
A SYSTEMATIC APPROACH TO BIO-INSPIRED
CONCEPTUAL DESIGN

A Dissertation
Presented to

The Academic Faculty

By

Jamal Omari Wilson

In Partial Fulfillment
Of the Requirements for the Degree

Doctor of Philosophy in Mechanical Engineering

Georgia Institute of Technology

December, 2008

Copyright © Jamal Wilson, 2008

A SYTEMATIC APPROACH TO BIO-INSPIRED
CONCEPTUAL DESIGN

Approved by:

Dr. David W. Rosen, Advisor
George W. Woodruff School of Mechanical
Engineering
Georgia Institute of Technology

 Dr. Janet K. Allen
George W. Woodruff School of
Mechanical Engineering
Georgia Institute of Technology

Dr. Bert Bras
George W. Woodruff School of Mechanical
Engineering
Georgia Institute of Technology

 Dr. David N. Ku
George W. Woodruff School of
Mechanical Engineering
Georgia Institute of Technology

Dr. Meisha L. Shofner
School of Polymer, Textile, and Fiber
Engineering
Georgia Institute of Technology

 Dr. Jeannette Yen
School of Biology
Georgia Institute of Technology

 Date Approved:

iii

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my Lord and Savior Jesus Christ for not

only giving me the ability to achieve this accomplishment. My faith has truly given me

calm throughout my storms. To my wife, Lyn Wilson, my parents, Deborah and Roger

Wilson, and my brother, Rashad Wilson, I truly thank you for your support and

encouragement through my educational pursuits.

 I would like to thank my advisor, David Rosen, for his guidance throughout my

time as a graduate student. He truly gave me the latitude to explore topics that I found

value in and supported me in these pursuits. I would also like to thank my dissertation

reading committee, Janet Allen, Bert Bras, Meisha Shofner, Jeannette Yen, and David

Ku, for their support and guidance in finishing my dissertation.

To my SRL Family, current and extended, I extend a large hand of gratitude for

their intellectual stimulation and camaradarie inside and outside of the lab. I owe a

special thanks to several SRL members. To Jeff Olson, I thank you for your collaborative

work and his eager ear. I thank John Reap for his research reviews and constructive

criticism. To Sungshik Yim and Patrick Chang, I thank you for your help in developing

the Strategy Repository. To Chris Williams and Benay Sager, I also thank you for your

mentorship and guidance during this process. I also owe a special thanks to Brent Nelson

and the Center for Bio-Inspired Design (CBID) for assistance with the psychological

studies and furthering my thoughts on the power of bio-inspired design.

Last but not least, this thesis could not have been completed without the financial

support of the NASA Harriett G. Jenkins Predoctoral Fellowship Program, the David and

Lucille Packard Foundation Fellowship, and the Office of Naval Research Future

Engineering Faculty Fellowship.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. iii

LIST OF TABLES ... ix

LIST OF FIGURES .. x

Glossary .. xiv

SUMMARY ... xv

Chapter 1 INTRODUCTION .. 1

1.1 Nature and Bio-inspired Design ... 2

1.1.1 Why Nature? ... 2

1.1.2 Motivating Examples .. 4

1.2 Current Research On bio-inspired Design.. 6

1.2.1 Key areas of bio-inspired design research .. 6

1.2.2 Research Problem and Current Approaches ... 7

1.2.3 Research Opportunities ... 11

1.3 Research Overview... 13

1.3.1 Research Approach ... 13

1.3.2 Primary Research Question and Hypothesis ... 14

1.3.3 Research Brief and Dissertation Roadmap ... 18

1.4 Validation Plan ... 20

1.4.1 Validation Plan for Hypotheses .. 20

1.4.2 Intro to Validation Square ... 22

1.5 Chapter Summary... 27

Chapter 2 THEORETICAL FOUNDATIONS.. 28

2.1 Systematic Design and the Search for Solutions .. 29

2.1.1 The Design Process (Pahl and Beitz overview) .. 29

2.1.2 Idea Generation Techniques.. 34

2.1.3 Analogical Reasoning ... 36

2.1.4 Relation to Bio-Inspired Concept Generation... 38

2.2 Representations... 38

v

2.2.1 Creative Cognition .. 39

2.2.2 Representation and Mental Models... 42

2.2.3 Representations in Engineering Design .. 43

2.2.4 Research Opportunity.. 52

2.3 Ontology development ... 53

2.3.1 Design repositories.. 53

2.3.2 Semantic Retrieval .. 54

2.3.3 Description Logics .. 56

2.3.4 Research Opportunity.. 59

2.4 Evaluation Techniques ... 59

2.4.1 Evaluation Metrics for Idea Generation.. 60

2.4.2 Revised Metrics for Variety .. 63

2.5 Closure and Validation ... 66

Chapter 3 BIOLOGICAL SYSTEM REPRESENTATION 69

3.1 Representing Biological Systems ... 71

3.1.1 Biological System Characterization.. 71

3.1.2 Representation Requirements.. 73

3.1.3 Existing Knowledge Representations in Design ... 75

3.1.4 Comparison of Representations against Requirements................................... 75

3.2 hierarchical representation development .. 78

3.2.1 What is a ‘System’? .. 78

3.2.2 Causal Behavioral Description.. 79

3.2.3 Hierarchical System Representation ... 82

3.2.4 Evaluation of Causal Behavioral Description ... 83

3.3 representation of THE CAUSAL BEHAVIORAL Description............................. 84

3.3.1 Expression Requirements.. 85

3.3.2 Current Expressions of Representations ... 86

3.3.3 Evaluation of Current Expressions.. 87

3.4 Representation Development.. 92

3.4.1 From Causal Behavioral Description to Petri Nets ... 93

3.4.2 Creating Hierarchical Petri Nets ... 96

3.5 Closure and validation .. 99

vi

Chapter 4 METHOD FOR REVERSE ENGINEERING BIOLOGICAL

SOLUTIONS .. 102

4.1 method development .. 104

4.1.1 System Decomposition.. 104

4.1.2 Behavioral Mapping.. 108

4.1.3 Strategy extraction .. 112

4.2 method for reverse engineering biological systems ... 112

4.3 liveness, boundedness, and reachability ... 115

4.4 Examples .. 117

4.4.1 Strategy Extraction from the Mutable Connective Tissue of Echinoderms.. 117

4.4.2 Strategy Extraction from Muscle Fiber in Isometric Contraction................. 127

4.5 Closure and Validation ... 135

Chapter 5 STRATEGY REPOSITORY DEVELOPMENT 138

5.1 Ontology Development .. 140

5.1.1 Schema definition.. 141

5.1.2 Taxonomy development.. 143

5.1.3 Ontology Structuring... 147

5.2 Description Logics.. 149

5.3 Implementation... 151

5.3.1 Software Implementation .. 151

5.3.2 Repository Implementation... 154

5.4 Subsumption in Description Logics and Retrieval ... 155

5.5 Consistency and Precision in Retrieval .. 156

5.5.1 Consistency in retrieval... 157

5.5.2 Precision in retrieval ... 158

5.5.3 Strategy Retrieval.. 165

5.5.4 Comparison with current approaches.. 171

5.6 Closure and Validation ... 175

Chapter 6 BIO-INSPIRED CONCEPT GENERATION.. 181

6.1 the foundation ... 182

6.2 Problem-based Bio-inspired concept generation.. 183

6.2.1 Conceptual Design .. 183

6.2.2 Problem-based Bio-Inspired Conceptual Design development 184

vii

6.2.3 Method Characteristics and Validation... 187

6.3 Solution-driven bio-inspired Conceptual design .. 188

6.3.1 Solution-driven Bio-Inspired Conceptual Design development 189

6.3.2 Method Characteristics and Validation... 190

6.4 Closure and Validation ... 192

Chapter 7 PROBLEM-BASED BIO-INSPIRED CONCEPTUAL DESIGN 194

7.1 Cognitive Studies.. 196

7.1.1 Background ... 196

7.1.2 Experimental Methods .. 197

7.1.3 Data Analysis .. 203

7.1.4 Results ... 204

7.1.5 Discussion ... 207

7.2 comprehensive example: development of hybrid, bullet resistant armor............. 210

7.2.1 The Problem .. 211

7.2.2 Conceptual Design of Hybrid, Bullet Resistant Armor 212

7.2.3 Discussion ... 216

7.3 Closure and Validation ... 216

Chapter 8 SOLUTION-DRIVEN BIO-INSPIRED CONCEPTUAL DESIGN...... 219

8.1 Case Studies.. 220

8.1.1 Avian Flight .. 220

8.1.2 Renal Replacement Therapy ... 233

8.2 comprehensive example: Conceptual Design of a novel Renal Replacement

Therapy.. 243

8.2.1 The Problem .. 243

8.2.2 Solution-driven Conceptual Design .. 244

8.2.3 Comparison and Discussion of performance .. 255

8.3 Closure and Validation ... 258

Chapter 9 CLOSURE AND CONTRIBUTIONS .. 260

9.1 Revisiting the Research Questions ... 260

9.1.1 Research Question and Hypothesis 1 .. 261

9.1.2 Research Question and Hypothesis 2 .. 262

9.1.3 Research Question and Hypothesis 3 .. 263

9.1.4 Research Question and Hypothesis 4 .. 265

viii

9.2 Validation Summary... 267

9.2.1 Theoretical Structural Validity (TSV) .. 268

9.2.2 Empirical Structural Validity .. 268

9.2.3 Empirical Performance Validation.. 269

9.2.4 Theoretical Performance Validation ... 270

9.3 Review of Research Gap and Contributions .. 272

9.4 Research Limitations .. 274

9.5 Beyond tomorrow (Future work).. 276

9.6 Closing Thoughts.. 280

APPENDIX A – REPOSITORY USER INTERFACE CODE................................. 283

APPENDIX B – BIOLOGICAL AND ENGINEERING STRATEGIES................ 339

APPENDIX C – COGNITIVE STUDY DOCUMENTS ... 346

REFERENCES.. 352

ix

LIST OF TABLES

Table 1.1 Common Characteristics of Natural and Engineering System[10]................................. 3

Table 1.2 Hypothesis Validation Strategy .. 21

Table 2.1 Examples of processes, structures, properties, and constraints in the Geneplore Model

[49] .. 40

Table 3.1 Evaluation of existing knowledge representation frameworks...................................... 77

