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SUMMARY 

 

 

The process of modeling earthquake hazard risk and vulnerability is a prime 

component of mitigation planning, but is rife with epistemic, aleatory and factual 

uncertainty.  Reducing uncertainty in such models yields significant benefits, both in 

terms of extending knowledge and increasing the efficiency and effectiveness of 

mitigation planning.  An accurate description of the built environment as an input into 

loss estimation would reduce factual uncertainty in the modeling process. 

Building attributes for earthquake loss estimation and risk assessment modeling 

were identified.  Three modules for developing the building attributes were proposed, 

including structure classification, building footprint recognition and building valuation.  

Data from primary sources and field surveys were collected from Shelby County, 

Tennessee, for calibration and validation of the structure type models and for estimation 

of various components of building value.  Building footprint libraries were generated for 

implementation of algorithms to programmatically recognize two-dimensional building 

configurations.  The modules were implemented to produce a building inventory for 

Shelby County, Tennessee that may be used effectively in loss estimation modeling.   

Validation of the building inventory demonstrates effectively that advanced 

technologies and methods may be effectively and innovatively applied on combinations 

of primary and derived data and replicated in order to produce a bottom-up, reliable, 

accurate and cost-effective building inventory. 
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Chapter 1 . INTRODUCTION 

This dissertation forms part of the Mid-America Earthquake Center’s [henceforth 

MAEC] ongoing efforts to create innovative research-based solutions that mitigate the 

impacts of earthquakes particularly in Mid-America.  The MAEC, one of three national 

earthquake engineering research centers established by the National Science 

Foundation, has predicated its overall approach on a new engineering paradigm to 

seismic risk reduction termed Consequence-based Engineering [CBE] that essentially 

quantifies risk to “societal systems” (Mid-America Earthquake Center 2006) and 

subsystems on a regional basis, thereby allowing policy-makers to ultimately develop 

risk reduction strategies and implement mitigation actions.  The approach later termed 

Consequence-based Risk Management [CRM] (Abrams et al. 2002), explicitly includes 

uncertainty in a framework that facilitates comparisons of mitigation alternatives in terms 

of their impact on properties and populations at risk from earthquake disasters.   

Earthquakes, like all natural hazards have potentially enormous, even 

catastrophic impacts.  These impacts are measured in terms of casualties, direct 

property losses and losses to other assets, and even indirect economic consequences.  

Determining the consequences of earthquake events relies on accurate at-risk data, 

damage models and an understanding of the underlying geophysical processes that lead 

to their occurrence.  The need for accurate risk assessment and mitigation planning 

tools presents both an enormous challenge and opportunity for the application of 

advanced technologies – problematic, particularly because of the uncertainty rampant 

throughout the entire risk modeling process, and beneficial in terms of information that 

could potentially guide policy (National Research Council 2006).  Thus, the critical 
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challenge is to better understand, anticipate and reduce earthquake risk by integrating 

the potential consequences into the mainstream planning process.  Risk analysis models 

that demonstrate variations in hazards and resultant damage can prove to be vital and 

effective in informing policy decisions (French and Isaacson 1984).  In addition, planning 

itself can be particularly effective in mitigating the consequences of natural disasters by 

guiding the location and design of urban structures (Godschalk et al. 1998) and building 

vital social capital in terms of a community base that encourages hazard mitigation 

(Burby and May 1998).   

The research efforts and outcomes described and developed in this dissertation 

are particularly vital because an accurate physical inventory forms a primary factual 

component in the overall risk analysis process.  Increasing precision in the distribution of 

structures and populations contained in those structures enables effective risk 

assessment, which is critical to rational decision making, both in emergency 

preparedness and mitigation planning.  Further, if local governments are to play a 

greater role in reducing community vulnerability, building inventories produced from 

models calibrated on samples drawn from the local area would allow decision makers to 

become familiar with the spatial distribution of vulnerable structures and critical assets 

while increasing overall accuracy.  Policies for effective risk reduction and plans for 

emergency response may then be designed with greater efficiency at the local level.   

In specific terms, this dissertation derives three critical building inventory 

components for risk assessment modeling, including  

 classification of buildings by structural type 

 classification of buildings by two-dimensional shape configuration, and  

 valuation of building components and systems  
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Structure type and shape configuration will be used to model risk through 

building behavior under earth-shaking stresses, while values of building components and 

systems will be used for quantifying potential losses.  The structure type distribution is 

estimated using artificial neural networks, perhaps for the first time in building inventory 

estimation.  Shape recognition is achieved by specific smoothing and classification 

algorithms implemented by innovatively manipulating building footprint polygon geometry 

in the GIS environment.  Standard construction industry square footage to construction 

cost ratios are parameterized for building occupancy, area, height, structure type and 

external wall combinations through curve fitting routines and these equations are used to 

estimate valuation of building components and assemblies, including structural, 

nonstructural acceleration- and drift-sensitive and content values.   

1.1. Background for disaster mitigation 

It has become painfully obvious that there is an urgent and escalating need for 

developing, validating and implementing accurate and cost-effective methods to identify 

the vulnerability of the man-made environment in the context of both natural and 

technological hazards.  Natural disasters like Hurricane Katrina in 2005 (Cable News 

Network 2005), cyclone Nargis (Tun 2008) and the earthquake in China (British 

Broadcasting Corporation 2008) in 2008 and their terrible death tolls only as serve stark 

reminders of the vulnerability of life on earth, even in today’s technologically advanced 

world.  Our world’s resources are increasingly being concentrated, both demographically 

and economically in natural hazard-prone regions.  In the United States, the population 

in areas exposed to hurricanes has quadrupled since 1970, with over 70 million people 

in about 439 communities living permanently along hurricane-prone coastlines along the 

Atlantic Ocean and the Gulf of Mexico.  Hurricanes cause over 20 deaths and result in 

damages of over $ 5.1 billion annually (Congressional Hazards Caucus 2007b).   
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Increased development in floodplains that local government has failed to curtail 

(Burby et al. 1999) coupled with an increase in the frequency of heavy rain events over 

the last fifty years has resulted in increased flooding-related deaths of about 100 and 

losses of over $ 5 billion per year (Congressional Hazards Caucus 2007a).  The US also 

experiences thousands of earthquakes, and about seven annually with magnitudes over 

6.0 on the Richter scale.  Over 75 million Americans in 39 states face significant risks 

from earthquakes, and in terms of costs, earthquakes can be genuinely catastrophic – in 

fact, FEMA’s costs for the 1994 Northridge earthquake was close to $ 7 billion, more 

than the combined relief costs of Hurricanes George, Andrew, Floyd and the 1993 

Midwest floods (US General Accounting Office 2003; National Science and Technology 

Council 2005).  Earthquakes in the US cost over $ 5.6 billion annually, with a single 

event having the potential to cause losses of more than a $ 100 billion (National 

Research Council 2006).   

In the United States, the responsibility for public health and safety lies with the 

State Governments, as specified by the Constitution.  When disasters occur, first the 

locally affected jurisdiction attempts to manage the incident(s).  If local resources are 

overwhelmed, then the mayor of the locality will request additional help and resources 

from the state to combat the disaster.  Continuing along the hierarchy, if local and state 

resources are insufficient to handle the disaster, the governor of the state requests a 

Presidential Disaster Declaration and federal assistance (Bea 1998).  This clearly 

established hierarchy experienced over so many disasters, has resulted in the public 

viewing emergency management as a fundamental governmental function.  Problems in 

emergency management are solved by enacting legislation, but have been historically 

reactive (National Research Council and the Division on Earth and Life Studies 2006), 

until the Stafford Act of 1988 and the Disaster Mitigation Act of 2000.  Refer to Bea 
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(1998) and Haddow et al (2008) for a listing of historical disaster-related legislation.  

Some landmark federal legislations in disaster management include: 

 The Flood Control Act of 1934 that allowed the Army Corps of Engineers to 

design and build flood control projects.   

 The National Flood Insurance Act of 1968, motivated by the fiscal losses incurred 

in Florida and Louisiana following the swaths of devastation caused by Hurricane 

Betsy in 1965 (Haddow et al. 2008).  This act also created the National Flood 

Insurance Program, a supposedly self-supporting program that was intended to 

protect owners against flood losses and reduce future losses in the community 

through floodplain management ordinances.  Unfortunately, elements of this 

program have actively encouraged development in flood prone areas by renters 

predominantly (federal projects that build dams and levees), have not actively 

dissuaded development in hazardous areas (through insurance subsidies, 

disaster relief payments and tax write-offs) and have provided incentives for 

hazard prone occupation by persons that are least likely to recover from flood 

losses (Burby et al. 1999).   

 The Disaster Relief Acts of 1969 and 1974, following Hurricane Camille in 1969 

(Waugh 2000) and flooding related losses in Pennsylvania and New York 

following Hurricane Agnes in 1972.  These acts established a process for 

Presidential Disaster Declarations and provided relief assistance to local 

governments and individuals (May 1985).   

 Creation of the Federal Emergency Management Agency, FEMA, in 1979, by 

President Carter, who consolidated the over 100 federal organizations and 

entities involved in disaster relief (Haddow et al. 2008).   
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 The Stafford Disaster Relief and Emergency Assistance Act of 1988 (FEMA 

2007), which attempted to generate efficiency and order to the process of 

conducting physical and monetary federal disaster relief aid to state and local 

governments through FEMA, and for the first time, encouraged the development 

of mitigation activities before the onset of disasters through the Pre-Disaster 

Mitigation Grant Program.   

 The Disaster Mitigation Act of 2000 (FEMA 2000), which clarifies the special 

efforts needed to assist disaster-affected states in the process of rendering aid, 

emergency services and the reconstruction and rehabilitation of distressed areas, 

and provides funding for promoting public-private partnerships, identifying the 

community’s hazard vulnerabilities and establishing mitigation priorities.   

The Disaster Mitigation Act of 2000 requires additional mention.  Based on the 

Robert T. Stafford Disaster Relief and Emergency Assistance Act (Bea 1998; FEMA 

2007), the Disaster Mitigation Act of 2000 (FEMA 2000) is the latest legislation to 

improve the mitigation planning process and was put into motion on October 10, 2000.  

The Disaster Mitigation Act of 2000 (DMA 2000) reinforces the importance of mitigation 

planning and emphasizes planning for disasters before they occur, by establishing a pre-

disaster hazard mitigation program and new requirements for the national post-disaster 

Hazard Mitigation Grant Program (HMGP).  It allows HMGP funds to be used for 

“planning activities”, and increases HMGP funding to states that have developed a 

comprehensive, enhanced mitigation plan prior to a disaster.  Mitigation plans are 

required to demonstrate that their proposed mitigation measures are based on a sound 

planning process that accounts for the risk to and the capabilities of the individual 

communities.  Based on DMA 2000 requirements, typical mitigation plans contain 

explanations of the planning process and community involvement, detailed descriptions 
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of hazards and vulnerability of assets and populations in the jurisdictions, scenarios to 

quantify consequences, and policy recommendations to reduce the potential impacts of 

the hazards.   

In a recent National Institute of Building Sciences report, researchers found that 

“money spent on reducing the risk of natural hazards is a sound investment.  On 

average, a dollar spent by FEMA on hazard mitigation (actions to reduce disaster 

losses) provides the nation about $4 in future benefits” (Multihazard Mitigation Council 

2005a, pp. iii).  Thus, mitigation is significantly cost-effective, enough to justify federal 

funding before disasters and during post-disaster recovery, most successful when 

systematically executed on a long-term, community-wide and comprehensive basis with 

better information and institutional commitment, and requires further evaluation for 

efficient implementation (Multihazard Mitigation Council 2005a, 2005b).  In places where 

mitigation activities are taken seriously, they yield substantial benefits (Burby 1994, 

1998) – thus, mitigation can potentially be institutionalized by either standalone 

programs or by integrating them with the normal planning process and several 

jurisdictions, particularly in the west coast, have incorporated “Seismic Safety” elements 

within their comprehensive planning process (Burby 1998; Burby et al. 1999).  However, 

the costs involved in developing mitigation plans at the local level coupled with myopic 

past federal policies that subsidize development in hazard-prone areas tend to dissuade 

local jurisdictions from taking a lead role in hazard mitigation policy planning and more 

importantly, provide disincentives for local jurisdictions to regulate urban development in 

high risk areas (Burby et al. 1999).  In a more recent article in the context of the 

surprising devastation of hurricane Katrina, Burby (2006) explains that policies of the 

federal government have substantially increased the potential for catastrophic losses 

and local governments do not develop policies towards reducing risk and vulnerability.   
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Measuring and quantifying earthquake consequences (or losses) present serious 

conceptual and methodological challenges.  Major obstacles to describing and analyzing 

earthquake impacts include (i) the lack of reliable data, (ii) inadequate, poorly specified, 

inconsistent or undependable models and (iii) the levels of compounding uncertainty 

rampant throughout the analytical processes – these problems exist at all scales, from 

international to local levels (National Research Council 2006).  This is perhaps another 

reason why decision makers are extremely reluctant to enact policies based on the 

relationship between earthquake risks and local development – decisions to counter low-

probability high-consequence disasters are perceived to inhibit local economic 

development and political careers.  While most states and jurisdictions satisfy (and more 

importantly, aim to satisfy) the bureaucratic requirements of DMA 2000 through a 

separate mitigation planning process, the quality of these mitigation plans have not been 

sufficiently analyzed.  Depending on the DMA 2000 template and the distribution of 

hazards, these mitigation plans tend to have a boiler-plate appearance and may not be 

effective enough.  While in these plans, hazards are described and located in 

considerable and accurate detail, most communities do not have the resources to 

accurately quantify their assets and/or populations, and instead use free or readily 

available (at coarse resolutions and often inaccurate) data to quantify the vulnerability of 

their built environment.  Leveraging scale economies in integrating mitigation efforts with 

mainstream planning, and developing low-cost, reliable and accurate accounts of local 

assets (the primary focus of this research effort) and demographics would certainly 

alleviate and improve the quality of these mitigation efforts.   

1.2. The need for accurate urban inventories 

The primary purpose of disaster risk modeling is to use the results from the 

modeling process to guide plans that reduce vulnerability, mitigate consequences and 
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respond/recover from disasters.  The process of disaster risk modeling is rife with 

uncertainty originating from several sources.  First, the current state of scientific 

knowledge in terms of disasters and their effects on the built environment is incomplete, 

leading to epistemic uncertainty (Ellingwood 2007).  Second, modeling by its very 

nature, simplifies and approximates real-world conditions in order to accomplish 

tractable implementations, leading to uncertainty in the estimates.  Again, this source of 

uncertainty may be classified as epistemic (ibid).  Third, there is an element of 

randomness, both in terms of the areal coverage of the disaster event and the particular 

behavior of the built environment under stress, that is rarely captured in disaster 

modeling efforts, leading to aleatoric uncertainty (ibid).  Finally, disaster modeling 

requires factual information about demographics, the natural and built environment at 

risk (Burby 1998).  If these inventories are inaccurate, or arrived at through other 

modeling processes, estimates produced by the disaster modeling efforts would also be 

inaccurate –this can be termed factual uncertainty.   

Recent research suggests that there are varied and substantial economic 

benefits in reducing uncertainty in disaster modeling primarily through loss-avoidance 

regulations and strategies, better engineering design and code enforcement and more 

effective hazard mitigation planning.  While reducing uncertainty could be expensive, the 

potential benefits would be substantially more than the cost (Multihazard Mitigation 

Council 2005a; National Research Council 2006).  Prior to any mitigation 

implementation, a primary consideration requires that local communities identify and 

quantify the population and built asset inventory at risk (FEMA 2001), in order to frame 

effective policies to redirect growth away from currently vulnerable structures to less 

hazard-prone areas (Burby 2006).   
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In the specific context of risk assessment modeling, there are three important 

reasons why urban building inventories are required.  First, different classes of buildings 

behave differently under dynamic stresses during disasters, and an effective inventory 

would create key building classes that are uniquely different from one another in terms of 

disaster response.  Second, accurate accounts of the urban building inventory in terms 

of their counts and replacement costs would reduce the uncertainty inherent in the 

modeling process and augment the reliability of the risk estimation.  Finally, estimation 

and analysis of injuries, casualties, shelter needs, debris generation and removal, direct 

losses and indirect economic impacts are based on estimated physical damage to 

buildings, and an inaccurate inventory would lead to cascading inaccuracies in the 

downstream aspects of the loss estimation process.   

Thus, for both reducing uncertainty in disaster modeling and for effective 

mitigation planning, a necessary precondition is the availability of an accurately 

quantified account of the built inventory.  This dissertation is primarily concerned with 

reducing factual uncertainty in the development of urban building inventories, a 

substantial component of the urban built environment.   

1.3. Hazard Mitigation in the Planning Process Framework 

There is general agreement that hazard mitigation should influence urban 

development in order to reduce disaster-related damage and losses, and help the 

affected communities rebound from the disaster quickly (Burby and May 1998; 

Godschalk et al. 1998; Burby et al. 1999).  Recent federal papers advocate goals aimed 

at improving data collection and prediction capability along with “the development and 

widespread use of improved hazard and risk assessment models and their incorporation 

into decision support tools and systems” (National Science and Technology Council 

2003) with the overall objective of reducing disaster vulnerability.  Internationally and 
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nationally, there is consensus on implementing disaster reduction policies aimed at 

guiding development into less hazard prone areas and enabling communities to be 

resilient to natural hazards (United Nations 2001; Godschalk and Baxter 2002; United 

Nations 2003, 2005).  In the local context, local jurisdictional disaster policy making 

tends to be more reactive than proactive and communities that have experienced a 

disaster are more likely to analyze risk and enact mitigation plans/policies to their 

constituencies and assets (Berke 1998; Burby and May 1998; Briechle 1999).   

While federal policies and a top-down influence on hazard mitigation can ensure 

attention to mitigation efforts, many researchers argue that risk analysis and mitigation 

planning should be primarily a bottom-up effort that will account for local awareness and 

negotiated outcomes from local interests (Reddy 2000; Pearce 2003; Cutter 2005).  In 

fact, Pearce (2003) argues that integrating the disaster management plan with the 

comprehensive planning process that includes public participation has the highest 

probability of success, and further, active public participation in the mitigation process is 

increased substantially when the plan development is broken down into smaller, 

neighborhood scales (Godschalk et al. 1999).  Mitigation is also less expensive when 

integrated early in the comprehensive planning process, rather than in a standalone 

process (Godschalk et al. 2003; Pearce 2003).  Further, it should be emphasized that 

hazard mitigation planning, whether incorporated as part of the comprehensive planning 

process or as a standalone process, requires a “strong factual basis” (Kaiser et al. 1995) 

in terms of the spatial location of the hazards as well as the spatial distribution of the 

community’s physical, social, economic and infrastructural assets.  Brody (2003) argues 

that public awareness of hazards is a precondition for participation in any hazard 

mitigation planning process.  This dissertation suggests that vulnerability information 

may be communicated more effectively within the hazard mitigation planning process if 
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plan-makers have an accurate accounting of their community’s assets in the context of 

the hazards.   

Public policy making in the context of hazard mitigation and hazard risk analysis 

is a special case of the “general problem of decision making under uncertainty” (French 

and Isaacson 1984). They describe a schematic process for developing hazard-related 

policies in the context of probabilistic earthquake hazards, as outlined in Figure 1.1 

below.   

Determine Attenuation Curve
for relevant hazard sources

Identify Sources of Seismicity
- on and off site

Estimate Recurrence Curve
for relevant sources

Produce Probabilistic Shaking
as maps for study area

Conduct Geologic Investigation
for study area

Map Areas of
Landslides and Liquefaction

ST
EP

 1

Produce Probabilistic
Hazard Assessment

Determine Damageability
by Structure type

ST
EP

 2

Map Existing Land Uses and 
Individual Structures

Estimate and Map Damage
for Existing Land Uses

ST
EP

 3

Identify Future Land Uses by 
Individual Structures

Estimate and Map Damage
for Future Land Uses

ST
EP

 4

POLICY DECISIONSTEP 5 
 

Figure 1.1 -- Probabilistic risk analysis for hazard management and decision 

making, as adapted from French and Isaacson (1984) 
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The various sequential steps in the process are recognized as (i) identifying 

hazard characteristics, (ii) modeling the probabilistic hazard in terms of ground motion 

effects on specific structure types, (iii) creating an account of the inventory and 

subjecting it to the hazard to estimate damage, (iv) projecting the inventory to various 

alternative futures and subjecting them to the hazard to estimate future scenario-based 

damage and (v) develop policy.   

Expanding this framework, prior to hazard mitigation, it is important to analyze 

and understand the risks posed by the hazard.  Hazard risk analysis involves the 

interaction of the hazard and human activities.  In other words, it is the exposure of 

humans and their activities to the hazard that underlines the risk.  After the risk is 

understood, then mitigation activities that limit human exposure and vulnerability can be 

conducted.   

Typically, mitigation employs several tools to reduce the devastating 

consequences of disasters, variously classified under structural (Beatley and Berke 

1992; Nelson and French 2002), non-structural (Godschalk et al. 1999; Godschalk and 

Baxter 2002), communicative (Burby et al. 1999; Olshansky 2001; Godschalk et al. 

2003) and economic (Berke 1995b, 1995a; Burby et al. 1999) that one may find in the 

typical comprehensive plan.  Additionally, it should be noted that despite its specificity, 

disaster mitigation planning is a form of planning and mitigation planners at local, state 

and federal levels need to follow a basic planning framework, including goal 

development, factual bases, development of alternatives, public participation, 

implementation, monitoring, evaluation and updating (Kaiser et al. 1995).  Accordingly, 

Figure 1.2 below shows the various typical stages in the normal process of mitigation 

planning, as adapted from FEMA (2002a).   
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Figure 1.2 -- Developing a Hazard Mitigation Plan, as adapted from FEMA (2002a) 

Although Figure 1.2 suggests a clean and linear process, owing to the fact that 

mitigation planning is not yet a formal or mainstream local government function, in reality 

the process is more piece-meal and non-linear and tends to develop in sporadic spurts, 

particularly where either local code enforcement or local comprehensive planning are not 

required (Burby 2006).   

Burby (2006) argues that the surprisingly large devastation in New Orleans and 

the overall tendency towards more disasters with greater consequences is entirely 

predictable owing to “well-intentioned, but short-sighted, public policy decisions at all 

levels of government,” increasing the vulnerability of populations and assets to natural 

disasters.  While federal policies and disaster supplements are unlikely to change, local 
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government can seize the initiative and design and implement policies that redirect 

populations away from at-risk urban infrastructure.  Further, if federal governments 

require local governments to include natural hazard mitigation into their comprehensive 

plan-making process (beyond the bureaucratic requirements of mitigation planning under 

DMA 2000) and be more financially responsible for consequences in local urban 

development planning, then local governments would invest more resources into making 

effective comprehensive plans that enable safe urban growth and development.  In other 

words, recent evidence clearly suggests that hazard risks may be substantially reduced 

if mitigation planning were to become a part of local government function (Burby et al. 

1998; Olshansky 2001; Nelson and French 2002; Burby 2005).   

1.4. Existing methods for Urban Inventory Data Collection and Limitations 

Inventory databases of the built environment are at best fragmented and contain 

little information about the structure type of the building, which is a crucial input in risk 

assessment and modeling (French and Muthukumar 2006).  Attribution of the building 

inventory by structure type and occupancy class would enable risk models to predict 

damage to the inventory, and subsequently estimate the direct and indirect social and 

economic losses associated with a particular hazard scenario.  Other relevant 

characteristics related to building inventories in the context of hazard modeling include 

location, height, value, tenure, area, year of construction, three-dimensional mass 

distribution and two-dimensional plan configuration.  Inventory information could also be 

used to estimate the extent of damage in an actual event and enable the efficient use of 

resources for response efforts.  Further, accurate inventory information modeled against 

a historic event could enable loss model calibration, increase our understanding about 

building behavior under stress and reduce epistemic uncertainty in risk modeling.  
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Finally, accurate and detailed building inventories could provide valuable input into 

designing policies and prioritizing projects related to hazard mitigation.   

1.4.1. Urban Inventory Data Sources 

There are no national databases characterizing the built environment.  There are 

a number of disparate sources of urban inventory information relevant to social or 

economic analyses such as the US Census, American Housing Survey, County 

Business Patterns, Woods and Poole Economics, Dun and Bradstreet, local 

Employment Surveys, County Tax Assessors, etc.  In general, these sources do not 

contain building information in a form fit for disaster risk modeling, and are generally 

used to infer or derive building inventory data (RMS & CUREe 1993).  While the US 

Census does collect and release information on residential buildings, commercial and 

industrial building related information are generally unavailable.  County Tax Assessors 

and local governments collect information for taxes and for local development, but such 

data are often characterized by large gaps (tax-exempt property information is not 

maintained by the tax assessor).  However, tax assessors’ data often are rich sources 

containing at the very least, area, age, use and value of buildings, and may be mined or 

creatively integrated with other inventory derivation methods or techniques (Jones et al. 

1987).  For instance, tax assessors’ data for each building could be geocoded within a 

geographic information system (GIS) and combined with remotely-sensed topographic 

data to derive height of buildings.  There are no clear standards on what kind of building 

information has to be collected at any level, and data collection is performed on an ad-

hoc basis.  Finally, such building related information rarely contains structural details, 

which is a primary input in risk modeling.   

Collecting building inventory information from various disaggregated and 

distributed sources would prove to be prohibitively expensive.  Therefore, researchers 
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will have to develop indirect methodologies in order to develop reliable building 

inventories based on readily available or direct data.  Various research efforts have been 

directed towards quantifying and classifying urban inventories at various levels of 

geography.  Typically, existing and easily available data are collected and used to 

estimate the general stock of buildings, and tabulating them by structure type and 

building use.  One of the first such tabulations was developed by the Applied Technology 

Council (ATC-13 1985) for the state of California, using several databases accessed 

from the Federal Emergency Management Association and Bureau of Economic 

Analysis repositories.  ATC-13’s system of cross-classifying buildings by “Social 

Function Class” or use and “Earthquake Engineering Class” or structure type has 

generally been adopted for minimum building inventory data.   

1.4.2. Classification of the Urban Building Inventory 

Studies of the urban building inventory classified by structure and use in different 

areas show consistent patterns despite considerable differences in demographic and 

economic structure.  Malik (1995) derived building inventory estimates for Memphis-

Shelby County and Wichita-Sedgwick County from the tax assessor’s records and 

classified building use under agricultural, commercial and industrial, educational, 

hospital, institutional, government and residential.  Similarly, structure type was 

classified as wood, light metal, masonry, reinforced concrete, protected steel and 

unclassified.  Despite Shelby County’s nearly double demographic count over Sedgwick 

County, residential proportions accounted for nearly 90% in both cases.  Cross-tabulated 

classifications were found to be within 2% for all categories of use and structure type.  

The domination of the building inventory by residential structures carried over to the 

wood structure type, since most residential units are built on wood frames.  Malik also 

indirectly estimated the general building stock (henceforth GBS) counts for Shelby 
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County using demographic-building stock relationships generated by Jones (1978) for 

Sedgwick County and compared the counts with tax records.  The estimates generated 

were fairly reliable, but more consistent in square footage than with counts.  GBS 

distributions tended to be more consistent for use than structure type for widely 

dispersed geographic areas.  Savonis’ (1985) research also supported building inventory 

patterns that were dominated by single family residential units, with residential buildings 

accounting for almost 90% of the total building inventory.    

Largely following ATC-13, most building inventories for risk modeling tend to be 

derived GBS collections classified by structure type and/or occupancy, or detailed 

building inventories collected by field surveys or inspections of construction documents, 

often collected for critical facility buildings.   

1.4.3. Building Inventory Development in HAZUS MR-3 

While it is true that there is no national building inventory, FEMA, along with their 

loss estimation software HAZUS MR-3 (and in previous versions), deliver “modeled” 

general and specific building stock databases for the entire continental US.  The 

application extracts the inventory data for a specific study region and converts it into 

building stock classified by structure type and use, following FEMA Earthquake Hazard 

Mitigation (FEMA 2002b) conventions.  The GBS is classified by general occupancy 

under agricultural, commercial, educational, government, industrial, religious and 

residential buildings.  The GBS is meant to be used for modeling the probability of 

damage to all the occupancy types for flood, wind and earthquake hazards.  The 

application also includes default parameters and routines to convert the GBS general 

occupancy categories to specific occupancy classes and structure types.  Table 1.1 

shows the structure type classification (FEMA 2002b) in HAZUS MR-3.  Table 1.2 shows 

the 7 general and 33 specific occupancy categories in HAZUS MR-3.   
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Table 1.1 -- Structure type classifications in HAZUS MH MR-3 

 

Name Stories Stories Feet
1 W1 Wood, Light Frame (<5,000 sq. ft.) 1 - 2 1 14

2 W2 Wood, Commercial and Industrial 
(>5,000 sq. ft.)

all 2 24

3 S1L Low-Rise 1 - 3 2 24
4 S1M Mid-Rise 4 - 7 5 60
5 S1H High-Rise 8+ 13 156
6 S2L Low-Rise 1 - 3 2 24
7 S2M Mid-Rise 4 - 7 5 60
8 S2H High-Rise 8+ 13 156
9 S3 Steel Light Frame all 1 15

10 S4L Low-Rise 1 - 3 2 24
11 S4M Mid-Rise 4 - 7 5 60
12 S4H High-Rise 8+ 13 156
13 S5L Low-Rise 1 - 3 2 24
14 S5M Mid-Rise 4 - 7 5 60
15 S5H High-Rise 8+ 13 156
16 C1L Low-Rise 1 - 3 2 20
17 C1M Mid-Rise 4 - 7 5 50
18 C1H High-Rise 8+ 12 120
19 C2L Low-Rise 1 - 3 2 20
20 C2M Mid-Rise 4 - 7 5 50
21 C2H High-Rise 8+ 12 120
22 C3L Low-Rise 1 - 3 2 20
23 C3M Mid-Rise 4 - 7 5 50
24 C3H High-Rise 8+ 12 120
25 PC1 Precast Concrete Tilt-Up Walls 1 15
26 PC2L Low-Rise 1 - 3 2 20
27 PC2M Mid-Rise 4 - 7 5 50
28 PC2H High-Rise 8+ 12 120
29 RM1L Low-Rise 1 - 3 2 20
30 RM2M Mid-Rise 4+ 5 50
31 RM2L Low-Rise 1 - 3 2 20
32 RM2M Mid-Rise 4 - 7 5 50
33 RM2H High-Rise 8+ 12 120
34 URML Low-Rise 1-2 1 15
35 URMM Mid-Rise 3+ 3 35
36 MH Mobile Homes all 1 10

Range Typical
Height

S. No. Code Description

Steel Moment Frame

Steel Braced Frame

Steel Frame with Cast-in-Place 
Concrete Shear Walls

Steel Frame with Unreinforced 
Masonry Infill Walls

Reinforced Masonry Bearing Walls 
with Precast Concrete Diaphragms

Reinforced Masonry Bearing Walls 
with Wood or Metal Deck Diaphragms

Unreinforced Masonry Bearing Walls

Concrete Moment Frame

Concrete Shear Walls

Concrete Frame with Unreinforced 
Masonry Infill Walls

Precast Concrete Frames with 
Concrete Shear Walls
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Table 1.2 – General and specific occupancy classes in HAZUS MH MR-3 

Label Example Descriptions
RESIDENTIAL

RES1 Single-family Dwelling House
RES2 Mobile Home Mobile Home
RES3 Multi-family Dwelling Apartment/Condominium

RES3A Duplex
RES3B 3-4 Units
RES3C 5-9 Units
RES3D 10-19 Units
RES3E 20-49 Units
RES3F 50+ Units

RES4 Temporary Lodging Hotel/Motel
RES5 Institutional Dormitory Group Housing (dormitory), Jails
RES6 Nursing Home

COMMERCIAL
COM1 Retail Trade Store
COM2 Wholesale Trade Warehouse
COM3 Personal and Repair Services Service Station/Shop
COM4 Professional/Technical Services Office
COM5 Banks
COM6 Hospital
COM7 Medical Office/Clinic
COM8 Entertainment & Recreation Restaurants/Bars
COM9 Theaters Theaters

COM10 Parking Parking Garages
INDUSTRIAL

IND1 Heavy Factory
IND2 Light Factory
IND3 Food/Drugs/Chemicals Factory
IND4 Metals/Minerals Processing Factory
IND5 High Technology Factory
IND6 Construction Office

AGRICULTURE
AGR1 Agriculture

RELIGIOUS
REL1 Church/Non-profit

GOVERNMENT
GOV1 General Services
GOV2 Emergency Response Police/Fire/EOC

EDUCATION
EDU1 Grade Schools
EDU2 Colleges/Universities Does not include group housing

Occupancy Class
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The application provides “mapping schemes” for converting general occupancy 

to specific occupancy and cross-tabulating occupancy classes with basic structure types 

– a default mapping scheme for Tennessee is seen in Table 1.3.   

Table 1.3 -- General occupancy to structure type mapping scheme (Tennessee) 

 

Wood Concrete Steel Masonry Manufactured 
Housing

RES1 90% -            -            10% -                    100%
RES2 -            -            -            -            100% 100%
RES3A 75% -            -            25% -                    100%
RES3B 75% -            -            25% -                    100%
RES3C 75% -            -            25% -                    100%
RES3D 75% -            -            25% -                    100%
RES3E 75% -            -            25% -                    100%
RES3F 75% -            -            25% -                    100%
RES4 50% -            -            50% -                    100%
RES5 20% 45% -            35% -                    100%
RES6 90% -            -            10% -                    100%
COM1 30% 10% 30% 30% -                    100%
COM2 10% 30% 30% 30% -                    100%
COM3 30% 10% 30% 30% -                    100%
COM4 30% 10% 30% 30% -                    100%
COM5 30% 10% 30% 30% -                    100%
COM6 -            70% 10% 20% -                    100%
COM7 30% 10% 30% 30% -                    100%
COM8 30% 10% 30% 30% -                    100%
COM9 -            45% 40% 15% -                    100%
COM10 -            70% 30% -            -                    100%
IND1 -            25% 70% 5% -                    100%
IND2 10% 30% 30% 30% -                    100%
IND3 10% 30% 30% 30% -                    100%
IND4 -            25% 70% 5% -                    100%
IND5 10% 30% 30% 30% -                    100%
IND6 30% 10% 30% 30% -                    100%
AGR1 10% 30% 30% 30% -                    100%
REL1 30% 10% 15% 45% -                    100%
GOV1 15% 17% 35% 33% -                    100%
GOV2 14% 16% 24% 46% -                    100%
EDU1 10% 12% 17% 61% -                    100%
EDU2 14% 19% 20% 47% -                    100%

Specific 
Occupancy 

Type

General Structure Types
Total
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Cross-tabulations of general occupancy and basic structure type are created 

through mapping schemes that suggest a breakdown by percentage of each specific 

occupancy class into different basic structure types (wood, concrete, steel and masonry) 

by state, thus serving as a control for the breakdown of the specific occupancy 

categories to detailed structure types through another set of mappings.     

To serve as input into a risk assessment model, the building inventory needs to 

be classified into specific sets that represent adequately the average characteristics and 

behaviors of all the buildings grouped in those sets.  In other words, each defined class 

of building should exhibit substantially different damage behavior and loss 

characteristics.  HAZUS MR-3 defines attributes of these classes using the structural 

system, height and design level (structural capacity and response parameters), 

nonstructural acceleration and drift-sensitive building components, specific occupancy 

(for casualties, business interruption and content damage), regional building practices 

and aleatoric intra-class variability.  The classification is implemented as a cross-

tabulation of specific occupancy (see Table 1.2) and detailed structure type (see Table 

1.1).  General occupancy classes are converted into specific occupancy classes based 

on the breakdown of specific occupancy floor area ratios by census tract.  These floor 

area breakdowns are based on demographic and housing characteristics for residential 

buildings and Dun and Bradstreet Inc. business data for non-residential buildings.  Using 

the general occupancy and basic structure type cross-tabulation as a control, the square 

footages of the various occupancy classes are distributed across the various detailed 

structure types, based on distributions for specific regions such as the East Coast, West 

Coast and the Mid-West.  Square footage values in the cross tabulations between 

specific occupancy and structure type are then converted into building counts based on 

per square foot occupancy ratios.  Building counts are then converted into structural, 
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non-structural and content value costs based on replacement values for the specific 

buildings.   

Note that the classifications thus generated are based on general “mapping 

schemes” or percentage breakdowns or other parameters, based on manipulations of 

census, business, energy consumption, proprietary insurance data and expert opinion.  

The mapping schemes and conversion parameters are crude and based on a coarse 

geographic resolution and are better suited for large regional loss estimation.  In fact, the 

technical manuals clearly acknowledge the coarseness of the default inventory modeling 

and suggest its use more as a “guide” to develop building distribution schemes for 

specific regions of interest (FEMA - DHS 2007, pp. 3-6).  FEMA’s intention was to 

provide government agencies at all levels the opportunity to use a regional loss 

estimation application at relatively no cost, and therefore distributed the relevant GBS 

and other inventory data along with the application software.  However, the software 

does contain tools to enhance the quality of the GBS by incorporating more accurate 

local inventory information.   

Of course, in ideal circumstances, information on all relevant variables pertaining 

to the built inventory would be collected at the finest resolution (that of the individual 

building) and available for risk modeling.  In this dissertation, I propose developing 

building inventory variables using models calibrated on local data that would eliminate 

the coarseness of large-area mapping schemes to smaller areas and increase the 

accuracy of the building inventory accounts.  Thus, a typical urban building inventory 

tries to tabulate buildings into typologies whose behavior under dynamic stresses are 

similar, and the task is certainly not trivial since these classifications occur along several 

dimensions such as structure type, occupancy type, height, square footage and design 
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levels, and perhaps particular building characteristics (symmetry, massing, the number 

of concavities in the footprint, etc.).   

1.5. Advanced Inventory Technologies and Techniques for Data Collection 

Advanced technologies in the context of data collection cover a wide range of 

sophisticated mechanisms including data processing hardware and software, sensors, 

platforms, data storage, retrieval and analysis instruments (Tralli 2000).  Advanced aerial 

and spaceborne remote sensing technologies are providing higher resolution data at 

lower costs, and the spatial image-based information thus generated provides numerous 

opportunities for developing base inventory data, or at the very least, supplements 

efforts at generating urban inventories.  Advances in computing, database and data 

analysis systems enable faster processing of larger volumes of data and the 

development of new analytical processing techniques and models for all types of 

research.   

1.5.1. Remote Sensing Technologies 

Remote sensing technologies refer to all forms of airborne or spaceborne 

platforms with active or passive sensors for the capture of details on the earth’s surface.  

Passive sensors capture reflected radiation from the earth’s surface (optical and infrared 

sensors), while active sensors send signals and receive their reflections from the earth’s 

surface.  Applying these technologies has several benefits.  First, depending on the 

resolution, fairly detailed urban inventory data could be captured efficiently and cheaply.  

Second, using such information provides opportunities for the development of automated 

routines and algorithms for image processing and feature extraction.  Third, repeated 

images of the same area over different periods would enable the characterization of the 

temporal aspects of urban inventory and help identify growth patterns, and ultimately 
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inform mitigation and land use planning relative to hazards.  Finally, these technologies 

could vitally assist in describing the hazard potential of large areas, and enable rapid 

damage assessment, response prioritization, loss estimation and model calibration in the 

aftermath of a disaster.   

Passive sensors typically deliver photogrammetric data in the optical and infrared 

bands at relatively high resolutions (1 to 5 meters) and are typically used for land cover 

extraction and classification and the development of elevation models (and building 

heights) when data is captured in stereo mode (successive image pairs that overlap, 

enabling relief detection when viewed using stereoscopes).  Additionally, by using 

image-processing applications integrated with feature-based data such as roads, parking 

lots, water bodies, etc., pixels may be trained and classified into signature-based 

classes.  Building footprint feature extraction could potentially be automated, and the 

footprints analyzed by height, size and shape in order to generate building inventory by 

use.  Primary advantages of using this technology include support for manual or 

automated planimetric feature extraction and that it is well-understood (Mollander 2000).   

Active sensors send microwave or laser pulses towards the earth’s surface and 

measure the time taken for the signal to be reflected and its intensity.  Synthetic 

Aperture Radar (SAR) and Interferometric Synthetic Aperture Radar (IFSAR) use 

microwave pulses and record both phase and amplitude information.  IFSAR is similar to 

SAR, except that two antennae are used, and the resulting composite image (two 

images are formed since the same signal reflection is received at different phases and 

magnitudes by each antenna) may be processed in order to extract elevation information 

(Gabriel and Goldstein 1988; Rodrigues and Martin 1992).  Light Detection and Ranging 

(LIDAR) emits laser pulses and receives their reflections (one pulse may be reflected off 

several features such as building sides and then bare earth and could potentially have 
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as many as 6 returns).  Along with a set of sophisticated instruments including an inertial 

measurement unit to measure platform velocity, a high quality global positioning system, 

and a high-precision clock, the time for the returns and their intensities are recorded and 

processed for elevation and classification data.  LIDAR produces extraordinarily large 

profusions of data points that may be effectively processed and used to determine 

heights of structures as well aid in automated feature extraction (Fowler 2000).   

Typically, the spatial data produced by these advanced technologies may be 

stored, processed, retrieved, analyzed and visualized using a GIS.  When combined with 

sophisticated relational databases and programming, GIS could enable the design and 

implementation of specific models and specialized routines to combine large volumes of 

advanced and traditional data in order to develop reliable, accurate and cost-effective 

accounts of the built environment.   

1.5.2. Building Inventory Estimation Methods 

The expense in collected structure type data for an entire region through field 

surveys or inspections of construction documents is often prohibitive and the speed of 

structural database construction is too slow relative to the frequent changes in urban 

buildings (modifications, retro-fits, demolition, etc.).  The most effective approach would 

be to innovatively integrate data from several sources and use them as a basis for 

structure type inference.  The starting point for developing urban building inventory 

datasets is usually the collection of readily available primary data such as roads, 

demographics, imagery and tax records, preferably in spatial formats.  Since structure 

type for buildings is not collected, a finite set of structural systems is essential for risk 

modeling.  Structural classification schemes range from as few as four (French and 

Isaacson 1984) to twelve (ATC-21 1988) or even forty (ATC-13 1985).  A typical 
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structural classification set is listed in Table 1.4.  Structure types may be estimated by 

one of two generic methods, including knowledge-based rules and classification models.   

Table 1.4 -- A typical structural classification set for vulnerability modeling 

Structure Type Code General Structure Type
C1 Concrete Moment Resisting Frame
C2 Concrete Frame with Concrete Shear Wall
MH Manufactured Homes
PC1 Concrete Tilt-up Panels
PC2 Precast Concrete Frame
S1 Steel Frame
S3 Light Metal Frame
RM Reinforced Masonry
URM Unreinforced Masonry
W1 Light Wood Frame
W2 Commercial Wood Frame
 

1.5.3.1. Knowledge-based Rules 

Typically based on a structured analyses of primary data and calibration 

samples, relationships between structure type, building age, occupancy, height and 

location are derived and statistical correlations, frequencies and cross-tabulation 

instruments are used in inferring structure types for the rest of the population of buildings 

(French et al. 1992).  While the performance accuracy varies by structure class, 

databases produced are eminently compatible with risk modeling applications.  The 

knowledge base is therefore a set of conditional rules acting upon known correlations or 

tabulations generated from the database.  Typically, these methods (in fact most 

methods) do not easily discriminate between wood, masonry and concrete structure 

types for older, non-residential buildings (ibid).  Similar rules reflecting both statistical 

aspects and construction methods may be applied to larger populations of buildings at 

larger scales in disparate geographic areas.   
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1.5.3.2. Classification Models 

While there are several advanced classification methods to choose from, typical 

methods include cluster analysis, self-organized mapping, supervised parametric 

classification, support vector methods, multinomial logistic regression and artificial neural 

networks.  Cluster analyses, self-organized mapping and supervised classification 

methods generally examine the data and implement clusters of the input spaces through 

parametric methods available in several statistical software.  Multinomial logistic 

regression is a maximum likelihood estimation method where a dependent variable 

consisting of more than two independent alternatives may be identified by a set of 

explanatory variables (McFadden 1974).  Classifications are based on the relative 

probabilities of each alternative relative to the others generated through a continuous 

logistic function of the inputs (Aldrich and Nelson 1984).  The method is relatively 

complex and the best models are extremely parsimonious in the choice of independent 

variables and the dependent alternatives.  Based on a calibration sample of structure 

types, the parameters of the multinomial logistic regression model could be used to 

predict the structure type for the remaining population of buildings.   

Support Vector methods are typically used for classifications where the number 

of calibration samples is too few relative to the explanatory variables to generate reliable 

parametric estimates.  This method artificially expands the list of explanatory variables 

by generating interactions and transformed functions from the independents and then 

discriminating between the dependents at this higher dimension input space.  The 

premise is that any two classes may be linearly classified by transforming the input 

space into higher dimensions (Vapnik 1999).   

Artificial neural networks (ANN in the singular and ANNs in the plural) offer great 

potential as classification and analytical tools in generating urban building inventories.  



 
29

ANNs have been used with GIS to model land use change (Li and Yeh 2002), 

agricultural soil protection (De la Rosa et al. 2004) and landslides (Neaupane and Achet 

2004).  The number of inputs, their complex interrelationships, the inherent noise and 

gaps in input data often inhibit traditional parametric modeling efforts.  ANNs have the 

capability to integrate and generalize such wicked inputs and successfully generate 

classification functions (Principe et al. 2000).  ANNs are non-linear, semi-parametric 

computer models that create parameters through learning mechanisms for successful or 

desired results based on calibration samples and could replicate the input patterns to 

classify unseen buildings into the specified structure type classes.  ANN classification 

results are generally robust and forgiving of complex or noisy input data.   

1.6. The Earthquake Modeling Process Requirements 

In a typical risk modeling and loss assessment model, vulnerability functions for 

different components of the urban at-risk inventory are applied based on a particular 

level of hazard.  This generates estimates of physical damage to the infrastructure, 

which are used as inputs to compute direct estimates of damage losses, shelter needs 

and functionality interruptions.  Based on repair and restoration of service parameters 

applied to the damaged components, business interruption and long term economic 

losses are computed, and all results are reported and/or visualized.  Figure 1.3 details 

the schematic process flow for such a model.  This dissertation is focused on developing 

the building inventory for input into a risk assessment and loss estimation model.  Based 

on discussions with principal investigators of several other MAEC projects, the key 

building attribute components that would serve as inputs to earthquake vulnerability 

models were identified and are listed in Table 1.5, along with their potential sources.   
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Figure 1.3 -- Schematic process flow for a typical loss estimation model 

Table 1.5 -- Building inventory attributes for vulnerability modeling 

Attribute Source
Structure type classification Estimated through knowledge-based or classification models
Building footprint configuration Derived through automated GIS-based shape recognition routines
Height Classified from primary sources (Tax Assessor's Database)
Building floor area Primary (Tax Assessor's Database)
Year of construction Primary (Tax Assessor's Database)
Building location Primary (Tax Assessor's Database)
Building occupancy (use) Primary (Tax Assessor's Database)
Building replacement value Parameterized from R.S. Means costs, structure type and height
Structural replacement value Estimated through occupancy-based component costs
Non-structural replacement value Estimated through occupancy-based component costs
Content value Estimated through occupancy-based component costs
Essential facility designation Primary (Tax Assessor's Database/Internet/Other)
 

The building footprint configuration attribute requires some special mention here.  

Apart from structure type, height, location and design level that influence the building’s 
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capacity and response during a hazard event (particularly for wind and earthquake), 

building behavior is also influenced by its shape (Arnold and Reitherman 1982) and 

distribution of mass (Murty 2002 a, 2002 b).  The shape of the building is essentially the 

shape of the building footprint polygon that represents it in two dimensions.  The 

distribution of mass is more difficult to extract, since it involves the masses of the 

unobservable contents inside the building.  However, what is observable is the exterior 

massing of the building, in terms of the distribution of height over the footprint of the 

building.  For instance, an L-shaped building may be 6 stories in height along the short 

arm of the L and only 2 stories along the long arm.  Clearly, the distribution of mass 

inside the L-shaped footprint is not uniform.  Estimating or measuring the distribution of 

mass is beyond the scope of this dissertation, which will limit itself to deriving automated 

methods in order to identify the shape of a building from its footprint and reconcile this 

information with the building inventory database.  Based on discussions with principal 

investigators of other MAEC projects, the various two-dimensional building 

configurations to be identified in this dissertation include square, rectangular, L-, C-, T-, 

H-, Z-shaped, octagonal, circular, cruciform (plus-shaped) and irregular.   

Structure type, building footprint configuration, height and location identified in 

this dissertation will be used as inputs for the estimation of direct physical damage and 

losses.  Structure type classifications listed in Table 1.4 were deemed adequate for 

regional vulnerability modeling, based on discussions with other MAEC project principal 

investigators.  Building floor area, occupancy, replacement and content value estimated 

in this dissertation will be used for social and economic loss modeling and mitigation 

decision support.   
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1.7. Description of Research 

In order to estimate the consequences of any disaster, a necessary and required 

input is a quantitative description of the man-made environment that is exposed to that 

disaster (Kaiser et al. 1995).  In fact, most consequence-based models first estimate the 

damage to the physical man-made inventory and then translate these estimates in order 

to estimate the engineering, social and economic consequences (FEMA 2004; FEMA - 

DHS 2007).   

1.7.1. Research Statement 

This research focuses primarily on the factual basis requirement of mitigation 

planning – that is, the development of urban building inventories and their attributes 

using advanced technologies and methods, including multinomial logistic regression 

models, artificial neural networks and innovative spatial computing and secondarily 

demonstrates the application of the inventory in specific earthquake scenarios for 

regional loss estimation. 

1.7.2. Research Goals and Objectives 

The overall goal of the research is to utilize advanced technologies and methods 

in order to identify physical attributes of the built environment that are instrumental in 

assessing potential earthquake damage, consequences and mitigation strategies.  Thus, 

the research is concerned with the development of new techniques in estimating 

quantifiable descriptors of the urban building inventory, relying on remote sensing, aerial 

photography, GIS and other advanced technologies.  Inferential techniques will be 

developed for combining data from such measurements with data from secondary 

sources that describe parts of the inventory at risk.   
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The dissertation has several objectives, including: 

 development of new techniques and replicable methods for producing inventories 

of buildings and other facilities over large urban regions 

 production of reliable, low-cost inventories of the built environment to make 

earthquake risk assessment more cost effective 

 creation of comprehensive and efficient inventory techniques based on the 

integration of remote sensing, aerial photography and inferential techniques 

applied to secondary data 

 implementation of the techniques developed in the dissertation to produce the 

building inventory for a test study in Shelby county, Tennessee, henceforth 

referred to as the Memphis Test Bed [MTB] 

 use the generated building inventory to specified earthquake scenarios in MTB 

for proof-of-concept, earthquake risk assessment database development and 

application in regional loss assessment modeling 

1.7.3. Significance of the Research Effort 

The research will provide a detailed assessment of existing and emerging data 

mining technologies in the context of developing the factual basis for hazard mitigation 

planning.  Additionally, individual technologies and related efforts currently used in other 

disciplines will be evaluated for their potential in providing useful information for regional 

earthquake vulnerability and risk assessment.  By developing alternative approaches 

and integrating multiple methods that use these new technologies and methods, the 

process of creating and maintaining databases of large-scale urban and regional 

inventories can be made more reliable and cost effective.  The methodologies will be 
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applied in Shelby County, Tennessee, and may then be replicated over other regions in 

order to test the generalizability of these techniques.  The project can potentially develop 

new and innovative data collection and inventory modeling techniques in pre- and post-

earthquake event periods for risk assessment scientists, structural engineers and 

decision makers.   

With specific reference to the CRM paradigm, the research provides methods for 

rapid screening and assessment of broad based urban inventory data, including the 

location, type and function of particularly vulnerable structures.  Advanced inventory 

techniques developed within the project will increase that availability of data for regional 

damage synthesis and provide inputs for alternative scenarios in consequence 

minimization and mitigation planning efforts.  Improvements in inventory techniques will 

make damage modeling and analysis more reliable and affordable, and more widely 

applicable, and further, provide the basis for post-earthquake assessment and recovery 

planning.  With specific reference to artificial neural network techniques, neural networks 

are very new applications and have wide applicability in planning, particularly where 

prediction of categories based on other external factors is needed – for instance, in 

growth models, allocating future uses of land using environmental, transportation, 

proximity and other developmental factors can be performed using neural networks.   

Finally, data inventories developed with these new techniques, when combined with 

visualization techniques, can help decision makers appreciate risk and develop more 

informed policies for minimizing earthquake-related damage.   

Specifically, this research develops methods for modeling and estimating three 

distinct substantive components of building inventories that are vital to risk assessment 

modeling.  Advanced techniques using artificial neural networks on buildings calibrated 

at the local level enable the identification of building structure type.  Innovative spatial 
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computing algorithms classify buildings based on their two-dimensional shape 

configuration.  Standard industry-based construction costs are parameterized into 

equations for detailed estimations of the value of building components and systems 

based on configurations of building occupancy, area, height, structure type and external 

wall type.   

While the research develops methods that increase the reliability of building 

inventories, the results of models for structure type classification and building valuation 

have general and specific mitigation policy implications.  The spatial distribution of the 

building inventory enables the identification of particularly vulnerable structure groupings 

and the concentration of building asset wealth in the context of hazard-prone areas.  The 

spatial distribution of the building inventory then allows for (i) strategic retrofitting based 

on life safety (ii) land use planning and regulations for building stock turnover and 

redevelopment, (iii) design guidelines and code enforcement in the context of 

improvements to existing structures, (iv) development management for directing new 

growth and (v) other loss avoidance/minimization guidelines.   

In summary, this research effort fulfils a vital requirement of risk assessment 

modeling that directly informs mitigation policy through the spatial distribution of the 

building inventory and indirectly, through estimates of potential damage and 

quantification of vulnerability derived by applying the building inventory in risk 

assessment models.  Additionally, the methods developed in this research will increase 

the reliability of the building inventory while reducing the cost of inventory development 

and are eminently replicable, with great potential for automated and semi-automated 

approaches. 
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1.7.4. Scope of Research 

Based on the previous sections, building-related attributes required for effective 

earthquake risk assessment and loss estimation modeling include structure type, 2D 

shape, height, floor area, year of construction, location, occupancy, replacement, 

structural, non-structural and content value and essential facility designation.  This 

dissertation will develop new and replicable techniques for generating building 

inventories by integrating primary data with inferential techniques and innovative 

methods.  The dissertation will also demonstrate the application of the techniques in 

order to generate the building inventory database for the MTB and use the database in 

loss estimation exercises.   

Accordingly, the scope of this dissertation includes the following: 

 examining the current literature and state-of-the-art technology for designing the 

techniques 

 estimating the structure type for buildings identified in Table 1.4 for the MTB 

 developing spatial computing algorithms and implementing them in the GIS 

environment in order to identify the building configuration type 

 estimate the replacement, structural, non-structural and content value of 

buildings for the MTB 

 identify all essential facility buildings for the MTB 

1.8. Organization of Dissertation 

This dissertation is organized into five chapters.  The introductory chapter details 

the need for accurate urban inventories in the context of advanced technologies and 
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techniques that could be used to inform hazard mitigation planning.  The introduction 

also defines the research and outlines the overall scope.   

Chapter 2 reviews the current state of the literature for classification models, 

shape and pattern recognition and building valuation.  In particular, the classification 

section deals with multinomial logistic regression and artificial neural network models.  

The shape recognition section describes the process of shape analysis, and brief 

explanations of techniques categorized by shape representation or recognition methods.  

The literature also covers geometric manipulations within a GIS framework for methods 

that exhibit potential in spatial computing.  The chapter concludes with a review of 

prevalent methods in building valuation.   

Based largely on the literature review, Chapter 3 describes the methodological 

approach and design of particular aspects of the study for each of the three modules 

outlined in the scope.  The chapter begins with a description of the available primary 

data and the details of a field survey for calibration and validation exercises.  

Classification methods for determining structure type of buildings are then discussed, 

including multinomial logistic regression and ANN approaches.  In order to 

programmatically identify building footprint configurations, the chapter proceeds to 

describe various algorithms that enable preprocessing the footprint to serve as input into 

a shape recognition module.  The overall design of the process is emphasized.  Finally, 

the methodology for estimating the replacement costs, the nonstructural acceleration- 

and drift-sensitive component costs and the content value of the building is described.   

Chapter 4 describes the results of the structure type classification models, the 

shape recognition routines and the models for estimation of building values.  This 

chapter also discusses various aspects of the results, including where they may have 

policy implications.   
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Chapter 5 concludes the dissertation by validating the integrated building 

inventory data produced by the application of the methods designed in the research.  

This chapter also discusses the applicability of the methods to other substantive areas, 

limitations of this research and future areas for directed study.   

The dissertation also includes two appendices that describe (a) the Shelby 

County demonstration building inventory produced by the research in the form of 

tabulated summaries, and (b) the influence of explanatory variables used in the 

multinomial logistic regression on structure type outcome pairs in the form of changes in 

odds.   
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Chapter 2 . LITERATURE REVIEW 

This dissertation is primarily concerned with estimating the structure type of 

buildings using existing and primary data, identifying the shape of building footprint 

polygons and estimating the value of buildings using advanced technologies and 

methods described in Section 1.5 earlier.  While the individual elements themselves are 

quite disparate and distinct from one another, what unifies them is that they are all 

components of the urban building inventory that will be used for various elements of 

earthquake risk assessment and loss estimation.  Identifying the structure type and the 

shape of the building both require methods of pattern recognition, while building 

valuation involves statistical curve-identification routines.  The discrete aspects of the 

variables require distinct approaches and this is reflected in the organization of this 

chapter and indeed, the dissertation itself.   

This section begins with a brief description of classification as related to pattern 

recognition, in the contexts of typical classification and shape-based classification.  A 

statistical multinomial logistic regression approach to classification is described in the 

next section.  A relatively recent and advanced approach to classification using artificial 

neural networks is described in Section 2.3.  The literature for identifying building 

configuration is surveyed in the following section.  Aspects of geometric manipulation in 

the GIS environment particularly as they relate to configuration identification are 

described in Section 2.5.  The use of ANNs has been somewhat limited in developing 

building inventories and building configurations have not yet been used in large-scale 

regional loss estimation.  Additionally, the audiences interested in building inventory 

development have little access to the evolution and application of such techniques.  

Consequently, the material presented in these sections is comprehensive in nature.  The 
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section concludes with some background in building valuation and the components of a 

building that are sensitive to acceleration and drift aspects of earthshaking hazards.   

Most of the literature for structure type classification and building shape 

recognition is adapted from pattern analysis research, particularly in the context of digital 

recognition and machine intelligence.  Specializations include fuzzy computing, pattern 

recognition, image processing, medical imaging, multimedia, signal processing, neural 

networks, computer graphics, robotics and artificial intelligence, etc. (Costa and Cesar 

2001b).   

2.1. Pattern Recognition and the Potential for Automation 

One part of this dissertation is aimed at classifying buildings to specific structure 

types, based on some primary attributes of the buildings, such as building age, function, 

height, size, etc., while another attempts to identify and organize buildings by their two-

dimensional representation.  These are classification problems often encountered in 

human activity.  In cases where critical or high-precision decisions have to be made 

especially in the context of repetitive or tedious visual inspection, humans are prone to 

fatigue or error (Fabel 1997).  For instance, Transportation Security Administrations 

have the extraordinarily high responsibility of achieving a 100% success rate in terms of 

spotting security threats like weapons or explosives.  The screening job is not hard 

(“How hard can it be?” was a frequent response when I discussed this with my peers) 

but tedious and repetitive – how long would a TSA screener be able to stare at a monitor 

without dozing or having blurred vision or suffering some lapse in concentration?  TSA 

screeners in tests at 15 airports missed 90% of security threats during covert tests 

(Sherman 2007).  Such situations provide the need and opportunity for automating 

decision-making in order to reduce errors or to increase precision and consistency in 

classification.   
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The term classification includes any context where a judgment is made to assign 

an object to one of several classes, based on existing information.  The classification 

procedure is therefore an application to analyze a set of observed attributes for one 

sample among many and then assign that sample to one of a set of pre-defined classes.  

Creating this classification procedure from a sample set for which the correct classes are 

known has also been coined “pattern recognition, discrimination, or supervised learning” 

(Michie et al. 1994).  Humans are often able, without conscious thought, to identify 

patterns and classify objects well.  However, in today’s world, there is intense pressure 

to develop systems or machines that can perform the same classification task with 

higher accuracy, or greater speed, or greater economy, or simply to release humans 

from repetitive effort (Devijver and Kittler 1982).  Thus, classification procedures are 

aimed at mimicking or exceeding human judgment with the added benefits of 

consistency, explanatory power and generalization (Duda and Hart 1973; Devijver and 

Kittler 1982; Michie et al. 1994).   

Michie et al (1994) identify three historical research traditions for classification 

problems including statistical, machine learning and neural networks.   

Statistical approaches (the oldest methods to identify structure from samples) for 

classification are based on discriminant functions or joint distributions of sample 

attributes within each class, and usually have explicit underlying probability distributions.  

This approach relies on some degree of human intervention for attribute choice, 

measurement and transformation.  See Anderson (1984b) or McLachlan (1992) for 

standard textbooks that deal with statistical approaches to pattern recognition.  See also 

Jain et al. (2000) for an excellent review on modern statistical pattern recognition.  

Statistical models for classification also include multinomial logistic regressions, 

extended from binary dependent variable regressions.  Statistical approaches often 
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require assumptions about underlying population distributions that may not be valid and 

the nature of parameterization makes the modeling process somewhat inflexible.  

Nevertheless, statistical models have had wide applicability, and have consistent 

parameters that may be used for explanation.  In addition, statistical models have clear 

measures of uncertainty that would be useful to know in a loss estimation process that 

has uncertainty stemming from multiple sources.   

Machine learning, which emerged from research groups in artificial intelligence 

and computer science (Russell and Norvig 1995), also attempts to identify classification 

procedures, usually by learning from binary labels and known examples (Langley 1996).  

Machine learning is often implemented through decision-trees, where classification is 

achieved from hierarchical binary paths, though other advanced procedures such as 

genetic algorithms (Luger 2002; Association for the Advancement of Artificial Intelligence 

2007) and inductive logic procedures (Srinivasan 2001) are not uncommon.  Machine 

learning is expected to generate classification mechanisms that are explicit and provide 

comprehensible explanation for human understanding (Michie et al. 1994).  After initial 

development, machine learning does not require human intervention.  See Nilson’s draft 

textbook (1996) for an excellent survey on machine learning, statistical learning, neural 

networks and inductive logic programming.  Typical classification algorithms 

implemented in this tradition include k-nearest neighbors, decision trees and support 

vector machines.   

ANNs are increasingly becoming common in tasks that involve functional 

approximation and classification, as evident from the number of ANN-based research 

papers in pattern recognition, medical statistics and other applied disciplines, particularly 

in the last two decades (Dreiseitl and Ohno-Machado 2002).  Just as in statistics and 
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machine learning, ANNs also require the presentation of pattern examples showing the 

desired results that serve as calibration or training data.   

ANNs will be discussed in greater detail in the following sections, and this section 

concludes with Michie’s comment (1994) that neural networks are performance-based, 

and integrate statistical complexity with the machine learning aim of mimicking human 

judgment without the necessity for explicit explanation (Anderson and McNeil 1992).   

2.2. Multinomial Logistic Regression for Classification 

A binary logistic regression is a form of regression where the dependent variable 

is dichotomous.  When the dependent variable is polytomous (has more than two 

categories), the multinomial logistic regression model is used.  The multinomial logistic 

regression is different from an ordinal logistic regression in that the categorical 

dependent variable in the ordinal logistic regression is ordered.  For instance, if the 

dependent variable analyzes a set of preferential responses, where 1 is “Excellent”, 2 is 

“Good” and 3 is “Average”, you would use an ordinal logistic regression.  If the 

dependent variable lists clear categories, such as 1 is “Republican”, 2 is “Independent” 

and 3 is “Democrat” (though some would argue that this categorical variable is also 

ordinal!), you would use a multinomial logistic specification.  The ordinal logistic 

regression is a specific case of multinomial logistic regression (Anderson 1984a), where 

the model performance is definitely better if the discrete dependent variables are indeed 

ordered (Campbell and Donner 1989).   

Identifying the appropriateness of a category (the dependent variable) for a 

particular combination of inputs is a classification exercise.  The multinomial logit model 

has its earliest applications in transportation to classify individual mode choice, based on 

the respective utility functions for each transportation mode (McFadden 1974).  Refer to 
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Aldrich and Nelson (1984) or Greene (Hensher et al. 2005; Greene 2008) for 

introductory texts and applications of logistic regression.  Also, see J. Scott Long (Long 

1997; Long and Freese 2006) for text and examples of working with categorical 

dependent variables using Stata, a very useful source.   

Logistic regressions are often the preferred models for classification tasks.  

