (day 15-21). On day 21, mice were re-injected with 0.1 mL s.c. injection of 1 x 10⁶ cells/mL B16-F10 cells. Therefore, each mouse received 1 x 10⁵ B16-F10 cells. The reason for re-injection was due to the lack of tumor cell

observation in all mice. All mice were given daily i.p. injection of either 0.5 mL filtersterilized deionized water or 0.5 mL filter-sterilized crude 10mg/mL for an additional 7 days (day 21-27), then were left undisturbed for an additional 5-6 days (day 28-33), and mice were sacrificed via cervical dislocation after tumors were formed, but were not burdensome to the mice.

Tumor weight was recorded and tumor size was measured using calipers for all tumor-bearing mice. Spleens from all mice were dissected and prepared for a spleen cell proliferation assay. Spleen cells were counted using a hemocytometer, and diluted with RPMI-1640 media supplemented with 10% FBS and 1% Penicillin-Streptomycin-Amphotericin to a final concentration of 10 x 10^6 cells/mL. In MICROTESTTM 96-well tissue culture plates, experimental wells were filled with 100 µL of spleen cell dilution from each mouse and 100 µL additional RPMI-1640 media supplemented with 10% FBS and 1% Penicillin-Streptomycin-Amphotericin, bringing the final cell concentration of each well to 1 x 10^6 cells/200 µL supplemented media. Either 0 µL (control), 2.5 µL or 5 µL of 50µg/mL Con A were added in triplicate for each mouse cell dilution. After 48 hours of incubation at 37.5°C and 7.5% CO₂, each well was given 1 mCi/mL tritiated thymidine and incubated for an additional 24 hours. At 72 hours, the cells were harvested and counted.

Middle Aged Mouse *in vivo* Murine Melanoma Assay with Active Pooled Elderberry Fractions

To assess the tumor suppressive ability of active pooled fractions of interest *in vivo*, a murine melanoma model was used. Twenty C57BL/6J male mice (6 months old)

were randomly grouped into a water treatment (control) group, a 10mg/mL elderberry treatment group, a P16 group, a P24 group, and a P29 group. Each mouse was weighed on day 1. From day 1 to day 7, each mouse received a daily i.p. injection of either 0.5 mL filter-sterilized deionized water, 0.5 mL filter-sterilized crude 10mg/mL elderberry, or 0.5 mL filter-sterilized pooled fraction using a 26 gauge sterile needle. On day 7, each mouse received 0.1 mL s.c. injection of 1 x 10^6 cells/mL B16-F10 cells to the right flank. Therefore, each mouse received 1 x 10^5 B16-F10 cells. All mice were given daily 0.5 mL i.p. injections of their respective treatment for an additional 7 days (day 8-14), then were left undisturbed for an additional 7 days (day 15-21). Throughout the experiment, mortalities and behavioral cues, such as weakness, from the pooled fraction treated mice suggested that the pooled fractions were too potent and too concentrated to be used in the assay. Remaining mice were sacrificed via cervical dislocation and the experiment was ended prematurely.

Preliminary Identification of Active Pooled Elderberry Fractions by Heat-Induced Denaturation in a B16-F10 Cell Proliferation Assay

Proteins can be denatured and rendered inactive or less active by changes in temperature and pH. To determine if the tumor suppressing ability in active elderberry fractions was due to a protein, certain active elderberry fractions were subject to heat treatment prior to B16-F10 cell addition *in vitro*. B16-F10 cells were diluted with RPMI-1640 media supplemented with 10% FBS and 1% Penicillin-Streptomycin-Amphotericin to a final concentration of 5 x 105 cells/mL. In a MICROTESTTM 96-well tissue culture plate, each experimental well was filled with 100 μ L B16-F10 cell dilution and 100 μ L additional RPMI-1640 media supplemented with 10% FBS and 1% Penicillin-Streptomycin-Amphotericin, bringing the final cell concentration of each well to 5 x 10^4 cells/200 µL supplemented media. After 24 hours of incubation at 37.5°C and 7.5% CO₂, crude 10mg/mL elderberry, crude 1mg/mL elderberry, and select active pooled elderberry fractions were heated at 100°C for 5 minutes, and then were allowed to cool back to room temperature. 10 µL of heated and non-heated crude 10mg/mL elderberry, 10 µL of heated and non-heated crude 10mg/mL elderberry fraction were added to the appropriate plate wells in triplicate and incubated for another 24 hours. At 48 hours, each well was given 1 mCi/mL tritiated thymidine and incubated for an additional 24 hours. At 72 hours, the cells were harvested and counted. The experiment was performed twice.

Preliminary Identification of Active Pooled Elderberry Fractions by Heat-Induced Denaturation in a Spleen Cell Proliferation Assay

To determine if the immune inducing ability in active elderberry fractions was due to a protein, certain active elderberry fractions were subject to heat treatment prior to spleen cell addition *in vitro*. Spleen cells for this assay were prepared from a C57BL/6J male mouse (16 months old), and diluted with RPMI-1640 media supplemented with 10%FBS and 1% Penicillin-Streptomycin-Amphotericin to a final concentration of 10 x 10^6 cells/mL. In a MICROTESTTM 96-well tissue culture plate, each experimental well was filled with 100 µL spleen cell dilution and 100 µL additional RPMI-1640 media supplemented with 10%FBS and 1% Penicillin-Streptomycin-Amphotericin, bringing the final cell concentration of each well to 1 x 10^6 cells/200 µL supplemented media. 2.5 µL of 50µg/mL Con A was added to all wells, except for control wells. After 24 hours of incubation at 37.5°C and 7.5% CO₂, crude 10mg/mL elderberry, crude 1mg/mL elderberry, and select active pooled elderberry fractions were heated at 100°C for 5 minutes, and then were allowed to cool back to room temperature. 10 µL of heated and non-heated crude 10mg/mL elderberry, 10 µL of heated and non-heated crude 10mg/mL elderberry, and 10 µL of heated and non-heated pooled elderberry fraction were added to the appropriate plate wells in triplicate and incubated for another 24 hours. At 48 hours, each well was given 1 mCi/mL tritiated thymidine and incubated for an additional 24 hours. At 72 hours, the cells were harvested and counted. This experiment was performed twice.

Identification of Active Pooled Elderberry Fractions by Reversed-Phase High-Performance Liquid Chromatography (HPLC)

The 4 major anthocyanins in *Sambucus nigra* were separated by reversed-phase HPLC using a Hewlett-Packard 1050 Model pump system (Hewlett-Packard, Palo Alto, CA) with a photo-diode array detector (model 1040A) at 520 nm. The system was equipped with a 4.6 x 250 mm 5 μ m C₈ column. Anthocyanins were eluted using a gradient elution sequence adapted from von Baer et al. (2008). Pooled fractions of interest were also eluted on this column to determine the primary anthocyanin(s) in the sample. The column was set to a flow rate of 0.8 mL/min and a 20 μ L injection of 1 mg/mL filter-sterilized crude elderberry was used for the elution. Milli Q water, formic acid and HPLC-grade acetonitrile were used to prepare the solvents for elution. The solvents for the elution were (A) water/formic acid/acetonitrile 87:10:3 (v/v/v) and (B)

water/formic acid/acetonitrile 40:10:50 (v/v/v). The gradient starts with 6% solvent B for 1 minute, a linear gradient from 6% solvent B to 30% solvent B at 16 minutes, a linear gradient from 30% B to 50% B at 31 minutes, then back down to 6% B at 32 minutes. This gradient is followed by a 10 minute post run at 6% solvent B. The total time of the elution was 42 minutes.

Pooled fractions P16, P24, and P29 were diluted 1:50 and eluted based on the HPLC protocol developed for the crude elderberry elution.

RESULTS

Extraction of Elderberry Samples

Elderberry extraction of Column #1 by column chromatography yielded 111 individual 14.5 mL solvent-containing samples. As the mobile phase decreased in polarity, the collection rate of eluting samples also decreased, eluting off of the column at a slower pace. The first mobile phase run through the column (100% water/0% methanol + 0.01N HCl) resulted in the fastest collection time, with samples being eluted at a rate of 0.37 mL/min. The final mobile phase run through the column (0% water/100% methanol + 0.01*N* HCl) yielded the slowest fraction collection time at a rate of 0.12 mL/min (Table 1). Also, as the mobile phase decreased in polarity throughout the column elution, the colors of the samples changed in color and increased in color intensity. Collected samples in solvent varied from a pale yellow color to a dark and vibrant red. Following removal of solvent by rotary evaporation and vacuum centrifugation, the samples were redissolved in 0.5 mL PBS, an aqueous based solvent that does not affect cell proliferation (Rizvi, 2012). Samples eluted with increased methanol solvent were evaporated to 1-1.5mL by rotary evaporation quicker than samples eluted with high water solvent concentration (Table 2). The final sample colors ranged from pastel yellow to dark purple, including oranges, pinks, and reds in between.

Mobile Phase Composition	Fraction Numbers	Collection Rate (mL/min)
100% water/0% Methanol	1-5	0.37
90% water/10% Methanol	6-16	0.33
80% water/20% Methanol	17-27	0.31
70% water/30% Methanol	28-38	0.28
60% water/40% Methanol	39-49	0.25
50% water/50% Methanol	50-60	0.21
40% water/60% Methanol	61-70	0.20
30% water/70% Methanol	71-80	0.18
20% water/80% Methanol	81-91	0.17
10% water/90% Methanol	92-101	0.14
0% water/100% Methanol	102-111	0.12

Table 1. The collection times for elutants resolved by column chromatography using prepared standard elderberry powder (Column #1).

Table 2. The evaporation times for elutants resolved from column chromatography to 1-1.5 mL by rotary evaporator (Column #1).

Mobile Phase Composition	Fraction Numbers	Evaporation Time
		to 1-1.5 mL (minutes)
100% water/0% Methanol	1-5	21.50
90% water/10% Methanol	6-16	20.50
80% water/20% Methanol	17-27	19.00
70% water/30% Methanol	28-38	18.25
60% water/40% Methanol	39-49	16.00
50% water/50% Methanol	50-60	15.50
40% water/60% Methanol	61-70	15.00
30% water/70% Methanol	71-80	13.00
20% water/80% Methanol	81-91	12.25
10% water/90% Methanol	92-101	10.50
0% water/100% Methanol	102-111	9.25

Column #2 yielded 115 individual 14.5 mL solvent-containing samples. Identical to Column #1, mobile phases with higher concentrations of methanol (less polar) decreased the collection rate of solvent-containing samples. The first mobile phase run

through the column (100% water/0% methanol + 0.01*N* HCl) resulted in the fastest collection time, with samples being eluted at a rate of 0.39 mL/min. The final mobile phase run through the column (0% water/100% methanol + 0.01*N* HCl) yielded the slowest sample collection time at a rate of 0.13 mL/min (Table 3). The colors of the samples changed in color and increased in color intensity with decreasing polarity of mobile phases, similar to Column #1. Samples were eluted and completely dried using a rotary evaporator, and evaporation times increased as solvent methanol concentration increased (Table 4). The final sample colors followed the same range as those eluted and evaporated from Column #1.

Mobile Phase Composition	Fraction Numbers	Collection Rate (mL/min)
100% water/0% Methanol	1-6	0.39
90% water/10% Methanol	7-17	0.36
80% water/20% Methanol	18-28	0.34
70% water/30% Methanol	29-39	0.31
60% water/40% Methanol	40-50	0.28
50% water/50% Methanol	51-61	0.27
40% water/60% Methanol	62-72	0.24
30% water/70% Methanol	73-83	0.21
20% water/80% Methanol	84-94	0.17
10% water/90% Methanol	95-105	0.13
0% water/100% Methanol	106-115	0.13

Table 3. The collection times for elutants resolved by column chromatography using prepared standard elderberry powder (Column #2).

Mobile Phase Composition	Fraction Numbers	Complete Evaporation Time (minutes)
100% water/0% Methanol	1-6	36.50
90% water/10% Methanol	7-17	34.25
80% water/20% Methanol	18-28	31.00
70% water/30% Methanol	29-39	28.50
60% water/40% Methanol	40-50	28.00
50% water/50% Methanol	51-61	25.25
40% water/60% Methanol	62-72	22.00
30% water/70% Methanol	73-83	19.00
20% water/80% Methanol	84-94	17.00
10% water/90% Methanol	95-105	14.50
0% water/100% Methanol	106-115	12.75

Table 4. The complete evaporation times for elutants resolved from column chromatography by rotary evaporator (Column #2).

Columns #3-24 were eluted following the same column chromatography protocol, and resulted in similar sample collection rates and evaporation times as Column #1 and Column #2. Columns #3-24 were concluded after addition of the 20% water/80% methanol + 0.01N HCl, because individual samples beyond elution by these mobile phases were not of interest for future study. Between 87 and 93 individual solventcontaining samples were collected from each column. The collection rates and evaporation times for Columns #3-24 were averaged and recorded in Table 5 and 6.

Mobile Phase Composition	Collection Rate (mL/min)
100% water/0% Methanol	0.46
90% water/10% Methanol	0.41
80% water/20% Methanol	0.38
70% water/30% Methanol	0.35
60% water/40% Methanol	0.33
50% water/50% Methanol	0.31
40% water/60% Methanol	0.30
30% water/70% Methanol	0.30
20% water/80% Methanol	0.28
10% water/90% Methanol	0.25
0% water/100% Methanol	0.24

Table 5. The average collection times for elutants resolved by column chromatography using prepared standard elderberry powder (Column #3-24).

Table 6. The average complete evaporation times for elutants resolved from column chromatography by rotary evaporator (Column #3-24).

Mobile Phase Composition	Complete Evaporation Time (minutes)
100% water/0% Methanol	40.50
90% water/10% Methanol	39.25
80% water/20% Methanol	36.50
70% water/30% Methanol	33.25
60% water/40% Methanol	29.00
50% water/50% Methanol	25.25
40% water/60% Methanol	21.00
30% water/70% Methanol	18.50
20% water/80% Methanol	16.75
10% water/90% Methanol	14.00
0% water/100% Methanol	13.75

Tumor Cell Proliferation Assays with Separated Elderberry Samples

The MeWo cell proliferation assay with the samples isolated from column chromatography, rotary evaporation and vacuum centrifugation demonstrated that individual components isolated from Column #1 have tumor-suppressive effects. The assay was repeated three times and the average of the trials revealed that all of the samples suppressed tumor growth by some degree. CPM measurements from the scintillation counter were analyzed, and the percent proliferation of elderberry treated cells was assessed based on the growth of control cells at 100%. When 10 µL additions were used, 102 of the 111 (91.9%) individual samples decreased proliferation of the MeWo cell line by 40% or more compared to the untreated control. 88 of the 111 individual fractions (79.2%) inhibited MeWo growth by 60% or more. The 10 mg/mL and 1 mg/mL crude elderberry treatments decreased MeWo cell proliferation by 41.8% and 8.3%, respectively from the control (Figure 4).

Figure 4. MeWo cell suppression by individually separated elderberry samples (n=3).

A B16-F10 murine melanoma cell proliferation assay was performed for the separated samples from Columns #2-24. Appendix Tables A1-A23 show the results for the B16-F10 cell proliferation assays. Each assay produced a similar tumor cell suppression profile, facilitating subsequent pooling of active samples into pooled fractions. The B16-F10 cell proliferation assays for Column #23 and #24 start at sample 45 because it was unnecessary to plate the preceding samples to develop pool 16, pool 24 and pool 29.

Pooling of Assumed Active Elderberry Samples

Based on the results obtained from the MeWo cell proliferation assay with separated fractions from Column #1, neighboring fractions with similar tumorsuppressive ability were pooled generating 39 pooled fractions (Appendix, Table A24). Assumed active fractions from Columns #2-24 were pooled together to recreate pooled fractions of interest from Column #1 (Pool 16, 24 and 29). A list of the individual fractions combined to recreate pooled fractions of interest for each column can be found in the appendix (Appendix, Table A25).

MeWo Cell Proliferation Assay with Pooled Elderberry Fractions

This assay was performed to assess the tumor-suppressive activity of Column #1 pooled fractions on MeWo cell growth. CPM measurements from the scintillation counter were analyzed, and the percent proliferation of elderberry treated cells was assessed based on the growth of control cells at 100%. 20 of the 39 pooled fractions decreased MeWo cell proliferation by 40% or more. The 10 mg/mL and 1 mg/mL crude elderberry

treatments decreased MeWo cell proliferation by 42.5% and 37.6%, respectively from the control (Figure 5). This assay was performed twice.

Figure 5. MeWo cell suppression by pooled elderberry fractions (n=2).

B16-F10 Cell Proliferation Assay with Pooled Elderberry Fractions

Similar to the MeWo cell proliferation assay with the Column #1 pooled fractions, this assay aimed to assess the tumor-suppressive activity of Column #1 pooled fractions on B16-F10 murine melanoma cells. CPM measurements from the scintillation counter were analyzed, and the percent proliferation of elderberry treated cells was assessed based on the growth of control cells at 100%. All 39 pooled fractions decreased B16-F10 cell proliferation by 40% or more (Figure 6). The assay was repeated three times and the average of the trials revealed that the tumor-suppressive ability of the pooled fractions was significantly different than the control. The 10 mg/mL crude elderberry treatment significantly suppressed B16-F10 cell proliferation by 51.9% and the 1 mg/mL crude elderberry treatment decreased B16-F10 cell proliferation by 19.1%, although not significantly different from the control. Column #1 pooled fractions on average inhibit the growth of B16-F10 cells more compared to MeWo cells.

Figure 6. B16-F10 cell suppression by pooled elderberry fractions. Asterisks represent a significant proliferative difference vs. control cell growth (p<0.05) (n=3).

SH-SY5Y Cell Proliferation Assay with Pooled Elderberry Fractions

To assess the ubiquity of pooled fraction tumor-suppressing activity, a tumor cell proliferation assay was performed to assess the tumor-inhibiting ability of Column #1 pooled fractions on SH-SY5Y human neuroblastoma cells. CPM measurements from the scintillation counter were analyzed, and the percent proliferation of elderberry treated cells was assessed based on the growth of control cells at 100%. All 39 pooled fractions decreased SH-SY5Y cell proliferation by 20% or more (Figure 7). The assay was repeated three times and the average of the trials revealed that the tumor-suppressive ability of the pooled fractions was significantly different than the control. The 10 mg/mL crude elderberry treatment significantly suppressed SH-SY5Y cell proliferation by 27.3% and the 1 mg/mL crude elderberry treatment decreased SH-SY5Y cell proliferation by 13.7%, although not significant from the control.

Figure 7. SH-SY5Y cell suppression by pooled elderberry fractions. Asterisks represent a significant proliferative difference vs. control cell growth (p<0.05) (n=3).

CHO-K1 Cell Proliferation Assay with Pooled Elderberry Fractions

To assess the growth suppressing activity of Column #1 pooled fractions on a noncancerous cell line, a cell proliferation assay was performed on CHO-K1 cells, a line of transformed noncancerous cells derived from the ovary of a Chinese hamster. CPM measurements from the scintillation counter were analyzed, and the percent proliferation of elderberry treated cells was assessed based on the growth of control cells at 100%. The assay was repeated three times and the average of the trials was graphed (Figure 8). 25 of the 39 pooled fractions decreased CHO-K1 cell proliferation by a statistically significant

percent. Pooled fractions 4, 5, 12, 18, 19, 25, 26, 27, 31, 32, 33, 38 and 39 did not decrease CHO-K1 cell proliferation significantly. Both the 10 mg/mL crude elderberry treatment and the 1 mg/mL crude elderberry treatment did not significantly decrease CHO-K1 cell proliferation significantly compared to the control cells, whereas the 10 mg/mL crude elderberry did significantly suppress both B16-F10 and SH-SY5Y cells. In general, Column #1 pooled fractions that were exceptionally inhibitory in the B16-F10 and SH-SY5Y cell proliferation assays also decreased cell proliferation of CHO-K1 cells.

Figure 8. CHO-K1 cell suppression by pooled elderberry fractions. Asterisks represent a significant proliferative difference vs. control cell growth (p<0.05) (n=3).

Middle Aged Mouse Spleen Cell Proliferation Assay with Pooled Elderberry Fractions

Column #1 pooled fractions were plated with spleen cells and Con A. Spleen cells plated with Con A in the absence of pooled fractions was designated as the positive control. The Column #1 pooled elderberry fractions incubated with con A did not induce spleen cell proliferation greater than the positive control when using $10 \,\mu$ L treatments. When compared amongst other pooled fractions, certain pooled fractions incubated with con A elicited great stimulation of spleen cells than others (Table 4). Pools 14, 16, 17, 19 and 20 incubated with Con A were the top five pooled fractions that increased spleen cell proliferation compared to the other pooled fractions, but not more than the positive control. Each treatment was repeated in duplicate.
Sample Identity	CPM (Average)	Sample Identity	CPM (Average)
Control (resting)	166	20 + 2.5 µl Con A	5785
2.5 µl Con A	14151	21 + 2.5 µl Con A	2974
1 + 2.5 µl Con A	100	$22 + 2.5 \ \mu l \ Con \ A$	1892
2 + 2.5 µl Con A	138	$23 + 2.5 \ \mu l \ Con \ A$	807
3 + 2.5 µl Con A	141	$24 + 2.5 \ \mu l \ Con \ A$	2845
4 + 2.5 µl Con A	72	$25 + 2.5 \ \mu l \ Con \ A$	1513
5 + 2.5 µl Con A	885	$26 + 2.5 \ \mu l \ Con \ A$	71.5
6 + 2.5 µl Con A	1374	27 + 2.5 µl Con A	1307
7 + 2.5 µl Con A	1667	$28 + 2.5 \ \mu l \ Con \ A$	1882
8 + 2.5 µl Con A	94	29 + 2.5 µl Con A	1644
9 + 2.5 µl Con A	1370	30 + 2.5 µl Con A	1381
10 + 2.5 µl Con A	442	31 + 2.5 µl Con A	1467
11 + 2.5 µl Con A	895	$32 + 2.5 \ \mu l \ Con \ A$	262
$12 + 2.5 \ \mu l \ Con \ A$	1753	33 + 2.5 µl Con A	137
13 + 2.5 µl Con A	329	34 + 2.5 µl Con A	103
14 + 2.5 µl Con A	4274	35 + 2.5 µl Con A	78
15 + 2.5 µl Con A	1309	36 + 2.5 µl Con A	96
16 + 2.5 µl Con A	5050	37 + 2.5 µl Con A	54
$17 + 2.5 \ \mu l \ Con \ A$	5731	38 + 2.5 µl Con A	62
18 + 2.5 µl Con A	2601	39 + 2.5 µl Con A	64
19 + 2.5 µl Con A	5804		

Table 7. Average middle aged mouse spleen cell proliferation elicited by pooled fractions incubated with Con A.

Young and Old Mouse Comparative Spleen Cell Proliferation Assay with Pooled Elderberry Fractions

Column #1 pooled fractions were plated with young and old mouse spleen cells and Con A. The percent proliferation of elderberry treated cells was assessed based on the growth of the positive control cells (addition of 2.5 μ L Con A) at 100%. The pooled elderberry fractions incubated with Con A did not induce spleen cell proliferation greater than the positive control when using 10 μ L treatments in either the young nor senescent mouse spleen cells. Addition of crude elderberry treatments (10 mg/mL and 1 mg/mL) with Con A elicited a stronger proliferative response in young mouse spleen cells than in senescent mouse spleen cells. Addition of pooled fractions with Con A elicited a stronger proliferative response in senescent spleen cells compared to young mouse spleen cells for all 39 pooled fractions, and the range of relative increase was between 3% and 53% (Figure 9). Each treatment was repeated in duplicate.

Figure 9. Senescent and young mouse spleen cell growth stimulation by pooled elderberry fractions.

Modulation of Cytokine IL-2 by Pooled Elderberry Fractions

The spleen obtained for this assay was from a young 4 month old mouse. Standard optical densities (O.D.) measuring IL-2 protein concentration obtained from the ELISA were averaged and plotted to generate a linear standard curve for IL-2 protein concentration (Appendix, Figure B3). Average O.D. readings of pooled fraction treated wells were converted into IL-2 concentrations based upon the linear formula generated from the IL-2 standard curve ($R^2 = 0.9967$). Three column #1 pooled fractions incubated with Con A increased IL-2 concentration greater than the positive control. Pool 16, Pool 26, and Pool 30 treated wells generated IL-2 concentrations of 269.86 pg/mL, 431.13 pg/mL, and 270.50 pg/mL, respectively. The spleen cells incubated with 10 mg/mL elderberry + Con A stimulated IL-2 secretion greater that the spleen cells incubated with 1 mg/mL elderberry + Con A (Figure 10).

Figure 10. Stimulation of IL-2 secretion from spleen cells treated with pooled elderberry fractions.

Old Mouse in vivo Murine Melanoma Assay with Crude Elderberry

All mice were weighed at the start of the experiment, prior to s.c. injection of B16-F10 murine melanoma cells (or on the equivalent day) and prior to sacrifice. Over the course of the experiment the weight of each mouse did not change significantly. Senescent mouse weight averages for each group were not significantly different between each weighing day. Also, senescent mouse weight averages for all groups were not significantly different from each other (Figure 11).

Figure 11. Body weight results for old tumor-bearing mice given control and elderberry treatments. Senescent mice were weighed on day 1 (initial), day 36 (pre-tumor) and day

50 (final).

Two senescent control mice and two senescent 10 mg/mL elderberry treated mice who were injected with B16-F10 cells, developed visible tumors which were removed after the mice were sacrificed. Elderberry treated mice developed smaller tumors in weight and volume compared to the control mice, although not significantly different. The average weight and tumor volume of the senescent control mice was 2.48g and 5.56 cm³, respectively. The average weight and tumor volume of the senescent elderberry treated mice was 1.67g and 2.16 cm³, respectively (Table 8).

Treatment Group	Tumor Weight (g)	Tumor Volume (cm ³)	Average Tumor Weight (g)	Average Tumor Volume (cm ³)	
Control 1	3.63	8.42	2.49 ± 1.15	5 56 1 2 86	
Control 2	1.33	2.7	2.46 ± 1.13	5.50 ± 2.80	
Elderberry 1	1.85	2.25	1.67 + 0.18	2.16 ± 0.00	
Elderberry 2	1.48	2.07	1.07 ± 0.18	2.10 ± 0.09	

Table 8. Average tumor weight and volume for all tumor-bearing mice in the old mouse *in vivo* murine model assay with crude elderberry.

The spleens from all senescent mice were removed and prepared for a spleen cell proliferation assay with different concentrations of a known mitogen, Con A. The CPM measurements were averaged together amongst treatment groups and percent proliferation was determined based on the growth of resting (un-stimulated) control cells at 100%. For all treatment groups, there was a dose dependent increase in percent proliferation with increasing concentrations of mitogen up to 0.25 μ g/mL Con A. There was no significant difference in percent proliferation induced by mitogen between all groups for senescent mice (Table 9).

Senescent Mouse Treatment	Cell Treatment	СРМ	% Proliferation
	Resting	1823	100%
Control (n=3)	Control (n=3) 0.125 µg/mL Con A		265%
	Cell TreatmentResting0.125 µg/mL Con A0.25 µg/mL Con A0.125 µg/mL Con A0.25 µg/mL Con AResting0.125 µg/mL Con A0.25 µg/mL Con A0.25 µg/mL Con A0.25 µg/mL Con A	10534	816%
	Resting	3295	100%
Elderberry (n=3)	0.125 µg/mL Con A	4301	174%
	Resting 0.125 µg/mL Con A 0.25 µg/mL Con A Resting 0.125 µg/mL Con A 0.25 µg/mL Con A Resting 0.125 µg/mL Con A 0.25 µg/mL Con A	7674	726%
	Resting	448	100%
Elderberry-No Tumor (n=2)	0.125 µg/mL Con A	646	149%
	0.25 µg/mL Con A	2262	510%

Table 9. Senescent mouse spleen cell stimulation by Con A in the old mouse *in vivo* murine model assay with crude elderberry.

Young Mouse in vivo Murine Melanoma Assay with Crude Elderberry

All mice were weighed at the start of the experiment, prior to tumor injection (or on the equivalent day) and prior to sacrifice. 13 days following s.c. 1×10^4 B16-F10 cell injection to control and crude elderberry treated mice, no tumors were present. Mice were re-injected with 1×10^5 B16-F10 cells on the same flank to induce tumor growth. Injections of treatments (0.5 mL of water and 10 mg/mL elderberry) were continued 7 days after the re-injection of cancer cells. 12 days following the re-injection of cancer cells, a control mouse succumbed to cancer. The tumor was removed for weighing and measuring. All other experimental mice were sacrificed the following day and tumors were removed for weighing and measuring. Spleens were also removed and prepared for a spleen cell proliferation assay. Over the course of the experiment the weight of each young mouse gained weight, which is to be expected in young mice still growing. Mouse weight averages for the elderberry treated and elderberry – no tumor group were not significantly different between each weighing day. Between the pre-tumor injection weighing period and the final weighing period, the average control mouse weights were significantly different. Average control mouse weights increased significantly from 24.3 grams to 27.0 grams between these two weighing periods (Figure 12).

Figure 12. Body weight results for young tumor-bearing mice given control and elderberry treatments. Young mice were weighed on day 1 (initial), day 36 (pre-tumor) and day 50 (final). Asterisks represent a significant difference between two treatment/weighing period groups.

All six mice injected with B16-F10 cells developed tumors, which were removed

after the mice were sacrificed. Two of the three control mouse tumors metastasized into

the peritoneal cavity, whereas all elderberry treated mouse tumors remained local. Elderberry treated tumor-bearing mice developed smaller tumors in weight and volume compared to the control mice, although not significantly different. The average weight and tumor volume of the control mice was 2.88g and 5.33 cm³, respectively. The average weight and tumor volume of the elderberry treated tumor-bearing mice was 0.54g and 0.57 cm³, respectively (Table 10, Figure 13).

Table 10. Average tumor weight and volume for all tumor-bearing mice in the young mouse *in vivo* murine model assay with crude elderberry.

Treatment Group	Tumor Weight (g)	Tumor Volume (cm ³)	Average Tumor Weight (g)	Average Tumor Volume (cm ³)
Control 1	0.02	0.02		
Control 2	4.83	8.18	2.88 ± 1.46	5.33 ± 2.66
Control 3	3.78	7.79		
Elderberry 1	1.42	1.53		
Elderberry 2	0.14	0.17	0.54 ± 0.44	0.57 ± 0.48
Elderberry 3	0.05	0.02		

Figure 13. Tumor weight results for young tumor-bearing mice given control and elderberry treatments (n=3).