Table 3.2 Evaluation of CBD... 84

Table 3.3 Summary of Expression Analysis.. 92

Table 4.1 Terms for PN model of Dermis ... 118

Table 4.2 Terms for Figure 4.14 .. 120

Table 4.3 State Mappings for Sea Cucumber Dermis.. 121

Table 4.4 Terms for Figure 4.15 .. 122

Table 4.5 State Mappings for Collagen Fibril Bundles ... 122

Table 4.6 Terms for PN model of Dermis ... 128

Table 4.7 Terms for Figure 4.26 .. 130

Table 4.8 State Mappings for the Muscle Fiber... 131

Table 4.9 Terms for Figure 4.27 .. 131

Table 4.10 State Mappings for Myofibril .. 132

Table 5.1 Definitions of the Relationships .. 148

Table 5.2 Description Logic descriptions ... 164

Table 5.3 Query Concepts... 168

Table 5.4 Query Results for the Biomimicry Database ... 172

Table 7.1 Novelty scores for Study 1... 204

Table 7.2 Variety Scores for Study 1... 205

Table 7.3 Novelty scores for Study 2... 206

Table 7.4 Variety Score for Study 2 .. 207

Table 7.5 Level of Transfer scores.. 209

Table 8.1 Summary Table for Aviation Case ... 231

Table 8.2 Hemodiafiltration replacement fluid.. 238

Table 8.3 Summary Table for Renal Replacement Therapy Case.. 242

Table 8.4 Renal Replacement Therapy Comparison .. 256

Table 9.1 Summary of Hypothesis Validation.. 267

x

LIST OF FIGURES

Figure 1.1 Motivating examples of Bio-Inspired Design..4
Figure 1.2 Current Approaches to Bio-Inspired Design..6
Figure 1.3 Representation Gap ...15
Figure 1.4 Research Organization ...19
Figure 1.5 Validation Square [36] ..23
Figure 1.6 Validation Strategy ..26
Figure 2.1 Relationships between concepts reviewed in this chapter and proposed method........................28
Figure 2.2 Function Structure of potato harvesting machine [5]..30
Figure 2.3 Morphological matrix for potato harvesting machine [5] ...31
Figure 2.4 Pahl and Beitz Systematic Design Methodology [5] ...33
Figure 2.5 Geneplore Model [49] ..39
Figure 2.6 Cognitive Model of Conceptual Design [47] ...40
Figure 2.7 Textual representation of Venus Flytrap example [24] ..46
Figure 2.8 Electric Motor Example ..47
Figure 2.9 Bond graph of motor ...47
Figure 2.10 Graphical representation of a Petri net..49
Figure 2.11 Hierarchical Petri net representation for a stapler design [60]..49
Figure 2.12 Description Logic representation example [75]..58
Figure 2.13 Example design genealogy tree for a set of 6 designs ..62
Figure 2.14. Higher variety can result in lower score ...63
Figure 2.15. Normalized variety score can penalize greater actual variety...66
Figure 2.16 Validation for Chapter 2 ..67
Figure 3.1 Chapter 3 and the Dissertation Overview ..69
Figure 3.2 Diagram of Human Muscle[93] ..72
Figure 3.3 Definition of a ‘system’ [99]...79
Figure 3.4 Causal Behavioral Description..81
Figure 3.5 Piston-Cylinder Assembly ..82
Figure 3.6 Hierarchical Causal Behavioral Model ...83
Figure 3.7 Sentential representation of the piston-cylinder example ...87
Figure 3.8 Diagrammatic representation of the piston-cylinder example ..87
Figure 3.9 Textual description of the transitivity relation..88
Figure 3.10 Transitivity in Euler’s circle (modified from [107] ..88
Figure 3.11 Petri Net System Model ..94

xi

Figure 3.12 Hierarchical Petri Net model...95
Figure 3.13 Reducible Subnets (RSN), adapted from Lee and Favrel [119] ...97
Figure 3.14 Validation in Chapter 3 ..100
Figure 4.1 Chapter 4 and the Dissertation Overview ..102
Figure 4.2 System Decomposition and Behavioral Mapping Phases...104
Figure 4.3 McShea’s protocols for identifying hierarchy of parts [99]..106
Figure 4.4 Decomposition ..107
Figure 4.5 Reachability graph example: (a) Petri net model and (b) Reachability graph108
Figure 4.6 Combined Behavior Generation..109
Figure 4.7 Subnet Inheritance...111
Figure 4.8 Flowchart for Method for Reverse Engineering Biological Systems ...113
Figure 4.9 Root system (Dermis) ...117
Figure 4.10 PN model of Dermis ...118
Figure 4.11 Structural Decomposition of Dermis ..119
Figure 4.12 Interactions for first layer of Dermis decomposition ..119
Figure 4.13 Interactions in Collagen Fibril Bundle decomposition ...119
Figure 4.14 Standalone behaviors of the subsystems of the dermis...120
Figure 4.15 Standalone behaviours for subsystems of Collagen Fibril Bundles..122
Figure 4.16 Combined Behavioral Model for subsystems of the Collagen Fibril Bundles123
Figure 4.17 Identification of subnets for Collagen Fibril Bundles...124
Figure 4.18 Combined Behavior Graph for subsystems of the Dermis ...124
Figure 4.19 Overall Hiearchical PN Model for Sea Cucumber Dermis...125
Figure 4.20 Human Muscle (Figure 3.2) ...127
Figure 4.21 Root system (Muscle Fiber) ..127
Figure 4.22 PN model of Muscle Fiber ..128
Figure 4.23 Structural Decomposition of the Human Muscle..128
Figure 4.24 Interactions for first layer of the Muscle Fiber decomposition...129
Figure 4.25 Interactions in Myofibril decomposition...129
Figure 4.26 Standalone behaviors of the subsystems of the Muscle Fiber ..130
Figure 4.27 Standalone behaviors for subsystems of Myofibril...131
Figure 4.28 Combined Behavioral Model for subsystems of the Myofibril ..132
Figure 4.29 Identification of subnets for the Myofibril..133
Figure 4.30 Combined Behavior Graph for subsystems of the Dermis ...133
Figure 4.31 Overall Hierarchical PN Model for Sea Cucumber Dermis ...134
Figure 4.32 Validation Summary for Chapter 4 ...136
Figure 5.1 Chapter 5 and the Dissertation Outline ...138
Figure 5.2 Petri net representation (Figure 3.11) ..140

xii

Figure 5.3 Overall schema for strategy ontology ..143
Figure 5.4 Sample of Flow Taxonomy..144
Figure 5.5 Sample of the Action Taxonomy ...145
Figure 5.6 Sample of the Attributes Taxonomy ..145
Figure 5.7 Sample of the System Strategy Taxonomy ..146
Figure 5.8 Sample of the Structure Taxonomy ...147
Figure 5.9 Ontology Structure..149
Figure 5.10 Ontology Software Implementation Environments ...151
Figure 5.11 Concept (class) Taxonomies implemented in Protégé..153
Figure 5.12 Relationship (role) implementation in Protégé ..153
Figure 5.13 Protégé Implementation of Sea Cucumber Dermis...154
Figure 5.14 Illustration of the Repository Testbed..159
Figure 5.15 User Interface...161
Figure 5.16 User Interface - Drop-down menu ...161
Figure 5.17 Formatted results of the User Interface..162
Figure 5.18 Subsumption hierarchy ..169
Figure 5.19 Sample results from the Functional Keyword Search [147] ...175
Figure 5.20 Computational time versus concept number in DL [148]..178
Figure 5.21 Validaton Overview in Chapter 5 ...179
Figure 6.1 Dissertation Outline and Chapter 6..181
Figure 6.2 Conceptual Design phase of the Pahl and Beitz Systematic Design Methodology184
Figure 6.3 Bio-inspired Concept Generation and Conceptual Design ...185
Figure 6.4. Problem-based Bio-Inspired Concept Generation ...186
Figure 6.5 Solution-driven Bio-Inspired Concept Generation ..189
Figure 6.6 Validation Strategy and Chapter 6 ...192
Figure 7.1 Dissertation plan and Chapter 7 ...195
Figure 7.2 Design problem for Study 1 ...198
Figure 7.3 Sample of design ideas from Study 1 (a) Inflatable (b) multiple-part snap (c) electrorheological

fluid chambers with power source (d) chemically-rigidizable ...200
Figure 7.4 Design Challenge from Study 2 ...201
Figure 7.5 Sample design solutions from Study 2 (a) Segmented armor (b) armor scales (c) pull-string

activated variable-stiffness armor (d) foldable armor plates ..203
Figure 7.6 Steel armor plates for hard body armor ..210
Figure 7.7 Kevlar® based Soft Body Armor (HowStuffWorks)..211
Figure 7.8 Repository search and results...213
Figure 7.9 Hybrid Armor Concept ..215
Figure 7.10 Validation Strategy and Chapter 7 ...218

xiii

Figure 8.1 Dissertation plan and Chapter 8 ..219
Figure 8.2 Skeletal and feather feathers of the bird wing [165] ...221
Figure 8.3 Bald Eagle in various flight configurations [166]...222
Figure 8.4 Hierarchical Petri net model of the flight control mechanisms of the bird wing........................223
Figure 8.5 Brief history of flight ..224
Figure 8.6 Ornithopters ..225
Figure 8.7. Wright brothers’ 1903 Flyer ...228
Figure 8.8 High-lift features – (1) Wingtip, (2) Low Speed Aileron, (3) High Speed Aileron, (4) Flap..229
Figure 8.9 Key innovations in aviation (values used were derived from typical max lift coefficient for

airfoil shapes [175]) ..231
Figure 8.10. A complete nephron is shown on the left. To the right, the dark-red glomerulus is surrounded

by the pink Bowman’s capsule, forming the renal corpuscle ...234
Figure 8.11 Hierarchical Petri net model of waste removal in the kidney ..235
Figure 8.12 Hemodialysis circuit [179]..238
Figure 8.13 Hemodiafiltration circuit [179] ...239
Figure 8.14 Root System – Human Kidney..245
Figure 8.15 PN model of the overall behavior of the human kidney ..246
Figure 8.16 Structural Decomposition of the Human Kidney...246
Figure 8.17 Kidney subsystem interactions...247
Figure 8.18 Standalone behaviors of the Kidney subsystems ...248
Figure 8.19 Interface relationships between the Kidney subsystems...249
Figure 8.20 Hierarchical Petri net representation of the Human Kidney ..250
Figure 8.21 High level function structure of the Kidney...251
Figure 8.22 Repository search for separation strategies..252
Figure 8.23 Specific working principles for renal replacement therapy concept..254
Figure 8.24 Renal replacement therapy (RRT) concept ..255
Figure 8.25 Validation Strategy and Chapter 8 ...259
Figure 9.1 SysML model diagram [192] ...278
Figure 9.2 QPME Interface [193]..280

xiv

GLOSSARY

Analogical reasoning – the cognitive process of transferring knowledge from a source

domain to a target domain

Behavior - intrinsic change of state of the attributes of a system

Causal behavioral description - a behavior-based system representation linking

structural, behavioral, and functional information.

Function - the effect of a component on the system around it

Knowledge Representation – a cognitive model of reality

Novelty - the degree to which a given design concept is unique relative to other concepts

Ontology – a highly structured system of concepts and relationships between concepts.

Repository – a tool used to capture, store, and retrieve domain knowledge.

Semantic retrieval – an information retrieval strategy based on semantically-rich

representations of information

State - the value of the system attributes at a given instant of time.

Strategy - the means by which the behavior of the system is performed

Structure - the entities of interest and the interactions or relations between these entities

Subsumption - A mechanism by which two concepts are compared to determine whether

one concept is a more general expression of the other

System - The set of physical components and interactions between these components.

Taxonomy – hierarchical classification of concepts utilizing parent-child relationships

between concepts

Variety - the degree to which design concepts can be distinguished from one another.

xv

SUMMARY

In Conceptual Design, the designer is tasked with searching for new and

innovative design solutions. This search process, referred to as the designer’s design

space, has been shown to dictate the quality and effectiveness of the final design

solution[1]. According to the theory of bounded rationality, this design space is bounded

by the limited cognitive abilities of the designer [2], amongst other factors. To

overcome the limitations imposed by bounded rationality, designers often employ several

techniques to aid in idea generation, including building upon analogous solutions in the

current domain of application. However, designers commonly fail to take to advantage

of solutions and practices of other sciences and technologies and/or fail to even recognize

the similarities between their technical problems and solutions to similar problems from

otherwise alien domains [3]. To address this problem, the following research question is

proposed, “How can we aid the designer in more effective ideation in Conceptual

Design?” In this research, biological strategies are used to aid the designer in

Conceptual Design. Through millions of years of research and development, nature has

developed efficient and economical solutions to the problems it faces. It is believed that

harnessing design strategies from nature will lead to more effective solutions to the

engineering problems currently faced by designers. Specifically, the primary hypothesis

of this research is as follows:

“Building upon a rich behavioral model of biological systems and a strategy repository,

the proposed approaches to Bio-inspired Conceptual Design can be used to aid the

designer in (1) identifying relevant biological systems and (2) using biological strategies

in Conceptual Design to produce 2a) a larger variety of design ideas (2b) design ideas of

greater novelty and (2c) higher quality design ideas”.

The fundamental claims of this hypothesis include that of biological system

representation, behavioral decomposition, efficient retrieval, and assessing the impact of

biological strategies on Conceptual Design.

xvi

In this research, it is believed that representations play a key role in bridging the

gap between the biological and engineering domains. In the first part of this research, a

rich, causal behavioral model was developed for representing the behavior of biological

systems. For this purpose, the hierarchical Petri net representation was developed. This

representation has the advantage of representing both behavioral refinement and

abstraction. The purpose of this behavioral model is to aid the designer in systematically

extracting design strategies from biological systems. To ensure consistency in the

behavioral model, a systematic method for decomposing and representing the behavior of

biological systems, the Method for Reverse Engineering Biological Systems, was

developed. This method was found to preserve the fundamental properties of the

behavioral systems across hierarchical levels of the representation.