Consider ‘n’ observations, (yi, Xi), where yi are conditionally independent (J+1) 

categorical dependent variables, and Xi are the covariates or independent variables.  In 

the multinomial logistic regression, each outcome is modeled, or a set of parameters are 

identified for each category of y.  Thus if there were three discrete categories of y 

(represented by P, Q and R), then the conditional probability for outcome P is given by  

)()()()()Pr( rXqXpXpX eeeePy ββββ ++==  

To identify this model, one of the outcomes is set as the reference category by arbitrarily 

setting the estimated coefficients to 0.  The same conditional probability for outcome P is  

)()(11)Pr( qXqX eePy ββ ++==  

The general model is specified by comparing the J different outcomes to the reference 

category J = 0 and is given by 

∑
=

+==
J

k

kXjX
i eeXJy

1

)()( 1)|Pr( ββ , where j = 0,1,2, …J and β(j) = 0 when j = 0 

The relative probability of y = k to the reference outcome y = 0 is 

( ) )()0Pr()Pr( kXeyky β===  

Performance measures for multinomial logistic regression models include a Wald 

statistic or the likelihood ratio, a pseudo R-squared statistic and finally, each coefficient 
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may be associated with a confidence interval.  Model performance may also be 

evaluated by creating confusion matrices of observed versus predicted classifications – 

confusion matrices are described later in Section 2.3.7.6.   

Based on the particular combination of independent variables (factors and 

covariates), a model calibrated on some training data may be used for classifying 

unseen data.  The model calculates a probability score for each of the outcomes, and 

class assignation is implemented by choosing that class with the highest probability.  

Logistic regressions that include only the original set of variables is called “main effects 

models” while “interaction effects models” include combinatory effects between the 

independent variables.  Although higher flexibility is generally better, the interaction 

effects models may overtrain the data (or begin to memorize patterns) and therefore, 

might not be generalizable to unseen data.  Prudent selection of independent covariates 

and factor levels can help in preventing overtraining (Dreiseitl and Ohno-Machado 

2002).  Additionally, practical experience suggests that parsimonious models are easier 

to interpret and explain – even with adequate numbers of samples, if the number of 

independent variables increases, or if the number of classes in categorical independent 

variables increases, the estimated parameters may be so great in number that 

interpreting the model becomes cognitively difficult.   

2.3. Artificial Neural Network Solutions for Categorical Data Analysis 

This section defines ANNs and briefly describes their evolution, along with 

examples of successful modern ANN applications.  The section concludes with concepts 

and theoretical aspects that are relevant from a methodological point of view.   
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2.3.1. A historical perspective on Artificial Neural Networks 

Fukunaga (1990) argues that human decision-making is strongly related to the 

recognition of patterns, and that the overall goal of pattern recognition is to clarify this 

process and automate the same using computers.  Since many humans perform 

classification by pattern recognition, often better than any machine, there has been 

tremendous interest in understanding the process of human decision-making among 

computer scientists, engineers, psychologists and physiologists.   

During the 1940s, McCulloch and Pitts (1943) introduced the first mathematical 

model of the neuron and demonstrated that networks of neurons with simple outputs 

could, in principle, compute any arithmetic or logical function.  Hebb (1949) then 

proposed a learning law that rigorously described learning at the cellular level.  In the 

1950s, Frank Rosenblatt (1958) demonstrated the first neural network that was able to 

perform pattern recognition using the “perceptron network” and the associated learning 

rule.  Widrow and Hoff (1960) demonstrated a new learning algorithm and used it to train 

adaptive linear neural networks, similar to the perceptron.  In this model, the network 

processes inputs into desired output categories, calculates the error between network 

and desired outputs and then adjusts input weights using a gradient descent method that 

minimized the least mean square error [MSE].  The Widrow-Hoff learning rule is still in 

use today.  This led to great enthusiasm (and extremely inflated expectations!) in the 

field of machine learning as influenced by mathematics, psychology and biology.  The 

balloon was quickly punctured by Minsky and Papert (1969) who rigorously determined 

what a perceptron network was capable of learning, and demonstrated their limitations 

so pessimistically and effectively that it caused a research and funding drought in neural 

computing for several years.   
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With advances in computing technology and processing power, and two key 

conceptual breakthroughs, the field experienced a renewal during the 1980s.  The first 

concept used statistical mechanics to explain the associative memory properties of 

specific recurrent networks (Hopfield 1982).  The second key milestone was the 

development of the backpropagation algorithm to train multilayer perceptron networks 

(Werbos 1974; Hinton and Sejnowski 1986; Rumelhart et al. 1986; Rumelhart and 

McClelland 1986) by several researchers that successfully refuted earlier criticisms and 

resurrected the field.  Over the last two decades, thousands of papers have been written 

with successful applications of artificial neural networks in many different fields.  This is 

only a brief account of the fitful and dramatic progress of knowledge in neural computing, 

and the interested reader is referred to Anderson and Rosenfeld (1990) for an excellent 

review of the history, evolution and theoretical perspectives of the leading exponents of 

neural networks.   

2.3.2. What is an Artificial Neural Network? 

As you read this sentence, you are using a complex and intricate neural network 

comprising of over 1010 neurons (StatSoft 2003) with on average, about 10,000 inter-

neuron connections.  In general, all biological functions, including memory, are stored in 

neurons and in inter-neuron connections – learning is conceptualized as the generation 

of new connections or the modification of existing ones (Hagan et al. 1996).  Following 

this conceptualization, Rojas (1995) defines the fundamental problem of an information 

processing system as the transmission of information, since data storage can be 

transformed into a recurrent transmission of information between two points.  While the 

biological neural network is extremely complex in terms of structure and connectivity 

(and therefore are extremely powerful processing units), artificial neurons are simple 

abstractions of biological neurons and arranged in some interconnected sequence as an 
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artificial neural network  Such artificial neural networks may be trained to perform some 

specific and useful functions.   

The simplest conceptual definition of an artificial neural network is a model 

whose output is some linear or non-linear combination of the inputs.  These models are 

based on numeric inputs and outputs, which may therefore require some preprocessing 

of input data.  A biological neuron has dendrites that receive information at the contact 

points (synapses) between neurons, a cell body that produces energy consumed by the 

other components of the cell, and an axon to transmit an output signal.  This structure is 

abstracted and represented in Figure 2.1 as an artificial neuron, along an input channel 

(analogous to a Dendron), a weight (corresponding to a synapse), a summation and 

transfer function (the resource for firing a signal, from the cell body) and an output 

channel (the axon).   

w1

f(net)∑
w2

w3

…
..

wr

1

x1 

x2 

x3 

xr

…
…

.…
..

b

Inputs Multiple-Input Neuron

a

 

Figure 2.1 -- An abstract artificial neuron with multiple inputs 

Each artificial neuron may be conceptualized as a simple processing element 

[PE] carrying unidirectional communication channels, operating only on the local data 

that they receive through their connections.  Thus, each input received [x1, x2, x3, …, xr] 

is weighted by the corresponding weight elements [w1, w2, w3, …, wr] and along with the 

bias, transmitted to the summation operator.  The summation operator adds the bias and 
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the products of the inputs and weights and transmits the result ‘n’, to the transfer 

function.  Thus, ∑=
+∗=

r

i ii bxwn
1

.  The transfer function f(net) processes the result of 

the summation operator and, depending on whether the computational result is above a 

threshold, fires the output signal.   

Typically, one neuron with multiple inputs may not be sufficient to solve the 

problem.  Several neurons, operating in parallel, form a layer, whose PEs are connected 

locally to all the inputs.  Figure 2.2 shows such a “single layer feed-forward” artificial 

neural network architecture (Hagan et al. 1996).  Note that each of the four input 

attributes for the sample object is weighted and connected to each of the processing 

elements and the weights form a matrix, whose rows correspond to the number of PEs 

and columns to the number of input attributes.   
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Figure 2.2 -- Single layer feed-forward ANN topology – the Perceptron 
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Thus, summations for PE1, ∑
=

+∗=
4

1
1,11

i
ii bxwn  and for PE2, ∑

=

+∗=
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1
2,22

i
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Each PE’s transfer function f(net) processes the result of the summation operator and, 

depending on whether the computational result is above a threshold, fires an output 

signal.  Extending the single layer to several other “hidden” layers, Figure 2.3 shows a 

multiple layer feed-forward network architecture.  Here, each of the three layers has its 

own weight matrix and bias vector.  Layers may have different numbers of processing 

elements.  The outputs of each layer serve as inputs for the succeeding layer.  A layer 

whose output is the network output is called the output layer.   

Figure 2.3 -- Multiple layer feed-forward ANN topology 

In Figure 2.3, there are two hidden layers and one output layer.  Hidden layer 1 

has 3 PEs and a weight matrix of order [3 x 4], corresponding to the 3 PEs and 4 input 
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attributes.  It has 3 outputs that serve as inputs to Hidden layer 2 that has 2 PEs and a 

weight matrix of order [2 x 3], and so on. 

Thus, a partial definition of ANNs would be networks of many simple processors 

connected by unidirectional communication channels that carry numeric data -- these 

simple processing units operate in parallel and act only on the local data inputs they 

receive along their communication channels.   

Human pattern recognition however, is behavior learnt through training, or 

detecting structure through example (Ripley 1996).  In many cases, while we recognize 

patterns, we may be unable to describe the explicit rules by which we make judgments 

(and this is often the case with ANNs also!).  A common mode of learning between 

humans and machines involves the presentations of input features with known class 

examples.  With the addition of this additional mechanism, our working definition would 

be complete – the learning rule.  The learning rule essentially adjusts the weights of the 

various connections by comparing the network output to the desired pattern (or known 

class example).  Thus, the ANN learns from examples, by calculating the error and 

adjusting the connection weights so that this error is minimized.  Figure 2.4 shows the 

general process of training the ANN, a schematic of the process of weights adjustment 

through error minimization.  Once the weights have been adjusted so that the error is at 

a minimum, the weights are frozen, or the ANN has been “trained.”  Then, new data may 

be presented to the ANN, and the network computes an output based on the optimum 

weights determined during training.   
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Figure 2.4 -- Schematic of ANN training and use 

Thus, ANNs are “distributed, adaptive, generally non-linear learning machines” 

(Principe et al. 2000) built from many PEs, whose interconnectivity defines the topology 

of the network.  Signals flowing across these connections are scaled by adjustable 

parameters or weights, one for every connection.  In a mathematical sense, ANNs build 

discriminant functions from their PEs, with the topology determining their number and 

shape.  Since the discriminant functions change with the topological specifications, 

ANNs are regarded as semi-parametric classifiers.   

2.3.3. Transfer Functions 

The transfer function of the PE is an important concept – the output of the 

summation operator is processed by the transfer function for conversion into some real 

output of the PE.  The transfer function is therefore an algorithm that transforms the 
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output of the summation into a zero, or one, or negative one, or some other number 

(Haykin 1994; Hagan et al. 1996).  The transfer function may also scale the output.  

There are several transfer functions commonly supported by most neural software 

applications as seen in Figure 2.5 below.  The combination of layered topology and 

transfer functions in a neural network is what enables non-linear approximation.   
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Figure 2.5 -- Some example transfer functions 

2.3.4. Applications of Artificial Neural Networks 

ANNs have been successfully applied in a variety of contexts and applications in 

the last decade, and the applicability has been dramatically increasing (StatSoft 2003; 

California Scientific 2007; Makhfi 2007).  There are indeed a plethora of examples where 

ANNs have been used and this section highlights only a few.  ANNs are used for the 

following topical areas: 
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2.3.4.1. Function approximation 

These models are used for modeling processes, process control, data modeling, 

machine diagnostics, regression, etc.  ANNs have been used in engine management to 

analyze signals from engine sensors for controlling functional parameters in order to 

achieve specific goals such as minimizing fuel consumption.  In real estate appraisal, 

ANNs use sales and multiple listing data to appraise properties with high accuracy in 

Pennsylvania and New York.  ANNs are increasingly being used for weather forecasting 

-- the Fort Worth National Weather Service uses neural network models to analyze 

weather data and predict rainfall with over 85% accuracy.   

2.3.4.2. Time series analysis and prediction 

ANNs are being used by many technical analysts to make predictions about 

stock prices based upon a large number of factors such as past performance of other 

stocks and various other economic indicators.  Over 80% of Fortune 500 companies 

currently have and actively use ANNs (Makhfi 2007).  LBS Capital Management, Inc 

uses ANNs to predict the S&P 500 one day ahead and one week ahead with higher 

reliability than other existing methods (California Scientific 2007).  Several utility 

companies, including Northern Natural Gas, predict gas price fluctuation with over 95% 

accuracy.  Banks apply ANNs to predict bankruptcy rates regularly.   

2.3.4.3. Classification 

ANNs have been increasingly used for pattern recognition and classification, and 

by far seems to dominate the application areas.  In medicine, ANNs have been used to 

classify malignant cancer cells and predict the functional recovery time for hospital 

patients, which insurance companies are observing with great interest.  In finance, banks 

and lending institutions use ANNs to establish the credit-worthiness of applicants by 
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analyzing attributes such as age, vocation, education, past financial history, etc. to 

classify credit risk (StatSoft 2003).  ANNs are also increasingly being used to analyze 

performance of machinery to differentiate between false alarms and real problems, and 

in particular, to predict the imminent failure of machines or machine parts.  Intel uses 

ANNs in computer chip manufacturing and quality control to identify patterns in chip 

failures (California Scientific 2007).  ANNs are actively being used in voice and word 

recognition for phone systems and voice to digital conversion.  Several companies use 

ANNs for optical character recognition for identification of text, characters, symbol and 

map features and for conversion to digital format.   

Of particular interest to us, in the field of GIS, ANNs have performed better than 

traditional methods for classification of remote-sensed data from images by integrating 

texture with color values (Bischof et al. 1992).  Other researchers have demonstrated 

the viability of ANNs in all stages of a GIS system, ranging from data preparation to 

analysis and modeling (Kavzoglu et al. 2000; Kavzoglu and Mather 2000).  Currently, we 

are also exploring the potential to use ANNs for automated shape recognition of building 

footprints for earthquake risk inventory, by analyzing vector digital GIS building 

polygons.   

2.3.4.4. Data mining 

ANNs are widely used in identifying patterns from raw data, data extraction and 

visualization, general data warehousing and mining applications.  ANNs have proven to 

save resources and time in emergency room testing logistics by predicting test types 

based on symptoms and demographic information.  Pharmaceutical companies use 

ANNs to analyze sales of their products by mining ancillary data such as sales 

frequency, demographics, transportation logistics, pharmacy locations, etc.   
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2.3.5. Why use Artificial Neural Networks? 

ANNs have often been criticized since they lack good parametric measures of 

performance.  ANNs, particularly in classification exercises, are evaluated primarily 

based on their performance.  Further, in most instances, their inner workings are a 

mystery to even experienced users -- they have been severely criticized for their black-

box approach, and their lack of explicit explanatory power (Anderson and Rosenfeld 

1990; Anderson and McNeil 1992).  Nevertheless, ANNs are gaining in popularity and, 

as shown in the previous section, are used in an extraordinary variety of disciplines.  

ANNs are being used wherever there are needs for classification, prediction, signal 

identification or control.  There are several reasons for the current increase in popularity.   

First, ANNs clearly provide sophisticated and cutting-edge techniques capable of 

modeling very complex functions.  Traditional modeling relies heavily on linear 

techniques, because several optimization routines exist for linear solutions.  However, 

linear techniques are not universally applicable, and where applied in non-linear 

situations, modeling results are often poor.  Speech recognition is a typical area where 

traditional linear solutions offer very poor performance.  Traditional non-linear solutions 

further require almost prohibitive amounts of data, while ANNs, with their iterative 

techniques, control the dimensionality problem to some extent (Makhfi 2007).  Secondly, 

ANNs learn by example, where the network trains on representative, known examples 

using learning algorithms to identify input data patterns.  Most practitioners readily admit 

that ANN users require some heuristic knowledge for variable selection, data 

preparation, network topological design and interpretation of diagnostics and results 

(Nilsson 1996; Patterson 1996; Principe et al. 2000).  Nevertheless, the level of user 

knowledge is substantially lower than traditional non-linear statistical techniques, 

particularly when performance is the key (Anderson and McNeil 1992).   
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Third, ANNs are intuitively appealing, since they are based on some level of 

similarity of biological systems.  Fourth, since they are semi-parametric, they can rely on 

learning complex patterns in the data directly, without user intervention.  Indeed, in many 

situations, the dimensionality of the problem may overwhelm human analysis (StatSoft 

2003).  Thus, ANNs may be self-organizing and can adapt themselves continuously to 

newer data.  Fifth, ANNs may be specified to include some level of fault tolerance and 

still perform well – faulty or incomplete input data severely inhibits traditional statistical 

approaches (Rojas 1995).  Sixth, considering the advances in computing technology, 

particularly multiple processors and thread-based routines, ANNs can be designed for 

optimization by parallel processing of inputs.  This would greatly enhance speed of 

training and prediction of response (Rumelhart et al. 1986; Rumelhart and McClelland 

1986).  Finally, the results generated by a neural network may be generalized and 

applied to new or unseen data with relatively high performance.   

ANNs are not suited for all applications, particularly in well-specified problems.  

For instance, inventory accounting and data maintenance are applications where 

traditional computing approaches would be better.  Thus, ANNs offer a new approach to 

solving problems and identifying patterns, by providing tools that learn by themselves, 

without the necessity of experts or specialized computer programming.   

2.3.6. Artificial Neural Network topologies for classification 

There are several theoretical and practical aspects to the design and training of 

artificial neural networks that directly influence classification performance.  These 

include topologies or neural network specifications for classification, efficiency and 

control of learning, error criterion, control of training for validity and generalized 

classification performance.   
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2.3.6.1. Neural Computing for Classification 

ANNs are used both for function approximation (as in regression-type fitting 

hyperplanes to input points) and for classification.  In general, ANNs that approximate 

functions may not be used to separate items into classes.  The function approximation 

problem is aimed at capturing the relationship between the input points and the desired 

response.  In classification, we acknowledge that different mechanisms generate input 

data, and the goal is to separate the input space into one of several classes that are 

arbitrarily labeled.  Since participation in a class implies non-participation in other 

classes, a good classifier is characterized by a non-linear separating mechanism, such 

as an all-or-nothing switch (Principe et al. 2000).   

Any class assignment is not error-free.  In creating a threshold to separate two 

classes, the tails of the likelihoods of the two classes overlap, creating the error region.  

Calculating the Bayesian threshold (that maximizes the unknown, but computable a 

posteriori probability) minimizes the error probability region (Fukunaga 1990).  While 

separability is a function of the mean and variance of each class, the computation of the 

posterior probability is not trivial in higher dimensional spaces.  Both statistical 

classification and ANNs use discriminant functions to separate inputs among classes 

(Michie et al. 1994).   

2.3.6.2. Discriminant Functions 

Consider a case where we have “k” samples with “d” input attributes for each 

sample.  Each sample may then be viewed as a point in d-dimensional space, or as a 

vector xk with “d” components.  By Bayes’ rule, class assignment is based on the 

comparison of likelihoods scaled by the corresponding a priori probability (generally a 
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simple proportion of sample cases belonging to a class).  Any sample xk will be assigned 

to a class “i” if  

gi(xk)  >  gj(xk)  for all j ≠ i 

Each scaled likelihood is then regarded as a discriminant function g(x) that 

assigns a score to every sample in input space.  Each class has its own scoring function 

that produces higher values for samples belonging to it.  Discriminant functions intersect 

in the d-dimensional space, creating “decision surfaces” – in other words, decision 

surfaces partition the input space into volumes where one of the discriminants has a 

higher value than all the others.  Thus, ANNs used for classification attempt to produce 

mechanisms that compare discriminant functions and assign the sample to the class that 

provides the largest discriminant value for the sample.  Figure 2.6 shows an ANN 

schematic for a general classifier for “p” classes.  

Xk,1

Xk,2

Xk,3

Xk,d

Discriminant g1(Xk)

Discriminant g2(Xk)

Discriminant g3(Xk)

Discriminant gp(Xk)

Xk,3

…
.. …

.. M
ax

im
iz

er

Xk € class “i”

Input Row Discriminant Function Choice Function Output

 

Figure 2.6 -- General schematic for classifying samples into “p” classes 
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When discriminant functions have a well-defined functional form in terms of 

parameters (for instance, mean and variance for a Gaussian), the resulting classifier is 

termed a parametric classifier.  It is possible to train ANNs on non-parametric classifiers 

that do not assume any underlying functional form, but estimate the discriminant solely 

on the data (Fukunaga 1990).  However, such classifiers require a large number of 

samples for acceptable performance.  For a classifier built parametrically on the 

Gaussian distribution, Fukunaga (ibid) showed that the optimal classifier is always a 

quadratic.  Parametric discriminant functions are also sensitive to the number of samples 

– even though they may retain their overall shape, classification performance is lower 

with fewer samples, particularly in higher dimension input space (Principe et al. 2000).  It 

is also important to note that linear discriminant classifiers are less powerful than 

quadratic discriminants because the former rely primarily on differences in means.   

2.3.7. Conceptual issues in designing and training Artificial Neural Networks 

ANNs adapt connection weights iteratively by comparing network outputs with 

known examples.  The comparison between outputs and desired results produces an 

error measure – the goal of the network is to adjust weights so that the error measure is 

minimized.  This process is called “learning (Haykin 1994; Rojas 1995; Patterson 1996).  

If learning is inadequate, the weights will not be optimal and performance will be 

affected.  While systematic procedures exist to search the performance surface, the 

search process has to be controlled heuristically.  Note that the search process will not 

yield the best results if the amount of data is inadequate or if the sample data is not 

representative of the true process being modeled.  The user directly influences learning 

by selecting the search techniques, learning algorithms, specifying the learning step 

sizes, the size of the topology and the number of learning cycles (Carling 1992; Hagan 

et al. 1996).   
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2.3.7.1. Error minimization search procedures 

There are several measures of error including absolute cost, quadratic cost, 

polynomial error functions.  The cost criterion is generally a positive quantity that is 

sensitive to the network output, and should be chosen such that it approaches zero as 

the network outputs approach the desired response.  The most commonly used error 

cost function is the mean square error often termed “J.”  In the one dimensional case, 

since the output of the network is a function of the connection weights, the mean square 

error is quadratic on the weights and is a parabola facing upwards, as seen in Figure 

2.7.   
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Figure 2.7 -- Weight optimization by minimizing the performance criterion 

This error function graph shown in Figure 2.7, is called the performance surface 

(adapted from pp. 24, Principe et al. 2000).  For more complex problems, particularly 
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classification, the performance surface may be more complex, with several local minima.  

However, we can use the one dimension case to illustrate error analysis concepts.   

The gradient of the performance surface at any point is a vector of “w” 

dimensions in the steepest upward direction at that point, with larger magnitudes for 

steeper slopes.  Minimizing the performance criterion is usually performed by methods 

based on gradient computation.  Since the overall objective is to minimize the error 

criterion, one can search along the performance in the opposite direction of the gradient 

– this is the popular gradient descent method.  As Figure 2.7 indicates, the steps 

involved in the gradient descent method include the following:  

 initialize the search at w0, an arbitrary initial weight   

 compute the gradient of the performance surface at w0   

 modify the initial weight proportionately to the negative of the computed gradient 

at w0, changing the new weight to w1, and repeat the steps   

Thus, )()()1( kJkwkw ∇−=+ η , where η  is a small constant, called “step size” 

or “learning rate” (Rojas 1995; Patterson 1996; Principe et al. 2000), which ensures that 

the new operating point is identified not too far along the performance surface and 

)(kJ∇  is the gradient of the performance surface at the kth iteration.  Where w > w*, w is 

decreased to find the new operating point and vice versa.  If η  is small, the optimum 

weight w* will be found (Rojas 1995; Patterson 1996; Principe et al. 2000).  Widrow and 

others (Widrow and Hoff 1960; Widrow and Sterns 1985) proposed a gradient estimate 

method termed the least mean square algorithm that uses the error from a single sample 

rather than the previous methods that had the larger overhead of summing the error for 

each point in the data set.  This algorithm suggests that the instantaneous estimate of 
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the gradient at iteration k is simply the product of the current input and the current error.  

The estimate is noisy, but gets filtered out over several iterations.   

Search procedures may be analytic or iterative.  Analytic solutions require all the 

data beforehand in order to compute optimum values.  However, in a practical sense, if 

the data is not representative, or if autocorrelation matrices are ill-conditioned, analytic 

solutions may not be accurate.  Further, analytic solutions require a great deal of time.  

ANNs use iterative searches because solutions may need to be implemented on a 

sample-by-sample basis.  Additionally, very efficient gradient search algorithms have 

been created, and optimization is achieved in linear time, faster than analytic 

approaches.  Finally, iterative searches may be extended to non-linear systems with 

several minima, for which analytic solutions may not exist.   

2.3.7.2. Learning rate 

As seen in Figure 2.7 and in the previous section, the rate of error decrease is 

proportional to the step size or learning rate.  Larger step sizes will need fewer iterations 

to reach the vicinity of the minimum.  However, too large a step size will create a 

divergent iterative process.  If the step size is small, learning takes a long time.  Even if 

the step size is constant, as advocated by Haykin (1994), the adjustments to the weights 

reduce in magnitude as the search progresses towards the minimum, because the slope 

of the quadratic performance surface correspondingly decreases.  In some cases, 

particularly close to the minimum, the iterative process begins to wander in the vicinity of 

the minimum without ever reaching the minimum, a phenomenon termed “rattling” 

(Principe et al. 2000).  The iterations may have to be stopped externally, leading to a 

sub-optimal solution.  Again, a smaller step size can avoid this misadjustment at the cost 

of longer learning times.  Several neural software applications avoid the rattling problem 

by scheduling a large step size at the beginning of the training to move quickly to the 
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neighborhood of the minimum and then decreasing it near the performance surface 

minimum, using linear, geometric or logarithmic functions.   

2.3.7.3. Learning algorithms 

We had previously seen the least mean square algorithm and the weight 

modification routine, where the instantaneous estimate of the gradient was the simple 

product of the current error at that weight and the current input value for that iteration.  

Thus,  

iii xJ *ε=∇  

The same algorithm may be reached by the “delta rule” using partial differentials.  Since 

the error cost J, was defined as the Mean Squared Error between the desired value and 

network output 
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Extending the least mean square concept to the perceptron or MLP, whose 

sigmoid threshold function defines a non-linear system is relatively straightforward.  

First, the partial derivative of the output with respect to the transfer function is computed. 

Then, compute the partial derivative of the transfer function with respect to the weights.  

The product of these two terms determines the sensitivity of the output to the weights.  

The same rule is extended to hidden layers, because the chain rule may be applied as 

many times as necessary (Carling 1992; Rojas 1995; Patterson 1996).   
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In the context of learning, all the weights are adjusted in order to minimize the 

error, but using the generalized delta rule, the adjustments are distributed in proportion 

to the sensitivity of the output to the weight – this rule is also termed backpropagation 

(Werbos 1974; Hinton and Sejnowski 1986).  Note that in the case of non-linear 

systems, the performance surface becomes more complex, characterized by several 

local minima and a global minimum or by flat regions where the gradient is zero.  The 

noisy local estimates described earlier become useful, because the natural perturbation 

increases the chances of escaping from flat spots or local minima (Principe et al. 2000).   

In terms of curvature, for complex, non-linear performance surfaces, the local 

and global minima may be identical, causing the search to stall.  Alternately, since the 

weights change very little if the performance surface is flat, users may confuse this with 

the end of the training.  Momentum learning is one such robust method where the 

magnitude of a previous increment is used to speed up and stabilize the convergence 

routine, thereby preventing the search from getting trapped in local valleys (Haykin 1994; 

Patterson 1996).  Another method commonly used is the delta-bar-delta rule, which 

essentially looks at the magnitude of the previous weight change and adapts the 

learning rate continuously during training.  More stable non-linear variations of this 

method include Fahlman’s quickprop and Almeida’s adaptive step methods (Fahlman 

1989; Silva and Almeida 1990).   

Several other methods such as the conjugate-gradient, pseudo-Newton, 

Levenberg-Marquardt methods have been applied in neural network applications and the 

user is directed to Fletcher (1987) or Luenberger (1984) for a review of these 

techniques.   
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2.3.7.4. Processing elements in the hidden layer 

Setting the number of hidden PEs is an important issue in specifying the network 

topology.  If the number of PEs is more than necessary, training times are longer, and 

while correct classifications in the training set increase, the solution does not perform 

well with unseen data.  In other words, the network memorizes the training data patterns 

and does not generalize well to unseen data.  If there are too few PEs, the network will 

randomly change weights in order to reduce the MSE.  The classifier will attempt to 

place discriminant functions to correctly classify the majority of the samples first, before 

proceeding to sparse regions.  Performance will be better than if too many PEs were 

specified, but the solutions weights are sub-optimal and not as good as a network with 

the correct number of hidden PEs.  Again, this is a heuristic determination on the part of 

the user.   

2.3.7.5. Stop criteria 

Training may be stopped based on a specific number of iterations, or based on 

the output mean squared error, or based on generalization.  Stopping training based on 

the number of iterations offers no guarantee that the classifier has generated optimal 

weights.  In terms of MSE, one might choose an acceptable error level and stop training 

when the MSE threshold is reached.  Alternately, training may be stopped when the 

incremental change in MSE falls below a specified threshold.  As mentioned before, if 

the classifier is training in flat regions of the performance surface, training may stop 

prematurely.   

At this stage, we should examine the concept of generalization – how well does 

the system perform on data samples that it has not been trained on?  Researchers have 

demonstrated that after a critical point, the system will continue to do better in the 
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training set, but deteriorate in the testing data set.  In other words, the system begins to 

memorize the data patterns in the training data set (Rojas 1995; Patterson 1996; Vapnik 

1999).  Given the current training data set and the network architecture, an accepted 

method of maximum generalization potential is to stop training at the point of minimum 

error in the testing or cross-validation dataset.  See Figure 2.8 for a schematic of the 

cross-validation criterion for stopping training.   
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Figure 2.8 -- Stopping criterion using the cross-validation data set 

The training data set should be split in order to reserve about 10% for the cross-

validation data set. After every few iterations, the current weights at that iteration are 

tested against the cross-validation data set.  Training should ideally stop just when the 

error criterion for the cross-validation data set begins to rise.   
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2.3.7.6. Performance Measures 

In real world applications, models usually have some measure of performance.  

ANNs have been criticized for their lack of explicit explanatory and parametric 

performance measures.  While the MSE is an indirect measure in function 

approximation, there is no precise relationship between classification performance and 

MSE.  Typically, the performance of a classifier is measured in terms of true and false 

classifications, represented by a confusion matrix (Rojas 1995; Principe et al. 2000).  

The confusion matrix is a table that compares the classifier output in columns with the 

known class in rows.  Thus, perfect classification would result in a confusion matrix 

whose diagonal elements are populated and all others are zero.  Overall classification 

error is the ratio of the sum of the off-diagonal values and the total number of samples.  

The confusion matrix also allows the analysis of where classification had difficulties, 

since some classes produce greater errors than others.  Table 2.1 shows an example 

confusion matrix for 3 classes.  Elements along the diagonal (intersections between 

predicted and desired, highlighted in blue) are correct classifications.  Elements along 

the rows show the number of correct classifications and the number of each row class 

misclassified as one of the other classes.  Table 2.2 deconstructs the raw confusion 

matrix to show only the correct predictions.  Note that 82%, 64% and 74% of Species A, 

Species B and Species C respectively have been correctly classified, with an overall 

model accuracy of 73%.  Table 2.3 deconstructs the table to show the number of correct 

predictions in each class, and the number of misclassifications for each class relative to 

the other two classes.  Of the 49 exemplars predicted as Species A, 41 (or 84%) were 

correctly classified, 6 (or 12%) were misclassified as Species B and 2 (or 4%) were 

misclassified as Species C.  Similarly, from the second row, 12% of Species B was 

misclassified as Species A and 22% misclassified as Species C.  Finally, 6% of Species 
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C was misclassified as Species A, and 23% were misclassified as Species B.  From the 

decomposition, it is obvious that the model performs best for predicting Species A, and 

that it has some difficulty discriminating between Species B and C, based on the 

particular input combinations.   

Table 2.1 -- Example raw confusion matrix for three classes (counts) 

Class Total 
Name Species A Species B Species C Predicted

Species A 41 6 2 49
Species B 6 32 11 49
Species C 3 12 37 52

Number of Samples 50 50 50 150
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Predicted

 

Table 2.2 -- Example confusion matrix for three classes (percent accurate) 

Class Overall
Name Species A Species B Species C Accuracy

Species A 82% - - -
Species B - 64% - -
Species C - - 74% -

Percent of Samples 100% 100% 100% 73%
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Predicted

 

Table 2.3 -- Example confusion matrix for three classes (percent misclassified) 

Class Total 
Name Species A Species B Species C Predicted

Species A 84% 12% 4% 100%
Species B 12% 65% 22% 100%
Species C 6% 23% 71% 100%

Predicted
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2.4. Shape Recognition Background, Techniques and Applications 

Apart from soil, site, intensity, structure type and building capacity, the behavior 

of the building under earthquake stresses is also influenced by its shape (Arnold and 

Reitherman 1982).  When earth-shaking motions are transferred to the building, 

additional, torsion stresses are created when the stiffness center of the building is 
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displaced from the center of gravity.  In simple, symmetrical buildings, the centers of 

stiffness and gravity tend to be coincident, particularly if the massing is uniform – for 

asymmetrical or irregular buildings, the particular shape configuration and the building 

mass distribution determine the different locations of the centers of stiffness and gravity, 

and therefore the torsional forces (Murty 2002 a).   

Thus, irregular buildings exhibit inappropriate dynamic behavior when subject to 

horizontal earthquake stresses.  From a building occupancy perspective, irregular 

shapes for buildings provide convenient solutions for environmental and human design 

considerations.  Concomitantly, from a structural point-of-view, these irregular structures 

are less desirable than simple, regular and symmetric structures because the former 

require significant engineering effort to reach an acceptable level of seismic performance 

(Lopez and Raven 1999).  While the behavior of the building under earthquake stresses 

is dependent on its overall three-dimensional (3D) configuration (Murty 2002 b), the 

scope of this research limits itself to the identification of the two-dimensional (2D) 

configuration in plan for different buildings.  Thus, 2D building shape types in the 

research include square, rectangle, L-, C-, T-, H-, Z-, octagonal, circular, cruciform and 

irregular.   

While most jurisdictions, at least in the United States have, or are in the process 

of developing cadastral and planimetric databases, building shape information is usually 

not captured.  In addition, the process of building footprint capture mainly relies on 

individuals “drafting” or “digitizing” the building from aerial photographs and is extremely 

inconsistent at best.   

Further, cities and regions have several thousand structures, and it is cost-

prohibitive to identify and code each building’s shape on a per-building basis.  Several 

researchers have been working on the problem of automated building extraction from 
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aerial photographs (Lee et al. 2003; Wei et al. 2004; Jin and Davis 2005; Sohn et al. 

2005).  Another component of this MAEC project builds on Sahar and Krupnik’s (1999) 

work to automate the detection and extraction of buildings from aerial images and forms 

the subject of Liora Sahar’s ongoing Ph.D. dissertation at the Georgia Institute of 

Technology.  This research assumes that building outlines have been captured either by 

automatic extraction from aerial photographs or other remotely sensed sources as raster 

footprints or digitized into vector format polygons.  Accordingly, this chapter attempts to 

develop an automated process to identify the footprint configuration of all such 

presented buildings.   

In the GIS field, shape analysis is somewhat limited, and more often than not, 

restricted to generalization and simplification methodologies.  I have not come across 

any application that analyzes shapes of buildings with the emphasis on automated 

database development.  However, considerable research has been conducted on image 

recognition and classification in Geosciences and Remote Sensing (refer to journals 

from Institute of Electrical and Electronics Engineers 2008).  Much of the other material 

related to shape recognition and pattern classification comes from pattern recognition, 

image processing, medical imaging, robotics and artificial intelligence traditions.   

There are several frameworks for classifying shape analysis approaches.  

Veltkamp and Hagedoorn (1999) classify image comparison methods very broadly as 

color and texture-based or shape geometry-based.  Ashbrook and Thacker (1998) use 

methods for shape representation as a classification framework for visual recognition – 

thus they classify shape analysis research by invariant representations, template 

matching, skeletonization, moment invariants, log-polar mapping, geometric feature 

descriptors, boundary profiles, Fourier transformations, dynamic shape modeling, 2D 

projection invariants and pairwise correspondence.  Chang et al (1991) separate shape 
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representation aspects from shape recognition, and organize shape representation 

under Fourier descriptors, moment invariants, autoregressive modeling, polar mapping 

and syntactic approaches, while shape recognition is achieved through statistical or 

syntactic methods.  Loncaric (1998) elaborately classifies shape analysis by several 

frameworks including a) boundary or global, b) numeric or non-numeric and c) 

information preserving or information non-preserving methods and presents a 

comprehensive survey of several published papers under these categories.  In all these 

surveys however, there is considerable overlap between methods of shape description 

and analytical approaches.  An exhaustive review of several literature surveys in shape 

analysis reveals that most publications can fit in two or more classification frameworks.   

2.4.1. Definition of a Shape 

From both scientific and technological perspectives, the human sense of vision 

will provide the basis for considerable research effort in the future.  Over 50% of our 

daily activities are involved in the processing and analysis of visual input, with over 30 

distinct areas of the brain participating (Ramachandran and Blakeslee 1998).  Thus, our 

cognitive abilities and processes of learning are extraordinarily related with vision, and 

vision is more than an identification or navigational system.  With the sharp increase in 

the development and use of digital systems, the potential for computers vision systems 

to substitute for human ones has tremendously increased (Fabel 1997).  Many tasks that 

require aspects of human vision will be performed by computers for which designing and 

deploying effective computer vision systems becomes essential.   

Generally, humans perceive a shape through its properties – similarly, even for 

artificial visual systems, shapes tend to be defined in the context of its attributes.  In the 

current literature for automated shape recognition and in the field of shape analysis, 

definitions of shapes are predominantly based on those properties of an object that are 
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invariant to geometric transformations such as translation, scale or rotation (Bookstein 

1991; Dryden and Mardia 1993; Small 1996; Dryden and Mardia 1998).  Thus Dryden 

and Mardia (1993) borrow Kendall’s (1984) definition of shape as “all the geometrical 

information that remains when location, scale and rotational effects are removed.”  Other 

researchers more specifically use the invariant geometrical properties of the relative 

distances among a set of static spatial features of an object to define shape (Ansari and 

Delp 1990).  Most of these definitions of shape deal primarily with specific attributes of 

human perception without specifying the underlying shape originator – in other words, 

humans tend to perceive shapes informally, in terms of similarities and metaphors.  In 

addition, shapes may be skewed or deformed, or occluded or noisy, and yet be 

recognized by humans.  Thus, any definition of shape should address the attributes of 

the represented object and its equivalence under a set of transformations – a shape 

could therefore be defined as “a single visual entity comprising of any connected set of 

points” (Costa and Cesar 2001a).  In the context of this research, especially in a spatial 

vector format, we modify the definition of the building footprint shape as a polygonal area 

distinguished from the surrounding area by a connected and closed set of line segments.  

Note that the Costa and Cesar definition of shape is a subset of our definition, since a 

set of connected line segments may also be represented as a connected set of points.   

2.4.2. The Process of Shape Analysis 

The general steps in the process of shape analysis include shape acquisition, 

shape representation, feature extraction, and shape classification (Loncaric 1998; Costa 

and Cesar 2001a).  Numerous variations of this approach are represented in the 

literature, but agree generically on characterization of shapes through their attributes 

and then analyzing them for retrieval, comparison or recognition (Grenander 1996; 

Dryden and Mardia 1998; Belongie et al. 2002; Adamek and O'Connor 2003; Acharya 
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and Ray 2005; Golland et al. 2005; Salih et al. 2006; Pratt 2007).  Figure 2.9 details 

such a schematic approach to building footprint shape analysis. 
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Figure 2.9 -- General process stages in building footprint shape analysis 

2.4.2.1. Shape Acquisition 

The process begins with identifying and separating the shape of interest from its 

surrounding and acquiring its digital representation.  In the context of this research, the 

process of building footprint extraction relies typically on human drafting or digitizing 

from aerial photographs.  For the purposes of this research, we assume that there exists 

a digital spatial dataset of polygonal building footprints in GIS vector format.  As 
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mentioned before, such derived building footprint spatial databases are extremely 

inconsistent.  The digital representations of the buildings may then have to be pre-

processed in order to remove noise and other distortions.  Typical problems include 

capturing the roof outline of the structure rather than the building area, extraneous detail 

in the captured footprint, non-orthogonal angles in captured outlines, deficient outlines 

owing to occlusion, collinear vertices, protrusions and intrusions as artifacts of 

automated building feature extraction, etc. as seen in Figure 2.10.  In Figure 2.10, 

building A was digitized manually and building B was extracted through automated 

feature recognition routines from aerial images.  Note the extraneous detail and collinear 

vertices in building footprint A and the protrusion and intrusion artifacts in building B.   
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Figure 2.10 -- Problems in acquired building footprint polygons 

Depending on the design of the feature extraction stage, details extraneous to 

the shape may have to be removed, or the perimeter contour vertices may have to be 

densified or decimated, or perimeter contour segments may have to be orthogonalized.  

Again, depending on the methodology, the building footprints may have to be normalized 
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with respect to selected transformation parameters such as translation, scale and 

rotation.   

2.4.2.2. Shape Representation 

After the shape has been acquired and pre-processed, it has to be represented 

in a manner appropriate for the task at hand.  The representation of a shape or the 

method of computing its shape signature (Acharya and Ray 2005) is fundamental to the 

design of the shape analysis system (Costa and Cesar 2001a).  The literature abounds 

with variations of shape representation typologies.  Pavlidis (1978) suggests a shape 

reconstruction-based classification as information-preserving and information non-

preserving.  Others have classified shapes by thickness, or as is seen in more recent 

articles, boundary- or contour-based (thin shapes) or region-based (thick shapes).  

Contour-based approaches can represent the shape in the form of a stream of one-

dimensional signals and may often be computationally less expensive than region-based 

two-dimensional signals (Dryden and Mardia 1998; Costa and Cesar 2001a).   

Landmark-based shape representations of shape, though derived from contour-

based approaches, deserve some special mention.  Refer to an excellent survey of 

landmark point types for morphological characterization by Bookstein (1991).  A 

landmark, in the context of shape analysis, is defined as “a point of correspondence on 

each object that matches that matches between and within populations” (Dryden and 

Mardia 1993, pp. 460) .  Landmark points typically include nodes (end points and 

intersections) as well as salient points along parametric curves.  The usage of nodes as 

landmark points is self-evident and does not require explanation.  For polygonal 

(straight-line) segments, landmark points are usually natural features, particularly at 

points of inflection that typically allow complete reconstruction of the original shape.  

However, for parametric curves that consist of infinite sets of points, several methods 
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exist for choosing a sample of salient points that enable a reasonable reconstruction of 

the original shape (Fischler and Wolf 1994; Salih et al. 2006).  Parametric curves require 

choice of landmark points that enable approximate reconstruction of the original shape – 

the amount of deviation from the original curve depends on both the choice and the 

linear density of landmark points (Bookstein 1991; Costa and Cesar 2001a).  The choice 

of appropriate landmark points is often difficult and involves trade-offs between accuracy 

and processing speed and the application it is designed for, and is challenging to 

automate.  Commonly used techniques to generate landmark points include the salience 

of points on the curvature of the curve (Fischler and Wolf 1994; Cesar and Costa 1995, 

1996), or random sampling of the contour, or sampling strategies based on a specified 

number of points or minimum distances between points (Loncaric 1998).  Note in Figure 

2.11, a polygon may be represented as a sequence of contour points or alternatively, as 

a sequence of contour segments.  Note also, that the first and last points, PT_1 and 

PT_9 are coincident in the GIS polygon geometry.   
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Figure 2.11 -- Landmark or Contour representations of a polygon 
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2.4.2.3. Feature Extraction or Shape Description after Shape Representation 

Subsequent to shape representation, the feature extraction phase defines a set 

of techniques that extracts specific attribute characteristics about the shape.  These 

attributes or features of the shape enable the description of the shape in the context of a 

specific task as well as develop measures that may be used for classification – often 

some particular subset of aspects of a shape will be more important than others in the 

context of the shape analysis or classification system.  In addition, some shape aspects 

of a shape may be more important for a particular class of shapes – in this building 

footprint shape analysis research, straight line segments of null curvature and their 

orthogonal interconnections at corners are particularly important.  In fact, researchers 

(see Attneave 1954) have identified corners as particularly significant in human shape 

analysis and corner aspects are formally parameterized in shape analysis systems as 

critical points of curvature (Super 2004) or as key landmark points (Ansari and Delp 

1990) etc.  In other cases, specific feature measures may be more important than the 

shape itself, particularly where size matching is an important aspect (Costa and Cesar 

2001a).  For instance, distance measures of the shape may be compared with a range 

of bounding polygon dimensions, and higher probabilities of successful classification 

arise when those distance measures are between the maximum and minimum threshold 

bounds.   

2.4.2.4. Invariant Representations 

The basic concept here is to extract certain intrinsic attributes from the object 

such that the properties are consistent over a wide variety of perspectives.  These 

intrinsic attributes or feature descriptors may be directly measured (area, perimeter, 

orientation) or computed (circularity, elongation, concavity, etc.) from the contour 

geometry or derived from the entire shape (moments).  In other approaches, the 
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geometric information is transformed into a different set of signals through log-polar or 

arc-tangent or arc-height mapping or Fourier sequences that are geometry-invariant.  

Combinations of discriminative invariant feature descriptors are compared between the 

sample and reference objects and usually, shape recognition is achieved through 

similarity metrics.   

Direct Measurements of Shape Geometry 

Specific shape characteristics are directly measured from the actual geometry of 

the shape, and include aspects such as area, perimeter, Euler number, number of 

corners or segments, length of principal axes, length measurements at specified 

intervals along major and minor axes, etc.   

The location of the centroid of the shape is often an important parameter and 

estimated as the average values of the contour point coordinates.  An often used shape 

aspect is the shape diameter that is the largest distance between any two points.   

Shape Array Measures and Derived Measurements of Shape 

The shape could be represented as an array of contour point coordinates.  

Alternately, based on a set of contour points and the centroid, various other array 

measures may be extracted.  The shape could be characterized by computations on 

arrays of distances of the contour points to the centroid (Chang et al. 1991), or angles 

subtended at the centroid between successive contour points, or ratios of distance 

between successive vertices and the angle subtended by the two vertices at the centroid 

(Veltkamp and Hagedoorn 1999).  Measures based on these arrays could include mean 

centroid-to-contour-point distance or mean boundary segment length.  Ratios may be 

used when scale independence is required.  The original arrays themselves could be 

modified through division by means or minima for the purposes of scale invariance 
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before transformation techniques may be applied.  The shape complexity measure, 

which depicts the ratio between area and the square of the centroid-boundary mean 

distance, is an additional derived feature.  The Euclidean, Root-Mean-Square, Mean and 

Centroid Norms are derived shape “size” measures that are invariant to translation and 

rotation (Costa and Cesar 2001a).  Typically, these measures involve normalizing the 

squared distances of boundary points from the centroid (Kendall 1984; Dryden and 

Mardia 1998).   

Thus, the 2n Euclidean Norm of a shape with ‘n’ boundary points and known 

centroid is given by 
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where  Px,i and Py,i are the ‘x’ and ‘y’ coordinates of the ‘i’th point, and 

 Px,c and Py,c are the ‘x’ and ‘y’ coordinates of the center of gravity of the shape 

Similarly, the Centroid Size of a shape with ‘n’ boundary points and known 

centroid is given by 
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where  Px,i and Py,i are the ‘x’ and ‘y’ coordinates of the ‘i’th point, and 

 Px,c and Py,c are the ‘x’ and ‘y’ coordinates of the center of gravity of the shape 

Measures of circularity and compactness relate the shape area to the square of 

its perimeter.  Measures of rectangularity and concavity, relate the shape area to the 

area of the minimum bounding rectangle of the shape or the convex hull area of the 
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points along the contour.  Concavity may also be expressed as a ratio between the 

perimeter of the shape and the perimeter of the minimum bounding rectangle.  Thus,  

 Circularity, ( )24 PAFcir ∗= π  

 Compactness, ( )216 PAFcom ∗=  

 Rectangularity, ( )mbrrect AAF =  

 Area-based Concavity, ( )chullhole AAF =1  

 Perimeter-based Concavity, ( )mbrhole PPF =2  

where A is the shape area, P is the shape perimeter, Ambr is the area of the 

shape’s minimum bounding rectangle, Achull is the area of the shape’s convex 

hull, and Pmbr is the perimeter of the shape’s convex hull.   

Elongation measures the ratio of the linear dimensions of the shape along the 

principal axes.  Similarly, eccentricity measures the ratio between the longest chord of 

the shape and the largest chord length perpendicular to the longest chord.  Other 

measures could include curvature and bending energy (refer to Costa and Cesar 2001a; 

Acharya and Ray 2005 for a thorough survey of scalar feature measures).   

In order to compute or derive invariant representations, such as elongation or 

others that require the minimum bounding rectangle, often the principal axes of the 

shape have to be determined.  A number of approaches have appeared in the literature, 

ranging from numerical searches and numerical analysis (Niu et al. 2002) to least 

moments of inertia (Gil-Jimenez et al. 2005) to least squares methods (Chaudhuri and 

Samal 2007).  Chaudhuri and Samal (ibid) use a least squares approach to determine 

the slope of the principal axis using simple coordinate geometry and trigonometric 
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methods – the squared distance of the boundary points is minimized with respect to the 

centroid of the shape.  Once the major axis is determined, it becomes a simple matter to 

determine the distance of the boundary point furthest above and below the principal axis, 

thus creating both the minor axis and the minimum bounding rectangle.   

Direct and Computed Geometric Feature in Shape Analysis 

Geometric feature measures as descriptors have been used in several 

applications, such as in the pharmaceutical, food, and chemical industries, where 

particle size and behavior (flow or compressibility or absorption) are strongly related to 

its shape (Realpe and Velázquez 2006).  The process of identifying such features with 

high discriminatory power is difficult, and further, these feature descriptors are sensitive 

to noise.  Finally, several different objects may have the same feature values or the 

same type of object may exhibit a wide variation in the feature values (Kashyap and 

Chellappa 1981; Zhang et al. 2003).  Consequently, applications that use only direct and 

computed geometric measures of shape as feature descriptors for shape recognition or 

classification are rare, and often, geometry-based feature measures will be combined 

with other descriptors such as moment invariants in order to implement shape 

classification.   

Moment Invariants 

Another class of features that deserves special mention, because it is frequently 

encountered in shape analysis literature, consists of shape moments (Hu 1962; 

Bookstein 1991; Jiang and Bunke 1991; Wood 1991; Li 1992; Safaee-Rad et al. 1992; 

Trier et al. 1996; Loncaric 1998; Costa and Cesar 2001a).  Generally, moments are 

based on the region, though vector-based calculations from point coordinates along the 
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boundary are not uncommon (Jiang and Bunke 1991; Adamek and O'Connor 2003).  

Two-dimensional moments of a digital M × N image are given by 
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where   ( ) 1, =yxf , if the pixel belongs to the shape, 
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For the same image, the central moments, or moments about the center of gravity are 
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In particular, Hu (1962) defines seven transformation-invariant functions, 

computed by normalizing central moments through order three, that are invariant to 

scale, position, and orientation.  These seven functions are commonly referred to in 

pattern recognition literature as Hu’s moments (whose moments? Oh, his moments.  No, 

no, Hu’s moments!).  Thus, any shape may be uniquely characterized by a set of values 

of the moment invariants.  Moment invariants, based on the entire shape, are globally 

scalar and represent a fairly fundamental and comprehensive set of information-

preserving shape descriptors and therefore, figure consistently in standard pattern 

recognition texts (Li 1992; Duda et al. 2001).   

Dudani et al (1977) generated moment invariant values for aircraft silhouettes 

and used them in an application that automated the process of aircraft identification.  In 

a comparative study, Blumenkrans (1991) implemented Hu’s moments to recognize 

simple objects by their moment invariant representations.  More recently, Realpe and 

Velazquez (2006) characterized pharmaceutical powders by morphology and size by 

implementing moment variants realized from 640x480 pixel images of pharmaceutical 

powders.  They calculated the seven invariant moment values for each particle in the 

image and compared the values with reference particles.  Recognition rates were as 

high as 88%, with 1984 particles being recognized in 22 seconds, and the authors 

proposed the moment invariant recognition algorithm as an in-line production monitoring 

tool to classify granules by size and shape.   

Moment invariant methods are mathematically concise and theoretically pleasing.  

However, the methods do have disadvantages -- higher order moments are extremely 

sensitive to noise, making it difficult to correlate shape features with higher order 

moments.  Hu’s moments are not orthogonal and therefore contain a high order of 

redundancy, but this disadvantage is easily circumvented by kernel-based 



 
85

transformations of the original moments to yield orthogonal polynomials, such as the 

Legendre, Zernike, pseudo-Zernike polynomials or Chebychev moments which have 

minimum redundancy (Rothe et al. 1996; Zhang et al. 2003).  For instance, Li (1992) 

used several higher order moments based on Hu’s formulations to identify particular 

characters and found that half the integral variants were not used in the construction of 

moment invariant values, and concluded that such traditional moment invariant functions 

contain highly redundant information.  Using various normalization transformations, 

Rothe et al (1996) modified Hu’s moments and several other descriptors to alternate 

representations of Legendre and Zernike descriptors that are invariant to both geometric 

and affine transformations.  The natural orthogonality in Zernike and Chebychev 

moments results in minimum information redundancy and lower sensitivity to noise, 

particularly in the higher order moments (Teague 1980).  Finally, as with most scalar 

transformations, local shape information, particularly in high-curvature areas, is not 

captured adequately by Hu’s moments (Loncaric 1998).   

If the shape descriptor is transformed into a set of one-dimensional signals, such 

as normalized distance between boundary points and centroid, the method of moments 

may be easily modified to develop a classifier that is computationally less expensive and 

has the added advantage of being generated from the contour boundary (Gupta and 

Srinath 1987).   

Representations based on Shape Transformations 

In these methods, first, the object is described by one of the representation 

modes described earlier and then transformed into another set of signals that serve as 

an alternate representation of the shape.  The transformation function determines 

whether the image can be reconstructed exactly (information-preserving) or 

approximately (information non-preserving).  In some cases, the shape analysis 
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application may be concerned only with classification and not with image reconstruction, 

so the transformation function might be designed to have high discriminatory power, but 

allows very approximate image reconstruction.   

Two-dimensional shape information may be converted to a stream of one-

dimensional signals through many methods, including tangent angle versus arc length 

(Zahn and Roskies 1972; Bennett and MacDonald 1975; Arkin et al. 1991), complex 

functions made periodic by repeating contour arc lengths (Richard and Hemami 1974; 

Persoon and Fu 1977), centroid-based signals of distances or angle sequences from 

contour boundary points (Gupta and Srinath 1987; Chang et al. 1991), partitioned 

sequences of boundary segments (Liu and Srinath 1990; Wang et al. 1994; Cesar and 

Costa 1995), arrays of distance and angle, etc.   

Once the signals have been generated, the shape signature is recomputed using 

the discrete Fourier transform with a specified number of coefficients as appropriate for 

the application (Zahn and Roskies 1972; Kiryati and Maydan 1989; Ashbrook and 

Thacker 1998), or normalized Fourier transform for two-dimensional signal streams 

(Rothe et al. 1996), or wavelet transforms (Acharya and Ray 2005) or the Gabor and the 

Karhunen-Loève transforms (ibid), or conversion to bending energy representations 

(Young et al. 1974; Morse 2007).   

2.4.2.5. Statistical and Mathematical Approaches 

In the statistical approach to shape analysis, as the name implies, shape patterns 

are assumed to be generated by a probabilistic process, and can range in application 

from very simple Bayesian approaches to support vectors and neural network-based 

classifiers.  Since the early 1980s, statistical approaches that treated shape signals 

(after appropriate transformations) as periodic functions used time series and 
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autoregressive modeling concepts to analyze shapes (Kashyap and Chellappa 1981; 

Kartikeyan and Sarkar 1989; Ansari and Delp 1990; Das et al. 1990).   

The main disadvantage with autoregressive modeling is that the relatively small 

number of parameters may not be sufficient for complete shape description, particularly 

where the edge is complex (Loncaric 1998).  Further, the specification for the order of 

the autoregressive model is not always straightforward, since many papers in this genre 

attempt specifications with different lags and choose one with the best performance.  

The autoregressive approaches were predominant in the early 1980s to the mid 1990s.   

More recently, several statistics-based applications have extracted features from 

one- and two-dimensional signals and transformed these features into higher 

dimensional space to enable the use of linear classifiers (Leventon et al. 2000; Golland 

et al. 2005).   

Recent developments in statistical shape theory represent objects as points in 

higher dimensional shape space, termed a “manifold” (Kendall 1984), such that all 

potential poses of an object caused by translation, rotation or scaling correspond to a 

single point in that shape space.  Recognition and classification may be achieved by 

computing the geodesic distance between a sample and reference object.  Thus, if the 

sample was generated by a geometric transformation (translation, rotation and/or 

scaling), the geodesic distance between the sample and the reference will be zero.   

Since the mid 1990s, mathematical approaches that redefine coordinate 

systems, which eliminate standard transformations or describe objects as points in 

higher dimensional space are becoming increasingly common (Kendall 1984; Bookstein 

1991; Dryden and Mardia 1993; Grenander 1996; Dryden and Mardia 1998; Comaniciu 
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and Meer 2002).  The reader is also asked to refer to Schalkoff (1992) or Webb (Webb 

2002) for a detailed introduction to statistical pattern recognition.   

Dryden and Mardia (1993) suggest a mathematical approach where the 

traditional location is removed from the description of a shape through matrix 

decompositions, till the shape is described by a hypersphere of unit radius in a higher 

dimension non-Euclidean space.  They suggest approximation of the hypersphere by a 

tangential hyperplane in local space when the variations in a dataset are small.  They 

implement their shape space approach by analyzing skulls of macaques through 7 

landmarks and determine if the skulls of male macaques are different in mean shape 

from females.  The paper also suggests similarity metrics based on non-Euclidean 

distances such as the Procrustes distance or the Riemannian distance. The Procrustes 

distance represents the closest chord on the hypersphere between two transformed 

shapes, and the Riemannian distance is the closest great circle distance along the 

hypersphere between two transformed shapes (Kendall 1984).   

The shape space approach provides a comprehensive representation of the 

object that is invariant to any standard transformation.  The comprehensive 

representation also makes the recognition process less sensitive to noise or occlusion.  

Additionally, representation in higher dimension shape space enables greater 

classification efficiency, in the sense that higher dimensionality permits the use of 

effective linear classifiers.  Finally, well known statistical pattern recognition techniques 

may be extended into non-Euclidean space.  However, the shape space methods are 

mathematically dense and the theory for such descriptions is still being developed.  

Implementing classification schemes based on the shape space approach are 

computationally burdensome.  Finally, the problem of classifying building footprint 

polygons is legitimately a trivial problem for implementing a shape space methodology.   
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2.4.2.6. Structural and Syntactic Methods 

Interest in structural pattern recognition corresponded with the realization that 

using only invariant features or their transformations might not be enough to efficiently 

recognize or classify shapes.  Analytical limitations in existing methods required the 

representation of shape components through symbols and their spatial relationships (Fu 

1982).  Research was beginning to get directed to the structure of the shape towards the 

mid 1970s, emphasizing relationships between and among parts and between parts of 

the shape and the whole shape (Pavlidis 2003).  Syntactic pattern recognition also deals 

with parts of the shape and their interrelationships, but emphasizes that the process 

follows syntactic rules of composition (Bunke and Sanfeliu 1990).  Structural pattern 

recognition relies on the extraction of features that are attributes of parts of shapes or 

attributes of relationships between parts of shapes (Pavlidis 1972).  In fact, Pavlidis 

argues that structural approaches have little theoretical bases and are more 

philosophical than methodological, and that there are no general methodologies 

available for direct application (Pavlidis 2003).  Syntactic approaches however, have a 

strong theoretical basis because the theory of formal languages is well developed, as 

can be seen in the post 1970 period (Fu 1982; Bunke and Sanfeliu 1990).  However, for 

shape analysis based on descriptions of shape component relationships, structural 

representations such as string contexts, trees and graphs began to be increasingly used 

(Pavlidis 1972).  The overlap between structural and syntactic approaches to shape 

analyses prompted the unification of the two fields since the 1980s -- today, the two 

fields are generally viewed as one, largely based on Fu’s work (1982, 1986), where 

shapes are described and analyzed by their components and the interrelationships 

between components.   



 
90

Structural and syntactic methods examine shapes through their component 

relationships in more complex terms than is allowed by view-invariant or statistical 

methods.  Structural methods typically describe shapes through graphs and topological 

concepts; hierarchical formulations are common in such representations (Pavlidis 1972, 

1979).  Syntactic approaches represent shape through strings according to rules 

specified in a formal language.   

Structural or syntactic methods have also been successfully used in shape 

analyses for classification (Fu 1982).  The main advantage with both structural and 

syntactic methods is that in addition to successful classification, the methods include 

intrinsic descriptions about the objects, and how the original shape may be 

reconstructed accurately.  These methods are used in analyzing complex shapes by 

breaking down the overall pattern into a series of sub-patterns, each of which is 

described by a sequence of primitives based on a specified syntax (Jain and Dubes 

1988).  Shapes may be represented using topological concepts, as parts and 

connections or relationships.  Typically, these relationships are described using graphs, 

trees or strings (Zhu and Yuille 1996; Chen et al. 1998; Gdalyahu and Weinshall 1999; 

Latecki and Lakamper 2000), and shape analysis methods based on these 

representations achieve high classification or reconstruction accuracy despite 

tremendous shape variability.  Recognition is achieved by minimizing the costs of 

transforming one shape descriptor (graph or string) to another (Wu and Wang 1999; 

Kaygin and Bulut 2002).   

Pavlidis (2003) suggests that syntactic methods have not found universal 

applicability despite their sound theoretical foundations and shape recognition potential 

because they currently do not have good algorithms for inference and that rules based 

on formal language do not provide good bases for how components are integrated into 
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the whole shape.  In addition, they are often difficult to automate and computationally 

expensive.  On the other hand, structural approaches based on correspondences 

between shape components have gained recent  popularity because similar shapes 

have similar primitive arrangements or component sequences that can be matched or 

aligned at significantly lower cost than scale-space or other mathematical approaches 

(Super 2004).   

A Note on Structural and Syntactic Shape Analysis 

In general, structural and syntactic shape analysis is based on the premise that a 

shape comprises of simple components that are composed of even simpler components 

or primitives.  The structure and relationships between the primitives are analogous to 

the theory of formal languages – a sentence is likened to a shape, the words to its 

simple components and the alphabet to its primitives (Basu et al. 2005).  The meaning of 

a sentence depends on a sequence of individual words strung together using a 

grammatical framework based on linguistic forms that reflect thinking and rules that 

establish consistency (Bellone et al. 2004).  In addition to syntax-based classification, 

the rules provide a composition methodology to derive the whole shape from its 

primitives (Pentland 1987).  Syntactic approaches therefore require the selection of an 

appropriate grammar, the use of a descriptive method (topological trees, planar graphs 

or string symbols), the choice of an optimal set of primitives (too many primitives may 

make the approach too cumbersome to implement, while too few may result in poor 

discrimination), inferential techniques to learn the syntactic rules from sample objects 

and parsing methods to decompose shapes into simpler components with a view to 

ascertain if the components follow the specified grammar (Basu et al. 2005).   

In some cases, the decomposed shapes cannot be suitably expressed in the 

context of a grammar – here, components are represented through symbols or string 
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data structures or trees or graphs, usually by hierarchical sets of prototypes (Pavlidis 

1979; Chen et al. 1998).  Recognition is achieved when a component pattern expressed 

as a string matches or resembles the string of a reference shape (Gonzalez and 

Thomason 1978).  Graphs or topological trees may be used for the same purpose, and 

are generally more descriptive than strings, but are computationally resource-hungry and 

difficult to automate (Bicego et al. 2006).  There are several examples of shape analysis 

applications that circumvent this problem by introducing constraints or contextual 

information (Belongie et al. 2002) or using sub-optimal methods or implementing 

heuristic approaches (Gdalyahu and Weinshall 1999).  Recognition is usually based on 

dynamic programming techniques, clustering methodologies or similarity metrics based 

on edit distances.  Edit distances are simply the costs or weighted costs associated with 

transforming one string (or graph, or tree) into another through elementary editing 

operations such as substitutions, additions and deletions (Kaygin and Bulut 2002).   

Structural Analysis – The Medial Axis Transform 

Among the most researched region-based structural representations is the family 

of “medial axis transforms” or MAT, a term first coined by Blum (1967).  In concept, the 

shape is represented using a linear graph, a stick-like skeleton (Loncaric 1998), derived 

from a transformation of the entire shape.  Terms synonymous with MAT include shock 

graphs, symmetric axis transform, skeleton transform or skeletonization (Torsello and 

Hancock 2004).  Conceptually, MAT are based on the premise that most of the 

information about a shape is contained within its topology (Trier et al. 1996; Sebastian et 

al. 2001).   