The spleens from all young mice were removed and prepared for a spleen cell proliferation assay with different concentrations of a known mitogen, Con A. The CPM measurements were averaged together amongst treatment groups and percent proliferation was determined based on the growth of resting (un-stimulated) control cells at 100%. For all treatment groups, there was a dose dependent increase in percent proliferation with increasing concentrations of mitogen up to 0.25 μ g/mL Con A. There was no significant difference in percent proliferation induced by the different concentrations of mitogen between the groups (Table 11).

Young Mouse Treatment	Cell Treatment	СРМ	% Proliferation
	Resting	1823	100%
Control (n=3)	Control (n=3) 0.125 µg/mL Con A		1023%
	Cell Treatment Resting 0.125 µg/mL Con A 0.25 µg/mL Con A Resting 0.125 µg/mL Con A 0.25 µg/mL Con A Resting 0.125 µg/mL Con A	10534	2371%
	Resting	3295	100%
Elderberry (n=3)	Elderberry (n=3) 0.125 µg/mL Con A		458%
	Cell Treatment CPM Resting 1823 0.125 μg/mL Con A 4153 0.25 μg/mL Con A 10534 Resting 3295 0.125 μg/mL Con A 4301 0.25 μg/mL Con A 7674 Resting 448 0.125 μg/mL Con A 646 0.25 μg/mL Con A 2262	834%	
	Resting	448	100%
Elderberry-No Tumor (n=3)	0.125 µg/mL Con A	646	548%
	0.25 µg/mL Con A	2262	2209%

Table 11. Young mouse spleen cell stimulation by Con A in the young mouse *in vivo* murine model assay with crude elderberry.

Middle Aged Mouse *in vivo* Murine Melanoma Assay with Active Pooled Elderberry Fractions

All mice were weighed at the start of the experiment, prior to s.c. injection of B16-F10 murine melanoma cells (or on the equivalent day) and prior to sacrifice. Mice from the 10 mg/mL crude elderberry treatment group started to show delayed reaction

time and weakness prior to tumor cell injection. Examination of the crude elderberry extract revealed a possible fungal contamination despite filter-sterilization. Mice from P16, P24, and P29 treatment groups also exhibited behavioral and physical changes posttumor cell injection, and were sacrificed prior to the end of the experiment.

Preliminary Identification of Active Pooled Elderberry Fractions by Heat-Induced Denaturation in a B16-F10 Cell Proliferation Assay

After examining the effect of pooled elderberry fractions on human and murine melanoma proliferation *in vitro*, as well as effect on T lymphocyte proliferation with optimal Con A *in vitro*, we identified Column #1 pooled fractions that were considered "active" in both tumor cell suppression and immune induction. Pool 7, 14, 16, and 29 were chosen as active fractions in both tumor suppressive ability and immune modulating activity, and were subjected to boiling to denature the majority of the protein components of the pooled fractions. CPM measurements from the scintillation counter were analyzed, and the percent proliferation of elderberry treated cells was assessed based on the growth of the control cells at 100%. All treatments, excluding the 1 mg/mL crude unheated elderberry treatment, decreased B16-F10 cell proliferation significantly from the control. When the 10 mg/mL crude elderberry treatment was heated to induce denaturing of proteins, the proliferation of B16-F10 cells decreased significantly from 76.5% to 55.7%. The 1 mg/mL crude elderberry treatment also decreased proliferation of B16-F10 cells after heating from 90.1% proliferation to 77.7% proliferation, but the difference was not significant. Of the four chosen pooled fractions of interest, pool 14, pool 16 and pool 29 showed a greater suppression of B16-F10 growth after being heated. Two of the Column

#1 pooled fractions decreased B16-F10 cell proliferation significantly after heating. When the pool 16 treatment was heated, the proliferation of B16-F10 cells decreased significantly from 29.6% to 12.7%. When the pool 29 treatment was heated, the proliferation of B16-F10 cells decreased significantly from 51.0% to 18.8% (Figure 14). Treatments were plated in triplicate and the experiment was repeated twice.

Figure 14. B16-F10 cell suppression by heated active pooled elderberry fractions. Single asterisks represent a significant proliferative difference vs. the control. Double asterisks represent a significant proliferative difference vs. the same elderberry fraction when heated (p<0.05) (n=2).

Preliminary Identification of Active Pooled Elderberry Fractions by Heat-Induced Denaturation in a Spleen Cell Proliferation Assay

Heated treatments of Pool 7, 14, 16, and 29 were also used in a spleen cell proliferation assay to determine the effect of heated pooled fractions on senescent mouse spleen cell growth. CPM counts were analyzed, and the percent proliferation of elderberry treated cells was assessed based on the growth of the positive control cells (addition of 2.5 µL optimal Con A) at 100%. All treatments, with the exception of the 1 mg/mL unheated crude elderberry treatment and the unheated pool 16 treatment, decreased spleen cell proliferation significantly from the positive control. When heated, the 10mg/mL and 1 mg/mL crude elderberry treatments did not elicit significant spleen cell proliferation significant to their respective unheated treatments. Of all the pooled fractions investigated, only heated pooled fraction 16 differed significantly from its unheated treatment. Heating pooled fraction 16 resulted in a decrease in spleen cell proliferation from 95.1% to 32.5% (Figure 12). Treatments were plated in triplicate and the experiment was repeated twice.

Figure 15. Senescent mouse spleen cell proliferation by heated active pooled elderberry fractions. Single asterisks represent a significant proliferative difference vs. the control. Double asterisks represent a significant proliferative difference vs. the same elderberry fraction when heated (p<0.05) (n=2).

Identification of Active Pooled Elderberry Fractions by Reversed-Phase High-Performance Liquid Chromatography (HPLC)

The anthocyanin peaks of elderberry were eluted in the following order: cyanidin

3-sambubioside-5-glucoside, cyanidin 3,5-diglucoside, cyanidin 3-sambubioside, and

cyanidin 3-glucoside (Figure 16). Comparison to the nearly identical crude elderberry

chromatogram reported by Youdim et al. (2000) validated the peak identities.

Comparing the pooled fractions chromatogram peaks for P16, P24, and P29 to the crude elderberry chromatogram, it was revealed that P16 contained 85% cyanidin 3-sambubioside (Figure 17). Pool 24 contained a combination of 7% cyanidin 3-sambubioside-5-glucoside, 18% cyanidin 3,5-diglucoside, 42% cyanidin 3-sambubioside, and 31% cyanidin 3-glucoside (Figure 18). P29 contained 83% cyanidin 3-glucoside (Figure 19).

Figure 16. HPLC chromatogram of crude elderberry anthocyanins measured at 520 nm.

Figure 17. HPLC chromatogram of 1:50 diluted pooled fraction P16 anthocyanins measured at 520 nm.

Figure 18. HPLC chromatogram of 1:50 diluted pooled fraction P24 anthocyanins measured at 520 nm.

Figure 19. HPLC chromatogram of 1:50 diluted pooled fraction P29 anthocyanins measured at 520 nm.

DISCUSSION

The use of bioactive foods as naturopathic treatments for many diseases and health conditions is a growing field of interest. Phytochemicals from dark-pigmented berries have been the focus of many studies that examine natural therapeutic modulators of cardiac disease, neurological disease, viral infection, and cancers. The pathways and proteins affected by berry extracts that lead to their beneficial activity are still not well understood. It was the objective of this research to identify the active components of elderberry capable of inhibiting melanoma cell proliferation *in vitro* and *in vivo* and to determine the effect of active elderberry components on T lymphocyte proliferation and IL-2 concentration. The immune system plays an important role in tumor cell detection and removal. By inhibiting tumor cell growth directly and by increasing the immune response against cancerous cells by natural means, elderberry extracts could be a bioactive food of interest in the fight against cancer and other diseases. Also, this research aimed to chemically identify the active components of elderberry capable of eliciting this 'dual-edged' sword effect to further contribute to the growing field of alternative and complementary medicinal studies.

Crude elderberry extracts and multiple pooled elderberry fractions exhibited tumor suppressive ability in both human and murine melanoma cell lines. The B16-F10 cell proliferation assay demonstrated that all pooled elderberry fractions, as well as the 10 mg/mL crude elderberry sample, were able to significantly decrease melanoma cell growth *in vitro* compared to the control. Over half of the pooled elderberry fractions decreased B16-F10 cell proliferation more than the 10 mg/mL crude elderberry sample. These results suggest some of the separated components of elderberry are capable of inhibiting melanoma growth to a greater extent than crude elderberry treatments. All pooled fractions also significantly decreased human neuroblastoma cell proliferation, demonstrating the ubiquitous activity of the pooled fractions, suggesting that elderberry extracts may be useful in directly suppressing the growth of multiple cancers. Once again, the 10 mg/mL crude elderberry sample also significantly decreased SH-SY5Y cell proliferation, but there were multiple pooled fractions that decreased SH-SY5Y cell proliferation to a greater degree.

Interestingly, when crude and pooled elderberry fractions were added to CHO-K1 noncancerous transformed cells, only 25 of the 39 pooled fractions decreased CHO-K1 cells significantly, and both the 10 mg/mL and 1 mg/mL crude elderberry treatments did not significantly suppress transformed cell growth. Many of the pooled fractions that significantly decreased both B16-F10 and SH-SY5Y cell proliferation did not significantly suppress CHO-K1 cell growth *in vitro*, suggesting that the pooled fractions may have a more selective killing effect on cancerous cell lines compared to transformed, noncancerous cell lines.

Elderly people are at a higher risk for illnesses, such as cancer, due to immunosenescence. Extracts from dark-pigmented berries may also have immuneboosting benefits, which may indirectly lead to cancer cell suppression by augmenting proliferation of T lymphocytes and secretion of important cytokines, including IL-2.

Spleen cells from a mouse (11 months old) incubated with pooled fractions and Con A did not increase spleen cell proliferation greater than spleen cells incubated with Con A only, suggesting that 10 μ L treatments may not be the optimal concentration of pooled fraction to increase spleen cell proliferation in this *in vitro* assay. When spleen cells from a young mouse (5 mounts old) and a senescent, retired breeder mouse (18 months old) were incubated with pooled fractions and Con A were compared, the results suggest that the same concentration of pooled sample increases spleen cell proliferation in senescent mice more than in young mice. The percent increase of senescent, retired breeder spleen cell proliferation compared to young mouse spleen cell proliferation ranged from a 3-53% increase. These results demonstrate that pooled elderberry fractions may be able to induce T lymphocyte proliferation in elderly individuals, who are more susceptible to disease, compared to younger individuals, who are more likely to have maintained functional immunity. Three pooled fractions incubated with Con A elicited a stronger IL-2 response from mouse spleen cells compared to spleen cells incubated with Con A only *in vitro*, suggesting that these pooled fractions may act in an additive manner with Con A to affect the growth and differentiation of T lymphocytes. It is important to note that the three pooled fractions that increased IL-2 secretion also increased the proliferation of senescent, retired breeder mouse spleen cells between 13-33% when compared to young mouse spleen cell proliferation.

To examine the tumor-suppressive ability of crude elderberry and certain pooled elderberry fractions *in vivo*, randomly sorted groups of mice were given either sterile water i.p. injections or 10 mg/mL crude elderberry or pooled elderberry i.p. injections. The initial and final weights of the mice were not significantly different from each other across all treatment groups, suggesting that injection of elderberry samples does not have an adverse effect on mouse weight and health. On average, the tumors dissected from tumor-bearing senescent control mice were larger than the tumors dissected from tumorbearing senescent elderberry treated mice. Young mice were used in a second *in vivo* experiment and the tumors from tumor-bearing young control mice were on average larger than those dissected from tumor-bearing young mice given crude elderberry treatments. The increase in body weight of control mice pre-tumor injection and before sacrifice was significant, supporting the quantitative analysis of control mouse tumor weights. Also, 67% of young control mouse tumors metastasized into the peritoneal cavity, whereas all crude elderberry treatment mouse tumors remained local, suggesting that crude elderberry treatment may also decrease risk of tumor metastasis.

In the murine *in vivo* experiment using pooled fractions P16, P24 and P29, mice treated with pooled fractions died before the end of the experiment, suggesting that the pooled fractions collection directly from the columns were too concentrated to be used in 0.5 mL injection volumes. This result supports the idea that the pooled fractions from the column have more potent activity compared to the crude 10 mg/mL elderberry samples, and a diluted version of the pooled fractions should be used in future murine melanoma models.

Preliminary identification of active components in pooled fractions was accomplished by heating pooled fractions to denature any proteins found within the pooled fractions. It was hypothesized that any active proteins would lose their function after heating, and would not suppress B16-F10 murine melanoma proliferation significantly. All treatments regardless of heating with the exception of the 1 mg/mL crude elderberry non-heated sample significantly decreased proliferation of B16-F10 cells *in vitro*, suggesting that the active component in these samples was not a protein. The 1 mg/mL crude elderberry sample was not expected to result in significant B16-F10 cell proliferation based on previous studies. Interestingly, heating the crude 10 mg/mL elderberry sample, as well as heating pooled fractions 16 and 29, further decreased the proliferation of B16-F10 cells significantly compared to their respective non-heated samples. Yue and Xu reported that heating anthocyanins extracted from bilberry, a similar dark-pigmented berry to elderberry, resulted in increased free radical scavenging ability (2008). Heating anthocyanins can cleave the sugar moiety from the compound, producing the corresponding anthocyanidin, which are also much more effective in tumor killing compared to their respective anthocyanin (Jing, 2006). Another possible explanation for the increased tumor-inhibiting activity of heated pooled fractions is the presence of proteins that inhibit anthocyanins. When the pooled fractions are heated, these inhibitors of anthocyanins would be denatured. It was then hypothesized that the tumor suppressive and immune-increasing activity of the pooled fractions 16 and 29 could be due to anthocyanins present in elderberry.

When the same heated pooled fractions were applied to mouse spleen cells in a proliferation assay, the non-heated crude 1 mg/mL elderberry treatment and the non-heated pool 16 treatment were the only treatments that did not significantly decrease spleen cell proliferation. These results suggest that the potency of the elderberry treatments increases upon heating, likely for the same reason tumor suppressive ability is increased. It is noted that the pool 16 non-heated treatment did not significantly affect

spleen cell proliferation, and validates further studies for the use of certain pooled fractions as immunotherapeutic agents to combat disease.

To further identify the chemical identity of the active pooled elderberry fractions, a crude elderberry sample was first analyzed by HPLC to generate a chromatogram of the four primary anthocyanins present in elderberry. P16, P24, and P29 were diluted and analyzed using the same gradient elution as the crude elderberry analysis through HPLC. P16 contained 85% cyanidin 3-sambubioside (the third peak eluted from the crude elderberry sample), and P29 contained 83% cyanidin 3-glucoside (the fourth peak eluted from the crude elderberry sample). These results support the hypothesis that many active components responsible for tumor suppression and immune cell modulation are anthocyanins in elderberry, and validate the need for further study regarding the medicinal properties of these naturally derived phytochemicals. There is still much to learn concerning the signal pathways affected in response to anthocyanin treatment, and an understanding of these interactions may lead to the identification of novel naturopathic treatments to prevent the onset of cancer and other diseases.

Future directions for this research include identifying anti-metastatic activity of pooled elderberry fractions, characterization of additional immunological and antioxidant mechanisms affected by pooled elderberry fractions, and performing additional analytical chemistry methods to confirm with certainty the presence of anthocyanins in the pooled fractions, as well as additional factors in the pooled fractions. The severity of many cancers increases dramatically after metastatic events; therefore utilization of natural factors able to suppress metastatic events may lower the risk of fatal cancer development. Identification of metastasis-suppressing pooled fractions can be achieved by analyzing suppression of matrix metalloproteinases (MMP), proteinases whose expression is overexpressed in cancerous cells and assist in degrading the extracellular matrix, facilitating invasion of cancerous cells into adjacent tissues. Matchett et al. were able to show that flavonoids from blueberries possessed the ability to inhibit matrix metalloproteinases in human prostate cancer cells (2005).

Our studies have shown that pooled elderberry fractions directly prepared by column chromatography may be too concentrated to elicit a positive spleen cell proliferation response. Spleen cell proliferation assays utilizing dilution of the pooled elderberry fractions should be formed to determine an optimal concentration for spleen cell proliferation. There are many other immunological factors that may be affected by pooled elderberry fractions that have not yet been investigated. Studies involving other berry phytochemicals show promise in protecting cellular integrity by inhibiting VEGF receptor-2 phosphorylation (Lamy et al., 2006), and inhibiting the pro-survival function of NF- κ B (Hafeez, et al., 2008). There is also a need for the examination of the diseasepreventative mechanisms implemented by pooled elderberry fractions and elderberry anthocyanins. One article by Youdim et al. shows evidence that elderberry anthocyanins may be useful to prevent DNA damage by protecting against oxidative stress (2000). Further analysis of the antioxidant activity of elderberry anthocyanins may further support the use of berry extracts as a preventative strategy against the onset of multiple diseases, including cancer.

To be certain of the exact anthocyanins present in elderberry, nuclear magnetic resonance (NMR) and infrared spectroscopy (IR) can be performed to identify functional groups present in the phytochemicals' structure by analyzing chemical shifts and spectrum peaks, respectively. Mass spectroscopy (MS) may also be useful in differentiating anthocyanins and other phytochemicals based upon differing molecular weights. Acquisition of pure anthocyanin standards may also be used under identical HPLC gradient elution conditions, and the peaks from the consequent chromatogram could be compared to the peaks generated from pooled fraction chromatograms to validate the identity of the assumed anthocyanins.

The results of this thesis work characterize the direct tumor killing activity of pooled elderberry fractions, touch on the immune inducing effects of the pooled elderberry fractions on spleen cell proliferation in senescent mice and on IL-2 secretion, and identify the major component of active pooled elderberry fractions as anthocyanins. Specifically, cyanidin 3-sambubioside and cyanidin 3-glucoside were the anthocyanins with the most beneficial activity concerning modulation of melanoma cancer cells. Further study using the fractions separated from elderberry may validate their use in immunotherapy and natural chemotherapy, as well as support their use as a diseasepreventative, naturopathic treatment for melanoma. LIST OF REFERENCES

LIST OF REFERENCES

- American Cancer Society (2013). *Cancer Facts & Figures 2013*. Atlanta, GA. Retrieved from http://www.cancer.org/acs/groups/content/@epidemiologysurveilance/ documents/document/acspc-031941.pdf
- American Cancer Society (2012). *Melanoma Skin Cancer*. Atlanta, GA. Retrieved from http://www.cancer.org/acs/groups/cid/documents/webcontent/003120-pdf.pdf
- Atkinson, M., & Atkinson, E. (2002). Sambucus nigra L. *Journal of Ecology*, 90, 895-923.
- Bagchi, D., Roy S., Patel, V., He, G., Khanna, S., Ojha, N., Phillips, C., Ghosh, S., Bagchi, S., & Sen, C. (2006). Safety and whole-body antioxidant potential of a novel anthocyanin-rich formulation of edible berries. *Molecular and Cellular Biochemistry*, 281(1), 197-209.
- Barak, V., Halperin, T., Kalickman, I. (2001). The effect of Sambucol, a black elderberry-based, natural product, on the production of human cytokines: I. Inflammatory cytokines. *European Cytokine Network*, *12*(2), 290-296.
- Beattie, J., Crozier, A., & Duthie, G. (2005). Potential Health Benefits of Berries. *Current Nutrition & Food Science*, 1(1), 71-86.
- Bridle, P., & Garcia-Viguerab, C. (1997). Analysis of anthocyanins in strawberries and elderberries . A comparison of capillary zone electrophoresis and HPLC. *Food Chemistry*, *59*(2), 299–304.
- Brozyna, A., Zbytek, B., Granese, J., Carlson, A., Ross, J., & Slominski, A. (2007). Mechanism of UV-related carcinogenesis and its contribution to nevi/melanoma. *Expert Review of Dermatology*, 2(4), 451-469.
- Cao, G., Muccitelli, H., Sánchez-Moreno, C., & Prior, R. (2001). Anthocyanins are absorbed in glycated forms in elderly women: A pharmacokinetic study. *The American Journal of Clinical Nutrition*, 73(5), 920–926.

- Catoni, C., Martin Schaefer, H., & Peters, A. (2008). Fruit for health : The effect of flavonoids on humoral immune response and food selection in a frugivorous bird. *Functional Ecology*, 22, 649–654.
- Chandra, A., Rana, J., & Li, Y. (2001). Separation, identification, quantification, and method validation of anthocyanins in botanical supplement raw materials by HPLC and HPLC-MS. *Journal of Agricultural and Food Chemistry*, 49(8), 3515– 3521.
- Chapman, P. (2011). How Zelboraf [™] (Vemurafenib), a new FDA-approved therapy, extends life for patients with metastatic melanoma. *The Melanoma Letter*, 29(2). Retrieved from http://www.skincancer.org/Media/Default/Page/publications/themelanoma-letter/fall-2011-vol-29-no-2/MelanomaLetter_29-2_final.pdf
- Chen, P., Chu, S., Chiou, H., Chiang, C., Yang, S., & Hsieh, Y. (2005). Cyanidin 3glucoside and peonidin 3-glucoside inhibit tumor cell growth and induce apoptosis in vitro and suppress tumor growth in vivo. *Nutrition and Cancer*, 53(2), 232-243.
- Davis, M., & Schlessinger, J. (2012) The genesis of Zelboraf: Targeting mutant B-Raf in melanoma. *Journal of Cellular Biology*, 199(1), 15-19.
- Dawidowicz, A., Wianowska, D., & Baraniak, B. (2006). The antioxidant properties of alcoholic extracts from Sambucus nigra L. (antioxidant properties of extracts). *LWT – Food Science and Technology*, 39(3), 308–315.
- Duthie, S. (2007). Berry phytochemicals, genomic stability and cancer: Evidence for chemoprotection at several stages in the carcinogenic process. *Molecular Nutrition and Food Research*, *51*(6), 665–674.
- Escribano-Bailón, M., Alcalde-Eon, C., Muñoz, O., Rivas-Gonzalo, J., & Santos-Buelga, C. (2006). Anthocyanins in berries of Maqui [*Aristotelia chilensis* (Mol.) Stuntz]. *Phytochemical Analysis*, 17(1), 8-14.
- Frøkiær, H., Henningsen, L., Metzdorff, S., Weiss, G., Roller, M., Flanagan, J., Fromentin, E., & Ibarra, A. (2012). Astragalus root and elderberry fruit extracts enhance the IFN-β stimulatory effects of Lactobacillus acidophilus in murinederived dendritic cells. *PloS One*, 7(10), e47878.
- Goldsby, R., Kindt, T., Osborne, B., & Kuby, J. (2003). Immunology. New York, NY: W.H. Freeman and Company.
- Groscurth, P., & Filgueira, L. (1998). Killing mechanisms of cytotoxic T lymphocytes. *News in Physiological Sciences*, *13*, 17-21.

- Hafeez, B., Siddiqui, I., Asim, M., Malik, A., Afaq, F., Adhami, V., Saleem, M., Din, M., & Mukhtar, H. (2008). A dietary anthocyanidin Delphinidin induces apoptosis of human prostate cancer PC3 cells *in vitro* and *in vivo*: Involvement of nuclear factor-κB signaling. *Cancer Research*, 68(20), 8564-8572.
- Jaiswal, V., DerMarderosian, A., & Porter, J. (2010). Anthocyanins and polyphenol oxidase from dried arils of pomegranate (*Punica granatum* L.). *Food Chemistry*, *118*(1), 11–16.
- Jing, P. (2006) Purple corn anthocyanins: Chemical structure, chemopreventative activity and structure/function relationships. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=osu1155738398
- Jing, P., Bomser, J., Schwartz, S., He, J., Magnuson, B., & Giusti, M. (2008). Structurefunction relationships of anthocyanins from various anthocyanin-rich extracts on the inhibition of colon cancer cell growth. *Journal of Agricultural and Food Chemistry*, 56(20), 9391–9398.
- Joseph, J., Shukitt-Hale, B., & Willis, L. (2009). Grape juice, berries, and walnuts affect brain aging and behavior. *The Journal of Nutrition*, *139*(9), 1813S-1817S.
- Kähkönen, M. P., Heinämäki, J., Ollilainen, V., & Heinonen, M. (2003). Berry anthocyanins: Isolation, identification and antioxidant activities. *Journal of the Science of Food and Agriculture*, 83(14), 1403–1411.
- Kanadaswami, C., Lee, L., Lee, P., Hwang, J., Ke, F., Huang, Y., & Lee, M. (2005). The antitumor activities of flavonoids. *In vivo*, *19*, 895–909.
- Katsube, N., Iwashita, K., Tsushida, T., Yamaki, K., & Kobori, M. (2003). Induction of apoptosis in cancer cell by bilberry (*Vaccinium myrtillus*) and the anthocyanins. *Journal of Agriculture and Food Chemistry*, 58, 68-75.
- Kong, F. (2009). Pilot clinical study on proprietary elderberry extract: Efficacy in addressing influenza symptoms. Online Journal of Pharmacology and Pharmacokinetics, 5, 32-43.
- Kubica, A., & Brewer, J. (2012). Melanoma in immunosuppressed patients. *Mayo Clinic Proceedings*, 87(10), 991-1003.
- Lamy, S., Blanchette, M., Michaud-Levesque, J., Lafleur, R., Durocher, Y., Moghrabi, A., Barrette, S., Gingras, D., & Béliveau, R. (2005). Delphinidin, a dietary anthocyanidin, inhibits vascular endothelial growth factor receptor-2 phosphorylation. *Carcinogenesis*, 27(5), 989-996.

- Lee, J., & Finn, C. (2007). Anthocyanins and other polyphenolics in American elderberry (Sambucus Canadensis) and European elderberry (S. nigra) cultivars. *Journal of the Science of Food and Agriculture*, 87, 2665–2675.
- Lee, J., Rennaker, C., & Wrolstad, R. (2008). Correlation of two anthocyanin quantification methods: HPLC and spectrophotometric methods. *Food Chemistry*, 110(3), 782–786.
- Linos, E., Swetter, S., Cockburn, M., Colditz, G., & Clarke, C. (2009). Increasing burden of melanoma in the United States. *The Journal of Investigative Dermatology*, 129(7), 1666-1674.
- Liu, V., Wong, L., Jang, T., Shah, A., Park, I., Yang, X., Zhang, Q., Lonning, S., Teicher, B., & Lee, C. (2007) Tumor evasion of the immune system by converting CD4⁺CD25⁻ T cells into CD4⁺CD25⁺ T regulatory cells: Role of tumor-derived TGF-β. *The Journal of Immunology*, *178*(5), 2883-2892.
- Matchett, M., MacKinnon, S., Sweeney, M., Gottschall-Pass, K., & Hurta, R. (2005). Blueberry flavonoids inhibit matrix metalloproteinase activity in DU145 human prostate cancer cells. *Biochemistry and Cell Biology*, *83*, 637-643.
- Milbury, P., Cao, G., Prior, R., & Blumberg, J. (2002). Bioavailability of elderberry anthocyanins. *Mechanisms of Ageing and Development*, 123(8), 997–1006.
- Murkovic, M., Mülleder, U., Adam, U., & Pfannhauser, W. (2001). Detection of anthocyanins from elderberry juice in human urine. *Journal of the Science of Food and Agriculture*, 81(9), 934–937.
- Nagl, M., Eder, R., Wendelin, S., Reich, G., & Sontag, G. (2006). Qualitative and quantitative analysis of phenolic constituents in elderberry juices. *Nutrition*, *30*(10), 409–415.
- Ottenweller, J., Putt, K., Dhawale, S., & Dhawale, S. (2004). Inhibition of Prostate Cancer-Cell Proliferation by Essiac [®]. *The Journal of Alternative and Complementary Medicine*, 10(4), 687–691.
- Rigel, D., & Carucci, J. (2008). Malignant melanoma: Prevention, early detection, and treatment in the 21st century. *A Cancer Journal for Clinicians*, *50*(4), 215-236.
- Rizvi, S. (2012) Determination of the active components of elderberry extracts on immune function and tumor cell growth. Retrieved from http://opus.ipfw.edu/masters_theses/21

- Roschek, B., Fink, R., McMichael, M., Li, D., & Alberte, R. (2009). Elderberry flavonoids bind to and prevent H1N1 infection in vitro. *Phytochemistry*, 70, 1255-1261.
- Roxas, M., & Jurenka, J. (2007). Colds and influenza: A review of diagnosis and conventional, botanical, and nutritional considerations. *Alternative Medicine Review*, *12*(1), 25-48.
- Seeram, N. (2008). Berry fruits for cancer prevention: Current status and future prospects. *Journal of Agricultural and Food Chemistry*, *56*, 630-635.
- Seeram, N., Schutzki, R., Chandra, A., & Nair, M. (2002). Characterization, quantification, and bioactivities of anthocyanins in *Cornus* species. *Journal of Agricultural and Food Chemistry*, 50, 2519-2523.
- Stagg, J., Divisekera, U., McLaughlin, N., Sharkey, J., Pommey, S., Denoyer, D., Dwyer, K., & Smyth, M. (2010). Anti-CD73 antibody therapy inhibits breast tumor growth and metastasis. *Proceedings of the National Academy of Sciences of the United States of America*, 107(4), 1547–1552.
- Stintzing, F., Stintzing, A., Carle, R., Frei, B., & Wrolstad, R. (2002). Color and antioxidant properties of cyanidin-based anthocyanin pigments. *Journal of Agricultural and Food Chemistry*, 50(21), 6172–6181.
- Strack, D., & Mansell, R. (1975) Polyamide column chromatography for resolution of complex mixtures of anthocyanins. *Journal of Chromatography A*, 109(2), 325-331.
- Sumimoto, H., Imabayashi, F., Iwata, T., & Kawakami, Y. (2006). The BRAF-MAPK signaling pathway is essential for cancer-immune evasion in human melanoma cells. *The Journal of Experimental Medicine*, 203(7), 1651–1656.
- Thole, J., Kraft, T., Sueiro, L., Kang, Y., Gills, J., Cuendet, M., Pezzuto, J., Seigler, D., & Lila, M. (2006). A comparative evaluation of the anticancer properties of European and American elderberry fruits. *The Journal of Medicinal Food*, 9(4), 498–504.
- Tung, R, & Vidimos, A. (2011). Disease management project: Melanoma. *The Cleveland Clinic Foundation*. Retrieved from http://www.clevelandclinicmeded.com/medicalpubs/diseasemanagement/dermatol ogy/cutaneous-malignant-melanoma/
- Trachootham, D., Alexandre, J., & Huang, P. (2009). Targeting cancer cells by ROSmediated mechanisms: A radical therapeutic approach? *Nature Reviews Drug Discovery*, 8, 579-591.