The identification of relevant biological strategies in Conceptual Design is also a

key issue in bio-inspired design. Although current approaches are useful in storing and

providing access to biological information, the current retrieval strategies often result in

either providing too many and/or irrelevant results. In this research, an engineering

ontology was developed based on concepts from the hierarchical Petri net representation.

This ontology was then encoded into a strategy repository using Description Logic (DL),

knowledge representation formalism used for representing domain knowledge and

reasoning about it. Subsumption, an inference algorithm in DL for determining if one

concept is a member of another concept, was shown to enable both consistent and precise

retrieval of biological strategies. When compared to current approaches to representing

and retrieving biological strategies, subsumption-based retrieval was found to be more

effective.

Next, the constructs of the Method for Reverse Engineering Biological Systems

and the strategy repository were synthesized into two distinct approaches to Bio-inspired

Conceptual Design: problem-based and solution-driven. In the problem-based approach,

the design begins with an engineering system and searches for solutions through

engineering design. In this approach, the strategy repository is used to identify relevant

biological strategies and stimulate idea generation. To validate the problem-based

approach to Conceptual Design, cognitive studies of Mechanical Engineering students

and a comprehensive example of the design of hybrid, bullet resistant armor were used.

xvii

In this approach, biological strategies were found to increase the novelty of design ideas

generated, while also preserving the variety of design ideas generated.

 In the solution-driven approach to Bio-Inspired Conceptual Design, the designer

begins with a biological solution and attempts to mimic the behavior of this system in the

engineering domain. In this approach, the Method for Reverse Engineering Biological

Systems is used to systematically decompose the behavior of biological systems and

extract behavioral strategies. These strategies are then used as the foundation for the

generation of new ideas. To validate the solution-driven approach, historical case studies

of bio-inspired systems and a comprehensive example of the development of a novel,

renal replacement therapy system were used. In this approach, bio-inspired systems

possessing a deeper level of behavioral similarity to their analogous systems were found

to perform better than those with less similarity.

1

CHAPTER 1 INTRODUCTION

Due to increasing globalization, traditional market differentiators such as cost and

quality are becoming increasingly irrelevant in today’s market. Because of this,

corporations must compete on the basis of innovation. A competitive advantage can be

achieved by developing products that are technologically distinct from its competitors;

one way to accomplish this differentiation is the development of products with original

features along meaningful dimensions [4]. Since innovation is the differentiator of the

future, engineers and designers alike are being forced into new thought patterns and

processes to create novel and innovative solutions.

In the Conceptual Design phase of the engineering design process [5], the

designer is tasked with searching for these novel and innovative solutions. However,

humans are imperfect search engines [6] and tend to focus on a narrow part of the design

space and overlook many valuable solutions [4]. According to the theory of bounded

rationality [7-9], an individual is limited by unconscious skills, habits, and reflexes, by

values and conceptions of purpose, and by the extent of his/her knowledge of

information. Therefore, the space that can be searched is bounded by the limited

cognitive abilities of the designer [2].

To overcome the limitations imposed by bounded rationality, designers often

employ several techniques to aid in idea generation (i.e, see Section 2.1). According to

Pertulla [4], if we assume that creativity is not a static quality, then we also accept the

notion that creativity can be learned and that structured techniques can be employed to

support the creative process. These techniques aid the designer in expanding and

exploring her/his design space more efficiently.

One technique often employed to aid in manipulating the designer’s design space

is that of analogies. Analogy in design is used to serve as a means of problem solving,

whereby designers use solutions from other domains to solve problems in his/her current

domain. In using analogies in engineering design, designers often rely upon existing

2

solutions in the current domain of application, while failing to leverage solutions from

outside this domain. Vincent and Mann [6] comment, “When we innovate, we commonly

fail to take advantage of the solutions and practices of other sciences and technologies or

to recognize the similarities between our technical problems and the solutions to similar

problems in otherwise alien technologies”. In this research, we explore nature as a

possible source of analogies, whereby strategies from the biological domain are used to

solve problems in the engineering domain.

1.1 NATURE AND BIO-INSPIRED DESIGN

1.1.1 Why Nature?

Nature’s design process, evolution, is enacted by natural selection. Natural

selection can be summarized as the process by which favorable characteristics become

more prevalent in successive generations of an organism. In essence, “design in nature is

a process of generating variability and then selecting the variants that are favorable[10]”.

At the fundamental level, nature is driven by this survival of the fittest, where energy

efficiency is key. It should also be noted that development in nature is done so in the

context of its environment, meaning that systems evolve differently in different

environmental contexts.

Through natural selection, nature has undergone millions of years of research and

development. “Through evolution, nature has experimented with principles of physics,

chemistry, mechanical engineering, material science, mobility, control, sensors, etc.”[11]

Through this, nature has created effective solutions to many problems faced by both

natural and engineering systems. Table 1.1 summarizes many differences between

solutions found in natural and engineering systems.

3

Table 1.1 Common Characteristics of Natural and Engineering System[10]

Natural systems are typically: Engineering systems are typically:
• Made from fewer components whose

properties vary internally
• Made from individual homogenous

components
• Concerned with strength, making

their materials tougher
• Concerned with stiffness in

engineering materials, making them
more brittle.

• Built from fibrous composites • Built from metals and alloys
• Adaptive, meaning they adapt to

varying inputs such as loads and
environmental changes over different
time scales

• Maladaptive and overdesigned

• Multifunctional, dedicating multiple
functions to a single component
(integrated)

• One-to-one functional mapping

• Arranged hierarchically, having
many size scales and levels of
organization

• Non-hierarchical, design confined to
one size scale

As shown above, when compared to typical engineering systems, natural systems

show many distinct differences. This is largely due to the differing developmental

context and constraints on these systems. However, there are limitations to this

evolutionary change, including growth (change in shape) constraints, reproduction,

information shortages, resource limitations, incremental change, and evolutionary history

[10].

Why nature as a source for analogs? Although natural systems have a different

developmental context and constraints, the duality between these systems and

engineering systems still exists in the search for economical solutions to problems.

Since nature has spent millions of years developing these economical solutions, it seems

rational that engineers should take a look to nature for energy-efficient answers to similar

problems raised by their technologies [12]. “By adapting mechanisms and capabilities

from nature, scientific approaches have helped humans understand related phenomena

and associated principles in order to engineer novel devices and improve their

capability”[11]. This concept of borrowing ideas from nature was originally coined as

bionics by Jack Steele of the US Air Force in 1960 at a meeting at Wright-Patterson Air

4

Force Base in Dayton, OH [13]. Otto Schmitt [14] later used the term Biomimetics to

describe the field. Biomimetics can be seen as the transfer of these natural technologies

to other domains, such as engineering, chemistry, materials, etc. Other synonymous

terms include biomimesis, biomimicry, biognosis, and bio-inspired design. In this

research, the term bio-inspired design is utilized. Bio-inspired design is defined in this

research as the transfer of design strategies used in the natural domain to the engineering

domain.

1.1.2 Motivating Examples

There have been several successful examples of designers using natural systems

to inspire engineered systems. Figure 1.1 displays several bio-inspired products that serve

as motivating examples for this research.

Figure 1.1 Motivating examples of Bio-Inspired Design

5

The motivating examples from Figure 1.1 are reviewed in the following

discussion.

Lotus leaf – Lotusan by Sto Corporation® is a self-cleaning exterior coating that

was inspired by the Lotus effect exhibited by the lotus leaf. Despite growing in muddy

and dirty conditions, the surface of the lotus leaf makes water bead up and runoff, taking

dirt with it. These coating have been shown to reduce maintenance costs of building

painted with the self-cleaning coating.

Gecko tape – Dry adhesive tape inspired by the adhesive mechanism of gecko

feet. The gecko uses millions of microscopic hairs on the pad of their feet, with each hair

providing a Van der Waals attractive force. These hairs allow the gecko feet to bond to

just about any surface. The advantage of this type of dry adhesive tape is reusability.

Olympic swimwear – Speedo® created full body swimwear for the 2004 Olympic

Games, named Fastskin, inspired by the surface ridges on shark skin. These ridges

reduce passive drag by up to 4 percent more than the next best swimsuit. Swimmers

wearing Speedo Fastskin won 80% of the swimming medals in the 2004 Olympic Games

and broke 13 out of 15 world records.

Natural Cooling – Inside the termite mound in Zimbabwe, termites farm a fungus

as their only food. The fungus must be kept at exactly 87 degrees, while temperatures on

the outside of the mound range from 35 degrees at night to 104 degrees during the day.

The Eastgate Shopping Centre in Harare, Zimbabwe, designed on the principle of natural

cooling based on the termite mounds, uses 90% less energy than a conventional building

of equal size [15].

As can be seen in the above examples, leveraging biological technologies in the

engineering domain can lead to many technological innovations and novel products. In

the section, motivation for bio-inspired design was put forth. In the following section, we

review current approaches to bio-inspired design.

6

1.2 CURRENT RESEARCH ON BIO-INSPIRED DESIGN

1.2.1 Key areas of bio-inspired design research

Bio-inspired design research can be divided into 4 key areas:

biological/engineering research, representation, analogical translation, and design

utilization. These key areas, displayed in Figure 1.2, span the spectrum of research from

research strictly on understanding biological phenomena to development of engineering

systems.

Figure 1.2 Current Approaches to Bio-Inspired Design

Biological and engineering research involves research being performed on

biological systems by biologists and engineers. This research is typical of that done in the

biological domain, where biological systems and their associated behaviors are studied

and characterized. An example of this type of research includes research on gecko feet

(Figure 1.1) where the physical phenomena driving gecko adhesion is studied.

Representation of biological systems involves creating models of biological

systems that aid in transferring principles from the biological system to the engineering

7

domain. This research includes the SBF models utilized in research by Goel and

coauthors [16-20]

Analogical translation involves research on identification and systematizing the

transfer of biological principles to the engineering domain. These approaches include the

Bio-TRIZ [12, 3, 13], the Biomimicry Database [21], the Functional keyword search [22,

23], the SAPPhIRE database [24], The Design Spiral [25], and cognitive research by

Goel and coauthors [20].

Design utilization involves developmental research on products that utilize

principles from the biological domain. Examples of design utilization include the

examples displayed in Figure 1.1, where bio-inspired products were developed.

Representation and analogical translation are directly relevant to this research and

are given a more thorough review in Section 1.2.2.

1.2.2 Research Problem and Current Approaches

Due to its inherent difficulties, bio-inspired design has thus far followed an ad hoc

path. These difficulties include (1) the large analogical distance, (2) lack of cross-domain

knowledge, and (3) identification of relevant strategies. Analogical transfer in bio-

inspired design is difficult due to the large analogical distance between the natural and

engineering domain. The large distance often makes it difficult to draw parallels between

the solutions found in nature and the problems of the engineering domain. The lack of

cross-domain knowledge of engineers and biologists also makes bio-inspired design

difficult. Currently, those studying the novel phenomena found in nature (biologists)

know very little about the implications of these phenomena in the engineering domain.

Vice versa, engineers and designers know very little in studying and understanding novel

biological phenomena. These difficulties are compounded by the difficulty found in

accurately identifying relevant biological solutions from the vast number of solutions

found in nature.

Several researchers are developing systematic approaches for leveraging

biological examples in engineering design. These approaches include the IDEA-

8

INSPIRE Database [24], the Functional Database [26], the Functional Keyword Search

[22, 23], Bio-TRIZ [12, 3, 13], the Design Spiral [25], the Biomimicry Database [21],

and the cognitive research by Vattam and coauthors [20].

IDEA-INSPIRE Database - Researchers at the Indian Institute of Science at

Bangalore [24] are developing a searchable database containing natural and artificial

systems. These researchers present a generic causal behavioral model, called SAPPhIRE,

for representing the behavior of these systems and implement the model using software.