Several methods exist to generate the MAT from a polygonal shape.  One 

approach is based on Voronoi tessellations (Ogniewicz 1993; Skiena 1997; August et al. 
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1999) generated around equally-spaced points on the contour of the shape, as depicted 

in Figure 2.12.   

Building Polygons Medial Axis TransformsVoronoi Tesselations

b

b

a

c

 

Figure 2.12 -- Medial axis transformations from Voronoi tessellations 

Another approach, shown in Figure 2.13, is based on generating small polygonal 

buffers internal to the original polygonal buffers, or thinning the original polygon until 

what remains is a linear graph feature – similar “thinning” algorithms exist for raster or 

pixel structures (see Lam et al. 1992 for an excellent survey on thinning techniques).  

Other approaches are based on drawing lines inwards from convex landmark points that 

connect centers of circles that are tangent to at least two points on the boundary of the 

shape (Torsello and Hancock 2004), and even based on electrostatic field approaches 

(Grigorishin et al. 1998)!   
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Figure 2.13 -- Medial axis transformations based on thinning routines 

However the shock graphs or skeletons or MATs are created, they are then 

described in structural or topological terms (Arcelli and Baja 1985), or as ratios of 

change in boundary length to distance along medial axis (Sebastian et al. 2001; Torsello 

and Hancock 2004).  Classification or recognition of a shape occurs when the sample 

object’s topology matches that of a known reference (August et al. 1999).  Recognition is 

typically achieved through dynamic programming or computing edit transformation costs 

associated with changing the input representation to the reference description (Fu 1982).  

MAT are very sensitive to local perturbations of the boundary or holes within the region, 

and representation methods to compute transformations that are less sensitive to region 

changes are fairly difficult to automate (Ashbrook and Thacker 1998).  Recently, Katz 

and Pizer (2003) criticize the extreme sensitivity of MAT and the inherent difficulty in 

decomposing the MAT into a set of connected line primitives that reflect an intuitive parts 

hierarchy.   
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Structural Shape Analysis – Derivation of Shape Numbers 

Another interesting manner of representation describes the shape in terms of 

connected curves or corners.  It is a one-dimensional notational representation that is 

independent of geometric transformations, and generates unique sequences of coded 

numbers based on the convexity or concavity or collinearity of the connections between 

boundary curves (Bribiesca 1981).  The coded numbers are rotated till the minimum 

number is reached, making the shape invariant to rotation.  The method incorporates 

some degree of fuzziness in the representation by first converting the shape into a grid – 

the accuracy of the representation depends on the resolution of the grid size.  Using 

Freeman chains (specific numbers for movement along the cardinal direction, where 

W=1, N=2, E=3 and S=4), Bribiesca describes the gridded shape as a sequence of 

numbers, and further, uses Freeman Chain corner derivatives (specific numbers for 

corner types, where convex corner = 1, straight corner = 2 and concave corner = 3) to 

describe the gridded shape as another sequence of numbers.  This normalized 

differential chain code is termed the “shape number” (Bribiesca and Guzman 1980; 

Morse 2007).  See Figure 2.14 for a diagrammatic representation of how shape numbers 

are derived for an arbitrary shape.   

Shape numbers are very sensitive to image extraction artifacts, so this approach 

usually generalizes the contour edge and creates grids of various resolutions that are 

orthogonal to the principal axes of the shape.  The number of grid edges making up the 

boundary of the gridded polygon specifies the “order” of the shape number.  While the 

order clearly depends on the resolution of the grid, for a given order, the shape number 

is unique (Bribiesca and Guzman 1980).   
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Figure 2.14 -- Deriving unique shape numbers for specific shape orders 

2.4.2.7. Syntactic Shape Recognition 

Applications that require comparative analyses of objects (shapes or texts) and 

that can be represented as sequences or strings of elements may be implemented 

through string matching.  String components may be symbolic or attributed – symbolic 

strings are composed of a determinate set of discrete building blocks or alphabets that 

are combined in accordance with a set of syntactical rules, while attributed strings are 

associated with quantitative measures that correspond with the semantic or contextual 

characteristics of the components (Yang and Pavlidis 1990).   

In string matching, one attempts to identify all incidents of a pattern within a 

superset, where both the pattern and the superset are composed of the same primitive 

components.  In a typical pattern-spotting implementation, a sliding aperture of the same 

width as the pattern moves sequentially along the superset till a match is found.  Other 

approaches, typically seen in optimization contexts, include dynamic programming, 

elastic or spring matching, dynamic time warping or edit-operation based 
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transformations (Chen et al. 1998).  String transformations generally convert one string 

to another through additions, substitutions and deletions, each with associated costs, 

and the total cost of transformation is the sum of all the edit costs involved in the 

transformation.  While there are several methods of transforming one string to another, 

the preferred transformation would be that one which incurs the least total cost.  In 

addition, it must be noted that strings as definitions of objects are not unique, and 

circular shifts on a string may lead to completely different results.   

2.4.2.8. Shape Recognition and Classification 

In the final step, the shapes that have been processed and represented are 

analyzed and classified.  In most applications, classes are specified a priori, and the 

analysis recognizes an input shape as belonging to a class – this method of 

classification is termed supervised classification.  In other applications, the classes are 

not predefined; rather, classes are created during the analysis phase and subsequent 

input shapes are assigned to classes that they are like or new classes created.  This 

type of analysis is called unsupervised classification.  However, in both methods, input 

shapes are compared to previously created classes and measured as to how similar 

they are (Duda et al. 2001; Acharya and Ray 2005).   

Classification algorithms therefore depend on computing indexes of shape 

similarity that are essentially objective and quantifiable measures of how close or similar 

one input shape is to another (unsupervised classification) or how similar an input shape 

is to shape representatives of predefined classes (supervised classification).  It is now 

obvious why the shape description step is crucial for the overall shape analysis 

application – the representation provides the discriminative basis for quantitatively 

measuring similarity and therefore potential membership to a class.  However, despite 

considerable investment in research in the field of pattern recognition, there are no 
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general methods to identifying the best set of features or for creating the perfect 

classifier (Costa and Cesar 2001a).  In a very general sense, an optimal classifier puts 

objects that share some attributes in the same class while other objects with distinctly 

different properties are placed in other distinct classes.    

The literature varies significantly in terms of using the feature descriptors of the 

shape in developing classifier mechanisms that use similarity computations such as 

Manhattan, Euclidean, Minkowski (Veltkamp 2001; Black 2004a, 2004e, 2004d, 2004c; 

Shahrokni et al. 2004; Barile 2008) or Mahalanobis (Jain and Dubes 1988; Dwinnell 

2006) distances to determine class membership.  Typically, the shape feature vector or 

its transformation is compared with all the reference shape classes it can potentially 

belong to, through the similarity measure – the shape will then be assigned to the class 

that it is closest to.  Structural methods achieve recognition or classification typically 

through correspondence between component primitives (Liu and Srinath 1990; Loncaric 

1998; Latecki and Lakamper 1999, 2000; Belongie et al. 2002).  Syntactic methods 

implement classification through dynamic correspondence between component parts 

based on edit costs or Levenshtein distances (Chen et al. 1998; Kaygin and Bulut 2002; 

Black 2004b).   

2.5. Geometry Manipulations in the GIS Environment 

This section describes the representation of polygons within the GIS and some 

techniques for pre-processing the building footprint polygons, based on methodological 

aspects uncovered in the literature review.  Data structures for spatial data 

representation in GIS vector formats vary in different software application.  Even though 

all the pre-processing and computational geometry routines were executed in the ESRI® 

ArcGIS 9.x system [henceforth ArcGIS], the following sections will attempt to explain the 

representation and pre-processing in generic terms within the ArcGIS environment.   
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2.5.1. Representation of Points, Lines and Regions in GIS 

Spatial data is represented primarily in two architectures, the vector and raster 

formats respectively in the context of a spatial reference that combines a projection 

method with a coordinate system (Antenucci et al. 1991).  Vector architectures abstract 

real world information and represent them explicitly as points, lines or polygons, with 

their spatial relationships represented implicitly.  Real world phenomena that show 

locations with little dimensional information are represented as points and described in 

terms of x,y coordinate locations.  Regions in the real world that have appreciable length 

and width are represented as polygons and typically described as an ordered sequence 

of x,y coordinate locations that define the closed polygon edge.  Depending on the scale 

of representation therefore, a city could be represented as a point or a polygon.  Real 

world features that are much longer than broad lend themselves to representation as 

lines (or polylines), described as sequences of x,y coordinate locations (Demers 1999).  

The “spaghetti” data structure that encapsulates points, lines and polygons as strings of 

coordinate locations is depicted in Figure 2.15 (Lakhan 1996).   
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Figure 2.15 -- Spaghetti data structure for feature representation 
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2.5.2. Topological Data Structures 

More commonly used is the topological data structure, where spatial 

relationships are explicitly referenced in sets of relational tables (Environmental Systems 

Research Institute 2007) and depicted in Figure 2.16.   
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Figure 2.16 -- Topological data structure for polygon spatial data representation 

As before, points are represented by their x,y coordinates and uniquely labeled.  

Points are classified as shape points or nodes – shape points are connection points 

between two line segment primitives that give shape to the complete line representation, 

while nodes are beginning or termination points, or junctions of three or more line 

features.  Lines are also uniquely named and represented by labels for starting node, 

ending node and shape point lists, and therefore have explicit directionality.  The line 
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table also has polygon labels for the polygon on the left and the polygon on the right of 

the line segments (since the lines have explicit directionality, left and right sides to the 

line are defined), and therefore incorporates contiguity explicitly.  Coordinate locations 

for the lines are fetched when required by relating the appropriate point label with the 

node or shape point table.  Polygons are uniquely named and represented by ordered 

sequences of line labels that constitute their edges.  When required, polygons fetch lines 

for their edges through successive relationships with the line table and then from the line 

table to the point table.   

2.5.3. Geometric Primitives and Object Hierarchy 

In the context of working and manipulating the geometric information for vector 

datasets within the ArcGIS ESRI™ application, all features are composed of objects that 

follow the Component Object Model [henceforth COM] and have an Application 

Programming Interface [API].  These objects are organized in various libraries and have 

properties and behaviors that developers can programmatically use for specific 

applications that are not part of the software graphic user interface.  Specifically, objects 

for manipulating feature geometries are available from the geometry API library.  Higher 

level geometries (like polygons and polylines) may be generated from primitive part-

geometries that are schematically shown in Figure 2.17, in a hierarchy derived from the 

complexity of the primitive.   

Polylines are used to characterize real world linear features (such as roads, 

rivers, etc.) and may be represented as a sequence of point primitives (or vertices) or 

segment primitives or paths.  A segment is a function (straight line, part of a curve or 

ellipse, etc.) that describes a curve between two points, and consists of a pair of point 

primitives if it is a straight line.  A path is a sequence of connected segments, or a 

sequence of point primitives.  Polygons are used to symbolize real world features that 
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occupy real space at the scale of representation and are usually denoted by their linear 

edges.  The edge of a polygon may be represented as a sequence of point, polyline, 

path, ring or segment primitives.  The only new definition here is a ring, which is a closed 

path (begin and end points coincide), and may comprise of a sequence of point, polyline, 

path or segment primitives.  Understanding the geometric hierarchy or the alternate 

programmatic digital representation of features is critical for writing and implementing 

spatial computing algorithms.   

GIS Vector Feature Geometry

Point

Segment

Path

Ring

Polygon

Polyline

Line

 

Figure 2.17 – Hierarchy of primitive part-geometries in a COM-based API 

2.5.4. Manipulating Vector GIS Feature Geometry for Shape Preprocessing 

In the preprocessing stage, often, the geometries of the input shapes will require 

some level of manipulation.  For instance, in order to extract array-based feature 

measures of shape geometry (centroid to contour vertex distance), the input GIS 
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polygon shape will require several points or vertices along its edge.  If a rectangular 

polygon is defined by just the corners, the vertex count may not be enough to permit 

further analysis.  Therefore, the number of vertices defining the rectangular polygon has 

to be increased such that all the new vertices lie on the edge of the rectangular polygon.  

In cases of log-polar descriptors where the form requires distances of contour vertices 

from the centroid such that vectors from centroid to vertex subtend equal angles at the 

centroid, existing vertices must be moved and new vertices introduced at the edges, 

conforming to the equal centroid-vertex requirement.  These examples require 

“densification” of the edges of the polygon.  In some cases, it may be necessary to 

reduce the complexity of the edge through “generalization” and remove vertices such 

that the general shape of the edge is retained, but the number of vertices describing the 

edge is far less than the original shape.  In still other cases, particularly for landmark 

point identification of 2D polygons, input GIS polygons may need to be processed to 

remove extraneous vertices and retain only those that match the landmark criteria.  This 

example requires a customized vertex decimation strategy that could include aspects 

from generalization, densification and other coordinate geometry routines.  When input 

shapes are derived from vector GIS polygons, some level of preprocessing may be 

necessary to manipulate the shape for downstream shape analysis.   

2.5.5. Densification of Edges and Polylines 

Densification of polylines (and polygon edges) is relatively straightforward in the context 

of a GIS.  Densification routines are usually executed in order to generate a larger 

sample of point signals from an existing curve or polygon edge.  Densification is also 

used in cases where segments that are described parametrically (such as three points 

on a circular arc of specified radius) have to be approximated as a series of linear 

segments.   
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Densification routines are executed as one of two types, both of which require a 

maximum vertex distance argument.  The maximum vertex distance argument specifies 

the maximum length of the approximating line segments, or the maximum Euclidean 

distance between successive vertices.  The first densification algorithm, called 

densification by maximum deviation, is based on the maximum perpendicular distance 

between the original segment and the approximating segments.  In other words, the 

maximum deviation specified the maximum Euclidean distance any approximating line 

segment may be from the original polyline.  Densification by maximum deviation is 

depicted in Figure 2.18.   
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Figure 2.18 -- Densification by maximum deviation 

An alternate densification routine, termed densification by maximum angle, specifies the 

maximum angle that any approximating polyline may be relative to the original segment.  

See Figure 2.19 for a diagram of densification by maximum angle.   
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Figure 2.19 -- Densification by maximum angle 

Note that both densification algorithms produce approximating line segments that are 

less than the maximum vertex distance.  For polylines that are linear segments, the 

maximum deviation or maximum angle has no effect, and the only argument relevant is 

the maximum vertex distance.  In other words, straight line segments are densified by 

adding vertices such that the length of the smaller linear segments generated in the 

output are less than the maximum vertex distance.  Figure 2.20 demonstrates a 

densification routine applied on the linear edges of a polygon. 
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Figure 2.20 -- Densification of linear features 
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2.5.6. Generalization, Polygon Approximation and Line Simplification 

Generalization is “a process which realizes transitions between different models 

representing a portion of the real world at decreasing detail, while maximizing 

information content with respect to a given application” (Weibel and Dutton 1999).  In 

other words, generalization routines coarsely represent the real world while attempting to 

maintain the maximum possible validity in geometric and semantic correspondence.   

Line generalization, also termed line simplification, attempts to represent input 

polylines by approximate output polylines with fewer vertices, while maintaining the 

topological connectivity among the polylines and preserving as much of the initial 

morphology as possible.  Polygon approximation attempts to represent input polygons 

by approximate output polygons, primarily by generalizing the linear edges of the input 

polygons while attempting to maintain the topological character of the dataset.  

Maintaining the original topology is a difficult problem, and in most cases, new vertices 

and lines may be created and old ones deleted (Johnston et al. 1999).   

2.5.7. Generalization Routines and Vertex Decimation Strategies 

Considerable research has been directed towards automated generalization, 

especially in the context of GIS-based technologies (McMaster and Shea 1992; Baelia et 

al. 1995; Joao 1998).  A number of these approaches attempt to produce maps at 

different scales by generalizing graphics from a back-end spatial database (McKeown et 

al. 1999).  Several solutions have been integrated with GIS-based applications (Lee 

2003).   

Generalization has two motivations, one being map-based or cartographer driven 

(visual) and the other database or model-based (conceptual) (Muller et al. 1995a; Muller 

et al. 1995b; Weibel and Jones 1998).  Map-based generalization is primarily driven by 
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the use of maps as communicative devices, where the emphasis is on abstracted and 

reduced representation based on geometric and semantic feature relevance with visual 

clarity and legibility.  In other words, the cartographer makes decisions on the necessity 

of feature inclusion or generalization based on the scale of the map, and the contextual 

relevance of the features, while ensuring that the symbology of different features do not 

interfere with each other.  Model or database generalization, while serving a visual 

function, adjusts feature geometry based on scale levels, and technically produces 

multiple generalized manifestations of features for continually varying scale ranges.  

Object-oriented data structures and technologies lend themselves aptly for such 

continuous generalization functions (Yang and Gold 1997).  In fact, a number of internet-

based mapping services require feature representation at several scales, and research 

is being focused on dynamically altering/generalizing the features based on client 

requests as the need arises (Oosterom 1995; Cecconi et al. 2002), a delivery approach 

that is scale-less (Muller et al. 1995b).  See Cecconi et al (2002) for an extensive survey 

of generalization operations that automate delivery for web mapping.   

Database generalization may require altering features or even eliminating them 

and is performed by several major operations based on the geometry and the 

meaningful context of the features’ relationships with other features and the particular 

relevance of the feature’s display.  These operations include feature selection, 

elimination, simplification, aggregation, exaggeration, collapse, displacement, 

typification, symbolization and refinement (McMaster and Shea 1989; Oosterom 1995; 

ESRI 1996) as shown below:   

Elimination – features that are not semantically relevant (such as ramps for a set 

of highway features) or geometrically insignificant (small dangles or tiny polygons) are 

progressively eliminated, as depicted in Figure 2.21.   
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Figure 2.21 -- Eliminating features during generalization 

Simplification or Line Generalization – where spikes, irrelevant detail and contour 

fluctuations are removed, usually by vertex decimation or translation, without 

compromising on the intrinsic shape, as seen in Figure 2.22.   

 

Figure 2.22 -- Simplifying lines and polygon edges during generalization 

Aggregation – features that are adjacent or very close to one another are merged 

into single features (for instance, merging distinct agricultural polygons into a larger crop 

patch, or converting a cluster of points into a region feature when the points may not be 

distinctly seen at a certain scale) – see Figure 2.23.   
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Figure 2.23 -- Aggregating polygon features during generalization 

Exaggeration – increasing the size of particular features for semantic purposes (a 

wetland polygon that needs to be emphasized) or for clarity and legibility, as shown in 

Figure 2.24.   

 

Figure 2.24 -- Exaggerating features for visual clarity during generalization 

Collapse – reducing the dimensionality or size for legibility or semantic 

significance (such as converting high tension power infrastructure polygons into line 

features, or changing a polygon feature into a point if its area is less than a specified 

threshold), as denoted in Figure 2.25.   
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Figure 2.25 -- Collapsing using size or dimensionality reduction for generalization 

Displacement – for visual clarity, particular features that have lower semantic 

priority but are still significant, are moved to resolve conflicts and ensure conformality 

with minimum separation thresholds, as seen in Figure 2.26.   

 

Figure 2.26 -- Translating features in conflict resolution during generalization 

Typification – a reduction in the density and detail of small features while 

maintaining the overall distribution pattern and not compromising on the intuitive 

structure (such as removing several small building features in order to increase visual 

clarity, but maintaining a sense of the building distribution) as shown in Figure 2.27.   
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Figure 2.27 -- Removing and moving features in typification during generalization 

Refinement – adjusting the geometry of features in order to improve its visual 

representation and to conform to reality (for instance, smoothing river features, or 

orthogonalizing building corners) – see Figure 2.28.   

 

Figure 2.28 -- Refining feature geometry during generalization 

Symbolization – creating new features based on lower level discrete features that 

share some attribute (creating “Industrial Use” polygons from lower level land use 

polygons that contain various levels of industrial use, such as light industrial, heavy 

industrial, pharmaceutical, etc.), as described by Figure 2.29.   
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Figure 2.29 -- Symbolizing lower level into higher groups during generalization 

Based on these definitions and combined with semantic and geometric rules, 

generalization operators may be designed for a particular application.  Note that all 

operators may not be necessary for all applications – specific generalization operations 

may be iterated with increasing threshold parameters and combined into a sequence 

that solves the problem at hand.   

2.5.8. Line Simplification 

Line simplification is of special significance in this research.  Since input data for 

shape analysis are derived from GIS, line simplification routines would be extremely 

useful in preprocessing the shape before features are extracted or the shape is 

described.  Simplifying building edges would extract vertices of special significance that 

would serve as landmarks – these landmarks would be used to compute, measure, 

transform, extract and analyze the shapes and perhaps even directly applied during 

shape recognition based on syntactic methods.   

Several algorithms have been developed since the 1960s for line simplification, 

drawing primarily on Attneave’s (1954) identification of curvature-based vertex 
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significance.  McMaster and Shea (1989) classify line generalizing algorithms primarily 

by the processing context – their first three classes are based on vertex processing, 

while their next two are based on extending the processing context beyond the vertex-

based neighborhoods.   

Simplification Using One Vertex 

Here, the vertex being processed has no formal relationship with other vertices 

other than sequence.  A crude example would be a routine that decimates every third 

vertex in the contour sequence 

Simplification Using Vertex and Immediate Neighbors 

Here, the preceding and succeeding vertices are included in a mathematical 

relationship with the processing vertex.  An example would be a routine that compares 

the perpendicular distance between the vertex being processed and the chord joining 

the preceding and succeeding vertices with the thresholding tolerance (Chang et al. 

1991).   

Simplification by Processing Extended Vertex Neighborhoods 

Here, the routine uses other descriptors such as angle or distance or a minimum 

number of points as larger contexts in mathematical relationships beyond the immediate 

neighboring vertices.  An example is a routine that compares pairs of sequential 

segments that have one segment in common and decimates vertices based on 

Euclidean or Hausdorff metrics (Leu and Chen 1988; Boxer et al. 1993) 

Simplification Using Extended Local Processing 

These routines use the complexity of the line’s geometry to search beyond the 

neighborhoods described above.  An example of such a routine would apply shape 
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recognition techniques to detect bends, analyze their curvature characteristics in a local 

context, and eliminate insignificant ones.  Thus, a bend that is too narrow will be 

widened slightly to satisfy the tolerance and the resulting line is more faithful to the 

original and shows better cartographic quality (Lee 2003).   

Simplification by Global Routines 

Here, all the vertices that constitute the line are taken in the processing 

framework.  Examples include the Douglas-Peucker (1973) line generalization algorithm, 

illustrated in Figure 2.30, or the Chaikin (1974) line smoothing algorithm.   
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Figure 2.30 -- The Douglas-Peucker algorithm for line simplification 

Perhaps the most common algorithm applied in built-in GIS simplification routines 

is the Douglas-Peucker algorithm.  In the Douglas-Peucker algorithm, a temporary line is 

constructed joining the first and last points of the original polyline.  The vertex that is 

furthest away from this temporary line is added.  The distance of each vertex from the 

modified line is recomputed, and the farthest vertex is added to the temporary line.  The 

process is repeated till the distance of the vertex farthest away is smaller than the 

thresholding tolerance – at this limit, the original line’s geometry is replaced by the 

temporary line.   
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2.5.9. Evaluation of Generalization and Simplification Algorithms 

Several researchers (McMaster and Shea 1988; Visvalingam and Whyatt 1990) 

have systematically evaluated the existing line generalization algorithms and have 

consistently enhanced the performance of these routines.  Ruas and Plazanet (1996) 

have developed a routine based on polygonal approximation by evaluating curvature 

functions, while Visvalingam and Whyatt (1990) have modified the Douglas-Pecker 

algorithm and base their simplification on decimation by evaluating effective areas – 

points with the least areal displacement from the current part-simplified line are 

iteratively dropped.  They chose area because line morphology becomes significant only 

when the size of the feature becomes larger than a perceptive threshold.  Gribov and 

Bodansky (2004) include noise filtering in their piecewise linear approximation approach, 

by decomposing the source polyline into optimal segment clusters based on the squared 

error of approximation, and then replacing each cluster with a straight line segment.  

Researchers and practitioners are also evaluating generalization tools in software 

applications based on quantitative measures of computational efficiency, initial 

assumptions and assessments of results (Weibel and Jones 1998; Skopeliti and Tsoulos 

2001).   

While generalization routines work reasonably well, there are numerous 

instances where the performance is less than effective.  This occurs particularly in the 

case of orthogonal segments that deviate more than the thresholding tolerance in one 

dimension, but not in the other.  This shortcoming is difficult in the context of building 

footprint simplification, where edge segments are usually orthogonal and deviate 

considerably from the threshold tolerance.  Figure 2.31 illustrates the deficiency in the 

Douglas-Peucker algorithm for building simplification.   
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Figure 2.31 -- Limitations of the Douglas-Peucker algorithm for orthogonal edges 

Thus, line generalization tools are not complete and perfect solutions (Limeng 

and Lixin 2001; Kazemi 2003) and may require some level of preprocessing for 

automated applications, and often, manual intervention.  The result is often dependent 

on the geometry of the input building footprint polygons (that can vary considerably 

based on the source acquisition methodology) and additionally, after simplification, in 

many instances, topological errors occur that require manual corrections again (Kazemi 

et al. 2001).   

2.6. Building Valuation 

Quantifying economic losses from natural hazards is a vital element in evaluating 

risk, assessing the appropriateness of mitigation planning alternatives, estimating the 

efficient level of disaster assistance and informing the relevant stakeholders of their 

potential liability.  Several recent research efforts have emphasized both the necessity 

and appropriateness of the various methodologies associated with hazard economic loss 

estimation (Chang 1998; Shinozuka et al. 1998; National Research Council 1999; Chang 

2001).   

In general, most loss estimation studies first estimate damage to the physical 

inventory, and then translate these into economic losses.  Economic losses have been 
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typically differentiated into direct and indirect effects, which are not clear-cut in nature 

(Rose 2004).  ATC-21 (1991) clarified that direct losses are attributed to property 

damage, while business interruption losses tend to be indirect, but Rose (Rose and Lim 

2002; Rose and Kunreuther 2004) suggests that this distinction is confusing, because 

both types of losses have direct and indirect components.  However, the National 

Research Council (1999) makes a worthwhile distinction and defines direct losses as 

those that arise from the premises housing the business being damaged directly by the 

hazard, while business interruption losses stemming from utility or infrastructure 

interruption are termed secondary direct losses (Rose et al. 1997).  All other losses 

based on linkages with other business entities are termed indirect losses.   

This dissertation limits the discussion to damage caused by the hazard to the 

building itself, and more specifically, to the replacement cost of the building.  There have 

been several studies regarding the cost of construction, and specifically the cost of 

seismic construction upgrading (FEMA 1992a, 1992b, 1994, 1995).  ATC-13 (1985) also 

performed a significant study for buildings in California.  These studies used a regional 

perspective and looked for central tendencies in the building inventories, expressing 

costs in dollars per square foot for several occupancy classes.  In addition, these studies 

were limited to lateral forces on buildings.  This is somewhat surprising, considering that 

the San Fernando earthquake of 1971 made it apparent that damage to nonstructural 

components not only resulted in major economic loss, but also posed real threats to life 

safety.  Nonstructural damage accounted for nearly 50% of the total loss of about $18.5 

billion in the Northridge earthquake (Kircher 2003).  Since then, there have been several 

other studies evaluating the direct components of damage in buildings.  Nonstructural 

components and building contents represent a significant part of the overall value of 
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most buildings, and a large component of direct losses to buildings in earthquake events 

may be attributed to nonstructural aspects of the building (Whittaker and Soong 2003).   

There are several projects being conducted at the various earthquake research 

centers in the US, but these efforts deal with individual aspects of building components.  

However, there have been several studies that attempt to define the various elements of 

the building (Porter et al. 2001; Porter 2005; ATC-69 2008).  Before proceeding to the 

components of a building sensitive to earthquake stresses, it would be worthwhile to 

investigate how existing models of loss estimation estimate replacement costs of 

buildings.   

2.6.1. Replacement Costs of Buildings 

Simply defined, the replacement cost of a building is the amount in dollars to 

reconstruct the building today at the same site for the same functionality using the same 

materials, and ensuring that the building follows the current building code.  An important 

aspect of this working definition of replacement cost is building use.  In other words, the 

specific occupancy of the building is an important driver of replacement costs.   

Let us begin the discussion by examining replacement cost models in typical loss 

estimation applications.  For regional loss estimation, HAZUS MH MR-3 bases building 

replacement costs for each specific occupancy class (see Table 1.2 for a list of specific 

occupancies in HAZUS MH MR-3) using industry-standard cost-estimation models 

published in the Means Square Foot Costs (R. S. Means 2008).  For each specific 

occupancy class, HAZUS establishes a default model, using averages of the square foot 

costs for various alternatives of the exterior wall construction (FEMA - DHS 2007).  

Table 2.4 shows an extract of the default listing of Means building models and 
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associated 2002 replacement costs in dollars per square foot, for the various residential 

specific occupancy classes, excluding single-family residential.   

Table 2.4 -- HAZUS MH MR-3 2002 Residential Replacement costs (in $/sq. ft.) 

Use Description Sub-category Means Model Description Cost/sq. ft.

RES2 Manufactured 
Housing Manufactured Housing Manufactured Housing  $         30.90 

Duplex SFR Avg 2 St., MF adj, 3000 SF 30.90$          
Triplex/Quads SFR Avg 2 St., MF adj, 3000 SF 67.24$          
5-9 units Apt, 1-3 st, 8,000 SF (M.010) 73.08$          
10-19 units Apt., 1-3 st., 12,000 SF (M.010) 125.63$        
20-49 units Apt., 4-7 st., 40,000 SF (M.020) 112.73$        
50+ units Apt., 4-7 st., 60,000 SF (M.020) 108.86$        
High-rise Apartment Apt., 8-24 st., 145,000 SF (M.030) 106.13$        
Hotel (medium) Hotel, 4-7 st., 135,000 SF(M.350) 111.69$        
Hotel (large) Hotel, 8-24 st., 450,000 SF (M.360) 104.63$        
Motel (small) Motel, 1 st., 8,000 SF (M.420) 93.47$          
Motel (medium) Motel, 2-3 st., 49,000 SF (M.430) 94.13$          
Dorm (small) Frat House, 2 st., 10,000 SF (M.240) 110.03$        
Dorm (medium) College Dorm, 2-3 st, 25,000 SF (M.130) 118.82$        
Dorm (large) College Dorm, 4-8 st, 85,000 SF (M.140) 113.31$        

RES6 Nursing Home Nursing home Nursing Home, 2 st., 25,000 SF (M.450) 99.50$          

Institutional 
DormitoryRES5 

RES4 

RES3

Multi Family 
Dwelling (large)

Multi-family Dwelling 
(small)

Multi Family 
Dwelling (medium)

Temp. Lodging

 

Similarly, the application contains default Means model types and square footage 

costs for all specific occupancy categories, and several alternative models of each 

occupancy.  None of the non-residential specific occupancy categories have basements 

included in the default costs.  For single-family residential structures, again, based on 

Means square foot costs, HAZUS breaks up the inventory into four classes of single 

family residences, including Economy, Average, Custom and Luxury, sub-classified by 

height (number of stories), presence of a finished or unfinished basement and adjusted 

for car garages.   

The replacement value for the region’s buildings is based on the derived counts 

for each specific occupancy, described in Section 1.4.3.  While the intentions are 

certainly merit-worthy, the various sub-categories or alternative Means models are not 

used in the application.  Further, the replacement costs make no allowance for the 



 
120

structure type of the building – there is a considerable difference in the per square foot 

costs for buildings made of wood versus concrete or steel.  In addition, the Means model 

costs describe typical buildings of specified area, and in reality, buildings in any 

occupancy category exhibit considerable variance in the square footage, and may be 

substantially less or more than the square foot range specified in Means.   

2.6.2.1. Structural and Nonstructural Building Components 

In most developed countries, seismic safety codes have influenced the design 

and construction of buildings to the extent of significantly mitigating catastrophic 

structural collapse.  However, the structural system of a designed building typically 

represents less than a quarter of the total replacement costs.  Admittedly, this fraction 

may be different for a specific subset of buildings, but in general, nonstructural building 

components and building contents hold a significant portion of the total cost of 

construction.  In addition, hazard-related damage to nonstructural components can 

potentially threaten life safety (Whittaker and Soong 2003).  The significance of 

nonstructural building elements has been facing greater scrutiny, particularly in 

earthquake engineering research, and the variety and complexity of nonstructural and 

content elements will continue to dominate the challenges to the overall seismic 

performance of buildings and inform mitigation planning efforts (ATC-69 2008).   

Every earthquake event has had some impact on nonstructural building 

components and building contents.  Consider the Modified Mercalli Index (MMI), first 

proposed in 1931 – earthquake intensity levels are almost completely defined in terms of 

the behavior of nonstructural or content elements (Richter 1957).  However, a systematic 

analysis of the performance of nonstructural building components has been problematic 

owing to the lack of data.  To date, while descriptions of every earthquake event include 

some documentation of nonstructural damage, there is little systematic information on 
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how the failure of or damage to nonstructural elements and contents pose threats to life 

safety or cause direct damage/business interruption losses.  ATC-69 (2008) suggests 

that the main reason for this situation is that the division of direct damage (as structural 

and nonstructural) is not consistent with owners or underwriters – building owners bear 

the responsibility for damage to the structural and nonstructural components, while 

building users or tenants are responsible for the inventory and contents.  In addition, 

while building ownership data (and related insurance claims for earthquake-related 

damage) are relatively easy to find, a building may have several tenants who face 

differing amounts of content damage or interruption losses, the data for which is likely to 

be dispersed.  Even where damage has occurred, research teams collecting damage 

data tend to focus on the dramatic aspects of structural damage first, then on obvious 

nonstructural damage like broken sprinkler systems or collapsed ceilings/interior 

partitions, etc. (all of which photograph well!) and little or no attention is directed to 

situations of minor or even functional nonstructural elements (even successes can teach 

us something!).  Content-related damage is often cleaned up before studies document 

them, and repair of nonstructural elements have an extremely long time frame, 

depending on the criticality of the nonstructural element to occupancy.  Finally, collecting 

information on the performance of nonstructural elements is time-consuming and 

resource-intensive (Reitherman 1998).  Coupled with the added problems of lack of 

standardization in the collection and presentation of data, nonstructural damage 

research has proven to be almost intractable.   

2.6.2.2. Earthquake-related Damage to Nonstructural Components and Contents 

Damage to architectural, mechanical, electrical and plumbing and water supply 

systems has occurred in the past.  Direct damage to nonstructural elements has been 

exacerbated by exposure to water, forceful running water, chemicals or other hazardous 
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substances.  Nonstructural elements or construction assemblies that have consistently 

been damaged in earthquake events include: 

 Architectural elements – cladding, glazing, external non-load-bearing walls, 

parapets, chimneys, partitions, false ceilings, etc. 

 HVAC, Electrical, Water supply, Fire protection, Plumbing and Conveyance – 

sprinkler systems, pipes, piping connections, ductwork, lighting, escalators and 

elevators, tanks, conduits and trays, equipment, etc. 

 Contents – shelves, cabinets, book cases, furniture, appliances, storage racks, 

equipment, computers and servers, etc.  

A number of data collection efforts have been executed primarily by insurance 

companies and underwriters, but these datasets tend to be confidential and proprietary, 

and not available for research (Porter 2002).   

The separation of damage into structural and nonstructural components is 

important because the systems behave differently under earthquake stresses.  The 

general technique for loss estimation is to develop mean repair cost ratios for discrete 

damage state probabilities (derived from earthshaking levels and fragility curves) and 

estimate mean total repair cost by component category.  The approach is fairly 

deterministic and several different building components are grouped under common 

fragility functions – all electrical, mechanical and plumbing elements are represented by 

just one or two fragility functions (Porter et al. 2001).  In addition, the cumulative effect of 

different components is never considered – for instance, if a false floor fails under a 

moderate level of shaking, and several pieces of heavy equipment (that will tip over only 

under extreme earth shaking) rest on it, the cumulative effect of the failure of the false 

floor would be that the pieces of heavy equipment would also tip over.   
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Porter (Porter et al. 2001; Porter 2005) suggests a taxonomy of components or 

assemblies of components that include structural and nonstructural elements, installation 

conditions, detailed inventories of equipments and contents and architectural and 

service assemblies.  He broadly classifies structural elements as those that are part of 

the building’s vertical- or lateral-force-resisting system and nonstructural components as 

those that are attached or rest on the structural system, but are not part of any force-

resisting system.  Nonstructural elements may then be grouped based on a set of rules 

that allow the development of representative fragility functions for that class, with 

emphasis on potential repair costs, life safety or interruption of use.  A consistent 

taxonomy would then enable an effective evaluation of the building’s seismic 

performance and enable quantification of the potential benefits of retrofits or design 

proposals.   

Thus, a detailed and careful classification of structural and nonstructural 

elements of a building would enable loss estimation routines to apply specific damage 

functions to component category groups that behave similarly, just as the GBS is 

classified by occupancy, height, structure type and design level into groups that behave 

similarly under hazard stresses.  Grouping several disparate elements that have different 

damageability functions will introduce a large amount of uncertainty in the loss 

estimation process.  The International Building Code (ICC 2000) and the ASCE 7-05 

(ACSE 2005) Minimum Design Loads for Buildings and other Structures both specify a 

series of seismic design requirements for architectural and mechanical and electrical 

components respectively.  The International Building Code specifies components such 

as interior walls and partitions, braced and unbraced cantilevers, veneers, ceilings, 

cabinets, etc.  The ASCE 7-05 includes mechanical and electrical components with 

conveyance equipment included under electrical and distribution systems.   
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Similarly, HAZUS MH MR-3 arranges common nonstructural elements of 

buildings as seen in Table 2.5 into simple, tractable groups and works well for regional 

loss estimation.  However, suspended ceilings and glazing categories are conspicuously 

missing.  Nonstructural elements are grouped as either “drift-sensitive” or “acceleration-

sensitive” components.  Damage to drift-sensitive components is largely a function of 

interstory displacement, while damage to contents and acceleration-sensitive 

components is influenced by floor acceleration.   

Table 2.5 – HAZUS MH MR-3 division of nonstructural elements and contents 

Type Description

Nonbearing Walls/Partitions
Cantilever Elements and Parapets
Exterior Wall Panels
Veneer and Finishes
Penthouses
Racks and Cabinets
Access Floors
Appendages and Ornaments

General Mechanical (boilers, etc.)
Manufacturing and Process Machinery
Piping Systems
Storage Tanks and Spheres
HVAC Systems (chillers, ductwork, etc.)
Elevators
Trussed Towers
General Electrical (switchgear, ducts, etc.)
Lighting Fixtures

File Cabinets, Bookcases, etc.
Office Equipment and Furnishings
Computer/Communication Equipment
Nonpermanent Manufacturing Equipment
Manufacturing/Storage Inventory
Art and other Valuable Objects

  Primary cause of Damage

  Secondary Cause of Damage
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Taghavi and Miranda (2003) designed and implemented a Microsoft Access database of 

nonstructural elements for commercial buildings based entirely on R.S. Means’ 

assemblies – the assemblies found in R.S. Means are industry standard and a wide 

variety of building industry professionals are familiar with the terms.  They included a 

taxonomy of components, photographs, fragility functions, repair costs, repair methods 

and functionality to each of the component groups.   

Structural and nonstructural divisions for residential buildings are harder to find.  

Saeki et al (2000) surveyed nearly a 1000 insurance company employees regarding 

property ownership and damage to ten categories of contents, as seen in Table 2.6.  

They found that the most commonly damaged items were tableware, while heaters and 

coolers remained relatively undamaged.   

Table 2.6 -- Taxonomy of household contents (Saeki et al 2000) 

Type Code Damage type Description Example

A overturning large, self-standing 
furniture for storage chests, bookshelves, cupboards

B overturning household electrical 
appliances refrigerators, washing machines

C falling, toppling over household electrical 
appliances microwave ovens

D falling, toppling over entertainment equipment audiovisual, computers, 
telecommunications equipment

E crushing floor-standing furniture, 
tables and chairs

dining tables, chairs, living room 
furniture, stoves

F crushing, overturning heaters and coolers air conditioners and heaters

G crushing indoor and miscellaneous 
items

curtains, sliding doors/screens, 
medical equipment, shoes, carpets

H falling, toppling over tableware tableware -- knives, spoons and forks

I falling, toppling over home entertainment items clocks, cameras, lighting fixtures, 
records, CDs, toys

J damaged, spills clothes, bed linen, bed 
clothes clothes and bed linen

Goods Household Property
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Several other taxonomies have been proposed – the interested user is asked to 

see Porter (2005) for a comprehensive literature survey of these taxonomies.  Porter’s 

taxonomies are very detailed and suited to analyses of single buildings.  The R.S. 

Means or the Taghavi and Miranda typologies offer the best potential for application in 

regional loss estimation modeling.   

2.6.2.3. Content Value of Buildings 

The literature for determining the content value of buildings by occupancy or 

indeed by any other classification is non-existent.  Interviews with personnel in valuation 

companies revealed that contents of buildings were individually surveyed and 

inventoried, and aggregated on a building-by-building basis for the purposes of 

insurance and/or portfolio management.  The accepted methodology was straightforward 

in application, and included depreciation using standard methods.  However, none of the 

valuation companies or insurance agencies was willing to share their data, citing 

confidentiality issues or that the data was proprietary.   

The only other source was HAZUS MR-3, in which content value was expressed 

as a percentage of replacement cost by specific occupancy.  The technical documents 

made no mention of the source for the default specifications.  Table 2.7 shows the 

content value expressed as a percentage of replacement costs by specific occupancy.   

Table 2.7 -- Content value as percentage Replacement cost (HAZUS MH MR-3) 

Occupancy Type Content Value Occupancy Type Content Value
All Residential Units 50% Food and Entertainment 100%
Retail Trade 100% Parking Garages 50%
Wholesale Trade 100% All Industrial 150%
Personal/Repair Services 100% Religious 100%
Commercial Offices 100% Emergency Response 150%
Banks 100% Schools 100%
Health care related 150% Colleges and Universities 150%  
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2.7. Conclusion 

This literature review is fairly comprehensive and serves two purposes.  First, I 

have attempted to describe relevant information about the background and applications 

of advanced techniques that the average audience interested in loss estimation and risk 

assessment modeling would find useful or illuminating.  Second, the literature review is 

also aimed at identifying methods and innovative approaches that would inform the 

methodology section of the dissertation.  In fact, several approaches advocated by the 

literature were implemented during the course of this research, including a decision-rule 

or knowledge-based classification model of structure type, and a shape recognition 

application based on invariant shape representations and statistical moment functions.  

In both cases, performances belied expectations, and the shape recognition application 

performance was particularly unsatisfactory, but the process of actually implementing 

previous research approaches clearly demonstrated the pros and cons of particular 

strategies.   
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Chapter 3 . METHODOLOGY 

Based in part on the literature review, this chapter describes the design of 

methods for determining the structure type of buildings, classification of building 

footprints by shape and estimation of building costs (replacement, acceleration- and 

drift-sensitive costs, content value).  It is quite possible to design the methods to 

estimate the various parameters required for assessing risk to buildings, but validity 

concerns prompted the necessity for demonstrating the methods in the context of the 

real world.  Consequently, the MAEC decided to showcase all its projects and 

demonstrate proof-of-concept for Shelby County, Tennessee.   

Shelby County is located in the western-most part of Tennessee in Mid-America, 

comprising mainly of the City of Memphis.  The Mid-America region or the New Madrid 

Zone stretches to the southwest from New Madrid, Missouri, and is characterized by the 

New Madrid fault line.  The zone covers parts of Missouri, Arkansas, Illinois, Kentucky 

and Tennessee, and is seismically active with the potential to produce to produce 

significant earthquakes.  Between 1811 and 1812, several earthquakes with estimated 

magnitudes greater than 7 rocked the area of the Mississippi valley.  Since then 

however, there have been several insignificant earthquakes, and building practices in 

the region tend to reflect this lack of memory.  The scientific community believes that we 

are long overdue for a seismically significant event, with a 90% chance of a 6.0 or 

greater event occurring by the year 2040.  An earthquake of 7 or greater therefore has 

great potential to cause significant damage to life and property, which may be reduced to 

a large extent with research, public awareness and mitigation planning.  The study area, 

also called the MTB, is therefore an apt choice, with a large urban population.   
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This chapter describes the existing primary data available for the MTB and its 

extraction for the inventory modeling exercise.  The following section describes the 

survey of buildings in Memphis for generating a calibration and validation sample.  The 

design of the specific methodologies for classifying buildings by structure and shape and 

estimating the value of the building inventory forms the remainder of the chapter.  Figure 

3.1 describes the overall methodology through a schematic process, using both primary 

and derived data.   

Data Extraction Inventory
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Figure 3.1 -- Research methodology described by a schematic process 

Primary data, in the form of tax records from the Shelby County Tax Assessor’s 

database, roads, parcels, aerial imagery, and corollary datasets for schools and other 

essential facilities are first analyzed and integrated within a GIS.  Specific variables are 

extracted and analyzed to produce the necessary attributes of the building inventory 

outlined in the scope of the dissertation.  The analytical module consists of four separate 

components that will be used in order to : 
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 classify buildings by their footprint configuration using shape recognition 

algorithms designed and written in the GIS environment 

 derive the structure type of buildings using multinomial logistic regression or 

ANNs 

 estimate the replacement value, the structural, acceleration- and drift-sensitive 

nonstructural components of the replacement value and the content value using 

parameterized curves generated by curve-fitting routines 

 add missing essential facilities (schools, fire stations and police stations) and 

churches manually to the spatial building inventory database by geocoding and 

inspection of aerial images 

3.1. Tax Assessor’s Data for Shelby County 

The Shelby County Tax Assessor’s database (henceforth Tax records) 

comprised of 20 separate tables, as seen in Table 3.1.  Most of the tables contained 

information pertaining to the parcel, identified by a unique identifier, or to the 

improvement(s) in the parcel.  Improvements made to the parcel, as captured in the Tax 

Records, represent single buildings or multiple identical buildings.  While some of the 

documentation for the relational database was adequate, there were significant gaps in 

the descriptions and specific relationships between particular fields across the tables.  

For instance, the field “UNITS” appeared in two different tables and was documented as 

“Number of units” – the numbers however, did not tally across tables for the same 

improvement.  Users are cautioned that reconstructing or re-engineering tables in order 

to create new synthetic tables is not a trivial task and requires expertise on handling 

relational database management system concepts.   
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Table 3.1 -- Shelby County Tax Assessor's database tables 

S. No. Table Basis Description
1 ADDN parcel Contains improvements and additions made to the property
2 AEDIT none Contains all the edit codes in the database and their description
3 AGAPPL parcel Agricultural application number table or farmland table
4 AGLAND parcel Contains all the agricultural land description
5 ASMT parcel Contains Appraisal and Assessment Value information
6 COMAPT improvement Contains commercial apartments data
7 COMDAT improvement Contains all commercial building data
8 COMFEAT improvement Commercial features information
9 COMINTEXT improvement Contains commercial interior exterior information
10 COMNT parcel Contains comment number, comment code and description
11 DWELDAT improvement Contains dwelling information
12 ENTER parcel Contains survey information
13 IEPRCL parcel Parcel information for income valuation/modeling
14 LAND parcel Contains land information
15 LEGDAT parcel Contains legal data information
16 OBY parcel Contains other building and yard information
17 OWNDAT parcel Contains owner information
18 PARDAT parcel Contains Parcel Level Information
19 PERMIT improvement Contains permits information
20 SALES parcel Contains sales information 

 

3.1.1. Generating Unique Identifiers for Tax Records 

There were no unique identifiers for improvements or sections of improvements 

and unique identifiers for improvements were generated by concatenating the parcel 

identifier with the numerical sequence number of the improvement.  Since the 

improvement records could represent one or more buildings, they could not be used 

directly to identify buildings.  All improvements that represented multiple buildings were 

cloned by the number of buildings that each improvement represented, with a sequence 

number for each clone of the original improvement record.  If an improvement record 

represented one building, the sequence number would be “1”. If an improvement record 

represented 3 buildings, the table would have the original improvement and 2 clones, 

with sequence numbers of “1”, “2” and “3”.  This process resulted in one improvement 

record for every building.  Defining a unique building identifier was trivial after the cloning 
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operation and generated by concatenating the improvement identifier and the sequence 

number.  Thus, the parcel identifier would serve as a primary key for the parcel 

database, and the building identifier would serve as a primary key for the building 

inventory database.  Thus, each building in the building database may be identified 

uniquely and further, the building record also identifies the land parcel where the building 

is sited.  Multiple buildings that are located in the same parcel have the same parcel 

identifier value.  Table 3.2, extracted from the building inventory database describes the 

identification pattern using three land parcels.   

Table 3.2 -- Parcel, Improvement and Building identifiers 

S. No. Parcel Improvement Building
1 001001  00025 001001  00025_1 001001  00025_1_1

001001  00026 001001  00026_1 001001  00026_1_1
001001  00026 001001  00026_1 001001  00026_1_2
001001  00026 001001  00026_2 001001  00026_2_1
001001  00026 001001  00026_3 001001  00026_3_1
001001  00026 001001  00026_3 001001  00026_3_2
001001  00026 001001  00026_3 001001  00026_3_3
001057  00002 001057  00002_1 001057  00002_1_1
001057  00002 001057  00002_2 001057  00002_2_1

2

3
 

The first parcel, identified by “001001  00025” has only one improvement and 

one building identified by “001001  00025_1” and “001001  00025_1_1” respectively.  

The second parcel identified by “001001  00026” has three improvements specified by 

“001001  00026_1”, “001001  00026_2” and “001001  00026_3”.  The first improvement 

consists of two identical buildings, each uniquely identified by “001001  00026_1_1” and 

“001001  00026_1_2” respectively.  The second improvement consists of one building 

identified as “001001  00026_2_1”.  The third improvement consists of three identical 

buildings, each uniquely identified by “001001  00026_3_1”, “001001  00026_3_2” and 

“001001  00026_3_3” respectively.  This parcel therefore has a total of six buildings.  
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The third parcel, “001057  00002”, has two improvements consisting of one building 

each, specified by “001057  00002_1_1” and “001057  00002_2_1” respectively.   

The raw entities representing the information from the Tax Assessor are 

compiled into a complex relational database structure.  Understanding the entities and 

their relationships is a vital component to the creation of synthetic tables.  Relational 

databases are designed and implemented for a specific audience and a specific purpose 

– in the Shelby County Tax Assessor’s case, the system was designed to keep track of 

taxable improvements, and not buildings, requiring the extraction and conversion of 

specific items into synthetic tables related to seismic risk assessment.  While the Shelby 

County Tax Assessor’s data records had adequate documentation, relationships 

between and among items were not clearly specified and had to be reconstructed 

through trial and error.  Users are cautioned that extracting information pertinent to 

earthquake risk assessment and damage modeling from the relational database is 

relatively complicated, with potential for large errors that could propagate throughout the 

models -- this process requires care and expertise, first to understand the relationships 

and then to manipulate the data through join, summarizing and extraction operations.   

3.1.2. Single-family Residential Building Extraction 

The extraction of single-family residential buildings process was relatively 

straightforward, since all the relevant information was contained in the DWELDAT table.  

The Tax Records contained multiple instances of the parcel identifiers in situations 

where several single-family residential units were sited in one parcel.  These specific 

records, where there were multiple single-family residential units, were identified for 

parcel counts greater than 1 and cloned, using the cloning process described in Section 

3.1.1.  The relevant variables extracted or generated included the parcel, improvement 

and building identifiers, the number of stories, the year of construction, the type of 
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basement, the total and ground floor areas in square feet, the major use of the parcel, 

the exterior wall type, the overall condition of the building and the appraised value of the 

building.  Based on the square footage and the overall condition of the building, single-

family residential units were classified as “Economy”, “Average”, “Custom” and “Luxury”.  

As expected, “Economy” and “Average” construction types dominate the single-family 

stock.   

3.1.3. Multi-family and Commercial/Industrial Building Extraction 

Extracting commercial and industrial buildings was much more complicated.  The 

documentation provided with the Tax Records was inadequate and the tables had to be 

thoroughly analyzed and re-engineered to understand the linkages between the various 

files.  Commercial and Industrial building data was distributed between the COMDAT 

and COMINTEXT tables.  Multi-family residential (apartments and condominiums) data 

was distributed among the COMAPT, COMDAT and COMINTEXT tables.  In addition, as 

mentioned earlier, the Tax Records in these tables consisted of improvements or 

sections of improvements and each improvement could represent one or more buildings.  

In particular, the specific use of the building, the number of dwelling units, the number of 

stories and the square footage information was contained in these tables.  The process 

of extraction is best explained using the example of 1 land parcel identified by containing 

5 separate improvements and 10 buildings.   

Table 3.3 shows the COMAPT records for parcel “001001  00026”.  The “Count” 

field specifies the number of dwelling units in identical buildings, while the “Units” field 

specifies the total number of dwelling units in that record.  The Improvement field 

contains the Improvement Identifier, so this table specifies that there are 4 

improvements in that parcel (the number of unique improvement identifiers).  The 
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column named “Impr Units” highlighted in yellow is a computed field containing the total 

number of dwelling units in that parcel and is used for error-checking and quality control.   

Table 3.3 -- COMAPT extract for Parcel "001001  00026" 

Parcel ImpID Improvement Count Units Year Impr Units
001001  00026 1 001001  00026_1 6 12 1991
001001  00026 1 001001  00026_1 6 12 1991
001001  00026 2 001001  00026_2 12 12 1991
001001  00026 2 001001  00026_2 6 6 1991
001001  00026 3 001001  00026_3 12 48 1991 48
001001  00026 4 001001  00026_4 12 24 1991 24

24

18

 

Table 3.4 shows the original COMDAT records for the same parcel, organized by 

the improvement identifier, with a total of 5 improvements, while Table 3.5 shows the 

COMDAT records after the cloning operation.  The “Units” field in Table 3.4 specifies the 

total number of dwelling units in each example building specified by that improvement 

record.  The “NumIdent” field specifies the number of identical buildings specified in that 

improvement.  Thus, for Improvement = “001001  00026_3”, there are 4 identical 

buildings.  The “Sum Area” field specifies the total area of all the buildings represented 

by that improvement record.  The “Impr Units” column (with the yellow highlight) is a 

computed column derived by multiplying the “Units” value and the “NumIdent” value and 

contains the total number of dwelling units in that improvement.   

Table 3.4 -- COMDAT extract for Parcel "001001  00026" 

Parcel ImpID Improvement Units NumIdent Sum Area Impr Units
001001  00026 1 001001  00026_1 12 2 21140 24
001001  00026 2 001001  00026_2 18 1 16082 18
001001  00026 3 001001  00026_3 12 4 29648 48
001001  00026 4 001001  00026_4 12 2 25272 24
001001  00026 5 001001  00026_5 0 1 1803 0  
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Table 3.5 -- Cloned COMDAT extract for Parcel "001001  00026" 

Parcel ImpID Improvement Units NumIdent Sum Area Bldg Units S. No.
001001  00026 1 001001  00026_1 12 2 10570 12 1
001001  00026 1 001001  00026_1 12 2 10570 12 2
001001  00026 2 001001  00026_2 18 1 16082 18 1
001001  00026 3 001001  00026_3 12 4 7412 12 1
001001  00026 3 001001  00026_3 12 4 7412 12 2
001001  00026 3 001001  00026_3 12 4 7412 12 3
001001  00026 3 001001  00026_3 12 4 7412 12 4
001001  00026 4 001001  00026_4 12 2 12636 12 1
001001  00026 4 001001  00026_4 12 2 12636 12 2
001001  00026 5 001001  00026_5 0 1 1803 0 1

 

Note that in Table 3.5, the number of records has increased to 10, corresponding 

to the total of “NumIdent” for that parcel.  Note also Improvement = “001001  00026_3” 

has been cloned and there are now 4 instances of that same improvement identifier.  

“Sum Area” has been reduced by dividing the original “Sum Area” by the number of 

identical buildings.  The fields highlighted in yellow are computed fields.  “Bldg Units” is 

computed by dividing “Tot Units” by the number of identical buildings.  The “S. No” field, 

part of the cloning process, generates a sequence number for each cloned record and is 

concatenated with the improvement identifier in order to generate unique building 

identifiers.  The cloned table thus reflects each record as a specific building with the 

correct square footage and number of dwelling units.   

Table 3.6 shows the COMINTEXT records for the same parcel, and consists of 

improvement sections – this table contained a lot of valuable information related to the 

improvement, such as Area, Occupancy, Fire rating, Number of stories, External wall 

and other such details.  The “Area” field specifies the square footage of the improvement 

section, while the “Total Area” field specifies the total square footage of all buildings in 

that improvement section.  The field “Use” details the specific use of the building.  Note 

that the last improvement is a multi-use office and clubhouse.   
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Table 3.6 -- COMINTEXT extract for Parcel "001001  00026" 

Parcel ImpID Improvement Area Use Total Area Impr Area
001001  00026 1 001001  00026_1 1525 Aprtmnt 3050
001001  00026 1 001001  00026_1 984 Aprtmnt 984
001001  00026 1 001001  00026_1 997 Aprtmnt 1994
001001  00026 1 001001  00026_1 1590 Aprtmnt 1590
001001  00026 1 001001  00026_1 984 Aprtmnt 1968
001001  00026 1 001001  00026_1 984 Aprtmnt 984
001001  00026 2 001001  00026_2 1027 Aprtmnt 2054
001001  00026 2 001001  00026_2 1804 Aprtmnt 1804
001001  00026 2 001001  00026_2 1105 Aprtmnt 1105
001001  00026 2 001001  00026_2 1733 Aprtmnt 1733
001001  00026 2 001001  00026_2 1027 Aprtmnt 2054
001001  00026 2 001001  00026_2 1027 Aprtmnt 2054
001001  00026 2 001001  00026_2 1014 Aprtmnt 1014
001001  00026 2 001001  00026_2 1105 Aprtmnt 1105
001001  00026 2 001001  00026_2 1105 Aprtmnt 1105
001001  00026 2 001001  00026_2 1027 Aprtmnt 2054
001001  00026 3 001001  00026_3 1213 Aprtmnt 2426
001001  00026 3 001001  00026_3 1280 Aprtmnt 1280
001001  00026 3 001001  00026_3 1280 Aprtmnt 1280
001001  00026 3 001001  00026_3 1213 Aprtmnt 2426
001001  00026 4 001001  00026_4 1105 Aprtmnt 1105
001001  00026 4 001001  00026_4 1027 Aprtmnt 2054
001001  00026 4 001001  00026_4 1105 Aprtmnt 1105
001001  00026 4 001001  00026_4 1105 Aprtmnt 1105
001001  00026 4 001001  00026_4 1027 Aprtmnt 2054
001001  00026 4 001001  00026_4 1105 Aprtmnt 1105
001001  00026 4 001001  00026_4 1027 Aprtmnt 2054
001001  00026 4 001001  00026_4 1027 Aprtmnt 2054
001001  00026 5 001001  00026_5 1803 Clubhouse 1803 1803

16082

7412

12636

10570

 

The column “Impr Area” (highlighted in yellow) is a computed field generated by 

summing the total area for all improvement sections for a single building represented by 

that improvement.  This tallies with the “Sum Area” field of the cloned COMAPT records 

depicted in Table 3.5.  The COMINTEXT table also had the number of stories specified 

for each improvement section, the exterior wall type and the fire rating of the structure 

(Fireproof, Fire Resistant, Pre-engineered Steel and Wood joists).  The number of 

stories was alphanumeric, and included basement and penthouse codes in addition to 

the numeric stories.  Based on area thresholds of 2,500 square feet, basement and 
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penthouse floors were included in the total number of stories (the area threshold would 

eliminate service areas like elevator machine rooms in the penthouse floors or utility 

rooms in the basement).  Accordingly, the extracted variables included the parcel, 

improvement and building identifiers, the major use of the parcel, the specific use of the 

building, the number of stories (above and below ground), year built, total square 

footage, basement type and basement square footage, number of dwelling units and 

appraised value.  Appraised value for the building was computed by dividing the total 

building appraised value in the parcel by the square footage of each building.   

3.1.4. Imputation of Missing Data and Data Refinement 

Several buildings in the Tax records lacked complete information – missing 

information included combinations of square footage, number of dwelling units, stories, 

year built, etc.  In addition, we acquired information on several churches, fire and police 

stations and schools from a variety of other sources that lacked similar information.  In 

the interests of completing the database and not discarding otherwise useful information, 

the missing information was imputed, and the record marked as “imputed”.   

Information was acquired from GDT, Inc. for churches and schools that were 

missing from the Tax Records and physically moved to the correct parcel using aerial 

images (churches were often identifiable through shadows of steeples and domes, while 

school buildings had distinctive footprints and often had baseball or athletic tracks in the 

vicinity).  Subsamples of each were digitized and computed average area measures for 

two size categories, small and large churches (6,000 sq. ft and 9,000 sq. ft.), and 

elementary and high schools (25,000 sq. ft. and 75,000 sq. ft.).  A similar approach was 

taken for police- and fire-stations, except that the approximate area for each of the 

buildings was calculated and recorded.  For year of construction, improvements in the 

vicinity were analyzed, particularly if the imputed buildings were part of a multiple use 
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parcel.  Structure type was imputed as the most probable structure type for that 

occupancy in that decade.  Imputations were made for about 2.52% of the total number 

of buildings, most of which occurred in schools, colleges, emergency response, mobile 

homes, apartment homes and hotels, as shown in Table 3.7.   

Table 3.7 -- Imputations by occupancy categories 

Occ 
Type

Occupancy 
Description

Imputed 
Count

Total 
Count

Percent 
(Occupancy)

Percent (Imputed 
Total)

Percent 
(Total)

COM1 Retail Trade               3        4,020 0.07% 0.04% 0.00%
COM2 Wholesale Trade               7        4,891 0.14% 0.09% 0.00%
COM3 Repair Services               7        1,576 0.44% 0.09% 0.00%
COM4 Commercial Offices             12        2,930 0.41% 0.16% 0.00%
COM5 Banks               3           220 1.36% 0.04% 0.00%
COM6 Hospitals              -               22 0.00% 0.00% 0.00%
COM7 Medical Offices              -             408 0.00% 0.00% 0.00%
COM8 Restaurants               8        1,322 0.61% 0.10% 0.00%
COM9 Theaters              -               28 0.00% 0.00% 0.00%
COM10 Parking              -               50 0.00% 0.00% 0.00%
EDU1 Schools           250           280 89.29% 3.24% 0.08%
EDU2 Colleges             16             16 100.00% 0.21% 0.01%
GOV2 Police/Fire             39             48 81.25% 0.51% 0.01%
IND1 Heavy Industrial               2           709 0.28% 0.03% 0.00%
IND2 Light Industrial               8           324 2.47% 0.10% 0.00%
IND4 Extraction              -               27 0.00% 0.00% 0.00%
IND5 High Tech              -               14 0.00% 0.00% 0.00%
REL1 Religious           805        1,021 78.84% 10.43% 0.26%
RES1 Single-family           172    269,442 0.06% 2.23% 0.06%
RES2 Mobile Homes             15             43 34.88% 0.19% 0.00%
RES3 Apartments        6,225      18,135 34.33% 80.67% 2.03%
RES4 Hotel/Motel           127           331 38.37% 1.65% 0.04%
RES5 Dormitories             16             59 27.12% 0.21% 0.01%
RES6 Nursing Homes               2             87 2.30% 0.03% 0.00%
Totals 7,717          306,003 2.52% 100.00% 2.52%

 

Over 80% of the imputed buildings were multi-family residential, 10% were 

churches, and the rest were distributed over schools, single-family and hotels as 

highlighted in the table.  The Emergency Response, Schools and Colleges category 

imputations, though small in number, are significant because of their individual sizes and 

consequently the capital investment in these buildings.   
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The multi-family apartment imputations are significant because of the sheer 

number of imputations – over a third of the apartment buildings were imputed for number 

of dwelling units, square footage or both.  The consequences of the imputations in terms 

of the number of dwelling units in multi-family structures is explained in the validation 

section of the concluding chapter in Section 5.1.  Table 3.8 shows the dwelling unit 

imputations for multi-family apartment buildings by decade of construction.  Square 

footage imputations for apartments by decade echoed the trends seen in Table 3.8.   