- Vlachojannis, J., Cameron, M., & Chrubasik, S. (2010). A systematic review on the Sambuci fructus effect and efficacy profiles. Phytotherapy Research, 24, 1–8.
- von Baer, D., Rentzsch, M., Hitschfeld, M., Mardones, C., Vergara, C., & Winterhalter, P. (2008) Relevance of chromatographic efficiency in varietal authenticity verification of red wines based on their anthocyanin profiles: Interference of pyranoanthocyanins formed during wine ageing. *Analytica Chimica Acta*, 621(1), 52-56.
- Wang, L., & Stoner, G. (2008). Anthocyanins and their role in cancer prevention. Cancer Letters, 269(2), 281–290.
- Weber, J. (2007) Review: Anti-CTLA-4 antibody Ipilimumab: Case studies of clinical response and immune-related adverse events. *The Oncologist*, *12*(7), 864-872.
- Weinberg, R. (2007). The Biology of Cancer. New York, NY: Garland Science.
- Welch, C., Wu, Q., & Simon, J. (2009). Recent advances in anthocyanin analysis and characterization. *Current Analytical Chemistry*, 4(2), 75–101.
- Wen, D., Chenchen, L., Di, H., Liao, Y., & Huwei, H. (2005). A universal HPLC method for the determination of phenolic acids in compound herbal medicines. *Journal of Agricultural and Food Chemistry*, 53, 6624–6629.
- Wu, X., Cao, G., & Prior, R. (2002). Absorption and metabolism of anthocyanins in elderly women after consumption of elderberry or blueberry. *The Journal of Nutrition*, 132(7), 1865–1871.
- Wu, X., Gu, L., Prior, R., & McKay, S. (2004). Characterization of anthocyanins and proanthocyanidins in some cultivars of *Ribes, Aronia*, and *Sambucus* and their antioxidant capacity. *Journal of Agricultural and Food Chemistry*, 52(26), 7846– 7856.
- Youdim, K., Martin, A., & Joseph, J. (2000). Incorporation of the elderberry anthocyanins by endothelial cells increases protection against oxidative stress. *Free Radical Biology & Medicine*, 29(1), 51–60.
- Yue, X., & Xu, Z. (2008). Changes of anthocyanins, anthocyanidins, and antioxidant activity in bilberry extract during dry heating. *Journal of Food Science*, 73(6), C494–C499.
- Zafra-Stone, S., Yasmin, T., Bagchi, M., Chatterjee, A., Vinson, J., & Bagchi, D. (2007). Berry anthocyanins as novel antioxidants in human health and disease prevention. *Molecular Nutrition & Food Research*, 51(6), 675–683.

Zamai, L., Ponti, C., Mirandola, P., Gobbi, G., Papa, S., Galeotti, L., Cocco, L., & Vitale, M. (2007). NK Cells and Cancer. *The Journal of Immunology*, *178*, 4011-4016.

APPENDICES

Appendix A: Tables

Sample Identity	СРМ	% Proliferation (Control = 100%)	Eluting Mobile Phase
Average Control	41389	100.0%	N/A
Average 10 mg/mL Elderberry	17683	42.7%	N/A
Average 1 mg/mL Elderberry	27227	65.8%	N/A
Column #2 Sample 1	52	0.1%	0% MeOH / 100% H ₂ O
Column #2 Sample 2	40	0.1%	0% MeOH / 100% H ₂ O
Column #2 Sample 3	49	0.1%	0% MeOH / 100% H ₂ O
Column #2 Sample 4	68	0.2%	0% MeOH / 100% H ₂ O
Column #2 Sample 5	67	0.2%	0% MeOH / 100% H ₂ O
Column #2 Sample 6	49	0.1%	Transition
Column #2 Sample 7	70	0.2%	10% MeOH / 90% H ₂ O
Column #2 Sample 8	56	0.1%	10% MeOH / 90% H ₂ O
Column #2 Sample 9	198	0.5%	10% MeOH / 90% H ₂ O
Column #2 Sample 10	11626	28.1%	10% MeOH / 90% H ₂ O
Column #2 Sample 11	21671	52.4%	10% MeOH / 90% H ₂ O
Column #2 Sample 12	43429	104.9%	10% MeOH / 90% H ₂ O
Column #2 Sample 13	57995	140.1%	10% MeOH / 90% H ₂ O
Column #2 Sample 14	53455	129.2%	10% MeOH / 90% H ₂ O
Column #2 Sample 15	46866	113.2%	10% MeOH / 90% H ₂ O
Column #2 Sample 16	38163	92.2%	10% MeOH / 90% H ₂ O
Column #2 Sample 17	38668	93.4%	Transition
Column #2 Sample 18	42985	103.9%	$20\%~MeOH/80\%~H_2O$
Column #2 Sample 19	37350	90.2%	20% MeOH / 80% H ₂ O
Column #2 Sample 20	34672	83.8%	$20\%\ MeOH/80\%\ H_2O$
Column #2 Sample 21	36727	88.7%	20% MeOH / 80% H ₂ O
Column #2 Sample 22	38948	94.1%	$20\%~MeOH/80\%~H_2O$
Column #2 Sample 23	22393	54.1%	20% MeOH / 80% H ₂ O
Column #2 Sample 24	18475	44.6%	$20\%~MeOH/80\%~H_2O$
Column #2 Sample 25	19836	47.9%	20% MeOH / 80% H ₂ O
Column #2 Sample 26	16295	39.4%	20% MeOH / 80% H ₂ O
Column #2 Sample 27	16069	38.8%	20% MeOH / 80% H ₂ O
Column #2 Sample 28	16769	40.5%	transition

Table A1. Results for B16-F10 cell proliferation assay with Column #2 individual samples.
Table A1, continued.

Column #2 Sample 29	13401	32.4%	30% MeOH / 70% H ₂ O
Column #2 Sample 30	15988	38.6%	30% MeOH / 70% H ₂ O
Column #2 Sample 31	19102	46.2%	30% MeOH / 70% H ₂ O
Column #2 Sample 32	34146	82.5%	30% MeOH / 70% H ₂ O
Column #2 Sample 33	40363	97.5%	30% MeOH / 70% H ₂ O
Column #2 Sample 34	34518	83.4%	30% MeOH / 70% H ₂ O
Column #2 Sample 35	32376	78.2%	30% MeOH / 70% H ₂ O
Column #2 Sample 36	27712	67.0%	30% MeOH / 70% H ₂ O
Column #2 Sample 37	24175	58.4%	30% MeOH / 70% H ₂ O
Column #2 Sample 38	29357	70.9%	30% MeOH / 70% H ₂ O
Column #2 Sample 39	21396	51.7%	transition
Column #2 Sample 40	24130	58.3%	40% MeOH / 60% H ₂ O
Column #2 Sample 41	25978	62.8%	40% MeOH / 60% H ₂ O
Column #2 Sample 42	6265	15.1%	40% MeOH / 60% H ₂ O
Column #2 Sample 43	8005	19.3%	40% MeOH / 60% H ₂ O
Column #2 Sample 44	4613	11.1%	40% MeOH / 60% H ₂ O
Column #2 Sample 45	3327	8.0%	40% MeOH / 60% H ₂ O
Column #2 Sample 46	3737	9.0%	40% MeOH / 60% H ₂ O
Column #2 Sample 47	3587	8.7%	40% MeOH / 60% H ₂ O
Column #2 Sample 48	4811	11.6%	40% MeOH / 60% H_2O
Column #2 Sample 49	1611	3.9%	$40\%~MeOH/60\%~H_2O$
Column #2 Sample 50	3636	8.8%	transition
Column #2 Sample 51	4212	10.2%	50% MeOH / 50% H ₂ O
Column #2 Sample 52	7977	19.3%	50% MeOH / 50% H ₂ O
Column #2 Sample 53	14912	36.0%	50% MeOH / 50% H ₂ O
Column #2 Sample 54	15212	36.8%	50% MeOH / 50% H ₂ O
Column #2 Sample 55	10483	25.3%	50% MeOH / 50% H ₂ O
Column #2 Sample 56	4370	10.6%	50% MeOH / 50% H ₂ O
Column #2 Sample 57	19505	47.1%	50% MeOH / 50% H ₂ O
Column #2 Sample 58	8314	20.1%	50% MeOH / 50% H ₂ O
Column #2 Sample 59	7547	18.2%	50% MeOH / 50% H ₂ O
Column #2 Sample 60	5615	13.6%	50% MeOH / 50% H ₂ O
Column #2 Sample 61	13976	33.8%	transition

Table A1, continued.

Column #2 Sample 62	6791	16.4%	60% MeOH / 40% H ₂ O
Column #2 Sample 63	9372	22.6%	60% MeOH / 40% H ₂ O
Column #2 Sample 64	8700	21.0%	60% MeOH / 40% H ₂ O
Column #2 Sample 65	5255	12.7%	60% MeOH / 40% H ₂ O
Column #2 Sample 66	5581	13.5%	60% MeOH / 40% H ₂ O
Column #2 Sample 67	5857	14.2%	60% MeOH / 40% H ₂ O
Column #2 Sample 68	6547	15.8%	60% MeOH / 40% H ₂ O
Column #2 Sample 69	3245	7.8%	60% MeOH / 40% H ₂ O
Column #2 Sample 70	4334	10.5%	60% MeOH / 40% H ₂ O
Column #2 Sample 71	8620	20.8%	60% MeOH / 40% H ₂ O
Column #2 Sample 72	9938	24.0%	transition
Column #2 Sample 73	7389	17.9%	70% MeOH / 30% H ₂ O
Column #2 Sample 74	7646	18.5%	70% MeOH / 30% H ₂ O
Column #2 Sample 75	2927	7.1%	70% MeOH / 30% H ₂ O
Column #2 Sample 76	10150	24.5%	70% MeOH / 30% H ₂ O
Column #2 Sample 77	11414	27.6%	70% MeOH / 30% H ₂ O
Column #2 Sample 78	9093	22.0%	70% MeOH / 30% H ₂ O
Column #2 Sample 79	5901	14.3%	70% MeOH / 30% H ₂ O
Column #2 Sample 80	7182	17.4%	70% MeOH / 30% H ₂ O
Column #2 Sample 81	10759	26.0%	70% MeOH / 30% H ₂ O
Column #2 Sample 82	20702	50.0%	70% MeOH / 30% H ₂ O
Column #2 Sample 83	7671	18.5%	transition
Column #2 Sample 84	9516	23.0%	80% MeOH / 20% H_2O
Column #2 Sample 85	8466	20.5%	80% MeOH / 20% H_2O
Column #2 Sample 86	9052	21.9%	80% MeOH / 20% H_2O
Column #2 Sample 87	9220	22.3%	80% MeOH / 20% H_2O
Column #2 Sample 88	9585	23.2%	80% MeOH / 20% H_2O
Column #2 Sample 89	9996	24.2%	80% MeOH / 20% H_2O
Column #2 Sample 90	7352	17.8%	80% MeOH / 20% H_2O
Column #2 Sample 91	8670	20.9%	80% MeOH / 20% H_2O
Column #2 Sample 92	7188	17.4%	80% MeOH / 20% H ₂ O
Column #2 Sample 93	8284	20.0%	80% MeOH / 20% H ₂ O
Column #2 Sample 94	7498	18.1%	transition

Table A1, continued.

Column #2 Sample 95	6104	14.7%	90% MeOH / 10% H ₂ O
Column #2 Sample 96	6360	15.4%	90% MeOH / 10% H ₂ O
Column #2 Sample 97	5324	12.9%	90% MeOH / 10% H ₂ O
Column #2 Sample 98	6652	16.1%	90% MeOH / 10% H ₂ O
Column #2 Sample 99	5639	13.6%	90% MeOH / 10% H ₂ O
Column #2 Sample 100	6683	16.1%	90% MeOH / 10% H ₂ O
Column #2 Sample 101	6656	16.1%	90% MeOH / 10% H ₂ O
Column #2 Sample 102	2847	6.9%	90% MeOH / 10% H ₂ O
Column #2 Sample 103	6500	15.7%	90% MeOH / 10% H ₂ O
Column #2 Sample 104	7488	18.1%	90% MeOH / 10% H ₂ O
Column #2 Sample 105	6958	16.8%	transition
Column #2 Sample 106	6970	16.8%	100% MeOH / 0% H ₂ O
Column #2 Sample 107	4894	11.8%	100% MeOH / 0% H ₂ O
Column #2 Sample 108	7735	18.7%	100% MeOH / 0% H ₂ O
Column #2 Sample 109	5634	13.6%	100% MeOH / 0% H ₂ O
Column #2 Sample 110	1370	3.3%	100% MeOH / 0% H ₂ O
Column #2 Sample 111	5136	12.4%	100% MeOH / 0% H ₂ O
Column #2 Sample 112	7442	18.0%	100% MeOH / 0% H ₂ O
Column #2 Sample 113	9571	23.1%	100% MeOH / 0% H ₂ O
Column #2 Sample 114	16465	39.8%	100% MeOH / 0% H ₂ O
Column #2 Sample 115	15239	36.8%	100% MeOH / 0% H ₂ O

Table A2. Results for B16-F10 cell proliferation assay with Column #3 individual samples.

Sample Identity	СРМ	% Proliferation (Control = 100%)	Eluting Mobile Phase
Average Control	48855	100.0%	N/A
Average 10 mg/mL Elderberry	31877	65.2%	N/A
Column #3 Sample 1	100	0.2%	0% MeOH / 100% H ₂ O
Column #3 Sample 2	69	0.1%	0% MeOH / 100% H ₂ O
Column #3 Sample 3	85	0.2%	0% MeOH / 100% H ₂ O
Column #3 Sample 4	65	0.1%	0% MeOH / 100% H ₂ O
Column #3 Sample 5	61	0.1%	transition

Table A2, continued.

Column #3 Sample 6	52	0.1%	10% MeOH / 90% H ₂ O
Column #3 Sample 7	54	0.1%	10% MeOH / 90% H ₂ O
Column #3 Sample 8	64	0.1%	10% MeOH / 90% H ₂ O
Column #3 Sample 9	244	0.5%	10% MeOH / 90% H ₂ O
Column #3 Sample 10	69	0.1%	10% MeOH / 90% H ₂ O
Column #3 Sample 11	43	0.1%	10% MeOH / 90% H ₂ O
Column #3 Sample 12	13649	27.9%	10% MeOH / 90% H ₂ O
Column #3 Sample 13	2674	5.5%	10% MeOH / 90% H ₂ O
Column #3 Sample 14	11562	23.7%	10% MeOH / 90% H ₂ O
Column #3 Sample 15	9050	18.5%	10% MeOH / 90% H ₂ O
Column #3 Sample 16	8006	16.4%	transition
Column #3 Sample 17	11162	22.8%	20% MeOH / 80% H ₂ O
Column #3 Sample 18	1659	3.4%	20% MeOH / 80% H ₂ O
Column #3 Sample 19	2280	4.7%	20% MeOH / 80% H ₂ O
Column #3 Sample 20	14223	29.1%	20% MeOH / 80% H ₂ O
Column #3 Sample 21	12928	26.5%	$20\%~MeOH/80\%~H_2O$
Column #3 Sample 22	16241	33.2%	$20\%~MeOH/80\%~H_2O$
Column #3 Sample 23	11254	23.0%	20% MeOH / 80% H ₂ O
Column #3 Sample 24	11069	22.7%	20% MeOH / 80% H ₂ O
Column #3 Sample 25	5619	11.5%	20% MeOH / 80% H_2O
Column #3 Sample 26	3316	6.8%	$20\%~MeOH/80\%~H_2O$
Column #3 Sample 27	294	0.6%	transition
Column #3 Sample 28	7317	15.0%	30% MeOH / 70% H ₂ O
Column #3 Sample 29	8691	17.8%	30% MeOH / 70% H ₂ O
Column #3 Sample 30	86	0.2%	30% MeOH / 70% H_2O
Column #3 Sample 31	8667	17.7%	30% MeOH / 70% H ₂ O
Column #3 Sample 32	9341	19.1%	30% MeOH / 70% H_2O
Column #3 Sample 33	7536	15.4%	30% MeOH / 70% H_2O
Column #3 Sample 34	8465	17.3%	30% MeOH / 70% H_2O
Column #3 Sample 35	15733	32.2%	30% MeOH / 70% H ₂ O
Column #3 Sample 36	13755	28.2%	30% MeOH / 70% H ₂ O
Column #3 Sample 37	16576	33.9%	30% MeOH / 70% H ₂ O
Column #3 Sample 38	18992	38.9%	transition

Table A2, continued.

Column #3 Sample 39	19144	39.2%	40% MeOH / 60% H ₂ O
Column #3 Sample 40	19914	40.8%	40% MeOH / 60% H ₂ O
Column #3 Sample 41	21953	44.9%	40% MeOH / 60% H ₂ O
Column #3 Sample 42	20312	41.6%	40% MeOH / 60% H ₂ O
Column #3 Sample 43	17788	36.4%	40% MeOH / 60% H ₂ O
Column #3 Sample 44	14397	29.5%	40% MeOH / 60% H ₂ O
Column #3 Sample 45	5547	11.4%	40% MeOH / 60% H ₂ O
Column #3 Sample 46	6240	12.8%	40% MeOH / 60% H ₂ O
Column #3 Sample 47	7212	14.8%	40% MeOH / 60% H ₂ O
Column #3 Sample 48	9224	18.9%	40% MeOH / 60% H ₂ O
Column #3 Sample 49	3917	8.0%	transition
Column #3 Sample 50	7479	15.3%	50% MeOH / 50% H ₂ O
Column #3 Sample 51	6723	13.8%	50% MeOH / 50% H ₂ O
Column #3 Sample 52	7130	14.6%	50% MeOH / 50% H ₂ O
Column #3 Sample 53	2007	4.1%	50% MeOH / 50% H ₂ O
Column #3 Sample 54	4960	10.2%	50% MeOH / 50% H ₂ O
Column #3 Sample 55	15970	32.7%	50% MeOH / 50% H ₂ O
Column #3 Sample 56	11037	22.6%	50% MeOH / 50% H ₂ O
Column #3 Sample 57	11154	22.8%	50% MeOH / 50% H ₂ O
Column #3 Sample 58	9427	19.3%	50% MeOH / 50% H ₂ O
Column #3 Sample 59	15286	31.3%	50% MeOH / 50% H ₂ O
Column #3 Sample 60	9966	20.4%	transition
Column #3 Sample 61	7618	15.6%	60% MeOH / 40% H ₂ O
Column #3 Sample 62	7290	14.9%	60% MeOH / 40% H ₂ O
Column #3 Sample 63	7004	14.3%	60% MeOH / 40% H ₂ O
Column #3 Sample 64	8185	16.8%	60% MeOH / 40% H ₂ O
Column #3 Sample 65	1425	2.9%	60% MeOH / $40%$ H ₂ O
Column #3 Sample 66	5005	10.2%	60% MeOH / $40%$ H ₂ O
Column #3 Sample 67	5655	11.6%	60% MeOH / $40%$ H ₂ O
Column #3 Sample 68	63	0.1%	60% MeOH / 40% H ₂ O
Column #3 Sample 69	1906	3.9%	60% MeOH / 40% H ₂ O
Column #3 Sample 70	5717	11.7%	60% MeOH / 40% H ₂ O
Column #3 Sample 71	3692	7.6%	transition

Table A2, continued.

Column #3 Sample 72	2402	4.9%	70% MeOH / 30% H ₂ O
Column #3 Sample 73	3349	6.9%	70% MeOH / 30% H ₂ O
Column #3 Sample 74	3425	7.0%	70% MeOH / 30% H ₂ O
Column #3 Sample 75	13975	28.6%	70% MeOH / 30% H ₂ O
Column #3 Sample 76	5787	11.8%	70% MeOH / 30% H ₂ O
Column #3 Sample 77	7543	15.4%	70% MeOH / 30% H ₂ O
Column #3 Sample 78	9988	20.4%	70% MeOH / 30% H ₂ O
Column #3 Sample 79	7923	16.2%	70% MeOH / 30% H ₂ O
Column #3 Sample 80	9032	18.5%	70% MeOH / 30% H ₂ O
Column #3 Sample 81	16001	32.8%	70% MeOH / 30% H ₂ O
Column #3 Sample 82	9316	19.1%	transition
Column #3 Sample 82 Column #3 Sample 83	9316 11196	19.1% 22.9%	transition 80% MeOH / 20% H ₂ O
Column #3 Sample 82Column #3 Sample 83Column #3 Sample 84	9316 11196 646	19.1% 22.9% 1.3%	transition 80% MeOH / 20% H2O 80% MeOH / 20% H2O
Column #3 Sample 82 Column #3 Sample 83 Column #3 Sample 84 Column #3 Sample 85	9316 11196 646 13387	19.1% 22.9% 1.3% 27.4%	transition 80% MeOH / 20% H2O 80% MeOH / 20% H2O 80% MeOH / 20% H2O
Column #3 Sample 82Column #3 Sample 83Column #3 Sample 84Column #3 Sample 85Column #3 Sample 86	9316 11196 646 13387 9133	19.1% 22.9% 1.3% 27.4% 18.7%	transition 80% MeOH / 20% H2O
Column #3 Sample 83Column #3 Sample 84Column #3 Sample 85Column #3 Sample 86Column #3 Sample 87	9316 11196 646 13387 9133 9703	19.1% 22.9% 1.3% 27.4% 18.7% 19.9%	transition 80% MeOH / 20% H2O
Column #3 Sample 82Column #3 Sample 83Column #3 Sample 84Column #3 Sample 85Column #3 Sample 86Column #3 Sample 87Column #3 Sample 88	9316 11196 646 13387 9133 9703 13082	19.1% 22.9% 1.3% 27.4% 18.7% 19.9% 26.8%	transition 80% MeOH / 20% H2O
Column #3 Sample 83Column #3 Sample 84Column #3 Sample 85Column #3 Sample 86Column #3 Sample 87Column #3 Sample 88Column #3 Sample 88Column #3 Sample 89	9316 11196 646 13387 9133 9703 13082 11094	19.1% 22.9% 1.3% 27.4% 18.7% 19.9% 26.8% 22.7%	transition 80% MeOH / 20% H2O
Column #3 Sample 83Column #3 Sample 84Column #3 Sample 85Column #3 Sample 86Column #3 Sample 87Column #3 Sample 88Column #3 Sample 88Column #3 Sample 89Column #3 Sample 90	9316 11196 646 13387 9133 9703 13082 11094 11020	19.1% 22.9% 1.3% 27.4% 18.7% 19.9% 26.8% 22.7% 22.6%	transition 80% MeOH / 20% H2O 80% MeOH / 20% H2O

Table A3. Results for B16-F10 cell proliferation assay with Column #4 individual samples.

Sample Identity	СРМ	% Proliferation (Control = 100%)	Eluting Mobile Phase
Average Control	36128	100.0%	N/A
Average 10 mg/mL Elderberry	12873	35.6%	N/A
Column #4 Sample 1	75	0.2%	0% MeOH / 100% H ₂ O
Column #4 Sample 2	70	0.2%	0% MeOH / 100% H ₂ O
Column #4 Sample 3	68	0.2%	0% MeOH / 100% H ₂ O
Column #4 Sample 4	75	0.2%	0% MeOH / 100% H ₂ O
Column #4 Sample 5	42	0.1%	0% MeOH / 100% H ₂ O
Column #4 Sample 6	35	0.1%	0% MeOH / 100% H ₂ O

Table A3, continued.

Column #4 Sample 7	52	0.1%	transition
Column #4 Sample 8	51	0.1%	10% MeOH / 90% H ₂ O
Column #4 Sample 9	67	0.2%	10% MeOH / 90% H ₂ O
Column #4 Sample 10	54	0.1%	10% MeOH / 90% H ₂ O
Column #4 Sample 11	58	0.2%	10% MeOH / 90% H ₂ O
Column #4 Sample 12	37236	103.1%	10% MeOH / 90% H ₂ O
Column #4 Sample 13	2564	7.1%	10% MeOH / 90% H ₂ O
Column #4 Sample 14	440	1.2%	10% MeOH / 90% H ₂ O
Column #4 Sample 15	660	1.8%	10% MeOH / 90% H ₂ O
Column #4 Sample 16	98	0.3%	10% MeOH / 90% H ₂ O
Column #4 Sample 17	35767	99.0%	10% MeOH / 90% H ₂ O
Column #4 Sample 18	206	0.6%	transition
Column #4 Sample 19	2019	5.6%	20% MeOH / 80% H ₂ O
Column #4 Sample 20	7177	19.9%	20% MeOH / 80% H ₂ O
Column #4 Sample 21	11739	32.5%	20% MeOH / 80% H ₂ O
Column #4 Sample 22	14218	39.4%	20% MeOH / 80% H ₂ O
Column #4 Sample 23	4583	12.7%	20% MeOH / 80% H ₂ O
Column #4 Sample 24	2460	6.8%	20% MeOH / 80% H ₂ O
Column #4 Sample 25	18601	51.5%	20% MeOH / 80% H ₂ O
Column #4 Sample 26	23554	65.2%	$20\%~MeOH/80\%~H_2O$
Column #4 Sample 27	21861	60.5%	20% MeOH / 80% H ₂ O
Column #4 Sample 28	13477	37.3%	20% MeOH / 80% H ₂ O
Column #4 Sample 29	16261	45.0%	transition
Column #4 Sample 30	16639	46.1%	30% MeOH / 70% H ₂ O
Column #4 Sample 31	11518	31.9%	30% MeOH / 70% H ₂ O
Column #4 Sample 32	10965	30.4%	30% MeOH / 70% H ₂ O
Column #4 Sample 33	10781	29.8%	30% MeOH / 70% H ₂ O
Column #4 Sample 34	1584	4.4%	30% MeOH / 70% H ₂ O
Column #4 Sample 35	6532	18.1%	30% MeOH / 70% H ₂ O
Column #4 Sample 36	28360	78.5%	30% MeOH / 70% H ₂ O
Column #4 Sample 37	25265	69.9%	30% MeOH / 70% H ₂ O
Column #4 Sample 38	10496	29.1%	30% MeOH / 70% H ₂ O
Column #4 Sample 39	21896	60.6%	30% MeOH / 70% H ₂ O

Table A3, continued.

Column #4 Sample 40	27133	75.1%	transition
Column #4 Sample 41	23016	63.7%	40% MeOH / 60% H ₂ O
Column #4 Sample 42	21787	60.3%	40% MeOH / 60% H ₂ O
Column #4 Sample 43	29564	81.8%	40% MeOH / 60% H ₂ O
Column #4 Sample 44	22981	63.6%	40% MeOH / 60% H ₂ O
Column #4 Sample 45	40393	111.8%	40% MeOH / 60% H ₂ O
Column #4 Sample 46	33031	91.4%	40% MeOH / 60% H ₂ O
Column #4 Sample 47	29565	81.8%	40% MeOH / 60% H ₂ O
Column #4 Sample 48	30023	83.1%	40% MeOH / 60% H ₂ O
Column #4 Sample 49	22881	63.3%	40% MeOH / 60% H ₂ O
Column #4 Sample 50	22783	63.1%	40% MeOH / 60% H ₂ O
Column #4 Sample 51	18265	50.6%	transition
Column #4 Sample 52	19646	54.4%	50% MeOH / 50% H ₂ O
Column #4 Sample 53	19862	55.0%	50% MeOH / 50% H ₂ O
Column #4 Sample 54	16143	44.7%	50% MeOH / 50% H ₂ O
Column #4 Sample 55	213	0.6%	50% MeOH / 50% H ₂ O
Column #4 Sample 56	3524	9.8%	50% MeOH / 50% H_2O
Column #4 Sample 57	87	0.2%	50% MeOH / 50% H_2O
Column #4 Sample 58	13566	37.5%	50% MeOH / 50% H_2O
Column #4 Sample 59	15813	43.8%	50% MeOH / 50% H_2O
Column #4 Sample 60	20294	56.2%	50% MeOH / 50% H ₂ O
Column #4 Sample 61	23564	65.2%	transition
Column #4 Sample 62	21322	59.0%	$60\%~MeOH/40\%~H_2O$
Column #4 Sample 63	21500	59.5%	60% MeOH / 40% H ₂ O
Column #4 Sample 64	14928	41.3%	60% MeOH / $40%$ H ₂ O
Column #4 Sample 65	17772	49.2%	60% MeOH / $40%$ H ₂ O
Column #4 Sample 66	14859	41.1%	60% MeOH / $40%$ H ₂ O
Column #4 Sample 67	17263	47.8%	60% MeOH / 40% H ₂ O
Column #4 Sample 68	16293	45.1%	60% MeOH / $40%$ H ₂ O
Column #4 Sample 69	14354	39.7%	60% MeOH / 40% H ₂ O
Column #4 Sample 70	13414	37.1%	60% MeOH / 40% H ₂ O
Column #4 Sample 71	12798	35.4%	60% MeOH / 40% H ₂ O
Column #4 Sample 72	7566	20.9%	transition

Table A3, continued.

Column #4 Sample 73	1323	3.7%	70% MeOH / 30% H ₂ O
Column #4 Sample 74	1091	3.0%	70% MeOH / 30% H ₂ O
Column #4 Sample 75	11731	32.5%	70% MeOH / 30% H ₂ O
Column #4 Sample 76	14640	40.5%	70% MeOH / 30% H ₂ O
Column #4 Sample 77	15418	42.7%	70% MeOH / 30% H ₂ O
Column #4 Sample 78	19787	54.8%	70% MeOH / 30% H ₂ O
Column #4 Sample 79	23174	64.1%	70% MeOH / 30% H ₂ O
Column #4 Sample 80	18114	50.1%	70% MeOH / 30% H ₂ O
Column #4 Sample 81	24605	68.1%	70% MeOH / 30% H ₂ O
Column #4 Sample 82	13562	37.5%	70% MeOH / 30% H ₂ O
Column #4 Sample 83	23604	65.3%	transition
Column #4 Sample 84	17434	48.3%	80% MeOH / 20% H ₂ O
Column #4 Sample 85	15350	42.5%	80% MeOH / 20% H_2O
Column #4 Sample 86	11827	32.7%	80% MeOH / 20% H ₂ O
Column #4 Sample 87	16919	46.8%	80% MeOH / 20% H ₂ O
Column #4 Sample 88	14823	41.0%	80% MeOH / 20% H_2O
Column #4 Sample 89	23519	65.1%	80% MeOH / 20% H_2O
Column #4 Sample 90	22277	61.7%	80% MeOH / 20% H_2O
Column #4 Sample 91	14378	39.8%	80% MeOH / 20% H ₂ O
Column #4 Sample 92	24157	66.9%	80% MeOH / 20% H ₂ O
Column #4 Sample 93	32431	89.8%	80% MeOH / 20% H ₂ O

Table A4. Results for B16-F10 cell proliferation assay with Column #5 individual samples.

Sample Identity	СРМ	% Proliferation (Control = 100%)	Eluting Mobile Phase
Average Control	48315	100.0%	N/A
Average 10 mg/mL Elderberry	33912	70.2%	N/A
Column #5 Sample 1	77	0.2%	0% MeOH / 100% H ₂ O
Column #5 Sample 2	48	0.1%	0% MeOH / 100% H ₂ O
Column #5 Sample 3	82	0.2%	0% MeOH / 100% H ₂ O
Column #5 Sample 4	80	0.2%	0% MeOH / 100% H ₂ O
Column #5 Sample 5	44	0.1%	0% MeOH / 100% H ₂ O

Table A4, continued.