The behavioral model is represented using natural language format using nouns, verbs,

and adjectives. The database, as well as the retrieval process, is implemented in a

software package called IDEA-INSPIRE. The SAPPhIRE causal model is used to enter

information into the database in both natural language and computer-interpretable form.

Design problems are described as the action required to be fulfilled using a verb(V)-

noun(N)-adjective/adverb (A) triplet. To retrieve solutions, the user can both browse

entries in the database for random stimulation, as well as systematically search through

the entries. When the design problems are given in the V-N-A form, the software

matches them with the selected variables from the computer-interpretable form of the

entries. The matched entries are then sorted in descending order of importance by the

degree of matching found between the variables. The degree of matching is determined

using weights of 32, 16, and 8 for verb, noun, and adjective/adverb matches, respectively.

Synonyms are given weights of 4, 2, and 1, respectively. The entries are then sorted

based on the match score received.

Functional Database - Bruck and co-authors [26] sought to develop a repository

to provide students with easy access to bio-inspired design concepts and products. The

research approach includes 3 key components: (1) functional description templates, (2)

repository of bio-inspired concepts and products, and (3) search tools. Bio-inspired

designs and concepts are entered into the repository using functional description

templates. The functional description template provides a predetermined sentence

structure as a template to record more complete functional descriptions from the user.

These templates utilize both freeform text and menu selection agents to aid in entry.

Functions are described using actions (intended behaviors of the biological concepts or

9

products), entities, and properties (characteristics of the behavior and structure).

Retrieval of these entries is performed using three search tools: (1) keyword search, (2)

category filters, and (3) function search. In the keyword search, retrieval is performed

using a string matching algorithm combining both equivalence and similarity methods.

The category filter is then used to filter the results on the basis of product type, biological

type, and development stage. The function search utilizes the keyword search algorithms

to search for functions.

Functional Keyword Search - As opposed to using user-populated repositories,

researchers at the University of Toronto utilize keyword searches through biological

resources already in natural language format (ie. biological texts, journals, etc.) to locate

novel biological phenomena. To aid retrieval, the authors utilize a language framework

called Wordnet® [27]. Wordnet is an electronic lexical database that organizes word

entries based on relations to other words, as opposed to alphabetical order. To use this

specialized search procedure, the user first identifies the applicable functional keywords

to search the database. These functions are represented as verbs. Wordnet is then used to

identify bridge words, which are troponyms and hypernyms used as alternative keywords,

to broaden the search. These keywords are then used to search through biological text for

related biological phenomena. The search program then quantitatively determines

dominant biological phenomena through examining the frequency of collocated words

within a 50 word window around the keyword. The top 5% of biological phenomena are

then identified and retrieved in the form of passages from the text. The user then sorts

through these results manually for relevancy.

Bio-TRIZ - Using TRIZ [28], a systematic method for inventive problem solving

developed by Russian researcher Genrich Altschuller, Vincent and Mann [3] introduce a

systematic means for drawing functional parallels between natural and engineering

systems. Using TRIZ, design problems are characterized as a pair of conflicting

characteristics. These characteristics are assigned based on 39 contradiction features

defined in TRIZ. The contradictions of the design problem are then matched to solution

strategies from previously solved problems; these previously solved problems come from

examination of more than 3 million patents. The TRIZ Contradiction Matrix is used to

10

match the contradictions of the design problem to innovative solution strategies. The

researchers [12, 3, 13] seek to integrate knowledge from nature into the existing TRIZ

database, aiding access to biological solutions as well as engineering solutions. In the

newly-termed Bio-TRIZ database, users are allowed to search for biological phenomena

based on the determined contradictions or the function of the design problem. The

project has since been discontinued and the database has been taken offline.

Biomimicry Database - The Biomimicry Database [21] is a joint project between

the Rocky Mountain Institute and the Biomimicry Guild. The Biomimicry Database

utilizes a searchable database of biological information to identify biological analogs.

The database contains six types of searchable information, including: challenges

(problems that need to be solved), strategies (potential solutions to the challenges),

organisms (associated biological system), people (person/user records), citations, and

products (associated bio-inspired products). The user uses keywords to search across all

database records. This project was in alpha testing, but the database is no longer

supported on the Biomimicry Guild website.

Design Spiral - The Design Spiral [25] is a design process for bio-inspired design

that includes 6 steps (Identify, Translate, Observe, Abstract, Apply, and Evaluate)

performed in an iterative fashion. In the Identify step, the designer develops a design

brief of the human need and defines the specifics of the problem. In the Translate step,

the designer biologizes the question, asking “How does nature do this function?” The

third step of the Design Spiral is the Observe step, where the designer is asked to look for

champions in nature who can answer the question. The Observe step is followed by the

Abstract step, where the designer finds repeating patterns and processes within nature and

abstracts the strategy. In the fifth step, Apply, the designer develops ideas and solutions

based on the natural models found in the previous step. Lastly, in the Evaluate step, the

designer compares the ideas with successful principles found in nature. If needed, the

designer repeats the process until a final solution is devised.

Cognitive modeling and SBF modeling in BID – The goal of the work by Goel

and coauthors [20] is the cognitive modeling of the bio-inspired design process and

representation of biological behavior. Specifically, the authors observed sessions in a

11

Bio-Inspired Design course as well as conducted cognitive studies. From the study, the

authors found that students arrived at bio-inspired design solutions using two distinct

approaches: a problem-driven and a solution-driven approach. They also found that once

a biological solution was selected, the remainder of the design process was constrained

due to fixation. The authors are continuing this work in an attempt to understand the

cognitive basis for bio-inspired design and develop tools to support the process.

In this section, relevant research in representation and analogical translation in

bio-inspired was reviewed. In Section 1.2.3, research opportunities in bio-inspired design

are identified.

1.2.3 Research Opportunities

Several opportunities exist to further the present state of research in bio-inspired

design. These opportunities include biological representations to bridge the gap between

biological and engineering domains, systematic method to guide decomposition and

strategy extraction, efficient retrieval of relevant solutions to aid in identifying relevant

solutions, and providing empirical evidence to support bio-inspired design.

1.2.3.1 Biological Representations

In the reviewed approaches, a significant gap exists between the biological and

engineering research being performed by biologists in their respective fields and the

analogical translation that aims to transfer knowledge from biology to engineering. In

this research, it is believed that this gap can be filled with systematic representation of

biological systems. Representations are essential to aiding people in understanding

phenomena, especially when these phenomena cannot be experienced directly. These

representations are used to aid the engineer in understanding relevant biological systems,

then transferring this knowledge to engineering. Current approaches to biological system

representation to aid in transferring knowledge from nature to engineering include

function structures and SBF models. Vakili and co-authors [29] use function structures to

represent biological phenomena, whereas Goel and coauthors [20] use SBF models to

represent biological phenomena. However, these models lack the theoretical rigor

needed for consistent representation of biological systems.

12

1.2.3.2 Systematic method

Biological phenomena in bio-inspired design are vulnerable to misunderstanding

and misinterpretation, especially by novices to biology [29]. The extraction of the correct

strategy from biological phenomena is a difficult task and misinterpretation can lead to

the extraction of incorrect and incomplete strategies [29]. After reviewing the current

approaches, a research opportunity can be identified in the area of biological behavior

decompostion and strategy extraction. To aid in extraction of these strategies, a

systematic method for decomposing the biological system behavior is needed. Along

with biological system representation, this systematic method can be used in bridging the

gap between the biological and engineering domains. Vakili and co-authors [29] give

some consideration for strategy extraction using function structures. However, the

authors fail to define a systematic and consistent method for defining these structures and

extracting strategies.

1.2.3.3 Retrieval of relevant solutions

Efficient identification of relevant biological strategies to use in Conceptual

Design is key to harnessing biological technologies in engineering, however, this

identification is one of the most difficult tasks in bio-inspired design. Current approaches

to identifying relevant biological strategies include using searchable databases of

biological solutions [12, 3, 24, 26, 13] and a functional keyword search [22, 23] through

biological literature. Although these approaches offer access to these biological

solutions, the generic keyword-based retrieval mechanisms utilized by these approaches

often suffer from providing either too many and/or irrelevant results [30].

1.2.3.4 Lack of empirical evidence to support bio-inspired design

Although significant advantages of bio-inspired have been theorized by

examining scattered examples of successful cases, there has been a lack of research on

how the use of biological strategies in engineering impacts the designer and the products

that follow. With respect to the current approaches for systematizing bio-inspired design,

there is a definite lack of empirical evidence on the value of these methods, and bio-

inspired design as a whole.

13

In this section, research opportunities in bio-inspired design were identified. In

the following section, Section 1.3, a plan of action for addressing these gaps is put forth.

1.3 RESEARCH OVERVIEW

1.3.1 Research Approach

This research is motivated by the notion of “effective” idea generation. The goal

of this research is to aid the designer in generating ideas in Conceptual Design through

biological strategies. Idea generation is bounded by the limited cognitive abilities of the

designer. However, in this research, it is believed that these limitations can be overcome

through the use of biological strategies. Biological strategies are viewed as refinements

of behavior, where specific physical phenomena driving a particular behavior (and

function) are identified. For example, take one view of the behavior of the human kidney,

which is “filtration of the blood”. The strategy gives the physical phenomena that drive

this behavior. In this case, the strategy can be stated concisely as “glomerular diffusion

and convection of substances from the blood followed by reabsorption and secretion of

substances across the membrane and ending with the excretion of unwanted substances

through the collecting duct”.

In this research, there are two contexts in Conceptual Design in which bio-

inspired design is utilized [20]. In the first context, problem-based Conceptual Design,

the designer begins with an engineering problem and seeks to develop a solution to this

problem. In this context, it is advantageous for the designer to navigate as broad a design

space as possible, as this increases the likelihood of a “winning” solution. In this context,

bio-inspired design is used in ideation as a means of aiding in the expansion and

exploration of design space.

In the second context, solution-driven Conceptual Design, the designer takes a

reverse-engineering approach to solving an engineering design problem. The main

purpose of reverse engineering is to (1) identify the biological system’s components and

relationships between those components and (2) represent the system in another form or

14

higher level of abstraction [31]. In the solution-driven context, the general approach of

reverse engineering is applied to biological systems.

1.3.2 Primary Research Question and Hypothesis

Several researchers have developed approaches for identifying and transferring

biological strategies to the engineering domain. However, several shortcomings have

been identified, including the lack of research on representing biological systems so that

strategies can be easily accessed and comprehended, lack of a systematic method for

extracting biological strategies, inefficient identification of these strategies, and a lack of

empirical evidence on the advantage of these biological strategies in Conceptual Design.

To address these gaps, in this research, the following question is put forth:

Primary Research Question: How can we aid the designer in more “effective” idea
generation in Conceptual Design?

To answer this question, the following hypothesis is proposed:

Primary Research Hypothesis:
Building upon a rich behavioral model of biological systems and a strategy repository,
the proposed approaches to Bio-inspired Conceptual Design can be used to aid the
designer in (1) identifying relevant biological strategies and (2) using biological
strategies in Conceptual Design to produce 2a) a larger variety of design ideas (2b)
design ideas of greater novelty and (2c) higher quality design ideas.

The fundamental claims of this hypothesis include that of biological system

representation, behavior decomposition, efficient retrieval, and assessing the impact of

biological strategies on Conceptual Design. To validate these claims, several sub-

research questions are proposed in the following discussion.

Biological Representation

The backbone of the proposed method is that of representation of biological

systems. When designers are unable to experience phenomena directly, representations

play a key role in understanding physical phenomena. Representations help to filter out

15

unimportant information and present the designer with information relevant to the given

task. Developing accurate representations is of critical importance, and must be

presented in a manner that helps the user reason about the system[32], especially in the

field of bio-inspired design. Representing and understanding biological phenomena is

especially difficult for several reasons, including:

• Biological systems are complex, interactive systems ranging in scales [33]

• Most biological systems are embedded invisibly throughout the body and their

functions hidden from view [33]

• Lack of cross-domain knowledge by biologists and engineers.

• Differing motivations. For example, biologists seeks to understand nature while

engineers seek to generate designs for new problems [20].