Table 3.8 -- Multi-family residential imputations of dwelling units by decade 

Decade Imputed 
DU

Unimputed 
DU Total DU Percent by 

Decade
Percent by 

Imputed
Percent by 

Total
Pre-1939              631               7,947          8,578 7.36% 1.16% 0.49%
40-49              863               3,792          4,655 18.54% 1.58% 0.67%
50-59          1,497               5,542          7,039 21.27% 2.75% 1.16%
60-69          9,127             17,388        26,515 34.42% 16.75% 7.06%
70-79        16,361             20,418        36,779 44.48% 30.02% 12.65%
80-89          9,594               8,948        18,542 51.74% 17.60% 7.42%
90-99          8,391               4,978        13,369 62.76% 15.40% 6.49%
Post-2000          8,032               5,803        13,835 58.06% 14.74% 6.21%
Totals        54,496             74,816      129,312 42.14% 100.00% 42.14%  

Imputations were based on similarity between the record with incomplete 

information and other similar building records, with similarities based on decade of 

construction, frequency measures in exterior walls and structure types, building sizes, 

etc.  For instance, if a multi-family residential building did not have information on the 

number of dwelling units, we imputed the number of dwelling units by computing the 

square footage per dwelling unit for structures similar in area and built in the same 

decade.  A similar approach was used if the number of dwelling units was available, but 

not the square footage.  If neither dwelling unit nor square footage was available, 

apartment buildings were inspected and crudely digitized from aerial photographs to 

compute approximate square footages.  Several apartment complexes seemed to be 
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vacant (particularly in the 1960 and 1970 decades) from the aerial photographs, marked 

by the complete absence of parked cars in the parking lots.  These were not recorded as 

vacant, since the inspections were incidental to the imputation process and not 

comprehensive in nature (the visual inspection process was exhaustive, time-consuming 

and certainly felt comprehensive!).  Most of the imputations occurred in multi-family 

residential apartments and condominiums.   

Table 3.9 shows the imputed, unimputed and total average areas per square foot 

for apartments by decade of construction.  Note that the imputation averages of square 

foot per dwelling unit resulted in remarkably consistent numbers for each decade.  This 

table therefore also validates the multi-family residential building imputation process.   

The imputations are of primary concern because they provide input to other 

calculated fields.  In addition, several imputations occurred in buildings that have a 

higher concentration of capital invested per unit.   

Table 3.9 -- Multi-family residential imputations for dwelling size by decade 

Decade Imputed Square Feet per 
Dwelling Unit

Unimputed Square Feet 
per Dwelling Unit

Total Square Feet per 
Dwelling Unit

Pre-1939                                        911                                            972                                    968 
40-49                                        725                                            790                                    778 
50-59                                        684                                            691                                    690 
60-69                                        797                                            814                                    808 
70-79                                        946                                            943                                    944 
80-89                                        897                                            875                                    886 
90-99                                        751                                            773                                    759 
Post-2000                                        899                                            953                                    922 
Totals                                        864                                            871                                    868  

3.1.5. Spatial Representation of Extracted Buildings 

The Tax records also contained a spatial dataset of parcel boundaries for Shelby 

County with the correct parcel identifier.  Spatial X-Y coordinate information was 
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generated for each building by extracting the parcel centroid spatial X-Y coordinates and 

linking them to the parcel identifier in the building inventory database.  In other words, 

each building was geocoded to the centroid of the parcel that it was sited in.  While this 

is not spatially precise, it at least ensures that each building is necessarily located within 

the boundary of the parcel polygon that contains it.  The location of the building is 

specified by the LAT and LON coordinates, as well as projected X and Y coordinates in 

the building dataset – note that all the buildings within a parcel share the same location 

specified by the centroid coordinates of the parcel and are therefore coincident.  Figure 

3.2 shows an extract for a residential area in the central portion of Memphis, showing 

parcels and building points.   
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Figure 3.2 -- Extract of parcels and buildings in Central Memphis 
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3.2. Sample Data Collection 

Determining the structure type of buildings required a training or calibration 

dataset, which contained all combinations of the input variables and the known or 

desired structure type.  This would enable the estimation of the structure type model 

parameters and an understanding of the independent variables that were significant in 

terms of associations with the structure type class.  In other words, the calibration 

dataset would enable the creation of a model that could then be used to predict the 

structure type for the remaining population of buildings.   

From the initial analysis of the Tax Records, there were over 280,000 structures 

in Shelby County, with almost 90% being single-family residential structures.  Since 

capital investment is concentrated in larger non-single-family residential buildings, field 

surveys were conducted in order to generate sample datasets for calibration and 

validation of non-single-family structures only.  The choice to sample only commercial 

and industrial buildings is explained further in Section 3.3.  Graphic details of the location 

of predominant sampling areas within Shelby County, Tennessee, are shown in Figure 

3.3, showing the samples collected along with labels listing the corridors chosen for the 

survey.   
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Figure 3.3 -- Survey sample collection areas in Shelby County 

Based on FEMA guidelines for the rapid visual screening of buildings for potential 

seismic hazards (ATC-21 1988), two field surveys of non-single-family residential 

structures were conducted in May and October of 2003.  The survey team consisted of 

one graduate research assistant and myself.  We anticipated vehicle-based windshield 

surveys in areas of low traffic and walking surveys where slow driving would pose 

hazards (non-seismic, of course!).  Where it was not possible to judge the structural 

system of the building (particularly for larger steel or reinforced concrete buildings), we 

would enter the building with permission for closer inspection (which caused the US 

Secret Service, Memphis Field Office to take an undue interest in our research 

activities).  Since non-single-family structures tend to be located along major boulevards 

and arterials, the survey areas were designed to sample buildings along commercial-

intensive corridors, rather than a cluster-oriented design.  Major streets from the Shelby 
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County street database were overlaid on aerial images and corridors inspected for 

concentrations of large buildings.   

The downtown area was extensively surveyed (based on walking) since a large 

amount of capital is invested in the central business district.  Poplar Avenue, a long 

corridor running across Shelby County, was extensively surveyed, since it contained a 

significant number of commercial and industrial buildings of various sizes.  The Lamar 

Avenue and Elvis Presley Boulevard corridors were chosen because of the fairly high 

concentration of industrial structures.  The Covington Pike corridor also contained 

several industrial and warehouse type buildings.  Towards the end of the day, incidental 

samples of smaller areas were collected in clusters dispersed through the study area.  

To be entirely honest, despite this initial preparation, we had no idea of how long it would 

take to collect the structural information on a building-by-building basis, and second, on 

how many samples we could gather.  Further, since we had only the addresses and 

aerial photographs to initially design survey routes, we could not control the generation 

of sufficient samples for intersections of variables – in other words, we could not a priori 

determine the minimum number of samples for each cell in a cross-tabulation of 

structure type and occupancy.   

The two surveys yielded 1831 buildings over 1043 addresses.  The sample 

database is described in the next section.   

3.2.1. Description of Sample Data 

Only address and corridor information items were available at the beginning of 

the survey.  After the surveys were complete, the samples were reconciled with the 

correct address and the parcel number.  In cases where only one or two buildings were 

observed in the sample (typically in the case of apartment complexes), all other buildings 
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in the parcel were coded to the same structure type.  The assumption is not troublesome 

because most buildings in a parcel, particularly in the case of multi-family apartments, 

tend to be built in the same time period, using the same methods of construction.  While 

some additional samples were collected in the field for other addresses in the vicinity of 

the survey, these could not be reconciled with the parcel database, owing to incorrect or 

missing address information in the Tax Records, and about 120 samples were not used.  

After the samples were reconciled with the parcel identifiers, the remainder of the Tax 

record attributes were attached and analyzed.  Table 3.10 shows the distribution of 

structure types for the sample.   

Table 3.10 -- Sample structure type frequency 

General Structure Type Code Count Percent
Concrete Moment Resisting Frame C1 99 5.41%
Concrete Frame with Concrete Shear Wall C2 30 1.64%
Concrete Tilt-up PC1 67 3.66%
Precast Concrete Frame PC2 16 0.87%
Reinforced Masonry RM 184 10.05%
Steel Frame S1 245 13.38%
Light Metal Frame S3 185 10.10%
Unreinforced Masonry URM 301 16.44%
Light Wood Frame W1 321 17.53%
Commercial Wood Frame W2 383 20.92%
Totals 1,831                100.00%

 

Note that concrete structures seem undersampled, while wood structures occur 

most frequently.  Table 3.11 shows the distribution of occupancy types for the sample.  

Again, note that several occupancy classes did not occur in the sample, while some 

categories were undersampled.   

 

 



 
147

Table 3.11 -- Sample occupancy type frequency 

Occupancy Description Occupancy Type Code Count Percent
Retail Trade COM1 291 15.89%
Wholesale Trade COM2 327 17.86%
Personal and Repair Services COM3 139 7.59%
Professional/Technical Services COM4 181 9.89%
Banks COM5 42 2.29%
Hospital COM6 2 0.11%
Medical Office/Clinic COM7 29 1.58%
Restaurants and Bars COM8 96 5.24%
Theaters COM9 1 0.05%
Parking Garages COM10 27 1.47%
Education (Grade Schools) EDU1 4 0.22%
Education (Colleges) EDU2 0 0.00%
Emergency Services (Police/Fire/EOC) GOV2 0 0.00%
Heavy Industrial IND1 46 2.51%
Light Industrial IND2 18 0.98%
Food/Drugs/Chemicals IND3 0 0.00%
High Technology IND4 0 0.00%
Place of Worship REL1 15 0.82%
Single-family Residential RES1 0 0.00%
Mobile Home RES2 0 0.00%
Multi-family Residential RES3 581 31.73%
Temporary Lodging (Hotel/Motel) RES4 30 1.64%
Institutional Dormitory RES5 0 0.00%
Nursing Home RES6 2 0.11%
Totals 1,831            100.00%  

Table 3.12 shows the cross tabulation of structure by broad occupancy types.  

This table clearly identifies gaps in the sample, particularly for concrete structure types 

and for some uses.  To some extent, this is expected – for instance, construction 

practices preclude the use of wood as a structural system for hospital occupancies.  In 

some cases, the frequency of the occurrence of that specific occupancy might be low in 

the general population of buildings, or may have been located away from major arterials, 

or even simply not have been located in our sampling areas.  These gaps may have 

implications for the modeling exercise.   

Table 3.13 shows the cross tabulation of structure type by decade of 

construction.  The sampling frequency of decade is consistent with Memphis’ growth 
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periods.  Further, the structure types show good consistency between construction 

practices and decade.  For instance, concrete tilt-ups are not seen till the late 1950s.  In 

masonry buildings, reinforced masonry structures are seen only after 1974 when 

unreinforced masonry structures disappear.  To be fair however, the survey coded a 

structure as “masonry” and the assignation to either the “RM” (Reinforced Masonry) or 

“URM” (Unreinforced Masonry) class for masonry samples was based on the year of 

construction.   

Table 3.12 -- Sample cross tabulation of Structure type by broad occupancy 

Structure Type Retail Wholesale Office Restaurants Hospitals
C1 7                   12                     59                 1                         2                         
C2 -               -                    18                 -                      -                      
PC1 7                   38                     3                   -                      -                      
PC2 -               -                    -               -                      -                      
RM 42                 59                     14                 25                       -                      
S1 84                 32                     60                 2                         -                      
S3 15                 111                   3                   2                         -                      
URM 110               49                     47                 12                       -                      
W1 23                 26                     36                 46                       -                      
W2 3                   -                    12                 8                         -                      
Totals 291               327                   252               96                       2                         
Percent 15.89% 17.86% 13.76% 5.24% 0.11%

Structure Type Parking Industrial Schools Churches Multi-family
C1 1                   10                     3                   -                      4                         
C2 -               -                    -               -                      12                       
PC1 -               19                     -               -                      -                      
PC2 16                 -                    -               -                      -                      
RM -               42                     -               1                         1                         
S1 10                 24                     -               4                         29                       
S3 -               54                     -               -                      -                      
URM -               50                     1                   1                         31                       
W1 -               5                       -               5                         180                     
W2 -               -                    -               4                         356                     
Totals 27                 204                   4                   15                       613                     
Percent 1.47% 11.14% 0.22% 0.82% 33.48%

 

 

 



 
149

Table 3.13 -- Sample cross tabulation of Structure type by decade 

Structure type Pre-1939 40-49 50-59 60-69
C1                           29                             2                           17                           28 
C2                             9 -                                                    4                             7 
PC1                             1 -                                                    3                           12 
PC2 -                        -                                                    2                             1 
RM -                        -                        -                                                    1 
S1                             8                           14                           28                           29 
S3                             2                             1                           12                           29 
URM                         114                           47                           69                           60 
W1                             9                           50                           25                           31 
W2                           13                             2                           31                           50 
Totals 185                       116                       191                       248                       
Percent 10.10% 6.34% 10.43% 13.54%

Structure type 70-79 80-89 90-99 Post-2000
C1                           16                             7 -                        -                        
C2                             3                             6                             1 -                        
PC1                           17                           23                             9                             2 
PC2                             1                             7                             2                             3 
RM                           43                           76                           57                             7 
S1                           27                           68                           49                           22 
S3                           38                           46                           47                           10 
URM                           11 -                        -                        -                        
W1                           31                         132                           38                             5 
W2                           65                         210                           10                             2 
Totals 252                       575                       213                       51                         
Percent 13.76% 31.40% 11.63% 2.79%  

3.3. Structure Type Classification 

Preliminary analyses of appraised values in Shelby County and HAZUS MH MR-

3 GBS showed that while the total building value was concentrated in the single-family 

occupancy category, the average value of the single-family occupancy was among the 

lowest.  Single-family homes in Shelby County had an overall value of almost $25 billion 

– however, this amount was distributed over more than 266,000 structures, yielding low 

average values.  The distribution of average square footage also followed this pattern, 

where single-family homes had the lowest average square footage, while larger building 

areas were observed in commercial and industrial occupancies.  The preliminary 

analyses also revealed that the bulk of capital invested in buildings was concentrated in 
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commercial and industrial occupancies.  Previous studies had established the resiliency 

of single-family wood structures in the context of earthquakes – in past earthquakes, 

single-family wood structures showed little damage compared with other structures 

(ATC-13 1985; FEMA 2004; FEMA - DHS 2007).  Consequently, we separated the 

dataset into single-family and non-single-family structures and decided to perform the 

structure classification modeling for only the 36,561 non-single-family structures.   

3.3.1. Multinomial Logistic Regression 

Since structure type classifications show remarkable consistency in urban areas 

in relationships with occupancy and year of construction and size, the models for 

classifying structure types for buildings could be specified in terms of these relationships.  

Hence, an input parameter space consisting of both factors (categorical) and covariates 

(continuous) could be analyzed in order to identify patterns that correspond to the 

structure type categories.  Accordingly, the structure type classification was assumed to 

be a function of the building size (area), height (number of stories), year of construction, 

and building occupancy.   

The separation of Concrete structures into Concrete Moment Frame, Concrete 

Frame with Shear Wall, Precast Concrete and Concrete tilt-up was not always possible 

in the field.  Parking structures were predominantly supported by precast concrete 

columns and beams, but it was difficult to ascertain the precast nature of concrete when 

the concrete was covered by some other finish.  Concrete tilt-ups were easier to spot, 

but that depended on whether the particular tilt-up walls were in the survey view.  For 

instance, there were several cases where the survey had identified buildings as 

supported by a Steel Moment Frame, when the inspection of the Tax Records external 

wall code revealed that they were a concrete tilt-up structures.  It is quite possible for the 

side walls of the building to have tilt-up panels, while the front and back walls are 
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fenestrated or have more conventional construction.  For the modeling exercise, all 

concrete structure types were grouped into a single category, and the individual concrete 

differentiations could be extracted by inspections of supporting attributes from the Tax 

records.   

Building square footage, number of stories and year of construction were directly 

acquired from the building inventory database.  Building occupancy in the database 

consisted of 82 categories of detailed occupancies, or 29 HAZUS MH MR-3 categories 

of specific occupancies, or 12 general occupancies.  Using so many levels for 

occupancy could pose two potential problems.  First, the number of samples available 

for training may not be adequate, in the sense that there may be too few or even no 

exemplars of a certain structure type-occupancy combination -- the model would not be 

able to estimate the parameters adequately for this input set.  Second, even if there 

were enough samples, the number of levels in the results would make interpretation very 

complicated.  Consequently, the occupancy categories were collapsed into a set of 8 

categories, including “Retail Trade”, “Wholesale Trade”, “Commercial Offices”, “Banks”, 

“Restaurants”, “Heavy Industrial”, “Light Industrial” and “Multi-family Apartments”.   

The structural fire rating variable in the Tax Records had a very consistent 

relationship with structure type.  The ratings were categorized as “Fire Resistant”, “Fire 

Proof”, “Engineered Steel” and “Wood Joists”.  In the sample, wood joist levels were 

overwhelmingly Wood structure types.  Concrete structure types were split almost 

equally among fire proof, fire resistant and engineered steel ratings.  Steel frames were 

split predominantly between fire resistant and engineered steel ratings.  Table 3.14 

shows the cross tabulation between model structure type and the structural fire rating 

code.   
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Table 3.14 -- Sample Structure type and Structural fire rating category 

Fire 
Proof

Fire 
Resistant

Engineered 
Steel

Wood 
Joists

C              58                    69                      67                4                  198 10.81%
RM              -                    109                        4              69                  182 9.94%
S1                8                  157                      67              13                  245 13.38%
S3              -                        1                    181                3                  185 10.10%
URM              14                  154                       -              149                  317 17.31%
W                1                      5                       -              698                  704 38.45%
Totals              81                  495                    319            936               1,831 100%
Percent 4.42% 27.03% 17.42% 51.12% 100%

Structural Fire Rating Code
Structure 

Type Row Total Row Percent

 

Based on the concentration of non-single-family residential built square footage 

per acre generated for structures built before 1940, a density grid was generated in 

order to approximately demarcate a polygon identifying a historic zone.  Structures 

within this zone were given a true value for a historic zone dummy variable.   

The multinomial logistic regression therefore attempts to classify structure type 

on the basis of building area, number of stories, year of construction, presence in a 

historic zone, occupancy and structural fire rating characteristics.   

3.3.2. Design of Neural Network Topology for Classification 

All the topologies suggested in this section may be implemented in the 

NeuroSolutions application software released by NeuroDimension, Inc.  Five 

specifications of ANN topologies are suggested for the classification problem.   

The input data and desired samples for the ANN model were exactly the same as 

described in the previous section, where the ANN attempts to classify structure type on 

the basis of building area, number of stories, year of construction, presence in a historic 

zone, occupancy and structural fire rating characteristics.   
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3.3.2.1. Multilayer Perceptron 

Multilayer Perceptrons (MLPs) extend Rosenblatt’s (Rosenblatt 1958) perceptron 

(a single layer perceptron) that could solve only linearly separable classification 

problems into a classification device capable of nonlinear classification.  In the MLP, 

each PE is characterized by a smooth non-linear function (either the logistic or the 

hyperbolic tangent function) and the PEs are massively and fully interconnected in a 

manner that any PE in a layer connects to every other PE in the succeeding layer.  The 

MLP is trained with error correction learning.  Using the gradient descent construct, each 

weight in the network is changed using a function of the inputs and the instantaneous 

error at that iteration.  The total local error computed at the output PE is distributed 

backwards through the network based on the output sensitivity to that weight, using only 

local information (Rumelhart et al. 1986).  Momentum learning allows a memory term 

(previous increments or decrements to the weight) to speed up convergence and avoid 

getting trapped in local minima or flat areas of the input space (Principe et al. 2000).  

MLPs are extremely powerful classifiers capable of reproducing almost any input-output 

combination set, but require lots of exemplars and may train slowly.  Figure 3.4 shows 

the schematic topology for an MLP network with 1 hidden layer.  Note that based on the 

input variables, there are 21 PEs in the input layer massively connected to the 8 PEs in 

the hidden layer.  The 8 PEs in the hidden layer are again, massively connected to the 8 

PEs in the output layer.  Each PE in the output layer is used to test the probability of one 

structure type against all the others.  The step size parameter was set at .1 and the 

momentum parameter at 0.7.   
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Figure 3.4 -- Schematic of MLP network for structure type classification 

3.3.2.2. Generalized Feed Forward Network   

A Generalized Feed Forward (GFF) network is an extension of the MLP, except that 

connections can jump over one or more layers.  While in theory, an MLP can solve any 

classification problem, the GFF solves the problem much more efficiently, because 

weight modification can potentially proceed forward by skipping layers that have little 

effect on the output.  The caveat is that too many hidden layers will result in overtraining 

and performance in testing or unseen exemplars is heavily degraded.  Figure 3.5 shows 

the schematic topology for a GFF network that is essentially the same as the previous 

MLP network, except that here, the input layer is also massively connected to the output 

layer directly (as marked by the curved arrow in the figure).   
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Figure 3.5 -- Schematic of GFF network for structure type classification 

3.3.2.3. Modular Neural Network 

Modular Neural Networks (MNNs) are again special cases of MLPs, where the 

layers are divided into modules.  Unlike the MLP, MNNs do not have massive 

interconnectivity between layers, and therefore fewer network weights are required.  This 

topology often speeds up the training and achieves the same relative level of accuracy 

with fewer exemplars than an MLP.  Creating the network topological structure in this 

case is essentially an exercise in segmenting each hidden layer into modules, and 

specializations of functions in each sub-module have been observed.  In practice 

however, there is no guarantee that the specialization occurs with the same combination 

of input data consistently, nor are there guidelines for the best modular design among 

the various alternatives.  Figure 3.6 shows the schematic topology for an MNN with 2 

hidden layers that are identical, each with 8 PEs.  The hidden layers are segmented into 

2 modules each, consisting of 4 PEs.  Unlike the previous topologies, the input layer is 

only massively connected with each module of the hidden layer.  The modules of the first 
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hidden layer are connected to the corresponding modules in the second hidden layer as 

well as to the output layer (as marked by the curved arrows in the figure).   
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Figure 3.6 -- Schematic of MNN for structure type classification 

3.3.2.4. Radial Basis Functions 

The accuracy of a classifier depends on the location and shape of the decision 

boundary in the input space.  Since the decision boundary is determined by solving 

discriminant functions, the location and shape of the discriminant is critical in designing 

classifiers.  In reality, our underlying functional data distributions may be incorrect or we 

may have too few samples for an optimal parametric classifier.  In many cases, 

classification becomes a trade-off between optimality and robustness (Rojas 1995).  

Classifiers based on Radial Basis Functions (RBF) offer some potential solutions.   

Radial functions are characterized by monotonic increase or decrease in the 

response based on distance from a central point, and its parameters include the center, 

the distance scale and the shape of the function.  One might conceptualize basis 

functions as a linear sequence of local functions in the input space with parameters that 
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alter the location, center and shape of each local function, thereby allowing the 

sequence to approximate the input space.  Typically, a Gaussian function serves as a 

local function sequence (ibid).  Figure 3.7 shows the linear combination of Gaussian 

functions that approximate the input space.  The Gaussians are centered (location of the 

means) and stretched (variance spread) and use other properties (skewness) to alter the 

heights of the Gaussians.   
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Figure 3.7 -- Linear combination of RBFs used for approximation 

Obviously, the centers of the Gaussians should locate at the clusters of the data 

samples in the input space.  Given a fixed number of Gaussians, variances can be 

estimated and altered to cover the input space (Haykin 1994).  Once the centers and 

variances have been computed, a simple soft maximizing classifier can adapt the 

weights in order to interpret the outputs as probabilities.  See Figure 3.8 for a schematic 

representation of the RBF network.   
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Figure 3.8 -- Schematic representation of RBF network 

While there are several methods to center the Gaussians on the data clusters, 

the most common method is the K-means algorithm with competitive learning.  Here, the 

samples are divided into K clusters, each with an initially randomly assigned center.  

Centers are then moved to minimize the Euclidean distance between the input cluster 

and the Gaussian center (Prager and Fallside 1989; Michie et al. 1994).  The challenge 

here is to determine the number of bases – too few and the classification performance is 

poor; too many and spurious classifications may result in new samples because of 

overfitting (Geman 1992; Principe et al. 2000).  Most neural computing software 

applications recommend internal validation mechanisms by setting aside some samples 

for testing and validation or early stopping of training (Hanson 1990; Wynne-Jones 

1993).   
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3.3.2.5. Support Vector Machines 

More sophisticated classifiers may be created by mapping the inputs into a 

higher dimension space and then classifying using linear discriminants.  Using Cover’s 

theorem (Cover 1965) that any pattern recognition problem is separable in a sufficiently 

high dimensionality space, the input space may be nonlinearly transformed into a higher 

dimension feature space.  Consider a three-dimensional input space defined by [x1, x2 

and x3].  Using a kernel function we can convert this three-dimensional space into a 

nine-dimensional space as [x1
2, x2

2, x3
2, x1*x2, x2*x3, x3*x1, x1, x2, x3]  The first three 

dimensions of the higher dimensional space are computed by multiplying the input with 

itself, the next three by multiplying each input with the succeeding input, and the final 

three by using the inputs directly.  Subsequently, a linear discriminant function may be 

constructed for this higher dimension space (Freiss and Harrison 1998).  Thus, the ANN 

architecture consists of a kernel processor followed by a linear classifier (Principe et al. 

2000).  Further, Vapnik (1999) recently showed that for symmetric kernel functions, the 

weights can be computed without the requirement of solving the problem in the higher 

dimension space, giving rise to a new class of classifiers called support vector machines 

(SVM).  Higher dimension spaces produce sparse data clusters with lots of room 

between clusters, and therefore classification may be effected using very simple 

classifiers.  The SVM is implemented directly in the software application without any 

need for user-specified topology or other parameters.   

3.4. Building Footprint Classification 

There are many variations in building footprint polygons that arise from their 

method of extraction or creation.  By merely viewing a particular building footprint 

polygon, a human could judge the polygon as belonging to a particular class, despite the 

noise in the building edge.  Automating this process and accurately recording the shape 
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class in a manner that mimics the human classification process would result in 

considerable time saving and increased shape classification reliability.   

Based on the concepts and surveys of the literature, this section outlines 

guidelines for the shape classification process and then designs a structural approach 

based on landmark correspondence for classifying the building footprint polygons.   

3.4.1. Guidelines for Shape Classification Design Process 

Shape analysis methods should be designed for the particular application at 

hand, and often, the methods of implementation are dictated by a compromise among 

accuracy, recognition efficiency and computational complexity (Kauppinen et al. 1995).  

For instance, the need to recognize the license plates of speeding vehicles passing 

through a checkpoint in real time is very different from the subject of this research – a 

non-real-time identification of building footprint configuration in a GIS database – 

consequently, the design of the two applications will be quite different.   

Choosing the features that describe the shape is crucial, and optimal features 

and feature combinations should have high discriminative power (Duda et al. 2001).  In 

general, any shape may be described by a set of feature descriptors.  General 

characteristics of feature descriptors or attributes for consistent shape description and 

accurate recognition include discriminatory power, robustness to noise, disturbance or 

occlusion, invariance to geometric transformations, scalability and performance.  

Optimally chosen features partition the feature space into clearly defined and well 

separated class groups.  The methods for the choice of features are not generally 

consistent and often likened more to an art than a science (Costa and Cesar 2001a).  
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Scalar feature descriptors may then be combined into a vector before application in 

shape classification processes.  Thus, a feature vector Fk that consists of ‘k’ measures is 

in the real feature space of ‘k’ dimensions, or Fk → Rk.   

The choice of feature measures should be such that similar shapes will be 

mapped into points in the feature space that are proximal to one another and quite 

distant from dissimilar shapes.  Highly correlated features should be discarded or 

indexed into single features.  Parsimony in the number of features may yield processes 

with higher discriminatory power and be less computationally burdensome (Dryden and 

Mardia 1998; Duda et al. 2001).  If shape variations are caused by specific 

transformations, like rotation or scale, it might be worthwhile to normalize features and 

make them invariant to those specific transformations (Bishop 1995; Costa and Cesar 

2001a).  Prior to beginning the shape analysis process, the designer should review all 

relevant material in the literature and apply existing techniques.   

The designer should also become thoroughly familiar with the typology of shapes 

to be classified and to some extent, understand the process causing the typologies of 

distinct shapes.  A library of typical building footprints was created that could be used for 

calibration and validation exercises.  Further, the very process of creating the library 

enabled familiarity with the typology of building shapes, particularly in cases of 

typological transitions, such as a human process that judges an L-shaped building as a 

rectangle, because the stem of the “L” has a very small dimension.  It would also be 

worthwhile to implement alternative methods and analyze their performance both in 

terms of computational performance and recognition accuracy.   
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3.4.2. Preprocessing and Collinear Vertex Decimation 

The existing contour edge geometry of the building footprint polygon is 

processed in order to remove collinear vertices – in other words, based on a user-

specified threshold angle parameter that defines linearity between two segments, all 

vertices that do not substantially alter the generalized linear gradient of the polygon’s 

edge segments are decimated.  Figure 3.9 depicts the process by which collinear 

vertices are decimated.   
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Figure 3.9 -- Removal of collinear vertices from polygon edges 

If two successive line segments are collinear or near collinear, then the angle 

between them is approximately “π” radians or 180°.  In such cases, the two line 

segments may be combined into one line segment, by connecting the first point of the 

first segment with the end point of the second segment, and decimating the intermediate 

point.  Angles of 170° to 190° between successive line segments may be regarded as 

artifacts of the extraction process, so a threshold angular tolerance of 10° (the threshold 
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may be changed by the user) implements segment linearity redefinitions.  Angles greater 

than the specified threshold are assumed to be legitimate edges of the building footprint.   

The algorithm begins by extracting the vertex geometry of the polygon in a point 

collection.  The vertices are analyzed in groups of three, where the central angle is 

computed.  If the central angle is within the user-specified threshold of the line 

connecting the first and third vertices, the second point is removed from the collection.  

This process is repeated until no more vertices are decimated.  The polygon geometry is 

adjusted to reflect the new vertex collection, which will be less than or equal to the 

original number of vertices.   

3.4.3. Orthogonalization of Polygon Edges by Corner Vertex Adjustment 

In general, most buildings have smooth perimeters and corners defined by the 

rectilinear intersection of sequential edge segments.  Automated generalization 

processes typically include a refinement step in which the polygon geometry is adjusted 

both for visual clarity and correspondence with reality.   

The orthogonalizing algorithm, which is depicted in Figure 3.10, begins by 

extracting the vertices from the polygon geometry as an array of points.  The vertices are 

analyzed sequentially in groups of 3.  The first three vertices are selected, as seen in the 

second panel of Figure 3.10.  The second vertex or the interior or central vertex in the 

analysis set is moved along the line connecting it to the first vertex subject to the 

condition that the angle subtended by the three vertices equals 90°.  The analysis set is 

then changed by incrementing the vertices by one index position.  Thus, the second, 

third and fourth vertices form the new analysis set.  Note that the coordinate location of 

the second vertex had been adjusted in the previous step.  As seen in the third panel, 

the third vertex (which is the interior or central vertex in this analysis set), is moved along 



 
164

the line connecting it with the first vertex in the analysis set again subject to the condition 

that the angle subtended by the three vertices equals 90°.  The analysis set is changed 

by successive increments of one index position and the process repeated till the 

coordinate locations of all vertices except the first have been adjusted.  The new set of 

vertices is then used to update or create the orthogonalized polygon geometry, where 

every corner is defined by a 90° angle.   
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Figure 3.10 -- Orthogonalizing building edges by adjusting corners 

An artifact of the orthogonalization process is that the area of the orthogonalized 

polygon might differ significantly from the input polygon.  Consequently, the 

orthogonalized polygon may be scaled from the centroid of the output polygon by the 

square root of the ratio of the output and input areas.  Alternately, if the starting vertex is 

designated as the beginning of the longest line segment in the polygon boundary, 

orthogonalized area does not differ significantly from the input polygon.   

3.4.4. Building Footprint Analysis by Landmark Correspondence 

There are several potential methods to choose from the existing literature.  For 

instance, each input polygon shape could be transformed into an invariant form.  Thus, 

following Bookstein (1991), each input shape could be rotated till its longest dimension is 

parallel with the X-axis, translated till the centroid of the shape coincides with the origin 
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and scaled separately along the coordinate axes such that the overall extents of the 

shape fits into a unit square ranging from (-0.5, -0.5) to (0.5, 0.5).  Then the view 

invariant transformed shape could be analyzed for feature extraction.  The polygon could 

then be represented using Hu’s moments (1962) or Zernike polynomials (Rothe et al. 

1996; Zhang et al. 2003), or as a sequence of landmarks (Belongie et al. 2002; Adamek 

and O'Connor 2003), or as a sequence of vertex distances from the origin (Gupta and 

Srinath 1988), or as a sequence of line sequences defining the polygon edge (Liu and 

Srinath 1990).  The extracted features of the sample polygon could then be compared 

with extracted features for reference polygons representative of each class in the 

analysis and the polygon assigned to the most similar class, based on feature 

comparisons or Fourier transforms or statistical or structural and syntactic approaches.   

The shape recognition design follows a syntactic approach to classifying building 

footprints based on landmark correspondence.  Following typical methods in structural 

and syntactic shape analysis, first, landmark vertices on the contour of the building 

footprint polygon are extracted.  This is a crucial step in the analysis, because the 

approach is predicated on building footprint classes to be represented by a specific and 

atomic set of vertex locations that uniquely define each class.  In the application, non-

collinear landmarks are defined based on convexity or concavity thresholds.  Then, the 

landmarks of the sample shape are rotationally aligned with those of the reference 

shapes and classification occurs, based on successful correspondences between the 

landmarks.  Figure 3.11 outlines the flow of tasks in this proposed methodology, 

beginning with preprocessing the input shape polygon and proceeding to the feature 

representation by extracting the landmark sequence and convexity properties, and 

culminating in the rotation-based correspondence algorithm for shape classification.   
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Figure 3.11 -- Footprint classification by landmark correspondence 

3.4.4.1. Computing Circularity Indexes to Eliminate Circular Buildings 

Circles are represented in GIS as a sequence of straight line segments that 

approximate the circle boundary.  Consequently, a circular building footprint in the GIS is 

characterized by several (well over 500) vertices.  Landmark correspondence measures 

require the extraction of high curvature or salient points, and in the case of circles, all the 

vertices have the same curvature.  If circular building footprints are identified and 

eliminated, the landmark correspondence methods can proceed to identify the other 

shapes.  Circular polygons may be identified by their Circularity Ratio, Fcir, described in 

Section 2.4.2.4.  The circularity index is a function of the Area and Perimeter of the 

polygon and all buildings that have values over 0.9 may be eliminated from further 

analysis as circular buildings.   

3.4.5. Building Footprint Polygon Simplification 

Since the building footprint polygon is discretely represented through linear 

polylines between vertex locations (or approximated by linear segments for parametric 

curves), and the automated extraction or manual digitization process greatly varies with 

the method or human responsible for the capture of the feature, several irrelevant 

convexities and concavities may be introduced.  Many of the convexities (or protrusions) 
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and concavities (or intrusions) may be parts of contours following roof lines and 

therefore may not correspond with the structural system of the building.  The roof line 

and therefore the extracted polygon acts as a proxy for the exterior-most component of 

the structural system of the building.  Structural systems are generally linear 

arrangements of columns and beams, so a number of the protrusions and intrusions, 

especially the smaller ones, are mere artifacts of the polygon creation mechanism, and 

should be removed.   

In the context of building polygon simplification, built-in tools in the GIS 

environment (specifically ArcGIS) for generalization and simplification work well for 

topologically disconnected buildings.  Using these tools, extraneous details in the 

building edges may be removed without compromising the essential size and shape of 

the building.  Since buildings are orthogonal areas, the tool will convert near 90-degree 

corners to exactly 90 degrees.  Edges of buildings are assumed to comprise of linear 

segments and usually run parallel.  Isolated small offsets in the boundary resulting in 

small intrusions or extrusions are filled or widened.  The final output will contain fewer 

vertices than the original, but the area will be consistent with the input polygon.  

Polygons smaller in size than a user-specified threshold will be decimated.  See Figure 

3.12 for an example of using built-in simplification routines in ESRI ArcGIS 9.2.  

However, when the connections between buildings are complicated, the tool completely 

ignores the features, as seen in the top-right polygon of Figure 3.12 – the complicated 

geometry is labeled for easy recognition and copied to the output, and additional manual 

processing may be necessary.   
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Figure 3.12 -- Performance of built-in building simplification tools in GIS 

In the pre-processing stage of this research, it may be necessary to modify 

building polygon geometry to adjust for angular manual digitizing inaccuracies and 

artifacts that may be beyond the simplification tool thresholds.  This will include removal 

of collinear vertices and running orthogonalization routines on the input footprint 

polygons.  In addition, polygon footprints will be corrected for specific patterns in the 

geometry for which standard simplification routines fail.  For instance, since we are 

interested in the overall shape of the structure, any “holes” in the building footprint 

polygons must be appropriately filled.  Within the GIS environment, we will apply 

routines that identify polygon geometry in terms of rings and remove all interior rings, 

thus retaining only the outermost ring and filling all the holes.   

Additionally, protrusions and intrusions from and into the building footprint 

polygon greater than the threshold parameter in the direction perpendicular to the 

contour edge and less in the direction parallel to the edge result in simplification artifacts 

that are generally larger than they should be.  Figure 3.13 depicts two cases of 

simplification failures, one for protrusions and the other for intrusions.  Protrusions are 

characterized by vertex convexity sequences of concave, convex, convex and concave 
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from the beginning vertex of the protrusion, while intrusions are characterized by convex, 

concave, concave and convex vertices, as shown in Figure 3.13 – in both cases, the 

beginning vertex of the deviation from the polygon edge is reached through a clockwise 

traversal of vertices.  These specific cases for protrusions and intrusions will be 

appropriately modified before simplification through automated pattern-spotting and 

cleaning routines within the GIS environment.  After appropriately adjusting the footprint 

geometry to lie within the simplification tool thresholds, the polygons may be simplified 

and submitted as inputs to the next stage of feature extraction and/or analysis.   
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Figure 3.13 -- Simplification failure artifacts and desired results 

3.4.6. Identification of Salient Points 

The identification of salient points or landmarks for each building footprint 

polygon is indeed the crux of this application.  As specified earlier, 2D building shape 

types in this research include square, rectangle, L-, C-, T-, H-, Z-, octagonal, circular, 

cruciform and irregular.  For each of these classes, a sequence of landmarks that 

uniquely identifies each class needs to be extracted.   
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Based on the Dryden and Mardia (1998) definition of landmarks, significant and 

unique vertex sets that correspond strongly within classes are extracted.  In the context 

of building footprint polygons, a vertex is deemed significant if it is an inflection point that 

defines a strong change in the curvature of the edge between the preceding and 

succeeding arcs (Fischler and Wolf 1994; Cesar and Costa 1995, 1996).  Based on 

significance alone however, a large number of vertices could potentially be extracted, 

depending on the detail of the input building footprint polygon edge.  Several vertices 

from the potential set of landmarks should therefore be decimated if they do not add 

information to the polygon edge in terms of class membership (Bookstein 1991).  In 

other words, based on some threshold distance or tolerance parameter, vertices from 

the edge will be decimated if their location or deviation is less than the threshold 

tolerance.  All collinear or near-collinear vertices should be decimated, again on a 

curvature-based angular threshold.   

For this application, a linear tolerance of 10 feet is suggested, because changes 

larger than 10 feet usually require some structural enhancement to the building and 

further, could enclose potentially large building areas.  Expressed another way, bays and 

protrusions that are greater than the 10-foot tolerance parameter could be structurally 

significant and not mere artifacts of the footprint extraction or creation process.  Angular 

tolerance for three-vertex collinearity is recommended as a ║10°║ deviation at the 

middle vertex from the straight line connecting two outer vertices.  These tolerances may 

be altered, depending on the structural system for the building – for instance, steel frame 

buildings may have a 20-foot tolerance, while Unreinforced Masonry buildings may have 

an 8-foot tolerance.   

Despite all the variations in building footprint polygons that appear as artifacts of 

the extraction or manual digitizing process, a human would easily be able to identify and 
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judge that a particular shape as belonging to a specific class.  Consider the input 

polygon shown in the left panel of Figure 3.14 – despite the various deviations of the 

polygon edge from a straight line, it is readily apparent that the polygon should be 

assigned to the class of “L” shapes.  It is also readily apparent that the “L” shape may be 

defined by 6 landmarks that specify its corners, as seen in the right panel of Figure 3.14.   

Polygon Footprint Input for Shape Analysis

!A

!A !A

!A !A

!A

Desired Output for Landmark Extraction  

Figure 3.14 -- Desired landmark outputs that mimic human judgment 

The automated building footprint polygon recognition process needs to mimic 

human judgment for standard cases, and therefore for each standard class of polygon 

shapes, we identify a particular set of landmarks.  The task is generally made easier 

because buildings are generally characterized by straight line segments and orthogonal 

corners.  Undoubtedly, there will still exist a few cases that are ambiguous even for a 

human – for instance, if the stem of a “T” shape deviates more than the specified 

threshold tolerance from the polygon edge, but is particularly small in dimension 

compared to the overall extents of the polygon, it might as well be classified as a 

rectangle.  Figure 3.15 shows two examples of ambiguous cases – the building in the 

panel on the left could be identified as either a rectangle or an “L” shape, while the 

polygon in the panel on the right could belong to either of the “H” or “C” building classes.  

Implementing decision rules for class readjustment is beyond the scope of this research.   
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"L-shaped" or Rectangular Building? "H-shaped" or "C-shaped"Building?
 

Figure 3.15 -- Ambiguity in building footprint polygon classification 

3.4.7. Derivation of Landmark Sequences by Contour Traversal 

The primary advantage with defining a unique sequence of landmarks with each 

footprint class is that both the number of landmarks and the sequence of 

convexity/concavity can be used for shape recognition.  The preprocessing stage 

decimates all collinear vertices and smoothes the polygon edge in order to eliminate 

non-structural convexities and concavities.  The simplified footprint polygon therefore 

contains only those linear elements that approximate the exterior-most frame of the 

structural system.  This simplified polygon is characterized by vertices that serve as 

points of inflection – in other words, the segments preceding and succeeding the vertex 

differ significantly in curvature.  Typically, in buildings, vertices will be defined at 

orthogonal corners or points of high curvature and may be used to define landmarks.   

While the distance between landmarks will vary considerably, the sequence of 

landmarks will not, and therefore, the landmark representation of the footprint will be 

invariant to translation, rotation, scaling and even shearing.  Such landmark sequences 

will uniquely define each class of polygons.  However, for matching two “T-shaped” 

polygons, for instance, the landmark sequences require rotation alignment, or the same 

beginning point.  If the starting point is correctly identified for each polygon, then each 

succeeding landmark in one shape will correspond to its counterpart in the other shape.  

Rather than use computationally expensive context-based approaches (Belongie et al. 



 
173

2002) or heuristic (Gdalyahu and Weinshall 1999) or sub-optimal approaches (Adamek 

and O'Connor 2003), I propose a simple, computationally inexpensive algorithm that 

would rotationally align and match corresponding landmarks for similar shapes and 

classify based on successful correspondence in a manner concordant with the human 

judgment process for footprint classification.   

Each class of footprint polygons to be identified in the research is represented by 

a typical polygon.  For each of the polygon shapes representative of a class, a set of 

high-curvature landmarks in sequence is extracted by traversing the polygon edge from 

any arbitrary starting vertex.  Each landmark set is converted into a unique sequence 

that represents that class of footprint polygon shapes by establishing a pattern of 

landmark convexities and concavities.  Convexities are represented by “1” and 

concavities are represented by “0”.  Figure 3.16 shows 9 of the 10 shape classes that 

need to be identified in this research along with their landmark convexity/concavity 

pattern sequences – the convexity patterns shown in the figure may be used as 

reference classes.   

Each panel shows a representative polygon shape along with that shape’s 

sequence of landmarks.  Each landmark is labeled with two numbers – the first number 

indicates the position of the landmark in the landmark sequence, while the second 

number indicates whether the landmark is convex or concave.  Only the octagonal 

shape is not shown, since it is very similar to the circular form, only with fewer 

landmarks.  For instance, as seen in Figure 3.16, the middle-left panel shows a “T-

shaped” polygon whose representative clockwise landmark convexity pattern is [1, 1, 1, 

0, 1, 1, 0, 1].  This pattern describes all “T-shaped” building polygons and is invariant to 

the location, rotation or size of the building.   
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Figure 3.16 -- Landmark convexity sequences for polygon footprint classes 
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3.4.8. Binary Representation of Landmark Convexity 

Each footprint reference class is uniquely described by a landmark convexity 

sequence.  The convexity sequence consists of a pattern of ones and zeroes, where one 

indicates convexity and two concavity, as the contour is traversed from the starting point 

in the clockwise direction.  When the sequence pattern is concatenated into a string, it is 

apparent that the sequence represents a number in binary format.  In a variation of 

Bribiesca and Guzman’s approach (1980), the binary sequence is altered by moving one 

element from the end of the sequence to the beginning until the largest number is 

identified.  This transformed sequence now represents the largest binary number 

uniquely representing the shape.  Effectively, the starting point for the landmark 

sequence has been successively rotated until the largest binary number was identified.  

Thus, extending the “T-shaped” polygon example, the beginning landmark convexity 

pattern, as a binary number was “11101101” and the sequence was successively altered 

till the largest binary number was identified.  Finally, the “T-shaped” reference polygon 

class is represented by the largest binary number “11110110” or the landmark sequence 

[1, 1, 1, 1, 0, 1, 1, 0].  In other words, the starting landmark (for the largest binary 

number representation) for the “T-shaped” class is now position 8 (see Figure 3.16).  

Table 3.15 shows the initial representation from Figure 3.16 and the final largest binary 

number representation for each of the reference shapes in the analysis.  The largest 

number representation will serve as the reference class identifier and will be used for 

shape classification.   
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Table 3.15 -- Initial and final landmark sequence binary representation 

Footprint 
Reference 

Class

Initial Starting 
Position (Figure 

3.16)

Initial Binary 
Representation 

(Figure 3.16)

Final Starting 
Position 

(Figure 3.16)

Largest Binary 
Representation for 

Classification
Square 1 1111 1 1111
Rectangle 1 1111 1 1111
L-shape 1 110111 4 111110
T-shape 1 11101101 8 11110110
C-shape 1 11001111 5 11111100
Z-shape 1 11011101 8 11101110
H-shape 1 111001111001 12 111100111100
Cruciform 1 110110110110 1 110110110110
Octagon 1 11111111 1 11111111
Circle 1 11111111...11111111 1 11111111…11111111  

3.4.8.1. Determining Landmark Convexity 

Since the application requires a sequence of vertex properties, the polygon edge 

is traversed from the specified starting point in the clockwise direction and consecutive 

vertices are analyzed in successive groups of three.  In each set of three vertices, the 

first and third vertices are used analytically in order to determine the concavity or 

convexity of the middle point.   

Adapting the Chaudhuri and Samal (2007) concept of a point and its 

“belongingness” relationship with any line, the middle vertex convexity or concavity 

property is determined by inserting its coordinate values into the straight line equation 

specified by the first and third points.  Consider the two panels in Figure 3.17 – the 

panels show three landmarks encountered in clockwise order along with their coordinate 

values.  If the total value of the function obtained by inserting the coordinates of the 

middle point is equal to zero, the middle point is on the line.  If the value is greater than 

zero, the middle point is above the line and therefore the middle point is convex.  If the 

value is less than zero, the middle point is concave.   
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Figure 3.17 -- Determining if a polygon vertex is convex or concave 

Determining the convexity or concavity property in this manner is equivalent to 

computing the value of the determinant of the triangle formed by taking the three points 

in the same traverse order.  If three sequential points are specified by (x1, y1), (x2, y2) 

and (x3, y3), then the equation specified by the first and third points is given by 

( ) ( ) 01
13

13
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⎠

⎞
⎜⎜
⎝

⎛
−
−

−− xx
xx
yyyy  , where slope is rise/run using the first and third points.   

If f(x, y) is the left-hand-side of the equation, substituting the middle point in f(x, y) yields 
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−
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Expanding and manipulating the terms results in  

( ) 13322123123122 , yxyxyxyxyxyxyxf −−−++⇒  , which is the same as the determinant 

of the triangle specified by the three points in order.   

If f(x2, y2) > 0, then (x2, y2) is above the line and therefore convex.  If f(x2, y2) = 0, 

the three points are collinear.  Finally, if f(x2, y2) < 0, then (x2, y2) is below the line and 

therefore concave.  Consider the left panel in Figure 3.17, with the three points P, Q and 

R.  Substituting the coordinates of Q into the equation specified by the line PR gives f(Q) 

= 60 > 0, so Q is deemed a convex vertex.  In the right panel of Figure 3.17, substituting 
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the coordinates of the middle point M in the equation specified by the line LN gives f(M) 

= -25 < 0, so M is deemed a concave vertex.   

3.4.9. Building Footprint Classification 

The building footprint algorithm is simple and computationally inexpensive.  Any 

preprocessed sample footprint polygon shape is analyzed to yield the landmark 

sequence of ones and zeroes.  This binary sequence is successively shifted by one 

position till the largest binary number is identified.  The largest binary number for the 

sample is compared to the binary numbers specified for each of the reference classes 

with the same number of vertices.  If the numbers are identical, the landmarks are 

aligned and the match is made to the appropriate class.  If the equality condition fails, 

then the shape is assigned to the “Irregular” class.  After determining the polygon 

footprint class, the algorithm records the class name in the footprint database.   

3.5. Building Valuation 

The building valuation component requires the estimation of the building 

replacement costs, the structural component of the replacement costs, the acceleration- 

and drift-sensitive components of the replacement costs and the content value.  All the 

replacement cost components will be derived from R. S. Means 2008 Square Foot Costs 

(R. S. Means 2008).  In the Residential section, the Means manual contains building 

square foot costs for seven building types (1-story, 1.5 story, 2-story, 3-story, Split bi-

level, Split tri-level and Wings/Ells) in four different classes of construction (Economy, 

Average, Custom and Luxury).  Costs per square foot are listed for various external wall 

types (wood frame, brick veneer and solid masonry) and basements (finished and 

unfinished), along with adjustments for car garages.   
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In the Commercial/Industrial/Institutional section, the Means manual contains 

building square foot costs for 2008 for 72 model buildings.  Each model building has a 

table of square foot costs for combinations of the exterior wall and structure type for a 

range of areas typical for that occupancy class of buildings.  The base tables do not 

reflect basement construction costs, but include average basement costs for that 

occupancy class.  Further, for each model, a typical example is selected, and the various 

component assembly costs for that example are listed, both as line-item costs for the 

sections comprising the assembly and the total percentage cost of the assembly.   

The square footage costs for each model type and external wall-structure type 

combination are derived from US National averages for 2008, and have to be adjusted 

for Memphis using the appropriate location factor adjustment.  Residential costs in 

Shelby County were 0.82 of the National average residential costs, and 0.86 of the 

National average commercial/industrial costs.   

Table 3.16 shows the 2008 national average and Memphis location-adjusted 

square foot costs for a 1-3 story apartment building (Model No. M.010) for combinations 

of exterior wall and structure type.  Note that the range of a typical 1-3 story apartment 

varies from a minimum of 8000 sq. ft. to a maximum of 36,000 sq. ft.  It is not necessary 

however, for all 1-3 apartment buildings to conform to this range – the Tax Records had 

several buildings for all model types that were less than the minimum or exceeded the 

maximum area for that occupancy.   
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Table 3.16 -- R. S. Means square foot costs - 1-3 story Apartment building (M.010) 

8000 12000 15000 19000 22500 25000 29000 32000 36000
Steel   185.55 165.95 158.10 148.30 144.50 142.20 137.50 136.10 134.10
Wood  182.10 161.50 153.20 142.35 138.35 135.90 130.60 129.10 126.95

Brick Veneer Steel   169.65 149.95 142.05 132.10 128.25 126.00 121.20 119.70 117.75
Steel   173.65 154.95 147.50 138.80 135.15 133.05 128.95 127.55 125.75
Wood  160.35 141.80 134.35 125.75 122.15 120.00 116.00 114.60 112.80

Wood Siding Wood 159.05 140.70 133.30 124.85 121.25 119.15 115.25 113.85 112.10
Steel   159.57 142.72 135.97 127.54 124.27 122.29 118.25 117.05 115.33
Wood  156.61 138.89 131.75 122.42 118.98 116.87 112.32 111.03 109.18

Brick Veneer Steel   145.90 128.96 122.16 113.61 110.30 108.36 104.23 102.94 101.27
Steel   149.34 133.26 126.85 119.37 116.23 114.42 110.90 109.69 108.15
Wood  137.90 121.95 115.54 108.15 105.05 103.20 99.76 98.56 97.01

Wood Siding Wood  136.78 121.00 114.64 107.37 104.28 102.47 99.12 97.91 96.41
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The square footage costs for each combination of occupancy type, number of 

stories, external wall and structure type will be parameterized using standard curve 

fitting techniques.  From the Tax Records, the corresponding combination of occupancy 

type, number of stories, external wall and structure type will have the replacement value 

estimated as the product of the building square foot cost and the building area.  The 

building square foot costs will be estimated from the corresponding curve that captures 

the Means square foot cost to building area curve.  Based on the literature, the 

replacement costs for the building will be segmented into structural and nonstructural 

component costs.   

Since data for content value was not available, the content value will be 

estimated as a function of replacement costs for each occupancy category.  The 

following sections describe the building value estimation process in greater detail.   

3.5.1. Curve Fitting Routines for Model Building Square Foot Costs 

The square foot costs and the area range for each combination of occupancy 

type, number of stories, external wall and structure type was coded into a database.  

Then, based on the area range and the square foot costs, curves were estimated for 
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each combination, setting the per square foot costs as the dependent variable and the 

discrete area as the independent variable.  The minimum and maximum values for each 

combination were recorded in the database.   

Four curve specifications including the linear, logarithmic, exponential and inverse 

models were estimated for each combination, and the parameters and the equation type 

of the best model was recorded for that particular combination.  Figure 3.18 shows the 

parametric curves for the four different models for the 1-3 story Apartment supported by 

a steel frame structure type.  Visual inspection suggests that the “Inverse” model fits the 

data closer than the other curves.   
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Figure 3.18  -- Parametric curves for a 1-3 story steel frame Apartment 

Overall, parameters were estimated for 726 combinations.  Consider the data in 

Table 3.16, showing the square foot costs for a 1-3 story apartment in Memphis.  Note 



 
182

that the minimum area is 8,000 sq. ft. and the maximum is 36,000 sq. ft.  Note the 

corresponding square footage costs for the Face Brick with Concrete Block backup 

exterior wall supported by a steel frame – the minimum square foot costs (corresponding 

to the maximum area of 36,000 sq. ft.) is $115.33 and the maximum square foot cost 

(corresponding to the minimum area of 8,000 sq. ft.) is $159.57.   

Table 3.17 shows the parameters for the four curves estimated for this line of 

data.  Note that the best model specified by the R-squared criterion is the Inverse curve, 

highlighted in the table.  The corresponding parameters are 103.333 for the Constant 

and 460843.583216 for the slope coefficient.  The equation for estimating the square 

foot costs is ( )tSqFtBuildingToPerSqFt 583216.460843333.103 +=  

Table 3.17 -- Curve parameter estimates for a 1-3 story Apartment 

Equation R-squared F-Statistic Significance b0 b1
Linear 0.869 46.282 0.00025 160.934 -0.001438
Logarithmic 0.974 265.774 0.00000 416.353 -28.991688
Inverse 0.995 1296.732 0.00000 103.333 460843.583216
Exponential 0.897 61.271 0.00010 163.115 -0.000011  

3.5.1.1. Nomenclature for Model Buildings 

The most challenging aspect of this exercise was to generate unique identifiers 

for each combination of occupancy type, number of stories, external wall and structure 

type.  The Tax Records have information on the detailed and specific use, the height and 

external wall, while the artificial neural network will estimate the structural system of the 

building.  The specific occupancy types in the Tax Records were standardized (for 

instance, “Discount Departments” and “Department Stores” were integrated into one 

category), and so were the number of stories and the external wall types (for instance, 

“Brick on Concrete Block”, “Brick on Block”, “Brick Veneer on Block”, “Brick with Block 
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Back-up”, “Brick with Concrete Block Back-up”, “Face Brick on Concrete Block”, “Face 

Brick with Concrete Block Backup” exterior wall descriptions in the Tax Records were all 

standardized to “Brick on Concrete Block”) – this step allowed the mapping of specific 

occupancy, number of stories, structure type and exterior wall to corresponding 

categories drawn from the Means manual.  Table 3.18 shows the Means specific 

occupancy categories and their corresponding 3-digit codes.   

Table 3.18 -- R. S. Means specific occupancy and 3-digit code 

Specific Use Code Specific Use Code
Apartment 001 Bank 041
College, Dormitory 001 Office 043
SF, Economy 002 Church 051
SF, Average 003 School, Elementary 053
SF, Custom 004 School, High 053
SF, Luxury 005 School, Vocational 054
Nursing Home 006 Fire Station 055
Assisted - Senior Living 007 Police Stations 055
Hotel 008 College, Classroom 056
Motel 009 Hospital 061
Store, Convenience 011 Medical Office 063
Store, Department 013 Bus Terminal 071
Store, Retail 015 Bowling Alley 081
Supermarket 017 Club, Country 083
Factory 021 Club, Social 085
Warehouse 023 Movie Theater 086
Warehouse, Mini 025 Restaurant 087
College, Laboratory 029 Restaurant, Fast Food 089
Car Wash 031 Mobile Home 099
Garage, Auto Sales 033 Garage, Parking 101
Garage, Repair 035 Garage, Underground Parking 101
Garage, Service Station 037 School, Jr High 053a  

The number of stories from the Tax Records were coded using a 4-digit 

specification that corresponded with the Means number of stories for the specific 

occupancy type.  For instance, a 2 story Apartment received the Number of Stories code 

as “0103”, since the actual building height was between 1 and 3 stories, corresponding 

to the Means model occupancy type of 1-3 story apartments.   
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Reconciling the external wall code between Means and the Tax Records 

occurred in two stages.  First, the external walls from the Means Manual were 

standardized and coded, as seen from the external wall extract in Table 3.19.  Then the 

external walls from the Tax Records, as seen in Table 3.20, were standardized and 

reconciled with the Means external wall codes.   

The unique code identifying the particular combination was then generated by 

concatenating the Means occupancy code with the coded number of stories first, since 

the combination of occupancy and number of stories (that specifies the Means Model 

type) would be used for separating the structural and non-structural costs based on the 

assemblies for the Means model type.  This Means model code was then concatenated 

with the structure type derived from the structure type classification model and the 

exterior wall code in order to generate a unique identifying code for each combination.  

Table 3.21 shows an extract of the replacement cost identifier code.   

The raw Means data from the manual was recorded in the database using the 

replacement cost identifier code.  Where the combinatory code and Means information 

did not coincide, an appropriate substitute based on judgment was chosen -- for 

instance, a small one-story factory building constructed in 1924, with external walls of 

unreinforced concrete block would be disallowed by the modern building code, and 

hence, the replacement value equation would substitute the combination with a one-

story service garage with a galvanized steel siding external wall on a light metal frame.   
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Table 3.19 -- Standardization of Means External wall categories 

Means External Wall Type Means Standardized External Wall Code
Brick Veneer Brick Veneer 01
Face Brick Veneer Brick Veneer 01
Face Brick on Steel Studs Face Brick on Steel Studs 01
Face Brick Veneer on Steel Studs Face Brick on Steel Studs 01
Face Brick w/ Structural Facing Tile Face Brick w/ Structural Facing Tile 01
Concrete Block Concrete Block 03
Decorative Concrete Block Decorative Concrete Block 03
Painted Concrete Block Painted Concrete Block 03
Precast Concrete Block Precast Concrete Block 03
Concrete Block Stucco Face Stucco on Concrete Block 03
Brick on Concrete Block Brick on Concrete Block 04
Brick w/ Block Back-up Brick on Concrete Block 04
Face Brick on Concrete Block Brick on Concrete Block 04
Jumbo Brick on Concrete Block Jumbo Brick on Concrete Block 04
Galvanized Steel Siding Galvanized Steel Siding 07
Steel Siding on Steel Studs Steel Siding on Steel Studs 07
Insulated Metal Panels Insulated Metal Panels 08
Metal Sandwich Panel Metal Sandwich Panel 08
Painted Reinforced Concrete Painted Reinforced Concrete 09
Reinforced Concrete Reinforced Concrete 09
Precast Concrete Precast Concrete 10
Ribbed Precast Concrete Panel Ribbed Precast Concrete Panel 10
Double Glazed Tinted Plate Glass Panels Double Glazed Tinted Plate Glass Panels 11
Glass and Metal Curtain Wall Glass and Metal Curtain Wall 11
Tiltup Concrete Panel Tiltup Concrete Panel 14
Tilt-up Panels Tiltup Panels 14
Limestone w/ Concrete Block Back-up Limestone w/ Concrete Block Back-up 17
Stone Ashlar Veneer on Concrete Block Stone Ashlar Veneer on Concrete Block 17
Stone w/ Concrete Block Back-up Stone w/ Concrete Block Back-up 17
Stucco Stucco 19
Stucco on Wood Frame Stucco 19
Aluminum Siding Aluminum Siding 24
Vinyl Siding Vinyl Siding 24
Wood Shingles Wood Shingles 25
Wood Siding Wood Siding 25
Mobile Home Mobile Home 29  
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Table 3.20 -- External walls from Tax Records reconciled with Means categories 

External Wall (Tax Records) External Wall (Means) Code
BRICK & FRAME Brick Veneer 01
BRICK VENEER Brick Veneer 01
CONDO WALL Brick Veneer 01
MASONRY & MTL Brick Veneer 01
BLOCK Concrete Block 03
BRICK & CONCRETE BLO Concrete Block 04
BRICKCONCRETE BLO Concrete Block 04
COMPOSITE Concrete Block 03
CONCRETE BLOCK Concrete Block 03
NATIVE STONE Concrete Block 03
OTHER Concrete Block 03
STONE Concrete Block 03
METAL, LIGHT Galvanized Steel Siding 07
METAL, SANDWICH Metal Sandwich Panel 08
CONCRETE LOAD BEARIN Poured Concrete 10
CONCRETE NON-LOAD BE Poured Concrete 10
ENCLOSURE Glass and Metal Curtain Wall 11
GLASS Glass and Metal Curtain Wall 11
GLASS & MASONRY Glass and Metal Curtain Wall 11
SOLAR GLASS Glass and Metal Curtain Wall 11
CONCRETE TILT-UP Tiltup Concrete Panel 14
MARBLE/SLATE Stone Ashlar Veneer on Concrete Block 17
MASONRY & FRAME Stone Ashlar Veneer on Concrete Block 17
DRYVIT Stucco 19
STUCCO Stucco 19
AL/VINYL Vinyl Siding 24
ASBESTOS SHINGLE Wood Shingles 25
ASBESTOS, COR. RIG. Wood Siding 25
FRAME Wood Siding 25
LOG Wood Siding 25
MOBILE HOME Mobile Home 29  
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Table 3.21 -- Generation of Replacement value identifiers 

Desc Code Desc Code Desc Code Desc Code
Apartment 001 Wood AAAWF 1-3 0103 Brick on Concrete Block 04 001AAAWF010304

Apartment 001 Steel AAASF 4-7 0407 Brick Veneer 01 001AAASF040701

Apartment 001 Concrete AARCC 8-24 0824 Concrete Block 03 001AARCC082403

Factory 021 Concrete AARCC 1 0001 Brick on Concrete Block 04 021AARCC000104

Factory 021 Steel AAASF 3 0003 Tiltup Concrete Panel 14 021AAASF000314

Garage, Parking 101 Precast AAAPC all 0000 Precast Concrete 10 101AAAPC000010

Garage, Repair 035 Metal AAALM all 0000 Galvanized Steel Siding 07 035AAALM000007

Hospital 061 Concrete AARCC 2-3 0203 Brick on Concrete Block 04 061AARCC020304

Hospital 061 Steel AAASF 4-8 0408 Decorative Concrete Block 03 061AAASF040803

Hotel 008 Wood AAAWF 4-7 0407 Brick Veneer 01 008AAAWF040701

Hotel 008 Steel AAASF 8-24 0824 Glass & Metal Curtain Wall 11 008AAASF082411

SF, Economy 002 URM URMRM 1 0001 Wood Siding 25 002URMRM000125

SF, Average 003 Wood AAAWF 1 0001 Wood Siding 26 003AAAWF000126

SF, Custom 003 Wood AAAWF 2 0002 Brick Veneer 01 003AAAWF000201

FullCode
Specific Building Use Structure Type Stories Exterior Wall

 

3.5.2. Estimating Replacement Costs for Buildings 

Once the best fitting curves are parameterized for each combination of 

occupancy, number of stories, exterior wall and structure type, and the parameters 

coded to the replacement cost identifier code, estimating the replacement value is 

straightforward.  The square foot costs of construction are estimated using the 

parameters of the curve in the equation type for that combination and multiplied by the 

total building square footage to yield the estimated replacement cost of the building.  

Thus, the per square foot costs for an example building whose total area is 11,800 sq. ft, 

2 stories in height with exterior wall of brick on concrete block and supported by a steel 

frame is derived by inserting the building total area in the specified equation and is 

estimated as $142.39.  The replacement value for the building would be the product of 

the estimated square foot costs and the total building area, that is $142.39 * 11,800 = 

$1,680,169.00.   

If the sample apartment building’s area were 6,500 sq. ft. (less than the minimum 

area of 8,000 sq. ft. specified in Means for Apartments) with the remaining specifications 
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being the same, the maximum square foot costs (of $159.57) would be used.  

Correspondingly, if the area of the sample building were 45,000 sq. ft. (greater than the 

maximum area of 36,000 sq. ft. specified in Means for Apartments), then the minimum 

square foot costs (of $115.33) would be used.   