Column #5 Sample 6	46	0.1%	transition
Column #5 Sample 7	32	0.1%	10% MeOH / 90% H ₂ O
Column #5 Sample 8	53	0.1%	10% MeOH / 90% H ₂ O
Column #5 Sample 9	76	0.2%	10% MeOH / 90% H ₂ O
Column #5 Sample 10	147	0.3%	10% MeOH / 90% H ₂ O
Column #5 Sample 11	27986	57.9%	10% MeOH / 90% H ₂ O
Column #5 Sample 12	180	0.4%	10% MeOH / 90% H ₂ O
Column #5 Sample 13	117	0.2%	10% MeOH / 90% H ₂ O
Column #5 Sample 14	7681	15.9%	10% MeOH / 90% H ₂ O
Column #5 Sample 15	722	1.5%	10% MeOH / 90% H ₂ O
Column #5 Sample 16	720	1.5%	10% MeOH / 90% H ₂ O
Column #5 Sample 17	1246	2.6%	transition
Column #5 Sample 18	10105	20.9%	20% MeOH / 80% H ₂ O
Column #5 Sample 19	17666	36.6%	20% MeOH / 80% H ₂ O
Column #5 Sample 20	22182	45.9%	$20\%~MeOH/80\%~H_2O$
Column #5 Sample 21	22374	46.3%	20% MeOH / 80% H ₂ O
Column #5 Sample 22	16252	33.6%	20% MeOH / 80% H ₂ O
Column #5 Sample 23	18966	39.3%	20% MeOH / 80% H ₂ O
Column #5 Sample 24	7072	14.6%	20% MeOH / 80% H ₂ O
Column #5 Sample 25	14584	30.2%	$20\%~MeOH/80\%~H_2O$
Column #5 Sample 26	16278	33.7%	20% MeOH / 80% H ₂ O
Column #5 Sample 27	14841	30.7%	20% MeOH / 80% H ₂ O
Column #5 Sample 28	22224	46.0%	transition
Column #5 Sample 29	14674	30.4%	30% MeOH / 70% H ₂ O
Column #5 Sample 30	617	1.3%	30% MeOH / 70% H ₂ O
Column #5 Sample 31	1631	3.4%	30% MeOH / 70% H ₂ O
Column #5 Sample 32	8683	18.0%	30% MeOH / 70% H ₂ O
Column #5 Sample 33	12052	24.9%	30% MeOH / 70% H ₂ O
Column #5 Sample 34	1749	3.6%	30% MeOH / 70% H ₂ O
Column #5 Sample 35	35387	73.2%	30% MeOH / 70% H ₂ O
Column #5 Sample 36	25290	52.3%	30% MeOH / 70% H ₂ O
Column #5 Sample 37	24141	50.0%	30% MeOH / 70% H ₂ O
Column #5 Sample 38	23159	47.9%	30% MeOH / 70% H ₂ O

Table A4, continued.

Column #5 Sample 39	29120	60.3%	transition
Column #5 Sample 40	31903	66.0%	40% MeOH / 60% H ₂ O
Column #5 Sample 41	30018	62.1%	40% MeOH / 60% H ₂ O
Column #5 Sample 42	313	0.6%	40% MeOH / 60% H ₂ O
Column #5 Sample 43	13872	28.7%	40% MeOH / 60% H ₂ O
Column #5 Sample 44	6725	13.9%	40% MeOH / 60% H ₂ O
Column #5 Sample 45	20648	42.7%	40% MeOH / 60% H ₂ O
Column #5 Sample 46	17246	35.7%	40% MeOH / 60% H ₂ O
Column #5 Sample 47	11460	23.7%	40% MeOH / 60% H ₂ O
Column #5 Sample 48	17664	36.6%	40% MeOH / 60% H ₂ O
Column #5 Sample 49	17138	35.5%	40% MeOH / 60% H ₂ O
Column #5 Sample 50	13097	27.1%	transition
Column #5 Sample 51	9958	20.6%	50% MeOH / 50% H ₂ O
Column #5 Sample 52	7149	14.8%	50% MeOH / 50% H ₂ O
Column #5 Sample 53	3593	7.4%	50% MeOH / 50% H ₂ O
Column #5 Sample 54	352	0.7%	50% MeOH / 50% H ₂ O
Column #5 Sample 55	17534	36.3%	50% MeOH / 50% H ₂ O
Column #5 Sample 56	22791	47.2%	50% MeOH / 50% H ₂ O
Column #5 Sample 57	222	0.5%	50% MeOH / 50% H ₂ O
Column #5 Sample 58	16631	34.4%	50% MeOH / 50% H ₂ O
Column #5 Sample 59	26417	54.7%	50% MeOH / 50% H ₂ O
Column #5 Sample 60	19664	40.7%	50% MeOH / 50% H ₂ O
Column #5 Sample 61	17836	36.9%	transition
Column #5 Sample 62	16880	34.9%	60% MeOH / 40% H ₂ O
Column #5 Sample 63	3543	7.3%	60% MeOH / 40% H ₂ O
Column #5 Sample 64	13138	27.2%	60% MeOH / 40% H ₂ O
Column #5 Sample 65	8554	17.7%	60% MeOH / 40% H ₂ O
Column #5 Sample 66	54	0.1%	60% MeOH / 40% H ₂ O
Column #5 Sample 67	8662	17.9%	60% MeOH / 40% H ₂ O
Column #5 Sample 68	7012	14.5%	60% MeOH / 40% H ₂ O
Column #5 Sample 69	4733	9.8%	60% MeOH / 40% H ₂ O
Column #5 Sample 70	4136	8.6%	60% MeOH / 40% H ₂ O
Column #5 Sample 71	7241	15.0%	60% MeOH / 40% H ₂ O

Table A4, continued.

Column #5 Sample 72	3198	6.6%	transition
Column #5 Sample 73	2076	4.3%	70% MeOH / 30% H ₂ O
Column #5 Sample 74	2774	5.7%	70% MeOH / 30% H ₂ O
Column #5 Sample 75	16474	34.1%	70% MeOH / 30% H ₂ O
Column #5 Sample 76	2828	5.9%	70% MeOH / 30% H ₂ O
Column #5 Sample 77	10486	21.7%	70% MeOH / 30% H ₂ O
Column #5 Sample 78	5097	10.5%	70% MeOH / 30% H ₂ O
Column #5 Sample 79	4028	8.3%	70% MeOH / 30% H ₂ O
Column #5 Sample 80	9730	20.1%	70% MeOH / 30% H ₂ O
Column #5 Sample 81	1890	3.9%	70% MeOH / 30% H ₂ O
Column #5 Sample 82	6088	12.6%	70% MeOH / 30% H ₂ O
Column #5 Sample 83	491	1.0%	transition
Column #5 Sample 84	7037	14.6%	80% MeOH / 20% H ₂ O
Column #5 Sample 85	1057	2.2%	80% MeOH / 20% H ₂ O
Column #5 Sample 86	1480	3.1%	80% MeOH / 20% H ₂ O
Column #5 Sample 87	97	0.2%	80% MeOH / 20% H ₂ O
Column #5 Sample 88	860	1.8%	80% MeOH / 20% H ₂ O
Column #5 Sample 89	479	1.0%	80% MeOH / 20% H ₂ O
Column #5 Sample 90	512	1.1%	80% MeOH / 20% H ₂ O
Column #5 Sample 91	1145	2.4%	80% MeOH / 20% H ₂ O
Column #5 Sample 92	261	0.5%	80% MeOH / 20% H ₂ O

Table A5. Results for B16-F10 cell proliferation assay with Column #6 individual samples.

Sample Identity	СРМ	%Proliferation (Control = 100%)	Eluting Mobile Phase
Average Control	47472	100.0%	N/A
Average 10 mg/mL Elderberry	26053	54.9%	N/A
Column #6 Sample 1	66	0.1%	0% MeOH / 100% H ₂ O
Column #6 Sample 2	73	0.2%	0% MeOH / 100% H ₂ O
Column #6 Sample 3	60	0.1%	0% MeOH / 100% H ₂ O
Column #6 Sample 4	60	0.1%	0% MeOH / 100% H ₂ O

Table A5, continued.

Column #6 Sample 5	61	0.1%	0% MeOH / 100% H ₂ O
Column #6 Sample 6	57	0.1%	transition
Column #6 Sample 7	61	0.1%	10% MeOH / 90% H ₂ O
Column #6 Sample 8	73	0.2%	10% MeOH / 90% H ₂ O
Column #6 Sample 9	112	0.2%	10% MeOH / 90% H ₂ O
Column #6 Sample 10	1004	2.1%	10% MeOH / 90% H ₂ O
Column #6 Sample 11	64	0.1%	10% MeOH / 90% H ₂ O
Column #6 Sample 12	63	0.1%	10% MeOH / 90% H ₂ O
Column #6 Sample 13	5621	11.8%	10% MeOH / 90% H ₂ O
Column #6 Sample 14	6056	12.8%	10% MeOH / 90% H ₂ O
Column #6 Sample 15	6394	13.5%	10% MeOH / 90% H ₂ O
Column #6 Sample 16	8497	17.9%	10% MeOH / 90% H ₂ O
Column #6 Sample 17	856	1.8%	transition
Column #6 Sample 18	17027	35.9%	20% MeOH / 80% H ₂ O
Column #6 Sample 19	12150	25.6%	20% MeOH / 80% H ₂ O
Column #6 Sample 20	13565	28.6%	20% MeOH / 80% H ₂ O
Column #6 Sample 21	11891	25.0%	20% MeOH / 80% H ₂ O
Column #6 Sample 22	3724	7.8%	20% MeOH / 80% H ₂ O
Column #6 Sample 23	1235	2.6%	20% MeOH / 80% H ₂ O
Column #6 Sample 24	3363	7.1%	$20\%~MeOH/80\%~H_2O$
Column #6 Sample 25	1424	3.0%	20% MeOH / 80% H ₂ O
Column #6 Sample 26	95	0.2%	20% MeOH / 80% H ₂ O
Column #6 Sample 27	12295	25.9%	20% MeOH / 80% H ₂ O
Column #6 Sample 28	9620	20.3%	transition
Column #6 Sample 29	10880	22.9%	30% MeOH / 70% H ₂ O
Column #6 Sample 30	10115	21.3%	30% MeOH / 70% H ₂ O
Column #6 Sample 31	846	1.8%	30% MeOH / 70% H ₂ O
Column #6 Sample 32	7110	15.0%	30% MeOH / 70% H ₂ O
Column #6 Sample 33	513	1.1%	30% MeOH / 70% H ₂ O
Column #6 Sample 34	1434	3.0%	30% MeOH / 70% H ₂ O
Column #6 Sample 35	12870	27.1%	30% MeOH / 70% H ₂ O
Column #6 Sample 36	16047	33.8%	30% MeOH / 70% H ₂ O
Column #6 Sample 37	15847	33.4%	30% MeOH / 70% H ₂ O

Table A5, continued.

Column #6 Sample 38	94	0.2%	30% MeOH / 70% H ₂ O
Column #6 Sample 39	157	0.3%	transition
Column #6 Sample 40	13930	29.3%	40% MeOH / 60% H ₂ O
Column #6 Sample 41	18414	38.8%	40% MeOH / 60% H ₂ O
Column #6 Sample 42	12110	25.5%	40% MeOH / 60% H ₂ O
Column #6 Sample 43	6395	13.5%	40% MeOH / 60% H ₂ O
Column #6 Sample 44	794	1.7%	40% MeOH / 60% H ₂ O
Column #6 Sample 45	4639	9.8%	40% MeOH / 60% H ₂ O
Column #6 Sample 46	410	0.9%	40% MeOH / 60% H ₂ O
Column #6 Sample 47	3623	7.6%	40% MeOH / 60% H ₂ O
Column #6 Sample 48	1198	2.5%	$40\%~MeOH/60\%~H_2O$
Column #6 Sample 49	2306	4.9%	40% MeOH / 60% H ₂ O
Column #6 Sample 50	821	1.7%	transition
Column #6 Sample 51	1162	2.4%	50% MeOH / 50% H ₂ O
Column #6 Sample 52	267	0.6%	50% MeOH / 50% H ₂ O
Column #6 Sample 53	712	1.5%	50% MeOH / 50% H ₂ O
Column #6 Sample 54	631	1.3%	50% MeOH / 50% H ₂ O
Column #6 Sample 55	13835	29.1%	50% MeOH / 50% H ₂ O
Column #6 Sample 56	6754	14.2%	50% MeOH / 50% H ₂ O
Column #6 Sample 57	5390	11.4%	50% MeOH / 50% H ₂ O
Column #6 Sample 58	5701	12.0%	50% MeOH / 50% H ₂ O
Column #6 Sample 59	7093	14.9%	50% MeOH / 50% H ₂ O
Column #6 Sample 60	5289	11.1%	50% MeOH / 50% H ₂ O
Column #6 Sample 61	9456	19.9%	transition
Column #6 Sample 62	3998	8.4%	60% MeOH / 40% H ₂ O
Column #6 Sample 63	7868	16.6%	60% MeOH / 40% H ₂ O
Column #6 Sample 64	5036	10.6%	60% MeOH / 40% H ₂ O
Column #6 Sample 65	3215	6.8%	60% MeOH / 40% H ₂ O
Column #6 Sample 66	3260	6.9%	60% MeOH / 40% H ₂ O
Column #6 Sample 67	3374	7.1%	60% MeOH / 40% H ₂ O
Column #6 Sample 68	2709	5.7%	60% MeOH / 40% H ₂ O
Column #6 Sample 69	2491	5.2%	60% MeOH / 40% H ₂ O
Column #6 Sample 70	1261	2.7%	60% MeOH / 40% H ₂ O

Table A5, continued.

Column #6 Sample 71	1843	3.9%	60% MeOH / 40% H ₂ O
Column #6 Sample 72	825	1.7%	transition
Column #6 Sample 73	758	1.6%	70% MeOH / 30% H ₂ O
Column #6 Sample 74	857	1.8%	70% MeOH / 30% H ₂ O
Column #6 Sample 75	5002	10.5%	70% MeOH / 30% H ₂ O
Column #6 Sample 76	9578	20.2%	70% MeOH / 30% H ₂ O
Column #6 Sample 77	9248	19.5%	70% MeOH / 30% H ₂ O
Column #6 Sample 78	12537	26.4%	70% MeOH / 30% H ₂ O
Column #6 Sample 79	2830	6.0%	70% MeOH / 30% H ₂ O
Column #6 Sample 80	8937	18.8%	70% MeOH / 30% H ₂ O
Column #6 Sample 81	10465	22.0%	70% MeOH / 30% H_2O
Column #6 Sample 82	14247	30.0%	70% MeOH / 30% H ₂ O
Column #6 Sample 83	11608	24.5%	transition
Column #6 Sample 84	4704	9.9%	80% MeOH / 20% H ₂ O
Column #6 Sample 85	6945	14.6%	80% MeOH / 20% H ₂ O
Column #6 Sample 86	500	1.1%	80% MeOH / 20% H ₂ O
Column #6 Sample 87	92	0.2%	80% MeOH / 20% H ₂ O
Column #6 Sample 88	56	0.1%	80% MeOH / 20% H ₂ O
Column #6 Sample 89	70	0.1%	80% MeOH / 20% H ₂ O

Table A6. Results for B16-F10 cell proliferation assay with Column #7 individual samples.

Sample Identity	СРМ	% Proliferation (Control = 100%)	Eluting Mobile Phase
Average Control	40183	100.0%	N/A
Average 10 mg/mL Elderberry	24796	61.7%	N/A
Column #7 Sample 1	105	0.3%	0% MeOH / 100% H ₂ O
Column #7 Sample 2	67	0.2%	0% MeOH / 100% H ₂ O
Column #7 Sample 3	64	0.2%	0% MeOH / 100% H ₂ O
Column #7 Sample 4	41	0.1%	0% MeOH / 100% H ₂ O
Column #7 Sample 5	62	0.2%	0% MeOH / 100% H ₂ O
Column #7 Sample 6	76	0.2%	transition
Column #7 Sample 7	86	0.2%	10% MeOH / 90% H ₂ O

Table A6, continued.

Column #7 Sample 8	86	0.2%	10% MeOH / 90% H ₂ O
Column #7 Sample 9	80	0.2%	10% MeOH / 90% H ₂ O
Column #7 Sample 10	66	0.2%	10% MeOH / 90% H ₂ O
Column #7 Sample 11	6346	15.8%	10% MeOH / 90% H ₂ O
Column #7 Sample 12	4230	10.5%	10% MeOH / 90% H ₂ O
Column #7 Sample 13	41	0.1%	10% MeOH / 90% H ₂ O
Column #7 Sample 14	94	0.2%	10% MeOH / 90% H ₂ O
Column #7 Sample 15	194	0.5%	10% MeOH / 90% H ₂ O
Column #7 Sample 16	1093	2.7%	10% MeOH / 90% H ₂ O
Column #7 Sample 17	122	0.3%	transition
Column #7 Sample 18	140	0.3%	20% MeOH / 80% H ₂ O
Column #7 Sample 19	91	0.2%	20% MeOH / 80% H ₂ O
Column #7 Sample 20	364	0.9%	20% MeOH / 80% H ₂ O
Column #7 Sample 21	8303	20.7%	20% MeOH / 80% H ₂ O
Column #7 Sample 22	5913	14.7%	20% MeOH / 80% H ₂ O
Column #7 Sample 23	345	0.9%	20% MeOH / 80% H ₂ O
Column #7 Sample 24	259	0.6%	20% MeOH / 80% H ₂ O
Column #7 Sample 25	9712	24.2%	20% MeOH / 80% H ₂ O
Column #7 Sample 26	9018	22.4%	20% MeOH / 80% H ₂ O
Column #7 Sample 27	12454	31.0%	20% MeOH / 80% H ₂ O
Column #7 Sample 28	9379	23.3%	transition
Column #7 Sample 29	6238	15.5%	30% MeOH / 70% H ₂ O
Column #7 Sample 30	6522	16.2%	30% MeOH / 70% H ₂ O
Column #7 Sample 31	8729	21.7%	30% MeOH / 70% H ₂ O
Column #7 Sample 32	6311	15.7%	30% MeOH / 70% H ₂ O
Column #7 Sample 33	9834	24.5%	30% MeOH / 70% H ₂ O
Column #7 Sample 34	657	1.6%	30% MeOH / 70% H ₂ O
Column #7 Sample 35	16776	41.7%	30% MeOH / 70% H ₂ O
Column #7 Sample 36	8854	22.0%	30% MeOH / 70% H ₂ O
Column #7 Sample 37	18773	46.7%	30% MeOH / 70% H ₂ O
Column #7 Sample 38	17193	42.8%	30% MeOH / 70% H ₂ O
Column #7 Sample 39	13997	34.8%	transition
Column #7 Sample 40	9963	24.8%	40% MeOH / 60% H ₂ O

Table A6, continued.

Column #7 Sample 41	7878	19.6%	40% MeOH / 60% H ₂ O
Column #7 Sample 42	7285	18.1%	40% MeOH / 60% H ₂ O
Column #7 Sample 43	6543	16.3%	40% MeOH / 60% H ₂ O
Column #7 Sample 44	1636	4.1%	40% MeOH / 60% H ₂ O
Column #7 Sample 45	9208	22.9%	40% MeOH / 60% H ₂ O
Column #7 Sample 46	6973	17.4%	40% MeOH / 60% H ₂ O
Column #7 Sample 47	4294	10.7%	40% MeOH / 60% H ₂ O
Column #7 Sample 48	4379	10.9%	40% MeOH / 60% H ₂ O
Column #7 Sample 49	8550	21.3%	40% MeOH / 60% H ₂ O
Column #7 Sample 50	1563	3.9%	transition
Column #7 Sample 51	1212	3.0%	50% MeOH / 50% H_2O
Column #7 Sample 52	192	0.5%	50% MeOH / 50% H ₂ O
Column #7 Sample 53	231	0.6%	50% MeOH / 50% H ₂ O
Column #7 Sample 54	264	0.7%	50% MeOH / 50% H ₂ O
Column #7 Sample 55	14907	37.1%	50% MeOH / 50% H ₂ O
Column #7 Sample 56	18244	45.4%	50% MeOH / 50% H ₂ O
Column #7 Sample 57	6622	16.5%	50% MeOH / 50% H ₂ O
Column #7 Sample 58	12692	31.6%	50% MeOH / 50% H ₂ O
Column #7 Sample 59	7532	18.7%	50% MeOH / 50% H ₂ O
Column #7 Sample 60	7555	18.8%	50% MeOH / 50% H ₂ O
Column #7 Sample 61	10246	25.5%	transition
Column #7 Sample 62	8713	21.7%	60% MeOH / 40% H ₂ O
Column #7 Sample 63	8026	20.0%	60% MeOH / 40% H ₂ O
Column #7 Sample 64	2439	6.1%	60% MeOH / 40% H ₂ O
Column #7 Sample 65	1746	4.3%	60% MeOH / 40% H ₂ O
Column #7 Sample 66	1322	3.3%	60% MeOH / 40% H ₂ O
Column #7 Sample 67	1598	4.0%	60% MeOH / 40% H ₂ O
Column #7 Sample 68	1913	4.8%	60% MeOH / 40% H ₂ O
Column #7 Sample 69	2064	5.1%	60% MeOH / 40% H ₂ O
Column #7 Sample 70	1393	3.5%	60% MeOH / 40% H ₂ O
Column #7 Sample 71	774	1.9%	60% MeOH / 40% H ₂ O
Column #7 Sample 72	819	2.0%	transition
Column #7 Sample 73	196	0.5%	70% MeOH / 30% H ₂ O

Table A6, continued.

			-
Column #7 Sample 74	211	0.5%	70% MeOH / 30% H ₂ O
Column #7 Sample 75	6947	17.3%	70% MeOH / 30% H ₂ O
Column #7 Sample 76	3517	8.8%	70% MeOH / 30% H ₂ O
Column #7 Sample 77	4743	11.8%	70% MeOH / 30% H ₂ O
Column #7 Sample 78	2097	5.2%	70% MeOH / 30% H ₂ O
Column #7 Sample 79	4789	11.9%	70% MeOH / 30% H ₂ O
Column #7 Sample 80	5104	12.7%	70% MeOH / 30% H ₂ O
Column #7 Sample 81	9064	22.6%	70% MeOH / 30% H ₂ O
Column #7 Sample 82	2909	7.2%	transition
Column #7 Sample 83	164	0.4%	80% MeOH / 20% H ₂ O
Column #7 Sample 84	1369	3.4%	80% MeOH / 20% H ₂ O
Column #7 Sample 85	119	0.3%	80% MeOH / 20% H ₂ O
Column #7 Sample 86	774	1.9%	80% MeOH / 20% H ₂ O
Column #7 Sample 87	91	0.2%	80% MeOH / 20% H ₂ O
Column #7 Sample 88	552	1.4%	80% MeOH / 20% H ₂ O
Column #7 Sample 89	341	0.8%	80% MeOH / 20% H ₂ O
Column #7 Sample 90	340	0.8%	80% MeOH / 20% H ₂ O
Column #7 Sample 91	1105	2.7%	80% MeOH / 20% H ₂ O
Column #7 Sample 92	1133	2.8%	80% MeOH / 20% H ₂ O

Table A7. Results for B16-F10 cell proliferation assay with Column #8 individual samples.

Sample Identity	СРМ	% Proliferation (Control = 100%)	Eluting Mobile Phase
Average Control	31548	100.0%	N/A
Average 10 mg/mL Elderberry	16893	53.5%	N/A
Column #8 Sample 1	82	0.3%	0% MeOH / 100% H ₂ O
Column #8 Sample 2	93	0.3%	0% MeOH / 100% H ₂ O
Column #8 Sample 3	72	0.2%	0% MeOH / 100% H ₂ O
Column #8 Sample 4	67	0.2%	0% MeOH / 100% H ₂ O
Column #8 Sample 5	56	0.2%	0% MeOH / 100% H ₂ O
Column #8 Sample 6	42	0.1%	transition
Column #8 Sample 7	57	0.2%	10% MeOH / 90% H ₂ O

Table A7, continued.

Column #8 Sample 8	60	0.2%	10% MeOH / 90% H ₂ O
Column #8 Sample 9	62	0.2%	10% MeOH / 90% H ₂ O
Column #8 Sample 10	59	0.2%	10% MeOH / 90% H ₂ O
Column #8 Sample 11	10780	34.2%	10% MeOH / 90% H ₂ O
Column #8 Sample 12	86	0.3%	10% MeOH / 90% H ₂ O
Column #8 Sample 13	112	0.4%	10% MeOH / 90% H ₂ O
Column #8 Sample 14	209	0.7%	10% MeOH / 90% H ₂ O
Column #8 Sample 15	122	0.4%	10% MeOH / 90% H ₂ O
Column #8 Sample 16	8297	26.3%	10% MeOH / 90% H ₂ O
Column #8 Sample 17	64	0.2%	transition
Column #8 Sample 18	75	0.2%	20% MeOH / 80% H ₂ O
Column #8 Sample 19	513	1.6%	20% MeOH / 80% H ₂ O
Column #8 Sample 20	285	0.9%	20% MeOH / 80% H ₂ O
Column #8 Sample 21	6506	20.6%	20% MeOH / 80% H ₂ O
Column #8 Sample 22	10621	33.7%	$20\%~MeOH/80\%~H_2O$
Column #8 Sample 23	6602	20.9%	20% MeOH / 80% H ₂ O
Column #8 Sample 24	6756	21.4%	$20\%~MeOH/80\%~H_2O$
Column #8 Sample 25	1427	4.5%	$20\%~MeOH/80\%~H_2O$
Column #8 Sample 26	1715	5.4%	$20\%~MeOH/80\%~H_2O$
Column #8 Sample 27	3562	11.3%	$20\%~MeOH/80\%~H_2O$
Column #8 Sample 28	3451	10.9%	transition
Column #8 Sample 29	3772	12.0%	30% MeOH / 70% H ₂ O
Column #8 Sample 30	4678	14.8%	30% MeOH / 70% H ₂ O
Column #8 Sample 31	4789	15.2%	30% MeOH / 70% H ₂ O
Column #8 Sample 32	3225	10.2%	30% MeOH / 70% H ₂ O
Column #8 Sample 33	4015	12.7%	30% MeOH / 70% H ₂ O
Column #8 Sample 34	4753	15.1%	30% MeOH / 70% H ₂ O
Column #8 Sample 35	16805	53.3%	30% MeOH / 70% H ₂ O
Column #8 Sample 36	14262	45.2%	$30\%~MeOH/70\%~H_2O$
Column #8 Sample 37	15158	48.0%	30% MeOH / 70% H ₂ O
Column #8 Sample 38	17160	54.4%	30% MeOH / 70% H ₂ O
Column #8 Sample 39	15760	50.0%	transition
Column #8 Sample 40	13234	41.9%	40% MeOH / 60% H ₂ O

Table A7, continued.

Column #8 Sample 41	14901	47.2%	40% MeOH / 60% H ₂ O
Column #8 Sample 42	11558	36.6%	40% MeOH / 60% H ₂ O
Column #8 Sample 43	10756	34.1%	40% MeOH / 60% H ₂ O
Column #8 Sample 44	9748	30.9%	40% MeOH / 60% H ₂ O
Column #8 Sample 45	10146	32.2%	40% MeOH / 60% H ₂ O
Column #8 Sample 46	10084	32.0%	40% MeOH / 60% H ₂ O
Column #8 Sample 47	8061	25.6%	40% MeOH / 60% H ₂ O
Column #8 Sample 48	10571	33.5%	40% MeOH / 60% H ₂ O
Column #8 Sample 49	8850	28.1%	40% MeOH / 60% H ₂ O
Column #8 Sample 50	6621	21.0%	transition
Column #8 Sample 51	6529	20.7%	50% MeOH / 50% H_2O
Column #8 Sample 52	1046	3.3%	50% MeOH / 50% H ₂ O
Column #8 Sample 53	1013	3.2%	50% MeOH / 50% H ₂ O
Column #8 Sample 54	2294	7.3%	50% MeOH / 50% H ₂ O
Column #8 Sample 55	23891	75.7%	50% MeOH / 50% H ₂ O
Column #8 Sample 56	16343	51.8%	50% MeOH / 50% H ₂ O
Column #8 Sample 57	17584	55.7%	50% MeOH / 50% H ₂ O
Column #8 Sample 58	11952	37.9%	50% MeOH / 50% H ₂ O
Column #8 Sample 59	13380	42.4%	50% MeOH / 50% H ₂ O
Column #8 Sample 60	19642	62.3%	50% MeOH / 50% H ₂ O
Column #8 Sample 61	14145	44.8%	transition
Column #8 Sample 62	19813	62.8%	60% MeOH / 40% H ₂ O
Column #8 Sample 63	15190	48.1%	60% MeOH / 40% H ₂ O
Column #8 Sample 64	15397	48.8%	60% MeOH / 40% H ₂ O
Column #8 Sample 65	5104	16.2%	60% MeOH / 40% H ₂ O
Column #8 Sample 66	2505	7.9%	60% MeOH / 40% H ₂ O
Column #8 Sample 67	2395	7.6%	60% MeOH / 40% H ₂ O
Column #8 Sample 68	2718	8.6%	60% MeOH / 40% H ₂ O
Column #8 Sample 69	2726	8.6%	60% MeOH / 40% H ₂ O
Column #8 Sample 70	2483	7.9%	60% MeOH / 40% H ₂ O
Column #8 Sample 71	2554	8.1%	60% MeOH / 40% H ₂ O
Column #8 Sample 72	3150	10.0%	transition
Column #8 Sample 73	766	2.4%	70% MeOH / 30% H ₂ O

Table A7, continued.