• Differing methodologies and representations

In this research, it is believed that representation of biological systems is key to

systematizing bio-inspired design. In essence, representations are used to bridge the gap

between the biological and engineering domains, as displayed in Figure 1.3.

Figure 1.3 Representation Gap

As seen in the figure, representation is used to bridge the gap in the analogical

translation between biological and engineering systems. In general, generic

representations have three key components: form, behavior, and function. To support

conceptual design and ideation, “it is now a consensus that design information should

include not only the physical structure of a design, but also its required function and

implementing physical behavior”[34]. Representations are reviewed in Section 2.2.

16

This motivation leads to the following question:

Question 1: “What type of representation can be used to model the behavior of
biological systems?”

To answer this question, it is hypothesized that:

Hypothesis 1: A representation based on (1) a causal behavioral description and (2)
hierarchical Petri nets can be used to model the behavior of biological systems

Systematic Decomposition

The purpose of a behavioral model is to aid the designer in extracting the

biological strategy from the system. With that, the system should be represented in a

manner that the designer can visualize the behavior of lower entities (strategy) and how it

affects the overall behavior of the system. The representation should also allow the

behavioral relationships across different levels of abstraction of the biological system to

be modeled. Therefore, a systematic method for decomposing biological system

behavior is sought to ensure that the behavior is consistent across these levels of

hierarchy. To ensure consistency, three fundamental properties of Petri nets are

considered: reachability, liveness, and boundedness. These properties are reviewed in

Section 2.3. This leads to the following question:

Question 2: How can the behavior of biological systems be hierarchically represented
using Petri nets, while preserving the fundamental properties at each hierarchical level?

In answering this question, the following is hypothesized:

Hypothesis 2: Using the systematic method for Reverse Engineering Biological Systems
will ensure that the fundamental properties of boundedness, reachability, and liveness
will be preserved across hierarchical levels.

Efficient Retrieval

Identifying relevant biological strategies in Conceptual Design is a key issue in

bio-inspired design. Current approaches are useful for storing and providing access to

biological information, however, the generic keyword-based retrieval process utilized by

these approaches often suffers from providing too many and/or irrelevant results [30]. It

17

is believed that by structuring biological information using ontologies, biological

strategies can be more accurately and efficiently retrieved. Engineering ontologies and

retrieval algorithms are reviewed in Section 2.4. With respect to retrieval of biological

strategies, the following question is asked:

Question 3: How can hierarchical Petri net representations of biological systems be
structured to aid retrieval of relevant strategies from a knowledge repository?

To answer this question, it is hypothesized that

Hypothesis 3: An ontology of concepts from hierarchical Petri net representations of
biological systems can be represented using Description Logics. Subsumption in
Description Logics will enable consistent and precise retrieval of relevant biological
strategies from a knowledge repository.

Assessing the impact of biological strategies on Conceptual Design

Although there have been several approaches researched for systematizing bio-

inspired design, there has been very little research in quantifying its impact on the

designer in Conceptual Design. In the problem-driven Conceptual Design approach, the

designer’s design space is of primary importance. Design space can be viewed as the

space of all possibilities for a given problem. Shah et al. [35] put forth metrics for

evaluating the design space of a designer in idea generation using outcome-based

methods (See Section 2.4 for further discussion). These metrics can be used to evaluate

idea generation using biological strategies. In the solution-driven approach, extraction of

design strategies is of primary importance. This research aims to show the value of rich

behavioral representations of biological systems, such as the hierarchical Petri net

representation. To do so, the performance of bio-inspired designs with deep similarity

can be compared to those possessing only superficial similarities. In this case, positive

correlation between performance and level of similarity will show value in richer

representations of biological system behavior in Conceptual Design. This leads to the

following question:

Question 4: What is the impact of biological strategies in the Conceptual Design
process?

18

In answering this question, the following is hypothesized:

Hypothesis 4: 4(a) Exposure to biological strategies will increase the novelty of design
ideas generated and 4(b) will increase the variety of design ideas generated.
Additionally, 4(c) bio-inspired engineering systems possessing a deeper level of
biological system behavior will perform better than those possessing superficial
behavioral similarities.

In this section, the research questions driving this research were presented. In

Section 1.3.3, an overview of how this research is organized within this dissertation is

presented.

1.3.3 Research Brief and Dissertation Roadmap

The goal of this research is to aid the designer in generating ideas in Conceptual

Design through the use of biological strategies. First, a hierarchical representation of

biological systems and a method extracting behavioral strategies from these

representations, termed the Method for Reverse Engineering Biological Systems, is

developed. Next, using this representation, an ontology is developed to aid in retrieving

relevant biological strategies from a strategy repository. The representation and ontology

are then structured into two approaches for Bio-inspired Concept Generation, the

problem-based and solution-driven approaches. These approaches are then validated

using example problems. Specifically, the problem-based approach is validated using

cognitive studies and an illustrative example of the development of hybrid bullet-resistant

armor. The solution-driven approach is validated using case studies and an illustrative

example of a wearable artificial kidney.

The overall research plan and its relation to the organization of this dissertation

are displayed in Figure 1.4.

19

Figure 1.4 Research Organization

The organization of this dissertation is described in the following.

In Chapter 2, the theoretical foundation upon which this research is built is

presented. This foundation includes that of systematic design and idea generation

techniques (Section 2.1), representations in engineering design (Section 2.2), design

repositories and semantic retrieval (Section 2.3), and metrics for evaluating idea

generation (Section 2.4).

In Chapter 3, the backbone of the method for Reverse Engineering Biological

Systems, the hierarchical representation for biological systems, is developed. This

includes elaborating requirements for the representation and selecting the most suitable

representation.

The Method for Reverse Engineering Biological Systems is presented in Chapter

4. In Section 4.1, the method for generating the hierarchical representation is presented,

followed by systematic steps in Section 4.2. Examples of the proposed method are

presented in Section 4.4.

20

In Chapter 5, the strategy repository is developed. In Sections 5.1 and 5.2, the

ontology for representing biological information is developed. In Section 5.3, the

software implementation of the strategy repository is described. The retrieval mechanism

used to efficiently retrieve strategies from the repository is presented in Section 5.4,

followed by validation of the retrieval strategy in Section 5.5.

Chapter 6 presents the proposed approaches for bio-inspired Conceptual Design.

The problem-based approach is presented in Section 6.2, followed by the solution-driven

approach in Section 6.3.

Chapters 7 and 8 deal with validation of the proposed approaches to bio-inspired

concept generation. Specifically, validation for the solution-driven approach is presented

in Chapter 7 with case studies (Section 7.1) and an illustrative example on the design of a

hybrid, bullet resistant armor (Section 7.2). In Chapter 8, validation for the problem-

based approach is presented with cognitive studies (Section 8.1) and an illustrative

example on the design of a wearable, artificial kidney (Section 8.2).

In the final chapter, Chapter 9, the research questions and their respective

hypothesis are revisited. The specific contributions to the body of knowledge on bio-

inspired design are also reviewed in this chapter.

1.4 VALIDATION PLAN

The validation and verification strategy in this thesis is two fold. The first

strategy addresses the verification of the hypotheses proposed to answer the secondary

research questions proposed in Section 1.3. The second strategy involves the validation

of the proposed method for Reverse Engineering Biological Systems.

1.4.1 Validation Plan for Hypotheses

In this dissertation, four hypotheses are proposed to address the secondary

research questions presented in Section 1.3.2. These hypotheses are presented with the

validation tests in

Table 1.2.

21

Table 1.2 Hypothesis Validation Strategy

Research Question Hypothesis Tests
RQ1: What type of
representation can be used
to model the behavior of
biological systems?

Hyp1: A representation based on
(1) a causal behavioral description
and (2) hierarchical Petri nets can
be used to model the behavior of
biological systems

- Qualitative evaluation with
respect to requirements put
forth for representation of
biological systems

RQ2: How can the behavior
of biological systems be
hierarchically represented
using Petri nets, while
preserving the fundamental
properties at each
hierarchical level?

Hyp2: Using the systematic method
for Reverse Engineering Biological
Systems will insure that the
fundamental properties of
boundedness, reachability, and
liveness will be preserved across
hierarchical levels.

Find mathematical evidence of
boundedness, reachibility, and
liveness for hieararchical Petri
net representation

RQ3: How can hierarchical
Petri net representations of
biological systems be
structured to aid retrieval
of relevant strategies from a
knowledge repository?

Hyp3: An ontology of concepts
from hierarchical Petri net
representations of biological
systems can be represented using
Description Logics. Subsumption
in Description Logics will enable
consistent and precise retrieval of
relevant biological strategies from a
knowledge repository.

- Find mathematical evidence
of consistency through
subsumption
- Evaluate retrieval precision
in various scenarios using test
queries

RQ4: What is the impact of
biological strategies in the
Conceptual Design
process?

Hyp4(a,b): Exposure to biological
strategies will increase the novelty
of design ideas generated and will
increase the variety of design ideas
generated

- Cognitive studies on
mechanical engineering
students
- Problem-based Conceptual
Design Example (Design of
Hybrid Bullet-Resistant
Armor)

RQ4: What is the impact of
biological strategies in the
Conceptual Design
process?

Hyp4(c): Bio-inspired engineering
systems possessing a deeper level
of biological system behavior will
perform better than those
possessing superficial behavioral
similarities.

- Historical case studies on
bio-inspired design
- Solution-driven Conceptual
Design Example (Design of a
wearable, artificial kidney)

Since the focus of this dissertation is the proposed method for Reverse

Engineering Biological systems and its accompanying hierarchical Petri net

representation, validation of the method as a whole is performed using the Validation

Square[36]. This validation strategy is presented in Section 1.4.2.

22

1.4.2 Intro to Validation Square

A significant part of this work lies in the validation strategy for the method for

reverse engineering biological systems. For validation, the Validation Square proposed

by Seepersad, et al. [36] is used. In this work, the authors believe that validation in

engineering design, because it is based largely on designers’ subjectivity, cannot be

pursued in formal, rigorous, quantitative verification [37]. Instead, “knowledge

validation becomes a process of building confidence in its usefulness with respect to a

purpose”. The usefulness of a method is associated with whether the method provides

design solutions ‘correctly’ (structural validity) and whether it provides ‘correct’ design

solutions (performance validity). Structural validity involves a qualitative assessment

and performance validity involves a qualitative assessment of the proposed method. The

Validation Square is displayed in Figure 1.5.

23

Figure 1.5 Validation Square [36]

As seen in Figure 1.5, there are four aspects to the Validation Square: Theoretical

Structural Validation, Empirical Structural Validation, Empirical Performance

Validation, and Theoretical Performance Validation. Theoretical Structural Validation

involves checking the individual constructs and assumptions upon which the method is

built, as well as checking the internal consistency of the method when combining the

individual constructs. Empirical Structural Validation (ESV) includes building

confidence in the appropriateness of the example problems used for verifying the

usefulness of the method. Empirical Performance Validation (EPV) includes building

confidence in the ‘usefulness’ of the proposed method with respect to the example

problems. Theoretical Performance Validation (TPV) involves building confidence in

24

the ability to extend the proposed method beyond the scope of the example problem to a

general class of problems.

Theoretical Structural Validity:

The first step in validating the method for Reverse Engineering Biological

Systems is evaluating the theoretical structural validity. In Chapters 2 and 3, relevant

literature on systematic design and knowledge representations is reviewed. The specific

construct of the method, hierarchical Petri nets, is reviewed and tested for consistency in

Chapter 3. The constructs of the strategy repository, engineering ontologies and

Description Logics, are reviewed in Chapter 2.

Theoretical Structural Validity also involves examining the consistency of the

method. Consistency is checked to ensure that sufficient information is available to

execute the steps. This consistency is checked through describing the tasks needed for

each step, as well as the inputs needed and outputs generated. In this research, a

flowchart of the systematic steps of the proposed method will be used to check internal

consistency. The method consistency is addressed in Chapter 4.