From the Tax Records, the floor area figures in square feet below ground level 

were extracted for each building – if the building had no basement, this would equal 0.  

The Means manual specified average basement construction costs of $30.35 per square 

foot for 1-3 story apartments, which, locationally adjusted for Memphis, becomes $26.10.  

The basement square footage is multiplied by this amount to estimate the basement 

construction cost.  The above ground square footage is multiplied by the curve-

estimated square foot costs for the above ground construction cost.  The replacement 

cost of the building is therefore the sum of the construction costs below and above 

ground.   

3.5.3. Structural and Non-Structural Replacement Costs 

The Means Square Foot Costs also provided percentage breakdowns of costs for 

the various component assemblies of the building.  These included the Foundation and 

Substructure, Superstructure, Exterior Enclosure, Roofing, Interiors, Conveyance 

Equipment, Water supply and Plumbing, HVAC, Fire Protection and Electrical Services 

and Special Construction.  Based on background from Porter (2005) and Taghavi and 

Miranda (2003), Foundations, Superstructure, Roofing and Special Construction 

assemblies formed the Structural component, while Interiors, Conveyance Equipment, 

Water supply and Plumbing, HVAC, Fire Protection and Electrical systems assemblies 

were grouped under Non-structural Acceleration-sensitive components.  The remaining 

Exterior Enclosure and Interior systems assemblies formed the drift-sensitive 

component.  Table 3.22 shows the cost breakdown percentage for a sample of building 
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types.  Figure 3.19 shows the percent breakdown of replacement costs into structural, 

nonstructural acceleration-sensitive and drift-sensitive components graphically for a 

subset of specific Means model types.  Note that there is some variety in the percent 

breakdown, but the overall trend does indicate that nonstructural costs form a substantial 

cost component of the replacement costs.   
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Figure 3.19 -- Structural/Nonstructural costs as percent Replacement costs 
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Table 3.22 -- Structural and Nonstructural cost breakdowns by Means models 

Means Occupancy Occupancy 
Code

Stories 
Code

Model 
Identifier Structural Acc-

sensitive
Drift-

sensitive
Apartment 001 0103 001_0103 20.2 42.8 37
Apartment 001 0407 001_0407 21.3 40.3 38.4
Apartment 001 0824 001_0824 23.1 36.8 40.1
Assisted - Senior Living 007 0000 007_0000 18.5 39.3 42.1
Auditorium 086 0000 086_0000 23.1 35.1 41.9
Bank 041 0000 041_0000 33.5 27.7 38.7
Bowling Alley 081 0000 081_0000 33.5 46 20.6
Bus Terminal 071 0000 071_0000 25.7 27.6 46.6
Car Wash 031 0000 031_0000 14.5 58.1 27.4
Church 051 0000 051_0000 31.3 28.9 39.9
Club, Country 083 0000 083_0000 15.8 48.7 35.6
Club, Social 085 0000 085_0000 21.9 37.8 40.3
College, Classroom 053 0203 053_0203 16 52.1 31.9
College, Dormitory 001 0203 001_0203 20.1 38.7 41.1
College, Dormitory 001 0408 001_0408 23 39.3 37.7
College, Laboratory 029 0000 029_0000 20.9 47.3 31.8
Factory 021 0001 021_0001 32.8 49.1 18
Factory 021 0003 021_0003 33.3 40.5 26.2
Fire Station 055 0001 055_0001 26.5 40.1 33.5
Fire Station 055 0002 055_0002 18.5 48.1 33.5
Garage, Auto Sales 033 0000 033_0000 34.3 29.8 36
Garage, Parking 101 0000 101_0000 61.7 20.4 17.8
Garage, Underground Parking 101 0000 101_0000 77 12.3 10.8
Garage, Repair 035 0000 035_0000 28.7 37.6 33.8
Garage, Service Station 037 0000 037_0000 23.3 32.3 44.4
Hospital 061 0203 061_0203 13.7 48.9 37.3
Hospital 061 0408 061_0408 12.9 46.3 40.8
Hotel 008 0407 008_0407 18.7 46.7 34.6
Hotel 008 0824 008_0824 22.7 45.7 31.7
Medical Office 063 0001 063_0001 17 40.5 42.6
Medical Office 063 0002 063_0002 14.6 45.8 39.6
Motel 009 0001 009_0001 24.1 33.1 42.9
Motel 009 0203 009_0203 13.8 38.4 47.9
Movie Theater 086 0000 086_0000 29.2 23.2 47.5
Nursing Home 006 0000 006_0000 18.1 44.8 37.3
Office 043 0001 043_0001 25.4 42.1 32.4
Office 043 0204 043_0204 17.8 42.3 39.9
Office 043 0510 043_0510 20.7 44.5 36.5
Office 043 1120 043_1120 28.4 39.1 29.8
Police Stations 055 0000 055_0000 11.4 32.4 56.1
Restaurant 087 0000 087_0000 22 49.4 28.7
Restaurant, Fast Food 089 0000 089_0000 20.7 34.5 44.8
School, Elementary 053 0000 053_0000 23.6 40.3 36.1
School, High 053 0203 053_0203 24.9 37.3 38.1
School, Jr High 053 0203 053_0203 25 35.1 40
School, Vocational 053 0000 053_0000 21 39.2 39.9
Store, Convenience 011 0000 011_0000 29.3 41.1 29.5
Store, Department 013 0001 013_0001 42.8 25.3 31.9
Store, Department 013 0003 013_0003 28.5 30.9 40.6
Store, Retail 015 0000 015_0000 28.8 39.7 31.5
Supermarket 017 0000 017_0000 28.6 33.8 37.6
Warehouse 023 0000 023_0000 48.2 26.7 25
Warehouse, Mini 025 0000 025_0000 33.7 24.9 41.4  
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3.5.3.1. Recording Construction Assembly Costs for Model Buildings 

The specific occupancy and number of stories together generated a code that 

identified the Means model building type.  The buildings from the Tax Records were then 

reconciled to follow this format.  Table 3.22 also shows the nomenclature and code for 

recording the construction assembly cost breakdowns.   

3.5.3.2. Estimating Structural, Acceleration- and Drift-Sensitive Nonstructural Costs 

Again, once the model identifiers have been created, the respective 

assemblages (percent cost of total replacement value) are recorded with them, and 

grouped into structural, acceleration-sensitive and drift-sensitive components.  These 

percentages are then multiplied by the estimated replacement cost of the building.   

3.6. Estimating Content Value 

The literature review identified the paucity of content value loss models for 

buildings and further, that claim and valuation information that exists is proprietary in 

nature, and rests in the private sector.  The lack of available data forced the estimation 

model for content value to follow the existing HAZUS MR-3 model that estimates content 

value as a function of replacement cost and specific occupancy.  Table 2.7 in the 

literature review highlights the percent of replacement costs by specific occupancy for 

estimating content value.   
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Chapter 4 . RESULTS AND DISCUSSION 

Following the format adopted in the literature review and methodology sections, 

this section details the results of the various models and includes discussion of the 

results.  The chapter begins with a discussion of structure type classification from the 

multinomial logistic regression and the ANN models.  The following section details the 

results of the various subroutines for preprocessing shapes and the results of 

implementing the classification algorithm separately for manually digitized and 

automatically extracted building footprints.  The next section details the results of the 

estimation process for replacement costs, the associated structural and nonstructural 

costs and the content value.  The chapter concludes with a note on the creation of an 

integrated building inventory for Shelby County, Tennessee, using the methods 

described in the dissertation that may be used for loss estimation and risk assessment 

modeling.  Appendix A shows the integrated results of the various models implemented 

for the MTB in the dissertation, with tabulated summaries of the Shelby County building 

inventory.   

4.1. Structure Type from Multinomial Logistic Regression 

4.1.1. Multinomial Logistic Regression Model Specification 

Several specifications for the multinomial logistic regression were attempted with 

the input variables specified as Number of Stories, Year built, Area, Occupancy, Fire 

rating and Historic zone.  The problem lay in the fact that for some structure types, there 

were no values for the input data.  There were two reasons for this.  First, the external 

wall attribute from the Tax Records were used to define Concrete tilt-up structures, and 

second, there were some structure-occupancy combinations that had no data.  For 

instance, there were no Wood structures for the IND1 (heavy industrial structures), and 
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the specification of the multinomial logistic regression was not able to estimate 

parameters for such cases.  In fact, 5 IND1 structures were deliberately changed to 

Wood from Concrete in order for the model to estimate parameters.  Parking structures 

(COM10) did not figure in any structure type except for Precast Concrete in the sample 

dataset.  Additionally, the full specification of 21 input variables was not used and the 

inputs consisted of number of stories, year built, area, occupancy (defined at 8 levels) 

and fire rating (defined at 3 levels).  Further, in the interests of model tractability and 

parsimony, the structure types were collapsed into four categories including Concrete 

(pooled Concrete moment frame, Precast Concrete and Concrete Tilt-ups), Steel 

(pooled Steel frame, Light Metal frame and Reinforced Masonry), Unreinforced Masonry 

and Wood.  Table 4.1 details the variables used in the multinomial logistic regression.  

The dependent variable is highlighted in the table.  Overall, there were 209 Concrete, 

612 Steel, 303 Unreinforced Masonry and 707 Wood structure types in the sample.   

Table 4.1 -- Variable specification for the Multinomial Logistic Regression 

Variable Type Values Description
STORIES numeric Number of stories
SQ_FEET numeric Area of building in square feet
YEAR_BLT numeric Year of construction

FP Fire Proof (reference)
FR Fire Resistant
WJ Wood Joists
COM1 Retail Trade (reference)
COM2 Wholesale Trade
COM4 Commercial Office (includes parking structures)
COM5 Banks
COM8 Restaurants and Bars
IND1 Heavy Industrial
IND2 Light Industrial (includes COM3 structures)
RES3 Multi-family residential (includes group housing and hotels)
C Concrete (includes Concrete, Precast and Tilt-ups)
S1 Steel (includes Steel, Light Metal, Reinforced Masonry)
URM Unreinforced Masonry
W Wood Frame (base outcome)

FIRE_RTG

OCC_TYPE

STR_TYPE symbolic

symbolic

symbolic
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4.1.2. Model Performance 

Table 4.2 specifies the parameter estimates for the structure types Concrete, 

Steel and Unreinforced Masonry, relative to the base outcome specified as Wood.  The 

statistically significant parameters are highlighted in the table.  The following text 

describes some of the relationships to highlight the consistencies in the relationship 

between the inputs and structure types.   

For Concrete, square footage, wholesale trade, commercial office, multi-family 

residential and wood joist fire rating were statistically significant and in the expected 

directions.  Thus, relative to the Wood structure type, as the square footage increases, 

the likelihood of a steel structure being used increases, as seen in the positive 

coefficient for square footage.  The magnitude is rather small, because the square foot is 

a miniscule measure.  Again, the likelihood of the steel structure relative to wood is 

reduced when the occupancy changes to multi-family residential (RES3) since most 

multi-family residential structures are built of wood.   

For Steel, square footage, year built, commercial office, restaurants, heavy 

industrial, multi-family residential and fire resistant fire rating were statistically significant 

and in the expected directions.  Just like concrete, the likelihood of steel relative to wood 

increases with increase in area.  Like concrete, the likelihood of steel increases when 

the occupancy changes to commercial office (COM4) and reduces when the occupancy 

changes to multifamily residential (RES3) or restaurants (COM8).  The heavy industrial 

category (IND1) is surprising, since one would expect the likelihood of steel to increase 

when the occupancy changes to industrial.  The most likely reason is that there were no 

structures of Wood for heavy industrial occupancies, and 5 instances had been 

artificially changed for the parameter estimation.  As expected, the likelihood of steel 

relative to wood increases when the fire rating changes to Fire Resistant.   
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Table 4.2 -- Parameter estimates from the Multinomial Logistic Regression 

Structure 
Type

Input 
Variable Factor Level Coefficient Standard 

Error z-score p-value

STORIES 0.2572710 0.2226969 1.16 0.248
SQ_FEET 0.0000266 0.0000126 2.12 0.034
YEAR_BLT -0.0110742 0.0093494 -1.18 0.236

COM2 1.4145040 0.6516831 2.17 0.030
COM4 2.5708550 0.6495749 3.96 0.000
COM5 1.6193720 0.9677616 1.67 0.094
COM8 0.3164239 1.1907780 0.27 0.790
IND1 -1.2324400 1.0018690 -1.23 0.219
IND2 -0.6785393 0.7932320 -0.86 0.392
RES3 -2.8477950 0.8361752 -3.41 0.001
FIRE RESISTANT -0.7231985 0.7372789 -0.98 0.327
WOOD JOISTS -7.4972780 0.8077755 -9.28 0.000

CONSTANT 23.5600200 18.4574600 1.28 0.202
STORIES 0.4156967 0.2167163 1.92 0.055
SQ_FEET 0.0000277 0.0000125 2.22 0.027
YEAR_BLT 0.0500834 0.0082343 6.08 0.000

COM2 0.2412201 0.3853707 0.63 0.531
COM4 -1.2330090 0.4262193 -2.89 0.004
COM5 -1.2467860 0.7203546 -1.73 0.083
COM8 -1.0649170 0.4140644 -2.57 0.010
IND1 -1.9113810 0.9591353 -1.99 0.046
IND2 -0.7143923 0.5019463 -1.42 0.155
RES3 -4.5062050 0.4776803 -9.43 0.000
FIRE RESISTANT 5.5135260 0.8225829 6.70 0.000
WOOD JOISTS -0.5374209 0.7321754 -0.73 0.463

CONSTANT -99.5938500 16.3108800 -6.11 0.000
STORIES 0.0093509 0.2283066 0.04 0.967
SQ_FEET -0.0000318 0.0000149 -2.13 0.033
YEAR_BLT -0.0864919 0.0073094 -11.83 0.000

COM2 -0.1023053 0.4041643 -0.25 0.800
COM4 -0.8415066 0.4267095 -1.97 0.049
COM5 -1.0265950 0.8472171 -1.21 0.226
COM8 -1.3625580 0.5045133 -2.70 0.007
IND1 -2.4082760 0.9746367 -2.47 0.013
IND2 -0.5434886 0.4815068 -1.13 0.259
RES3 -3.9726640 0.4136092 -9.60 0.000
FIRE RESISTANT 5.4621640 1.0763380 5.07 0.000
WOOD JOISTS 1.1169530 1.0055040 1.11 0.267

CONSTANT 168.8840000 14.3731100 11.75 0.000

WOOD is the base outcome significant at 95% confidence
significant at 99% confidence
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For Unreinforced Masonry, area, height, year built, commercial office, 

restaurants, heavy industrial and multi-family residential and fire resistant fire rating were 
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all statistically significant.  The likelihood of unreinforced masonry decreases relative to 

wood as the square footage or year built or height increase.  URM buildings were 

prohibited by the building code after 1974 and tend to be small 1 or 2 story structures.  

Similarly, the likelihood of unreinforced masonry reduces when the occupancy changes 

to commercial office (COM4), restaurants (COM8), heavy industrial (IND1, which is 

suspect), and multi-family residential (RES3).   

Thus, the majority of the relationships between the inputs and structure classes 

are plausible and follow logical trends in construction, based on combinations of the 

input variables.   

4.1.3. Relationships between Inputs and Structure Classes 

Tables B.1 through B.6 in Appendix B detail the influence of the input variables 

on the factor change in the odds of structure type alternatives, specifically listing the 

odds comparing pairs of alternative structure types.  Rows in these tables essentially 

comment on the input variable in the following manner – a 1 unit increase (or a factor 

level change from the reference level to the input variable level) results in the increased 

(or decreased) odds of having structure type alternative 1 relative to structure type 

alternative 2 by a factor of the factor change in odds (specified in the “exp(b)” column).  

The influence of a number of variables on structure type pairs was found to be 

statistically significant.  This section lists some of the significant relationships.   

Number of stories was found to have a significant influence on the following pairs 

Steel to Concrete and Steel to URM.  While the magnitude for the Steel to Concrete pair 

was negligible, a 1-story increase results in the increased odds of having Steel relative 

to URM by a factor of 1.5 – this is expected, because one would expect that as the 
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number of stories increases, the likelihood of URM as the structure type should 

decrease.   

The building area’s influence was also consistent with logical expectations of 

construction practices.  For instance, in the structure type pairs Concrete to Wood, 

Concrete to URM, Steel to Wood and Steel to URM, a 1 standard deviation increase 

(about 45,600 sq. ft.) in area results in the increased odds of Concrete or Steel 

outcomes relative to Wood and URM by a factor of approximately 3 or 15 respectively.  

Again, these results are expected, since the likelihood of steel and concrete would tend 

to dominate larger-area structures.  Similarly, a 1 standard deviation increase in area 

results in the decreased odds of URM relative to Wood by a factor of 0.2346.   

The year of construction had a lot of explanatory power and was statistically 

significant for almost all structure type pairings.  The relationship between Steel and 

Concrete was statistically significant, but negligible in magnitude.  A 1 standard deviation 

increase (about 23 years) in year of construction results in the increased odds of 

Concrete and Steel relative to URM by factors of 5.65 and 23 respectively.  Similarly, 1 

standard deviation increase in year of construction results in the increased odds of 

Wood relative to URM by factors of 7.3.  Again, this is expected, since URM was 

prohibited by the building code since 1974, and URM construction had been reducing as 

the decades advanced.   

Figure 4.1 shows some of these results graphically for Number of stories, Area 

and Year of construction, with structure types located along the number lines – all results 

are shown relative to Wood.  The figure shows the factor change along the top number 

line and the coefficient change along the bottom number line for each variable.  For 

instance, note that the factor change between Steel (S) and URM (U) for Stories is about 

1.5 from the top number line and this corresponds exactly with the influence of the 
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number of stories on the Steel to URM structure pairing described earlier in this section.  

Note also the influence of square footage on the factor change of URM relative to Wood 

– relative to Wood (located at 1), URM is located at .23, and this corresponds exactly 

with the influence of area on the Wood to URM structure type pairing described earlier.   
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Figure 4.1 -- Influence of covariates on structure type 

Similarly, Figures 4.3 and 4.4 graphically show the influence of the occupancy levels on 

structure type relative to wood and Figure 4.2 illustrates the influence of the fire rating 

variable on structure type.   
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Figure 4.2 -- Influence of fire rating on structure type 
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Figure 4.3 -- Influence of occupancy on structure type (part 1) 
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Figure 4.4 -- Influence of occupancy on structure type (part 2) 

Note that occupancy levels COM2 (Wholesale Trade) and COM4 (Commercial 

Office) have considerable explanatory power for the use of Steel or Concrete buildings 

relative to Wood or URM.  Occupancy level COM8 (Food and Entertainment) explains 

the increased likelihood of Wood structures over all other structure types.  IND1 (Heavy 

Industrial) shows inconsistencies as described earlier.  For instance, an occupancy level 

change to IND1 results in the increased odds of Wood relative to Steel and URM by 

factors of 6.8 and 11.1 respectively, when most Heavy Industrial structures tend to be 

built of URM (if they are old) or Concrete or Steel.  The RES3 (Multi-family residential) 

occupancy level, when realized, increases the odds of Wood over Concrete, Steel and 

URM by factors of 17.25, 90.58 and 53.13 respectively.  Similarly, Concrete was more 

likely than Steel by a factor of 5.25.  Most multi-family apartments tend to be built of 

Wood, or Concrete if they are taller.   
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The fire rating variables also had considerable explanatory power.  Fire Resistant 

ratings resulted in the increased odds of both Steel and URM over Concrete and Wood.  

The Wood Joist description obviously specified the increased odds of Wood over all 

other structure types.   

4.2. Structure Type from Neural Networks 

Based on the descriptions of the various topologies in the methodology section, 

five ANNs were specified including the MLP, GFF, MNN, RBF and SVM models.  One 

additional exercise was conducted for a single hidden layer MLP network, using the final 

specifications from the multinomial logistic regression for comparing the results from the 

parametric logistic approach and the semi-parametric neural network method.  The 

comparisons are described in Section 4.3.  The following section compares the results of 

the five models, in terms of training and testing performance.   

In all the specifications, of the 1831 sample buildings, 1284 samples (70%) were used 

for training the ANNs, 274 (15%) for cross-validation and 273 (15%) for testing.  The 

cross-validation dataset was used for generalization and stopping the training process at 

the point where the ANN just begins to memorize (or overtrain) the data, following the 

process described in the literature review, Section 2.3.7.5.  The testing data is used to 

evaluate the performance of the ANN for its classification performance against unseen 

data.   

Table 4.3 shows the variables used in the ANN evaluation models, with the dependent 

variable (STR_TYPE with 8 categories) highlighted.  For the purposes of comparing the 

ANN and multinomial specifications, the variables were the same as specified in Table 

4.1.   
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Table 4.3 -- Variable specification for the ANN models 

Variable Type Values Description
STORIES numeric Number of stories
SQ_FEET numeric Area of building in square feet
YEAR_BLT numeric Year of construction

T In the historic zone
F Not in the historic zone
FP Fire proof
FR Fire Resistant
ES Engineered Steel
WF Wood Joists
ES1 Pseudo-code for Concrete Tilt-up Wall
ES2 Pseudo-code for Light Metal Wall
COM1 Retail Trade
COM2 Wholesale Trade
COM4 Commercial Office
COM5 Banks
COM8 Restaurants and Bars
COM10 Parking structures
IND1 Heavy Industrial
IND2 Light Industrial (includes COM3 structures)
REL1 Churches
RES3 Multi-family residential (includes group housing and hotels)
C Concrete Moment Frame (separated later to C1 and C2)
PC1 Concrete tilt-up
PC2 Precast Concrete
S1 Steel Moment Frame
S3 Light Metal Frame
RM Reinforced Masonry
URM Unreinforced Masonry
W Wood Frame

STR_TYPE symbolic

HIST_ZONE

FIRE_RTG

OCC_TYPE symbolic

symbolic

symbolic

 

The OCC_TYPE variable (Building occupancy) was collapsed to include fewer 

categories – COM3 structures like machine shops and automobile service garages were 

grouped with IND2 since they resembled light industrial structures, based on preliminary 

examinations of their exterior wall, square footage, height and fire rating characteristics.  

Police and fire stations, medical offices and hospitals were grouped with COM4 

(Commercial Offices).  Theaters and auditoriums were grouped with IND1 (Heavy 

Industrial).  Hotels, motels and group housing occupancies were grouped with RES3 

(Multi-family residential).  The FIRE_RTG variable (Structure Fire Rating) was modified 
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to accommodate light metal and concrete tilt-up external walls extracted from the 

exterior wall codes in the Tax Records, in order to prevent misclassifications between 

these categories and the Concrete structure type.  The Concrete structure type included 

Concrete Moment Frame and Concrete Frame with Concrete Shear Wall categories, 

which would be subdivided after the ANN classification, based on height and occupancy.   

4.2.1. Model Performance Evaluations 

As specified in the literature review and methodology sections, there are few 

parametric measures for classification performance evaluation in ANNs.  ANN 

classification performance is usually evaluated on the basis of correct and incorrect 

classifications implemented in the form of a confusion matrix.  This section describes the 

accuracy of classification for the five ANN specifications and analyzes the potential 

sources for misclassification by structure type category.   

4.2.1.1. Interpreting the Confusion Matrix 

The confusion matrix, a matrix of observed against predicted classifications, is an 

extremely useful device to evaluate the performance of different classifiers and contains 

a lot of information.  Interpreting the confusion matrix directly is cognitively challenging, 

especially for five different models.  Consequently, four different performance evaluation 

measures are presented for each of the training and testing exercises – the first 

measure is the confusion matrix of raw counts, the second is a matrix showing accuracy 

percentages for the different structure type categories and the overall model accuracy, 

and is used to analyze where and why the model performs well.  The third and fourth 

measures are matrices showing the percentage of structure types not recognized 

(errors) and structure types incorrectly predicted (misclassifications) respectively and is 

used to analyze the nature of the incorrect classifications in each model.  Tables 4.4 and 
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4.5 list the raw count confusion matrices for the training and testing components of the 

five models respectively.   

The lowermost row in the confusion matrix table specifies the number of known 

samples in each structure type column.  The training sample (Table 4.4) had 11 of 

“PC2”, 87 of “C”, 129 of “S3”, 126 of “RM”, 172 of “S1”, 42 of “PC1”, 508 of “W” and 209 

of “URM”, totaling to 1284 exemplars.  The testing sample (Table 4.5) had 2 of “PC2”, 22 

of “C”, 22 of “S3”, 32 of “RM”, 37 of “S1”, 9 of “PC1”, 107 of “W” and 42 of “URM”, 

totaling to 273 exemplars.   

Predicted classes are described in rows, while the columns sum to the number of 

samples in each structure type.  The intersecting cells between the corresponding 

observed and predicted classes (the diagonals) specify the accurate classifications.  The 

aim of the classifier mechanism is to make these diagonal cells match the number of 

samples (well, not really, because, if that happens, one should suspect the model -- 

perfection is hard to achieve!).   
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Table 4.4 -- Training performance evaluation using a confusion matrix (counts) 

PC2 C S3 RM S1 PC1 W URM
PC2           11            -              -              -              -              -              -              -                      11 
C            -             66            -              -               7            -               1             7                    81 
S3            -              -           126             2             9            -              -              -                    137 
RM            -               2             2           74             9            -             19             6                  112 
S1            -             11             1           20         123            -               1             7                  163 
PC1            -              -              -              -              -             42            -              -                      42 
W            -              -              -             30             9            -           468           18                  525 
URM            -               8            -              -             15            -             19         171                  213 

Code  PC2  C  S3  RM  S1  PC1  W  URM Totals
PC2           10            -              -              -              -              -              -              -                      10 
C            -             64            -              -               7            -               1             5                    77 
S3            -              -           126             1           10            -              -              -                    137 
RM            -               1             2           78             8            -             19             5                  113 
S1             1           13             1           22         120            -               1           12                  170 
PC1            -              -              -              -              -             42            -              -                      42 
W            -               1            -             25             9            -           467           17                  519 
URM            -               8            -              -             18            -             20         170                  216 

Code  PC2  C  S3  RM  S1  PC1  W  URM Totals
PC2           11            -              -              -              -              -              -              -                      11 
C            -             63            -              -               9            -               1             5                    78 
S3            -              -           126             2           10            -              -              -                    138 
RM            -               1             2           73             8            -             19             4                  107 
S1            -             14             1           21         122            -               1           12                  171 
PC1            -              -              -              -              -             42            -              -                      42 
W            -               1            -             30             9            -           467           18                  525 
URM            -               8            -              -             14            -             20         170                  212 

Code  PC2  C  S3  RM  S1  PC1  W  URM Totals
PC2            -              -              -              -              -              -              -              -                       -   
C            -              -              -              -              -              -              -              -                       -   
S3            -              -           127             2           28           33            -              -                    190 
RM            -              -              -              -              -              -              -              -                       -   
S1            -             38            -             75         120             6             2           73                  314 
PC1            -              -              -              -              -              -              -              -                       -   
W           11           20             2           49           16             2         498           41                  639 
URM            -             29            -              -               8             1             8           95                  141 

Code  PC2  C  S3  RM  S1  PC1  W  URM Totals
PC2           11            -              -              -              -              -              -              -                      11 
C            -             87            -              -              -              -              -              -                      87 
S3            -              -           127            -              -              -              -              -                    127 
RM            -              -              -           126            -              -              -              -                    126 
S1            -              -              -              -           172            -              -              -                    172 
PC1            -              -              -              -              -             42            -              -                      42 
W            -              -               2            -              -              -           507            -                    509 
URM            -              -              -              -              -              -               1         209                  210 

Sample Totals 11          87          129        126        172        42          508        209        1,284              
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Table 4.5 -- Testing performance evaluation using a confusion matrix (counts) 

PC2 C S3 RM S1 PC1 W URM
PC2             2            -              -              -              -              -              -              -                        2 
C            -             16            -              -               1            -              -               3                    20 
S3            -              -             22            -               2            -              -              -                      24 
RM            -              -              -             21             2            -               6            -                      29 
S1            -               2            -               6           28            -              -              -                      36 
PC1            -              -              -              -              -               9            -              -                        9 
W            -               1            -               4            -              -             96             3                  104 
URM            -               3            -               1             4            -               5           36                    49 

Code  PC2  C  S3  RM  S1  PC1  W  URM Totals
PC2             2            -              -              -              -              -              -              -                        2 
C            -             17            -              -               1            -              -               2                    20 
S3            -              -             21            -               2            -              -              -                      23 
RM            -              -              -             22             2            -               6             1                    31 
S1            -               2             1             7           27            -              -               1                    38 
PC1            -              -              -              -              -               9            -              -                        9 
W            -               1            -               2            -              -             97             3                  103 
URM            -               2            -               1             5            -               4           35                    47 

Code  PC2  C  S3  RM  S1  PC1  W  URM Totals
PC2             2            -              -              -              -              -              -              -                        2 
C            -             14            -              -               1            -              -               2                    17 
S3            -              -             22            -               2            -              -              -                      24 
RM            -              -              -             22             2            -               5            -                      29 
S1            -               3            -               6           27            -              -               1                    37 
PC1            -              -              -              -              -               9            -              -                        9 
W            -               1            -               4            -              -             98             3                  106 
URM            -               4            -              -               5            -               4           36                    49 

Code  PC2  C  S3  RM  S1  PC1  W  URM Totals
PC2            -              -              -              -              -              -              -              -                       -   
C            -              -              -              -              -              -              -              -                       -   
S3            -              -             22            -             10             8            -              -                      40 
RM            -              -              -              -              -              -              -              -                       -   
S1            -             11            -             23           22             1             1           19                    77 
PC1            -              -              -              -              -              -              -              -                       -   
W             1             5            -               9             1            -           103             7                  126 
URM             1             6            -              -               4            -               3           16                    30 

Code  PC2  C  S3  RM  S1  PC1  W  URM Totals
PC2             1            -              -              -              -              -              -              -                        1 
C            -             16            -              -               3            -              -               2                    21 
S3            -              -             18            -               2            -              -              -                      20 
RM            -               1             1           21             1            -               2            -                      26 
S1            -              -               3             8           28            -               1             5                    45 
PC1            -              -              -              -              -               9            -              -                        9 
W             1             1            -               1            -              -           100             3                  106 
URM            -               4            -               2             3            -               4           32                    45 

Sample Totals 2            22          22          32          37          9            107        42          273                 
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Let us examine the confusion matrices presented in Table 4.4 in greater detail.  

Note that the confusion matrix is not symmetric, because the model is not restricted to 

limiting the number of predictions of each class to the corresponding number of samples.  

For instance, in the first matrix (the MLP model) there are 87 samples of class “C” with 

66 predicted correctly.  Of the 87 samples of class “C”, reading the column information, 2 

were wrongly classified as “RM”, 11 as “S1” and 8 as “URM”.  Reading the row 

information, the model predicts only 81 for class “C”, of which 66 were classified 

correctly, 7 “S1”, 1 “W” and 7 “URM” buildings were misclassified as “C”.  Effectively, the 

columns indicate the number of correct and wrong classifications (the model did not 

recognize the desired class) and the rows indicate the number of correct classifications 

and misclassifications (the model did not predict the desired class).  Note that the 

classification errors along the columns and the rows are disjoint sets – this is not 

apparent from the confusion matrix, and requires an analysis of the raw output from the 

ANN model.   

4.2.1.2. Comparing Accuracy of Classification 

Tables 4.6 and 4.7 list the percentage of accurate classifications for the training 

and testing components of each of the five models.   

Note that the perceptron-based models, the MLP, GFF and MNN, performed 

consistently and had overall accuracy in classification in the mid 80%, in both training 

and testing components.  The accuracy was averaged over 5000 complete iterations 

trained 3 times in each case.   
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Table 4.6 -- ANN training percent accuracy of Structure type classification 

PC2 C S3 RM S1 PC1 W URM
PC2 100%            -              -              -              -              -              -              -   
C            -   75.86%            -              -              -              -              -              -   
S3            -              -   97.67%            -              -              -              -              -   
RM            -              -              -   58.73%            -              -              -              -   
S1            -              -              -              -   71.51%            -              -              -   
PC1            -              -              -              -              -   100%            -              -   
W            -              -              -              -              -              -   92.13%            -   
URM            -              -              -              -              -              -              -   81.82%

Code  PC2  C  S3  RM  S1  PC1  W  URM Totals
PC2 90.91%            -              -              -              -              -              -              -   
C            -   73.56%            -              -              -              -              -              -   
S3            -              -   97.67%            -              -              -              -              -   
RM            -              -              -   61.90%            -              -              -              -   
S1            -              -              -              -   69.77%            -              -              -   
PC1            -              -              -              -              -   100%            -              -   
W            -              -              -              -              -              -   91.93%            -   
URM            -              -              -              -              -              -              -   81.34%

Code  PC2  C  S3  RM  S1  PC1  W  URM Totals
PC2 100%            -              -              -              -              -              -              -   
C            -   72.41%            -              -              -              -              -              -   
S3            -              -   97.67%            -              -              -              -              -   
RM            -              -              -   57.94%            -              -              -              -   
S1            -              -              -              -   70.93%            -              -              -   
PC1            -              -              -              -              -   100%            -              -   
W            -              -              -              -              -              -   91.93%            -   
URM            -              -              -              -              -              -              -   81.34%

Code  PC2  C  S3  RM  S1  PC1  W  URM Totals
PC2 0%            -              -              -              -              -              -              -   
C            -   0%            -              -              -              -              -              -   
S3            -              -   98.45%            -              -              -              -              -   
RM            -              -              -   0%            -              -              -              -   
S1            -              -              -              -   69.77%            -              -              -   
PC1            -              -              -              -              -   0%            -              -   
W            -              -              -              -              -              -   98.03%            -   
URM            -              -              -              -              -              -              -   45.45%

Code  PC2  C  S3  RM  S1  PC1  W  URM Totals
PC2 100%            -              -              -              -              -              -              -   
C            -   100%            -              -              -              -              -              -   
S3            -              -   98.45%            -              -              -              -              -   
RM            -              -              -   100%            -              -              -              -   
S1            -              -              -              -   100%            -              -              -   
PC1            -              -              -              -              -   100%            -              -   
W            -              -              -              -              -              -   99.80%            -   
URM            -              -              -              -              -              -              -   100%
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Table 4.7 -- ANN testing percent accuracy of Structure type classification 

PC2 C S3 RM S1 PC1 W URM
PC2 100%            -              -              -              -              -              -              -   
C            -   72.73%            -              -              -              -              -              -   
S3            -              -   100%            -              -              -              -              -   
RM            -              -              -   65.63%            -              -              -              -   
S1            -              -              -              -   75.68%            -              -              -   
PC1            -              -              -              -              -   100%            -              -   
W            -              -              -              -              -              -   89.72%            -   
URM            -              -              -              -              -              -              -   85.71%

Code  PC2  C  S3  RM  S1  PC1  W  URM Totals
PC2 100%            -              -              -              -              -              -              -   
C            -   77.27%            -              -              -              -              -              -   
S3            -              -   95.45%            -              -              -              -              -   
RM            -              -              -   68.75%            -              -              -              -   
S1            -              -              -              -   72.97%            -              -              -   
PC1            -              -              -              -              -   100%            -              -   
W            -              -              -              -              -              -   90.65%            -   
URM            -              -              -              -              -              -              -   83.33%

Code  PC2  C  S3  RM  S1  PC1  W  URM Totals
PC2 100%            -              -              -              -              -              -              -   
C            -   63.64%            -              -              -              -              -              -   
S3            -              -   100%            -              -              -              -              -   
RM            -              -              -   68.75%            -              -              -              -   
S1            -              -              -              -   72.97%            -              -              -   
PC1            -              -              -              -              -   100%            -              -   
W            -              -              -              -              -              -   91.59%            -   
URM            -              -              -              -              -              -              -   85.71%

Code  PC2  C  S3  RM  S1  PC1  W  URM Totals
PC2 0%            -              -              -              -              -              -              -   
C            -   0%            -              -              -              -              -              -   
S3            -              -   100%            -              -              -              -              -   
RM            -              -              -   0%            -              -              -              -   
S1            -              -              -              -   59.46%            -              -              -   
PC1            -              -              -              -              -   0%            -              -   
W            -              -              -              -              -              -   96.26%            -   
URM            -              -              -              -              -              -              -   38.10%

Code  PC2  C  S3  RM  S1  PC1  W  URM Totals
PC2 50.00%            -              -              -              -              -              -              -   
C            -   72.73%            -              -              -              -              -              -   
S3            -              -   81.82%            -              -              -              -              -   
RM            -              -              -   65.63%            -              -              -              -   
S1            -              -              -              -   75.68%            -              -              -   
PC1            -              -              -              -              -   100%            -              -   
W            -              -              -              -              -              -   93.46%            -   
URM            -              -              -              -              -              -              -   76.19%
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The RBF performed relatively poorly – the RBF ANN requires a priori 

specification about the number of Gaussians that would be fitted over the input space.  
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Too few Gaussians and the model’s classification accuracy suffers; too many and 

despite long training times, there is a danger of overtraining with poor accuracy in 

classification of unseen data.  This a priori specification is arrived at by trial and error, 

and while there are methods that enable educated guesses regarding the number of 

Gaussians, the gains over the relatively accurate perceptron-based models would not be 

substantial.  The best results for 70 Gaussians are reported here.  Note that the training 

accuracy for the RBF ANN is about 65% and the testing accuracy drops to 60%.  The 

SVM ANN had near perfect classification in the training component, but dropped to 

about 82% in the testing dataset.  The near perfect training result suggests overtraining, 

and essentially proves Cover’s theorem (1965) that increasing the inputs artificially to a 

higher dimension space will enable linear classification – the classification results are 

strongly suspected to be spurious.  Further, the SVM specification is generally used with 

data that has many input variables (covariates and factor levels) with few exemplars, 

and the thumb rule in neural literature suggests that if the number of exemplars exceeds 

1000, the results may be spurious (Principe et al. 2000).  The best models are generally 

those that exhibit consistent classification performances in training and testing.  Figure 

4.5 shows overall accuracy in training and testing for the five models.   

99.77%

65.42%

83.64%83.88%84.19% 82.42%

59.71%

84.25%84.25%84.25%

0.00%
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MLP GFF MNN RBF SVM

Training Testing
 

Figure 4.5 -- Structure type classification accuracy by ANN model type 
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4.2.1.3. Analysis of Misclassifications in the Models 

Table 4.8 shows a summary of the cases where the desired structure type was 

not recognized (column errors in the confusion matrix) for training and testing 

components respectively in the five ANN models.  Tables 4.9 and 4.10 show details by 

ANN model type for the training and testing components respectively, where the 

structure type was not recognized and therefore classified wrongly.  These tables should 

be analyzed along columns.  Cases of wrong classifications greater than 10% have been 

highlighted in both the detail tables.  Diagonals highlighted in blue show accurate 

classifications.  For the total structures predicted as the structure type described in the 

column, the diagonals highlight model accuracy.  In other words, for the training case of 

the MLP ANN, there were 87 samples of “C” (see Table 4.4).  Of these 87 “C” structures, 

66 (or 75.86% as highlighted in the diagonal for the MLP ANN in Table 4.9) were 

recognized accurately, while 2 (2.3%) were wrongly classified as “RM”, 11 (12.64%) 

were predicted as “S1” and 8 (9.2%) were predicted as “URM”.  A total of 21 (24.14%) 

“C” structures were not recognized and erroneously classified into other classes, which 

is listed in Table 4.8 for the MLP ANN training row.   

Table 4.8 -- Summary of errors (Structure type not recognized) by ANN model 

Model Part C PC1 PC2 S1 S3 RM URM W Overall
Training 24.14% 0% 0% 28.49% 2.33% 41.27% 18.18% 7.87% 15.81%
Testing 27.27% 0% 0% 24.32% 0% 34.38% 14.29% 10.28% 15.75%
Training 26.44% 0% 9.09% 30.23% 2.33% 38.10% 18.66% 8.07% 16.12%
Testing 22.73% 0% 0% 27.03% 4.55% 31.25% 16.67% 9.35% 15.75%
Training 27.59% 0% 0% 29.07% 2.33% 42.06% 18.66% 8.07% 16.36%
Testing 36.36% 0% 0% 27.03% 0% 31.25% 14.29% 8.41% 15.75%
Training 100% 100% 100% 30.23% 1.55% 100% 54.55% 1.97% 34.58%
Testing 100% 100% 100% 40.54% 0% 100% 61.90% 3.74% 40.29%
Training 0% 0% 0% 0% 1.55% 0% 0% 0.20% 0.23%
Testing 27.27% 0% 50.00% 24.32% 18.18% 34.38% 23.81% 6.54% 17.58%

SVM

MLP

GFF

MNN

RBF
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Table 4.9 – ANN training errors (Structure type not recognized) by model 

PC2 C S3 RM S1 PC1 W URM
PC2 100%            -              -              -              -              -              -              -   
C            -   75.86%            -              -   4.07%            -   0.20% 3.35%
S3            -              -   97.67% 1.59% 5.23%            -              -              -   
RM            -   2.30% 1.55% 58.73% 5.23%            -   3.74% 2.87%
S1            -   12.64% 0.78% 15.87% 71.51%            -   0.20% 3.35%
PC1            -              -              -              -              -   100%            -              -   
W            -              -              -   23.81% 5.23%            -   92.13% 8.61%
URM            -   9.20%            -              -   8.72%            -   3.74% 81.82%

Code  PC2  C  S3  RM  S1  PC1  W  URM 
PC2 90.91%            -              -              -              -              -              -              -   
C            -   73.56%            -              -   4.07%            -   0.20% 2.39%
S3            -              -   97.67% 0.79% 5.81%            -              -              -   
RM            -   1.15% 1.55% 61.90% 4.65%            -   3.74% 2.39%
S1 9.09% 14.94% 0.78% 17.46% 69.77%            -   0.20% 5.74%
PC1            -              -              -              -              -   100%            -              -   
W            -   1.15%            -   19.84% 5.23%            -   91.93% 8.13%
URM            -   9.20%            -              -   10.47%            -   3.94% 81.34%

Code  PC2  C  S3  RM  S1  PC1  W  URM 
PC2 100%            -              -              -              -              -              -              -   
C            -   72.41%            -              -   5.23%            -   0.20% 2.39%
S3            -              -   98% 1.59% 5.81%            -              -              -   
RM            -   1.15% 1.55% 57.94% 4.65%            -   3.74% 1.91%
S1            -   16.09% 0.78% 16.67% 70.93%            -   0.20% 5.74%
PC1            -              -              -              -              -   100%            -              -   
W            -   1.15%            -   23.81% 5.23%            -   91.93% 8.61%
URM            -   9.20%            -              -   8.14%            -   3.94% 81.34%

Code  PC2  C  S3  RM  S1  PC1  W  URM 
PC2 0%            -              -              -              -              -              -             -   
C            -   0%            -              -              -              -              -             -   
S3            -              -   98% 1.59% 16.28% 78.57%            -             -   
RM            -              -              -   0%            -              -              -             -   
S1            -   43.68%            -   59.52% 69.77% 14.29% 0.39% 34.93%
PC1            -              -              -              -              -   0%            -             -   
W 100.00% 22.99% 1.55% 38.89% 9.30% 4.76% 98.03% 19.62%
URM            -   33.33%            -              -   4.65% 2.38% 1.57% 45.45%

Code  PC2  C  S3  RM  S1  PC1  W  URM 
PC2 100.00%            -              -              -              -              -              -              -   
C            -   100.00%            -              -              -              -              -              -   
S3            -              -   98.45%            -              -              -              -              -   
RM            -              -              -   100.00%            -              -              -              -   
S1            -              -              -              -   100.00%            -              -              -   
PC1            -              -              -              -              -   100%            -              -   
W            -              -   1.55%            -              -              -   99.80%            -   
URM            -              -              -              -              -              -               0 100.00%
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Table 4.10 -- ANN testing errors (Structure type not recognized) by model 

PC2 C S3 RM S1 PC1 W URM
PC2 100%            -              -              -              -              -              -              -   
C            -   72.73%            -              -   2.70%            -   0.00% 7.14%
S3            -              -   100.00% 0.00% 5.41%            -              -              -   
RM            -   0.00% 0.00% 65.63% 5.41%            -   5.61% 0.00%
S1            -   9.09% 0.00% 18.75% 75.68%            -   0.00% 0.00%
PC1            -              -              -              -              -   100%            -              -   
W            -               0            -   12.50% 0.00%            -   89.72% 7.14%
URM            -   13.64%            -               0 10.81%            -               0 85.71%

Code  PC2  C  S3  RM  S1  PC1  W  URM 
PC2 100%            -              -              -              -              -              -              -   
C            -   77.27%            -              -   2.70%            -   0.00% 4.76%
S3            -              -   95.45% 0.00% 5.41%            -              -              -   
RM            -   0.00% 0.00% 68.75% 5.41%            -   5.61% 2.38%
S1 0.00% 9.09% 4.55% 21.88% 72.97%            -   0.00% 2.38%
PC1            -              -              -              -              -   100%            -              -   
W            -   4.55%            -   6.25% 0.00%            -   90.65% 7.14%
URM            -   9.09%            -               0 13.51%            -   3.74% 83.33%

Code  PC2  C  S3  RM  S1  PC1  W  URM 
PC2 100%            -              -              -              -              -              -              -   
C            -   63.64%            -              -   2.70%            -   0.00% 4.76%
S3            -              -   100% 0.00% 5.41%            -              -              -   
RM            -   0.00% 0.00% 68.75% 5.41%            -   4.67% 0.00%
S1            -   13.64% 0.00% 18.75% 72.97%            -   0.00% 2.38%
PC1            -              -              -              -              -   100%            -              -   
W            -   4.55%            -   12.50% 0.00%            -   91.59% 7.14%
URM            -   18.18%            -              -   13.51%            -   3.74% 85.71%

Code  PC2  C  S3  RM  S1  PC1  W  URM 
PC2 0%            -              -              -              -              -              -             -   
C            -   0%            -              -              -              -              -             -   
S3            -              -   100% 0.00% 27.03% 88.89%            -             -   
RM            -              -              -   0%            -              -              -             -   
S1            -   50.00%            -   71.88% 59.46% 11.11% 0.93% 45.24%
PC1            -              -              -              -              -   0%            -             -   
W 50.00% 22.73% 0.00% 28.13% 2.70% 0.00% 96.26% 16.67%
URM             1 27.27%            -              -   10.81% 0.00% 2.80% 38.10%

Code  PC2  C  S3  RM  S1  PC1  W  URM 
PC2 50.00%            -              -              -              -              -              -              -   
C            -   72.73%            -              -   8.11%            -              -   4.76%
S3            -              -   81.82%            -   5.41%            -              -              -   
RM            -   4.55% 4.55% 65.63% 2.70%            -   1.87%            -   
S1            -              -   13.64% 25.00% 75.68%            -   0.93% 11.90%
PC1            -              -              -              -              -   100%            -              -   
W 50.00% 4.55%            -   3.13%            -              -   93.46% 7.14%
URM            -   18.18%            -   6.25% 8.11%            -   3.74% 76.19%
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Again, the errors in the three MLP-based models (the MLP, GFF and MNN) are 

relatively consistent in both training and testing.  The RBF does not perform as well with 

several cases where the structure type errors are 100%.  As mentioned before, the SVM 

shows spurious results.  In the three MLP-based models, “C” buildings not recognized 

are largely distributed between “S1” and “URM”.  The classification performance of “RM” 

structures is low, with unrecognized “RM” being largely distributed between “S1” and 

“W”.  “S1” unrecognized structures are uniformly distributed among all categories, except 

“PC1” and “PC2”.  The performance in the “W” class is very good, with unrecognized 

structures being largely distributed between “RM” and “URM”, with “RM” dominating in 

the testing component.  Finally, unrecognized “URM” structures are distributed more or 

less uniformly over several categories in the training component, and between “C” and 

“W” in the testing component.   

Table 4.11 shows a summary of the cases where the desired structure type was 

misclassified (row errors in the confusion matrix) for training and testing components in 

respectively in the five ANN models.  Tables 4.12 and 4.13 show details by ANN model 

type for the training and testing components respectively, where the structure type was 

misclassified.  These tables should be analyzed along rows.  Cases of wrong 

classifications greater than 10% have been highlighted in both the detail tables.  For the 

total structures predicted as the structure type described in the row, the diagonals 

highlight prediction accuracy (not model accuracy as in the previous detail tables).  In 

other words, for the training case in the MLP ANN, the model predicted a total of 81 “C” 

structures (see Table 4.4).  Of these 81 “C” structures, 66 (or 81.48% as highlighted in 

the diagonal for the MLP ANN in Table 4.12) were classified correctly, 7 (8.64%) were 

misclassified as “S1”, 1 (1.23%) was misclassified as “W” and 7 (8.64%) were 

misclassified as “URM”.  A total of 15 (18.52%) “C” structures were therefore 
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misclassified into other categories, which is listed in Table 4.11 for the MLP ANN training 

row.  Figure 4.6 shows the overall distribution of classification errors by ANN model type.   

Table 4.11 -- Summary of errors (Structure type misclassified) by ANN model 

Model Part C PC1 PC2 S1 S3 RM URM W Overall
Training 18.52% 0% 0% 24.54% 8.03% 33.93% 19.72% 10.86% 15.81%
Testing 20.00% 0% 0% 22.22% 8.33% 27.59% 26.53% 7.69% 15.75%
Training 16.88% 0% 0% 29.41% 8.03% 30.97% 21.30% 10.02% 16.12%
Testing 15.00% 0% 0% 28.95% 8.70% 29.03% 25.53% 5.83% 15.75%
Training 19.23% 0% 0% 28.65% 8.70% 31.78% 19.81% 11.05% 16.36%
Testing 17.65% 0% 0% 27.03% 8.33% 24.14% 26.53% 7.55% 15.75%
Training 0% 0% 0% 61.78% 33.16% 0% 32.62% 22.07% 34.58%
Testing 0% 0% 0% 71.43% 45.00% 0% 46.67% 18.25% 40.29%
Training 0% 0% 0% 0% 0% 0% 0% 0.39% 0.23%
Testing 23.81% 0% 0% 37.78% 10.00% 19.23% 28.89% 5.66% 17.58%

SVM

MLP

GFF

MNN

RBF
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Table 4.12 -- ANN training errors (Structure type misclassified) by model 

PC2 C S3 RM S1 PC1 W URM
PC2 100%            -              -              -              -              -              -              -   
C            -   81.48%            -              -   8.64%            -   1.23% 8.64%
S3            -              -   91.97% 1.46% 6.57%            -              -              -   
RM            -   1.79% 1.79% 66.07% 8.04%            -   16.96% 5.36%
S1            -   6.75% 0.61% 12.27% 75.46%            -   0.61% 4.29%
PC1            -              -              -              -              -   100%            -              -   
W            -              -              -   5.71% 1.71%            -   89.14% 3.43%
URM            -   3.76%            -              -   7.04%            -   8.92% 80.28%

Code  PC2  C  S3  RM  S1  PC1  W  URM 
PC2 100%            -              -              -              -              -              -              -   
C            -   83.12%            -              -   9.09%            -   1.30% 6.49%
S3            -              -   91.97% 0.73% 7.30%            -              -              -   
RM            -   0.88% 1.77% 69.03% 7.08%            -   16.81% 4.42%
S1 0.59% 7.65% 0.59% 12.94% 70.59%            -   0.59% 7.06%
PC1            -              -              -              -              -   100%            -              -   
W            -   0.19%            -   4.82% 1.73%            -   89.98% 3.28%
URM            -   3.70%            -              -   8.33%            -   9.26% 78.70%

Code  PC2  C  S3  RM  S1  PC1  W  URM 
PC2 100%            -              -              -              -              -              -              -   
C            -   80.77%            -              -   11.54%            -   1.28% 6.41%
S3            -              -   91% 1.45% 7.25%            -              -              -   
RM            -   0.93% 1.87% 68.22% 7.48%            -   17.76% 3.74%
S1            -   8.19% 0.58% 12.28% 71.35%            -   0.58% 7.02%
PC1            -              -              -              -              -   100%            -              -   
W            -   0.19%            -   5.71% 1.71%            -   88.95% 3.43%
URM            -   3.77%            -              -   6.60%            -   9.43% 80.19%

Code  PC2  C  S3  RM  S1  PC1  W  URM 
PC2 0%            -              -              -              -              -              -             -   
C            -   0%            -              -              -              -              -             -   
S3            -              -   67% 1.05% 14.74% 17.37%            -             -   
RM            -              -              -   -            -              -              -             -   
S1            -   12.10%            -   23.89% 38.22% 1.91% 0.64% 23.25%
PC1            -              -              -              -              -   0%            -             -   
W 1.72% 3.13% 0.31% 7.67% 2.50% 0.31% 77.93% 6.42%
URM            -   20.57%            -              -   5.67% 0.71% 5.67% 67.38%

Code  PC2  C  S3  RM  S1  PC1  W  URM 
PC2 100.00%            -              -              -              -              -              -              -   
C            -   100.00%            -              -              -              -              -              -   
S3            -              -   100.00%            -              -              -              -              -   
RM            -              -              -   100.00%            -              -              -              -   
S1            -              -              -              -   100.00%            -              -              -   
PC1            -              -              -              -              -   100%            -              -   
W            -              -   0.39%            -              -              -   99.61%            -   
URM            -              -              -              -              -              -               0 99.52%
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Table 4.13 -- ANN testing errors (Structure type misclassified) by model 

PC2 C S3 RM S1 PC1 W URM
PC2 100%            -              -              -              -              -              -              -   
C            -   80.00%            -              -   5.00%            -              -   15.00%
S3            -              -   91.67%            -   8.33%            -              -              -   
RM            -              -              -   72.41% 6.90%            -   20.69%            -   
S1            -   5.56%            -   16.67% 77.78%            -              -              -   
PC1            -              -              -              -              -   100%            -              -   
W            -   0.96%            -   3.85%            -              -   92.31% 2.88%
URM            -   6.12%            -   2.04% 8.16%            -   10.20% 73.47%

Code  PC2  C  S3  RM  S1  PC1  W  URM 
PC2 100.00%            -              -              -              -              -              -              -   
C            -   85.00%            -              -   5.00%            -              -   10.00%
S3            -              -   91.30%            -   8.70%            -              -              -   
RM            -              -              -   70.97% 6.45%            -   19.35% 3.23%
S1            -   5.26% 2.63% 18.42% 71.05%            -              -   2.63%
PC1            -              -              -              -              -   100%            -              -   
W            -   0.97%            -   1.94%            -              -   94.17% 2.91%
URM            -   4.26%            -   2.13% 10.64%            -   8.51% 74.47%

Code  PC2  C  S3  RM  S1  PC1  W  URM 
PC2 100%            -              -              -              -              -              -              -   
C            -   82.35%            -              -   5.88%            -              -   11.76%
S3            -              -   91.67%            -   8.33%            -              -              -   
RM            -              -              -   75.86% 6.90%            -   17.24%            -   
S1            -   8.11%            -   16.22% 72.97%            -              -   2.70%
PC1            -              -              -              -              -   100%            -              -   
W            -   0.94%            -   3.77%            -              -   92.45% 2.83%
URM            -   8.16%            -              -   10.20%            -   8.16% 73.47%

Code  PC2  C  S3  RM  S1  PC1  W  URM 
PC2 0%            -              -              -              -              -              -              -   
C            -   0%            -              -              -              -              -              -   
S3            -              -   55%            -   25.00% 20.00%            -              -   
RM            -              -              -   0%            -              -              -              -   
S1            -   14.29%            -   29.87% 28.57% 1.30% 1.30% 24.68%
PC1            -              -              -              -              -   0%            -              -   
W 0.79% 3.97%            -   7.14% 0.79%            -   81.75% 5.56%
URM 3.33% 20.00%            -              -   13.33%            -   10.00% 53.33%

Code  PC2  C  S3  RM  S1  PC1  W  URM 
PC2 100.00%            -              -              -              -              -              -              -   
C            -   76.19%            -              -   14.29%            -              -   9.52%
S3            -              -   90.00%            -   10.00%            -              -              -   
RM            -   3.85% 3.85% 80.77% 3.85%            -   7.69%            -   
S1            -              -   6.67% 17.78% 62.22%            -   2.22% 11.11%
PC1            -              -              -              -              -   100%            -              -   
W 0.94% 0.94%            -   0.94%            -              -   94.34% 2.83%
URM            -   8.89%            -   4.44% 6.67%            -               0 71.11%
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Figure 4.6 -- Structure type classification errors by ANN model type 

4.2.1.4. Analysis of Classification Errors 

Analyzing the tables presented above, clearly the MLP-based models have 

several problems, both in terms of classification errors and misclassifications.  There is 

considerable confusion between “C”, “S1” and “URM”.  The models also have problems 

discriminating among “RM”, “S1” and “W”.  Further, “S1” is distributed among several 

categories particularly among “C”, “RM”, “S3” and “URM”.  “W” is classified well, but is 

sometimes confused between “RM” and “URM”.   

An analysis of the input variables revealed that similar combinations of the input 

variables (stories, area, year of construction, occupancy and fire rating) had substantial 

numbers of differing structure types, where even a human cannot accurately classify the 

structure type based on the input combination.  For instance, in the sample data, 15 

instances of Concrete buildings built mostly between 1915 and 1950 in the historic zone 

ranged from 1 to 5 stories and used for warehouses or retail or commercial offices with 

fire resistant fire rating were confused with Unreinforced Masonry because there were 

several URM buildings with similar characteristics.  In another example, over 30 

Unreinforced Masonry buildings in the sample of 1-2 stories, moderately sized, built 
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between 1910 and 1958 and used for retail or restaurants or offices or small apartments 

were confused with Wood structure types because there were several instances of 

Wood frame buildings sharing these same characteristics.  In other words, the models 

(or I) could not discriminate between structure types that shared common input 

characteristics.   

Overall, the models perform well for Precast Concrete, Light Metal, Concrete Tilt-

ups and Wood frame buildings.  Precast Concrete and Concrete Tilt-ups are not relevant 

to the model performance, because they were coded from the exterior wall 

documentation in the Tax Records.  Concrete buildings have classification errors with 

Unreinforced Masonry and Steel buildings.  Steel frames are misclassified among 

Concrete, Reinforced Masonry and Unreinforced Masonry structure types.  Light Metal 

frames have some confusion with Steel frames.  Reinforced Masonry is often 

misclassified as Steel or Wood.  Unreinforced Masonry is confused with Concrete, Steel 

and Wood structure types.   

4.2.1.5. Consequences of Classification Errors in Loss Estimation and Mitigation 

Classification errors between Concrete and Steel, Steel and Light Metal, Steel 

and Reinforced Masonry, and Reinforced Masonry and Wood or Light Metal are not 

problematic, because building behavior under earthquake stresses exhibit similar 

damage characteristics – admittedly, there is considerable variation in behavior based 

on height, area and form, but the consequences are not very significant.  Errors between 

Unreinforced Masonry and other structures are particularly problematic, because 

Unreinforced Masonry buildings are susceptible to heavy damage in earthquakes and 

pose grave danger to humans with high potential for severe injuries and deaths.   
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Let us separate the types of Unreinforced Masonry classification errors for this 

discussion.  First, different structure types could be misclassified as Unreinforced 

Masonry – let us term this as a Type 1 URM classification error.  The other case is 

where Unreinforced Masonry buildings are misclassified into one of the other structure 

types – this is termed as a Type 2 URM classification error.  In loss estimation exercises, 

Type 1 URM classification errors have implications in terms of overestimating damage to 

buildings, and consequently overestimate casualties, shelter requirements, debris 

generated and direct and indirect economic losses.  Type 2 URM classification errors 

have more drastic consequences.  In loss estimation exercises, these errors will 

underestimate damage to buildings, and consequently underestimate casualties, shelter 

needs, debris and direct and indirect losses.  However, and this aspect is infinitely more 

crucial, loss estimation exercises will not recognize damage to these erroneously 

classified buildings, but the real world consequences can potentially be very devastating.  

Damage to or the collapse of Unreinforced masonry buildings poses severe threats to 

life safety and can potentially cause high numbers of casualties and deaths.  Direct and 

indirect losses may also be higher than expected.   

The ANN models output a probability score along with the structure type 

classification.  An analysis of the classification errors revealed that consistently, the 

probability scores of at least two structure type categories competed strongly, and the 

model chose the structure type with the higher probability.  In the context of the 

Unreinforced Masonry discussion, between Concrete and Unreinforced Masonry, 

several pairs of competing probabilities were noted.  Combinations of probability scores 

as (C, URM) included (.06, .45), (.16, .9), (.63, .65), (.14, .62), (.39, .67), (.19, .39), etc.  

Note that several cases show consistently low URM levels of probability (less than .7) 

and correspondingly close levels of C probability.   



 
221

These probability scores may be gainfully used in mitigation planning.  First, 

URM structures are recognized as critical structures.  Mitigation plans should adopt a 

strategic approach to retrofitting URM structures with priority for residential and 

commercial occupancies (those occupancies with higher occupancy rates) over 

warehouses and factories.  Third, inventory modeling exercises using ANNs should 

analyze the probability for URMs for all other structure type classifications and 

investigate those that have competing URM probabilities (say > .25 URM scores).  

Fourth, all URM misclassifications should be highlighted and analyzed for competing 

probability scores with other structure types.  This would enable the quantification of 

URM structures with a higher degree of scrutiny along with a spatial delineation of the 

URM structures.  Mitigation plans could then communicate the heightened vulnerability 

of such structures to the appropriate stakeholders and arrange funding sources to retrofit 

URM buildings to seismically safer standards.   

4.2.1.6. Model Complexity, Sample Size and Model Calibration in Neural Networks 

There are several cases where the model could not discriminate between two 

structure types because of the extreme similarity in input combinations – this problem is 

similar to multicollinearity problems experienced in linear regression.  Typically, 

multicollinear inputs are handled by collecting more samples – see Goldberger (1991) 

for a witty and yet enlightening explanation of the problem of multicollinearity and its 

solution.  However, the process of collecting samples is time- and resource-consuming, 

especially in the case of structure types within a large city.  Most local jurisdictions lack 

the proper mechanisms for targeted sample data collection, and more importantly, rarely 

have the funds necessary to develop calibration sample databases.   

Artificial neural computing approaches for classification are not parametric and 

require decisions on the topological complexity of the connections between the 
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processing elements (layering), the number of exemplars (sample size) and their 

distribution into training, cross-validation and testing sets (model calibration for 

generalizability).   

Model Topological Complexity (Number of Processing Elements and Layers) 

Generally, classification problems based on a finite set of factor levels and 

covariates are nonlinear in the input space and network topology usually requires at 

least one hidden layer to account for the nonlinearity.  Additional hidden layers add 

complexity to the model and increase the number of connection weights to be estimated 

and could potentially overfit the data.  The general approach to determining model 

complexity in ANNs is similar to step-wise linear regression – that is, start with the 

simplest topological configuration with the fewest number of processing elements and 

progressively increase the processing elements and then the layers while evaluating the 

classification performance.  While there are quantitative measures that allow decision-

making on model size or complexity (Akaike 1974) based on balancing decreasing 

errors and increasing penalties as a function of model size, most practitioners (Principe 

et al. 2000) advocate a performance-based evaluation of model complexity.   

Sample Size for Model Calibration 

There are very real benefits in modeling structure type using calibration samples 

drawn from the local region of interest, rather than the commonly used top-down 

approach of imposing a structure type distribution derived at large geographic levels.  

Collection of calibration data is therefore vital to the structure type modeling advocated 

in this research.  If this method is expected to be replicated in other regions, the question 

of the number of samples required for model calibration needs to be addressed.  

Determining sample size is critical, since too large a sample may waste resources with 
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little modeling gains, while prediction inaccuracies result from small sample sizes.  The 

problem is heightened in classification models, where an adequate number of samples 

have to be drawn for each class, and the proportion of each class in the general 

population may not be known.   

In typical statistical designs for estimating population proportions based on the 

assumption of normality, sample sizes are influenced by the confidence level, the 

confidence interval and the prevalence of a class.  Any standard introductory statistical 

textbook would explain these concepts.  In simple terms, the confidence level is the 

amount of uncertainty that can be tolerated.  The confidence interval, also termed 

margin of error, represents the upper and lower bounds of error that may be tolerated.  

In other words, the margin of error is the maximum difference between the proportion 

estimated from the samples and the true proportion of the class in the population.  The 

confidence level therefore represents how often the true value or proportion of the 

population lies within the confidence interval.  Confidence level for a standard normal 

distribution is implemented by the “Z” score, a critical value determined by the area 

under the standard normal curve.  A confidence level of 95% is represented by a “Z” 

score of 1.96, and 99% by 2.85.  The prevalence of a class (or a response) is the 

expectation of the proportion of the class within the total population, and is usually 

established from prior research.  For instance, in the context of structure type 

classification, one could be 95% confident that the true proportion of concrete buildings 

is between 9% and 13%, using a confidence interval of 2%.  Thus, sample size n, may 

be estimated by the following formula 

( )( ) 22 1 eppzn c −∗=  ,  
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where zc is the Z score corresponding to the confidence level, p is the proportion of the 

class in the population and e is the confidence interval. 