Column #8 Sample 74	1755	5.6%	70% MeOH / 30% H ₂ O
Column #8 Sample 75	9966	31.6%	70% MeOH / 30% H ₂ O
Column #8 Sample 76	8614	27.3%	70% MeOH / 30% H ₂ O
Column #8 Sample 77	8903	28.2%	70% MeOH / 30% H ₂ O
Column #8 Sample 78	9225	29.2%	70% MeOH / 30% H ₂ O
Column #8 Sample 79	9279	29.4%	70% MeOH / 30% H ₂ O
Column #8 Sample 80	7845	24.9%	70% MeOH / 30% H ₂ O
Column #8 Sample 81	9762	30.9%	70% MeOH / 30% H ₂ O
Column #8 Sample 82	12822	40.6%	70% MeOH / 30% H ₂ O
Column #8 Sample 83	10701	33.9%	transition
Column #8 Sample 84	8158	25.9%	80% MeOH / 20% H ₂ O
Column #8 Sample 85	6923	21.9%	80% MeOH / 20% H ₂ O
Column #8 Sample 86	9859	31.3%	80% MeOH / 20% H ₂ O
Column #8 Sample 87	9299	29.5%	80% MeOH / 20% H ₂ O
Column #8 Sample 88	5860	18.6%	80% MeOH / 20% H ₂ O
Column #8 Sample 89	7870	24.9%	80% MeOH / 20% H ₂ O
Column #8 Sample 90	6489	20.6%	80% MeOH / 20% H ₂ O
Column #8 Sample 91	4234	13.4%	80% MeOH / 20% H ₂ O
Column #8 Sample 92	5095	16.1%	80% MeOH / 20% H ₂ O
Column #8 Sample 93	3843	12.2%	80% MeOH / 20% H ₂ O

Table A8. Results for B16-F10 cell proliferation assay with Column #9 individual samples.

Sample Identity	СРМ	% Proliferation (Control = 100%)	Eluting Mobile Phase
Average Control	92120	100.0%	N/A
Average 10 mg/mL Elderberry	71605	77.7%	N/A
Column #9 Sample 1	90	0.1%	0% MeOH / 100% H ₂ O
Column #9 Sample 2	133	0.1%	0% MeOH / 100% H ₂ O
Column #9 Sample 3	50	0.1%	0% MeOH / 100% H ₂ O
Column #9 Sample 4	57	0.1%	0% MeOH / 100% H ₂ O
Column #9 Sample 5	51	0.1%	0% MeOH / 100% H ₂ O

Table A8, continued.

Column #9 Sample 6	47	0.1%	transition
Column #9 Sample 7	43	0.0%	10% MeOH / 90% H ₂ O
Column #9 Sample 8	65	0.1%	10% MeOH / 90% H ₂ O
Column #9 Sample 9	76	0.1%	10% MeOH / 90% H ₂ O
Column #9 Sample 10	146	0.2%	10% MeOH / 90% H ₂ O
Column #9 Sample 11	602	0.7%	10% MeOH / 90% H ₂ O
Column #9 Sample 12	23397	25.4%	10% MeOH / 90% H ₂ O
Column #9 Sample 13	23488	25.5%	10% MeOH / 90% H ₂ O
Column #9 Sample 14	31276	34.0%	10% MeOH / 90% H ₂ O
Column #9 Sample 15	60029	65.2%	10% MeOH / 90% H ₂ O
Column #9 Sample 16	58216	63.2%	10% MeOH / 90% H ₂ O
Column #9 Sample 17	42738	46.4%	transition
Column #9 Sample 18	41560	45.1%	20% MeOH / 80% H ₂ O
Column #9 Sample 19	34502	37.5%	20% MeOH / 80% H ₂ O
Column #9 Sample 20	27625	30.0%	20% MeOH / 80% H ₂ O
Column #9 Sample 21	44168	47.9%	20% MeOH / 80% H ₂ O
Column #9 Sample 22	40392	43.8%	$20\%~MeOH/80\%~H_2O$
Column #9 Sample 23	40108	43.5%	$20\%~MeOH/80\%~H_2O$
Column #9 Sample 24	31723	34.4%	$20\%~MeOH/80\%~H_2O$
Column #9 Sample 25	41747	45.3%	$20\%~MeOH/80\%~H_2O$
Column #9 Sample 26	28162	30.6%	$20\%~MeOH/80\%~H_2O$
Column #9 Sample 27	29709	32.3%	$20\%~MeOH/80\%~H_2O$
Column #9 Sample 28	20967	22.8%	transition
Column #9 Sample 29	23259	25.2%	30% MeOH / 70% H ₂ O
Column #9 Sample 30	22495	24.4%	30% MeOH / 70% H ₂ O
Column #9 Sample 31	18007	19.5%	30% MeOH / 70% H ₂ O
Column #9 Sample 32	12870	14.0%	30% MeOH / 70% H ₂ O
Column #9 Sample 33	16621	18.0%	30% MeOH / 70% H ₂ O
Column #9 Sample 34	15167	16.5%	30% MeOH / 70% H ₂ O
Column #9 Sample 35	58548	63.6%	30% MeOH / 70% H ₂ O
Column #9 Sample 36	68835	74.7%	30% MeOH / 70% H ₂ O
Column #9 Sample 37	40103	43.5%	30% MeOH / 70% H ₂ O
Column #9 Sample 38	59931	65.1%	30% MeOH / 70% H ₂ O

Table A8, continued.

Column #9 Sample 39	43906	47.7%	transition
Column #9 Sample 40	42724	46.4%	40% MeOH / 60% H ₂ O
Column #9 Sample 41	55508	60.3%	40% MeOH / 60% H ₂ O
Column #9 Sample 42	38460	41.7%	40% MeOH / 60% H ₂ O
Column #9 Sample 43	43059	46.7%	40% MeOH / 60% H ₂ O
Column #9 Sample 44	61538	66.8%	40% MeOH / 60% H ₂ O
Column #9 Sample 45	39215	42.6%	40% MeOH / 60% H ₂ O
Column #9 Sample 46	32219	35.0%	40% MeOH / 60% H ₂ O
Column #9 Sample 47	43845	47.6%	40% MeOH / 60% H ₂ O
Column #9 Sample 48	30352	32.9%	40% MeOH / 60% H ₂ O
Column #9 Sample 49	36159	39.3%	$40\%~MeOH/60\%~H_2O$
Column #9 Sample 50	11703	12.7%	transition
Column #9 Sample 51	28931	31.4%	50% MeOH / 50% H ₂ O
Column #9 Sample 52	33827	36.7%	50% MeOH / 50% H ₂ O
Column #9 Sample 53	18899	20.5%	50% MeOH / 50% H ₂ O
Column #9 Sample 54	7385	8.0%	50% MeOH / 50% H ₂ O
Column #9 Sample 55	62641	68.0%	50% MeOH / 50% H ₂ O
Column #9 Sample 56	60184	65.3%	50% MeOH / 50% H ₂ O
Column #9 Sample 57	42572	46.2%	50% MeOH / 50% H ₂ O
Column #9 Sample 58	24616	26.7%	50% MeOH / 50% H ₂ O
Column #9 Sample 59	36581	39.7%	50% MeOH / 50% H ₂ O
Column #9 Sample 60	56916	61.8%	50% MeOH / 50% H ₂ O
Column #9 Sample 61	53994	58.6%	transition
Column #9 Sample 62	64663	70.2%	60% MeOH / 40% H ₂ O
Column #9 Sample 63	55462	60.2%	60% MeOH / 40% H ₂ O
Column #9 Sample 64	69282	75.2%	60% MeOH / 40% H ₂ O
Column #9 Sample 65	26369	28.6%	60% MeOH / $40%$ H ₂ O
Column #9 Sample 66	29933	32.5%	60% MeOH / $40%$ H ₂ O
Column #9 Sample 67	14621	15.9%	60% MeOH / $40%$ H ₂ O
Column #9 Sample 68	23338	25.3%	$60\%~MeOH/40\%~H_2O$
Column #9 Sample 69	27125	29.4%	60% MeOH / 40% H ₂ O
Column #9 Sample 70	25299	27.5%	60% MeOH / 40% H ₂ O
Column #9 Sample 71	13354	14.5%	60% MeOH / 40% H ₂ O

Table A8, continued.

Column #9 Sample 72	18310	19.9%	transition
Column #9 Sample 73	7107	7.7%	70% MeOH / 30% H ₂ O
Column #9 Sample 74	4873	5.3%	70% MeOH / 30% H ₂ O
Column #9 Sample 75	31223	33.9%	70% MeOH / 30% H ₂ O
Column #9 Sample 76	30535	33.1%	70% MeOH / 30% H ₂ O
Column #9 Sample 77	27443	29.8%	70% MeOH / 30% H ₂ O
Column #9 Sample 78	31461	34.2%	70% MeOH / 30% H ₂ O
Column #9 Sample 79	36154	39.2%	70% MeOH / 30% H ₂ O
Column #9 Sample 80	33025	35.8%	70% MeOH / 30% H ₂ O
Column #9 Sample 81	48963	53.2%	70% MeOH / 30% H ₂ O
Column #9 Sample 82	45255	49.1%	70% MeOH / 30% H_2O
Column #9 Sample 83	56945	61.8%	transition
Column #9 Sample 84	47327	51.4%	80% MeOH / 20% H ₂ O
Column #9 Sample 85	55210	59.9%	80% MeOH / 20% H ₂ O
Column #9 Sample 86	39221	42.6%	80% MeOH / 20% H ₂ O
Column #9 Sample 87	32432	35.2%	80% MeOH / 20% H ₂ O
Column #9 Sample 88	36000	39.1%	80% MeOH / 20% H ₂ O
Column #9 Sample 89	24458	26.6%	80% MeOH / 20% H ₂ O
Column #9 Sample 90	4417	4.8%	80% MeOH / 20% H ₂ O
Column #9 Sample 91	11388	12.4%	80% MeOH / 20% H ₂ O
Column #9 Sample 92	28617	31.1%	80% MeOH / 20% H ₂ O

Table A9. Results for B16-F10 cell proliferation assay with Column #10 individual samples.

Sample Identity	СРМ	% Proliferation (Control = 100%)	Eluting Mobile Phase
Average Control	32984	100.0%	N/A
Average 10 mg/mL Elderberry	8562	26.0%	N/A
Column #10 Sample 1	71	0.2%	0% MeOH / 100% H ₂ O
Column #10 Sample 2	129	0.4%	0% MeOH / 100% H ₂ O
Column #10 Sample 3	99	0.3%	0% MeOH / 100% H ₂ O
Column #10 Sample 4	93	0.3%	0% MeOH / 100% H ₂ O

Table A9, continued.

Column #10 Sample 5	76	0.2%	0% MeOH / 100% H ₂ O
Column #10 Sample 6	61	0.2%	transition
Column #10 Sample 7	58	0.2%	10% MeOH / 90% H ₂ O
Column #10 Sample 8	75	0.2%	10% MeOH / 90% H ₂ O
Column #10 Sample 9	100	0.3%	10% MeOH / 90% H ₂ O
Column #10 Sample 10	73	0.2%	10% MeOH / 90% H ₂ O
Column #10 Sample 11	78	0.2%	10% MeOH / 90% H ₂ O
Column #10 Sample 12	113	0.3%	10% MeOH / 90% H ₂ O
Column #10 Sample 13	154	0.5%	10% MeOH / 90% H ₂ O
Column #10 Sample 14	2099	6.4%	10% MeOH / 90% H ₂ O
Column #10 Sample 15	1900	5.8%	10% MeOH / 90% H ₂ O
Column #10 Sample 16	7116	21.6%	10% MeOH / 90% H ₂ O
Column #10 Sample 17	1694	5.1%	transition
Column #10 Sample 18	3307	10.0%	20% MeOH / 80% H ₂ O
Column #10 Sample 19	7524	22.8%	20% MeOH / 80% H ₂ O
Column #10 Sample 20	7204	21.8%	20% MeOH / 80% H ₂ O
Column #10 Sample 21	10730	32.5%	20% MeOH / 80% H ₂ O
Column #10 Sample 22	8209	24.9%	20% MeOH / 80% H ₂ O
Column #10 Sample 23	11506	34.9%	20% MeOH / 80% H ₂ O
Column #10 Sample 24	5070	15.4%	20% MeOH / 80% H ₂ O
Column #10 Sample 25	9630	29.2%	20% MeOH / 80% H ₂ O
Column #10 Sample 26	7353	22.3%	20% MeOH / 80% H ₂ O
Column #10 Sample 27	3282	10.0%	20% MeOH / 80% H ₂ O
Column #10 Sample 28	2678	8.1%	transition
Column #10 Sample 29	1946	5.9%	30% MeOH / 70% H ₂ O
Column #10 Sample 30	1733	5.3%	30% MeOH / 70% H ₂ O
Column #10 Sample 31	2986	9.1%	30% MeOH / 70% H ₂ O
Column #10 Sample 32	998	3.0%	30% MeOH / 70% H ₂ O
Column #10 Sample 33	1178	3.6%	30% MeOH / 70% H ₂ O
Column #10 Sample 34	2960	9.0%	30% MeOH / 70% H ₂ O
Column #10 Sample 35	20885	63.3%	30% MeOH / 70% H ₂ O
Column #10 Sample 36	10410	31.6%	30% MeOH / 70% H ₂ O
Column #10 Sample 37	2912	8.8%	30% MeOH / 70% H ₂ O

Table A9, continued.

Column #10 Sample 38	7247	22.0%	transition
Column #10 Sample 39	3721	11.3%	40% MeOH / 60% H ₂ O
Column #10 Sample 40	1999	6.1%	40% MeOH / 60% H ₂ O
Column #10 Sample 41	1785	5.4%	40% MeOH / 60% H ₂ O
Column #10 Sample 42	465	1.4%	40% MeOH / 60% H ₂ O
Column #10 Sample 43	9298	28.2%	40% MeOH / 60% H ₂ O
Column #10 Sample 44	5909	17.9%	40% MeOH / 60% H ₂ O
Column #10 Sample 45	1550	4.7%	40% MeOH / 60% H ₂ O
Column #10 Sample 46	1841	5.6%	40% MeOH / 60% H ₂ O
Column #10 Sample 47	250	0.8%	40% MeOH / 60% H ₂ O
Column #10 Sample 48	412	1.2%	40% MeOH / 60% H ₂ O
Column #10 Sample 49	1504	4.6%	transition
Column #10 Sample 50	345	1.0%	50% MeOH / 50% H ₂ O
Column #10 Sample 51	352	1.1%	50% MeOH / 50% H ₂ O
Column #10 Sample 52	237	0.7%	50% MeOH / 50% H ₂ O
Column #10 Sample 53	202	0.6%	50% MeOH / 50% H ₂ O
Column #10 Sample 54	2773	8.4%	50% MeOH / 50% H ₂ O
Column #10 Sample 55	9329	28.3%	50% MeOH / 50% H ₂ O
Column #10 Sample 56	2357	7.1%	50% MeOH / 50% H ₂ O
Column #10 Sample 57	857	2.6%	50% MeOH / 50% H ₂ O
Column #10 Sample 58	3090	9.4%	50% MeOH / 50% H ₂ O
Column #10 Sample 59	14278	43.3%	50% MeOH / 50% H ₂ O
Column #10 Sample 60	681	2.1%	transition
Column #10 Sample 61	1620	4.9%	60% MeOH / 40% H ₂ O
Column #10 Sample 62	6845	20.8%	60% MeOH / 40% H ₂ O
Column #10 Sample 63	1480	4.5%	60% MeOH / 40% H ₂ O
Column #10 Sample 64	13755	41.7%	60% MeOH / 40% H ₂ O
Column #10 Sample 65	6217	18.8%	60% MeOH / 40% H ₂ O
Column #10 Sample 66	3961	12.0%	60% MeOH / 40% H ₂ O
Column #10 Sample 67	1576	4.8%	60% MeOH / 40% H ₂ O
Column #10 Sample 68	4253	12.9%	60% MeOH / 40% H ₂ O
Column #10 Sample 69	4854	14.7%	60% MeOH / 40% H ₂ O
Column #10 Sample 70	7485	22.7%	60% MeOH / 40% H ₂ O

Table A9, continued.

Column #10 Sample 71	4637	14.1%	transition
Column #10 Sample 72	2461	7.5%	70% MeOH / 30% H ₂ O
Column #10 Sample 73	1066	3.2%	70% MeOH / 30% H ₂ O
Column #10 Sample 74	1004	3.0%	70% MeOH / 30% H ₂ O
Column #10 Sample 75	13774	41.8%	70% MeOH / 30% H ₂ O
Column #10 Sample 76	3541	10.7%	70% MeOH / 30% H ₂ O
Column #10 Sample 77	3738	11.3%	70% MeOH / 30% H ₂ O
Column #10 Sample 78	3637	11.0%	70% MeOH / 30% H ₂ O
Column #10 Sample 79	3318	10.1%	70% MeOH / 30% H ₂ O
Column #10 Sample 80	2557	7.8%	transition
Column #10 Sample 81	2650	8.0%	80% MeOH / 20% H ₂ O
Column #10 Sample 82	7813	23.7%	80% MeOH / 20% H ₂ O
Column #10 Sample 83	1585	4.8%	80% MeOH / 20% H ₂ O
Column #10 Sample 84	6387	19.4%	80% MeOH / 20% H ₂ O
Column #10 Sample 85	4038	12.2%	80% MeOH / 20% H ₂ O
Column #10 Sample 86	228	0.7%	80% MeOH / 20% H ₂ O
Column #10 Sample 87	768	2.3%	80% MeOH / 20% H ₂ O
Column #10 Sample 88	466	1.4%	80% MeOH / 20% H ₂ O
Column #10 Sample 89	149	0.5%	80% MeOH / 20% H ₂ O
Column #10 Sample 90	7678	23.3%	80% MeOH / 20% H ₂ O

Table A10. Results for B16-F10 cell proliferation assay with Column #11 individual samples.

Sample Identity	СРМ	% Proliferation (Control = 100%)	Eluting Mobile Phase
Average Control	16646	100.0%	N/A
Average 10 mg/mL Elderberry	4744	28.5%	N/A
Column #11 Sample 1	63	0.4%	0% MeOH / 100% H ₂ O
Column #11 Sample 2	78	0.5%	0% MeOH / 100% H ₂ O
Column #11 Sample 3	64	0.4%	0% MeOH / 100% H ₂ O
Column #11 Sample 4	45	0.3%	0% MeOH / 100% H ₂ O
Column #11 Sample 5	43	0.3%	0% MeOH / 100% H ₂ O

Table A10, continued.

Column #11 Sample 6	43	0.3%	transition
Column #11 Sample 7	53	0.3%	10% MeOH / 90% H ₂ O
Column #11 Sample 8	43	0.3%	10% MeOH / 90% H ₂ O
Column #11 Sample 9	53	0.3%	10% MeOH / 90% H ₂ O
Column #11 Sample 10	32	0.2%	10% MeOH / 90% H ₂ O
Column #11 Sample 11	42	0.3%	10% MeOH / 90% H ₂ O
Column #11 Sample 12	41	0.2%	10% MeOH / 90% H ₂ O
Column #11 Sample 13	272	1.6%	10% MeOH / 90% H ₂ O
Column #11 Sample 14	383	2.3%	10% MeOH / 90% H ₂ O
Column #11 Sample 15	8520	51.2%	10% MeOH / 90% H ₂ O
Column #11 Sample 16	1219	7.3%	10% MeOH / 90% H ₂ O
Column #11 Sample 17	626	3.8%	transition
Column #11 Sample 18	1931	11.6%	20% MeOH / 80% H ₂ O
Column #11 Sample 19	1075	6.5%	20% MeOH / 80% H ₂ O
Column #11 Sample 20	412	2.5%	20% MeOH / 80% H ₂ O
Column #11 Sample 21	2961	17.8%	20% MeOH / 80% H ₂ O
Column #11 Sample 22	2709	16.3%	20% MeOH / 80% H ₂ O
Column #11 Sample 23	1840	11.1%	20% MeOH / 80% H ₂ O
Column #11 Sample 24	808	4.9%	20% MeOH / 80% H ₂ O
Column #11 Sample 25	6646	39.9%	$20\%~MeOH/80\%~H_2O$
Column #11 Sample 26	1513	9.1%	20% MeOH / 80% H ₂ O
Column #11 Sample 27	2000	12.0%	20% MeOH / 80% H ₂ O
Column #11 Sample 28	5409	32.5%	transition
Column #11 Sample 29	2539	15.3%	30% MeOH / 70% H ₂ O
Column #11 Sample 30	3825	23.0%	30% MeOH / 70% H ₂ O
Column #11 Sample 31	2080	12.5%	30% MeOH / 70% H ₂ O
Column #11 Sample 32	653	3.9%	30% MeOH / 70% H ₂ O
Column #11 Sample 33	524	3.1%	30% MeOH / 70% H ₂ O
Column #11 Sample 34	3350	20.1%	30% MeOH / 70% H ₂ O
Column #11 Sample 35	6971	41.9%	30% MeOH / 70% H ₂ O
Column #11 Sample 36	5311	31.9%	30% MeOH / 70% H ₂ O
Column #11 Sample 37	1920	11.5%	30% MeOH / 70% H ₂ O
Column #11 Sample 38	439	2.6%	transition

Table A10, continued.

Column #11 Sample 39	2154	12.9%	40% MeOH / 60% H ₂ O
Column #11 Sample 40	1240	7.4%	40% MeOH / 60% H ₂ O
Column #11 Sample 41	155	0.9%	40% MeOH / 60% H ₂ O
Column #11 Sample 42	1344	8.1%	40% MeOH / 60% H ₂ O
Column #11 Sample 43	280	1.7%	40% MeOH / 60% H ₂ O
Column #11 Sample 44	4706	28.3%	40% MeOH / 60% H ₂ O
Column #11 Sample 45	1445	8.7%	40% MeOH / 60% H ₂ O
Column #11 Sample 46	311	1.9%	40% MeOH / 60% H ₂ O
Column #11 Sample 47	442	2.7%	40% MeOH / 60% H ₂ O
Column #11 Sample 48	368	2.2%	40% MeOH / 60% H ₂ O
Column #11 Sample 49	325	2.0%	transition
Column #11 Sample 50	311	1.9%	50% MeOH / 50% H ₂ O
Column #11 Sample 51	341	2.0%	50% MeOH / 50% H ₂ O
Column #11 Sample 52	254	1.5%	50% MeOH / 50% H ₂ O
Column #11 Sample 53	297	1.8%	50% MeOH / 50% H ₂ O
Column #11 Sample 54	639	3.8%	50% MeOH / 50% H ₂ O
Column #11 Sample 55	5006	30.1%	50% MeOH / 50% H ₂ O
Column #11 Sample 56	501	3.0%	50% MeOH / 50% H ₂ O
Column #11 Sample 57	307	1.8%	50% MeOH / 50% H ₂ O
Column #11 Sample 58	421	2.5%	50% MeOH / 50% H ₂ O
Column #11 Sample 59	1156	6.9%	50% MeOH / 50% H ₂ O
Column #11 Sample 60	524	3.1%	transition
Column #11 Sample 61	379	2.3%	60% MeOH / 40% H ₂ O
Column #11 Sample 62	566	3.4%	60% MeOH / 40% H ₂ O
Column #11 Sample 63	395	2.4%	60% MeOH / 40% H ₂ O
Column #11 Sample 64	801	4.8%	$60\%~MeOH/40\%~H_2O$
Column #11 Sample 65	487	2.9%	60% MeOH / 40% H ₂ O
Column #11 Sample 66	527	3.2%	60% MeOH / 40% H ₂ O
Column #11 Sample 67	1127	6.8%	60% MeOH / 40% H ₂ O
Column #11 Sample 68	708	4.3%	60% MeOH / 40% H ₂ O
Column #11 Sample 69	278	1.7%	60% MeOH / 40% H ₂ O
Column #11 Sample 70	2323	14.0%	60% MeOH / 40% H ₂ O
Column #11 Sample 71	660	4.0%	transition

Table A10, continued.

Column #11 Sample 72	200	1.2%	70% MeOH / 30% H ₂ O
Column #11 Sample 73	611	3.7%	70% MeOH / 30% H ₂ O
Column #11 Sample 74	532	3.2%	70% MeOH / 30% H ₂ O
Column #11 Sample 75	6073	36.5%	70% MeOH / 30% H ₂ O
Column #11 Sample 76	12112	72.8%	70% MeOH / 30% H ₂ O
Column #11 Sample 77	1422	8.5%	70% MeOH / 30% H ₂ O
Column #11 Sample 78	952	5.7%	70% MeOH / 30% H ₂ O
Column #11 Sample 79	520	3.1%	70% MeOH / 30% H ₂ O
Column #11 Sample 80	1748	10.5%	70% MeOH / 30% H ₂ O
Column #11 Sample 81	1897	11.4%	transition
Column #11 Sample 82	4619	27.7%	80% MeOH / 20% H_2O
Column #11 Sample 83	933	5.6%	80% MeOH / 20% H ₂ O
Column #11 Sample 84	3497	21.0%	80% MeOH / 20% H ₂ O
Column #11 Sample 85	3274	19.7%	80% MeOH / 20% H ₂ O
Column #11 Sample 86	915	5.5%	80% MeOH / 20% H ₂ O
Column #11 Sample 87	190	1.1%	80% MeOH / 20% H ₂ O
Column #11 Sample 88	574	3.4%	80% MeOH / 20% H ₂ O
Column #11 Sample 89	617	3.7%	80% MeOH / 20% H ₂ O
Column #11 Sample 90	2307	13.9%	80% MeOH / 20% H ₂ O
Column #11 Sample 91	652	3.9%	80% MeOH / 20% H ₂ O

Table A11. Results for B16-F10 cell proliferation assay with Column #12 individual samples.

Sample Identity	СРМ	% Proliferation (Control = 100%)	Eluting Mobile Phase
Average Control	119971	100.0%	N/A
Average 10 mg/mL Elderberry	62496	52.1%	N/A
Column #12 Sample 1	75	0.1%	0% MeOH / 100% H ₂ O
Column #12 Sample 2	103	0.1%	0% MeOH / 100% H ₂ O
Column #12 Sample 3	90	0.1%	0% MeOH / 100% H ₂ O
Column #12 Sample 4	82	0.1%	0% MeOH / 100% H ₂ O
Column #12 Sample 5	69	0.1%	transition

Table A11, continued.

Column #12 Sample 6	90	0.1%	10% MeOH / 90% H ₂ O
Column #12 Sample 7	75	0.1%	10% MeOH / 90% H ₂ O
Column #12 Sample 8	392	0.3%	10% MeOH / 90% H ₂ O
Column #12 Sample 9	72	0.1%	10% MeOH / 90% H ₂ O
Column #12 Sample 10	63	0.1%	10% MeOH / 90% H ₂ O
Column #12 Sample 11	78	0.1%	10% MeOH / 90% H ₂ O
Column #12 Sample 12	69	0.1%	10% MeOH / 90% H ₂ O
Column #12 Sample 13	185	0.2%	10% MeOH / 90% H ₂ O
Column #12 Sample 14	1788	1.5%	10% MeOH / 90% H ₂ O
Column #12 Sample 15	43795	36.5%	10% MeOH / 90% H ₂ O
Column #12 Sample 16	38056	31.7%	transition
Column #12 Sample 17	22892	19.1%	20% MeOH / 80% H ₂ O
Column #12 Sample 18	13002	10.8%	20% MeOH / 80% H ₂ O
Column #12 Sample 19	21478	17.9%	20% MeOH / 80% H ₂ O
Column #12 Sample 20	16952	14.1%	20% MeOH / 80% H ₂ O
Column #12 Sample 21	15513	12.9%	20% MeOH / 80% H ₂ O
Column #12 Sample 22	11761	9.8%	20% MeOH / 80% H ₂ O
Column #12 Sample 23	14245	11.9%	20% MeOH / 80% H ₂ O
Column #12 Sample 24	19176	16.0%	20% MeOH / 80% H ₂ O
Column #12 Sample 25	21082	17.6%	$20\%~MeOH/80\%~H_2O$
Column #12 Sample 26	10322	8.6%	20% MeOH / 80% H ₂ O
Column #12 Sample 27	12355	10.3%	transition
Column #12 Sample 28	9909	8.3%	30% MeOH / 70% H ₂ O
Column #12 Sample 29	5499	4.6%	30% MeOH / 70% H ₂ O
Column #12 Sample 30	6402	5.3%	30% MeOH / 70% H ₂ O
Column #12 Sample 31	4996	4.2%	30% MeOH / 70% H ₂ O
Column #12 Sample 32	4166	3.5%	30% MeOH / 70% H ₂ O
Column #12 Sample 33	370	0.3%	30% MeOH / 70% H ₂ O
Column #12 Sample 34	1419	1.2%	30% MeOH / 70% H ₂ O
Column #12 Sample 35	31822	26.5%	30% MeOH / 70% H ₂ O
Column #12 Sample 36	16675	13.9%	30% MeOH / 70% H ₂ O
Column #12 Sample 37	28196	23.5%	30% MeOH / 70% H ₂ O
Column #12 Sample 38	21062	17.6%	transition

Table A11, continued.

Column #12 Sample 39	16619	13.9%	40% MeOH / 60% H ₂ O
Column #12 Sample 40	15558	13.0%	40% MeOH / 60% H ₂ O
Column #12 Sample 41	14456	12.0%	40% MeOH / 60% H ₂ O
Column #12 Sample 42	18770	15.6%	40% MeOH / 60% H ₂ O
Column #12 Sample 43	24588	20.5%	40% MeOH / 60% H ₂ O
Column #12 Sample 44	47316	39.4%	40% MeOH / 60% H ₂ O
Column #12 Sample 45	46094	38.4%	40% MeOH / 60% H ₂ O
Column #12 Sample 46	24304	20.3%	40% MeOH / 60% H ₂ O
Column #12 Sample 47	15160	12.6%	40% MeOH / 60% H ₂ O
Column #12 Sample 48	13286	11.1%	40% MeOH / 60% H ₂ O
Column #12 Sample 49	10519	8.8%	transition
Column #12 Sample 50	11906	9.9%	50% MeOH / 50% H ₂ O
Column #12 Sample 51	3055	2.5%	50% MeOH / 50% H ₂ O
Column #12 Sample 52	9122	7.6%	50% MeOH / 50% H ₂ O
Column #12 Sample 53	9266	7.7%	50% MeOH / 50% H ₂ O
Column #12 Sample 54	29094	24.3%	50% MeOH / 50% H ₂ O
Column #12 Sample 55	37432	31.2%	50% MeOH / 50% H ₂ O
Column #12 Sample 56	35728	29.8%	50% MeOH / 50% H ₂ O
Column #12 Sample 57	20514	17.1%	50% MeOH / 50% H ₂ O
Column #12 Sample 58	4029	3.4%	50% MeOH / 50% H_2O
Column #12 Sample 59	24142	20.1%	transition
Column #12 Sample 60	30604	25.5%	60% MeOH / 40% H ₂ O
Column #12 Sample 61	26050	21.7%	60% MeOH / 40% H ₂ O
Column #12 Sample 62	45107	37.6%	60% MeOH / 40% H ₂ O
Column #12 Sample 63	25098	20.9%	60% MeOH / 40% H ₂ O
Column #12 Sample 64	40076	33.4%	60% MeOH / 40% H ₂ O
Column #12 Sample 65	10219	8.5%	60% MeOH / 40% H ₂ O
Column #12 Sample 66	8552	7.1%	60% MeOH / 40% H ₂ O
Column #12 Sample 67	3272	2.7%	60% MeOH / 40% H ₂ O
Column #12 Sample 68	17358	14.5%	60% MeOH / 40% H ₂ O
Column #12 Sample 69	7643	6.4%	transition
Column #12 Sample 70	7224	6.0%	70% MeOH / 30% H ₂ O
Column #12 Sample 71	2923	2.4%	70% MeOH / 30% H ₂ O

Table A11, continued.