Empirical Structural Validity:

Empirical Structural Validity includes accepting the appropriateness of the

example problems that are used to verify the method performance. In this research, the

method for Reverse Engineering is used in both a problem-driven and the solution-based

conceptual design context (Chapter 6). An example problem is developed for each

context. The example problems used are (1) the development of a hybrid bullet resistant

armor (problem-based) and (2) the design of a wearable, artificial kidney (solution-

driven). These examples, presented in Chapters 7 and 8, respectively, fall within the

scope of use of the method.

Cognitive studies of designers in ideation and historical case studies are also used

to validate the method. In the context of problem-based Conceptual Design, cognitive

studies (Chapter 7) on designers are used to evaluate the novelty and variety of design

ideas generated in idea generation using biological strategies. Historical case studies are

25

used to evaluate the impact of rich behavioral models (ie. hierarchical Petri nets) in the

solution-driven Conceptual Design context. These case studies are presented in Chapter

8.

In Chapter 5, the strategy repository test-bed is structured and tested. This test-

bed is used to test the precision of subsumption-based retrieval method. This test-bed

mimics the envisioned repository, and is deemed appropriate for testing the retrieval

method.

Empirical Performance Validation

Empirical Performance Validation involves accepting the usefulness of the

method for some representative example problems. In essence, we are evaluating

whether or not the method is doing what it has set out to do. In this research, we wish to

aid the designer in generating ideas in Conceptual Design using biological strategies.

Specifically, we wish to aid the designer in generating a large variety of novel, quality

concepts. This is indeed useful as the success of final products can be directly linked to

this idea generation process. The usefulness of the method will be assessed in both the

problem-based and solution-driven context using the example problem.

For the problem-based context, the proposed method is tested using cognitive

studies and an example problem of the design of hybrid, bullet resistant armor. In the

cognitive studies, the results are evaluated on the basis of the novelty and variety of

design ideas generated. The results from participants receiving biological strategies are

compared to those of students not receiving any stimuli and those receiving engineering

strategies. In the example problem, the designs generated using the proposed method are

compared to the armor currently found in the market. This work is presented in Chapter

7.

For the solution-driven context, the proposed method is tested using historical

case studies and an example of the design of a wearable, artificial kidney. In the case

studies, the correlation between the performance of bio-inspired designs and the level of

similarity with the biological system is evaluated. The results from the example problem

26

are compared to existing renal replacement therapies found in the market. This work is

presented in Chapter 8.

With respect to the strategy repository, the precision of subsumption-based

retrieval is tested using test queries. These queries are used as representative retrieval

scenarios. The results will then be compared to the performance of current retrieval

methods used in bio-inspired designs. The strategy repository is evaluated in Chapter 5.

Theoretical Performance Validation

Theoretical Performance Validation involves building confidence in the generality

of the method, in its usefulness beyond the example problems. Success in the previous

validation steps helps to build a case for this generality. Although we can make a case

for generality, every validation strategy relies on ultimately on a “leap of faith”[36].

Theoretical Performance Validity is addressed in Chapter 9.

The validation strategy proposed in this dissertation is summarized in Figure 1.6.

Figure 1.6 Validation Strategy

27

1.5 CHAPTER SUMMARY

In Chapter 1, the motivation of this research (Section 1.1), current research on

bio-inspired design (Section 1.2), the research approach undertaken in this research

(Section 1.3) , and the validation strategy (Section 1.4) was presented.

In the next chapter, Chapter 2, the theoretical foundation of this work is laid. This

includes systematic design, engineering representations, engineering ontologies, and

evaluation techniques.

28

CHAPTER 2 THEORETICAL FOUNDATIONS

In Chapter 1, current methods for systematizing bio-inspired design were

reviewed and several research gaps were identified. To address these gaps, a method for

Reverse Engineering Biological Systems and an engineering ontology to support of

retrieval biological strategies is proposed. The objective of this chapter is to introduce

and review the theoretical foundation upon which this work is built. Specifically,

systematic design and idea generation, representations in engineering design, and

engineering ontologies are reviewed. Additionally, metrics used to empirically evaluate

idea generation techniques are reviewed. The relationship between these concepts and

the proposed approach for Bio-Inspired Concept Generation is displayed in Figure 2.1.

Figure 2.1 Relationships between concepts reviewed in this chapter and proposed method

29

One of the goals of this work is to systematize the use of biological strategies in

engineering design. In Section 2.1, the context in which the method is used, the

systematic design method, is used. Existing methods for idea generation, including

analogies, are also reviewed in Section 2.1. In the proposed method, hierarchical Petri

nets are used to represent biological systems and extract functional strategies from these

systems. In Section 2.2, the value of representations as mental models and common

representations used to represent engineering systems are reviewed. To aid access to

these strategies, the hierarchical Petri net representation is used to structure a repository

of biological and engineering strategies. Foundations for design repositories and

semantic retrieval are reviewed in Section 2.3. In Section 2.4, metrics for evaluating idea

generation techniques are reviewed. These metrics are used to empirically evaluate the

value of proposed method.

2.1 SYSTEMATIC DESIGN AND THE SEARCH FOR SOLUTIONS

2.1.1 The Design Process (Pahl and Beitz overview)

The research put forth in this dissertation is set in the context of the systematic

design methodology, developed by Gerhard Pahl and Wolfgang Beitz. A design

methodology is a “concrete course of action for the design of technical systems that

derives its knowledge from design science and cognitive psychology, and from practical

experience in different domains.”[5] The Pahl and Beitz systematic design methodology

is divided into four main phases: Planning and Clarification of Task, Conceptual Design,

Embodiment Design, and Detail Design. These phases are detailed in the following

discussion.

The four phases of the Pahl and Beitz systematic design method are as follows:

Planning and Clarification of Task – The first phase, Planning and Clarifying the Task,

begins with the designer identifying and analyzing the market for a potential product.

From this analysis, product ideas are generated and a product proposal is developed.

The task is then clarified by collecting information about the requirements and specific

30

constraints on the future product. This phase ends with the articulation of a

Requirements List based on the identified requirements and constraints.

Conceptual Design – In Conceptual Design, the designer takes the requirements

developed in the Planning and Clarification of Task phase and develops concepts bases

on them. The designer first abstracts the requirements to identify a solution neutral

problem statement, then establishes a function structure for the future product based on

the essential problem identified. A function structure is a representation of the functions

and sub-functions of a given system along with the relationships (flows of energy,

material, and signal) between these functions. A function structure for a potato harvesting

machine is displayed in Figure 2.2.

Figure 2.2 Function Structure of potato harvesting machine [5]

In Figure 2.2, the overall function of “harvest potatoes” is further decomposed

into its sub-functions of “lift”, “sift”, etc. The flows of energy, material and signal are

also displayed in Figure 2.2. After defining the function structure, the designer then

searches for working principles (functional solutions) for the identified functions and

sub-functions. A morphological matrix is commonly used to facilitate the search for

31

working principles, or behaviors to fulfill the function of interest. A morphological

matrix for the previous example of the potato-harvesting machine is displayed in Figure

2.3.

Figure 2.3 Morphological matrix for potato harvesting machine [5]

In Figure 2.3, the “sifting belt”, “sifting grid”, “sifting drum”, and “sifting wheel”

working principles were elaborated to fulfill the “sift” sub-function of the potato

harvesting machine. Next, working structures (preliminary concepts) are developed by

combining suitable working principles while ensuring physical and geometric

compatibility. These working structures are then firmed up into solution variants and the

designer evaluates these variants against technical and economic criteria. The

Conceptual Design phase ends with the specification of a principal concept.

Embodiment Design – During this phase, the designer takes the concept selected

in Conceptual Design and develops a preliminary layout for it. In most cases, several

layouts are developed. These layouts are evaluated based on concrete technical and

32

economic criteria and the best layout is selected. This preliminary layout is then refined

into a definitive layout by identifying and eliminating it shortcomings.

Detail Design – During Detail Design, the designer finalizes the arrangement,

forms, dimensions, and surface properties of the product. This phase also includes

material specification, cost estimation, and the development of all production documents

needed.

A flowchart depicting the phases of the Pahl and Beitz systematic design method

is displayed in Figure 2.4. The flowchart displays the inputs and outputs of the four

phases, as well as the working steps of the methodology.

33

In
fo

rm
at

io
n:

 A
da

pt
 th

e
re

qu
ire

m
en

ts
 li

st

Pl
an

ni
ng

 a
nd

 C
la

rif
yin

g
th

e
Ta

sk

Requirements List
(Design Specifications)

Task
Market, company, economy

Plan and clarify the task:
Analyze the market and company situation
Find and select product ideas
Formulate a product proposal
Clarify the task
Elaborate a requirements list

Develop the construction structure:
Preliminary form design, material selection and
calculation
Select best preliminary layouts
Refine and improve layouts
Evaluate against tech. and econ.criteria

Define the construction structure
Eliminate weak spots
Check for errors, disturbing influences and minimum
costs
Prepare the preliminary parts list and production and
assembly documents

Prepare production and operating documents:
Elaborate detail drawings and parts list
Complete production, assembly, transport and
operating instructions
Check all documents

Solution

Develop the principle solution:
Identify essential problems
Establish function structures
Search for working principles and working structures
Combine and firm up into concept variants
Evaluate against tech. and econ. criteria

Concept
(Principle solution)

Product documentation

Definitive Layout

Preliminary layout

Up
gr

ad
e

an
d

im
pr

ov
e

Em
bo

di
m

en
t d

es
ig

n
Co

nc
ep

tu
al

 d
es

ig
n

De
ta

il d
es

ig
n

Figure 2.4 Pahl and Beitz Systematic Design Methodology [5]

34

2.1.2 Idea Generation Techniques

The phase of particular interest in this research is the Conceptual Design phase,

where the designer is tasked with the search for working principles to fulfill functions. In

this step, the designer searches for specific solutions to the sub-functions defined in the

function structure. In this search, the designer may use several methods for identifying

solutions for each sub-function, including conventional methods, intuitive methods, and

discursive methods. These search methods are explained as follows:

Conventional methods - Conventional methods for searching for solutions include:

• Information gathering – Information gathering includes conducting a survey

through various forms of related literature, trade publications, catalogues, patent

websites, etc. Some popular online sources for information gathering are Google

Patents (www.patents.google.com) and the United States Patent and Trademark

Office (www.uspto.gov).

• Analysis – Analysis involves the reverse engineering existing systems “aimed at

the discovery of functional and physical features and their respective relations”.

Using this method, the knowledge extracted from existing technical systems, as

well as biological systems, is used to stimulate the design of new systems.

• Analogies – In the search for solutions, it is often useful to substitute an analogous

problem for the one under consideration. Solutions from the analogous system

are then used to solve problems from the current problem domain.

Other conventional methods include synthesis, measurements, and model tests. A

brief review of these methods can be found in Messer [38] and Pahl and Beitz [5]

Intuitive methods – Intuitive methods rely mostly on the designer’s intuition in the

search for solutions. Some methods include:

• Brainstorming - Brainstorming is a method by which a group of open-minded

individuals from diverse backgrounds generate ideas in an open forum. This

35

method ‘relies strongly on stimulation of the memory and on the association of

ideas that have never been considered in the current context.” [5]

• Method 635 – Method 635 is a brainstorming method where groups of 6

participants are formed. Each participant writes down three keywords, which are

then passed to his/her neighbor. The neighbor records three further solutions.

Ideas are passed a total of five times, hence, the Method 6 (participants) – 3(ideas)

– 5(ideas passed).

• Gallery Method - In the Gallery method, a group of participants sketch solutions

to an ideation task for 15 minutes. After this initial generation period, the group

reviews the ideas of the individual participants. The participants then refine and

further develop the ideas, followed by a group selection of the most promising

solutions.

• Synectics - Synectics is similar to brainstorming, but uses analogies to stimulate

ideas from the participants. The two guiding principles of synectics are “making

the strange familiar” and “making the familiar strange”.

• Delphi Method - The Delphi method relies on the opinions of a panel of

independent experts. In this method, experts are given anonymous surveys. After

submitting their responses, the responses of all participants are collated and sent

back out to the group. Participants are encouraged to revise their original answers

until the group converges and a consensus drawn. This method is usually used for

long-term studies in design, such as forecasting.