Assuming a population size of 20,000 composed of 3 classes whose proportions 

are estimated by prior studies at 20%, 30% and 50%, for a confidence level of 95% with 

a margin of error of 5%, the minimum number of samples for the 3 classes would be 

246, 323 and 384 respectively.  For a confidence level of 99% with a margin of error of 

5%, the corresponding sample sizes would increase to 520, 682 and 812.  Similarly, for 

a confidence level of 95%, but with a confidence interval of 10%, the sample sizes would 

decrease to 61, 80 and 96.  Other methods for determining sample size use the total 

population of buildings with a chi-squared distribution, as seen in the formula  

( ) ( ) ( )ppNeppNn −∗+−−∗∗= 111 222 χχ  ,  

where χ2 is the value of chi-square for one degree of freedom and the desired 

confidence interval, N is the population size or the size of the smallest sub-group to be 

proportionately represented, p is the proportion of the class in the population and e is the 

confidence interval.   

The resulting sample size calculations yield similar results.  It should be noted 

that the sample size calculations assume that the samples are genuinely randomly 

distributed, and if this assumption is violated (owing to some structural stratification 

mechanism in the population, or selection bias), confidence intervals or sample size 

calculations may not be reliable.  In reality, this is often a problem – in the context of 

buildings, one rarely knows the proportion of buildings of structural classes a priori.  

Further, structure types are not distributed randomly across the region – buildings follow 

a historical trajectory of development, based on previously settled areas, or follow 
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particular arterial transportation connections, or may be influenced by building code and 

enforcement.  The sample size calculations may however be used as rough guidelines.   

In addition to the guidelines suggested above, Principe et al (2000) suggest a set 

of thumb rules for determining sample sizes based on the topological complexity of the 

neural network, or the number of input attribute columns that influence the dependent 

variable.  The topological complexity is measured by the number of connection weights 

in the network, and the total number of exemplars should be between 5 and 10 times the 

number of connection weights.  While generating such sizes is possible in simulations, 

the sample size determined here is generally of an order higher than is feasible for field-

based surveys.  The MLP ANN model specified in Figure 3.4 has 673 connection 

weights, resulting in a minimum sample size of over 3,300.  Another practical rule relates 

the total number of attribute columns, suggesting that the total sample size be at least 50 

times the number of attribute columns.  Again, applying this rule for the MLP ANN of 

Figure 3.4, the minimum sample size is about 1050.  A final rule relates the number of 

attribute columns and the smallest class – the minimum number of exemplars for the 

smallest class in the population should be between 5 and 10 times the number of 

attribute columns.   

Model Calibration for Generalization 

Small training sets result in inadequate estimation of network weights and poor 

classification performance, while overly large training sets with small cross-validation 

and testing datasets may result in memorization of data patterns and poor generalization 

to unseen data.  In addition to good classification performance, consistency in model 

performance over training, cross-validation and testing datasets is highly desired for 

adequate generalization to unseen data.  In other words, if the training samples account 

for 90% of the sample data, while cross-validation and testing account for the remaining 
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10%, training classification performance may be very high, but testing classification may 

be poor.  Similarly, if training samples account for only 50% of the sample data, while the 

remaining samples are distributed equally between cross-validation and testing, the 

training classification performance may be erratic and inconsistent with the testing 

performance.  Further, learning in ANNs is a stochastic process and weights estimated 

by training the network should be estimated over several runs in order to establish 

consistency and reliability.   

4.3. Comparison of Multinomial Logistic Regression and Neural Networks 

For the purposes of comparing the logistic regression with ANNs, the same 

specification that was used for the logistic regression was run with an MLP-based ANN 

with one hidden layer.  Table 4.14 shows the confusion matrices of raw counts derived 

from each model.  Table 4.15 details the percentage of accurate classifications.  Tables 

4.16 and 4.17 show the percentages of structure type not recognized and 

misclassifications respectively for the two specifications.   

Table 4.14 -- Comparison of confusion matrices (Logistic vs. ANN) 

 

The performance of the two models was strikingly similar – the multinomial 

logistic regression correctly classified 1534 samples (83.78%), while the ANN correctly 

Model Structure Type URM S C W Totals
URM 222           17             11             42             292           
S 46             539           23             38             646           
C 13             15             172           3                203           
W 22             41             3                624           690           
Totals 303           612           209           707           1,831        
URM 208           30             14             28             280           
S 42             519           31             28             620           
C 15             13             161           5                194           
W 38             50             3                646           737           
Totals 303           612           209           707           1,831        
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classified 1557 samples (85.04%) of the total 1831 available samples.  Over 90% (1412) 

correspondence between the models was noted in successfully classified samples.  The 

confusion matrices and the corresponding percentages of accuracy and errors reveal 

that the ANN performed marginally better, particularly for the Unreinforced Masonry and 

Concrete structure categories.  The multinomial logistic regression performed slightly 

better than the ANN for Wood structure types.   

Table 4.15 -- Classification accuracy (Logistic vs. ANN) 

 

As derived from Table 4.16, the ANN does not recognize 81 (26.73%) of the 303 

Unreinforced Masonry structure samples, and is most likely to erroneously categorize 

Unreinforced Masonry into Steel (15.18%) structure types, while the multinomial logistic 

regression fails to recognize 95 (31.35%) of the 303 Unreinforced Masonry structures 

and tends to distribute the Unreinforced Masonry recognition errors largely between 

Steel (13.86%) and Wood (12.54%) structure types.  From Table 4.17, of the 292 

Unreinforced Masonry predictions by the ANN, 70 (23.97%) of the Unreinforced Masonry 

structures are misclassified largely as Wood (14.38%), while the multinomial logistic 

regression distributes its 72 (25.71%) errors predominantly between Steel (10.71%) and 

Wood (10.00%) structures.   

 

Model Structure Type URM S C W Overall
URM 73.27%
S 88.07%
C 82.30%
W 88.26%
URM 68.65%
S 84.80%
C 77.03%
W 91.37%
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Table 4.16 -- Percent Structure type not recognized (Logistic vs. ANN) 

 

Table 4.17 -- Percent Structure type not predicted (Logistic vs. ANN) 

 

4.3.1. Differences and Relative Advantages of Multinomial Logistic Regression 

and Artificial Neural Networks 

Deviations between the two model performances are relatively minor, with 

consistent patterns of recognition and misclassification errors.  Further, sensitivity tests 

in the ANN environment mirror significant relationships between the structure type 

(dependent) and the independent covariates and factors specified in the multinomial 

logistic regression.  The relatively close performances agree with what has been found 

in surveys of classification literature. Dreiseitl and Ohno-Machado (2002) reviewed over 

70 publications from medical classification literature, and noted that both logistic 

Model Structure Type URM S C W
URM 73.27% 2.78% 5.26% 5.94%
S 15.18% 88.07% 11.00% 5.37%
C 4.29% 2.45% 82.30% 0.42%
W 7.26% 6.70% 1.44% 88.26%
URM 68.65% 4.90% 6.70% 3.96%
S 13.86% 84.80% 14.83% 3.96%
C 4.95% 2.12% 77.03% 0.71%
W 12.54% 8.17% 1.44% 91.37%
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Model Structure Type URM S C W
URM 76.03% 5.82% 3.77% 14.38%
S 7.12% 83.44% 3.56% 5.88%
C 6.40% 7.39% 84.73% 1.48%
W 3.19% 5.94% 0.43% 90.43%
URM 74.29% 10.71% 5.00% 10.00%
S 6.77% 83.71% 5.00% 4.52%
C 7.73% 6.70% 82.99% 2.58%
W 5.16% 6.78% 0.41% 87.65%
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regression and ANN approaches perform similarly with the increased flexibility offered by 

ANNs being the primary reason for their preferred use.  The differences and relative 

advantages of each approach are described in further detail below.   

Unlike Support Vector Machine approaches that estimate linear (and therefore 

dichotomous) separations between classes, both multinomial logistic regressions and 

ANNs attempt to model or approximate the posterior probability of the dependent 

variable given the specific combination of inputs.  Multinomial logistic regression models 

are parametric, based on a clearly specified functional form described earlier in Section 

2.2, while ANNs are classified as semi-parametric or non-parametric.  Multinomial 

logistic regression models therefore have substantially more explanatory power than 

ANNs and permit interpretation and evaluation of the effects of the input variables on the 

dependent.  In particular, the odds of successful outcomes between pairs of the 

dependent variable alternatives (given the specific input combination) are quantified 

clearly in logistic regressions.  While ANNs have analytical procedures to examine the 

sensitivity of outcomes to inputs heuristically (Zurada et al. 1994), the sensitivity 

measures tend to be unit-less and are not interpretable in a quantitative sense.  Further, 

ANNs do not present quantitative measures between outcome pairs.  Additionally, ANNs 

are sensitive to starting values and the methods are difficult to replicate in a 

mathematical sense, while logistic parameters are determined by more pleasing (in a 

statistical sense) maximum likelihood estimation methods.  If the performances between 

logistic and ANN approaches are so similar, is there any advantage to sacrificing the 

explanatory and evaluative power of a parametric logistic regression specification for an 

ANN model? 

The parametric specification of multinomial logistic regressions require a 

minimum number of samples in each cell of a cross-tabulation between the dependent 
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variable alternatives and the input covariates and factor levels for estimation.  Very 

often, it may not always be possible to collect sample sets that are complete with respect 

to all cells of a cross-tabulation between the dependent variable alternative and the 

inputs, because of inadequate sampling, or the expense of collecting an 

underrepresented category or because that category may not exist in the general 

population vis-à-vis a particular input.  In this research for instance, no samples were 

observed for Wood structures that were used in Heavy Industrial occupancies, 

consistent with construction practices.  Such gaps reduce the tractability of the 

multinomial logistic regression and the relative inflexibility frequently prompts the 

simplification of both the number of alternatives in the dependent variable and the 

number of levels for input factors.  ANNs are far more flexible, and their semi-parametric 

nature is far more tolerant to noise or gaps in the input combinations, and less likely to 

drastically fluctuate in classification performance efficiency (Rojas 1995).   

Full effects multinomial logistic regression specifications may overtrain the 

sample data, while training in ANN procedures may be stopped at recognizable points, 

specifically to prevent memorization of training data patterns.  Thus, ANNs use cross-

validation routines explicitly (Principe et al. 2000) in the process of weight estimation for 

generalization to unseen data (and thus prevent overtraining), while given the same 

limited sample data set, estimation or classification performance suffers in the logistic 

regression approach if samples are set aside for cross-validation.   

Parametric models are generally not effective in modeling non-linear and 

complex relationships between inputs and outputs, while ANNs have been shown to 

learn complex patterns by example efficiently without requiring large numbers of 

samples (Makhfi 2007).  In addition, since ANNs learn complex relationships based on 

examples derived directly from the representative population without human intervention 
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(StatSoft 2003), ANN engines may be specifically designed for automated calibration, 

adaptation and response and embedded in application environments familiar to the end-

user.  In the case of multinomial logistic regression, the inherent lack of flexibility and 

inadequate fault-tolerance greatly reduces automation potential.   

ANNs may be designed and optimized for extraordinary parallel processing, 

greatly enhancing the speed of training and outcome prediction, especially for large and 

complex datasets (Rumelhart et al. 1986; Rumelhart and McClelland 1986).   

 Finally, while ANNs require some user knowledge for variable selection, network 

topology and result interpretation (Nilsson 1996; Patterson 1996; Principe et al. 2000) 

the level of such knowledge is considerably lower than traditional non-linear statistical 

methods, particularly when model performance is emphasized (Anderson and McNeil 

1992).   

4.3.2. Using Artificial Neural Networks for Structure Type Classification 

In this research, the lack of data values in all cells of cross tabulations of 

structure type and occupancy reduced the tractability of the multinomial logistic 

regression model, prompting the simplification of both the dependent variable and the 

factor levels. The inherent flexibility of the ANN and its semi-parametric approach is far 

more forgiving of gaps in the data. On the other hand, the black-box nature of ANNs 

makes it more difficult to explain good performance or convince doubters about the 

efficiency of the approach. Multinomial logistic regression approaches, by their 

parametric nature, allow for the validation of a model’s plausibility by comparing similar 

studies or surveying experts in the field. The choice in this dissertation to use ANNs for 

structure type classification was prompted more by the needs of classification 

performance than interpretation or explanation – after all, the output building data 
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inventory would be used by a variety of downstream models and applications and 

accuracy in accounting of the built environment was the primary motivating factor.   

In any case, the close similarity in performance between similar specifications for 

both the multinomial logistic regression and the ANN models legitimizes the use of 

ANNs. While the ANN models do not have statistical measures for analyzing the 

performance of the model or for describing the relationship between the inputs and the 

outcome, the results of input variable sensitivity tests within the ANN framework show 

patterns that are consistent with the quantitative and statistically significant relationships 

between inputs and structure type outcomes derived in the multinomial logistic 

regression model. Figure 4.7 shows the results of the sensitivity of structure type to the 

various input variables in the ANN models. Note that Year of construction, Retail and 

Wholesale Trade and the Fire rating variables seem to be good explainers for Steel, 

Wood and URM structure classes – these relationships were noted in the multinomial 

logistic regression results also – see the Tables in Appendix B. 
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Figure 4.7 -- Structure type sensitivity to input variables (ANNs) 

4.4. Recognizing Building Footprints 

The 2D building configuration classification is implemented in two stages.  In the 

first stage, the building footprint is preprocessed in the GIS environment using the 

following routines in sequence – collinear vertex removal, enforcing orthogonalization, 

edge-smoothing by removing spikes, small concavities and convexities, simplification 

and final adjustments.  For testing and validation, several building footprint libraries were 

created.  Over 5,000 building footprints for all classes were created through manual 

digitization.  Three separate libraries were tested for manually digitized footprints and 

one for automatically extracted footprints.   

4.4.1. Classification on Manually-digitized Building Footprints 

Figure 4.8 shows the various steps in the sequence of preprocessing the building 

footprints, using the example of a single, casually digitized L-shaped polygon.  Note the 
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level of extraneous detail, the collinear vertices and the lack of orthogonal corners in the 

base input polygon.   

As the panels indicate, after collinear vertices are decimated, corners are made 

orthogonal based on a user-specified threshold of 20 degrees.  Then, minor protrusions 

and intrusions are removed, after which the building is simplified and approximated.  The 

simplified building is then processed by the classification routine.  In the validation 

experiments, the algorithm classified all the input footprints with a success rate of over 

97% -- the only errors occurred in boundary conditions between classes, such as 

between C-shaped and Rectangular buildings, where the intrusion into the rectangle was 

of a minor dimension relative to the breadth of the rectangle.   
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Figure 4.8 -- Preprocessing manually-digitized footprints 
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Against an initial library of about 166 “clean” buildings of all 10 footprint classes, 

the shape recognition algorithm achieved 100% classification accuracy.  This library was 

created solely for testing the shape classifier, and consisted of all footprint classes with 

atomic vertices and orthogonal edges where appropriate.   

A second library of about 5,600 footprints was created, consisting of all 10 

footprint classes at various scales.  This library represented real world conditions and 

contained buildings with non-orthogonal corners and collinear vertices and was created 

to test the preprocessing and classification algorithms.  Again, the classifier performed 

excellently, but the preprocessing routines created polygons that were somewhat 

different from the original inputs.  In several cases, the errors represented boundary 

conditions, reflecting ambiguity between pairs of footprint classes.  Table 4.18 shows the 

performance of the shape recognition module for this library.   

Table 4.18 -- Performance of shape recognition (Manual digitization) 

Reference Type Total Samples Errors Percent Errors
CIRCULAR 90                           -                          -                          
CRUCIFORM 455                         -                          -                          
C-SHAPED 1,449                      114                         7.87%
H-SHAPED 1,113                      -                          -                          
IRREGULAR 180                         13                           7.22%
L-SHAPED 800                         33                           4.13%
OCTAGON 153                         16                           10.46%
RECTANGULAR 650                         241                         37.08%
T-SHAPED 490                         -                          -                          
Z-SHAPED 220                         -                          -                          
Totals 5,600                      417                         7.45%  

The module achieved about 93% accuracy, with the largest amount errors found 

in ambiguous boundary conditions between rectangles and other classes.   

Figure 4.9 shows some examples of incorrect classifications for manually 

digitized buildings.  The preprocessing routines use absolute values for threshold 
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distances and angles for all sizes of buildings.  As a result, there is some sensitivity to 

geographic scale, or effectively, the size of the building footprint.   
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Figure 4.9 -- Example classification errors for manually digitized buildings 

As seen in Figure 4.9, in panel 1, the input shape has been classified as 

“Rectangular” even though it is ostensibly “C-shaped” since the intrusions into the 

rectangle are relatively insignificant.  This represents a typical boundary condition 

between C-shaped and Rectangular buildings.  The shape recognition could not identify 

the footprint as a rectangle because the intrusions were greater than the specified 

simplification threshold distance.  This ambiguity and consequent misclassification is 

seen again in panels 3 and 4.  The error shown in panel 2 is a genuine error – when the 

threshold tolerance (especially for small buildings) is greater than one intrusion or 

protrusion but is less than the distance of successive protrusions or intrusions, 

simplification behavior is unstable.  Consequently, the irregular building was 

misclassified as L-shaped.  The same error did not occur when the building was 

enlarged, suggesting that the simplification thresholds are somewhat sensitive to scale.   



 
237

4.4.2. Classification of Automatically-extracted Building Footprints 

The overall performance with automatically extracted footprints from aerial 

photographs was less than that of processing manually digitized footprints.  The input 

automatically extracted footprints are characterized by extremely noisy contours that 

make preprocessing and simplification unstable.  Shapes with longer linear dimensions 

tend to be recognized easily, while those with several contour vertices that change slope 

rapidly and are of magnitudes greater than the user-specified threshold tend to be 

classified as irregular.  Figure 4.10 shows the various steps in the sequence of 

preprocessing the building footprints, using the example of a poorly extracted and noisy 

T-shaped polygon.  Again, noise could include collinear vertices, non-orthogonal 

corners, spikes, intrusions and protrusions, etc. that are artifacts of the extraction 

process.  The preprocessing routines remove collinear vertices, orthogonalize corners, 

remove spikes, minor concavities and convexities and repeat collinearity removal and 

orthogonalization after simplification.   

 

Figure 4.10 -- Preprocessing automatically extracted building footprints 
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As the successive panels indicate, after collinearity removal and 

orthogonalization, spikes, minor intrusions and protrusions are removed before the 

polygon is simplified.  Collinearity removal and orthogonalization routines are run on the 

simplified building footprint, since collinear and non-orthogonal vertices may result as 

artifacts of simplification.  When tested against a library of automatically extracted 

building footprints, the routines achieved success rates ranging from 70% to 82%.  Table 

4.19 quantifies the performance for a sample of 99 automatically extracted building 

footprints.  The high percentage errors for C-, H- and Z-shaped footprints are not that 

serious because of the small sample size.  However, a large number of rectangular 

buildings are misclassified.   

Table 4.19 -- Example classification errors for automatically extracted footprints 

Reference Type Total Samples Errors Percent Errors
C-SHAPED 4                             2                             50.00%
H-SHAPED 2                             2                             100.00%
IRREGULAR 16                           1                             6.25%
L-SHAPED 17                           2                             11.76%
RECTANGULAR 57                           19                           33.33%
T-SHAPED 1                             -                          -                          
Z-SHAPED 2                             1                             50.00%
Totals 99                           27                           27.27%  

Figure 4.11 depicts examples of misclassifications for building footprints 

automatically extracted from aerial photographs.  Note that the input buildings are 

humanly intuited classifications and are often ambiguous because of the extreme noise 

in the contours of the input polygons.  The preprocessing routines do remove collinear 

vertices and orthogonalize corners, but very often, the variation in the segments of the 

exterior contour of the input polygon results in poor landmark vertex definition.   
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Figure 4.11 -- Examples of misclassifications for automatically extracted footprints 

Note the high ambiguity in the input polygons in all four panels and the 

consequent results of the processed buildings.  Again, using a single absolute threshold 

measure for simplification results in some sensitivity to footprint size.  For instance, the 

building in panel 2 could have been correctly classified but for a few minor deviations – 

adjusting the simplification threshold would solve this problem for this particular building, 

but create classification errors elsewhere.  Figure 4.12 shows two examples of 

successful L-shaped classifications from the sample library.   
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Figure 4.12 -- Successful classifications for automatically extracted footprints 
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4.4.3. Notes on the Classification Algorithm 

In general, input footprints should be separated based on their methods of 

extraction.  Manually digitized footprints tend to be less noisy in the edge contours and 

so, classification results demonstrate very high success rates.  By contrast, the footprints 

generated from aerial photographs through automatic extraction routines tend to have 

extreme noise in their edge contours.  In some cases, overlapping pixels may cause 

vectorized footprints to cross polygon boundaries, creating topologically inconsistent 

input footprint polygons.   

Figure 4.13 shows examples of extremely noisy contours.  In fact the noise level 

may be so great that it would be challenging for even humans to classify the footprints 

into the correct classes.  Despite the noise, the algorithms produce accurate 

classifications of about 75%.  In terms of improving the performance, either the 

preprocessing routines should be modified so as to include fuzzy generalization in the 

GIS environment, or alternately, the contours of the extracted footprint may be 

generalized at the point of extraction.   
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Figure 4.13 -- Examples of edge noise in automatically extracted footprints 
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4.5. Building Valuation 

This section briefly covers the results of implementing the methodology for 

estimating the building replacement costs and content value for Shelby County.  The 

building valuation component required the estimation of the building replacement costs, 

the structural component of the replacement costs, the acceleration- and drift-sensitive 

components of the replacement costs and the content value.  All replacement costs were 

derived from the R. S. Means 2008 Square Foot Costs (2008) location-adjusted for 

Shelby County.   

4.5.1. Replacement Costs for Shelby County 

Following the flowchart described in Figure 3.1 of the methodology chapter, 

building valuation components required the determination of structure type as one of the 

inputs.  After predicting the structure type using the ANN, the structure type was 

recorded into the building database.  The occupancy code and replacement value code 

identifiers (nomenclature for which is described in Section 3.5.1.1. of the methodology 

chapter) were also recorded for each building along with the average square foot costs 

and the minimum and maximum area ranges and square foot costs from the Means 

manual.  Replacement costs were then computed as the total above ground and below 

ground costs – if the building had no basement, then the below ground costs would 

amount to $ 0.00.  Table 4.20 shows the replacement cost by structure type in Shelby 

County.  Note that the total replacement cost is dominated by Wood structures, 

amounting to over 59% of the total replacement cost in Shelby County, followed by 

Steel, Concrete and Masonry.  This is expected, since Wood structures are dominated 

by residential occupancies that amount to almost 90% of the GBS.  Note however, the 

low average of replacement cost for Light Wood structures (W1), largely comprising the 
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single-family stock.  The total replacement cost for all buildings in Shelby County is 

estimated at just over $ 87 billion.   

Table 4.20 -- Replacement cost by Structure type in Shelby County 

Structure 
Type Count Average Replacement 

Cost  in $ thousands
Row Total in 

$ millions
Replacement Cost as 

Percent of Total
C1            913 4264.06 3,893.09           4.46%
C2              81 17649.44 1,429.60           1.64%
MH              43 4053.47 174.30              0.20%
PC1         1,110 6682.28 7,417.33           8.50%
PC2              35 6136.24 214.77              0.25%
RM         1,600 638.39 1,021.42           1.17%
S1         3,608 3717.73 13,413.57         15.37%
S3         3,522 1121.21 3,948.90           4.52%
URM       11,141 355.09 3,956.10           4.53%
W1     271,853 142.65 38,778.59         44.43%
W2       12,097 1077.26 13,031.61         14.93%
Totals 306,003 285.22 87,279.29         100.00%  

For the square footage and dwelling unit imputation procedures described in the 

methodology chapter, the appropriate records were marked as imputed in the building 

inventory database.  Table 4.21 describes the distribution of replacement costs for 

imputed structures and occupancy.  Note that the total estimated replacement costs for 

the imputed structures amounts to about $ 11 billion (or 13.62%), dominated by Multi-

family apartments, Schools, Colleges and Universities, Churches and Emergency 

Response.  Imputations were necessary for the Multi-family residential apartments, 

particularly for the 1960-1980 period, since the Tax Assessor’s database had large gaps 

for these periods.  Imputations in the other occupancy categories were necessary, since 

they are non-taxable (non-profit or governmental functions) and therefore, not recorded 

in the Tax Assessor’s database.   
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Table 4.21 -- Imputation of Replacement costs (in millions of dollars) by HAZUS 

MH MR-3 occupancy category 

Occupancy 
Type

Imputed 
Replacement 

Costs

Total 
Replacement 

Costs

Percent by 
Occupancy

Percent of 
Imputed 

Total

Percent of 
Total

COM1 1.78                      4,197.05               0.04% 0.01% 0.00%
COM2 29.22                    10,762.05             0.27% 0.25% 0.03%
COM3 4.96                      856.50                  0.58% 0.04% 0.01%
COM4 10.09                    5,904.48               0.17% 0.08% 0.01%
COM5 0.31                      191.83                  0.16% 0.00% 0.00%
COM6 -                        727.20                  0.00% 0.00% 0.00%
COM7 -                        1,090.94               0.00% 0.00% 0.00%
COM8 7.15                      752.99                  0.95% 0.06% 0.01%
COM9 -                        77.12                    0.00% 0.00% 0.00%
COM10 -                        302.23                  0.00% 0.00% 0.00%
EDU1 1,690.31               1,744.28               96.91% 14.22% 1.94%
EDU2 2,741.27               2,741.27               100.00% 23.05% 3.14%
GOV2 178.39                  204.86                  87.08% 1.50% 0.20%
IND1 7.91                      2,643.49               0.30% 0.07% 0.01%
IND2 9.70                      658.13                  1.47% 0.08% 0.01%
IND4 -                        9.19                      0.00% 0.00% 0.00%
IND5 -                        74.13                    0.00% 0.00% 0.00%
REL1 841.26                  1,108.44               75.90% 7.07% 0.96%
RES1 21.39                    38,187.72             0.06% 0.18% 0.02%
RES2 22.01                    174.30                  12.63% 0.19% 0.03%
RES3 6,077.07               13,308.68             45.66% 51.11% 6.96%
RES4 233.71                  1,235.18               18.92% 1.97% 0.27%
RES5 9.98                      34.39                    29.02% 0.08% 0.01%
RES6 4.24                      292.83                  1.45% 0.04% 0.00%
Totals 11,890.76             87,279.29             13.62% 100.00% 13.62%  

Table 4.22 shows the distribution of replacement costs for imputed structures by 

decade of construction.  Note that replacement costs for imputed structures rise in the 

1960s and then remain fairly steady by decade.  The largest fraction of replacement 

costs for imputed structures occurred in the 1970-1979 decade.  Note however, that the 

Tax Assessor’s database has large omissions in Multi-family residential since the 1960s, 

coinciding with the period when the City of Memphis began to grow rapidly.   

 



 
244

Table 4.22 -- Imputation of Replacement costs (in millions of dollars) by decade 

Decade
Imputed 

Replacement 
Costs

Not Imputed 
Replacement 

Costs

Total 
Replacement 

Costs

Percent 
by 

Decade

Percent by 
Imputed 

Total

Percent 
by Total

Pre-1939                   74.97                 762.15                 837.12 8.96% 1.23% 0.56%
40-49                   86.70                 263.13                 349.84 24.78% 1.43% 0.65%
50-59                 146.52                 385.08                 531.60 27.56% 2.41% 1.10%
60-69              1,007.74              1,686.11              2,693.85 37.41% 16.58% 7.57%
70-79              2,007.64              2,180.30              4,187.94 47.94% 33.04% 15.09%
80-89              1,117.52                 913.43              2,030.95 55.02% 18.39% 8.40%
90-99                 751.70                 411.50              1,163.21 64.62% 12.37% 5.65%
Post-2000                 884.27                 629.91              1,514.19 58.40% 14.55% 6.64%
Totals                   6,077                   7,232                 13,309 45.66% 100.00% 45.66%

 

4.5.2. Structural and Nonstructural Replacement Costs 

Based on the percentage decomposition of replacement costs into structural, 

nonstructural acceleration- and drift-sensitive components derived from Means assembly 

costs (described in Section 3.5.3), the process estimated and recorded the various costs 

in the building inventory database.  Table 4.23 describes the total nonstructural costs by 

component category and structure type for Shelby County in millions of dollars.  Apart 

from the Concrete Tilt-ups, Precast Concrete and Light Metal structures where structural 

cost proportions are over 40%, in all other structure type categories, structural costs 

form only between 20% and 30% of the total replacement costs for the structure.  The 

bulk of the total replacement costs is derived from the non-structural acceleration- and 

drift-sensitive costs.  Table 4.24 lists the average structural, nonstructural acceleration- 

and drift-sensitive costs by structure type for Shelby County in thousands of dollars.   
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Table 4.23 – Total Nonstructural Replacement costs by Structure type for Shelby 

County (thousands of dollars) 

Structure 
Type Count Structural 

Replacement Costs

Nonstructural 
Acceleration-sensitive 

Costs

Nonstructural Drift-
sensitive Costs

C1            913 974.27                         1,486.97                                 1,431.85                    
C2              81 347.87                         577.85                                    503.88                       
MH              43 42.53                           65.89                                      65.89                         
PC1         1,110 3,365.45                      2,137.06                                 1,914.82                    
PC2              35 132.43                         44.09                                      38.25                         
RM         1,600 331.37                         335.95                                    354.10                       
S1         3,608 3,258.66                      5,582.98                                 4,571.93                    
S3         3,522 1,562.99                      1,303.24                                 1,082.67                    
URM       11,141 1,219.32                      1,333.14                                 1,403.63                    
W1     271,853 9,034.88                      10,635.42                               19,108.29                  
W2       12,097 2,819.34                      5,127.99                                 5,084.29                    
Totals     306,003 23,089.11                    28,630.59                               35,559.60                   

Table 4.24 -- Average Nonstructural Replacement costs by Structure type for 

Shelby County (thousands of dollars) 

Structure 
Type

Average Structural 
Replacement Costs

Average Nonstructural 
Acceleration-sensitive Costs

Average 
Nonstructural Drift-

sensitive Cost
C1 1,067.11                            1,628.67                                       1,568.29                          
C2 4,294.69                            7,133.97                                       6,220.78                          
MH 989.05                               1,532.21                                       1,532.21                          
PC1 3,031.94                            1,925.28                                       1,725.06                          
PC2 3,783.72                            1,259.80                                       1,092.73                          
RM 207.11                               209.97                                          221.32                             
S1 903.18                               1,547.39                                       1,267.17                          
S3 443.78                               370.03                                          307.40                             
URM 109.44                               119.66                                          125.99                             
W1 33.23                                 39.12                                            70.29                               
W2 233.06                               423.91                                          420.29                             
Averages 75.45                                 93.56                                            116.21                              
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4.5.3. Content Value 

Content value was estimated as a function of replacement costs and specific 

occupancy – Table 4.25 describes the total and average content values by structure type 

in Shelby County.  As expected, over 40% of the content value is concentrated in Wood 

structures, followed by significant amounts in Steel and Concrete structures.   

Table 4.25 -- Content value by Structure type in Shelby County 

Structure 
Type Count Average Content Value ($ 

thousands)
Content Value 

($ millions)
Content Value as 
Percent of Total

C1            913 4624.72 4,222.37               6.54%
C2              81 15062.00 1,220.02               1.89%
MH              43 2026.74 87.15                    0.13%
PC1         1,110 7068.46 7,845.99               12.15%
PC2              35 3070.60 107.47                  0.17%
RM         1,600 658.41 1,053.46               1.63%
S1         3,608 4146.02 14,958.85             23.16%
S3         3,522 1250.60 4,404.61               6.82%
URM       11,141 306.90 3,419.13               5.29%
W1     271,853 72.82 19,795.39             30.65%
W2       12,097 618.18 7,478.14               11.58%
Totals 303,006 211.08 64,592.57             100.00%

 

4.6. The Shelby County Building Inventory Database 

Based on implementing the methodology for the various components of the 

dissertation, a comprehensive building inventory database for Shelby County was 

created.  The database is extensively described with tabulated summaries in Appendix 

A.  The building inventory was successfully applied in various loss estimation exercises 

for the MTB and in some structural class sensitivity analyses.   
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Chapter 5 . CONCLUSION AND VALIDATION 

Various cutting-edge technologies, techniques and innovative methods from 

several sources were used in the course of this dissertation.  The research methods 

were drawn from city and regional planning, mitigation planning, earthquake hazard risk 

assessment and loss estimation, computer science, pattern recognition, valuation, GIS 

technologies, software engineering and advanced statistics.  The substantive parts of 

this dissertation are all components of earthquake risk assessment and loss estimation 

modeling and include models that classify buildings in a region by structure type, classify 

buildings by shape and estimate various aspects of building value.  The earthquake risk 

assessment and loss estimation modeling process is rife with uncertainty, and the focus 

of this dissertation was to reduce the “factual’ uncertainty in the description of the at-risk 

building inventory, without which there can be no modeling effort.  The artificial neural 

computing approach to structure type determination and the implementation of the 

detailed valuation methodology substantially reduce uncertainty in the description of the 

built environment.  The shape recognition module is somewhat ahead of the current 

state-of-the-art in loss estimation modeling, since shape parameters have not yet been 

implemented in risk assessment studies at a region level.  The methods were 

implemented in order to produce a building inventory database for Shelby County.  This 

chapter summarizes the methods used in the research and includes a section on the 

validation of the building inventory produced for Shelby County.  Limitations of the 

research are also discussed and the chapter concludes with this dissertation’s 

implications for future research.   
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5.1. Validation of Shelby County Building Inventory Data 

Several methods were used for validating the building inventory dataset for 

Shelby County developed in this dissertation in order to demonstrate the application of 

the suggested models and for loss estimation exercises.  Housing units and housing 

counts are validated by comparing the residential stock accounts between the building 

inventory and external sources, including the US Census.  The structural classification is 

compared with earlier studies (including some performed for Shelby County).  Since 

building footprint data did not exist for all structures in Shelby County, building class 

types were not included in the building inventory.  However, the algorithm was validated 

by performance against digitally created building footprint libraries, described in the 

Results chapter.  Building costs are validated by comparing the building inventory 

account to datasets derived from HAZUS MH MR-3.   

5.1.1. Validating Residential Data using Dwelling Unit Comparisons 

Several sources were used to judge the quality of the inventory produced using 

the methods developed in this dissertation.  The gaps in square footage and/or dwelling 

unit information in the Tax Records was particular cause for concern – the limitations of 

the data required imputation procedures for estimating and accounting for the gaps.   

The Tax Records had substantially fewer gaps in the non-residential and single-

family residential portions of the database.  Most of the gaps were found in multi-family 

residential parcels.  When dwelling unit information was missing for multi-family 

residential buildings, but square footage was available, the number of dwelling units in 

the structure was imputed based on the average square footage per dwelling unit for the 

decade, and included quality control checks for similar (in terms of size and age) multi-

family residential buildings in the vicinity of the imputed building.  Instances with dwelling 
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unit information where square footage was missing were relatively rare.  Where both 

dwelling unit and square footage information were missing, aerial photographs were 

inspected and footprints crudely digitized in order to extract footprint square footage.  

The length of shadows was used to determine the number of stories and therefore the 

total square footage.  Then, the number of dwelling units was imputed using the process 

outlined above.   

If imputation procedures are not appropriate, the resulting housing unit 

information could deviate significantly from established counts and projects.  

Accordingly, the counts of residential housing units were extracted from the building 

inventory database and compared with estimates from the US Census Bureau (US 

Census Bureau 2008), the American Community Survey (American Community Survey 

Office 2006, 2007) and other sources (City-Data.com 2008).   

The sources for the US Census, City-Data and the American Community Survey 

data include Census of Population and Housing Population Estimates, Small Area 

Income and Poverty Estimates, State and County Housing Unit Estimates, County 

Business Patterns, Nonemployer Statistics, Economic Census, Survey of Business 

Owners, Building Permits and the Consolidated Federal Funds Report (US Census 

Bureau 2008).   

Table 5.1 shows the comparison of housing units by residential occupancy from 

three different sources.  While there is some discrepancy in the Duplexes and 

Triplexes/Quads residential occupancy classes, the numbers generally agree and follow 

increasing year trends.   
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Table 5.1 -- Validation of dwelling units by residential occupancy classes 

 

Note in particular that the single-family to multi-family dwelling units proportion 

follows a trend towards a slightly higher number of multi-family residential, but are 

relatively consistent.  In fact, the American Community Survey Office estimated the 2003 

proportion between single-family and multi-family residential dwelling unit ratios at 63% 

to 26% (American Community Survey Office 2007).   

Table 5.2 shows the estimated or recorded numbers of single-family units (based 

on building permits) that have been added to the Shelby County single-family stock 

since 2000.  Note that the total post-2000 count of single-family construction for the 

building inventory is 28,612 while the City-Data.com data amounts to 29,357.  The 

proportions by year are relatively consistent, especially in the 2003-2007 period.   

Occupancy Description Occupancy Building 
Inventory 2008

US Census 
2006

City-Data 
2006

Single-family Residential RES1 269,223                  276,968         255,584         
Multi-family Residential (2 units) RES3A 15,245                    9,815             10,617           
Multi-family Residential (3-4 units) RES3B 8,133                       17,952           19,565           
Multi-family Residential (5-9 units) RES3C 30,782                    32,643           28,297           
Multi-family Residential (10-19 units) RES3D 38,727                    29,730           17,082           
Multi-family Residential (20-59 units) RES3E 25,097                    9,060             
Multi-family Residential (50+ units) RES3F 11,328                    13,904           
Mobile Homes RES2 4,136                       4,065             4,235             
Total Multi-family Residential Housing Units 129,312                  113,104         102,912         
Total Housing Units 402,671                  394,137         362,731         
Single-family Residential RES1 66.86% 70.27% 70.46%
Multi-family Residential (2 units) RES3A 3.79% 2.49% 2.93%
Multi-family Residential (3-4 units) RES3B 2.02% 4.55% 5.39%
Multi-family Residential (5-9 units) RES3C 7.64% 8.28% 7.80%
Multi-family Residential (10-19 units) RES3D 9.62% 7.54% 4.71%
Multi-family Residential (20-59 units) RES3E 6.23% 2.30%
Multi-family Residential (50+ units) RES3F 2.81% 3.53%
Mobile Homes RES2 1.03% 1.03% 1.17%
Total Multi-family Residential Housing Units 32.11% 28.70% 28.37%
Total Housing Units 100.00% 100.00% 100.00%

27,351           

7.54%

Residential Occupancies Data Sources
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Table 5.2 -- Validation using post-2000 single-family residential construction 

Counts Percent Counts Percent
2000                        4,171 14.58% 3,583                      12.20%
2001                        3,485 12.18% 3,450                      11.75%
2002                        3,680 12.86% 4,147                      14.13%
2003                        4,367 15.26% 4,587                      15.62%
2004                        4,490 15.69% 4,736                      16.13%
2005                        4,425 15.47% 4,769                      16.24%
2006                        3,994 13.96% 4,085                      13.91%
Totals                      28,612 100.00% 29,357                    100.00%

Year
Building Inventory 2008 City-Data 2006

 

Table 5.3 compares residential housing unit counts by decade of construction 

between the inventory produced by this dissertation against information derived from 

City-Data.com (2008).  Both sources show a remarkable degree of consistency, being 

off in the counts or percentages by relatively small amounts, and the differences seem to 

decrease in more recent decades.  All the tables are used for validating the building 

inventory developed in this dissertation for Shelby County, by comparing the building 

inventory from this dissertation to estimates from external sources (City-Data.com 2008).  

Figure 5.1 shows the percent of residential housing units constructed by decade for the 

tax-based building inventory and that of City-Data.com (ibid).   

Table 5.3 -- Validation of residential housing units by decade 

Counts Percent Counts Percent
1939 or earlier                    37,613 9.68% 25,924                  7.30%
1940 to 1949                    26,425 6.80% 27,197                  7.65%
1950 to 1959                    56,143 14.46% 55,302                  15.56%
1960 to 1969                    62,693 16.14% 62,321                  17.54%
1970 to 1979                    82,582 21.26% 72,400                  20.38%
1980 to 1989                    60,824 15.66% 57,082                  16.07%
1990 to 1999                    62,115 15.99% 55,077                  15.50%
Totals                  388,395 100.00% 355,303                100.00%

DECADE
Building Inventory 2008 City-Data 2006
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Figure 5.1 -- Residential housing units by decade 

5.1.2. Validation of General Building Stock Characteristics 

The distribution of structure type from the building inventory was compared with 

the results of earlier works on structure type classification (Malik 1995; Jones and Malik 

1997).  The Jones and Malik study results are compared with the building inventory, as 

seen in Table 5.4.  Since the earlier study had only five structure classes, structure type 

counts were collapsed from the building inventory to the same classes to facilitate 

comparisons.  As expected, Wood structures dominate the general building stock, 

increasing from 89% in 1994 to 93% in 2008.  Light metal, Masonry and Concrete 

structure counts reduced to some extent, but not significantly, while Steel structures 

increased in counts significantly.  The comparison is not made to explain a trend – 

rather, it is used to validate the classification results.  The Jones and Malik study inferred 

structures directly from the tax records “supplemented with other information gathered 

from various sources” (Jones and Malik 1997, pp.13), while this dissertation modeled 

structure type based on primary and surveyed (calibration) data, so there are bound to 
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be significant differences, not attributable to temporal change.  Second, the quality of 

Tax Records has significantly improved since 1997, with more details and complete 

records in a relational format – this again could cause significant differences in the 

general building stock.  However, even with the differences, consistent patterns in 

structure type are apparent.   

Table 5.4 -- Comparison with NCEER report (Jones and Malik 1997) 

Structure Type Codes NCEER Study 
1997

Building Inventory 
2008

Wood W 227,099                  283,950                           
Light Metal S3 9,427                      3,522                               
Masonry RM/URM 13,974                    12,741                             
RCC C1/C2/PC2/PC1 2,734                      2,139                               
Prot. Steel S1 463                         3,608                               
Miscellaneous Unknown/MH 2,377                      43                                    
Totals 256,074                  306,003                           
Wood W 88.68% 92.79%
Light Metal S3 3.68% 1.15%
Masonry RM/URM 5.46% 4.16%
RCC C1/C2/PC2/PC1 1.07% 0.70%
Prot. Steel S1 0.18% 1.18%
Miscellaneous Unknown/MH 0.93% 0.01%
Totals 100.00% 100.00%

NCEER study by Barclay G. Jones and Ajay M. Malik (1994)  

Table 5.5 compares the building inventory generated in this research with the 

results of an earlier Earthquake Engineering Research Institute study (Jones and Chang 

1994).  The table compares building counts, areas and replacement costs for residential 

and non-residential occupancies.  While it is possible that significant numbers of 

buildings have been demolished and new ones built, the earlier study may have 

overestimated the counts.  However, in terms of the relative proportions of residential 

and non-residential building counts, areas and replacement values, consistent patterns 

are seen in all three categories.  Note in particular, while residential accounts for over 
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90% of the building stock, it accounts for only about 60% in area and replacement costs 

in both studies.   

Table 5.5 -- Inventory validation by broad occupancy (Jones and Chang 1994) 

Type Broad Use Millions of Sq. ft. Percent Millions of Sq. ft. Percent
Residential 348.8372                       57.68% 630.8122                       62.58%
Non-residential 255.9812                       42.32% 377.2400                       37.42%
Total Buildings 604.8184                       100.00% 1,008.0522                    100.00%

Type Broad Use Number Percent Number Percent
Residential 283,781                         91.59% 288,107                         94.15%
Non-residential 26,074                           8.41% 17,896                           5.85%
Total Buildings 309,855                         100.00% 306,003                         100.00%

Type Broad Use Millions of Dollars Percent Millions of Dollars Percent
Residential 24.4151 56.69% 53.2384 61.00%
Non-residential 18.6548 43.31% 34.0409 39.00%
Total Buildings 43.0699 100.00% 87.2793 100.00%

EERI study by Barclay G. Jones and Stephanie E. Chang (1994)

Building Inventory 2008
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Table 5.6 compares the general building stock characteristics generated in 

HAZUS MH MR-3 with those estimated in the building inventory.  The HAZUS MR-3 

data is current to 2002, while the building inventory is based on the Shelby County Tax 

Digest of 2007.  Accordingly, all comparisons made between the HAZUS MR-3 and this 

building inventory datasets will be relevant for the period up to 2002.  Note also that 

HAZUS MR-3 replacement costs are based on averages for one of 36 specific model 

types, while the building inventory uses a parameterized specification of additional 

model types, heights, external wall type and structural system for the estimation of 

replacement costs.  The building inventory in this table includes only those structures 

built before 2002 and the replacement costs have been adjusted to 2002 costs, using 

the period adjustment specified in the Historical Cost Indexes section of the Means 

manual (R. S. Means 2008).  Significant deviations between the two databases have 

been highlighted in the table.   



 
255

Table 5.6 -- GBS characteristics from HAZUS MH MR-3 and study inventory 

Inventory HAZUS Inventory HAZUS Inventory HAZUS
RES1      252,130 256,335          455,023.60 434,162.03     31.84 40.58
RES2          4,050 4,140                  4,357.48 4,549.27         0.16 0.16
RES3A          7,594 5,298                13,394.65 15,883.50       0.95 1.05
RES3B          2,073 4,861                  7,298.67 14,580.90       0.90 1.05
RES3C          4,171 2,812                26,838.39 22,475.69       3.41 2.88
RES3D          2,799 1,072                31,470.93 12,750.97       3.50 1.46
RES3E             856 186                   17,651.84 5,425.43         1.73 0.61
RES3F               91 273                     9,677.71 13,580.89       1.08 1.49
RES4             326 99                       9,994.21 4,440.77         1.11 0.49
RES5               57 367                        262.85 8,250.30         0.03 1.03
RES6               84 118                     2,428.59 2,082.27         0.26 0.22
COM1          3,780 316                   47,866.64 26,247.34       3.50 1.87
COM2          4,732 1,156              150,083.22 33,484.91       9.39 2.19
COM3          1,507 1,499                  8,116.81 14,919.54       0.75 1.31
COM4          2,790 516                   41,653.85 36,752.17       5.27 4.22
COM5             196 509                        981.18 1,972.69         0.16 0.32
COM6               19 95                       3,556.84 4,268.55         0.63 0.82
COM7             384 919                     5,391.27 6,135.91         0.94 0.87
COM8          1,241 1,924                  5,933.53 9,582.28         0.65 1.41
COM9               28 62                          665.69 363.54            0.07 0.04
COM10               46 -                      6,480.63 -                  0.25 0.00
IND1             702 429                   31,009.77 10,714.43       2.42 0.81
IND2             308 365                     8,989.70 8,212.34         0.58 0.54
IND3                -   206                                -   6,212.21         0.00 0.78
IND4               27 53                          102.14 1,053.78         0.01 0.13
IND5               12 9                            586.53 93.21              0.07 0.01
IND6                -   372                                -   9,360.87         0.00 0.61
AGR1                -   210                                -   2,784.84         0.00 0.18
REL1          1,000 863                     8,261.81 14,691.63       0.97 1.75
GOV1                -   494                                -   5,058.35         0.00 0.47
GOV2               48 54                       1,381.06 526.09            0.19 0.08
EDU1             276 196                   14,617.74 7,918.46         1.60 0.79
EDU2               16 40                     23,200.00 1,387.35         2.52 0.17
Totals 287,336     285,848   937,277.34       739,922.53     74.93 70.37

Building Count Area (thousands of sq. ft.)Specific 
Occupancy

Replacement Cost (billions)

 

For the most part, the data agrees between the two datasets, particularly in 

building counts (some differences are seen for some multi-family residential, retail trade, 

wholesale trade, commercial offices, hospitals, restaurants and medical offices).  The 

Tax Records had little information on Institutional Dormitories (RES5) and Government 

Offices (GOV1).  This results in a significant undercounting of these categories in the 

Tax inventory.  In addition, HAZUS MR-3 models distributions of square footage for all 

occupancy types based on default mapping schemes, and there are bound to be large 
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deviations from reality, particularly in the analyses of small areas and by specific 

occupancy classes.   

The replacement costs between the two databases are similar for all 

occupancies except Residential Single-family (RES1) and Wholesale Trade (COM2).  

Wholesale trade differences arise from the significant differences in square footage (and 

therefore building counts in HAZUS MR-3) between the two databases.  In the single-

family category, the difference in replacement costs amounts to about $ 8.75 billions.  

HAZUS MR-3 models the distribution of basements based on a crude mapping scheme 

and sets 25% of all single-family residences as having full basements.  The Tax Records 

indicated that most of the single-family buildings were built at grade on slab, and only 

about 87,729 buildings had basements – further, this was dominated by part-basements 

or crawl-spaces, not full basements.  When the difference in basement costs were 

applied to the Tax-based inventory, the differences amounted to nearly $ 3 billion.  The 

second reason for the difference in replacement costs stems from the distribution of 

single-family buildings into Economy, Average, Custom and Luxury construction classes.  

HAZUS MR-3 does not provide documentation on the distribution, but analyses of the 

data suggest that the distribution is another example of a top-down mapping scheme 

based on census blockgroup geography-based income ratios developed at the state 

level.  The Tax-based inventory based the distribution on the condition, desirability and 

utility classifications of the residence.  Differences in the relative distributions could lead 

to significant differences in replacement costs, although it was not possible to quantify 

this difference.  The third reason for the difference stems from the fact that the 

replacement cost in the dissertation was derived from the assumption that the building 

would be built in 2008 to the same specifications (of occupancy, height, structure and 

external wall type) as the original.  A large number of the buildings in the Tax Records 
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had external walls of wood siding on wood frame or brick veneer on wood frame, 

resulting in lower per square foot costs when compared with the average per square foot 

costs that HAZUS MR-3 uses.   

In terms of total building counts, the databases are almost exact.  There is a 20% 

difference in square footage and a 6% difference in replacement costs for the entire 

inventory from the two databases.  Considering that HAZUS MR-3 uses a top-down 

modeling approach, while the inventory is based on a bottom-up aggregation (and 

accounting for the gaps in the Tax Records), the estimates are fairly close.   

Table 5.7 compares the cost per square foot for all the specific occupancy 

classes between the HAZUS MR-3 and the Tax-based inventory databases.  Note that 

the per square foot costs are comparable (given the difference in years) between the two 

databases.   

Table 5.7 -- Replacement costs per square foot comparisons 

Inventory HAZUS Inventory HAZUS
RES1 - ECONOMY 71.88$            59.58$            COM3 101.10$          100.89$          
RES1 - AVERAGE 77.11$            79.29$            COM4 137.02$          102.69$          
RES1 - CUSTOM 77.91$            99.63$            COM5 172.65$          153.97$          
RES1 - LUXURY 85.00$            117.55$          COM6 192.32$          144.60$          
RES2 40.00$            30.90$            COM7 184.39$          129.82$          
RES3A 77.83$            67.24$            COM8 118.22$          101.57$          
RES3B 134.50$          73.08$            COM9 115.85$          102.35$          
RES3C 138.40$          125.63$          COM10 40.98$            34.78$            
RES3D 121.19$          112.73$          IND1 84.80$            73.82$            
RES3E 106.24$          108.86$          IND2 70.04$            61.91$            
RES3F 120.50$          111.69$          IND4 90.02$            78.61$            
RES4 121.22$          104.63$          IND5 124.06$          119.51$          
RES5 124.60$          113.31$          REL1 127.77$          114.08$          
RES6 116.10$          104.62$          GOV2 148.33$          117.32$          
COM1 79.05$            77.17$            EDU1 119.07$          95.21$            
COM2 68.01$            59.24$            EDU2 118.16$          114.68$          

Replacement Costs/sq. ft. Replacement Costs/sq. ft.Specific 
Occupancy

Specific 
Occupancy
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The square footages used in the building inventory fall comfortably in the ranges 

specified in the Means manual.  Note that the per square foot costs for 3 of the 4 single-

family categories are significantly higher in HAZUS MR-3, because of the exterior wall 

specification and the distribution of basements.   

5.2. Applicability of Research Methods to Other Fields 

ANNs offer great potential for application in several disciplines.  While there are 

several parametric models to choose for a particular application, the very nature of 

parameterization renders them somewhat inflexible.  However, the parameters are 

associated with quantitative measures and tests that enable detailed explanations of the 

relationships between the dependent variable and the explanatory ones.  In contrast, 

ANNs are semi-parametric in nature, and are extremely flexible.  Further, ANNs are far 

more forgiving of noisy or faulty or partly missing data than parametric models.  

However, the evaluation of ANN models is generally based on their performance, rather 

than on a quantitative relationship between inputs and outputs.  Hence in applications 

where performance is emphasized over explanation, ANNs may be used with extremely 

good results.   

ANNs may be used in a variety of applications that require function 

approximation, classification or time-series modeling.  Thus, ANNs may be used in 

transportation modeling to determine mode choice, or in traditional urban planning to 

model land use change using historical data in combination with aerial imagery, or to 

approximate the process of land transformation and building conversion in an urban 

setting, or even in scenario-based urban development modeling for decision support.  In 

fact, ANNs lend themselves to excellent applications in cellular automata that may be 

used with raster-based GIS for urban growth modeling.  ANNs are increasingly being 

used in remote sensing and photogrammetric applications for land use and land cover 
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classification.  While this dissertation uses ANNs in order to develop a classifier 

mechanism, ANNs have also been used effectively for function approximation and time-

series modeling.  Based on historic data, ANNs have been used to predict future trends 

and may be used in business applications.  ANNs can model housing price using 

location, housing characteristics and spatial autocorrelation.  In short, there are few 

substantive areas that will not benefit from using ANNs.   

The shape recognition routines developed in this research may be extended to 

more complex shapes and for the development of building databases for seismic and 

wind hazards.  Shape recognition routines may be used in combination with footprints 

generated through automated routines from aerial imagery in applications to predict the 

occupancy characteristics of buildings – this would particularly be useful in developing 

base data for regions that have no existing digital data.  In other words, the relationship 

between spatial layouts of buildings and their usage may be tailored in a building shape 

recognition application to classify building features by occupancy.   

Building valuation routines used in this research may be used to quantify and 

model public and private immovable assets and for portfolio management.  In addition, 

the results of building valuation may be used to detect patterns in the spatial 

configuration of assets for a variety of applications.   

5.3. Implications of the Research 

An accurate accounting of the physical assets of a community is necessary for 

risk assessment and damage estimation modeling, but such accuracy is wanting.  Much 

of the responsibility for mitigation planning and the reduction of community vulnerability 

lies with local governments, and if they are to play a greater role in mitigating hazard 

risks, a complete description of the at-risk built environment is a prerequisite.  Clearly, 
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mitigation planning needs factual information about the built environment, but if the 

inputs to mitigation planning are suspect, then the estimates produced by any hazard 

modeling exercises in the context of mitigation planning would also be inaccurate.  

Additionally, research suggests that reducing uncertainty in hazard modeling has 

substantial benefits for mitigation through loss-avoidance regulations, code enforcement, 

design guidelines, directed land use planning and growth management and policy-

making in general.   

Bounds on the Accuracy of the Building Inventory 

The process of seismic risk assessment is characterized by considerable 

aleatoric and epistemic uncertainty, particularly in the location of the seismic hazard, 

propagation of seismic energy, site response and building behavior.  Given this context, 

is it worth incurring increasing costs in order to develop an accurate building inventory?  

Phrased another way, how accurate does the building inventory need to be, given that 

loss estimates are widely uncertain anyway?  While there is no clear answer to this 

question, it is obvious that there are diminishing marginal returns in attempting to be 

completely accurate in the building inventory.  To some extent, accuracy in the building 

inventory may be conceptualized as a function of the variable costs of collecting samples 

for structure type calibration (since model development and estimation are sunk costs, 

and data for building valuation are readily available from primary sources).  Depending 

on the number of distinct structure types to be estimated, the total occupancy types and 

the total population of buildings, the costs for sample collection may vary – if external 

sources of funding are available for hazard mitigation planning, more samples may be 

acquired.  Alternately, local jurisdictions facing seismic hazards could implement specific 

policies related to data collection, particularly in the context of the building permit 

approval and code enforcement process.  Even without considering the uncertainty in 
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risk assessment, there are direct benefits in increasing the factual accuracy of the 

general building stock.  Planners of local jurisdictions may get a clearer understanding of 

the spatial distribution of capital assets and more importantly, the distribution of 

structures particularly vulnerable to seismic hazards, such as old concrete or 

unreinforced masonry buildings.  Analyzing these spatial distributions against the 

locations of hazardous areas would enable planners to direct land uses, manage growth, 

enforce seismic building codes for new construction and develop strategic measures for 

retrofitting vulnerable structures.   

Funding for developing such accurate descriptions of the built assets is low, at 

present, and local governments are forced to make do with sub-optimal procedures or 

inaccurate data for their mitigation planning needs.  Complete and comprehensive 

inventories of the building inventory are cumbersome to create and are time and 

resource intensive, primarily because the attributes of buildings for hazard modeling and 

loss estimation are not easily obtained.  There exists therefore a significant need for new 

technologies and innovative methods aimed at both reducing uncertainty and costs in 

the modeling process.  This research has demonstrated the development of an accurate 

and reliable building inventory at relatively low cost.   

A second implication of this research is the utilization of a combination of primary 

and derived data in a bottom-up approach to inventory development.  Primary data 

usually exists in some form with the Tax Assessor, while local planning jurisdictions 

often have aerial images, road, hydrography, rail and other planimetric and cadastral 

datasets.  Non-taxable properties are not recorded by the Tax Assessor and require 

compilation from other sources (churches, schools, and other government buildings).  

Previous studies that model the building inventory use indirect methods, relying on 

consistent and systematic regularities in patterns of location, distribution of building 
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occupancies and relative sizes, and other associated characteristics like structural 

systems and height, etc.  These approaches assume that while there may be large 

variation over individual buildings or in small areas, the regional or macro characteristics 

will remain constant.  In general, these studies are performed for one or two specific 

regions in order to examine the pattern and then the pattern is replicated to model 

inventories for other regions.  While the consistency is definitely observed at the regional 

scale, local and individual variation can potentially cause tremendous uncertainty in 

estimates of damage in loss estimation exercises.  HAZUS MR-3 uses such indirect 

methods and models square footage distributions using a top-down approach (found in 

the various “mapping” schemes) and distributes the square footages to various 

occupancies and structure types.  Of course, exogenous controls such as the census of 

demographics and housing and business accounts are used to guide the disaggregation 

process, but these controls are static over long time periods, while local growth 

trajectories lead to significantly different distributions of occupancies and structure types.  

This research argues that a bottom-up approach that uses primary data derived at the 

local level would be far more consistent and accurate and further, maintain that 

consistency and accuracy over time.   

Geographic Bounds for Generalization of Building Inventory Models 

While the bottom-up inventory modeling approach will produce more reliable 

accounts for the region, is there a geographic size limit to generalizing from the sample?  

In other words, if samples are collected from the City of Memphis, are the models 

accurate and valid for Shelby County, South-west Tennessee, the entire state of 

Tennessee, or a generally large continuous region around Memphis that includes parts 

of other states?  At what scale does the bottom-up approach then become a top-down 

approach? Posed another way, could the model parameters estimated from samples 
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drawn from the City of Memphis be used to develop the building inventory data for the 

City of St. Louis, or for East Arkansas or Southern Illinois?   

In general, if base conditions remain the same, model parameters estimated from 

local samples may be used for large regions or even other small regions elsewhere in 

the country.  But there are too many local and regional variations for general use of 

models calibrated from local sample data to permit complete generalization.  The 

valuation models for buildings are based on parameters such as occupancy, height, area 

and structure type as related to costs of construction – these patterns are observed at 

the individual building level (not for the region) and the models are parameterized for 

particular combinations of the input variables.  Similarly, the shape recognition 

application depends on the shape of the building footprint that clearly does not change 

across regions.  Consequently, valuation models and shape recognition applications 

may easily be generalized to other regions or scales without difficulty or concern over 

accuracy, after making regionally based adjustments to reflect transportation and 

constructed-related cost variations for the valuation component.  Structure type models 

are more difficult to generalize.  There are three primary factors limiting such 

generalization, including construction practices, building codes and geographic scales.   

First, construction patterns and practices vary in response to climate, 

topography, availability and cost of raw materials and labor, etc.  Thus, the types of 

structures one might see along a beachfront would be different from those in mountains 

or in dry-desert areas, and consequently, structure type models developed for Miami 

may not be easily generalized to Phoenix.   

The adoption of building codes and standards of construction at the local level 

influences the types of structures and the resulting costs of protecting the population 

against specific disaster risks.  For instance, the State of California has mandated the 
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necessity of mitigating against earthquake risk through adoption of the International 

Building Code (ICC 2000) for individual building standards and the incorporation of the 

seismic safety element in comprehensive planning for general planning.  Shelby County 

and the City of Memphis, TN have been resisting the adoption of the International 

Building Code, citing associated increases in costs of construction that could drive 

potential investors away and inhibit local economic development.  While economic 

development is indeed always a concern, mitigation measures that influence the life-

safety of local populations are heavily reliant on risk attitudes and understanding of risk 

on the part of local decision-makers.  In mid-America, the last major seismic event 

occurred almost two centuries ago, and local decision-makers tend to adopt pro-risk 

attitudes by comparing the present-day tangible costs of incorporating seismic safety 

against the benefits of an event in the future (ranging over 3000 years) that might not 

happen, or has a very low probability of occurrence or that might occur elsewhere in the 

vicinity, causing little damage in their jurisdiction.  This results in an uneven distribution 

of structures over time across regions.  Consequently, model parameters derived from 

samples in San Fernando, CA may not be effectively generalized to produce inventory 

estimates for Shelby County, TN.   

Closely associated with legislative mandates for seismic safety are how laws and 

codes are enforced.  This aspect is harder to measure – for instance, the definition of 

Unreinforced Masonry varied across cities and regions (unreinforced infill walls within a 

reinforced frame or unreinforced bearing walls or even unreinforced exterior veneers on 

wood frames), so when legislation disallowed the construction of these structures (based 

on date of adoption), the momentum of traditional construction practices coupled with 

nomenclature confusion prevented the consistent enforcement of masonry building 

codes across regions.  Differences in the code adoption dates, code enforcement 
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training and local attitudes to code enforcement also result in regional variations of 

construction types.  Again, these reasons could potentially prevent easy generalization 

of structure type models across regions.   

Another aspect reflecting choice in structure type is related to the scale of the 

local region and its growth patterns.  There are clear differences in the building stock for 

large cities like Memphis, TN and Los Angeles, CA compared with isolated urban places, 

cities or towns with corresponding smaller populations or rural regions.  Similarly, there 

are differences in building stock by structure type and occupancy based on the speed of 

growth – a rapidly growing region would be characterized by more residential stock first 

and then commercial-industrial stock, while slow-growth areas demonstrate stable 

patterns of building types.  Thus, the region’s growth rate would reflect occupancy and 

structure type patterns that differ from other rates, and generalization could be 

implemented across regions after adjusting for growth rates.  Overall, this research 

recommends developing structure type inventory based on samples drawn from the local 

region being modeled.   

5.3.1. Specific Implications 

This study derives three major components that may be used for loss estimation 

modeling – models for the classification of buildings by structural system, algorithms for 

recognizing the shape of buildings from their footprints and estimation techniques for 

building valuation. 

For the structure type classification, the research established the consistency 

between a traditional parametric approach using a multinomial logistic regression 

specification and a numerical basis approach using artificial neural network models.  

While ANNs do show marginally better performance results than multinomial logistic 
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regression approaches, the logistic models have far greater explanatory power and 

enable greater understanding, interpretation and evaluation of the relative contributions 

of the independent variables to particular outcomes.  Depending on the application, the 

marginally higher performance of ANNs may not be worth the complete loss of 

explanatory power and parametric evaluation permitted by multinomial logistic 

regression approaches.  In this research, the multinomial logistic regression model 

serves as a vehicle to formally express the relationships between the inputs and the 

structure type outcomes.  The inherent flexibility and noise-forgiving nature of the semi-

parametric neural computing approaches allow for slightly better performance and 

implementation in the production datasets, so ANN specifications were used to 

implement structure type classifications for the building inventory production dataset.   

Thus, local communities can collect survey data on structure type of buildings 

within their jurisdictions, which while expensive is far less time or resource consuming 

than surveying all the buildings or relying on inaccurate existing data and/or sub-optimal 

methods.  Subsequently, structure type classifications may be calibrated and validated 

using the survey data, and the parameters applied to the unseen buildings in order to 

estimate the structure type for the entire building stock.   

One of the outputs of the structure type classification models is a logistic or 

hyperboloid tangent function magnitude that lies in the 0 to 1 range, and as such, may 

be interpreted as the probability of the given input combination that realize that particular 

structure type outcome.  Thresholds may be set for the magnitude of the probability, 

below which further investigation may be warranted. Additionally, as described in detail 

in Section 4.2.1.5, combinations of low probability scores and competing probability 

scores should be examined in greater detail, particularly for Unreinforced Masonry 

structures.  Since resources for retrofitting are limited, local communities should pursue 
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a strategic approach and identify those structures that are most vulnerable to 

earthshaking hazards, and particularly those that pose threats to life safety.  Utilizing the 

probabilistic output of the classification models would enable the design of risk reduction 

strategies, reduce the uncertainty in structure type classification through follow-up 

surveys for ambiguous classifications and enhance the process of mitigation planning.   