Column #12 Sample 72	4603	3.8%	70% MeOH / 30% H ₂ O
Column #12 Sample 73	5234	4.4%	70% MeOH / 30% H ₂ O
Column #12 Sample 74	2825	2.4%	70% MeOH / 30% H ₂ O
Column #12 Sample 75	15589	13.0%	70% MeOH / 30% H ₂ O
Column #12 Sample 76	14034	11.7%	70% MeOH / 30% H ₂ O
Column #12 Sample 77	43648	36.4%	70% MeOH / 30% H ₂ O
Column #12 Sample 78	35152	29.3%	70% MeOH / 30% H ₂ O
Column #12 Sample 79	74538	62.1%	transition
Column #12 Sample 80	47150	39.3%	80% MeOH / 20% H ₂ O
Column #12 Sample 81	48355	40.3%	80% MeOH / 20% H ₂ O
Column #12 Sample 82	50574	42.2%	80% MeOH / 20% H ₂ O
Column #12 Sample 83	61052	50.9%	80% MeOH / 20% H ₂ O
Column #12 Sample 84	62154	51.8%	80% MeOH / 20% H ₂ O
Column #12 Sample 85	43980	36.7%	80% MeOH / 20% H ₂ O
Column #12 Sample 86	15251	12.7%	80% MeOH / 20% H ₂ O
Column #12 Sample 87	18561	15.5%	80% MeOH / 20% H ₂ O
Column #12 Sample 88	15346	12.8%	80% MeOH / 20% H ₂ O

Table A12. Results for B16-F10 cell proliferation assay with Column #13 individual samples.

Sample Identity	СРМ	% Proliferation (Control = 100%)	Eluting Mobile Phase
Average Control	119971	100.0%	N/A
Average 10 mg/mL Elderberry	62496	52.1%	N/A
Column #13 Sample 1	84	0.1%	0% MeOH / 100% H ₂ O
Column #13 Sample 2	74	0.1%	0% MeOH / 100% H ₂ O
Column #13 Sample 3	85	0.1%	0% MeOH / 100% H ₂ O
Column #13 Sample 4	59	0.0%	0% MeOH / 100% H ₂ O
Column #13 Sample 5	118	0.1%	0% MeOH / 100% H ₂ O
Column #13 Sample 6	123	0.1%	transition
Column #13 Sample 7	90	0.1%	10% MeOH / 90% H ₂ O
Column #13 Sample 8	171	0.1%	10% MeOH / 90% H ₂ O
Column #13 Sample 9	131	0.1%	10% MeOH / 90% H ₂ O

Table A12, continued.

Column #13 Sample 10	140	0.1%	10% MeOH / 90% H ₂ O
Column #13 Sample 11	151	0.1%	10% MeOH / 90% H ₂ O
Column #13 Sample 12	259	0.2%	10% MeOH / 90% H ₂ O
Column #13 Sample 13	6398	5.3%	10% MeOH / 90% H ₂ O
Column #13 Sample 14	1732	1.4%	10% MeOH / 90% H ₂ O
Column #13 Sample 15	18122	15.1%	10% MeOH / 90% H ₂ O
Column #13 Sample 16	20328	16.9%	10% MeOH / 90% H ₂ O
Column #13 Sample 17	4387	3.7%	transition
Column #13 Sample 18	11496	9.6%	20% MeOH / 80% H ₂ O
Column #13 Sample 19	5084	4.2%	20% MeOH / 80% H ₂ O
Column #13 Sample 20	41459	34.6%	20% MeOH / 80% H ₂ O
Column #13 Sample 21	22242	18.5%	20% MeOH / 80% H ₂ O
Column #13 Sample 22	19926	16.6%	20% MeOH / 80% H ₂ O
Column #13 Sample 23	10296	8.6%	20% MeOH / 80% H ₂ O
Column #13 Sample 24	8681	7.2%	20% MeOH / 80% H ₂ O
Column #13 Sample 25	8266	6.9%	20% MeOH / 80% H ₂ O
Column #13 Sample 26	10030	8.4%	20% MeOH / 80% H ₂ O
Column #13 Sample 27	12767	10.6%	20% MeOH / 80% H ₂ O
Column #13 Sample 28	10823	9.0%	transition
Column #13 Sample 29	6361	5.3%	30% MeOH / 70% H ₂ O
Column #13 Sample 30	16044	13.4%	30% MeOH / 70% H ₂ O
Column #13 Sample 31	6561	5.5%	30% MeOH / 70% H ₂ O
Column #13 Sample 32	5261	4.4%	30% MeOH / 70% H ₂ O
Column #13 Sample 33	2850	2.4%	30% MeOH / 70% H ₂ O
Column #13 Sample 34	2560	2.1%	30% MeOH / 70% H ₂ O
Column #13 Sample 35	2428	2.0%	30% MeOH / 70% H ₂ O
Column #13 Sample 36	2133	1.8%	30% MeOH / 70% H ₂ O
Column #13 Sample 37	1965	1.6%	30% MeOH / 70% H ₂ O
Column #13 Sample 38	3629	3.0%	transition
Column #13 Sample 39	9735	8.1%	40% MeOH / 60% H ₂ O
Column #13 Sample 40	6041	5.0%	40% MeOH / 60% H ₂ O
Column #13 Sample 41	14344	12.0%	40% MeOH / 60% H ₂ O
Column #13 Sample 42	8221	6.9%	40% MeOH / 60% H ₂ O

Table A12, continued.

Column #13 Sample 43	7190	6.0%	40% MeOH / 60% H ₂ O
Column #13 Sample 44	10670	8.9%	40% MeOH / 60% H ₂ O
Column #13 Sample 45	8143	6.8%	40% MeOH / 60% H ₂ O
Column #13 Sample 46	4096	3.4%	40% MeOH / 60% H ₂ O
Column #13 Sample 47	8364	7.0%	40% MeOH / 60% H ₂ O
Column #13 Sample 48	1328	1.1%	40% MeOH / 60% H ₂ O
Column #13 Sample 49	20215	16.8%	40% MeOH / 60% H ₂ O
Column #13 Sample 50	20515	17.1%	transition
Column #13 Sample 51	17458	14.6%	50% MeOH / 50% H ₂ O
Column #13 Sample 52	8942	7.5%	50% MeOH / 50% H ₂ O
Column #13 Sample 53	9557	8.0%	50% MeOH / 50% H ₂ O
Column #13 Sample 54	8122	6.8%	50% MeOH / 50% H ₂ O
Column #13 Sample 55	9742	8.1%	50% MeOH / 50% H ₂ O
Column #13 Sample 56	3608	3.0%	50% MeOH / 50% H ₂ O
Column #13 Sample 57	3434	2.9%	50% MeOH / 50% H ₂ O
Column #13 Sample 58	3338	2.8%	50% MeOH / 50% H ₂ O
Column #13 Sample 59	2460	2.1%	50% MeOH / 50% H ₂ O
Column #13 Sample 60	11048	9.2%	50% MeOH / 50% H ₂ O
Column #13 Sample 61	19198	16.0%	transition
Column #13 Sample 62	15499	12.9%	60% MeOH / 40% H ₂ O
Column #13 Sample 63	28343	23.6%	60% MeOH / 40% H ₂ O
Column #13 Sample 64	14668	12.2%	60% MeOH / 40% H ₂ O
Column #13 Sample 65	25493	21.2%	60% MeOH / 40% H ₂ O
Column #13 Sample 66	20568	17.1%	60% MeOH / 40% H ₂ O
Column #13 Sample 67	29516	24.6%	60% MeOH / 40% H ₂ O
Column #13 Sample 68	20676	17.2%	60% MeOH / 40% H ₂ O
Column #13 Sample 69	26396	22.0%	60% MeOH / 40% H ₂ O
Column #13 Sample 70	28419	23.7%	60% MeOH / 40% H ₂ O
Column #13 Sample 71	27487	22.9%	transition
Column #13 Sample 72	19126	15.9%	70% MeOH / 30% H_2O
Column #13 Sample 73	7511	6.3%	70% MeOH / 30% H ₂ O
Column #13 Sample 74	522	0.4%	70% MeOH / 30% H ₂ O
Column #13 Sample 75	608	0.5%	70% MeOH / 30% H ₂ O

Table A12, continued.

			-
Column #13 Sample 76	731	0.6%	70% MeOH / 30% H_2O
Column #13 Sample 77	628	0.5%	70% MeOH / 30% H ₂ O
Column #13 Sample 78	4735	3.9%	70% MeOH / 30% H ₂ O
Column #13 Sample 79	5632	4.7%	70% MeOH / 30% H ₂ O
Column #13 Sample 80	697	0.6%	70% MeOH / 30% H ₂ O
Column #13 Sample 81	10194	8.5%	transition
Column #13 Sample 82	1179	1.0%	80% MeOH / 20% H ₂ O
Column #13 Sample 83	975	0.8%	80% MeOH / 20% H ₂ O
Column #13 Sample 84	277	0.2%	80% MeOH / 20% H ₂ O
Column #13 Sample 85	1087	0.9%	80% MeOH / 20% H ₂ O
Column #13 Sample 86	968	0.8%	80% MeOH / 20% H_2O
Column #13 Sample 87	2177	1.8%	80% MeOH / 20% H ₂ O
Column #13 Sample 88	179	0.1%	80% MeOH / 20% H ₂ O
Column #13 Sample 89	1629	1.4%	80% MeOH / 20% H ₂ O
Column #13 Sample 90	585	0.5%	80% MeOH / 20% H ₂ O
Column #13 Sample 91	26604	22.2%	80% MeOH / 20% H ₂ O

Table A13. Results for B16-F10 cell proliferation assay with Column #14 individual samples.

Sample Identity	СРМ	% Proliferation (Control = 100%)	Eluting Mobile Phase
Average Control	16646	100.0%	N/A
Average 10 mg/mL Elderberry	4744	28.5%	N/A
Column #14 Sample 1	86	0.5%	0% MeOH / 100% H ₂ O
Column #14 Sample 2	41	0.2%	0% MeOH / 100% H ₂ O
Column #14 Sample 3	42	0.3%	0% MeOH / 100% H ₂ O
Column #14 Sample 4	67	0.4%	0% MeOH / 100% H ₂ O
Column #14 Sample 5	38	0.2%	0% MeOH / 100% H ₂ O
Column #14 Sample 6	41	0.2%	transition
Column #14 Sample 7	53	0.3%	10% MeOH / 90% H ₂ O
Column #14 Sample 8	53	0.3%	10% MeOH / 90% H ₂ O
Column #14 Sample 9	39	0.2%	10% MeOH / 90% H ₂ O
Column #14 Sample 10	46	0.3%	10% MeOH / 90% H ₂ O
Table A13, continued.

Column #14 Sample 11	42	0.3%	10% MeOH / 90% H ₂ O
Column #14 Sample 12	63	0.4%	10% MeOH / 90% H ₂ O
Column #14 Sample 13	344	2.1%	10% MeOH / 90% H ₂ O
Column #14 Sample 14	526	3.2%	10% MeOH / 90% H ₂ O
Column #14 Sample 15	533	3.2%	10% MeOH / 90% H ₂ O
Column #14 Sample 16	667	4.0%	10% MeOH / 90% H ₂ O
Column #14 Sample 17	561	3.4%	transition
Column #14 Sample 18	418	2.5%	20% MeOH / 80% H ₂ O
Column #14 Sample 19	634	3.8%	20% MeOH / 80% H ₂ O
Column #14 Sample 20	4008	24.1%	20% MeOH / 80% H ₂ O
Column #14 Sample 21	15111	90.8%	$20\%~MeOH/80\%~H_2O$
Column #14 Sample 22	7658	46.0%	20% MeOH / 80% H ₂ O
Column #14 Sample 23	655	3.9%	20% MeOH / 80% H ₂ O
Column #14 Sample 24	1592	9.6%	20% MeOH / 80% H ₂ O
Column #14 Sample 25	648	3.9%	20% MeOH / 80% H ₂ O
Column #14 Sample 26	747	4.5%	20% MeOH / 80% H ₂ O
Column #14 Sample 27	749	4.5%	transition
Column #14 Sample 28	2536	15.2%	30% MeOH / 70% H ₂ O
Column #14 Sample 29	609	3.7%	30% MeOH / 70% H ₂ O
Column #14 Sample 30	4359	26.2%	30% MeOH / 70% H ₂ O
Column #14 Sample 31	3119	18.7%	30% MeOH / 70% H ₂ O
Column #14 Sample 32	1377	8.3%	30% MeOH / 70% H ₂ O
Column #14 Sample 33	1051	6.3%	30% MeOH / 70% H ₂ O
Column #14 Sample 34	699	4.2%	30% MeOH / 70% H ₂ O
Column #14 Sample 35	733	4.4%	30% MeOH / 70% H ₂ O
Column #14 Sample 36	778	4.7%	30% MeOH / 70% H ₂ O
Column #14 Sample 37	1696	10.2%	30% MeOH / 70% H ₂ O
Column #14 Sample 38	658	4.0%	transition
Column #14 Sample 39	605	3.6%	40% MeOH / 60% H ₂ O
Column #14 Sample 40	508	3.1%	40% MeOH / 60% H ₂ O
Column #14 Sample 41	22218	133.5%	40% MeOH / 60% H ₂ O
Column #14 Sample 42	5180	31.1%	40% MeOH / 60% H ₂ O
Column #14 Sample 43	663	4.0%	40% MeOH / 60% H ₂ O

Table A13, continued.

Column #14 Sample 44	1674	10.1%	40% MeOH / 60% H ₂ O
Column #14 Sample 45	712	4.3%	40% MeOH / 60% H ₂ O
Column #14 Sample 46	1472	8.8%	40% MeOH / 60% H ₂ O
Column #14 Sample 47	1112	6.7%	40% MeOH / 60% H ₂ O
Column #14 Sample 48	3987	24.0%	40% MeOH / 60% H ₂ O
Column #14 Sample 49	822	4.9%	transition
Column #14 Sample 50	10374	62.3%	50% MeOH / 50% H ₂ O
Column #14 Sample 51	6657	40.0%	50% MeOH / 50% H ₂ O
Column #14 Sample 52	5512	33.1%	50% MeOH / 50% H ₂ O
Column #14 Sample 53	5900	35.4%	50% MeOH / 50% H ₂ O
Column #14 Sample 54	903	5.4%	50% MeOH / 50% H ₂ O
Column #14 Sample 55	6245	37.5%	50% MeOH / 50% H ₂ O
Column #14 Sample 56	2997	18.0%	50% MeOH / 50% H ₂ O
Column #14 Sample 57	601	3.6%	50% MeOH / 50% H ₂ O
Column #14 Sample 58	862	5.2%	50% MeOH / 50% H ₂ O
Column #14 Sample 59	1756	10.5%	transition
Column #14 Sample 60	556	3.3%	60% MeOH / 40% H ₂ O
Column #14 Sample 61	5044	30.3%	60% MeOH / 40% H ₂ O
Column #14 Sample 62	1600	9.6%	60% MeOH / 40% H ₂ O
Column #14 Sample 63	1465	8.8%	60% MeOH / 40% H ₂ O
Column #14 Sample 64	617	3.7%	60% MeOH / 40% H ₂ O
Column #14 Sample 65	980	5.9%	60% MeOH / 40% H ₂ O
Column #14 Sample 66	1886	11.3%	60% MeOH / 40% H ₂ O
Column #14 Sample 67	239	1.4%	60% MeOH / 40% H ₂ O
Column #14 Sample 68	466	2.8%	60% MeOH / 40% H ₂ O
Column #14 Sample 69	4017	24.1%	60% MeOH / 40% H ₂ O
Column #14 Sample 70	1839	11.0%	transition
Column #14 Sample 71	633	3.8%	70% MeOH / 30% H ₂ O
Column #14 Sample 72	496	3.0%	70% MeOH / 30% H ₂ O
Column #14 Sample 73	249	1.5%	70% MeOH / 30% H ₂ O
Column #14 Sample 74	759	4.6%	70% MeOH / 30% H ₂ O
Column #14 Sample 75	408	2.5%	70% MeOH / 30% H ₂ O
Column #14 Sample 76	340	2.0%	70% MeOH / 30% H ₂ O

Table A13, continued.

Column #14 Sample 77	130	0.8%	70% MeOH / 30% H ₂ O
Column #14 Sample 78	209	1.3%	70% MeOH / 30% H ₂ O
Column #14 Sample 79	243	1.5%	70% MeOH / 30% H ₂ O
Column #14 Sample 80	1016	6.1%	transition
Column #14 Sample 81	1563	9.4%	80% MeOH / 20% H ₂ O
Column #14 Sample 82	2745	16.5%	$80\%~MeOH/20\%~H_2O$
Column #14 Sample 83	210	1.3%	80% MeOH / 20% H ₂ O
Column #14 Sample 84	799	4.8%	80% MeOH / 20% H ₂ O
Column #14 Sample 85	429	2.6%	80% MeOH / 20% H ₂ O
Column #14 Sample 86	1366	8.2%	80% MeOH / 20% H ₂ O
Column #14 Sample 87	417	2.5%	80% MeOH / 20% H_2O
Column #14 Sample 88	4573	27.5%	80% MeOH / 20% H ₂ O
Column #14 Sample 89	219	1.3%	80% MeOH / 20% H ₂ O

Table A14. Results for B16-F10 cell proliferation assay with Column #15 individual samples.

Sample Identity	СРМ	% Proliferation (Control = 100%)	Eluting Mobile Phase
Average Control	90426	100.0%	N/A
Average 10 mg/mL Elderberry	38638	42.7%	N/A
Column #15 Sample 1	294	0.3%	0% MeOH / 100% H ₂ O
Column #15 Sample 2	189	0.2%	0% MeOH / 100% H ₂ O
Column #15 Sample 3	66	0.1%	0% MeOH / 100% H ₂ O
Column #15 Sample 4	67	0.1%	0% MeOH / 100% H ₂ O
Column #15 Sample 5	59	0.1%	0% MeOH / 100% H ₂ O
Column #15 Sample 6	57	0.1%	0% MeOH / 100% H ₂ O
Column #15 Sample 7	57	0.1%	transition
Column #15 Sample 8	45	0.0%	10% MeOH / 90% H ₂ O
Column #15 Sample 9	186	0.2%	10% MeOH / 90% H ₂ O
Column #15 Sample 10	68	0.1%	10% MeOH / 90% H ₂ O
Column #15 Sample 11	56	0.1%	10% MeOH / 90% H ₂ O
Column #15 Sample 12	72	0.1%	10% MeOH / 90% H ₂ O
Column #15 Sample 13	549	0.6%	10% MeOH / 90% H ₂ O

Table A14, continued.

Column #15 Sample 14	1399	1.5%	10% MeOH / 90% H ₂ O
Column #15 Sample 15	1689	1.9%	10% MeOH / 90% H ₂ O
Column #15 Sample 16	820	0.9%	10% MeOH / 90% H ₂ O
Column #15 Sample 17	14695	16.3%	transition
Column #15 Sample 18	11516	12.7%	$20\%~MeOH/80\%~H_2O$
Column #15 Sample 19	11835	13.1%	$20\%~MeOH/80\%~H_2O$
Column #15 Sample 20	5660	6.3%	$20\%~MeOH/80\%~H_2O$
Column #15 Sample 21	24322	26.9%	$20\%~MeOH/80\%~H_2O$
Column #15 Sample 22	12245	13.5%	20% MeOH / 80% H ₂ O
Column #15 Sample 23	24769	27.4%	20% MeOH / 80% H ₂ O
Column #15 Sample 24	16067	17.8%	$20\%~MeOH/80\%~H_2O$
Column #15 Sample 25	16285	18.0%	$20\%~MeOH/80\%~H_2O$
Column #15 Sample 26	8849	9.8%	transition
Column #15 Sample 27	4507	5.0%	30% MeOH / 70% H ₂ O
Column #15 Sample 28	2892	3.2%	30% MeOH / 70% H ₂ O
Column #15 Sample 29	2597	2.9%	30% MeOH / 70% H ₂ O
Column #15 Sample 30	3533	3.9%	30% MeOH / 70% H ₂ O
Column #15 Sample 31	1954	2.2%	30% MeOH / 70% H ₂ O
Column #15 Sample 32	2707	3.0%	30% MeOH / 70% H ₂ O
Column #15 Sample 33	256	0.3%	30% MeOH / 70% H ₂ O
Column #15 Sample 34	5621	6.2%	30% MeOH / 70% H ₂ O
Column #15 Sample 35	15542	17.2%	30% MeOH / 70% H ₂ O
Column #15 Sample 36	20378	22.5%	30% MeOH / 70% H ₂ O
Column #15 Sample 37	10473	11.6%	transition
Column #15 Sample 38	10221	11.3%	40% MeOH / 60% H ₂ O
Column #15 Sample 39	9383	10.4%	40% MeOH / 60% H ₂ O
Column #15 Sample 40	15425	17.1%	$40\%~MeOH/60\%~H_2O$
Column #15 Sample 41	7464	8.3%	$40\%~MeOH/60\%~H_2O$
Column #15 Sample 42	21701	24.0%	$40\%~MeOH/60\%~H_2O$
Column #15 Sample 43	16474	18.2%	$40\%~MeOH/60\%~H_2O$
Column #15 Sample 44	22236	24.6%	40% MeOH / 60% H ₂ O
Column #15 Sample 45	9230	10.2%	40% MeOH / 60% H ₂ O
Column #15 Sample 46	3518	3.9%	40% MeOH / 60% H ₂ O

Table A14, continued.

Column #15 Sample 47	3846	4.3%	40% MeOH / 60% H ₂ O
Column #15 Sample 48	2820	3.1%	transition
Column #15 Sample 49	2920	3.2%	50% MeOH / 50% H ₂ O
Column #15 Sample 50	1993	2.2%	50% MeOH / 50% H ₂ O
Column #15 Sample 51	2038	2.3%	50% MeOH / 50% H ₂ O
Column #15 Sample 52	761	0.8%	50% MeOH / 50% H ₂ O
Column #15 Sample 53	1620	1.8%	50% MeOH / 50% H ₂ O
Column #15 Sample 54	4922	5.4%	50% MeOH / 50% H ₂ O
Column #15 Sample 55	26135	28.9%	50% MeOH / 50% H ₂ O
Column #15 Sample 56	11142	12.3%	50% MeOH / 50% H ₂ O
Column #15 Sample 57	9534	10.5%	50% MeOH / 50% H_2O
Column #15 Sample 58	11612	12.8%	50% MeOH / 50% H ₂ O
Column #15 Sample 59	12003	13.3%	transition
Column #15 Sample 60	19887	22.0%	60% MeOH / 40% H ₂ O
Column #15 Sample 61	23968	26.5%	60% MeOH / 40% H ₂ O
Column #15 Sample 62	15243	16.9%	$60\%~MeOH/40\%~H_2O$
Column #15 Sample 63	7486	8.3%	60% MeOH / 40% H_2O
Column #15 Sample 64	27139	30.0%	60% MeOH / 40% H ₂ O
Column #15 Sample 65	4835	5.3%	60% MeOH / 40% H ₂ O
Column #15 Sample 66	5862	6.5%	60% MeOH / 40% H_2O
Column #15 Sample 67	4974	5.5%	60% MeOH / 40% H ₂ O
Column #15 Sample 68	5770	6.4%	60% MeOH / 40% H ₂ O
Column #15 Sample 69	3060	3.4%	transition
Column #15 Sample 70	4314	4.8%	70% MeOH / 30% H ₂ O
Column #15 Sample 71	674	0.7%	70% MeOH / 30% H ₂ O
Column #15 Sample 72	1741	1.9%	70% MeOH / 30% H ₂ O
Column #15 Sample 73	1142	1.3%	70% MeOH / 30% H ₂ O
Column #15 Sample 74	1416	1.6%	70% MeOH / 30% H ₂ O
Column #15 Sample 75	18176	20.1%	70% MeOH / 30% H ₂ O
Column #15 Sample 76	15620	17.3%	70% MeOH / 30% H_2O
Column #15 Sample 77	9445	10.4%	70% MeOH / 30% H ₂ O
Column #15 Sample 78	13754	15.2%	transition
Column #15 Sample 79	16706	18.5%	80% MeOH / 20% H ₂ O

Table A14, continued.

Column #15 Sample 80	13186	14.6%	80% MeOH / 20% H ₂ O
Column #15 Sample 81	12010	13.3%	80% MeOH / 20% H ₂ O
Column #15 Sample 82	19324	21.4%	80% MeOH / 20% H ₂ O
Column #15 Sample 83	6747	7.5%	80% MeOH / 20% H ₂ O
Column #15 Sample 84	8147	9.0%	80% MeOH / 20% H ₂ O
Column #15 Sample 85	15487	17.1%	80% MeOH / 20% H ₂ O
Column #15 Sample 86	16579	18.3%	80% MeOH / 20% H ₂ O
Column #15 Sample 87	19463	21.5%	80% MeOH / 20% H ₂ O

Table A15. Results for B16-F10 cell proliferation assay with Column #16 individual samples.

Sample Identity	СРМ	% Proliferation (Control = 100%)	Eluting Mobile Phase
Average Control	12243	100.0%	N/A
Average 10 mg/mL Elderberry	5003	40.9%	N/A
Column #16 Sample 1	230	1.9%	0% MeOH / 100% H ₂ O
Column #16 Sample 2	427	3.5%	0% MeOH / 100% H ₂ O
Column #16 Sample 3	262	2.1%	0% MeOH / 100% H ₂ O
Column #16 Sample 4	235	1.9%	0% MeOH / 100% H ₂ O
Column #16 Sample 5	257	2.1%	0% MeOH / 100% H ₂ O
Column #16 Sample 6	269	2.2%	transition
Column #16 Sample 7	510	4.2%	10% MeOH / 90% H ₂ O
Column #16 Sample 8	211	1.7%	10% MeOH / 90% H ₂ O
Column #16 Sample 9	295	2.4%	10% MeOH / 90% H ₂ O
Column #16 Sample 10	294	2.4%	10% MeOH / 90% H ₂ O
Column #16 Sample 11	316	2.6%	10% MeOH / 90% H ₂ O
Column #16 Sample 12	323	2.6%	10% MeOH / 90% H ₂ O
Column #16 Sample 13	603	4.9%	10% MeOH / 90% H ₂ O
Column #16 Sample 14	501	4.1%	10% MeOH / 90% H ₂ O
Column #16 Sample 15	1612	13.2%	10% MeOH / 90% H ₂ O
Column #16 Sample 16	819	6.7%	10% MeOH / 90% H ₂ O
Column #16 Sample 17	1066	8.7%	transition
Column #16 Sample 18	904	7.4%	20% MeOH / 80% H ₂ O

Table A15, continued.

Column #16 Sample 19	1360	11.1%	20% MeOH / 80% H ₂ O
Column #16 Sample 20	1972	16.1%	20% MeOH / 80% H ₂ O
Column #16 Sample 21	3474	28.4%	20% MeOH / 80% H ₂ O
Column #16 Sample 22	1248	10.2%	20% MeOH / 80% H ₂ O
Column #16 Sample 23	4226	34.5%	20% MeOH / 80% H ₂ O
Column #16 Sample 24	8393	68.6%	20% MeOH / 80% H ₂ O
Column #16 Sample 25	5453	44.5%	20% MeOH / 80% H ₂ O
Column #16 Sample 26	2440	19.9%	20% MeOH / 80% H ₂ O
Column #16 Sample 27	1854	15.1%	20% MeOH / 80% H ₂ O
Column #16 Sample 28	1098	9.0%	transition
Column #16 Sample 29	920	7.5%	30% MeOH / 70% H ₂ O
Column #16 Sample 30	1866	15.2%	30% MeOH / 70% H ₂ O
Column #16 Sample 31	1198	9.8%	30% MeOH / 70% H ₂ O
Column #16 Sample 32	1182	9.7%	30% MeOH / 70% H ₂ O
Column #16 Sample 33	1152	9.4%	30% MeOH / 70% H ₂ O
Column #16 Sample 34	3867	31.6%	30% MeOH / 70% H ₂ O
Column #16 Sample 35	7811	63.8%	30% MeOH / 70% H ₂ O
Column #16 Sample 36	3604	29.4%	30% MeOH / 70% H ₂ O
Column #16 Sample 37	2525	20.6%	30% MeOH / 70% H ₂ O
Column #16 Sample 38	2282	18.6%	transition
Column #16 Sample 39	1355	11.1%	$40\%~MeOH/60\%~H_2O$
Column #16 Sample 40	3367	27.5%	$40\%~MeOH/60\%~H_2O$
Column #16 Sample 41	1507	12.3%	$40\%~MeOH/60\%~H_2O$
Column #16 Sample 42	5461	44.6%	$40\%~MeOH/60\%~H_2O$
Column #16 Sample 43	2881	23.5%	40% MeOH / 60% H_2O
Column #16 Sample 44	10573	86.4%	$40\%~MeOH/60\%~H_2O$
Column #16 Sample 45	5884	48.1%	$40\%~MeOH/60\%~H_2O$
Column #16 Sample 46	1957	16.0%	$40\%~\text{MeOH}/60\%~\text{H}_2\text{O}$
Column #16 Sample 47	1439	11.8%	$40\%~\text{MeOH}/60\%~\text{H}_2\text{O}$
Column #16 Sample 48	803	6.6%	transition
Column #16 Sample 49	1137	9.3%	50% MeOH / 50% H ₂ O
Column #16 Sample 50	1149	9.4%	50% MeOH / 50% H ₂ O
Column #16 Sample 51	945	7.7%	50% MeOH / 50% H ₂ O

Table A15, continued.