Other intuitive methods include collaborative sketching, the input/output technique,

lateral thinking, visual thinking, attribute listing, forced relationship technique,
blockbusting, and the parameter analysis. A brief review of these methods can be found

in Messer [38] and Pahl and Beitz [5]

Discursive methods – Discursive methods seek to deliberate a step-by-step approach to

solution searching. In discursive methods, problems are decomposed into manageable

parts and systematically analyzed. Founded in intution, the additional use of systematic

procedures serves to increase the output and inventiveness of designers [38]

36

• The Method of Forward Steps (Method of Divergent Thought) - In this method,

the designer starts with an initial solution. From this initial solutions, the designer

follows as many divergent paths as possible away from this initial solution,

yielding more solutions.
• The Method of Factorization - The method of Factorization involves

decomposing complex problems in to smaller, manageable and definable sub-

problems (factors). Each of these sub-problems is then solved independently.
• Design Catalogs - Design catalogs are “collections of known and proven

solutions to design problems.” [5] In this method, the user searches through these

design catalogs for possible solutions.

Other discursive methods include the method of persistent questions, checklisting,

morphological thinking, method of negation (systematic doubting), method of systematic

variation, systematic study of physical processes, and systematic search with the help of

classification. Brief reviews of these methods can be found in Messer [38] and Pahl and

Beitz [5].
It should be noted that it is beneficial to use multiple methods for identifying

solutions so as to broaden the search through the design space as much as possible. The

focus of this research is on using biological systems as analogies to stimulate concepts.

Analogical reasoning is reviewed in Section 2.1.3.

2.1.3 Analogical Reasoning

Analogy refers to a similarity of relations between two different situations, or

A:B::C:D, where A is related to B like C is related to D [39]. This relationship implies

that there is a higher order abstraction that holds in both cases [39]. Analogy is often

used to transfer knowledge, through analogical mapping, from a source domain

containing the analogous phenomena to a target domain containing the problem to be

solved by analogy [40].

In engineering design, analogy functions in many different ways, mainly for

explanation, problem solving, and problem identification. Explanation involves using

37

analogies as a means of communicating novel ideas, while avoiding misunderstanding.

Analogy is also used as a means of problem solving, whereby designers use solutions

from a source, or base, domain to solve problems in the target domain. Problem

identification is also considered an important function of analogy, whereas analogies are

used to identify potential problems and evaluate novel concepts [41].

 The source-target transfer in analogical reasoning occurs in the following stages:

(a) accessing the source domain, (b) mapping elements of the target onto source, (c)

transferring knowledge from the source to the target domain, and (d) inducing a schema.

The access stage involves activating the user’s mental representation of the source

domain. The goal of the mapping stage is aligning the source and target domain in a

manner that the knowledge from the source domain can transfer to the target. In the next

stage, knowledge from the source domain is transferred to the target domain. Inherent in

this transfer is the “belief that domains known to be similar in certain respects are likely

to be similar in others”. In the last stage, a more abstract knowledge structure is created.

This abstract knowledge structure is often used as a source in future analogical reasoning

situations [42].

Analogies can be classified by their similarity, or conceptual distance, between

the source and target domain. Local analogies are analogies where the source domain is

similar to that of the target, where surface-level attributes and relations between these

attributes can be mapped [43]. Surface-level attributes are easily retrievable aspects of

representation, such as color and shape [44]. In distant analogies, where the source and

target domains are very different, few surface-level attributes can be mapped and

relational similarity must be relied upon [43]. For example, take the example of a target

analog of an air conditioning system for a hotel. A local analog would be other

commercial air conditioning systems from other companies, where a distant analogy

would be self-cooling termite mounds.

Because distant analogies involve vastly different domains of knowledge, it is

usually more difficult to transfer knowledge or solutions [45]. These analogies are more

difficult to access because the nature of the similarity is at a more abstract, relational

level, thus causing an increase in cognitive effort [43].

38

2.1.4 Relation to Bio-Inspired Concept Generation

In this research, biological strategies are used in idea generation in the search for

solutions to engineering problems. Specifically, biological systems are used as analogies;

solutions to problems in the biological domain are leveraged to solve problems in the

engineering domain. The question now becomes, Why biological systems as a source for

potential analogies?

Because of the large conceptual distance between the biological and engineering

domain, biological systems are considered distant analogies. Analogical theorists have

indicated that the number of distant analogies used during design is positively related to

the originality (novelty) of the resulting design [43] and these analogies are considered

the main drivers of truly innovative thought [46]. Similarly, Benami and Jin [47] found

that ambiguous ideas stimulated more ideas than non-ambiguous entities, which tend to

be fixating. Local analogies represent smaller conceptual distances, and researchers [48,

43, 41] have found that these analogies constrain the creativity process by providing

paths-of-least resistance for analogizing, resulting in less original, incremental ideas.

These ideas typically show deviation from the source and more attributes are

preserved[46]. Thus, because of their large conceptual distance for engineers, biological

analogies should lead to more innovative design ideas.

In Section 2.1, systematic design and idea generation techniques were reviewed

and a case was made for the used of biological systems as inspiration in the idea

generation process. In Section 2.2, representations used in engineering design are

reviewed.

2.2 REPRESENTATIONS

In Section 2.2, representation in engineering design is reviewed. This section

begins by reviewing general models of cognitive processes in idea generation in Section

2.2.1. In Section 2.2.2, mental models used in creative cognition are reviewed. In

Section 2.2.3, common representations used in engineering design are reviewed.

39

2.2.1 Creative Cognition

A general model of cognitive processes involved in creative thought is that of the

Geneplore model, developed by Finke, Ward, and Smith [49] and displayed in Figure 2.5.

Figure 2.5 Geneplore Model [49]

With the Geneplore model, creative cognition is divided into two phases: a

generative phase, followed by an exploratory phase. In the generative phase, mental

representations, called pre-inventive structures, are constructed. The properties of these

structures are then exploited for creative purposes in the exploratory phase. If the pre-

inventive exploration leads to resolution of the task, the pre-inventive structures may lead

to a creative product [49]. On the other hand, if exploration does not lead to resolution,

one then returns to the generation phase by either focusing the emergent structure on

specific problems or expanding the structure to explore more general conceptual

possibilities. Constraints on the products are also considered in both generative and

exploratory processes. Examples of cognitive processes, structures, properties, and

constraints of the Geneplore model are displayed in Table 2.1.

40

Table 2.1 Examples of processes, structures, properties, and constraints in the Geneplore Model [49]

Generative
Processes

Pre-inventive
Structures

Pre-inventive
Properties

Exploratory
Processes

Product
Constraints

Retrieval Visual Patterns Novelty Attribute
finding

Product type

Association Object forms Ambiguity Conceptual
interpretation

Category

Synthesis Mental blends Meaningfulness Functional
interference

Features

Transformation Category
exemplars

Emergence Contextual
shifting

Functions

Analogical
transfer

Mental models Incongruity Hypothesis
testing

Components

Categorical
reduction

Verbal
combinations

Divergence Searching for
limitations

 Resources

A much more specific model of creative cognitive processes has been developed

by Benami and Jin [47]. Benami and Jin [47] build upon the Geneplore model in

building a cognitive model for Conceptual Design. In this model, the pre-inventive

structures can include the functional (F), behavioral (b), and/or structural (f) elements that

make up a design entity. As new elements are generated and explored, the pre-inventive

entities become knowledge entities as their relationships with other functions, structures,

and behaviors are fully interpreted. The model is displayed in Figure 2.6.

Figure 2.6 Cognitive Model of Conceptual Design [47]

41

The first step of the model addresses the stimulation process, whereby designers

are stimulated to generate and explore ideas after viewing existing design entities in

catalogues or other documentation. Stimulating properties include Meaningfulness (M),

Relevance (R), Emergence (E), Incongruity (I), and Divergence (D). In the second step,

internal design operations are produced, followed by the production of external design

operations in step 3. Internal cognitive processes include Suggest (g), Compute (c),

Question (q), Declare (d), Suppose (u), and Explain (e) and external cognitive processes

include Talk (t), Write (w), Sketch (s), Point (p), and Stimulate (z). In cognitive studies

on the stimulation phase, Benami and Jin found that (1) short-distance analogies resulted

in a larger quantity of ideas, (2) long-distance analogies resulted in more original ideas,

and (3) neither resulted in a larger variety of ideas. They also found that behaviors

stimulated twice as many ideas as functions.

The Benami and Jin Cognitive Model of Conceptual Design is a specialization of

the Geneplore model put forth by Finke, Ward, and Smith. Specifically, the Benami and

Jin model takes the two-phase approach of generation and exploration to show how ideas

are stimulated and transformed into knowledge entities through exploration. The most

critical phase of this model of Conceptual Design is the stimulation phase. In this

research, biological analogies are used to stimulate these new knowledge entities. In

their work, criteria for meaningfulness, relevance, emergence, incongruity, and

divergence are put forth to characterize the properties needed in order for an idea or

analogy to be stimulating. Biological analogies can be seen as meaningful, as nature is

bound by the same physics as designed systems. Incongruity comes in the distance

between the engineering and biological domains. These analogies can be seen as

divergent since biological solutions do not offer ready-made solutions for engineering

problems and some idea generation is still needed in applying the strategies from the

solution. Since biological systems are hierarchically arranged, many emergent features

of the system come about in decomposition of the system. Therefore, according to this

model, biological analogies should be stimulating, assuming that the analogies are

42

relevant. Retreiving relevant biological analogies is addressed in Chapter 5 of this

dissertation.

2.2.2 Representation and Mental Models

In both models, pre-inventive structures play a critical role in creative cognition.

Pre-inventive structures take several representation formats, as displayed in Table 2.1.

Markman [50] broadly defines representation as having four components:

• Represented world – the domain that the representations are about

• Representing world - the domain that contains the representation

• Representing rules – rules that map elements of the represented world to elements

in the representing world.

• Representation process – a process that uses the representation.

In essence, the representing world is used to represent knowledge in the

represented world. Representations in the representing world are bound by representing

rules that relate them. The process by which the representation is created usually results

in an loss of information between the represented and the representing worlds.

Mental models have been explored as key representations for physical systems.

Mental models are commonly defined in terms of a set of autonomous objects and

relationships between these objects. Autonomous objects are mental objects with an

explicit representation of state, an explicit representation of topological connections to

other objects, and a set of internal parameters [51]. As the name suggests, mental models

can be observed, manipulated, and reasoned by the mind [52]. Williams and co-authors

[51] found that mental models play an important role in human reasoning; they allow the

user to reason about the effects of changes in a system using qualitative relationships.

White and Frederiksen [53] also argue that people reason about physical systems using

qualitative reasoning, primarily by zero-order (presence or absence) and first-order

(incremental changes) models. The authors also argue that quantitative reasoning only

comes after the system is understood qualitatively.

43

2.2.3 Representations in Engineering Design

In Section 2.2.2, representations, in general, used in creative cognition were

discussed. In this section, specific representations used in engineering design are

reviewed. In Section 2.2.3.1, common definitions for function and behavior are

reviewed. This discussion is followed by a review of representations for function,

structure, and behavior in Section 2.2.3.2. Lastly, current methods for synthesizing

functional, behavioral, and structural knowledge into a complete system model are

reviewed in Section 2.2.3.3.

2.2.3.1 Function and Behavior

Defining Function

In defining function, researchers [54, 55, 32, 56] have defined multiple distinct

types of functions, including that of purposive and operational (action) functions. Action

functions are defined as “ a physical interaction between two objects of interest, each of

which may be a component of a design or the design itself and its environment”. Purpose

functions can be defined as “ a description of the designer’s intention or the purpose of a

design.”[56] Purpose functions can be seen as a higher level design abstraction and allow

for a much wider variety of design solutions to be found. On the other hand, action

functions are much more specific to a given design or behavior and relate directly to the

physical principles of the device.

In this research, the functions are considered action functions. This is mainly due

to the fact that biological systems have already been designed, thus any specifications or

predictions of purpose are highly subjective.