The dissertation also demonstrated the implementation of innovative spatial 

computation techniques for building configuration recognition from building footprints in 

the GIS environment.  To date, this type of automated shape recognition has not been 

developed for building footprints in the GIS arena.  The syntactic approach of landmark 

correspondence, whose roots are derived from pattern recognition, is less 

computationally intensive and more efficient, and has been automated.  The 

performance of the algorithm for manually digitized building footprints is excellent, while 

the algorithm faces some difficulty in recognizing footprints that were automatically 

extracted from aerial imagery.  In its defense, classifying these automatically extracted 

footprints was difficult even for humans.   

Finally, the dissertation estimated the replacement value of buildings by curve 

fitting routines that parameterize per square foot construction costs by occupancy, 

height, exterior wall and structural frame type.  Further, the replacement costs were 

decomposed into structural, nonstructural acceleration- and drift-sensitive costs, based 

on the different assembly costs specified in Means and on classifications uncovered in 

the literature review.  Note that the structure type was derived from the ANN 

specifications and then used in combination with other primary data for estimating 

building replacement costs.   

In general, the methods that generate the specific components required as 

attributes for the building in loss estimation modeling are all replicable and produce 
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reliable, consistent and accurate building inventory data at a fraction of the costs of 

traditional survey methods.  Further, while the benefits of reduced uncertainty in the 

context of mitigation planning do not lend themselves for easy quantification, studies 

show that they do exist and are substantial.   

5.3.2. Limitations of the Research and Future Directions 

5.3.2.1. Limitations in Structure Type Classification Modeling 

One primary limitation of the research was that the structure type classification 

module was limited to 11 categories.  Several studies have parameterized the behavior 

of several other structure types not found in this dissertation.  Specifically, Steel 

structures may be further classified as Steel Moment Frame, Steel Braced Frame, Steel 

Frame with Concrete Shear Walls, and Steel Frame with Unreinforced Masonry Infill 

Walls.  The main reason that the study limited itself to just one type of steel frame 

building was that detecting the other steel frame types was not possible in the context of 

a windshield survey.  However, a combination of the external wall data from the Tax 

Records and the structure type classification module could be used to subdivide steel 

frame into the appropriate sub-classes.  The same argument holds for Concrete Frames 

with Unreinforced Masonry Infill Walls and Reinforced Masonry Bearing Walls with 

Precast Concrete Diaphragms.  The structure type module could still be used with the 

parsimonious specification, and the Concrete, Steel and Reinforced Masonry categories 

could be subdivided into other categories using database searches of external wall 

specifications.  The disadvantage of increasing the number of structure type categories 

is that the calibration sample counts need to be substantially higher, with at least 10 

exemplars for each occupancy-structure type combination, and this cannot be 

determined a priori, so additional field surveys may need to be performed to fill gaps in 

the occupancy-structure type cross-tabulations.   
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Related to the structural component, another limitation of the research in terms of 

building behavior under earthshaking stresses is that this dissertation does not model or 

identify the foundation type of the building.  The type of foundation is a key attribute that 

influences the capacity of a building to withstand ground motion stresses and is much 

more difficult to identify, because it is hidden from view.  Modeling foundation type was 

beyond the scope of this dissertation, and would clearly add value to the process of 

estimating damage to a building under earth-shaking.   

While the structure type module does classify structures adequately and 

demonstrate the potential for automation, a future extension of this module could embed 

the MLP ANN engine within a GIS framework.  Local community planners could develop 

a preliminary inventory with the necessary variable specifications for structure type 

classifications along with the calibration and validation sample data, train the embedded 

ANN engine to develop parameters and implement them to classify the entire building 

inventory by structure type, all without leaving the GIS environment.   

5.3.2.2. Limitations in the Shape Recognition Application 

One limitation with the shape recognition module is that it fails to identify 

separate buildings that exist very closely.  In other words, if two distinct rectangular 

buildings are located at the same orientation and separated by 6 inches, the shape 

recognition application would recognize them as a single building and not as two 

separate buildings.  Technically, this is a limitation of the shape extraction component 

that is beyond the scope of this dissertation, and does not really reflect inadequacies in 

the shape recognition module.  The building footprint is captured either through manual 

digitization or through automatic extraction routines from aerial photographs.  Small gaps 

of less than 2 feet between buildings would be observed indistinctly as linear pixels, and 

in some cases, not observed at all, depending on the scale of the buildings, the 
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resolution of the input image and shadow artifacts in the input image.  If such gaps are 

not noticeable by the human eye from the image, the extraction process would treat the 

two structures as a single building, even if they were of different heights.  A similar 

argument holds for the non-recognition of expansion joints within the same structure or 

expanded structures.  The identification of close, but separate buildings is important for 

two reasons.  First, the response of the building to ground motion depends on its shape, 

and the overall shape of the composite structure would be identified in a different 

category than each of the buildings in close proximity.  Second, if the two buildings were 

built at different times or to different design specifications (such as differences in 

interstory height, or structure type), ground motion translated to interstory drift would 

result in one structure impinging or pounding against others in close proximity.  

Additionally, failure of one building could potentially cause failure of other proximal 

buildings.  The overall effect of not recognizing buildings in close proximity as separate 

structures could potentially underestimate damage in these building groups.  In general, 

local regulations on minimum setbacks and distances between structures prevent 

occurrences of structures built in close proximity.  However, in older areas of cities, 

several “row” type structures are observed as typical commercial/retail establishments – 

these structures may have been built at different times or to different specifications and 

are rarely captured or extracted as individual building segments.  Typical expansions to 

existing structures like hospitals also follow similar patterns – the expanded structure 

may be built to different specifications and separated from the original structure by a thin 

expansion joint.  In summary, the shape recognition module does not identify separate 

buildings that exist in very close proximity.   

The shape recognition algorithms did not perform as well for buildings 

automatically extracted from aerial photographs, owing to noise in the exterior contour of 
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the building footprint.  One area for future research could be to achieve a higher degree 

of generalization in the building footprint extraction process using smoothing routines.  

Another potential area for future research could be to use the extracted footprints in 

vector form in Fast Fourier or Wavelet Transformation routines or even design specific 

generalization and smoothing routines to smooth the external contour and then apply the 

shape recognition routines to classify the building.  A third study could be directed at 

designing simplification algorithms to use relative measures such as line segment length 

ratios or subtended polygon area ratios, in order to lessen the sensitivity of 

generalization to scale.   

The preprocessing components for the shape recognition module have been 

designed to eliminate very small and well specified protrusions and intrusions in the 

contour of the building footprint.  Currently, the preprocessing routines do not eliminate 

successive convexities or concavities or combinations of successive convexities and 

concavities, nor do they eliminate concavities or convexities at building corners.  

Additional routines could be designed and written to comprehensively eliminate all types 

of convexities and concavities along any region of the contour.  The geometry of the final 

simplified building footprint configuration could then be used to derive the exact locations 

of the centers of gravity and shear for the building in order to determine loading 

eccentricity.   

A third area of future research in shape recognition that is not covered in this 

dissertation is a process to reconcile classes based on generalization thresholds (areal 

percentages or length-based measures) in order to resolve class ambiguities.  For 

instance, if the stem of a T-shaped building forms less than 10% of the building’s total 

footprint area, then that building’s class could be adjusted from a T-shape to a 

rectangular shape.  This would require input from structural engineers in order to 
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determine boundary thresholds and rules to adjust classes between pairs of shapes (L-

shape to rectangle, Z-shape to T-shape, etc.).   

The shape recognition module of this research limits itself to the two-dimensional 

classification of building footprint configurations.  For damage assessment and 

modeling, the three-dimensional massing is equally important.  Future research could be 

directed to develop a typology of massing characteristics for all the two-dimensional 

classes (symmetric L-shape, minor asymmetric L-shape along longer/shorter dimension, 

major asymmetric L-shape along longer-shorter dimension, etc.) and then develop 

methods to classify buildings using a combination of shape configuration and massing.   

Shape configurations of buildings have been analyzed in terms of concavities 

affecting the behavior under shaking stresses for individual buildings, but these studies 

are few in number.  A key area of damage modeling could estimate the behavior of 

various building shape classes by relating massing, shape, the number of concavities 

and loading eccentricities to induced damage.  The results could be simplified and 

parameterized for efficient loss estimation at a regional level.    

5.3.2.3. Limitations in Building Valuation Modeling 

The separation of replacement costs into structural and nonstructural 

acceleration- and drift-sensitive components in this research was based on broad 

construction assemblies.  Substantial research has been directed in the recent past 

(Porter 2005) that go beyond the primary assemblies into very specific and detailed 

component sub-assemblies that may be parameterized by occupancy class.  Additional 

areas of research could include surveys of several occupancy classes for detailed sub-

assemblies in order to develop combined fragilities for sub-assembly groups.  This 

approach would not only enable the modeling of damage to nonstructural components 
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with reduced uncertainty, but also help in developing better engineering design 

guidelines for connections and anchorages between sub-assemblies.  Finally, the lack of 

available data precluded the estimation of content value by specific occupancy class in 

this dissertation.  Future research could therefore be directed to procure content value 

data, calibrated against damage to contents in the context of a real earthquake.   

Despite all these limitations, the research methods were extensively validated 

and demonstrate effectively that advanced technologies and methods may be effectively 

and innovatively applied on combinations of primary and derived data and replicated in 

order to produce a bottom-up, reliable, accurate and cost-effective building inventory.   
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APPENDIX A . Tabulated Summaries and Descriptions of the 

Shelby County Building Inventory 

 

This appendix outlines the structure of the Memphis Test Bed building inventory. 

The inventory covers all of Shelby County, TN and contains details on the mapping of 

“building use” categories from the most specific uses through HAZUS occupancy 

categories to “broad occupancy” categories that are used for presenting summaries in 

this appendix.  The tabulations also contain frequency tables for the building counts by 

structure type and broad occupancy.  Other variables are then summarized as two-way 

cross-tabulations, usually by structure type and/or occupancy.  Each cross tabulation 

was also provided as a separate worksheet in a workbook for dissemination.   

There are a total of 346,393 parcels in the Tax Records.  Of these, 54,841 

parcels did not have any structures (as derived from the Tax Records).  These vacant 

parcels comprise mainly of parcels designated by the Shelby County Tax Assessor as 

“Accessory Improvements”, “Cell Tower sites”, Cemeteries”, “Common Areas” and 

“Parking” for Multi-family or Condominium parcels, “Tax-exempt” and “Vacant Land” – 

39,657 parcels classified as “Vacant Land” in the Tax Records did not have any built 

structures, and therefore may be regarded as undeveloped.   

The building inventory database contains a total of 291,552 land parcels with 

built structures ranging from a maximum of 202 to a minimum of 1. Since some land 

parcels have more than one building, there are 306,003 building records in the dataset.  

Each building inventory database record corresponds to a single building.  Each building 

may be uniquely identified by the field BLDG_ID, designated as a primary key for the 

building database.   
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The inventory is described by the following tables: 

Table Description

Table A.1 Attribute Schema for the Shelby County Building Inventory
Table A.2 Mapping Specific Occupancy to HAZUS Occupancy Classes
Table A.3 Mapping HAZUS Occupancy Categories to General Occupancy Types
Table A.4 General Structure type (Frequency Table)
Table A.5 General Occupancy (Frequency Table)
Table A.6 Cross-tab of Structure type and General occupancy (counts)
Table A.7 Cross-tab of Structure type and General occupancy (percentages)
Table A.8 Cross-tab of Structure type and Number of Stories
Table A.9 Cross-tab of Structure type and Year Built
Table A.10 Cross-tab of Structure type and Basement class
Table A.11 Cross-tab of General occupancy and Basement class
Table A.12 Cross-tab of Structure type and Square Footage class
Table A.13 Cross-tab of Structure type and Replacement cost class
Table A.14 Building Replacement Costs (in millions) by Structure type and General occupancy
Table A.15 Cross-tab of Structure type and Content Value class
Table A.16 Cross-tab of Structure type and Essential Facility designation
Table A.17 Cross-tab of General occupancy and Number of Dwellings in structure
Table A.18 Building Counts by Structure Type and Number of Dwellings in Building  

The descriptions of the inventory are specific for the Memphis Test Bed, Shelby 

County, Tennessee.  The building inventory database shown here contains the 

integrated results of the implementation of the various modules described in the 

research.  Specifically, the structure type was determined using primary Tax Assessor’s 

records in an ANN framework with production parameters calibrated and validated by 

field surveys.  The final structure type is classified as eleven different types, derived from 

the ANN and analyses of the Tax Records.  Inputs to the structure type classification 

model included building area, number of stories, year of construction, presence in a 

historic zone, occupancy and fire rating category.  Since we did not have a spatial 

dataset of building footprints, building shape could not be recorded as part of the 

inventory database.  Using R.S. Means Square Foot Costs for 2008 for a variety of 

occupancies, heights, external wall and structure type combinations, parametric curves 

were estimated in order to determine the replacement costs of each building.  The 
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replacement costs were further decomposed into structural, nonstructural acceleration- 

and drift-sensitive components and content value, and recorded in the same database.   

 

Table A.1 -- Attribute schema for building inventory dataset 

FieldName Description
PAR_ID Parcel Identifier (Duplicates allowed for multiple buildings in the same parcel)
PARID_CARD Improvement Identifier (Duplicates allowed for identical buildings in the same parcel)
BLDG_ID Building Identifier (Unique, Primary Key Constraint -- No Duplicates allowed for this field)
LAT Latitude of Parcel Centroid in Geographic Coordinate System, NAD 1983
LON Longitude of Parcel Centroid in Geographic Coordinate System, NAD 1984
STR_TYPE General Structure Type (used for summarized tabulations in this workbook)
STR_PROB Structure Type Probability score derived from the Artificial Neural Network Model
YEAR_BLT Year of building construction
STORIES Total number of stories for the building
A_STORIES Total number of above-ground stories for the building
B_STORIES Total number of below-ground stories for the building
BSMT_TYPE Basement type
SQ_FEET Total building area in square feet
GSQ_FEET Total ground floor area for the building in square feet (computed)
NO_DU Total number of dwelling units in the building
EF Essential Facility designation
APPR_VAL Appraised value for the building in dollars, inherited from Tax Records (incomplete)
REPL_CST Replacement cost in dollars for the building from R.S.Means Square Foot Costs 2008
STR_CST Structural component of the replacement cost in dollars
NSTRA_CST Acceleration-sensitive component of the replacement cost in dollars
NSTRD_CST Drift-sensitive component of the replacement cost in dollars
CONT_VAL Value of building contents in dollars
DGN_LVL Design-level for the building as per HAZUS MR-3 specifications
OCC_TYPE Broad HAZUS Occupancy Category -- Multi-family Residential specified by "RES3" only
OCC_DETAIL Specific Occupancy Category, describing the detailed use of the building
MAJOR_OCC Major Occupancy category for the parcel in which the building is sited
BROAD_OCC General Occupancy categories (used for summarized tabulations in this workbook)
IMPUTED Imputed record designator, used to complete the building database
XCOORD X-Coordinate of the building in Tennessee State Plane, NAD 1983, feet
YCOORD Y-Coordinate of the building in Tennessee State Plane, NAD 1983, feet
STR_TYP2 Detailed Structure Type as per HAZUS MR-3 specifications
OCC_TYPE2 Detailed HAZUS Occupancy Category for the building
TRACT_ID Census Tract Identifier in which the building is located
CT_LAT Latitude of Census tract in which the building is located
CT_LON Longitude of Census tract in which the building is located  
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Table A.2 -- Mapping Tax Record-based specific occupancy to HAZUS MH MR-3 

specific occupancy categories 

S. No. Detailed Use of Building No. of 
Bldgs

HAZUS 
Occupancy General Occupancy

1 APT <100 UNITS 2,048         RES3 Multi-family Residential
2 APT >100 UNITS 6,323         RES3 Multi-family Residential
3 APT HI-RISE 36              RES3 Multi-family Residential
4 AUTO DEALER/F-SERVICE 170            COM2 Wholesale Trade
5 AUTO SERVICE GARAGE 972            COM3 Light Industrial
6 BANK 220            COM5 Office Commercial
7 BAR/LOUNGE 96              COM8 Food and Entertainment
8 BOWLING ALLEY 5                COM8 Food and Entertainment
9 BRDING-ROOMING HOUSE 45              RES5 Multi-family Residential
10 CAR WASH - AUTOMATIC 120            COM3 Light Industrial
11 CAR WASH - MANUAL 107            COM3 Light Industrial
12 CINEMA/THEATER 26              COM9 Light Industrial
13 CLUB HOUSE 367            COM8 Food and Entertainment
14 COLD STORAGE 15              IND2 Light Industrial
15 COLLEGES 16              EDU2 Education
16 COMM SHOPPING CENTER 105            COM1 Retail Trade
17 CONDO UNIT 1,096         RES3 Multi-family Residential
18 CONVENIENCE FOOD MKT 446            COM1 Retail Trade
19 COUNTRY CLUB 32              COM8 Food and Entertainment
20 CULTURAL FACILITIES 2                COM9 Light Industrial
21 DAY CARE CENTER 181            COM3 Light Industrial
22 DEPARTMENT STORES 106            COM1 Retail Trade
23 DOWNTOWN ROW TYPE 254            COM1 Retail Trade
24 DUPLEX 6,608         RES3 Multi-family Residential
25 ECONOMY APTS 858            RES3 Multi-family Residential
26 FIRE STATIONS 13              GOV2 Office Commercial
27 FLEX WAREHOUSE 197            IND2 Light Industrial
28 FRANCHISE FOOD 494            COM8 Food and Entertainment
29 FUNERAL HOME 37              COM4 Office Commercial
30 HANGAR 14              IND2 Light Industrial
31 HEALTH SPA 11              COM8 Food and Entertainment
32 HOSPITALS 22              COM6 Health Care
33 HOTEL/MOTEL HI RISE 38              RES4 Multi-family Residential
34 HOTEL/MOTEL LO RISE 293            RES4 Multi-family Residential
35 KWIK LUBE 43              COM3 Light Industrial
36 LIBRARY 6                COM4 Office Commercial
37 LUMBER STORAGE 3                COM2 Wholesale Trade
38 MFG/PROCESSING 736            IND1 Heavy Industrial
39 MINI WAREHOUSE 1,016         COM2 Wholesale Trade
40 MOBILE HOME PARK 43              RES2 Multi-family Residential
41 NBHD SHOPPING CENTER 153            COM1 Retail Trade
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Table A.3 -- (cont’d from previous) Mapping Tax Record-based specific occupancy 

to HAZUS MH MR-3 specific occupancy categories 

S. No. Detailed Use of Building No. of 
Bldgs

HAZUS 
Occupancy General Occupancy

42 NIGHT/CLUB/DNR THEATER 17              COM8 Food and Entertainment
43 NURSING HOME 65              RES6 Multi-family Residential
44 OFFICE BLDG H-R 5ST 86              COM4 Office Commercial
45 OFFICE BLDG L/R 1-4S 1,994         COM4 Office Commercial
46 OFFICE CONDOMINIUM 781            COM4 Office Commercial
47 OFFICE MEDICAL 358            COM7 Office Commercial
48 PARKING GARAGE/DECK 50              COM10 Parking Garage
49 POLICE STATIONS 35              GOV2 Office Commercial
50 PREFAB WAREHOUSE 1,493         COM2 Wholesale Trade
51 RADIO/TV TRANSMITTER BLD 13              IND2 Light Industrial
52 RADIO/TV/MIN PIC STUDIO 2                IND2 Light Industrial
53 RAIL/BUS/AIR TERMINAL 2                IND2 Light Industrial
54 RECREATIONAL/HEALTH 29              COM8 Food and Entertainment
55 REGIONAL SHPMALL/CNT 17              COM1 Retail Trade
56 RELIGIOUS 1,021         REL1 Places of Worship
57 RES ON COMM LAND 1,082         RES1 Single-family Residential
58 RESEARCH & DEVELOPMENT 14              IND5 Light Industrial
59 RESTAURANT 248            COM8 Food and Entertainment
60 RETAIL CONDOMINIUM 15              COM1 Retail Trade
61 RETAIL MULTI OCCUP 503            COM1 Retail Trade
62 RETAIL SINGLE OCCUP 1,932         COM1 Retail Trade
63 RETIREMENT CENTER 21              RES6 Multi-family Residential
64 SCHOOL 280            EDU1 Education
65 SERVICE STATION FULL SERVICE 179            COM3 Light Industrial
66 SINGLE-FAMILY RESIDENTIAL1 118,140     RES1 Single-family Residential
67 SINGLE-FAMILY RESIDENTIAL2 128,273     RES1 Single-family Residential
68 SINGLE-FAMILY RESIDENTIAL3 15,149       RES1 Single-family Residential
69 SINGLE-FAMILY RESIDENTIAL4 6,801         RES1 Single-family Residential
70 SKATING RINK 10              COM8 Food and Entertainment
71 SOCIAL/FRATERNAL HALL 14              RES5 Multi-family Residential
72 STORE-RETAIL 6                COM1 Retail Trade
73 STRIP SHOPPING CNTR 415            COM1 Retail Trade
74 SUPERMARKET 68              COM1 Retail Trade
75 SWIMMING-INDOOR POOL 3                COM8 Food and Entertainment
76 TELEPHONE EQUIPMENT BLDG 5                IND2 Light Industrial
77 TENNIS CLUB - INDOOR 10              COM8 Food and Entertainment
78 TOWNHOUSE 946            RES3 Multi-family Residential
79 TRIPLEX 218            RES3 Multi-family Residential
80 TRUCK TERMINAL 76              IND2 Light Industrial
81 VETERINARY CLINIC 50              COM7 Office Commercial
82 WAREHOUSE 2,209         COM2 Wholesale Trade

Total 306,003     
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Table A.4 -- Mapping HAZUS MH MR-3 occupancy categories to general 

occupancy classes 

S. No. HAZUS 
Occupancy

HAZUS Occupancy 
Description

Building 
Count

Percent 
Buildings General Occupancy

1 COM1 Retail Trade           4,020 1.31% Retail Trade
3 COM2 Wholesale Trade           4,891 1.60% Wholesale Trade

4 COM3 Personal and Repair Services           1,576 0.52% Light Industrial

5 COM4 Professional/Technical 
Services           2,930 0.96% Office Commercial

6 COM5 Banks              220 0.07% Office Commercial
7 COM6 Hospital                22 0.01% Health Care
8 COM7 Medical Office/Clinic              408 0.13% Office Commercial
9 COM8 Restaurants and Bars           1,322 0.43% Food and Entertainment

10 COM9 Theaters                28 0.01% Light Industrial
2 COM10 Parking Garages                50 0.02% Parking Garage

11 EDU1 Education (Graded Schools)              280 0.09% Education

12 EDU2 Education (Colleges)                16 0.01% Education

13 GOV2 Emergency Services 
(Police/Fire/EOC)                48 0.02% Office Commercial

14 IND1 Heavy Industrial              709 0.23% Heavy Industrial
15 IND2 Light Industrial              324 0.11% Light Industrial
16 IND4 Food/Drugs/Chemicals                27 0.01% Light Industrial
17 IND5 High Technology                14 0.00% Light Industrial
18 REL1 Place of Worship           1,021 0.33% Places of Worship
19 RES1 Single-family Residential       269,442 88.05% Single-family Residential
20 RES2 Mobile Home                43 0.01% Multi-family Residential

21 RES3A Multi-family Residential (2 
units)           7,026 2.30% Multi-family Residential

22 RES3B Multi-family Residential (3-4 
units)           1,441 0.47% Multi-family Residential

23 RES3C Multi-family Residential (5-9 
units)           1,972 0.64% Multi-family Residential

24 RES3D Multi-family Residential (10-19 
units)           2,100 0.69% Multi-family Residential

25 RES3E Multi-family Residential (20-59 
units)           3,132 1.02% Multi-family Residential

26 RES3F Multi-family Residential (50+ 
units)           2,464 0.81% Multi-family Residential

27 RES4 Temporary Lodging 
(Hotel/Motel)              331 0.11% Multi-family Residential

28 RES5 Institutional Dormitory                59 0.02% Multi-family Residential
29 RES6 Nursing Home                87 0.03% Multi-family Residential

Totals       306,003 100.00%

n.b. Total Multi-family residential units = 18,135 or 5.93%  
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Table A.5 -- General Structure type (Frequency table) 

General Structure Type Code No. of Buildings Percent
Concrete Moment Resisting Frame C1                             913 0.30%
Concrete Frame with Concrete Shear Wall C2                               81 0.03%
Manufactured Home MH                               43 0.01%
Concrete Tilt-up PC1                          1,110 0.36%
Precast Concrete Frame PC2                               35 0.01%
Reinforced Masonry RM                          1,600 0.52%
Steel Frame S1                          3,608 1.18%
Light Metal Frame S3                          3,522 1.15%
Unreinforced Masonry URM                        11,141 3.64%
Light Wood Frame W1                      271,853 88.84%
Commercial Wood Frame W2                        12,097 3.95%
Totals 306,003                     100.00%  

 

 

Table A.6 -- General occupancy classes (Frequency table) 

General Occupancy Category No. of Buildings Percent Buildings
Education 296                                    0.10%
Food and Entertainment 1,322                                 0.43%
Health Care 22                                      0.01%
Heavy Industrial 709                                    0.23%
Light Industrial 1,969                                 0.64%
Multi-family Residential 18,643                               6.09%
Office Commercial 3,605                                 1.18%
Parking Garage 50                                      0.02%
Places of Worship 1,021                                 0.33%
Retail Trade 4,013                                 1.31%
Single-family Residential 269,464                             88.06%
Wholesale Trade 4,889                                 1.60%
Totals 306,003                             100.00%
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Table A.7 -- Building counts and percentages by Structure type and General occupancy 

Structure Type Schools and 
Colleges

Food and 
Entertainment Health Care Retail Trade Wholesale Trade Office Commercial

C1 268 10 7 35 51 436
C2 - - 1 - 1 45
MH - - - - - -
PC1 - 6 - 73 739 50
PC2 - - - - - -
RM - 95 - 252 758 22
S1 13 109 11 1,271 210 1,063
S3 2 35 - 249 2,206 133
URM 4 157 1 1,668 788 384
W1 3 744 - 344 79 1,096
W2 6 166 2 121 57 376
Totals 296 1,322 22 4,013 4,889 3,605
Percent 0.10% 0.43% 0.01% 1.31% 1.60% 1.18%

Structure Type Heavy Industrial Light Industrial Places of Worship Parking Garage Multi-family 
Residential

Single-family 
Residential

C1 63 5 2 1 35 -
C2 - - - - 34 -
MH - - - - 43 -
PC1 86 142 - - 14 -
PC2 - 1 - 34 - -
RM - 471 1 - 1 -
S1 108 211 74 15 523 -
S3 342 510 11 - 34 -
URM 105 609 36 - 1,068 6,321
W1 5 15 68 - 9,731 259,768
W2 - 5 829 - 7,160 3,375
Totals 709 1,969 1,021 50 18,643 269,464
Percent 0.23% 0.64% 0.33% 0.02% 6.09% 88.06%  
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Table A.8 -- Building percentages by Structure type and General occupancy 

Structure Type Schools and 
Colleges

Food and 
Entertainment Health Care Retail Trade Wholesale Trade Office Commercial

C1 0.09% 0.00% 0.00% 0.01% 0.02% 0.14%
C2 0.00% 0.00% 0.00% 0.00% 0.00% 0.01%
MH 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
PC1 0.00% 0.00% 0.00% 0.02% 0.00% 0.02%
PC2 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
RM 0.00% 0.03% 0.00% 0.08% 0.25% 0.01%
S1 0.00% 0.04% 0.00% 0.42% 0.07% 0.35%
S3 0.00% 0.01% 0.00% 0.08% 0.72% 0.04%
URM 0.00% 0.05% 0.00% 0.55% 0.26% 0.13%
W1 0.00% 0.24% 0.00% 0.11% 0.03% 0.36%
W2 0.00% 0.05% 0.00% 0.04% 0.02% 0.12%
Percent 0.10% 0.43% 0.01% 1.31% 1.60% 1.18%

Structure Type Heavy Industrial Light Industrial Places of Worship Parking Garage Multi-family 
Residential

Single-family 
Residential

C1 0.02% 0.00% 0.00% 0.00% 0.01% 0.00%
C2 0.00% 0.00% 0.00% 0.00% 0.01% 0.00%
MH 0.00% 0.00% 0.00% 0.00% 0.01% 0.00%
PC1 0.03% 0.05% 0.00% 0.00% 0.00% 0.00%
PC2 0.00% 0.00% 0.00% 0.01% 0.00% 0.00%
RM 0.00% 0.15% 0.00% 0.00% 0.00% 0.00%
S1 0.04% 0.07% 0.02% 0.00% 0.17% 0.00%
S3 0.11% 0.17% 0.00% 0.00% 0.01% 0.00%
URM 0.03% 0.20% 0.01% 0.00% 0.35% 2.07%
W1 0.00% 0.00% 0.02% 0.00% 3.18% 84.89%
W2 0.00% 0.00% 0.27% 0.00% 2.34% 1.10%
Percent 0.23% 0.64% 0.33% 0.02% 6.09% 88.06%  

 



 
283

Table A.9 -- Building counts and percentages by Structure type and Number of stories 

1 Story 2 - 3 Stories 4 - 7 Stories 8 - 10 Stories 11 - 20 Stories Over 21 Stories
C1                    410                      429                        74 -                      -                        -                          913            
C2 -                    -                                             17                        26                           32                               6 81              
MH                      43 -                      -                      -                      -                        -                          43              
PC1                 1,020                        83                          4                          3 -                        -                          1,110         
PC2                        1                        14                        18                          1                             1 -                          35              
RM                 1,530                        70 -                      -                      -                        -                          1,600         
S1                 2,579                      825                      158                        14                           26                               6 3,608         
S3                 3,341                      168                        12                          1 -                        -                          3,522         
URM                 9,083                   1,962                        91                          4                             1 -                          11,141       
W1             194,839                 77,013                          1 -                      -                        -                          271,853     
W2                 1,975                 10,081                        41 -                                                -   -                          12,097       
Totals 214,821            90,645                416                     49                       60                         12                           306,003     

1 Story 2 - 3 Stories 4 - 7 Stories 8 - 10 Stories 11 - 20 Stories Over 21 Stories
C1 0.1340% 0.1402% 0.0242% -                      -                        -                          0.30%
C2 -                    -                      0.0056% 0.0085% 0.0105% 0.0020% 0.03%
MH 0.0141% -                      -                      -                      -                        -                          0.01%
PC1 0.3333% 0.0271% 0.0013% 0.0010% -                        -                          0.36%
PC2 0.0003% 0.0046% 0.0059% 0.0003% 0.0003% -                          0.01%
RM 0.5000% 0.0229% -                      -                      -                        -                          0.52%
S1 0.8428% 0.2696% 0.0516% 0.0046% 0.0085% 0.0020% 1.18%
S3 1.0918% 0.0549% 0.0039% 0.0003% -                        -                          1.15%
URM 2.9683% 0.6412% 0.0297% 0.0013% 0.0003% -                          3.64%
W1 63.6723% 25.1674% 0.0003% -                      -                        -                          88.84%
W2 0.6454% 3.2944% 0.0134% -                                                -   -                          3.95%
Percent 70.20% 29.62% 0.14% 0.02% 0.02% 0.00% 100.00%

Structure 
Type

Number of Stories Row 
Percent

Number of StoriesStructure 
Type

Row 
Totals
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Table A.10 -- Building counts by Structure type and Year of construction (Decade) 

Pre-1939 40-49 50-59 60-69 70-79 80-89 90-99 Post-2000
C1                  74                  37                136                472                121                  56                  16                    1 913            
C2                  18                    1                    7                  19                  21                  13                    2 -               81              
MH                    4                  18                    6                    4                    7                    2                    2 -               43              
PC1                    5                  18                  50                170                283                229                244                111 1,110         
PC2 -               -                                  2                    4                    2                  15                    2                  10 35              
RM -               -               -                                  9                251                354                738                248 1,600         
S1                  46                  51                122                516                626                948                703                596 3,608         
S3                103                171                239                432                657                746                829                345 3,522         
URM             5,462             1,769             3,027                742                141 -               -               -               11,141       
W1           24,033           22,193           47,244           34,464           40,328           34,201           41,338           28,052 271,853     
W2                199                108                293             2,488             3,021             2,172             1,849             1,967 12,097       
Totals 29,944          24,366          51,126          39,320          45,458          38,736          45,723          31,330          306,003     

Pre-1939 40-49 50-59 60-69 70-79 80-89 90-99 Post-2000
C1 0.02% 0.01% 0.04% 0.15% 0.04% 0.02% 0.01% 0.00% 0.30%
C2 0.01% 0.00% 0.00% 0.01% 0.01% 0.00% 0.00% -               0.03%
MH 0.00% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% -               0.01%
PC1 0.00% 0.01% 0.02% 0.06% 0.09% 0.07% 0.08% 0.04% 0.36%
PC2 -               -               0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.01%
RM -               -               -               0.00% 0.08% 0.12% 0.24% 0.08% 0.52%
S1 0.02% 0.02% 0.04% 0.17% 0.20% 0.31% 0.23% 0.19% 1.18%
S3 0.03% 0.06% 0.08% 0.14% 0.21% 0.24% 0.27% 0.11% 1.15%
URM 1.78% 0.58% 0.99% 0.24% 0.05% -               -               -               3.64%
W1 7.85% 7.25% 15.44% 11.26% 13.18% 11.18% 13.51% 9.17% 88.84%
W2 0.07% 0.04% 0.10% 0.81% 0.99% 0.71% 0.60% 0.64% 3.95%
Percent 9.79% 7.96% 16.71% 12.85% 14.86% 12.66% 14.94% 10.24% 100.00%

Structure 
Type

Year of Construction by Decade Row 
Percent

Year of Construction by DecadeStructure 
Type

Row 
Totals
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Table A.11 -- Building counts by Structure type and Basement class 

Structure 
Type

Commercial 
Basement

Residential Full 
Basement

Residential Part 
Basement

Residential Crawl 
Space None Row Total Row 

Percent
C1                               77 -                            -                            -                               836                       913            0.30%
C2                               49 -                            -                            -                               32                         81              0.03%
MH -                            -                            -                            -                               43                         43              0.01%
PC1                               11 -                            -                            -                               1,099                    1,110         0.36%
PC2                                 6 -                            -                            -                               29                         35              0.01%
RM                                 8 -                            -                            -                               1,592                    1,600         0.52%
S1                               98 -                            -                            -                               3,510                    3,608         1.18%
S3                               10 -                            -                            -                               3,512                    3,522         1.15%
URM                             233                               12                             228                            5,150 5,518                    11,141       3.64%
W1                                 1                             175                          2,427                          83,078 186,172                271,853     88.84%
W2                               52                               16                             105                               562 11,362                  12,097       3.95%
Totals 545                            203                            2,760                         88,790                         213,705                306,003     100.00%
Percent 0.18% 0.07% 0.90% 29.02% 69.84% 100.00%  
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Table A.12 -- Building counts by General occupancy and Basement class 

General Occupancy Commercial 
Basement

Residential Full 
Basement

Residential Part 
Basement

Residential Crawl 
Space None Row Total Row 

Percent
Education                          4 -                          -                          -                          292               296            0.10%
Food and Entertainment                        19 -                          -                          -                          1,303            1,322         0.43%
Health Care                          8 -                          -                          -                          14                 22              0.01%
Heavy Industrial                        19 -                          -                          -                          690               709            0.23%
Light Industrial                        24 -                          -                          -                          1,945            1,969         0.64%
Multi-family Residential                        90                              -                             138                        3,864 14,551          18,643       6.09%
Office Commercial                      164 -                                                        4                             13 3,424            3,605         1.18%
Parking Garage                          9 -                          -                          -                          41                 50              0.02%
Places of Worship                        10 -                          -                          -                          1,011            1,021         0.33%
Retail Trade                      136                              -   -                          -                          3,877            4,013         1.31%
Single-family Residential                          2                           198                        2,618                      84,913 181,733        269,464     88.06%
Wholesale Trade                        65 -                          -                          -                          4,824            4,889         1.60%
Totals 550                     198                         2,760                      88,790                    213,705        306,003     100.00%
Percent 0.18% 0.06% 0.90% 29.02% 69.84% 100.00%  
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Table A.13 -- Building counts and percentages by Structure type and Area class 

Less than 2500 sq. 
ft.

2,500 - 5,000     sq. 
ft.

5,000 - 10,000   sq. 
ft.

10,000 - 50,000  
sq. ft.

More than 50,000 
sq. ft.

C1                               89                             130                             114                             311                             269 913            
C2 -                            -                            -                                                            4                               77 81              
MH                               17                                 1 -                                                            3                               22 43              
PC1                               23                               56                               75                             423                             533 1,110         
PC2                                 1 -                            -                                                            6                               28 35              
RM                             478                             567                             327                             199                               29 1,600         
S1                             644                             551                             792                          1,118                             503 3,608         
S3                             651                             721                             932                          1,064                             154 3,522         
URM                          7,635                          1,814                             911                             685                               96 11,141       
W1                      218,859                        52,994 -                            -                            -                            271,853     
W2 -                            -                                                     9,058                          2,990                               49 12,097       
Total 228,397                     56,834                       12,209                       6,803                         1,760                         306,003     

Less than 2500 sq. 
ft.

2,500 - 5,000     sq. 
ft.

5,000 - 10,000   sq. 
ft.

10,000 - 50,000  
sq. ft.

More than 50,000 
sq. ft.

C1                                 0 0.04% 0.04% 0.10% 0.09% 0.30%
C2 -                            -                            -                            0.00% 0.03% 0.03%
MH 0.01% 0.00% -                            0.00% 0.01% 0.01%
PC1 0.01% 0.02% 0.02% 0.14% 0.17% 0.36%
PC2 0.00% -                            -                            0.00% 0.01% 0.01%
RM 0.16% 0.19% 0.11% 0.07% 0.01% 0.52%
S1 0.21% 0.18% 0.26% 0.37% 0.16% 1.18%
S3 0.21% 0.24% 0.30% 0.35% 0.05% 1.15%
URM 2.50% 0.59% 0.30% 0.22% 0.03% 3.64%
W1 71.52% 17.32% -                            -                            -                            88.84%
W2 -                            -                            2.96% 0.98% 0.02% 3.95%
Percent 74.64% 18.57% 3.99% 2.22% 0.58% 100.00%

Structure 
Type

Square Footage Row 
Percent

Square Footage
Structure 

Type Row Total
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Table A.14 -- Building counts and percentages by Structure type and Replacement cost categories 

Less than 
$50 K

$50K to $100 
K

$100 K to 
$300 K

$300 K to 
$500 K

$500 K to 
$1,000 K

$ 1 Mill to   $ 
5 Mill

More than  $ 
5 Mill

C1                      3                      1                    51                    67                  148                  364                  279 913            
C2 -                  -                  -                  -                  -                                       2                    79 81              
MH                    15                      2                      1 -                  -                                     10                    15 43              
PC1                      7                      3                    17                    52                  121                  489                  421 1,110         
PC2 -                  -                                       1 -                                       1                    17                    16 35              
RM                    26                    42                  596                  327                  409                  180                    20 1,600         
S1                    18                    60                  564                  365                  888               1,262                  451 3,608         
S3                    48                  110                  718                  647                  923                  992                    84 3,522         
URM                    88               4,403               3,739               1,064               1,078                  708                    61 11,141       
W1                  303             85,753           177,059               7,117               1,621 -                  -                  271,853     
W2 -                  -                                     31               2,047               4,246               5,722                    51 12,097       
Totals 508                 90,374            182,777          11,686            9,435              9,746              1,477              306,003     

Less than 
$50 K

$50K to $100 
K

$100 K to 
$300 K

$300 K to 
$500 K

$500 K to 
$1,000 K

$ 1 Mill to   $ 
5 Mill

More than  $ 
5 Mill

C1 0.0010% 0.0003% 0.0167% 0.0219% 0.0484% 0.1190% 0.0912% 0.30%
C2 -                  -                  -                  -                  -                  0.0007% 0.0258% 0.03%
MH 0.0049% 0.0007% 0.0003% -                  -                  0.0033% 0.0049% 0.01%
PC1 0.0023% 0.0010% 0.0056% 0.0170% 0.0395% 0.1598% 0.1376% 0.36%
PC2 -                  -                  0.0003% -                  0.0003% 0.0056% 0.0052% 0.01%
RM 0.0085% 0.0137% 0.1948% 0.1069% 0.1337% 0.0588% 0.0065% 0.52%
S1 0.0059% 0.0196% 0.1843% 0.1193% 0.2902% 0.4124% 0.1474% 1.18%
S3 0.0157% 0.0359% 0.2346% 0.2114% 0.3016% 0.3242% 0.0275% 1.15%
URM 0.0288% 1.4389% 1.2219% 0.3477% 0.3523% 0.2314% 0.0199% 3.64%
W1 0.0990% 28.0236% 57.8619% 2.3258% 0.5297% -                  -                  88.84%
W2 -                  -                  0.0101% 0.6689% 1.3876% 1.8699% 0.0167% 3.95%
Percent 0.17% 29.53% 59.73% 3.82% 3.08% 3.18% 0.48% 100.00%

Structure 
Type

Replacement Cost in Dollars Row 
Percent

Replacement Cost in Dollars
Structure 

Type Row Total
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Table A.15 -- Building Replacement costs (in millions of dollars) by Structure type and General occupancy 

Structure Type Schools Colleges Food 
Entertainment Health Care Retail Trade Wholesale Trade Office Commercial

C1 1,786.50                    17.09                         79.07                         256.07                       179.53                       1,128.86                    
C2 -                            -                            28.93                         -                            10.05                         750.31                       
MH -                            -                            -                            -                            -                            -                            
PC1 -                            9.63                           -                            366.53                       5,950.98                    158.77                       
PC2 -                            -                            -                            -                            -                            -                            
RM -                            43.99                         -                            140.57                       503.87                       17.83                         
S1 2,681.83                    108.66                       585.81                       2,235.74                    681.18                       3,962.59                    
S3 2.65                           52.88                         -                            182.68                       2,243.70                    203.14                       
URM 6.64                           117.85                       14.45                         809.61                       1,051.40                    311.10                       
W1 1.45                           231.61                       -                            83.35                         18.17                         392.27                       
W2 6.49                           171.28                       18.95                         119.60                       122.46                       465.55                       
Totals 4,485.55                    752.99                       727.20                       4,194.16                    10,761.34                  7,390.42                    
Percent 5.14% 0.86% 0.83% 4.81% 12.33% 8.47%

Structure Type Heavy Industrial Light Industrial Places of Worship Parking Garage Multi-family 
Residential

Single-family 
Residential

C1 345.92                       4.58                           3.47                           9.66                           82.34                         -                            
C2 -                            -                            -                            -                            640.32                       -                            
MH -                            -                            -                            -                            174.30                       -                            
PC1 570.69                       346.73                       -                            -                            14.01                         -                            
PC2 -                            0.17                           -                            214.59                       -                            -                            
RM -                            313.78                       1.09                           -                            0.30                           -                            
S1 828.92                       309.70                       122.61                       77.97                         1,818.56                    -                            
S3 812.30                       407.60                       16.78                         -                            27.18                         -                            
URM 85.19                         283.87                       29.17                         -                            580.39                       666.44                       
W1 0.48                           4.30                           31.72                         -                            2,186.28                    35,828.95                  
W2 -                            4.34                           903.60                       -                            9,515.73                    1,703.61                    
Totals 2,643.49                    1,675.07                    1,108.44                    302.23                       15,039.39                  38,199.00                  
Percent 3.03% 1.92% 1.27% 0.35% 17.23% 43.77%  
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Table A.16 -- Building counts by Structure type and Content Value category 

Less than 
$50 K

$50K to $100 
K

$100 K to 
$300 K

$300 K to 
$500 K

$500 K to 
$1,000 K

$ 1 Mill to   $ 
5 Mill

More than  $ 
5 Mill

C1                      3                      1                    45                    83                  123                  368                  290 913            0.30%
C2 -                  -                  -                  -                  -                                       5                    76 81              0.03%
MH                    17                      1                     -   -                  3                                        17                      5 43              0.01%
PC1                      4                      5                    31                    33                  114                  478                  445 1,110         0.36%
PC2 -                  -                                       1 1                                          3                    23                      7 35              0.01%
RM                    26                    43                  595                  323                  408                  185                    20 1,600         0.52%
S1                    12                    61                  597                  456                  898               1,184                  400 3,608         1.18%
S3                    44                  108                  711                  642                  916                  972                  129 3,522         1.15%
URM               4,297               2,382               1,894                  971                  900                  635                    62 11,141       3.64%
W1             85,934           149,961             34,201               1,316                  433 8                     -                  271,853     88.84%
W2 -                  -                                2,934               2,551               5,268               1,320                    24 12,097       3.95%
Totals 90,337            152,562          41,009            6,376              9,066              5,195              1,458              306,003     100.00%
Percent 29.52% 49.86% 13.40% 2.08% 2.96% 1.70% 0.48% 100.00%

Content Value in Dollars
Structure 

Type Row Total Row 
Percent
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Table A.17 -- Building counts by Structure type and Essential Facility designation 

EFFS EFHL EFHM EFHS EFMC EFPS EFS1 EFS2 FALSE
C1                  5                  3                  1                  3                52                18              256                12              563 913            0.30%
C2 -                              1 -             -                            16 -             -             -                            64 81              0.03%
MH -             -             -             -             -             -             -             -                            43 43              0.01%
PC1 -             -             -             -                              6 -             -             -                       1,104 1,110         0.36%
PC2 -             -             -             -             -             -             -             -                            35 35              0.01%
RM -             -             -             -                              2                  8 -             -                       1,590 1,600         0.52%
S1                  2                  9                  2 -                          108                  1                  9                  4           3,473 3,608         1.18%
S3 -             -             -             -                              1 -                              2 -                       3,519 3,522         1.15%
URM                  5                  1 -             -                            25                  7                  3 -                     11,100 11,141       3.64%
W1                  1 -             -             -                            87 -                              3 -                   271,762 271,853     88.84%
W2 -             -                              2 -                            61                  1                  6 -                     12,027 12,097       3.95%
Totals 13              14              5                3                358            35              279            16              305,280     306,003     100.00%
Percent 0.00% 0.00% 0.00% 0.00% 0.12% 0.01% 0.09% 0.01% 99.76% 100.00%

EFFS Fire Stations EFMC Medical Clinics, Labs, Offices
EFHL Low-Rise Healthcare Facilities EFPS Police Stations
EFHM Mid-Rise Healthcare Facilities EFS1 Schools
EFHS High-Rise Healthcare Facilities EFS2 Colleges and Universities

Essential Facility TypeStructure 
Type Row Total Row 

Percent
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Table A.18 -- Building counts by General occupancy and Number of Dwellings in structure 

0 1 2 3 - 4 5 - 9 10 - 19 20 - 49 Over 50
Education 291            5                -             -             -             -             -             -             296          0.10%
Food and Entertainment 1,314         8                -             -             -             -             -             -             1,322       0.43%
Health Care 22              -             -             -             -             -             -             -             22            0.01%
Heavy Industrial 709            -             -             -             -             -             -             -             709          0.23%
Light Industrial 1,951         17              -             1                -             -             -             -             1,969       0.64%
Multi-family Residential 4                70              7,597         2,210         4,311         2,941         924            121            18,178     5.95%
Office Commercial 3,469         135            -             1                -             -             -             -             3,605       1.18%
Parking Garage 50              -             -             -             -             -             -             50            0.02%
Places of Worship 988            30              1                2                -             -             -             -             1,021       0.33%
Retail Trade 3,946         42              12              9                3                1                -             -             4,013       1.31%
Single-family Residential 222            269,229     -             -             1                -             -             -             269,452   88.19%
Wholesale Trade 4,866         23              -             -             -             -             -             -             4,889       1.60%
Totals 17,832       269,559     7,610         2,223         4,315         2,942         924            121            305,526   100.00%
Percent 5.84% 88.23% 2.49% 0.73% 1.41% 0.96% 0.30% 0.04% 100.00%

n.b. Temporary Lodging, Institutional Dormities and Nursing Homes have not been included in this tabulation

Number of Dwelling Units in Building
General Occupancy Row 

Total
Row 

Percent
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Table A.19 -- Building counts by Structure type and Number of Dwellings in structure 

0 1 2 3 - 4 5 - 9 10 - 19 20 - 49 Over 50
C1              876                  2 -                              4                18                  4                  3                  2 909            0.30%
C2                47 -             -             -             -             -             -                            25 72              0.02%
MH -                            15                  2                  1 -             -                              3                22 43              0.01%
PC1           1,094                  2 -                            13 -             -             -             -             1,109         0.36%
PC2                35 -             -             -             -             -             -             -             35              0.01%
RM           1,590                  8 -                              1 -             -             -             -             1,599         0.52%
S1           3,076                10                  5                35              162                84                34                34 3,440         1.13%
S3           3,483                  5 -             -                            21                  5 -             -             3,514         1.15%
URM           3,642           6,412              461              334              164                70                16                  5 11,104       3.63%
W1           2,430       259,727           7,140           1,525              925                16 -             -             271,763     88.95%
W2           1,559           3,378                  2              310           3,025           2,763              868                33 11,938       3.91%
Totals 17,832       269,559     7,610         2,223         4,315         2,942         924            121            305,526     100.00%
Percent 5.84% 88.23% 2.49% 0.73% 1.41% 0.96% 0.30% 0.04% 100.00%

n.b. Temporary Lodging, Institutional Dormities and Nursing Homes have not been included in this tabulation

Number of Dwelling Units in Building
Structure Type Row Total Row 

Percent
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APPENDIX B . Influence of Input Variables on Structure Type 

Outcome Pairs in the Multinomial Logistic Regression Model 

 

 

 

 

Table B.1 -- Influence of Height (Number of stories) on Factor change in Structure 

type Odds 

exp(b) exp(b*SD(x))
Concrete-Steel -0.15843 0.8535 0.7124
Concrete-URM 0.24792 1.2814 1.7000
Concrete-Wood 0.25727 1.2934 1.7343
Steel-Concrete 0.15843 1.1717 1.4036
Steel-URM 0.40635 1.5013 2.3862
Steel-Wood 0.41570 1.5154 2.4344
URM-Concrete -0.24792 0.7804 0.5882
URM-Steel -0.40635 0.6661 0.4191
URM-Wood 0.00935 1.0094 1.0202
Wood-Concrete -0.25727 0.7732 0.5766
Wood-Steel -0.41570 0.6599 0.4108
Wood-URM -0.00935 0.9907 0.9802

  significant at 95% confidence
  significant at 99% confidence

Odds Comparing 
Alternative 1 to 2
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Table B.2 -- Influence of Area (Square Feet) on Factor change in Structure type 

Odds 

exp(b) exp(b*SD(x))
Concrete-Steel 0.00000 1.0000 0.9527
Concrete-URM 0.00006 1.0001 14.3518
Concrete-Wood 0.00003 1.0000 3.3665
Steel-Concrete 0.00000 1.0000 1.0496
Steel-URM 0.00006 1.0001 15.0636
Steel-Wood 0.00003 1.0000 3.5335
URM-Concrete -0.00006 0.9999 0.0697
URM-Steel -0.00006 0.9999 0.0664
URM-Wood -0.00003 1.0000 0.2346
Wood-Concrete -0.00003 1.0000 0.2970
Wood-Steel -0.00003 1.0000 0.2830
Wood-URM 0.00003 1.0000 4.2631

  significant at 95% confidence
  significant at 99% confidence
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Table B.3 -- Influence of Year of Construction on Factor change in Structure type 

Odds 

exp(b) exp(b*SD(x))
Concrete-Steel -0.06116 0.9407 0.2456
Concrete-URM 0.07542 1.0783 5.6493
Concrete-Wood -0.01107 0.9890 0.7755
Steel-Concrete 0.06116 1.0631 4.0720
Steel-URM 0.13658 1.1463 23.0041
Steel-Wood 0.05008 1.0514 3.1578
URM-Concrete -0.07542 0.9274 0.1770
URM-Steel -0.13658 0.8723 0.0435
URM-Wood -0.08649 0.9171 0.1373
Wood-Concrete 0.01107 1.0111 1.2895
Wood-Steel -0.05008 0.9512 0.3167
Wood-URM 0.08649 1.0903 7.2848

  significant at 95% confidence
  significant at 99% confidence
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Table B.4 -- Influence of Wholesale Trade, Commercial Office and Bank 

occupancies on Factor change in Structure type Odds 

exp(b) exp(b*SD(x))
Concrete-Steel 1.17328 3.2326 1.5675
Concrete-URM 1.51681 4.5577 1.7880
Concrete-Wood 1.41450 4.1144 1.7193
Steel-Concrete -1.17328 0.3093 0.6379
Steel-URM 0.34353 1.4099 1.1407
Steel-Wood 0.24122 1.2728 1.0968
URM-Concrete -1.51681 0.2194 0.5593
URM-Steel -0.34353 0.7093 0.8767
URM-Wood -0.10231 0.9028 0.9616
Wood-Concrete -1.41450 0.2430 0.5816
Wood-Steel -0.24122 0.7857 0.9117
Wood-URM 0.10231 1.1077 1.0400
Concrete-Steel 3.80386 44.8742 3.6360
Concrete-URM 3.41236 30.3368 3.1836
Concrete-Wood 2.57086 13.0770 2.3927
Steel-Concrete -3.80386 0.0223 0.2750
Steel-URM -0.39150 0.6760 0.8756
Steel-Wood -1.23301 0.2914 0.6581
URM-Concrete -3.41236 0.0330 0.3141
URM-Steel 0.39150 1.4792 1.1421
URM-Wood -0.84151 0.4311 0.7516
Wood-Concrete -2.57086 0.0765 0.4179
Wood-Steel 1.23301 3.4315 1.5196
Wood-URM 0.84151 2.3199 1.3305
Concrete-Steel 2.86616 17.5694 1.5360
Concrete-URM 2.64597 14.0971 1.4862
Concrete-Wood 1.61937 5.0499 1.2744
Steel-Concrete -2.86616 0.0569 0.6510
Steel-URM -0.22019 0.8024 0.9676
Steel-Wood -1.24679 0.2874 0.8297
URM-Concrete -2.64597 0.0709 0.6729
URM-Steel 0.22019 1.2463 1.0335
URM-Wood -1.02660 0.3582 0.8575
Wood-Concrete -1.61937 0.1980 0.7847
Wood-Steel 1.24679 3.4791 1.2053
Wood-URM 1.02660 2.7915 1.1662

n.b. reference level is COM1 (Retail Trade)

  significant at 95% confidence
  significant at 99% confidence
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Table B.5 -- Influence of Restaurant, Heavy Industrial and Multi-family residential 

occupancies on Factor change in Structure type Odds 

exp(b) exp(b*SD(x))
Concrete-Steel 1.38134 3.9802 1.3607
Concrete-URM 1.67898 5.3601 1.4540
Concrete-Wood 0.31642 1.3722 1.0731
Steel-Concrete -1.38134 0.2512 0.7349
Steel-URM 0.29764 1.3467 1.0686
Steel-Wood -1.06492 0.3448 0.7887
URM-Concrete -1.67898 0.1866 0.6877
URM-Steel -0.29764 0.7426 0.9358
URM-Wood -1.36256 0.2560 0.7380
Wood-Concrete -0.31642 0.7288 0.9319
Wood-Steel 1.06492 2.9006 1.2680
Wood-URM 1.36256 3.9062 1.3550
Concrete-Steel 0.67894 1.9718 1.1121
Concrete-URM 1.17584 3.2409 1.2021
Concrete-Wood -1.23244 0.2916 0.8245
Steel-Concrete -0.67894 0.5072 0.8992
Steel-URM 0.49689 1.6436 1.0809
Steel-Wood -1.91138 0.1479 0.7414
URM-Concrete -1.17584 0.3086 0.8319
URM-Steel -0.49689 0.6084 0.9252
URM-Wood -2.40828 0.0900 0.6859
Wood-Concrete 1.23244 3.4296 1.2128
Wood-Steel 1.91138 6.7624 1.3488
Wood-URM 2.40828 11.1148 1.4579
Concrete-Steel 1.65841 5.2510 2.1877
Concrete-URM 1.12487 3.0798 1.7006
Concrete-Wood -2.84780 0.0580 0.2607
Steel-Concrete -1.65841 0.1904 0.4571
Steel-URM -0.53354 0.5865 0.7774
Steel-Wood -4.50621 0.0110 0.1192
URM-Concrete -1.12487 0.3247 0.5880
URM-Steel 0.53354 1.7050 1.2864
URM-Wood -3.97266 0.0188 0.1533
Wood-Concrete 2.84780 17.2497 3.8355
Wood-Steel 4.50621 90.5774 8.3908
Wood-URM 3.97266 53.1259 6.5226

n.b. reference level is COM1 (Retail Trade)

  significant at 95% confidence
  significant at 99% confidence
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Table B.6 -- Influence of Fire Rating descriptor on Factor change in Structure type 

Odds 

 

 

exp(b) exp(b*SD(x))
Concrete-Steel -6.23672 0.0020 0.0466
Concrete-URM -6.18536 0.0021 0.0478
Concrete-Wood -0.72320 0.4852 0.7008
Steel-Concrete 6.23672 511.1811 21.4543
Steel-URM 0.05136 1.0527 1.0256
Steel-Wood 5.51353 248.0240 15.0354
URM-Concrete 6.18536 485.5891 20.9194
URM-Steel -0.05136 0.9499 0.9751
URM-Wood 5.46216 235.6068 14.6605
Wood-Concrete 0.72320 2.0610 1.4269
Wood-Steel -5.51353 0.0040 0.0665
Wood-URM -5.46216 0.0042 0.0682
Concrete-Steel -6.95986 0.0009 0.0308
Concrete-URM -8.61423 0.0002 0.0135
Concrete-Wood -7.49728 0.0006 0.0235
Steel-Concrete 6.95986 53.4831 32.4699
Steel-URM -1.65437 0.1912 0.4372
Steel-Wood -0.53742 0.5843 0.7643
URM-Concrete 8.61423 509.5132 74.2615
URM-Steel 1.65437 5.2298 2.2871
URM-Wood 1.11695 3.0555 1.7481
Wood-Concrete 7.49728 803.1279 42.4809
Wood-Steel 0.53742 1.7116 1.3083
Wood-URM -1.11695 0.3273 0.5720

n.b. reference level is Fire Proof Fire Rating

  significant at 95% confidence
  significant at 99% confidence

Fi
re

 R
es

is
ta

nt
 F

ire
 R

at
in

g 
W

oo
d 

Jo
is

t F
ire

 R
at

in
g

Odds Factor ChangeInput 
Variable

Odds Comparing 
Alternative 1 to 2

Raw 
Coefficient



 
300

References 

 

Abrams, Daniel P., Amr S. Elnashai and J. E. Beavers. (2002). "A New Engineering 
Paradigm: Consequence-Based Engineering." Mid-America Earthquake Center. 
Retrieved October 22, 2007, from 
http://mae.ce.uiuc.edu/documents/cbepaper.pdf. 

Acharya, Tinku and Ajoy K. Ray (2005). Image Processing: Principles and Applications. 
Hoboken, N. J.: John Wiley & Sons, Inc. 

ACSE (2005). Minimum Design Loads for Buildings and Other Structures, SEI/ACSE 7-
05. Reston, VA: American Society of Civil Engineers. 

Adamek, Tomasz and Noel O'Connor (2003). Efficient contour-based shape 
representation and matching.  Proceedings of the 5th ACM SIGMM International 
Workshop on Multimedia Information Retrieval, Berkeley, California. 

Akaike, Hirotugu (1974). "A new look at the statistical model identification." IEEE 
Transactions on Automatic Control 19(6): 716-723. 

Aldrich, John H. and Forrest D. Nelson (1984). Linear Probability, Logit, and Probit 
Models. Series / Number 07-045 - Quantitative Applications in the Social 
Sciences. Newbury Park, CA: Sage publications. 

American Community Survey Office. (2006). "American FactFinder -- B25024. UNITS IN 
STRUCTURE - Universe: HOUSING UNITS." 2006 American Community 
Survey. US Census Bureau. Retrieved May 31, 2008, from 
http://factfinder.census.gov/servlet/DTTable?_bm=y&-geo_id=05000US47157&-
ds_name=ACS_2006_EST_G00_&-mt_name=ACS_2006_EST_G2000_B25024. 

American Community Survey Office. (2007, August 24). "2003 ACS Narrative Profile for 
Memphis City, Shelby County." Population and Housing Profile. US Census 
Bureau. Retrieved May 31, 2008, from 
http://www.census.gov/acs/www/Products/Profiles/Single/2003/ACS/Narrative/15
5/NP15500US4748000157.htm. 

Anderson, Dave and George McNeil. (1992). "Artificial Neural Networks Technology." 
Data & Analysis Center for Software. Retrieved October 22, 2007, from 
https://www.dacs.dtic.mil/techs/neural/neural_ToC.php. 

Anderson, J. A. (1984a). "Regression and ordered categorical variables." Journal of the 
Royal Statistical Society, Series B 46: 1-30. 



 
301

Anderson, James A. and Edward Rosenfeld (1990). Neurocomputing: Foundations of 
Research. Cambridge, MA: MIT Press. 

Anderson, Theodore. W. (1984b). An Introduction to Multivariate Statistical Analysis. 
Second Edition. New York: Wiley. 

Ansari, Nirwan and Edward J. Delp (1990). "Partial shape recognition: a landmark-based 
approach." IEEE Transactions on Pattern Analysis and Machine Intelligence 
12(5): 470-483. 

Antenucci, John C., Kay Brown, Peter L. Croswell et al. (1991). Geographic Information 
Systems: A Guide to the Technology. New York: Van Nostrand Reinhold. 

Arcelli, Carlo and Gabriella Sanniti di Baja (1985). "A width-independent fast thinning 
algorithm." IEEE Transactions on Pattern Analysis and Machine Intelligence 7(4): 
463--474. 

Arkin, Esther M., L. Paul Chew, Daniel P. Huttenlocher et al. (1991). "An efficiently 
computable metric for comparing polygonal shapes." IEEE Transactions on 
Pattern Analysis and Machine Intelligence 13(3): 209 - 216. 

Arnold, Christopher and Robert Reitherman (1982). Building Configuration and Seismic 
Design. New York: John Wiley & Sons. 

Ashbrook, A. and N. A. Thacker. (1998, January 12). "Tutorial: Algorithms for 2-
Dimensional object recognition." TINA Memos: Human and Machine Vision. 
Retrieved July 26, 2008, from http://www.tina-vision.net/docs/memos_vision.php. 

Association for the Advancement of Artificial Intelligence. (2007, March). "Genetic 
Algorithm & Genetic Programming: (A subtopic of Machine Learning)." Retrieved 
September 17, 2007, from http://www.aaai.org/AITopics/html/genalg.html. 

ATC-13 (1985). Earthquake Damage Evaluation Data for California - Report ATC-13. 
Redwood City, CA: Applied Technology Council. 

ATC-21 (1988). Rapid Visual Screening of Buildings for Potential Seismic Hazards - 
Report ATC-21: FEMA 154. Redwood City, CA: Applied Technology Council. . 

ATC-21 (1991). Seismic Vulnerability and Impact of Disruption on Lifelines in the 
Conterminous United States. - Report ATC-21. Redwood City, CA: Federal 
Emergency Management Association, Applied Technology Council. . 

ATC-69 (2008). Reducing the Risks of Nonstructural Earthquake Damage: State-of-the-
Art and Practice Report - ATC-69. Redwood City, CA: Federal Emergency 
Management Association, Applied Technology Council. . 



 
302

Attneave, F. (1954). "Some informational aspects of visual perception." Psychological 
Review 61(3): 183-193. 

August, Jonas, Steven W. Zucker and Allen Tannenbaum (1999). On the evolution of the 
skeleton.  Proceedings of the Seventh IEEE International Conference on 
Computer Vision, Kerkyra, Greece. 

Baelia, B., M. Pla and Dan Lee (1995). Digital map generalization in practice.  
Proceedings of ICA Workshop on Progress in Automated Map Generalization, 
Barcelona, Spain. 

Barile, Margherita. (2008, February 10). "Taxicab Metric." A Wolfram Web Resource. E. 
W. Weisstein, Ed. MathWorld. Retrieved February 12, 2008, from 
http://mathworld.wolfram.com/TaxicabMetric.html. 

Basu, Mitra, Horst Bunke and Alberto Del Bimbo (2005). "Guest editors' introduction to 
the special section on syntactic and structural pattern recognition." IEEE 
Transactions on Pattern Analysis and Machine Intelligence 27(7): 1009 - 1012. 

Bea, Keith (1998). FEMA and Disaster Relief. Washington, D.C.: Congressional 
Research Service, The Library of Congress. 97-159 GOV: 37. 