Column #16 Sample 52	690	5.6%	50% MeOH / 50% H ₂ O
Column #16 Sample 53	1404	11.5%	50% MeOH / 50% H ₂ O
Column #16 Sample 54	1265	10.3%	50% MeOH / 50% H ₂ O
Column #16 Sample 55	5611	45.8%	50% MeOH / 50% H ₂ O
Column #16 Sample 56	1151	9.4%	50% MeOH / 50% H ₂ O
Column #16 Sample 57	597	4.9%	50% MeOH / 50% H ₂ O
Column #16 Sample 58	1918	15.7%	50% MeOH / 50% H ₂ O
Column #16 Sample 59	1144	9.3%	transition
Column #16 Sample 60	828	6.8%	60% MeOH / 40% H ₂ O
Column #16 Sample 61	602	4.9%	60% MeOH / 40% H ₂ O
Column #16 Sample 62	1210	9.9%	60% MeOH / 40% H ₂ O
Column #16 Sample 63	1059	8.6%	60% MeOH / 40% H ₂ O
Column #16 Sample 64	1270	10.4%	60% MeOH / 40% H ₂ O
Column #16 Sample 65	7338	59.9%	60% MeOH / 40% H ₂ O
Column #16 Sample 66	2376	19.4%	60% MeOH / 40% H ₂ O
Column #16 Sample 67	1822	14.9%	60% MeOH / 40% H ₂ O
Column #16 Sample 68	4747	38.8%	60% MeOH / 40% H ₂ O
Column #16 Sample 69	2181	17.8%	transition
Column #16 Sample 70	1496	12.2%	70% MeOH / 30% H ₂ O
Column #16 Sample 71	607	5.0%	70% MeOH / 30% H ₂ O
Column #16 Sample 72	1903	15.5%	70% MeOH / 30% H ₂ O
Column #16 Sample 73	668	5.5%	70% MeOH / 30% H ₂ O
Column #16 Sample 74	1075	8.8%	70% MeOH / 30% H ₂ O
Column #16 Sample 75	2797	22.8%	70% MeOH / 30% H_2O
Column #16 Sample 76	1136	9.3%	70% MeOH / 30% H ₂ O
Column #16 Sample 77	96	0.8%	70% MeOH / 30% H ₂ O
Column #16 Sample 78	285	2.3%	70% MeOH / 30% H_2O
Column #16 Sample 79	586	4.8%	transition
Column #16 Sample 80	229	1.9%	80% MeOH / 20% H ₂ O
Column #16 Sample 81	269	2.2%	80% MeOH / 20% H ₂ O
Column #16 Sample 82	616	5.0%	80% MeOH / 20% H ₂ O
Column #16 Sample 83	645	5.3%	80% MeOH / 20% H ₂ O
Column #16 Sample 84	126	1.0%	$80\% MeOH / 20\% H_2O$

Table A15, continued.

Column #16 Sample 85	241	2.0%	$80\%~MeOH/20\%~H_2O$
Column #16 Sample 86	973	7.9%	$80\%~MeOH/20\%~H_2O$
Column #16 Sample 87	221	1.8%	80% MeOH / 20% H ₂ O
Column #16 Sample 88	219	1.8%	80% MeOH / 20% H ₂ O
Column #16 Sample 89	7578	61.9%	80% MeOH / 20% H ₂ O

Table A16. Results for B16-F10 cell proliferation assay with Column #17 individual samples.

Sample Identity	СРМ	% Proliferation (Control = 100%)	Eluting Mobile Phase
Average Control	12636	100.0%	N/A
Average 10 mg/mL Elderberry	4762	37.7%	N/A
Column #17 Sample 1	156	1.2%	0% MeOH / 100% H ₂ O
Column #17 Sample 2	189	1.5%	0% MeOH / 100% H ₂ O
Column #17 Sample 3	111	0.9%	0% MeOH / 100% H ₂ O
Column #17 Sample 4	92	0.7%	0% MeOH / 100% H ₂ O
Column #17 Sample 5	136	1.1%	0% MeOH / 100% H ₂ O
Column #17 Sample 6	97	0.8%	transition
Column #17 Sample 7	147	1.2%	10% MeOH / 90% H ₂ O
Column #17 Sample 8	121	1.0%	10% MeOH / 90% H ₂ O
Column #17 Sample 9	90	0.7%	10% MeOH / 90% H ₂ O
Column #17 Sample 10	112	0.9%	10% MeOH / 90% H ₂ O
Column #17 Sample 11	122	1.0%	10% MeOH / 90% H ₂ O
Column #17 Sample 12	131	1.0%	10% MeOH / 90% H ₂ O
Column #17 Sample 13	121	1.0%	10% MeOH / 90% H ₂ O
Column #17 Sample 14	305	2.4%	10% MeOH / 90% H ₂ O
Column #17 Sample 15	542	4.3%	10% MeOH / 90% H ₂ O
Column #17 Sample 16	459	3.6%	10% MeOH / 90% H ₂ O
Column #17 Sample 17	1918	15.2%	transition
Column #17 Sample 18	503	4.0%	20% MeOH / 80% H_2O
Column #17 Sample 19	1507	11.9%	20% MeOH / 80% H ₂ O
Column #17 Sample 20	3877	30.7%	20% MeOH / 80% H ₂ O
Column #17 Sample 21	3732	29.5%	20% MeOH / 80% H ₂ O

Table A16, continued.

Column #17 Sample 22	2625	20.8%	20% MeOH / 80% H ₂ O
Column #17 Sample 23	4216	33.4%	20% MeOH / 80% H ₂ O
Column #17 Sample 24	7476	59.2%	20% MeOH / 80% H ₂ O
Column #17 Sample 25	3981	31.5%	20% MeOH / 80% H ₂ O
Column #17 Sample 26	6780	53.7%	20% MeOH / 80% H ₂ O
Column #17 Sample 27	4777	37.8%	20% MeOH / 80% H ₂ O
Column #17 Sample 28	5275	41.7%	transition
Column #17 Sample 29	6261	49.5%	30% MeOH / 70% H ₂ O
Column #17 Sample 30	5656	44.8%	30% MeOH / 70% H ₂ O
Column #17 Sample 31	5160	40.8%	30% MeOH / 70% H ₂ O
Column #17 Sample 32	4414	34.9%	30% MeOH / 70% H ₂ O
Column #17 Sample 33	3905	30.9%	30% MeOH / 70% H ₂ O
Column #17 Sample 34	1441	11.4%	30% MeOH / 70% H ₂ O
Column #17 Sample 35	10035	79.4%	30% MeOH / 70% H ₂ O
Column #17 Sample 36	7212	57.1%	30% MeOH / 70% H ₂ O
Column #17 Sample 37	8585	67.9%	30% MeOH / 70% H ₂ O
Column #17 Sample 38	9140	72.3%	30% MeOH / 70% H ₂ O
Column #17 Sample 39	9598	76.0%	transition
Column #17 Sample 40	8918	70.6%	40% MeOH / 60% H ₂ O
Column #17 Sample 41	7615	60.3%	40% MeOH / 60% H ₂ O
Column #17 Sample 42	8191	64.8%	40% MeOH / 60% H ₂ O
Column #17 Sample 43	8419	66.6%	40% MeOH / 60% H ₂ O
Column #17 Sample 44	8912	70.5%	40% MeOH / 60% H ₂ O
Column #17 Sample 45	2719	21.5%	40% MeOH / 60% H ₂ O
Column #17 Sample 46	12177	96.4%	40% MeOH / 60% H ₂ O
Column #17 Sample 47	9601	76.0%	40% MeOH / 60% H ₂ O
Column #17 Sample 48	6001	47.5%	40% MeOH / 60% H ₂ O
Column #17 Sample 49	9766	77.3%	40% MeOH / 60% H ₂ O
Column #17 Sample 50	8305	65.7%	transition
Column #17 Sample 51	5150	40.8%	50% MeOH / 50% H ₂ O
Column #17 Sample 52	7661	60.6%	50% MeOH / 50% H ₂ O
Column #17 Sample 53	1656	13.1%	50% MeOH / 50% H ₂ O
Column #17 Sample 54	1403	11.1%	50% MeOH / 50% H ₂ O

Table A16, continued.

Column #17 Sample 55	1063	8.4%	50% MeOH / 50% H ₂ O
Column #17 Sample 56	5058	40.0%	50% MeOH / 50% H ₂ O
Column #17 Sample 57	177	1.4%	50% MeOH / 50% H ₂ O
Column #17 Sample 58	179	1.4%	50% MeOH / 50% H ₂ O
Column #17 Sample 59	271	2.1%	50% MeOH / 50% H ₂ O
Column #17 Sample 60	121	1.0%	transition
Column #17 Sample 61	203	1.6%	60% MeOH / 40% H ₂ O
Column #17 Sample 62	74	0.6%	60% MeOH / 40% H ₂ O
Column #17 Sample 63	129	1.0%	60% MeOH / 40% H ₂ O
Column #17 Sample 64	3321	26.3%	60% MeOH / 40% H ₂ O
Column #17 Sample 65	96	0.8%	60% MeOH / 40% H ₂ O
Column #17 Sample 66	126	1.0%	60% MeOH / 40% H ₂ O
Column #17 Sample 67	2011	15.9%	60% MeOH / 40% H ₂ O
Column #17 Sample 68	3645	28.8%	60% MeOH / 40% H ₂ O
Column #17 Sample 69	121	1.0%	transition
Column #17 Sample 70	1333	10.5%	70% MeOH / 30% H ₂ O
Column #17 Sample 71	89	0.7%	70% MeOH / 30% H ₂ O
Column #17 Sample 72	277	2.2%	70% MeOH / 30% H ₂ O
Column #17 Sample 73	443	3.5%	70% MeOH / 30% H ₂ O
Column #17 Sample 74	108	0.9%	70% MeOH / 30% H_2O
Column #17 Sample 75	141	1.1%	70% MeOH / 30% H ₂ O
Column #17 Sample 76	109	0.9%	70% MeOH / 30% H ₂ O
Column #17 Sample 77	161	1.3%	70% MeOH / 30% H ₂ O
Column #17 Sample 78	1250	9.9%	70% MeOH / 30% H ₂ O
Column #17 Sample 79	6224	49.3%	70% MeOH / 30% H ₂ O
Column #17 Sample 80	2440	19.3%	transition
Column #17 Sample 81	6764	53.5%	80% MeOH / 20% H ₂ O
Column #17 Sample 82	10156	80.4%	80% MeOH / 20% H ₂ O
Column #17 Sample 83	5374	42.5%	80% MeOH / 20% H ₂ O
Column #17 Sample 84	7535	59.6%	80% MeOH / 20% H ₂ O
Column #17 Sample 85	5982	47.3%	80% MeOH / 20% H ₂ O
Column #17 Sample 86	3996	31.6%	80% MeOH / 20% H ₂ O
Column #17 Sample 87	93	0.7%	80% MeOH / 20% H ₂ O

Table A16, continued.

Column #17 Sample 88	107	0.8%	$80\%~MeOH/20\%~H_2O$
Column #17 Sample 89	13533	107.1%	80% MeOH / 20% H ₂ O

Table A17. Results for B16-F10 cell proliferation as	ssay with Column #18 individual
samples.	

Sample Identity	СРМ	% Proliferation (Control = 100%)	Eluting Mobile Phase
Average Control	7159	100.0%	N/A
Average 10 mg/mL Elderberry	2257	31.5%	N/A
Column #18 Sample 1	154	2.2%	0% MeOH / 100% H ₂ O
Column #18 Sample 2	243	3.4%	0% MeOH / 100% H ₂ O
Column #18 Sample 3	158	2.2%	0% MeOH / 100% H ₂ O
Column #18 Sample 4	82	1.1%	0% MeOH / 100% H ₂ O
Column #18 Sample 5	103	1.4%	0% MeOH / 100% H ₂ O
Column #18 Sample 6	136	1.9%	transition
Column #18 Sample 7	97	1.4%	10% MeOH / 90% H ₂ O
Column #18 Sample 8	95	1.3%	10% MeOH / 90% H ₂ O
Column #18 Sample 9	101	1.4%	10% MeOH / 90% H ₂ O
Column #18 Sample 10	79	1.1%	10% MeOH / 90% H ₂ O
Column #18 Sample 11	90	1.3%	10% MeOH / 90% H ₂ O
Column #18 Sample 12	330	4.6%	10% MeOH / 90% H ₂ O
Column #18 Sample 13	101	1.4%	10% MeOH / 90% H ₂ O
Column #18 Sample 14	162	2.3%	10% MeOH / 90% H ₂ O
Column #18 Sample 15	145	2.0%	10% MeOH / 90% H ₂ O
Column #18 Sample 16	1488	20.8%	10% MeOH / 90% H ₂ O
Column #18 Sample 17	579	8.1%	transition
Column #18 Sample 18	133	1.9%	20% MeOH / 80% H ₂ O
Column #18 Sample 19	130	1.8%	20% MeOH / 80% H ₂ O
Column #18 Sample 20	136	1.9%	20% MeOH / 80% H ₂ O
Column #18 Sample 21	135	1.9%	20% MeOH / 80% H ₂ O
Column #18 Sample 22	532	7.4%	20% MeOH / 80% H ₂ O
Column #18 Sample 23	896	12.5%	20% MeOH / 80% H ₂ O
Column #18 Sample 24	112	1.6%	20% MeOH / 80% H ₂ O
Column #18 Sample 25	633	8.8%	20% MeOH / 80% H ₂ O

Table A17, continued.

Column #18 Sample 26	2732	38.2%	20% MeOH / 80% H ₂ O
Column #18 Sample 27	3728	52.1%	transition
Column #18 Sample 28	1597	22.3%	30% MeOH / 70% H ₂ O
Column #18 Sample 29	2679	37.4%	30% MeOH / 70% H ₂ O
Column #18 Sample 30	3010	42.0%	30% MeOH / 70% H ₂ O
Column #18 Sample 31	82	1.1%	30% MeOH / 70% H ₂ O
Column #18 Sample 32	1403	19.6%	30% MeOH / 70% H ₂ O
Column #18 Sample 33	60	0.8%	30% MeOH / 70% H ₂ O
Column #18 Sample 34	2194	30.6%	30% MeOH / 70% H ₂ O
Column #18 Sample 35	180	2.5%	30% MeOH / 70% H ₂ O
Column #18 Sample 36	1210	16.9%	30% MeOH / 70% H ₂ O
Column #18 Sample 37	6253	87.3%	30% MeOH / 70% H ₂ O
Column #18 Sample 38	4524	63.2%	transition
Column #18 Sample 39	129	1.8%	40% MeOH / 60% H ₂ O
Column #18 Sample 40	2074	29.0%	40% MeOH / 60% H ₂ O
Column #18 Sample 41	4386	61.3%	40% MeOH / 60% H ₂ O
Column #18 Sample 42	3188	44.5%	40% MeOH / 60% H ₂ O
Column #18 Sample 43	1287	18.0%	40% MeOH / 60% H ₂ O
Column #18 Sample 44	1862	26.0%	40% MeOH / 60% H ₂ O
Column #18 Sample 45	2052	28.7%	40% MeOH / 60% H ₂ O
Column #18 Sample 46	1945	27.2%	40% MeOH / 60% H ₂ O
Column #18 Sample 47	3008	42.0%	40% MeOH / 60% H ₂ O
Column #18 Sample 48	2110	29.5%	40% MeOH / 60% H ₂ O
Column #18 Sample 49	3303	46.1%	transition
Column #18 Sample 50	2199	30.7%	50% MeOH / 50% H ₂ O
Column #18 Sample 51	2041	28.5%	50% MeOH / 50% H ₂ O
Column #18 Sample 52	1765	24.7%	50% MeOH / 50% H ₂ O
Column #18 Sample 53	2111	29.5%	50% MeOH / 50% H ₂ O
Column #18 Sample 54	1948	27.2%	50% MeOH / 50% H ₂ O
Column #18 Sample 55	4796	67.0%	50% MeOH / 50% H ₂ O
Column #18 Sample 56	6866	95.9%	50% MeOH / 50% H ₂ O
Column #18 Sample 57	1970	27.5%	50% MeOH / 50% H ₂ O
Column #18 Sample 58	8151	113.9%	50% MeOH / 50% H ₂ O

Table A17, continued.

Column #18 Sample 59	4958	69.3%	50% MeOH / 50% H ₂ O
Column #18 Sample 60	215	3.0%	transition
Column #18 Sample 61	3647	50.9%	60% MeOH / 40% H ₂ O
Column #18 Sample 62	1741	24.3%	60% MeOH / 40% H ₂ O
Column #18 Sample 63	8061	112.6%	60% MeOH / 40% H ₂ O
Column #18 Sample 64	4158	58.1%	60% MeOH / 40% H ₂ O
Column #18 Sample 65	2941	41.1%	60% MeOH / 40% H ₂ O
Column #18 Sample 66	1799	25.1%	60% MeOH / 40% H ₂ O
Column #18 Sample 67	2895	40.4%	60% MeOH / 40% H ₂ O
Column #18 Sample 68	1268	17.7%	60% MeOH / 40% H ₂ O
Column #18 Sample 69	1656	23.1%	60% MeOH / 40% H ₂ O
Column #18 Sample 70	1624	22.7%	60% MeOH / 40% H ₂ O
Column #18 Sample 71	1772	24.8%	transition
Column #18 Sample 72	323	4.5%	70% MeOH / 30% H ₂ O
Column #18 Sample 73	535	7.5%	70% MeOH / 30% H ₂ O
Column #18 Sample 74	983	13.7%	70% MeOH / 30% H ₂ O
Column #18 Sample 75	380	5.3%	70% MeOH / 30% H ₂ O
Column #18 Sample 76	114	1.6%	70% MeOH / 30% H ₂ O
Column #18 Sample 77	132	1.8%	70% MeOH / 30% H ₂ O
Column #18 Sample 78	116	1.6%	70% MeOH / 30% H ₂ O
Column #18 Sample 79	88	1.2%	70% MeOH / 30% H ₂ O
Column #18 Sample 80	176	2.5%	70% MeOH / 30% H ₂ O
Column #18 Sample 81	108	1.5%	transition
Column #18 Sample 82	123	1.7%	80% MeOH / 20% H ₂ O
Column #18 Sample 83	134	1.9%	80% MeOH / 20% H ₂ O
Column #18 Sample 84	88	1.2%	80% MeOH / 20% H ₂ O
Column #18 Sample 85	93	1.3%	80% MeOH / 20% H ₂ O
Column #18 Sample 86	148	2.1%	80% MeOH / 20% H ₂ O
Column #18 Sample 87	90	1.3%	80% MeOH / 20% H ₂ O
Column #18 Sample 88	70	1.0%	80% MeOH / 20% H ₂ O
Column #18 Sample 89	82	1.1%	80% MeOH / 20% H ₂ O
Column #18 Sample 90	76	1.1%	80% MeOH / 20% H ₂ O
Column #18 Sample 91	1348	18.8%	80% MeOH / 20% H ₂ O

Sample Identity	СРМ	% Proliferation (Control = 100%)	Eluting Mobile Phase
Average Control	14189	100.0%	N/A
Average 10 mg/mL Elderberry	3525	24.8%	N/A
Column #19 Sample 1	110	0.8%	0% MeOH / 100% H ₂ O
Column #19 Sample 2	140	1.0%	0% MeOH / 100% H ₂ O
Column #19 Sample 3	133	0.9%	0% MeOH / 100% H ₂ O
Column #19 Sample 4	84	0.6%	0% MeOH / 100% H ₂ O
Column #19 Sample 5	69	0.5%	transition
Column #19 Sample 6	74	0.5%	10% MeOH / 90% H ₂ O
Column #19 Sample 7	81	0.6%	10% MeOH / 90% H ₂ O
Column #19 Sample 8	85	0.6%	10% MeOH / 90% H ₂ O
Column #19 Sample 9	95	0.7%	10% MeOH / 90% H ₂ O
Column #19 Sample 10	119	0.8%	10% MeOH / 90% H ₂ O
Column #19 Sample 11	85	0.6%	10% MeOH / 90% H ₂ O
Column #19 Sample 12	68	0.5%	10% MeOH / 90% H ₂ O
Column #19 Sample 13	96	0.7%	10% MeOH / 90% H ₂ O
Column #19 Sample 14	89	0.6%	10% MeOH / 90% H ₂ O
Column #19 Sample 15	96	0.7%	10% MeOH / 90% H ₂ O
Column #19 Sample 16	115	0.8%	transition
Column #19 Sample 17	100	0.7%	20% MeOH / 80% H ₂ O
Column #19 Sample 18	164	1.2%	20% MeOH / 80% H ₂ O
Column #19 Sample 19	651	4.6%	$20\%~MeOH/80\%~H_2O$
Column #19 Sample 20	2371	16.7%	$20\%~MeOH/80\%~H_2O$
Column #19 Sample 21	781	5.5%	$20\% \ MeOH \ / \ 80\% \ H_2O$
Column #19 Sample 22	2895	20.4%	$20\%~MeOH/80\%~H_2O$
Column #19 Sample 23	99	0.7%	20% MeOH / 80% H ₂ O
Column #19 Sample 24	147	1.0%	20% MeOH / 80% H ₂ O
Column #19 Sample 25	120	0.8%	20% MeOH / 80% H ₂ O
Column #19 Sample 26	2374	16.7%	20% MeOH / 80% H ₂ O
Column #19 Sample 27	67	0.5%	transition
Column #19 Sample 28	77	0.5%	30% MeOH / 70% H ₂ O
Column #19 Sample 29	71	0.5%	30% MeOH / 70% H ₂ O
Column #19 Sample 30	1426	10.1%	30% MeOH / 70% H ₂ O
Column #19 Sample 31	61	0.4%	30% MeOH / 70% H ₂ O

Table A18. Results for B16-F10 cell proliferation assay with Column #19 individual samples.

Table A18, continued.

Column #19 Sample 32	88	0.6%	30% MeOH / 70% H ₂ O
Column #19 Sample 33	77	0.5%	30% MeOH / 70% H ₂ O
Column #19 Sample 34	2334	16.4%	30% MeOH / 70% H ₂ O
Column #19 Sample 35	97	0.7%	30% MeOH / 70% H ₂ O
Column #19 Sample 36	107	0.8%	30% MeOH / 70% H ₂ O
Column #19 Sample 37	1808	12.7%	30% MeOH / 70% H ₂ O
Column #19 Sample 38	696	4.9%	transition
Column #19 Sample 39	107	0.8%	40% MeOH / 60% H ₂ O
Column #19 Sample 40	154	1.1%	40% MeOH / 60% H ₂ O
Column #19 Sample 41	70	0.5%	40% MeOH / 60% H ₂ O
Column #19 Sample 42	104	0.7%	40% MeOH / 60% H ₂ O
Column #19 Sample 43	133	0.9%	40% MeOH / 60% H ₂ O
Column #19 Sample 44	5219	36.8%	40% MeOH / 60% H ₂ O
Column #19 Sample 45	234	1.6%	40% MeOH / 60% H ₂ O
Column #19 Sample 46	67	0.5%	40% MeOH / 60% H ₂ O
Column #19 Sample 47	302	2.1%	40% MeOH / 60% H ₂ O
Column #19 Sample 48	890	6.3%	40% MeOH / 60% H ₂ O
Column #19 Sample 49	139	1.0%	transition
Column #19 Sample 50	6012	42.4%	50% MeOH / 50% H ₂ O
Column #19 Sample 51	4316	30.4%	50% MeOH / 50% H ₂ O
Column #19 Sample 52	6799	47.9%	50% MeOH / 50% H ₂ O
Column #19 Sample 53	2706	19.1%	50% MeOH / 50% H ₂ O
Column #19 Sample 54	3463	24.4%	50% MeOH / 50% H ₂ O
Column #19 Sample 55	7213	50.8%	50% MeOH / 50% H ₂ O
Column #19 Sample 56	12487	88.0%	50% MeOH / 50% H ₂ O
Column #19 Sample 57	11205	79.0%	50% MeOH / 50% H ₂ O
Column #19 Sample 58	4939	34.8%	50% MeOH / 50% H ₂ O
Column #19 Sample 59	6616	46.6%	50% MeOH / 50% H ₂ O
Column #19 Sample 60	8650	61.0%	transition
Column #19 Sample 61	844	5.9%	60% MeOH / 40% H ₂ O
Column #19 Sample 62	995	7.0%	60% MeOH / 40% H ₂ O
Column #19 Sample 63	108	0.8%	60% MeOH / 40% H ₂ O
Column #19 Sample 64	257	1.8%	60% MeOH / 40% H ₂ O

Table A18, continued.

Column #19 Sample 65	59	0.4%	60% MeOH / 40% H ₂ O
Column #19 Sample 66	3018	21.3%	60% MeOH / 40% H ₂ O
Column #19 Sample 67	84	0.6%	60% MeOH / 40% H ₂ O
Column #19 Sample 68	76	0.5%	60% MeOH / 40% H ₂ O
Column #19 Sample 69	94	0.7%	60% MeOH / 40% H ₂ O
Column #19 Sample 70	167	1.2%	transition
Column #19 Sample 71	2344	16.5%	70% MeOH / 30% H ₂ O
Column #19 Sample 72	1006	7.1%	70% MeOH / 30% H ₂ O
Column #19 Sample 73	114	0.8%	70% MeOH / 30% H ₂ O
Column #19 Sample 74	1057	7.4%	70% MeOH / 30% H ₂ O
Column #19 Sample 75	665	4.7%	70% MeOH / 30% H ₂ O
Column #19 Sample 76	6545	46.1%	70% MeOH / 30% H ₂ O
Column #19 Sample 77	4760	33.5%	70% MeOH / 30% H ₂ O
Column #19 Sample 78	3325	23.4%	70% MeOH / 30% H ₂ O
Column #19 Sample 79	415	2.9%	70% MeOH / 30% H ₂ O
Column #19 Sample 80	1399	9.9%	70% MeOH / 30% H ₂ O
Column #19 Sample 81	1633	11.5%	transition
Column #19 Sample 82	119	0.8%	80% MeOH / 20% H ₂ O
Column #19 Sample 83	197	1.4%	80% MeOH / 20% H ₂ O
Column #19 Sample 84	341	2.4%	80% MeOH / 20% H ₂ O
Column #19 Sample 85	81	0.6%	80% MeOH / 20% H ₂ O
Column #19 Sample 86	98	0.7%	80% MeOH / 20% H ₂ O
Column #19 Sample 87	122	0.9%	80% MeOH / 20% H ₂ O
Column #19 Sample 88	78	0.5%	80% MeOH / 20% H ₂ O
Column #19 Sample 89	104	0.7%	80% MeOH / 20% H ₂ O
Column #19 Sample 90	118	0.8%	80% MeOH / 20% H ₂ O
Column #19 Sample 91	167	1.2%	80% MeOH / 20% H ₂ O

Sample Identity	СРМ	% Proliferation (Control = 100%)	Eluting Mobile Phase
Average Control	35762	100.0%	N/A
Average 10 mg/mL Elderberry	14552	40.7%	N/A
Column #20 Sample 1	160	0.4%	0% MeOH / 100% H ₂ O
Column #20 Sample 2	131	0.4%	0% MeOH / 100% H ₂ O
Column #20 Sample 3	96	0.3%	0% MeOH / 100% H ₂ O
Column #20 Sample 4	51	0.1%	0% MeOH / 100% H ₂ O
Column #20 Sample 5	102	0.3%	0% MeOH / 100% H ₂ O
Column #20 Sample 6	53	0.1%	0% MeOH / 100% H ₂ O
Column #20 Sample 7	51	0.1%	transition
Column #20 Sample 8	23	0.1%	10% MeOH / 90% H ₂ O
Column #20 Sample 9	50	0.1%	10% MeOH / 90% H ₂ O
Column #20 Sample 10	94	0.3%	10% MeOH / 90% H ₂ O
Column #20 Sample 11	71	0.2%	10% MeOH / 90% H ₂ O
Column #20 Sample 12	87	0.2%	10% MeOH / 90% H ₂ O
Column #20 Sample 13	53	0.1%	10% MeOH / 90% H ₂ O
Column #20 Sample 14	78	0.2%	10% MeOH / 90% H ₂ O
Column #20 Sample 15	105	0.3%	10% MeOH / 90% H ₂ O
Column #20 Sample 16	1799	5.0%	10% MeOH / 90% H ₂ O
Column #20 Sample 17	154	0.4%	10% MeOH / 90% H ₂ O
Column #20 Sample 18	656	1.8%	transition
Column #20 Sample 19	11099	31.0%	20% MeOH / 80% H ₂ O
Column #20 Sample 20	1056	3.0%	$20\%\ MeOH/80\%\ H_2O$
Column #20 Sample 21	4232	11.8%	$20\%\ MeOH\ /\ 80\%\ H_2O$
Column #20 Sample 22	165	0.5%	$20\%~MeOH/80\%~H_2O$
Column #20 Sample 23	4796	13.4%	$20\%~MeOH/80\%~H_2O$
Column #20 Sample 24	23703	66.3%	$20\%~MeOH/80\%~H_2O$
Column #20 Sample 25	1200	3.4%	$20\%~MeOH/80\%~H_2O$
Column #20 Sample 26	17718	49.5%	$20\%~MeOH/80\%~H_2O$
Column #20 Sample 27	20270	56.7%	transition
Column #20 Sample 28	1072	3.0%	30% MeOH / 70% H ₂ O
Column #20 Sample 29	194	0.5%	30% MeOH / 70% H ₂ O
Column #20 Sample 30	95	0.3%	30% MeOH / 70% H ₂ O
Column #20 Sample 31	3092	8.6%	30% MeOH / 70% H ₂ O

Table A19. Results for B16-F10 cell proliferation assay with Column #20 individual samples.

Table A19, continued.

Column #20 Sample 32	98	0.3%	30% MeOH / 70% H ₂ O
Column #20 Sample 33	96	0.3%	30% MeOH / 70% H ₂ O
Column #20 Sample 34	2268	6.3%	30% MeOH / 70% H ₂ O
Column #20 Sample 35	290	0.8%	30% MeOH / 70% H ₂ O
Column #20 Sample 36	129	0.4%	30% MeOH / 70% H ₂ O
Column #20 Sample 37	165	0.5%	30% MeOH / 70% H ₂ O
Column #20 Sample 38	212	0.6%	transition
Column #20 Sample 39	130	0.4%	40% MeOH / 60% H ₂ O
Column #20 Sample 40	190	0.5%	40% MeOH / 60% H ₂ O
Column #20 Sample 41	109	0.3%	40% MeOH / 60% H ₂ O
Column #20 Sample 42	3422	9.6%	$40\%~MeOH/60\%~H_2O$
Column #20 Sample 43	37291	104.3%	40% MeOH / 60% H ₂ O
Column #20 Sample 44	8214	23.0%	40% MeOH / 60% H ₂ O
Column #20 Sample 45	129	0.4%	$40\%~MeOH/60\%~H_2O$
Column #20 Sample 46	162	0.5%	$40\%~MeOH/60\%~H_2O$
Column #20 Sample 47	472	1.3%	$40\%~MeOH/60\%~H_2O$
Column #20 Sample 48	12078	33.8%	$40\%~MeOH/60\%~H_2O$
Column #20 Sample 49	2068	5.8%	transition
Column #20 Sample 50	95	0.3%	50% MeOH / 50% H ₂ O
Column #20 Sample 51	2042	5.7%	50% MeOH / 50% H ₂ O
Column #20 Sample 52	4100	11.5%	50% MeOH / 50% H ₂ O
Column #20 Sample 53	85	0.2%	50% MeOH / 50% H ₂ O
Column #20 Sample 54	15569	43.5%	50% MeOH / 50% H ₂ O
Column #20 Sample 55	140	0.4%	50% MeOH / 50% H ₂ O
Column #20 Sample 56	16609	46.4%	50% MeOH / 50% H_2O
Column #20 Sample 57	990	2.8%	50% MeOH / 50% H ₂ O
Column #20 Sample 58	4106	11.5%	50% MeOH / 50% H_2O
Column #20 Sample 59	1515	4.2%	transition
Column #20 Sample 60	140	0.4%	60% MeOH / 40% H ₂ O
Column #20 Sample 61	99	0.3%	60% MeOH / 40% H ₂ O
Column #20 Sample 62	2519	7.0%	60% MeOH / 40% H ₂ O
Column #20 Sample 63	115	0.3%	60% MeOH / 40% H ₂ O
Column #20 Sample 64	6449	18.0%	$60\%~MeOH/40\%~H_2O$

Table A19, continued.