Beatley, Timothy and Philip R. Berke (1992). "Time to shake up earthquake planning." 
Issues in Science & Technology 9(2): 82-89. 

Bellone, Tamara, Enrico Borgogno and Giuliano Comoglio (2004). Improving automated 
generalization for on demand web mapping by multi-scale databases.  O. Altan, 
Ed.  Proceedings of the XX ISPRS Congress, Commission III: Geo-Imagery 
Bridging Continents, Istanbul, Turkey: ISPRS. 

Belongie, Serge, Jitendra Malik and Jan Puzicha (2002). "Shape matching and object 
recognition using shape contexts." IEEE Transactions on Pattern Analysis and 
Machine Intelligence 24(4): 509-522. 

Bennett, J. R. and J. S. MacDonald (1975). "On the measurement of curvature in a 
quantized environment." IEEE Transactions on Computers C-24(8): 803 - 820. 

Berke, Philip R. (1995a). "Natural hazard reduction and sustainable development: A 
global assessment." Journal of Planning Literature 9(4): 370-382. 

Berke, Philip R. (1995b). Reducing Natural Hazard Risks through Land Use Planning 
and Growth Management: Federal and State Policy Experience. College Station, 
TX: Hazard Reduction & Recovery Center, Texas A & M University. 

Berke, Philip R. (1998). "Reducing natural hazard risks through state growth 
management." Journal of the American Planning Association 64(1): 76 - 87. 



 
303

Bicego, Manuele, Vittorio Murino, Marcello Pelillo et al. (2006). "Editorial: Similarity-
based pattern recognition." Pattern Recognition 39(10): 1813 – 1814. 

Bischof, H., W. Schneider and A. J. Pinz (1992). "Multispectral classification of Landsat-
images using neural networks." IEEE Transactions on Geoscience and Remote 
Sensing 30(3): 482-490. 

Bishop, Christopher M. (1995). Neural Networks for Pattern Recognition. New York: 
Oxford University Press, Inc. 

Black, Paul E. (2004a, December 17). "Euclidean distance." Dictionary of Algorithms and 
Data Structures [online]. P. E. Black, Ed. U.S. National Institute of Standards and 
Technology. Retrieved February 12, 2008, from 
http://www.nist.gov/dads/HTML/euclidndstnc.html. 

Black, Paul E. (2004b, December 17). "Levenshtein distance." Dictionary of Algorithms 
and Data Structures [online]. P. E. Black, Ed. U.S. National Institute of Standards 
and Technology. Retrieved February 12, 2008, from 
http://www.nist.gov/dads/HTML/Levenshtein.html. 

Black, Paul E. (2004c, December 17). "Lm distance." Dictionary of Algorithms and Data 
Structures [online]. P. E. Black, Ed. U.S. National Institute of Standards and 
Technology. Retrieved February 12, 2008, from 
http://www.nist.gov/dads/HTML/lmdistance.html. 

Black, Paul E. (2004d, December 17). "Manhattan distance." Dictionary of Algorithms 
and Data Structures [online]. P. E. Black, Ed. U.S. National Institute of Standards 
and Technology. Retrieved February 12, 2008, from 
http://www.nist.gov/dads/HTML/manhattanDistance.html. 

Black, Paul E. (2004e, December 17). "Rectilinear Distance." Dictionary of Algorithms 
and Data Structures [online]. P. E. Black, Ed. U.S. National Institute of Standards 
and Technology. Retrieved February 12, 2008, from 
http://www.nist.gov/dads/HTML/rectilinear.html. 

Blum, H. (1967). A transformation for extracting new descriptors of form. In Models for 
the Perception of Speech and Visual Form. W. Whaten-Dunn, Ed. Cambridge, 
MA: MIT Press: 362- 380. 

Blumenkrans, Alejandro (1991). "Two-dimensional object recognition using a two-
dimensional polar transform." Pattern Recognition 24(9): 879-890. 

Bookstein, Fred L. (1991). Morphometric Tools for Landmark Data: Geometry and 
Biology. Cambridge: Cambridge University Press. 



 
304

Boxer, Laurence, Chun-Shi Chang, Russ Miller et al. (1993). "Polygonal approximation 
by boundary reduction." Pattern Recognition Letters 14(2): 111-119. 

Bribiesca, Ernesto (1981). "Arithmetic operations among shapes using shape numbers." 
Pattern Recognition 12(2): 123-137. 

Bribiesca, Ernesto and Adolfo Guzman (1980). "How to describe pure form and how to 
measure differences in shapes using shape numbers." Pattern Recognition 
12(2): 101-112. 

Briechle, Kendra J. (1999). Natural Hazard Mitigation and Local Government Decision 
Making. In The Municipal Year Book 1999. Washington, D. C. : International 
City/County Management Association: 3-9. 

British Broadcasting Corporation. (2008, May 27). "BBC News: Special Reports, 2008 - 
China Quake." British Broadcasting Corporation, International Edition. Retrieved 
May 28, 2008, from 
http://news.bbc.co.uk/2/hi/in_depth/asia_pacific/2008/china_quake/default.stm. 

Brody, Samuel D. (2003). "Are we learning to make better plans? A longitudinal analysis 
of plan quality associated with natural hazards." Journal of Planning Education 
and Research 23(2): 191-201. 

Bunke, Horst and Alberto Sanfeliu, Eds. (1990). Syntactic and Structural Pattern 
Recognition: Theory and Applications. World Scientific Series in Computer 
Science. Singapore: World Scientific. 

Burby, Raymond J. (1994). "Floodplain planning and management: Research needed for 
the 21st Century." Journal of Contemporary Water Research and Education 97: 
44-47. 

Burby, Raymond J., Ed. (1998). Cooperating with Nature: Confronting Natural Hazards 
with Land Use Planning for Sustainable Communities. Washington, D. C.: 
Joseph Henry/The National Academies Press. 

Burby, Raymond J. (2005). "Have state comprehensive planning mandates reduced 
insured losses from natural disasters?" Natural Hazards Review 6: 67-81. 

Burby, Raymond J. (2006). "Hurricane Katrina and the Paradoxes of Government 
Disaster Policy: Bringing about wise governmental decisions for hazardous 
areas." The ANNALS of the American Academy of Political and Social Science 
604(1): 171-191. 

Burby, Raymond J., Timothy Beatley, Phillip R. Berke et al. (1999). "Unleashing the 
power of planning to create disaster-resistant communities." Journal of the 
American Planning Association 65(3): 247-258. 



 
305

Burby, Raymond J., Steven P. French and Arthur C. Nelson (1998). "Plans, code 
enforcement, and damage reduction: Evidence from the Northridge earthquake." 
Earthquake Spectra 14(1): 59-74. 

Burby, Raymond J. and Peter J. May (1998). "Intergovernmental environmental 
planning: Addressing the commitment conundrum." Journal of Environmental 
Planning and Management 41(1): 95 - 110. 

Cable News Network. (2005). "Hurricane Katrina - Special Reports from CNN.com." 
Cable News Network, International Edition. Retrieved May 28, 2008, from 
http://www.cnn.com/SPECIALS/2005/katrina/. 

California Scientific. (2007). "BrainMaker Neural Network Application Examples." 
Retrieved January 19, 2007, from http://www.calsci.com/Applications.html. 

Campbell, M. Karen and Allan Donner (1989). "Classification efficiency of multinomial 
logistic regression relative to ordinal logistic regression." Journal of the American 
Statistical Association 84(6): 587-592. 

Carling, A. (1992). Introducing Neural Networks. Wilmslow, UK: Sigma Press. 

Cecconi, Allessandro, Robert Weibel and Mathieu Barrault (2002). Improving automated 
generalization for on demand web mapping by multi-scale databases.  C. 
Armenakis and Y. C. Lee, Eds.  Proceedings of the Joint ISPRS Commission IV 
symposium, Spatial Data Handling and 95th Annual CIG Geomatics Conference : 
Geospatial Theory, Processing and Applications, Ottawa, Canada: Canadian 
Institute of Geomatics. 

Cesar, Roberto Marcondes and Luciano Da Fontoura Costa (1995). "Piecewise linear 
segmentation of digital contours in O(N.Log(N)) through a technique based on 
effective digital curvature estimation." Real-Time Imaging 1: 409-417. 

Cesar, Roberto Marcondes and Luciano Da Fontoura Costa (1996). "Towards effective 
planar shape representation with multiscale digital curvature analysis based on 
signal processing techniques." Pattern Recognition 29(9): 1559-1569. 

Chaikin, George M. (1974). "Short note: An algorithm for high-speed curve generation." 
Computer Graphics and Image Processing 3: 346-349. 

Chang, C. C., S. M. Hwang and D. J. Buehrer (1991). "A shape recognition scheme 
based on relative distances of feature points from the centroid." Pattern 
Recognition Letters 24(11): 1053-1063. 

Chang, S. E. (1998). Direct Economic Impact. In Engineering and Socioeconomic 
Impacts of Earthquakes: An Analysis of Electricity Lifeline Disruptions in the New 
Madrid Area. M. Shinozuka, A. Rose and R. Eguchi, Eds. Buffalo, NY: MCEER. 



 
306

Chang, S. E. (2001). "Structural change in urban economies: Recovery and long-term 
impacts in the 1995 Kobe earthquake." Journal of Economics and Business 
Administration 183: 47-66. 

Chaudhuri, D. and A. Samal (2007). "A simple method for fitting of bounding rectangle to 
closed regions." Pattern Recognition 40(7): 1981-1989. 

Chen, S. W., S. T. Tung, C. Y. Fang et al. (1998). "Extended attributed string matching 
for shape recognition." Computer Vision and Image Understanding 70(1): 36-50. 

City-Data.com. (2008). "Shelby County, Tennessee detailed profile - houses, real estate, 
agriculture, wages, work, ancestries, and more." City-Data.com. Retrieved 
May31, 2008, from http://www.city-data.com/county/Shelby_County-TN.html. 

Comaniciu, Dorin and Peter Meer (2002). "Mean shift: a robust approach toward feature 
space analysis." IEEE Transactions on Pattern Analysis and Machine Intelligence 
24(5): 603-619. 

Congressional Hazards Caucus. (2007a, July 23). "Congressional Hazards Caucus Fact 
Sheet: Floods." Congressional Hazards Caucus Fact Sheets. American 
Geographic Institute. Retrieved March 21, 2008, from 
http://www.hazardscaucus.org/floods-factsheet0207.pdf. 

Congressional Hazards Caucus. (2007b, July 23). "Congressional Hazards Caucus Fact 
Sheet: Hurricanes." Congressional Hazards Caucus Fact Sheets. American 
Geographic Institute. Retrieved March 21, 2008, from 
http://www.hazardscaucus.org/hurricanes_factsheet0306.pdf. 

Costa, Luciano da Fontoura and Roberto Marcondes Junior Cesar (2001a). Shape 
Analysis and Classification: Theory and Practice. New York: CRC Press. 

Costa, Luciano da Fontoura and Roberto Marcondes Junior Cesar. (2001b). "Shape 
Analysis by Costa & Cesar: Basic Mathematical Concepts." L. d. F. Costa and R. 
M. C. Junior, Eds. CRC Press. Retrieved March 11, 2008, from 
http://www.ime.usp.br/~cesar/shape_crc/chap1.html. 

Cover, T. M. (1965). "Geometrical and statistical properties of systems of linear 
inequalities with applications in pattern recognition." IEEE Transactions on 
Electronic Computers 14: 326-334. 

Cutter, Susan L., Ed. (2005). American Hazardscapes: The Regionalization of Hazards 
and Disasters. Washington, D. C.: Joseph Henry/The National Academies Press. 

De la Rosa, D., F. Mayol, E. Diaz-Pereira et al. (2004). "A land evaluation decision 
support system (MicroLEIS DSS) for agricultural soil protection: With special 



 
307

reference to the Mediterranean region." Environmental Modelling & Software 
19(10): 929-942. 

Demers, Michael N. (1999). Fundamentals of Geographic Information Systems. 3rd 
Edition. New York: John Wiley & Sons, Inc. 

Devijver, Pierre A. and Josef Kittler, Eds. (1982). Pattern Recognition: A Statistical 
Approach. Englewood Cliffs,  N.J.: Prentice-Hall. 

Douglas, D. H. and T. K. Peucker (1973). "Algorithms for the reduction of the number of 
points required to represent a digitized line or its caricature." Canadian 
Cartographer 10(2): 112-122. 

Dreiseitl, Stephan and Lucila Ohno-Machado (2002). "Logistic regression and artificial 
neural network classification models: a methodology review." Journal of 
Biomedical Informatics 35: 352-359. 

Dryden, Ian L. and Kanti V. Mardia (1993). "Multivariate Shape Analysis." Sankhya: The 
Indian Journal of Statistics Special Volume 55(Series A, Part 3): 460-480. 

Dryden, Ian L. and Kanti V. Mardia (1998). Statistical Shape Analysis. New York: John 
Wiley & Sons. 

Duda, Richard O. and Peter E. Hart (1973). Pattern Classification and Scene Analysis. 
New York: Wiley. 

Duda, Richard O., Peter E. Hart and David G. Stork (2001). Pattern Classification. 
Second. New York: John Wiley & Sons, Inc. 

Dudani, S., K. Breeding and R. McGhee (1977). "Aircraft identification by moment 
invariants." IEEE Transactions on Computers 26(1): 39-46. 

Dwinnell, Will. (2006, November 17). "Mahalanobis Distance." Data Mining in MATLAB. 
W. Dwinnell, Ed. Retrieved February 12, 2008, from 
http://matlabdatamining.blogspot.com/2006/11/mahalanobis-distance.html. 

Ellingwood, Bruce R. (2007). Quantifying and communicating uncertainty in seismic risk 
assessment.  Proceedings of the Special Workshop on Risk Acceptance and 
Risk Communication, Stanford University, Palo Alto. 

Environmental Systems Research Institute, Inc. (2007, March 15). "ArcGIS Desktop 
Help 9.2." ESRI: Redlands, CA. Retrieved February 13, 2008, from 
http://webhelp.esri.com/arcgisdesktop/9.2/index.cfm?TopicName=welcome. 



 
308

ESRI (1996). Automation of Map Generalization: the Cutting-Edge Technology. ESRI 
White Paper Series. Redlands, CA: Environmental Systems Research Institute, 
Inc. 

Fabel, George. (1997, October). "Machine vision systems looking better all the time." 
Quality Digest Online Magazine. Retrieved March 13, 2008, from 
http://www.qualitydigest.com/oct97/html/machvis.html. 

Fahlman, Scott E. (1989). Fast learning variations of back-propagation: An empirical 
study. In Proceedings of the 1988 Connectionist Models Summer School. D. S. 
Touretzky, G. Hinton and T. Sejnowski, Eds. San Mateo: Morgan Kaufmann. 

FEMA - DHS (2007). HAZUS MH-MR3 Technical Manuals. Multi-hazard Loss Estimation 
Methodology. Emergency Preparedness and Response Directorate -- 
Department of Homeland Security. Washington, D. C. : Federal Emergency 
Management Association 

FEMA (1992a). A Benefit-Cost Model for the Seismic Rehabilitation of Buildings - 
Volume 1 (A User's Manual). FEMA 227. Washington, D. C.: Federal Emergency 
Management Association 

FEMA (1992b). A Benefit-Cost Model for the Seismic Rehabilitation of Buildings - 
Volume 2 (Supporting Documentation). FEMA 228. Washington, D. C.: Federal 
Emergency Management Association 

FEMA (1994). Typical Costs for Seismic Rehabilitation of Buildings - Volume 1 
(Summary). FEMA 156. Washington, D. C.: Federal Emergency Management 
Association 

FEMA (1995). Typical Costs for Seismic Rehabilitation of Buildings - Volume 2 
(Supporting Documentation). FEMA 157. Washington, D. C.: Federal Emergency 
Management Association 

FEMA (2000). Disaster Mitigation Act of 2000.  Public Law 106-390. Washington, D.C.: 
Federal Emergency Management Association: 26. 

FEMA (2001). Understanding your Risks -- Identifying hazards and estimating losses. 
State and Local Mitigation Planning How-to Guide. FEMA 386-2. Washington, D. 
C.: Federal Emergency Management Association: 168. 

FEMA (2002a). Getting started -- Building support for mitigation planning. State and 
Local Mitigation Planning How-to Guide. FEMA 386-1. FEMA. Washington, D. C.: 
Federal Emergency Management Association 

FEMA (2002b). Handbook for the Seismic Evaluation of Buildings - A Prestandard, 
prepared by the American Society of Civil Engineers (ASCE). FEMA Hazard 



 
309

Mitigation Handbooks. FEMA 310. Washington, D.C.: Federal Emergency 
Management Association 

FEMA (2004). Using HAZUS-MH for Risk Assessment. HAZUS-MH Risk Assessment 
and User Group Series. FEMA 433. Federal Emergency Management 
Association. Washington, D. C. : Federal Emergency Management Association 

FEMA (2007). Robert T. Stafford Disaster Relief and Emergency Assistance Act, as 
amended, and Related Authorities. FEMA 592: Public Law 93-288. Washington, 
D.C.: Federal Emergency Management Association: 125. 

Fischler, M. A. and H. C. Wolf (1994). "Locating perceptually salient points on planar 
curves." IEEE Transactions on Pattern Analysis and Machine Intelligence 16(2): 
113-129. 

Fletcher, Roger (1987). Practical Methods of Optimization. New York: Wiley. 

Fowler, Robert (2000). Topographic LIDAR. In Digital Elevation Model Technologies and 
Applications: The DEM Users Manual. D. F. Maune, Ed. Bethesda, MD: The 
American Society for Photogrammetry and Remote Sensing: 207-236. 

Freiss, T-T. and R. Harrison (1998). Support Vector neural networks: The Kernel 
Adatron with bias and soft margin - Technical Report ACSE-TR-752. Sheffield, 
UK: Department of ACSE, University of Sheffield. 

French, Steven P., John C. Castanon and Alan Henson (1992). A Knowledge-Base 
Approach to Using Existing Data for Seismic Risk Assessment. NSF Report 
BCS-8822125. San Luis Obispo, CA: Department of City and Regional Planning, 
California Polytechnic State University. 

French, Steven P. and Mark S. Isaacson (1984). "Applying earthquake risk analysis 
techniques to land use planning." Journal of the American Planning Association 
50(4): 509-522. 

French, Steven P. and Subrahmanyam Muthukumar (2006). "Advanced Technologies 
for Earthquake Risk Inventories " Journal of Earthquake Engineering 10(2): 207-
236. 

Fu, King Sun (1982). Syntactic Pattern Recognition and Applications. Englewood Cliffs, 
NJ: Prentice-Hall. 

Fu, King Sun (1986). "A step towards unification of syntactic and statistical pattern 
recognition." IEEE Transactions on Pattern Analysis and Machine Intelligence 
8(3): 398-404. 



 
310

Fukunaga, Keinosuke (1990). Introduction to Statistical Pattern Recognition. Second 
Edition. Boston: Academic Press. 

Gabriel, A. K. and R. M. Goldstein (1988). "Repeat Pass Interferometry." International 
Journal of Remote Sensing 9: 857-872. 

Gdalyahu, Yoram and Daphna Weinshall (1999). "Flexible syntactic matching of curves 
and its application to automatic hierarchical classification of silhouettes." IEEE 
Transactions on Pattern Analysis and Machine Intelligence 21(12): 1312-1328. 

Geman, S. (1992). "Neural networks and the bias/variance dilemma." Neural 
computation 4: 1-58. 

Gil-Jimenez, P., S. Lafuente-Arroyo, H. Gomez-Moreno et al. (2005). Traffic sign shape 
classification evaluation. Part II. FFT applied to the signature of blobs.  
Proceedings of the Intelligent Vehicles Symposium, 2005, Traverse City, MI: 
IEEE. 

Godschalk, David R. and Stephen Baxter (2002). Urban hazard mitigation: Creating 
resilient cities. Urban Hazards Forum. New York, N. Y.: CUNY. 

Godschalk, David R., Timothy Beatley, Philip Berke et al. (1999). Natural Hazard 
Mitigation: Recasting Disaster Policy and Planning. Washington, D. C. : Island 
Press. 

Godschalk, David R., Samuel Brody and Raymond Burby (2003). "Public participation in 
natural hazard mitigation policy formation: Challenges for comprehensive 
planning." Journal of Environmental Planning and Management 46(5): 733-754. 

Godschalk, David R., Edward J. Kaiser and Philip R. Berke (1998). Integrating Hazard 
Mitigation and Local Land Use Planning. In Cooperating with Nature: Confronting 
Natural Hazards with Land Use Planning for Sustainable Communities. R. J. 
Burby, Ed. Washington, D. C.: Joseph Henry/The National Academies Press: 85-
118. 

Goldberger, Arthur Stanley (1991). A Course in Econometrics. Cambridge, MA: Harvard 
University Press. 

Golland, Polina, W. Eric L. Grimson, Martha E. Shenton et al. (2005). "Detection and 
analysis of statistical differences in anatomical shape." Medical Image Analysis 9: 
69-86. 

Gonzalez, Rafael C. and Michael C. Thomason (1978). Syntactic Pattern Recognition: 
An Introduction. Reading, MA: Addison-Wesley  



 
311

Greene, William H. (2008). Econometric Analysis. 6th. Upper Saddle River, NJ: Prentice-
Hall. 

Grenander, Ulf (1996). Elements of Pattern Theory. Baltimore: Johns Hopkins University 
Press. 

Gribov, Alexander and Eugene Bodansky (2004). A new method of polyline 
approximation.  A. Fred, T. Caelli, R. P. W. Duin, A. Campilho and D. d. Ridder, 
Eds.  Proceedings of the Structural, Syntactic, and Statistical Pattern Recognition 
Joint IAPR International Workshops, SSPR 2004 (Structural and Syntactic 
Pattern Recognition) and SPR 2004 (Statistical Techniques in Pattern 
Recognition). Lisbon, Portugal: Springer Berlin/Heidelberg. 

Grigorishin, T., G. Abdel-Hamid and Y. -H. Yang (1998). "Skeletonisation: An 
electrostatic field-based approach." Pattern Analysis & Applications 1(3): 163-
177. 

Gupta, L. and Mandyam D. Srinath (1987). "Contour sequence moments for the 
classification of closed planar shapes." Pattern Recognition 20(3): 267-272. 

Gupta, L. and Mandyam D. Srinath (1988). "Invariant planar shape recognition using 
dynamic alignment." Pattern Recognition 21(3): 235-239. 

Haddow, George D., Jane A. Bullock and Damon P. Coppola (2008). Introduction to 
Emergency Management. Third Edition. Burlington, MA: Elsevier, Inc. 

Hagan, Martin T., Howard B. Demuth and Mark Beale (1996). Neural Network Design. 
Boulder: University of Colorado Press. 

Hanson, S. J. (1990). Meiosis networks In Advances in Neural Information Processing 
Systems 2. D. S. Tourzetsky, Ed. San Francisco: Morgan Kaufmann: 533–541. 

Haykin, Simon (1994). Neural Networks: A Comprehensive Foundation. Second Edition. 
New York: Macmillan Publishing. 

Hebb, Donald O. (1949). The Organization of Behavior. New York: Wiley. 

Hensher, David A., John M. Rose and William H. Greene (2005). Applied Choice 
Analysis: A Primer. Cambridge, UK: Cambridge University Press. 

Hinton, Geoffrey E. and T. J. Sejnowski (1986). Learning and relearning in Boltzmann 
machines. In Parallel Distributed Processing: Explorations in the Microstructure 
of Cognition, Vol. 1: Foundations. D. E. Rumelhart and J. L. McClelland, Eds. 
Cambridge, MA: MIT Press: 282-317. 



 
312

Hopfield, J. J. (1982). "Neural networks and physical systems with emergent collective 
computational abilities." Proceedings of the National Academy of Sciences 79: 
2554-2558. 

Hu, Ming-Kuei (1962). "Visual pattern recognition by moment invariants." IEEE 
Transactions on Information Theory 8(2): 179-187. 

ICC (2000). International Building Code 2000. International Conference of building 
Officials, Whittier, CA: International Code Council: 756. 

Institute of Electrical and Electronics Engineers, Inc., IEEE. (2008). "IEEE Journals and 
Magazines." Transactions on Geoscience and Remote Sensing. J. A. 
Benediktsson, Ed. IEEE Geoscience and Remote Sensing Society. Retrieved 
March 11, 2008, from http://ieeexplore.ieee.org/servlet/opac?punumber=36. 

Jain, Anil K. and Richard C. Dubes (1988). Alogrithms for Clustering Data. Englewood 
Cliffs, N. J.: Prentice Hall. 

Jain, Anil K., Robert P.W. Duin and Jianchang Mao (2000). "Statistical pattern 
recognition: A review." IEEE Transactions on Pattern Analysis and Machine 
Intelligence 22(1): 4-37. 

Jiang, X. Y. and H. Bunke (1991). "Simple and fast computation of moments." Pattern 
Recognition 24(8): 801-806. 

Jin, X. and C. H. Davis (2005). "Automated building extraction from high-resolution 
satellite imagery in urban areas using Structural, Contextual, and Spectral 
information." EURASIP Journal on Applied Signal Processing 14: 2196–2206. 

Joao, E. M. (1998). Causes and consequences of map generalization. London: Taylor & 
Francis. 

Johnston, Mark R., Christine D. Scott and Robert G. Gibb (1999). Problems arising from 
a simple GIS Generalisation Algorithm. The 11th Annual Colloquium of the 
Spatial Information Research Centre, SIRC 99. Dunedin, New Zealand. 

Jones, Barclay G. (1978). "The Eclecticism of Regional Science – expanding thechoices 
of scientific method: With an application to estimating building stocks." Northeast 
Regional Science Review 8: 1-19. 

Jones, Barclay G. and Stephanie E. Chang (1994). A comparison of indirect and direct 
estimates of the built physical environment in the Memphis region.  Proceedings 
of the Fifth U.S. National Conference on Earthquake Engineering: Earthquake 
Awareness and Mitigation Across the Nation, Chicago, IL: Chicago, IL: 
Earthquake Engineering Research Institute. 



 
313

Jones, Barclay G. and Ajay Madan Malik (1997). Building Inventory. In Loss Estimation 
of Memphis Buildings. D. P. Abrams and M. Shinozuka, Eds. Buffalo: National 
Center for Earthquake Engineering Research, State University of New York at 
Buffalo: 11-20. 

Jones, Barclay G., Donald M. Manson, Charles M. Hotchkiss et al. (1987). Estimating 
Building Stocks and their Characteristics. Ithaca, NY: Cornell Institute for Social 
and Economic Research. 

Kaiser, Edward J., David R. Godschalk and Stuart F. Chapin (1995). Urban Land Use 
Planning. Fourth Edition. Urbana: University of Illinois Press. 

Kashyap, Rangasami L. and Ramalingam Chellappa (1981). "Stochastic models for 
closed boundary analysis: Representation and reconstruction." IEEE 
Transactions on Information Theory 27(5): 627 - 637. 

Katz, Robert A. and Stephen M. Pizer (2003). "Untangling the Blum Medial Axis 
Transform." International Journal of Computer Vision 55(2-3): 139–153. 

Kauppinen, Hannu, Tapio Seppanen and Matti Pietikainen (1995). "An experimental 
comparison of autoregressive and Fourier-based descriptors in 2D shape 
classification." IEEE Transactions on Pattern Analysis and Machine Intelligence 
17(2): 201-207. 

Kavzoglu, Taskin, Jasmee Jaafar and Paul M. Mather (2000). Extraction of field 
boundary information from classified satellite images.  Proceedings of GIS 
Research, York, UK. 

Kavzoglu, Taskin and Paul M. Mather (2000). The use of feature selection techniques in 
the context of artificial neural networks.  Proceedings of the 26th Annual 
Conference of the Remote Sensing Society, Leicester, UK. 

Kaygin, Serkan and M. Mete Bulut (2002). "Shape recognition using attributed string 
matching with polygon vertices as the primitives." Pattern Recognition Letters 
23(1-3): 287-294. 

Kazemi, Sharon (2003). A generalization framework to derive multi-scale GEODATA.  
Proceedings of the Spatial Sciences Conference, Canberra, Australia. 

Kazemi, Sharon, Samsung Lim and C. Rizos (2001). A review of map and spatial 
database generalization for developing a generalization framework.  Proceedings 
of the 4th Workshop ACI on Progress in Automated Map Generalisation, Beijing, 
China. 

Kendall, David G. (1984). "Shape manifolds, Procrustean metrics and complex projective 
spaces." Bulletin of the London Mathematical Society 16: 81-121. 



 
314

Kircher, C. A. (2003). It makes dollars and sense to improve nonstructural system 
performance.  Proceedings of Seminar on Seismic Design, Performance, and 
Retrofit of Nonstructural Components in Critical Facilities, ATC 29-2, Newport 
Beach, CA: Applied Technology Council. 

Kiryati, N. and D. Maydan (1989). "Calculating geometric properties from Fourier 
representation." Pattern Recognition 22(5): 469-475. 

Lakhan, Chris V. (1996). Introductory Geographical Information Systems. Toronto, 
Canada: Summit Press. 

Lam, Louisa, Seong-Whan Lee and Ching Y. Suen (1992). "Thinning methodologies - a 
comprehensive survey." IEEE Transactions on Pattern Analysis and Machine 
Intelligence 14(9): 869-885. 

Langley, Pat (1996). Elements of Machine Learning. San Francisco: Morgan Kaufmann. 

Latecki, Longin Jan and Rolf Lakamper (1999). Polygon evolution by vertex deletion.  M. 
Nielsen, P. Johansen, O. F. Olsen and J. Weickert, Eds.  Proceedings of the 
Second International Conference on Scale-Space Theories in Computer Vision, 
Corfu, Greece: Springer-Verlag. 

Latecki, Longin Jan and Rolf Lakamper (2000). "Shape similarity measure based on 
correspondence of visual parts." IEEE Transactions on Pattern Analysis and 
Machine Intelligence 22(10): 1185- 1190. 

Lee, Dan Scott (2003). Generalization within a geoprocessing framework.  International 
Workshop on Semantic Processing of Spatial Data (GEOPRO 2003), Mexico 
City, Mexico. 

Lee, Dan Scott, Jie Shan and James S. Bethel (2003). Class-guided building extraction 
from Ikonos imagery. Photogrammetric Engineering and Remote Sensing, 
Journal of the American Society for Photogrammetry and Remote Sensing. 
69(2): 143–150. 

Leu, Jia-Guu and Limini Chen (1988). "Polygonal approximation of 2-D shapes through 
boundary merging." Pattern Recognition Letters 7(4): 231 238. 

Leventon, Michael E., W. Eric L. Grimson and Olivier Faugeras (2000). Statistical shape 
influence in geodesic active contours.  2000 IEEE Computer Society Conference 
on Computer Vision and Pattern Recognition (CVPR '00), Hilton Head Island, 
SC: IEEE Computer Society. 

Li, Xia and Anthony Gar-on Yeh (2002). "Neural-network-based cellular automata for 
simulating multiple land use changes using GIS." International Journal of 
Geographical Information Science 16(4): 323-343. 



 
315

Li, Yajun (1992). "Reforming the theory of invariant moments for pattern  recognition." 
Pattern Recognition 25(7): 723-730. 

Limeng, L. and W. Lixin (2001). Map generalization from scale of 1:500,000 to 
1:2,500,000.  Proceedings of the 20th International Cartography Conference, 
Beijing, China. 

Liu, Hong-Chih and Mandyam D. Srinath (1990). "Partial shape classification using 
contour matching in distance transformation." IEEE Transactions on Pattern 
Analysis and Machine Intelligence 12(11). 

Loncaric, Sven (1998). "A survey of shape analysis techniques." Pattern Recognition 
31(8): 983-1001. 

Long, J. Scott (1997). Regression Models for Categorical and Limited Dependent 
Variables. Thousand Oaks, CA: SAGE Publications. 

Long, J. Scott and Jeremy Freese (2006). Regression Models for Categorical Dependent 
Variables Using Stata. College Station, TX: Stata Press. 

Lopez, Oscar A. and Elizabeth Raven (1999). "An overall evaluation of irregular-floor-
plan-shaped buildings located in seismic areas." Earthquake Spectra 15(1): 105-
120. 

Luenberger, David G. (1984). Linear and Nonlinear Programming. Reading, MA: 
Addison-Wesley. 

Luger, George F. (2002). Artificial Intelligence, Structures and Strategies for Complex 
Problem Solving. Fourth Edition. Harlow, England: Addison-Wesley. 

Makhfi, Pejman. (2007, January 12). "Introduction to Knowledge Modeling and Neural 
Networks." Retrieved September 27, 2007, from 
http://www.makhfi.com/index.htm. 

Malik, Ajay Madan (1995). Building Stocks Cross-classified by Use and Structural Type: 
Memphis-Shelby County, Tennessee 1992 and Wichita-Sedgwick County, 
Kansas 1982. Working Paper in Estimating Building Stocks for Earthquake 
Mitigation and Recovery Planning. Ithaca, NY: Cornell Institute for Social and 
Economic Research Program in Urban and Regional Studies. 

May, Peter J. (1985). Recovering from Catastrophes: Federal Disaster Relief Policy and 
Politics. Westport, CT: Greenwood Press. 

McCulloch, Warren and Walter Pitts (1943). "A logical calculus of the ideas immanent in 
nervous activity." Bulletin of Mathematical Biophysics 5: 115-133. 



 
316

McFadden, Daniel (1974). Conditional Logit Analysis of Qualitative Choice Behavior. In 
Frontiers in Econometrics. P. Zarembka, Ed. New York: Academic Press: 105-
142. 

McKeown, David, Jeff McMahill and Douglas Caldwell (1999). The use of spatial context 
in linear feature simplification.  The IV International Conference on 
GeoComputation, Fredericksburg, VA. 

McLachlan, Geoffrey J. (1992). Discriminant Analysis and Statistical Pattern 
Recognition. New York: Wiley. 

McMaster, Robert B. and K. Stuart Shea (1988). Cartographic generalization in a digital 
environment: A framework for implementation in a Geographic Information 
System.  Proceedings of the Third Annual International Conference in GIS/LIS: 
Accessing the World, San Antonio, TX: ACPRS-ACSM-URISA. 

McMaster, Robert B. and K. Stuart Shea (1989). Cartographic generalization in a digital 
environment: When and how to generalize.  E. Anderson, Ed.  Proceedings of 
the Ninth International Symposium on Computer-Assisted Cartography (Auto-
Carto 9), Baltimore, MD: ACPRS-ACSM. 

McMaster, Robert B. and K. Stuart Shea (1992). Generalization in Digital Cartography. 
Washington, DC: Association of American Geographers. 

Michie, D., D. J. Spiegelhalter and C. C. Taylor. (1994, April 16, 1999). "Machine 
Learning, Neural and Statistical Classification." University of Leeds. Retrieved 
October 20, 2007, from http://www.amsta.leeds.ac.uk/~charles/statlog/. 

Mid-America Earthquake Center. (2006). "Mid-America Earthquake Center -- Research." 
Retrieved October 22, 2007, from http://mae.ce.uiuc.edu/research/index.html. 

Minsky, Marvin and Seymour Papert (1969). Perceptrons. Cambridge, MA: MIT Press. 

Mollander, Craig W. (2000). Photogrammetry. In Digital Elevation Model Technologies 
and Applications: The DEM Users Manual. D. F. Maune, Ed. Bethesda, MD: The 
American Society for Photogrammetry and Remote Sensing: 121-142. 

Morse, Bryan. (2007, August 1). "Points of extreme curvature: Sec. 7.6.7.  Available: 
http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/MORSE/boundary-
rep-desc.pdf." In CVonline: On-Line Compendium of Computer Vision [Online]. 
R. B. Fisher, Ed. Retrieved February 14, 2008, from 
http://homepages.inf.ed.ac.uk/rbf/CVonline/. 

Muller, Jean-Claude, Jean-Philippe Lagrange and Robert Weibel, Eds. (1995a). GIS and 
Generalization: Methodology and Practice. Bristol, England: Taylor & Francis. 



 
317

Muller, Jean-Claude, Robert Weibel, Jean-Phillippe Lagrange et al. (1995b). 
Generalization: state of the art and issues. In GIS and Generalization: 
Methodology and Practice. J.-C. Muller, J.-P. Lagrange and R. Weibel, Eds. 
Bristol, England: Taylor & Francis: 3-18. 

Multihazard Mitigation Council (2005a). Natural Hazard Mitigation Saves: An 
Independent Study to Assess the Future Savings from Mitigation Activities.  
Volume 1 -- Findings, Conclusions and Recommendations. National Institute of 
Building Sciences. Washington, D. C. : NIBS 

Multihazard Mitigation Council (2005b). Natural Hazard Mitigation Saves: An 
Independent Study to Assess the Future Savings from Mitigation Activities.  
Volume 2 -- Study Documentation. National Institute of Building Sciences. 
Washington, D. C. : NIBS 

Murty, C. V. R. (2002 a, September). "How Architectural Features Affect Buildings 
During Earthquakes?". National Information Center of Earthquake Engineering. 
Retrieved February 4, 2008, from 
http://www.iitk.ac.in/nicee/EQTips/EQTip06.pdf. 

Murty, C. V. R. (2002 b, October). "How Buildings Twist During Earthquakes?". National 
Information Center of Earthquake Engineering. Retrieved February 4, 2008, from 
http://www.iitk.ac.in/nicee/EQTips/EQTip07.pdf. 

National Research Council (1999). The Impacts of Natural Disasters: A Framework for 
Loss Estimation. Washington, D. C. : The National Academies Press. 

National Research Council (2006). Improved Seismic Monitoring - Improved Decision-
Making: Assessing the Value of Reduced Uncertainty. Washington, D. C. : The 
National Academies Press. 

National Research Council and the Division on Earth and Life Studies (2006). Facing 
Hazards and Disasters: Understanding Human Dimensions. Washington, D. C.: 
The National Academies Press. 

National Science and Technology Council. (2003, July). "Reducing Disaster Vulnerability 
through Science and Technology: An Interim Report of the Subcommittee on 
Disaster Reduction." National Oceanic and Atmospheric Administration, National 
Environmental, Satellite, Data and Information Service. Retrieved May 10, 2008, 
from http://www.sdr.gov/SDR_Report_ReducingDisasterVulnerability2003.pdf. 

National Science and Technology Council. (2005, June). "Grand Challenges for Disaster 
Reduction: Earthquake." National Oceanic and Atmospheric Administration, 
National Environmental, Satellite, Data and Information Service. Retrieved May 
27, 2008, from http://www.sdr.gov/185820_Earthquake_FINAL.pdf. 



 
318

Neaupane, K. M. and S. H. Achet (2004). "Use of back propagation neural network for 
landslide monitoring: A case study in the higher Himalaya." Engineering geology 
74(3-4): 213-226. 

Nelson, Arthur C. and Steven P. French (2002). "Plan quality and mitigating damage 
from natural disasters." Journal of the American Planning Association 68(2): 194-
207. 

Nilsson, Nils. (1996, August 22, 2005). "Introduction to Machine Learning -- An Early 
Draft of a Proposed Textbook." Retrieved October 14, 2007, from 
http://robotics.stanford.edu/people/nilsson/MLDraftBook/MLBOOK.pdf. 

Niu, Xutong, Rongxing Li and Morton O’Kelly (2002). Truck Detection from Aerial 
Photographs.  Proceedings of the ISPRS Technical Commission II Symposium: 
Integrated Systems for Spatial Data Production, Custodian and Decision 
Support, Xi'an, China: ISPRS. 

Ogniewicz, R. L. (1993). Discrete Voronoi Skeletons. Konstanz, Germany: Hartung-
Gorre Verlag. 

Olshansky, Robert B. (2001). "Land use planning for seismic safety -- The Los Angeles 
experience, 1971-1994." Journal of the American Planning Association 67(2): 
173-185. 

Oosterom, P. van (1995). The GAP-tree, and approach to 'on-the-fly' map generalization 
of an area partitioning. In GIS and Generalization: Methodology and Practice. J.-
C. Muller, J.-P. Lagrange and R. Weibel, Eds. Bristol, England: Taylor & Francis: 
120-132. 

Patterson, Dan W. (1996). Artificial Neural Networks. New York: Prentice Hall. 

Pavlidis, Theodosios (1972). Structural pattern recognition: primitives and juxtaposition 
relations. In Frontiers of Pattern Recognition. S. Watanabe, Ed. New York: 
Academic Press. 

Pavlidis, Theodosios (1978). "A review of algorithms for shape analysis." Computer 
Graphics and Image Processing 7: 243-258. 

Pavlidis, Theodosios (1979). "Hierarchies in structural pattern recognition." Proceedings 
of the IEEE 67(5): 737- 744. 

Pavlidis, Theodosios (2003). "36 years on the pattern recognition front: Lecture given at 
ICPR’2000 in Barcelona, Spain, on the occasion of receiving the K.S. Fu prize." 
Pattern Recognition Letters 24(1-3): 1-7. 



 
319

Pearce, Laurie (2003). "Disaster management and community planning, and public 
participation: How to achieve sustainable hazard mitigation." Natural Hazards 
28(2): 211-228. 

Pentland, A. (1987). Recognition by parts.  Proceedings of the First International 
Conference on Computer Vision, London, England: Computer Society of the 
IEEE -- IEEE Computer Society Press: Los Alamitos, CA. 

Persoon, E. and K. S. Fu (1977). "Shape discrimination using Fourier descriptors." IEEE 
Transactions on Systems, Man and Cybernetics 7: 534-541. 

Porter, Keith A. (2002). Learning from earthquakes: a survey of surveys.  EERI 
Invitational Workshop: An Action Plan to Develop Earthquake Damage and Loss 
Data Protocols, Pasadena, CA: Earthquake Engineering Research Institute. 

Porter, Keith A. (2005). A Taxonomy of Building Components for Performance-Based 
Earthquake Engineering - PEER Report 2005/03. Berkeley, CA: University of 
California, Berkeley. 

Porter, Keith A., Anne S. Kiremidjian and Jeremiah S. LeGrue (2001). "Assembly-based 
vulnerability of buildings and its use in performance evaluation." Earthquake 
Spectra 17(2): 291-312. 

Prager, R. W. and F. Fallside (1989). "The modified Kanerva model for automatic 
speech recognition." Computer Speech and Language 3: 61-82. 

Principe, Jose C., Neil R. Euliano and W. Curt Lefebvre (2000). Neural and Adaptive 
Systems: Fundamentals through Simulation. New York: John Wiley & Sons, Inc. 

R. S. Means (2008). Square Foot Costs. Kingston, MA: Reed Construction Data, Inc. 

Ramachandran, V. S. and Sandra Blakeslee (1998). Phantoms in the Brain: Probing the 
Mysteries of the Human Mind. New York: Quill William Morrow. 

Realpe, Alvaro and Carlos Velázquez (2006). "Pattern recognition for characterization of 
pharmaceutical powders." Powder Technology 169(2): 108-113. 

Reddy, Swaroop D. (2000). "Examining hazard mitigation within the context of public 
goods." Environmental Management 25(2): 129-141. 

Reitherman, Robert (1998). The need for improvement in post-earthquake Investigations 
of the performance of nonstructural components.  Proceedings of Seminar on 
Seismic Design, Retrofit and Performance of Nonstructural Components, ATC 
29-1, San Francisco, CA: Applied Technology Council. 



 
320

Richard, C. W. and H. Hemami (1974). "Identification of three dimensional objects using 
Fourier descriptors of the boundary curve." IEEE Transactions on Systems, Man 
and Cybernetics 4(4): 371-378. 

Richter, Charles F. (1957). Elementary Seismology. San Francisco, CA: W. H. Freeman 
Co. 

Ripley, Brian D. (1996). Pattern Recognition and Neural Networks. Cambridge, UK: 
Cambridge University Press. 

RMS & CUREe (1993). Assessment of the State of the Art Earthquake Loss Estimation 
Methodologies -- Task 1 Report prepared by: Risk Management Software, Inc. 
and California Universities for Research in Earthquake Engineering. Washington, 
D. C.: National Institute of Building Sciences and the Federal Emergency 
Management Association. ENW-92-IL-3973: 376. 

Rodrigues, E. and J. M. Martin (1992). "Theory and Design of Interferometric Synthetic 
Aperture Radar." IEEE Proceedings 139(2): 147-159. 

Rojas, Raul (1995). Neural Networks: A Systematic Introduction. New York: Springer-
Verlag. 

Rose, Adam Zachary (2004). Economic Principles, Issues, and Research Priorities in 
Hazard Loss Estimation. In Modeling Spatial And Economic Impacts Of 
Disasters. Y. Okuyama, S. E.-L. Chang and S. E. Chang, Eds. New York: 
Springer-Verlag: pp. 13-36. 

Rose, Adam Zachary, J. Benavides, S.E. Chang et al. (1997). "The regional economic 
impact of an earthquake: direct and indirect effects of electricity lifeline 
disruptions." Journal of Regional Science, 37: 437-458. 

Rose, Adam Zachary and Howard Kunreuther, Eds. (2004). The Economics of Natural 
Hazards. Northampton, MA: Edward Elgar Publishing. 

Rose, Adam Zachary and Dongsoon Lim (2002). "Business interruption losses from 
natural hazards: conceptual and methodological issues in the case of the 
Northridge earthquake." Global Environmental Change Part B: Environmental 
Hazards 4(1): 1-14. 

Rosenblatt, Frank (1958). "The perceptron: A probabilistic model for information storage 
and organization in the brain." Psychological Review 65: 386-408. 

Rothe, Irene, Herbert Susse and Klaus Voss (1996). "The method of normalization to 
determine invariants." IEEE Transactions on Pattern Analysis and Machine 
Intelligence 18(4): 366-376. 



 
321

Ruas, A. and C. Plazanet (1996). Strategies for automated generalization. In Advances 
in GIS Research II: Proceedings of the 7th International Symposium on Spatial 
Data Handling. M.-J. Kraak, M. Molenaar and E. M. Fendel, Eds. London: Taylor 
& Francis: 319-335. 

Rumelhart, David E., Geoffrey E. Hinton and R. J. Williams (1986). Learning internal 
representations by error propagation. In Parallel Distributed Processing: 
Explorations in the Microstructure of Cognition, Vol. 1: Foundations. D. E. 
Rumelhart and J. L. McClelland, Eds. Cambridge, MA: MIT Press: 318-362. 

Rumelhart, David E. and James L. McClelland, Eds. (1986). Parallel Distributed 
Processing: Explorations in the Microstructure of Cognition. Cambridge, MA: MIT 
Press. 

Russell, Stuart and Peter Norvig (1995). Artificial Intelligence: A Modern Approach. 
Second Edition. Englewood Cliffs, NJ: Prentice-Hall. 

Saeki, T., H. Tsubokawa and S. Midorikawa (2000). Seismic damage evaluation of 
household property by using geographic information systems (GIS) - Paper 1968.  
Proceedings of the 12th World Conference on Earthquake Engineering, 
Auckland, New Zealand: International Association for Earthquake Engineering. 

Sahar, Liora and Amnon Krupnik (1999). "Semiautomatic Extraction of Building Outlines 
from Large-Scale Aerial Images." Photogrammetric Engineering and Remote 
Sensing 65(4): 459-465. 

Salih, Nbhan D., David Chek Ling Ngo and Hakim Mellah (2006). "2D object description 
with discrete segments." Journal of Computer Science 2(7): 572-576. 

Savonis, Michael John (1985). The Residential Building Stock: Characteristics and 
Trends in Wichita-Sedgwick County, Kansas. Working Paper in Estimating 
Building Stocks for Earthquake Mitigation and Recovery Planning. Ithaca, NY: 
Cornell Institute for Social and Economic Research Program in Urban and 
Regional Studies. 

Schalkoff, Robert J. (1992). Pattern Recognition - Statistical, Structural and Neural 
Approaches. New York: John Wiley & sons. 

Sebastian, Thomas B., Philip N. Klein and Benjamin B. Kimia (2001). Recognition of 
shapes by editing shock graphs.  Proceedings of the Eighth IEEE International 
Conference on Computer Vision, Vancouver, BC, Canada. 

Shahrokni, Ali, Tom Drummond and Pascal Fua. (2004, June 21). "Minkowski-form: 
Non-parametric measures.  Available: 
http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/SHAHROKNI1/nod
e8.html." In CVonline: On-Line Compendium of Computer Vision [Online]. R. B. 



 
322

Fisher, Ed. Retrieved February 14, 2008, from 
http://homepages.inf.ed.ac.uk/rbf/CVonline/. 

Sherman, Deborah. (2007, 3/30/2007). "Undercover agents slip bombs past DIA 
screeners." 9news.com. Retrieved August 27, 2007, from 
http://www.9news.com/news/article.aspx?storyid=67166. 

Shinozuka, M., Adam Rose and Ron Eguchi, Eds. (1998). Engineering and 
Socioeconomic Impacts of Earthquakes: An Analysis of Electricity Lifeline 
Disruptions in the New Madrid Area. Buffalo, NY: MCEER. 

Silva, Fernando M. and Luis B. Almeida (1990). Acceleration techniques for the back-
propagation algorithm. In Neural Networks. L. B. Almeida and C. J. Wellekens, 
Eds. New York: Springer: 110-119. 

Skiena, Steven S. (1997, June 2). "Medial-Axis Transformation." The Algorithm Design 
Manual. Springer-Verlag. Retrieved March 18, 2008, from 
http://www2.toki.or.id/book/AlgDesignManual/BOOK/BOOK5/NODE193.HTM. 

Skopeliti, Andriani and Lysandros Tsoulos (2001). A knowledge based approach for the 
generalization of linear features.  Proceedings of the 20th International 
Cartography Conference, Beijing, China. 

Sohn, Hong-Gyoo, Choung-Hwan Park, Ho-Sung Kim et al. (2005). 3-D building 
extraction using IKONOS multispectral images.  Proceedings of the 2005 
Geoscience and Remote Sensing Symposium (IGARSS 2005), Seoul, South 
Korea. 

Srinivasan, Ashwin (2001). "Extracting context-sensitive models in Inductive Logic 
Programming." Machine Learning 44(3): 301-324. 

StatSoft, Inc. (2003). "Neural Networks." Retrieved 2007, March 14, from 
http://www.statsoft.com/textbook/stneunet.html. 

Super, Boaz J. (2004). "Fast correspondence-based system for shape-retrieval." Pattern 
Recognition Letters 25(2): 217-225. 

Taghavi, S. and E. Miranda (2003). Response Assesssment of Nonstructural Building 
Elements - PEER Report 2003/05. Richmond, CA: Pacific Earthquake 
Engineering Research Center. 

Teague, M. R. (1980). "Image analysis via the general theory of moments." Journal of 
Optical Society of America 70: 920-930. 

Torsello, Andrea and Edwin R. Hancock (2004). "A skeletal measure of 2D shape 
similarity." Computer Vision and Image Understanding 95: 1–29. 



 
323

Tralli, David M. (2000). Assessment of Advanced Technologies for Loss Estimation: 
Multidisciplinary Center for Earthquake Engineering Research. University at 
Buffalo, State University of New York. 

Trier, Oivind Due, Anil K. Jain and Torfinn Taxt (1996). "Feature extraction methods for 
character recognition - A survey." Pattern Recognition 29(4): 641-662. 

Tun, Aung Hla. (2008, May 6). "Myanmar cyclone toll climbs to nearly 22,500." Thomson 
Reuters, International Edition. Retrieved May 25, 2008, from 
http://www.reuters.com/article/topNews/idUSBKK1919620080506?feedType=RS
S&feedName=topNews. 

United Nations (2001). Disaster Reduction and Sustainable Development: 
Understanding the links between development, environment and natural 
disasters. World Summit on Sustainable Development. Geneva, Switzerland: 
United Nations International Strategy for Disaster Reduction. 

United Nations (2003). Disaster Reduction and Sustainable Development: 
Understanding the links between vulnerability and risk to disasters related to 
development and environment. World Summit on Sustainable Development. 
Geneva, Switzerland: United Nations International Strategy for Disaster 
Reduction. 

United Nations (2005). Building the Resilience of Nations and Communities to Disasters: 
Hyogo Framework for Action 2005-2015 United Nations World Conference on 
Disaster Reduction, Kobe, Hyogo, Japan: Inter-Agency Secretariat of the 
International Strategy for Disaster Reduction. 

US Census Bureau. (2008, January 2). "Shelby County QuickFacts from the US Census 
Bureau." State and County QuickFacts. US Census Bureau. Retrieved March 27, 
2008, from http://quickfacts.census.gov/qfd/states/47/47157.html. 

US General Accounting Office (2003). Disaster Assistance: Information on FEMA’s Post 
9/11 Public Assistance to the New York City Area. Report to the Committee on 
Environment and Public Works, US Senate. Washington, D.C.: US General 
Accounting Office. GAO-03-926: 48. 

Vapnik, Vladimir Naumovich (1999). The Nature of Statistical Learning Theory. Second 
Edition. New York: Springer-Verlag. 

Veltkamp, Remco C. (2001). Shape matching: Similarity measures and algorithms. 
Utrecht: Technical Report UU-CS-2001-03, Utrecht University. 

Veltkamp, Remco C. and Michiel Hagedoorn (1999). State-of-the-art in shape matching. 
Utrecht: Technical Report UU-CS-1999-27, Utrecht University. 



 
324

Visvalingam, Mahes and J. D. Whyatt (1990). "The Douglas-Peucker algorithm for line 
simplification: Re-evaluation through visualization." Computer Graphics Forum 9: 
213-228. 

Wang, Shuenn-Shyang, Po-Cheng Chen and Wen-Gou Lin (1994). "Invariant pattern 
recognition by moment fourier descriptor." Pattern Recognition 27(12): 1735-
1742. 

Waugh, William L. Jr. (2000). Living with Hazards; Dealing with Disasters: An 
Introduction to Emergency Management. Armonk, N. Y.: M. E. Sharpe. 

Webb, Andrew R. (2002). Statistical Pattern Recognition. Second. New York: John Wiley 
& Sons, Inc. 

Wei, Yanfeng, Zhongming Zhao and Jianghong Song (2004). Urban building extraction 
from high-resolution satellite panchromatic image using clustering and edge 
detection.  Proceedings from Geoscience and Remote Sensing Symposium, 
IEEE International (IGARSS 2004), Anchorage, AL. 

Weibel, Robert and G. Dutton (1999). Generalizing spatial data and dealing with multiple 
representations. In Geographical Information Systems: Volume 1. Principles and 
Technical Issues. 2nd Edition. P. A. Longley, M. F. Goodchild, D. J. Maguire and 
D. W. Rhind, Eds. New York: John Wiley & Sons: 125-155. 

Weibel, Robert and Christopher B. Jones (1998). "Computational perspectives on map 
generalization." GeoInformatica 2(4): 307-314. 

Werbos, Paul John (1974). Beyond Regression: New Tools for prediction and analysis in 
the behavioural sciences. Cambridge, MA: Harvard University. 

Whittaker, A. S. and T. T. Soong (2003). An overview of nonstructural components 
research at three US earthquake engineering research centers.  Proceedings of 
Seminar on Seismic Design, Performance, and Retrofit of Nonstructural 
Components in Critical Facilities, ATC 29-2, Newport Beach, CA: Applied 
Technology Council. 

Widrow, Bernard and M.E. Hoff (1960). Adaptive switching circuits. IRE WESCON 
Convention Record. New York: IRE Part 4: 96-104. 

Widrow, Bernard and Samuel Sterns (1985). Adaptive Signal Processing. Upper Saddle 
River, NJ: Prentice Hall. 

Wu, W. Y. and M. J. J. Wang (1999). "Two-dimensional object recognition through 
twostage string matching." IEEE Transactions on Image Processing 8(7): 978-
981. 



 
325

Wynne-Jones, M. (1993). "Node splitting: A constructive algorithm for feed-forward 
neural networks." Neural Computing and Applications 1(1): 17-22. 

Yang, W. and C. M. Gold (1997). A system approach to automated map generalization.  
Y. C. Lee and Z. L. Li, Eds.  Proceedings of International Workshop on Dynamic 
and Multi-Dimensional GIS, Hong Kong, China. 

Yang, Y. P. and Theodosios Pavlidis (1990). "Optimal correspondence of string 
subsequences." IEEE Transactions on Pattern Analysis and Machine Intelligence 
12(11): 1080-1087. 

Young, I., J. Walker and J. Bowie (1974). "An analysis technique for biological shape." 
Computer Graphics and Image Processing 25: 357-370. 

Zahn, Charles and Ralph Roskies (1972). "Fourier descriptors for plane closed curves." 
Computer Graphics and Image Processing 21: 269-281. 

Zhang, J., X. Zhang, H. Krimb et al. (2003). "Object representation and recognition in 
shape spaces." Pattern Recognition Letters 36(5): 1143 – 1154. 

Zurada, Jacek M., Aleksander Malinowski and Ian Cloete (1994). Sensitivity analysis for 
minimization of input data dimension for feedforward neural network.  ISCAS 
1994, IEEE International Symposium on Circuits and Systems, London, UK. 

 
 


	THE APPLICATION OF ADVANCED INVENTORY TECHNIQUES IN URBAN INVENTORY DATA DEVELOPMENT TO EARTHQUAKE RISK MODELING AND MITIGATION IN MID-AMERICA
	THE APPLICATION OF ADVANCED INVENTORY TECHNIQUES IN URBAN INVENTORY DATA DEVELOPMENT TO EARTHQUAKE RISK MODELING AND MITIGATION IN MID-AMERICA
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	SUMMARY
	Chapter 1 . INTRODUCTION
	1.1. Background for disaster mitigation
	1.2. The need for accurate urban inventories
	1.3. Hazard Mitigation in the Planning Process Framework
	1.4. Existing methods for Urban Inventory Data Collection and Limitations
	1.4.1. Urban Inventory Data Sources
	1.4.2. Classification of the Urban Building Inventory
	1.4.3. Building Inventory Development in HAZUS MR-3

	1.5. Advanced Inventory Technologies and Techniques for Data Collection
	1.5.1. Remote Sensing Technologies
	1.5.2. Building Inventory Estimation Methods
	1.5.3.1. Knowledge-based Rules
	1.5.3.2. Classification Models


	1.6. The Earthquake Modeling Process Requirements
	1.7. Description of Research
	1.7.1. Research Statement
	1.7.2. Research Goals and Objectives
	1.7.3. Significance of the Research Effort
	1.7.4. Scope of Research

	1.8. Organization of Dissertation

	Chapter 2  . LITERATURE REVIEW
	2.1. Pattern Recognition and the Potential for Automation
	2.2. Multinomial Logistic Regression for Classification
	2.3. Artificial Neural Network Solutions for Categorical Data Analysis
	2.3.1. A historical perspective on Artificial Neural Networks
	2.3.2. What is an Artificial Neural Network?
	2.3.3. Transfer Functions
	2.3.4. Applications of Artificial Neural Networks
	2.3.4.1. Function approximation
	2.3.4.2. Time series analysis and prediction
	2.3.4.3. Classification
	2.3.4.4. Data mining

	2.3.5. Why use Artificial Neural Networks?
	2.3.6. Artificial Neural Network topologies for classification
	2.3.6.1. Neural Computing for Classification
	2.3.6.2. Discriminant Functions

	2.3.7. Conceptual issues in designing and training Artificial Neural Networks
	2.3.7.1. Error minimization search procedures
	2.3.7.2. Learning rate
	2.3.7.3. Learning algorithms
	2.3.7.4. Processing elements in the hidden layer
	2.3.7.5. Stop criteria
	2.3.7.6. Performance Measures


	2.4. Shape Recognition Background, Techniques and Applications
	2.4.1. Definition of a Shape
	2.4.2. The Process of Shape Analysis
	2.4.2.1. Shape Acquisition
	2.4.2.2. Shape Representation
	2.4.2.3. Feature Extraction or Shape Description after Shape Representation
	2.4.2.4. Invariant Representations
	2.4.2.5. Statistical and Mathematical Approaches
	2.4.2.6. Structural and Syntactic Methods
	2.4.2.7. Syntactic Shape Recognition
	2.4.2.8. Shape Recognition and Classification


	2.5. Geometry Manipulations in the GIS Environment
	2.5.1. Representation of Points, Lines and Regions in GIS
	2.5.2. Topological Data Structures
	2.5.3. Geometric Primitives and Object Hierarchy
	2.5.4. Manipulating Vector GIS Feature Geometry for Shape Preprocessing
	2.5.5. Densification of Edges and Polylines
	2.5.6. Generalization, Polygon Approximation and Line Simplification
	2.5.7. Generalization Routines and Vertex Decimation Strategies
	2.5.8. Line Simplification
	2.5.9. Evaluation of Generalization and Simplification Algorithms

	2.6. Building Valuation
	2.6.1. Replacement Costs of Buildings
	2.6.2.1. Structural and Nonstructural Building Components
	2.6.2.2. Earthquake-related Damage to Nonstructural Components and Contents
	2.6.2.3. Content Value of Buildings


	2.7. Conclusion

	Chapter 3  . METHODOLOGY
	3.1. Tax Assessor’s Data for Shelby County
	3.1.1. Generating Unique Identifiers for Tax Records
	3.1.2. Single-family Residential Building Extraction
	3.1.3. Multi-family and Commercial/Industrial Building Extraction
	3.1.4. Imputation of Missing Data and Data Refinement
	3.1.5. Spatial Representation of Extracted Buildings

	3.2. Sample Data Collection
	3.2.1. Description of Sample Data

	3.3. Structure Type Classification
	3.3.1. Multinomial Logistic Regression
	3.3.2. Design of Neural Network Topology for Classification
	3.3.2.1. Multilayer Perceptron
	3.3.2.2. Generalized Feed Forward Network  
	3.3.2.3. Modular Neural Network
	3.3.2.4. Radial Basis Functions
	3.3.2.5. Support Vector Machines


	3.4. Building Footprint Classification
	3.4.1. Guidelines for Shape Classification Design Process
	3.4.2. Preprocessing and Collinear Vertex Decimation
	3.4.3. Orthogonalization of Polygon Edges by Corner Vertex Adjustment
	3.4.4. Building Footprint Analysis by Landmark Correspondence
	3.4.4.1. Computing Circularity Indexes to Eliminate Circular Buildings

	3.4.5. Building Footprint Polygon Simplification
	3.4.6. Identification of Salient Points
	3.4.7. Derivation of Landmark Sequences by Contour Traversal
	3.4.8. Binary Representation of Landmark Convexity
	3.4.8.1. Determining Landmark Convexity

	3.4.9. Building Footprint Classification

	3.5. Building Valuation
	3.5.1. Curve Fitting Routines for Model Building Square Foot Costs
	3.5.1.1. Nomenclature for Model Buildings

	3.5.2. Estimating Replacement Costs for Buildings
	3.5.3. Structural and Non-Structural Replacement Costs
	3.5.3.1. Recording Construction Assembly Costs for Model Buildings
	3.5.3.2. Estimating Structural, Acceleration- and Drift-Sensitive Nonstructural Costs


	3.6. Estimating Content Value

	Chapter 4  . RESULTS AND DISCUSSION
	4.1. Structure Type from Multinomial Logistic Regression
	4.1.1. Multinomial Logistic Regression Model Specification
	4.1.2. Model Performance
	4.1.3. Relationships between Inputs and Structure Classes

	4.2. Structure Type from Neural Networks
	4.2.1. Model Performance Evaluations
	4.2.1.1. Interpreting the Confusion Matrix
	4.2.1.2. Comparing Accuracy of Classification
	4.2.1.3. Analysis of Misclassifications in the Models
	4.2.1.4. Analysis of Classification Errors
	4.2.1.5. Consequences of Classification Errors in Loss Estimation and Mitigation
	4.2.1.6. Model Complexity, Sample Size and Model Calibration in Neural Networks


	4.3. Comparison of Multinomial Logistic Regression and Neural Networks
	4.3.1. Differences and Relative Advantages of Multinomial Logistic Regression and Artificial Neural Networks
	4.3.2. Using Artificial Neural Networks for Structure Type Classification

	4.4. Recognizing Building Footprints
	4.4.1. Classification on Manually-digitized Building Footprints
	4.4.2. Classification of Automatically-extracted Building Footprints
	4.4.3. Notes on the Classification Algorithm

	4.5. Building Valuation
	4.5.1. Replacement Costs for Shelby County
	4.5.2. Structural and Nonstructural Replacement Costs
	4.5.3. Content Value

	4.6. The Shelby County Building Inventory Database

	Chapter 5  . CONCLUSION AND VALIDATION
	5.1. Validation of Shelby County Building Inventory Data
	5.1.1. Validating Residential Data using Dwelling Unit Comparisons
	5.1.2. Validation of General Building Stock Characteristics

	5.2. Applicability of Research Methods to Other Fields
	5.3. Implications of the Research
	5.3.1. Specific Implications
	5.3.2. Limitations of the Research and Future Directions
	5.3.2.1. Limitations in Structure Type Classification Modeling
	5.3.2.2. Limitations in the Shape Recognition Application
	5.3.2.3. Limitations in Building Valuation Modeling



	APPENDIX A  . Tabulated Summaries and Descriptions of the Shelby County Building Inventory
	APPENDIX B . Influence of Input Variables on Structure Type Outcome Pairs in the Multinomial Logistic Regression Model
	 References