Column #20 Sample 65	84	0.2%	60% MeOH / 40% H ₂ O
Column #20 Sample 66	93	0.3%	60% MeOH / 40% H ₂ O
Column #20 Sample 67	2420	6.8%	60% MeOH / 40% H ₂ O
Column #20 Sample 68	16925	47.3%	60% MeOH / 40% H ₂ O
Column #20 Sample 69	78	0.2%	transition
Column #20 Sample 70	131	0.4%	70% MeOH / 30% H ₂ O
Column #20 Sample 71	5219	14.6%	70% MeOH / 30% H ₂ O
Column #20 Sample 72	5159	14.4%	70% MeOH / 30% H ₂ O
Column #20 Sample 73	1527	4.3%	70% MeOH / 30% H ₂ O
Column #20 Sample 74	766	2.1%	70% MeOH / 30% H ₂ O
Column #20 Sample 75	2215	6.2%	70% MeOH / 30% H ₂ O
Column #20 Sample 76	191	0.5%	70% MeOH / 30% H ₂ O
Column #20 Sample 77	651	1.8%	70% MeOH / 30% H ₂ O
Column #20 Sample 78	1326	3.7%	70% MeOH / 30% H ₂ O
Column #20 Sample 79	136	0.4%	transition
Column #20 Sample 80	161	0.5%	80% MeOH / 20% H ₂ O
Column #20 Sample 81	240	0.7%	80% MeOH / 20% H ₂ O
Column #20 Sample 82	164	0.5%	80% MeOH / 20% H ₂ O
Column #20 Sample 83	1283	3.6%	80% MeOH / 20% H ₂ O
Column #20 Sample 84	82	0.2%	80% MeOH / 20% H ₂ O
Column #20 Sample 85	238	0.7%	80% MeOH / 20% H ₂ O
Column #20 Sample 86	65	0.2%	80% MeOH / 20% H ₂ O
Column #20 Sample 87	44	0.1%	80% MeOH / 20% H ₂ O
Column #20 Sample 88	128	0.4%	80% MeOH / 20% H ₂ O
Column #20 Sample 89	293	0.8%	80% MeOH / 20% H ₂ O

Table A20. Results for B16-F10 cell proliferation assay with Column #21 individual samples.

Sample Identity	СРМ	% Proliferation (Control = 100%)	Eluting Mobile Phase
Average Control	38021	100.0%	N/A
Average 10 mg/mL Elderberry	14552	38.3%	N/A

Table A20, continued.

Column #21 Sample 1	96	0.3%	0% MeOH / 100% H_2O
Column #21 Sample 2	136	0.4%	0% MeOH / 100% H_2O
Column #21 Sample 3	99	0.3%	0% MeOH / 100% H ₂ O
Column #21 Sample 4	91	0.2%	0% MeOH / 100% H ₂ O
Column #21 Sample 5	85	0.2%	0% MeOH / 100% H ₂ O
Column #21 Sample 6	47	0.1%	transition
Column #21 Sample 7	50	0.1%	10% MeOH / 90% H ₂ O
Column #21 Sample 8	67	0.2%	10% MeOH / 90% H ₂ O
Column #21 Sample 9	60	0.2%	10% MeOH / 90% H ₂ O
Column #21 Sample 10	58	0.2%	10% MeOH / 90% H ₂ O
Column #21 Sample 11	58	0.2%	10% MeOH / 90% H ₂ O
Column #21 Sample 12	54	0.1%	10% MeOH / 90% H ₂ O
Column #21 Sample 13	3843	10.1%	10% MeOH / 90% H ₂ O
Column #21 Sample 14	196	0.5%	10% MeOH / 90% H ₂ O
Column #21 Sample 15	184	0.5%	10% MeOH / 90% H ₂ O
Column #21 Sample 16	12791	33.6%	10% MeOH / 90% H ₂ O
Column #21 Sample 17	380	1.0%	transition
Column #21 Sample 18	935	2.5%	20% MeOH / 80% H ₂ O
Column #21 Sample 19	6919	18.2%	20% MeOH / 80% H ₂ O
Column #21 Sample 20	4023	10.6%	$20\%~MeOH/80\%~H_2O$
Column #21 Sample 21	6186	16.3%	20% MeOH / 80% H ₂ O
Column #21 Sample 22	19949	52.5%	20% MeOH / 80% H ₂ O
Column #21 Sample 23	17975	47.3%	20% MeOH / 80% H ₂ O
Column #21 Sample 24	24311	63.9%	20% MeOH / 80% H ₂ O
Column #21 Sample 25	7850	20.6%	20% MeOH / 80% H_2O
Column #21 Sample 26	10454	27.5%	20% MeOH / 80% H ₂ O
Column #21 Sample 27	12937	34.0%	$20\%~MeOH/80\%~H_2O$
Column #21 Sample 28	7587	20.0%	transition
Column #21 Sample 29	13765	36.2%	30% MeOH / 70% H ₂ O
Column #21 Sample 30	14369	37.8%	30% MeOH / 70% H_2O
Column #21 Sample 31	9125	24.0%	30% MeOH / 70% H ₂ O
Column #21 Sample 32	7569	19.9%	30% MeOH / 70% H_2O
Column #21 Sample 33	14767	38.8%	30% MeOH / 70% H ₂ O

Table A20, continued.

Column #21 Sample 34	10543	27.7%	30% MeOH / 70% H ₂ O
Column #21 Sample 35	19302	50.8%	30% MeOH / 70% H ₂ O
Column #21 Sample 36	570	1.5%	30% MeOH / 70% H ₂ O
Column #21 Sample 37	14932	39.3%	30% MeOH / 70% H ₂ O
Column #21 Sample 38	21155	55.6%	30% MeOH / 70% H ₂ O
Column #21 Sample 39	14183	37.3%	transition
Column #21 Sample 40	10244	26.9%	40% MeOH / 60% H ₂ O
Column #21 Sample 41	23292	61.3%	40% MeOH / 60% H ₂ O
Column #21 Sample 42	16579	43.6%	40% MeOH / 60% H ₂ O
Column #21 Sample 43	18850	49.6%	40% MeOH / 60% H ₂ O
Column #21 Sample 44	20927	55.0%	40% MeOH / 60% H ₂ O
Column #21 Sample 45	21599	56.8%	40% MeOH / 60% H ₂ O
Column #21 Sample 46	17394	45.7%	40% MeOH / 60% H ₂ O
Column #21 Sample 47	22453	59.1%	40% MeOH / 60% H ₂ O
Column #21 Sample 48	13953	36.7%	40% MeOH / 60% H ₂ O
Column #21 Sample 49	21775	57.3%	40% MeOH / 60% H ₂ O
Column #21 Sample 50	12429	32.7%	transition
Column #21 Sample 51	20614	54.2%	50% MeOH / 50% H ₂ O
Column #21 Sample 52	24273	63.8%	50% MeOH / 50% H ₂ O
Column #21 Sample 53	17061	44.9%	50% MeOH / 50% H ₂ O
Column #21 Sample 54	17081	44.9%	50% MeOH / 50% H ₂ O
Column #21 Sample 55	16210	42.6%	50% MeOH / 50% H ₂ O
Column #21 Sample 56	5639	14.8%	50% MeOH / 50% H ₂ O
Column #21 Sample 57	22204	58.4%	50% MeOH / 50% H ₂ O
Column #21 Sample 58	14208	37.4%	50% MeOH / 50% H_2O
Column #21 Sample 59	19493	51.3%	50% MeOH / 50% H ₂ O
Column #21 Sample 60	24914	65.5%	50% MeOH / 50% H_2O
Column #21 Sample 61	626	1.6%	transition
Column #21 Sample 62	196	0.5%	60% MeOH / 40% H ₂ O
Column #21 Sample 63	2090	5.5%	60% MeOH / 40% H ₂ O
Column #21 Sample 64	80	0.2%	60% MeOH / 40% H ₂ O
Column #21 Sample 65	10509	27.6%	60% MeOH / 40% H ₂ O
Column #21 Sample 66	9665	25.4%	60% MeOH / 40% H ₂ O

Table A20, continued.

Column #21 Sample 67	5605	14.7%	60% MeOH / 40% H ₂ O
Column #21 Sample 68	3486	9.2%	60% MeOH / 40% H ₂ O
Column #21 Sample 69	1662	4.4%	60% MeOH / 40% H ₂ O
Column #21 Sample 70	5915	15.6%	60% MeOH / 40% H ₂ O
Column #21 Sample 71	13871	36.5%	60% MeOH / 40% H ₂ O
Column #21 Sample 72	79	0.2%	transition
Column #21 Sample 73	999	2.6%	70% MeOH / 30% H ₂ O
Column #21 Sample 74	5133	13.5%	70% MeOH / 30% H ₂ O
Column #21 Sample 75	196	0.5%	70% MeOH / 30% H ₂ O
Column #21 Sample 76	81	0.2%	70% MeOH / 30% H ₂ O
Column #21 Sample 77	3029	8.0%	70% MeOH / 30% H ₂ O
Column #21 Sample 78	130	0.3%	70% MeOH / 30% H ₂ O
Column #21 Sample 79	146	0.4%	70% MeOH / 30% H ₂ O
Column #21 Sample 80	85	0.2%	70% MeOH / 30% H ₂ O
Column #21 Sample 81	95	0.2%	70% MeOH / 30% H ₂ O
Column #21 Sample 82	172	0.5%	transition
Column #21 Sample 83	369	1.0%	80% MeOH / 20% H ₂ O
Column #21 Sample 84	3383	8.9%	80% MeOH / 20% H ₂ O
Column #21 Sample 85	58	0.2%	80% MeOH / 20% H ₂ O
Column #21 Sample 86	51	0.1%	80% MeOH / 20% H ₂ O
Column #21 Sample 87	2614	6.9%	80% MeOH / 20% H ₂ O
Column #21 Sample 88	83	0.2%	80% MeOH / 20% H ₂ O
Column #21 Sample 89	2305	6.1%	80% MeOH / 20% H ₂ O
Column #21 Sample 90	76	0.2%	80% MeOH / 20% H ₂ O
Column #21 Sample 91	57	0.1%	80% MeOH / 20% H ₂ O
Column #21 Sample 92	65	0.2%	80% MeOH / 20% H ₂ O

Table A21. Results for B16-F10 cell proliferation assay with Column #22 individual samples.

Sample Identity	СРМ	% Proliferation (Control = 100%)	Eluting Mobile Phase
Average Control	26280	100.0%	N/A

Table A21, continued.

Average 10 mg/mL Elderberry	11073	42.1%	N/A
Column #22 Sample 1	91	0.3%	0% MeOH / 100% H ₂ O
Column #22 Sample 2	162	0.6%	0% MeOH / 100% H ₂ O
Column #22 Sample 3	118	0.4%	0% MeOH / 100% H ₂ O
Column #22 Sample 4	123	0.5%	0% MeOH / 100% H ₂ O
Column #22 Sample 5	197	0.7%	0% MeOH / 100% H ₂ O
Column #22 Sample 6	244	0.9%	transition
Column #22 Sample 7	68	0.3%	10% MeOH / 90% H ₂ O
Column #22 Sample 8	223	0.8%	10% MeOH / 90% H ₂ O
Column #22 Sample 9	14339	54.6%	10% MeOH / 90% H ₂ O
Column #22 Sample 10	101	0.4%	10% MeOH / 90% H ₂ O
Column #22 Sample 11	96	0.4%	10% MeOH / 90% H ₂ O
Column #22 Sample 12	170	0.6%	10% MeOH / 90% H ₂ O
Column #22 Sample 13	4395	16.7%	10% MeOH / 90% H ₂ O
Column #22 Sample 14	1864	7.1%	10% MeOH / 90% H ₂ O
Column #22 Sample 15	3552	13.5%	10% MeOH / 90% H ₂ O
Column #22 Sample 16	7632	29.0%	10% MeOH / 90% H ₂ O
Column #22 Sample 17	7916	30.1%	transition
Column #22 Sample 18	118	0.4%	20% MeOH / 80% H ₂ O
Column #22 Sample 19	1246	4.7%	20% MeOH / 80% H ₂ O
Column #22 Sample 20	8756	33.3%	20% MeOH / 80% H ₂ O
Column #22 Sample 21	82	0.3%	20% MeOH / 80% H ₂ O
Column #22 Sample 22	298	1.1%	20% MeOH / 80% H ₂ O
Column #22 Sample 23	155	0.6%	20% MeOH / 80% H ₂ O
Column #22 Sample 24	12266	46.7%	20% MeOH / 80% H ₂ O
Column #22 Sample 25	762	2.9%	20% MeOH / 80% H ₂ O
Column #22 Sample 26	73	0.3%	20% MeOH / 80% H ₂ O
Column #22 Sample 27	120	0.5%	20% MeOH / 80% H ₂ O
Column #22 Sample 28	4048	15.4%	transition
Column #22 Sample 29	112	0.4%	30% MeOH / 70% H ₂ O
Column #22 Sample 30	6927	26.4%	30% MeOH / 70% H ₂ O
Column #22 Sample 31	142	0.5%	30% MeOH / 70% H ₂ O
Column #22 Sample 32	10364	39.4%	30% MeOH / 70% H ₂ O

Table A21, continued.

Column #22 Sample 33	8728	33.2%	30% MeOH / 70% H ₂ O
Column #22 Sample 34	12275	46.7%	30% MeOH / 70% H ₂ O
Column #22 Sample 35	19625	74.7%	30% MeOH / 70% H ₂ O
Column #22 Sample 36	5911	22.5%	30% MeOH / 70% H ₂ O
Column #22 Sample 37	14361	54.6%	30% MeOH / 70% H ₂ O
Column #22 Sample 38	90	0.3%	transition
Column #22 Sample 39	68	0.3%	40% MeOH / 60% H ₂ O
Column #22 Sample 40	845	3.2%	40% MeOH / 60% H ₂ O
Column #22 Sample 41	83	0.3%	40% MeOH / 60% H ₂ O
Column #22 Sample 42	4916	18.7%	40% MeOH / 60% H ₂ O
Column #22 Sample 43	224	0.9%	40% MeOH / 60% H ₂ O
Column #22 Sample 44	90	0.3%	40% MeOH / 60% H ₂ O
Column #22 Sample 45	75	0.3%	40% MeOH / 60% H ₂ O
Column #22 Sample 46	55	0.2%	40% MeOH / 60% H ₂ O
Column #22 Sample 47	10024	38.1%	40% MeOH / 60% H ₂ O
Column #22 Sample 48	11836	45.0%	transition
Column #22 Sample 49	75	0.3%	50% MeOH / 50% H_2O
Column #22 Sample 50	59	0.2%	50% MeOH / 50% H_2O
Column #22 Sample 51	87	0.3%	50% MeOH / 50% H ₂ O
Column #22 Sample 52	74	0.3%	50% MeOH / 50% H_2O
Column #22 Sample 53	753	2.9%	50% MeOH / 50% H_2O
Column #22 Sample 54	1635	6.2%	50% MeOH / 50% H ₂ O
Column #22 Sample 55	5630	21.4%	50% MeOH / 50% H ₂ O
Column #22 Sample 56	169	0.6%	50% MeOH / 50% H ₂ O
Column #22 Sample 57	129	0.5%	50% MeOH / 50% H ₂ O
Column #22 Sample 58	85	0.3%	transition
Column #22 Sample 59	87	0.3%	60% MeOH / 40% H ₂ O
Column #22 Sample 60	102	0.4%	60% MeOH / 40% H ₂ O
Column #22 Sample 61	76	0.3%	$60\%~MeOH/40\%~H_2O$
Column #22 Sample 62	83	0.3%	$60\%~MeOH/40\%~H_2O$
Column #22 Sample 63	104	0.4%	60% MeOH / 40% H ₂ O
Column #22 Sample 64	1560	5.9%	60% MeOH / 40% H ₂ O
Column #22 Sample 65	388	1.5%	60% MeOH / 40% H ₂ O

Table A21, continued.

Column #22 Sample 66	780	3.0%	60% MeOH / 40% H ₂ O
Column #22 Sample 67	509	1.9%	60% MeOH / 40% H ₂ O
Column #22 Sample 68	48	0.2%	60% MeOH / 40% H ₂ O
Column #22 Sample 69	82	0.3%	transition
Column #22 Sample 70	2197	8.4%	70% MeOH / 30% H ₂ O
Column #22 Sample 71	600	2.3%	70% MeOH / 30% H ₂ O
Column #22 Sample 72	66	0.3%	70% MeOH / 30% H ₂ O
Column #22 Sample 73	58	0.2%	70% MeOH / 30% H ₂ O
Column #22 Sample 74	404	1.5%	70% MeOH / 30% H ₂ O
Column #22 Sample 75	230	0.9%	70% MeOH / 30% H ₂ O
Column #22 Sample 76	110	0.4%	70% MeOH / 30% H ₂ O
Column #22 Sample 77	91	0.3%	70% MeOH / 30% H ₂ O
Column #22 Sample 78	97	0.4%	70% MeOH / 30% H ₂ O
Column #22 Sample 79	85	0.3%	transition
Column #22 Sample 80	151	0.6%	80% MeOH / 20% H ₂ O
Column #22 Sample 81	3221	12.3%	80% MeOH / 20% H ₂ O
Column #22 Sample 82	8275	31.5%	80% MeOH / 20% H ₂ O
Column #22 Sample 83	4991	19.0%	80% MeOH / 20% H ₂ O
Column #22 Sample 84	89	0.3%	80% MeOH / 20% H ₂ O
Column #22 Sample 85	390	1.5%	80% MeOH / 20% H ₂ O
Column #22 Sample 86	133	0.5%	80% MeOH / 20% H ₂ O
Column #22 Sample 87	78	0.3%	80% MeOH / 20% H ₂ O
Column #22 Sample 88	303	1.2%	80% MeOH / 20% H ₂ O

Table A22. Results for B16-F10 cell proliferation assay with Column #23 individual samples.

Sample Identity	СРМ	% Proliferation (Control = 100%)	Eluting Mobile Phase
Average Control	55949	100.0%	N/A
Average 10 mg/mL Elderberry	31371	56.1%	N/A
Column #23 Sample 45	8753	15.6%	40% MeOH / 60% H ₂ O
Column #23 Sample 46	9711	17.4%	40% MeOH / 60% H ₂ O

Table A22, continued.

Column #23 Sample 47	17184	30.7%	40% MeOH / 60% H ₂ O
Column #23 Sample 48	10781	19.3%	transition
Column #23 Sample 49	312	0.6%	50% MeOH / 50% H ₂ O
Column #23 Sample 50	188	0.3%	50% MeOH / 50% H ₂ O
Column #23 Sample 51	239	0.4%	50% MeOH / 50% H ₂ O
Column #23 Sample 52	9798	17.5%	50% MeOH / 50% H ₂ O
Column #23 Sample 53	117	0.2%	50% MeOH / 50% H ₂ O
Column #23 Sample 54	307	0.5%	50% MeOH / 50% H ₂ O
Column #23 Sample 55	94	0.2%	50% MeOH / 50% H ₂ O
Column #23 Sample 56	153	0.3%	50% MeOH / 50% H ₂ O
Column #23 Sample 57	8393	15.0%	50% MeOH / 50% H ₂ O
Column #23 Sample 58	4273	7.6%	transition
Column #23 Sample 59	4814	8.6%	60% MeOH / $40%$ H ₂ O
Column #23 Sample 60	9109	16.3%	60% MeOH / $40%$ H ₂ O
Column #23 Sample 61	12707	22.7%	60% MeOH / $40%$ H ₂ O
Column #23 Sample 62	107	0.2%	$60\%~MeOH/40\%~H_2O$
Column #23 Sample 63	18676	33.4%	$60\%~MeOH/40\%~H_2O$
Column #23 Sample 64	488	0.9%	60% MeOH / $40%$ H ₂ O
Column #23 Sample 65	12341	22.1%	60% MeOH / $40%$ H ₂ O
Column #23 Sample 66	84	0.2%	60% MeOH / 40% H_2O
Column #23 Sample 67	1162	2.1%	$60\%~MeOH/40\%~H_2O$
Column #23 Sample 68	12622	22.6%	transition
Column #23 Sample 69	486	0.9%	70% MeOH / 30% H_2O
Column #23 Sample 70	660	1.2%	70% MeOH / 30% H_2O
Column #23 Sample 71	748	1.3%	70% MeOH / 30% H_2O
Column #23 Sample 72	79	0.1%	70% MeOH / 30% H_2O
Column #23 Sample 73	31	0.1%	70% MeOH / 30% H_2O
Column #23 Sample 74	42	0.1%	70% MeOH / 30% H_2O
Column #23 Sample 75	732	1.3%	70% MeOH / 30% H_2O
Column #23 Sample 76	1651	3.0%	70% MeOH / 30% H ₂ O
Column #23 Sample 77	7096	12.7%	70% MeOH / 30% H_2O
Column #23 Sample 78	2542	4.5%	transition
Column #23 Sample 79	6973	12.5%	$80\%~MeOH/20\%~H_2O$

Table A22, continued.

Column #23 Sample 80	102	0.2%	80% MeOH / 20% H ₂ O
Column #23 Sample 81	703	1.3%	80% MeOH / 20% H ₂ O
Column #23 Sample 82	101	0.2%	80% MeOH / 20% H ₂ O
Column #23 Sample 83	64	0.1%	80% MeOH / 20% H ₂ O
Column #23 Sample 84	70	0.1%	80% MeOH / 20% H ₂ O
Column #23 Sample 85	101	0.2%	80% MeOH / 20% H ₂ O
Column #23 Sample 86	702	1.3%	80% MeOH / 20% H ₂ O
Column #23 Sample 87	252	0.5%	80% MeOH / 20% H ₂ O

Table A23. Results for B16-F10 cell proliferation assay with Column #24 individual samples.

Sample Identity	СРМ	% Proliferation (Control = 100%)	Eluting Mobile Phase
Average Control	39379	100.0%	N/A
Average 10 mg/mL Elderberry	24280	61.7%	N/A
Column #24 Sample 45	5982	15.2%	40% MeOH / 60% H ₂ O
Column #24 Sample 46	11549	29.3%	40% MeOH / 60% H ₂ O
Column #24 Sample 47	16942	43.0%	40% MeOH / 60% H ₂ O
Column #24 Sample 48	9937	25.2%	40% MeOH / 60% H ₂ O
Column #24 Sample 49	2804	7.1%	transition
Column #24 Sample 50	119	0.3%	50% MeOH / 50% H ₂ O
Column #24 Sample 51	77	0.2%	50% MeOH / 50% H ₂ O
Column #24 Sample 52	100	0.3%	50% MeOH / 50% H ₂ O
Column #24 Sample 53	1048	2.7%	50% MeOH / 50% H ₂ O
Column #24 Sample 54	8632	21.9%	50% MeOH / 50% H ₂ O
Column #24 Sample 55	575	1.5%	50% MeOH / 50% H ₂ O
Column #24 Sample 56	120	0.3%	50% MeOH / 50% H ₂ O
Column #24 Sample 57	14597	37.1%	50% MeOH / 50% H ₂ O
Column #24 Sample 58	459	1.2%	transition
Column #24 Sample 59	1962	5.0%	60% MeOH / 40% H ₂ O
Column #24 Sample 60	3589	9.1%	$60\%~MeOH/40\%~H_2O$
Column #24 Sample 61	3247	8.2%	60% MeOH / 40% H ₂ O
Column #24 Sample 62	4944	12.6%	60% MeOH / 40% H ₂ O

Table A23, continued.

Column #24 Sample 63	127	0.3%	60% MeOH / 40% H ₂ O
Column #24 Sample 64	12695	32.2%	60% MeOH / 40% H ₂ O
Column #24 Sample 65	10965	27.8%	60% MeOH / 40% H ₂ O
Column #24 Sample 66	3546	9.0%	60% MeOH / 40% H ₂ O
Column #24 Sample 67	2963	7.5%	60% MeOH / 40% H ₂ O
Column #24 Sample 68	3617	9.2%	60% MeOH / 40% H ₂ O
Column #24 Sample 69	3196	8.1%	transition
Column #24 Sample 70	4102	10.4%	70% MeOH / 30% H ₂ O
Column #24 Sample 71	105	0.3%	70% MeOH / 30% H ₂ O
Column #24 Sample 72	124	0.3%	70% MeOH / 30% H ₂ O
Column #24 Sample 73	56	0.1%	70% MeOH / 30% H ₂ O
Column #24 Sample 74	76	0.2%	70% MeOH / 30% H ₂ O
Column #24 Sample 75	55	0.1%	70% MeOH / 30% H ₂ O
Column #24 Sample 76	478	1.2%	70% MeOH / 30% H ₂ O
Column #24 Sample 77	335	0.9%	70% MeOH / 30% H ₂ O
Column #24 Sample 78	14658	37.2%	70% MeOH / 30% H ₂ O
Column #24 Sample 79	9612	24.4%	transition
Column #24 Sample 80	2468	6.3%	80% MeOH / 20% H ₂ O
Column #24 Sample 81	63	0.2%	80% MeOH / 20% H ₂ O
Column #24 Sample 82	311	0.8%	80% MeOH / 20% H ₂ O
Column #24 Sample 83	88	0.2%	80% MeOH / 20% H ₂ O
Column #24 Sample 84	41	0.1%	80% MeOH / 20% H ₂ O
Column #24 Sample 85	59	0.1%	80% MeOH / 20% H ₂ O
Column #24 Sample 86	75	0.2%	80% MeOH / 20% H ₂ O
Column #24 Sample 87	87	0.2%	80% MeOH / 20% H ₂ O
Column #24 Sample 88	86	0.2%	80% MeOH / 20% H ₂ O

Pool #	Samples	Pool #	Samples
1	1, 2, 3, 4	21	64
2	5, 6, 7, 8	22	65, 66, 67, 68
3	9, 10, 11	23	69, 70, 71, 72
4	12, 13, 14, 15	24	73, 74
5	16	25	75, 76, 77
6	17, 18	26	78
7	19, 20, 21	27	79, 80, 81
8	22, 23, 24	28	82, 83
9	25, 26, 27, 28, 29	29	84, 85, 86
10	30, 31, 32, 33, 34	30	87, 88
11	35, 36, 37, 38, 39	31	89, 90, 91
12	40, 41, 42, 43, 44	32	92, 93, 94
13	45, 46	33	95
14	47, 48	34	96, 97, 98
15	49, 50, 51	35	99, 100, 101, 102
16	52, 53	36	103, 104
17	54, 55	37	105, 106
18	56, 57	38	107, 108, 109
19	58, 59, 60, 61	39	110, 111
20	62, 63		

Table A24. Pooling of Column #1 samples.

Column	Samples pooled to make P16	Samples pooled to make P24	Samples pooled to make P29
Column #2	49, 50, 51	73, 74, 75	85, 86, 87
Column #3	53, 54	72, 73, 74	84
Column #4	55, 56, 57	73, 74	85, 86
Column #5	53, 54	72, 73, 74	85, 86, 87, 88
Column #6	52, 53, 54	72, 73, 74	86, 87, 88, 89
Column #7	52, 53, 54	71, 72, 73, 74	85, 86, 87, 88
Column #8	52, 53, 54	73, 74	84, 85
Column #9	53, 54	73, 74	86, 87
Column #10	50, 51, 52, 53	73, 74	86, 87, 88, 89
Column #11	50, 51, 52, 53	72, 73, 74	86, 87, 88, 89
Column #12	51, 52, 53	71, 72, 73, 74	86, 87, 88
Column #13	55, 56, 57, 58	74, 75, 76, 77	83, 84, 85, 86
Column #14	54	72, 73, 74, 75	83, 84, 85
Column #15	50, 51, 52, 53	71, 72, 73, 74	83, 84
Column #16	50, 51, 52	73, 74	84, 85, 86
Column #17	53, 54, 55	71, 72, 73, 74, 75	87, 88
Column #18	51, 52, 53	72, 73, 74, 75	87, 88, 89, 90
Column #19	53, 54	71, 72, 73	85, 86, 87, 88
Column #20	49, 50, 51	73, 74, 75, 76	84, 85, 86, 87
Column #21	56	72, 73	85, 86
Column #22	49, 50, 51, 52, 53	72, 73, 74, 75	85, 86, 87, 88
Column #23	53,54,55,56	72,73,74	82,83,84,85
Column #24	50,51,52	71,72,73,74,75	84, 85, 86, 87

Table A25. Column #2-24 samples pooled to generate P16, P24, and P29.

Appendix B: Figures

Figure B1. Optimal concentration of trypsin addition before harvesting for tumor cell proliferation assays.

Figure B2. Optimal concentration of Con A on spleen cell proliferation.

Figure B3. Standard IL-2 curve generated from the Quantikine murine IL-2 ELISA.

Appendix C: Solution Recipes

The working solution of tritiated thymidine (3 H-Thy) was prepared by adding 3.85 mL of filter-sterilized deionized water, or 3.85 mL of filter-sterilized RPMI-1640 media to 150 µL thymidine stock (Moravek Biochemicals, Brea, CA).

Mobile phases for column chromatography were prepared by mixing varying concentrations of deionized water and methanol and a consistent amount of 0.01*N* HCl. Mobile phases were added to the column in order of decreasing polarity in 165 mL increments.

Mobile Phase	Volume of H ₂ O (mL)	Volume of MeOH (mL)	Volume of 0.01N HCl (mL)
0% MeOH / 100% H_2O	150.0	0.0	15.0
10% MeOH / 90% H ₂ O	135.0	15.0	15.0
20% MeOH / 80% H ₂ O	12.0	30.0	15.0
30% MeOH / 70% H ₂ O	105.0	45.0	15.0
40% MeOH / 60% H ₂ O	90.0	60.0	15.0
50% MeOH / 50% H ₂ O	75.0	75.0	15.0
60% MeOH / 40% H ₂ O	60.0	90.0	15.0
70% MeOH / 30% H ₂ O	45.0	105.0	15.0
80% MeOH / 20% H ₂ O	30.0	120.0	15.0
90% MeOH / 10% H ₂ O	15.0	135.0	15.0
100% MeOH / 0% H ₂ O	0.0	150.0	15.0