Defining Behavior

Behavior is commonly defined as the change of state of a particular system.

Chittaro and Kumar [32]define behavior as describing “how components work and

interact in terms of quantities which characterize their state (variables and parameters)

and the laws that govern their behavior”. Along these same lines, Deng [56] characterizes

behavior as a chain or network of physical state change.

44

2.2.3.2 Representations of function and behavior

In the previous section, common definitions of function and behavior were put

forth. In this section, common representations for function and structure are reviewed.

Function

There are several common representations of function, including the input-output

flow transformation, transformation of input-output states, and informal representations.

Input-output (I/O) flow transformations

In the I/O transformation representation [5], function is represented in terms of its

input and output flows of energy, material, and signal. For example, the function of a

lever can be represented with an input force and a multiplied output force [56]. Function

structures, utilized in Pahl and Beitz, use the I/O flow functional representation. An

example of a function structure is displayed in Figure 2.2.

Transformations between input-output states.

In this representation, function is represented in terms of its input and output

states. For example, the functional of a lever can be represented by the changes in the

angle or height of the end of the lever.

Informal representations

In the informal representation of function, functions are expressed using either

that of a verb-noun pair or a natural language sentence representations. In the verb-noun

representation, function is expressed as a verb-noun pair. For example, the function of a

lever is expressed as “to magnify force”. In the natural language representation,

restrictions on expression are dropped and sentences are used to describe function.

It should be noted that combinations of these representation types are also used to

represent functions in design. For example, function structures utilize both I/O flow and

verb-noun representations.

The view adopted of function in this work is that of a mapping of the behavior of

the system to that of its supersystem[54]. In this view, the I/O flow transformation

representation of function is used to represent function. Flows are used to map the

behavior of the system to other systems around it, which forms the supersystem. Because

45

flows are not used, the transformation between I/O state representation is limited in its

representation of this mapping. In addition, informal representations, such as the verb-

noun and natural language, lack of rigor and uniqueness [56] in the representation of this

mapping. They lack rigor in the sense that the meanings of the words are open for

interpretation. These informal representations also lack uniqueness, as they can be

described using multiple synonyms for the same words.

Behavior

Common representations for behavior include formal methods such as

mathematical representations, textual descriptions, bond graphs, and Petri nets.

Formal mathematical representations

Formal representations of behavior include the use of mathematical

transformations expressed using equations and mathematical relations to represent the

behavior of an object.

Textual Description

 In the textual description, the behavior is expressed using a textual and natural

language format. For example, the SAPPhIRE causal behavioral description by

Chakrabarti [24] is expressed in textual format. In this representation, the content is

divided into a list of actions, state, physical phenomena, physical effects, inputs, organs,

and parts. An example of the causal behavioral description for a Venus flytrap is

displayed in Figure 2.7.

46

Action
• Feed on insects by trapping them between leaves

State
• Insect, which is the Venus flytrap’s prospective prey, is freely moving outside the

trap.
• Cells in the underlying layer are compressed, creating tension in the plant tissue and

holding the trap open.
• …….

Physical phenomenon
• Emit a scent by secreting chemicals from glands on the inside of the open leaf/trap.
• Attract insects toward the trap with the help of the scent.
• …….

Physical effects
• Stimulus-response effect of the glands that produce scent-emitting chemicals.
• Stimulus-response effect of the insect’s nostrils.
• …….

Input
• Electrical signals to the gland that produces chemicals responsible for the scent.
• Chemical stimulation in the form of the scent to the nostrils of the insect.
• ……..

Organ
• The ability of the scent gland to produce appropriate chemicals that emit the scent.
• The composition of the scent, which is responsible for stimulating the sense of smell

in insects.
• ……..

Parts
• Nectar glands present on the inside of the leaf.
• Scent, which is made up of chemicals that stimulate insects in particular.
• …….

Figure 2.7 Textual representation of Venus Flytrap example [24]

Bond Graphs

Bond graphs, developed by Henry M. Paynter at Massachusetts Institute of Technology

in 1959, are considered static graphical representations of dynamic physical systems.

Bond graphs automatically conserve energy, and depict flows of energy into and out of

the system through energy ports (or the intersection of the boundary of the system and the

environment) of a system. For example, consider the following example [57] (Figure

2.8) of a motor connected to a battery. A dashed, gray circle denotes the boundary of the

system and energy crosses this boundary at energy ports. The energy ports of the motor

are the shafts and electrical wires connecting the battery to the motor.

47

Figure 2.8 Electric Motor Example

Bond graphs have been used to model many types of physical systems, including

pneumatic, hydraulic, mechanical, electrical, and combinations of these types of systems.

Bond graphs are modelled using the flow of power between systems. Power flow is

denoted as the product of a generalized forces (efforts) and a generalized velocities

(flows) [57]. In Figure 2.8, power flow is denoted by the flow of electrical voltage (e)

and current (i) to the motor, and the power flow of torque (M) and angular velocity(

φ)

from the motor, or as the following equation:

P = e q

where e is the effort and

q is the flow. Using a bond graph of the motor, the system is

graphically depicted in Figure 2.9.

Figure 2.9 Bond graph of motor

In Figure 2.9, the single-sided arrow denotes the sign convention of the power

flow variables. In analysis, engineering systems are modeled as ideal systems, meaning

that energy is not stored, generated, or dissipated[57]. If the motor in the figure above

was modeled as ideal, then the graph reduces to the following equation,

e ⋅ i = M ⋅ φ

48

Causality in bond graphs is depicted using what is termed as a causal stroke. The

causal stroke denotes which component generates the effort. In Figure 2.9, the single bar

on the end (or start) of the single-sided arrow denotes the causal stroke. In this case, the

battery generates the voltage that goes to the motor, and the motor generates the torque

(moment) effort.

In bond graph representation, physical elements are replaced with bond graph

elements, including compliance energy storage elements (C), resistor elements (R),

inertance storage elements (I), junctions, transformers, and gyrators. Once the bond

graphs are generated for the system, constitutive equations for each type of element are

used to derive differential and algebraic equations to analyze the behavior of the systems.

Petri nets

Petri nets can also be used to represent the causal behavioral description. Petri nets are a

graphical and mathematical tool used for modeling, formal analysis, and design of

discrete-event systems[58]. As a graphical tool, Petri nets provide the means to represent

the behavior of dynamic systems. As a mathematical tool, they allow for the formal

analysis of the behavioral properties of a system.

An ordinary Petri net is a 4-tuple, where PN= (P, T, F, M0). Petri nets contain

two types of nodes, termed places (P) and transitions (T). Places can be defined as states

of a discrete-event system and transitions can be defined as changes between those states,

where arcs (F) define the relationship either from a transition to a place or from a place to

a transition. The initial marking, M0, is considered the initial state of the graph. This

marking is denoted graphically by a token distribution amongst the places, whereby a

token denotes “truth” of a given place.

The formal definition of an ordinary Petri Net is defined as follows[59]:

An ordinary Petri net is a 4-tuple, PN = (P, T, F, M0) where:
P = {p1, p2, ……, pm) is a finite set of places,
T = {t1, t2, ……, tm) is a finite set of transitions,
F ⊆ (P × T)∪ (T × P) is a set of arcs, or flow relations
M 0 :P→ 0,1,2,.....{ } is the initial marking
P∩T =∅ and P∪T ≠ ∅
A Petri net structure N = (P, T, F) without any specific initial marking is

denoted by N. A Petri net with the given initial marking is denoted by (N, M0).

49

The graphical representation of a Petri net is displayed in Figure 2.10.

Figure 2.10 Graphical representation of a Petri net

The behavior of discrete event systems is described by the change in the marking

of the system. The marking is changed through the firing of transitions, which transfer

tokens from their input places to their output places. A transition is said to be enabled

(able to be fired), if each of its input places is marked with a token.

Koga and Aoyama [60] used the Petri net representation to generate product

behavior and structure based on step-by-step decomposition. In this representation, the

authors use the Petri net representation to model the structural and behavioral hierarchy

of a stapler design. The authors specifically use this model as a means of improving

product quality and dependability through behavior generation. The first two levels of the

stapler design hierarchy are displayed in Figure 2.11.

Figure 2.11 Hierarchical Petri net representation for a stapler design [60]

50

In the representation proposed in this work, information about what the system is

(structure), what the system does (behavior), and “why” it does what it does (function) is

needed. It is commonly known that a complete system representation includes structural,

behavioral, and functional views of the system, as well as the relationships and mapping

between the different views. The completeness is measured by its accounting of these

views of the system

2.2.3.3 Knowledge Representations

The separate representations for function and behavior were discussed in Section

2.2.3.2. In Chang et al. [61], the authors found individual views of function, behavior,

and structure to be inadequate for representing complex systems. Because of this, many

multi-view representations have been developed. These multi-view representations,

termed knowledge representations, include that of the Structure-Behavior-Function

model, Function Behavior-State model, Functional Rationale, Function-Behavior-

Structure, Function-Environment-Behavior-Structure, and the Causal Behavioral Model.

These representations are discussed in more detail below.

1. Structure-Behavior-Function model: Goel and co-authors [16-20] developed a

theory of modeling complex systems termed a Structure-Behavior-Function

model, or SBF. These models explicitly represent a device’s structure

(configuration of components and relationships), behavior (internal causal process

represented by states and transitions between them), and function (output

behaviors). SBF models consider behavior as the causal link between structure

and subjectively-defined functions. SBF models are organized in a

FBFB…FS hierarchy, decomposing function and behavior in a

coupled manner. The lowest level functions are then associated with structure.

2. Function-Behavior-State model: Umeda, Tomiyama and co-authors [62-64]

developed the Function-Behavior-State (FBSt) representation, whereby subjective

function is distinguished from the objective parts of design, behavior and state. In

FBS, state is defined as entities, attributes of entities, and relations among entities,

between entities and attributes, and among attributes. Behavior is defined as a

sequence of states of time, and function is defined as a “description of behavior

51

recognized by a human through abstraction in order to utilize it”. With FBSt,

designs are modeled hierarchically with respect to function, behavior, and state.

In this representation, the objective parts of the design (behavior, state) are

modeled as a set called the “aspect”.

3. Functional Representation: Chandrasekaran and co-authors [65] present a

function-oriented causal representation scheme for design. Functional

Representation (FR) takes a top-down approach to representing a device by first

describing the overall function. The behavior of each component is then

described in the context of the overall function. In Chandrasekaran and

Josephson [66], structure, behavior, and function are defined and explored from

both device-centric and environment-centric views.

4. Function-Behavior-Structure – Gero and colleagues [67-69] developed a

framework for modeling the function, behavior, and structure of a design object

using an FBS representation, and present a design process in the context of

transformations between function, behavior, and structure. In this research,

function, behavior and structure are considered as classes of properties of a design

object, where function properties dictate the object’s intended purpose or

teleology, structure properties represent the physical components and their

relationships, and the behavior properties describe what the object does to

achieves its function.

5. Function-Environment-Behavior-Structure – Deng and co-authors [34] present a

representation where four key aspects of the design are represented, including

function, behavior, structure, and working environment. In this work, function

characterizes the general purpose of the device, and is hierarchically decomposed

to a set of sub-functions. Behavior is represented as a flow-of-action, input-

output relationship, as opposed to a flow-of-object relationship, which is typically

used. The structure consists of the physical components being represented, and

the working environment consists of the environmental elements that contribute to

the device’s function. The causal behavioral process based on the flow-of-action

representation is key to this work , as it bridges the four aspects of the design and

52

provides a means for relating them. This behavioral process is represented by a

directed graph.

6. Causal Behavioral Process – Chakrabarti and co-authors [24] have developed a

representation that links function, structure, and behavior with a generic causal

behavioral model. This generic model, termed SAPPhIRE, links the seven

constructs of State, Action, Part, physical Phenomena, Input, oRgan, and Effect,

and is implemented using software. The SAPPhIRE model is represented in

natural language format using nouns, verbs, and adjectives and used to represent

the function, structure, and behavior of biological and artificial systems

2.2.4 Research Opportunity

Representations play a key role in cognition when physical phenomena cannot be

experienced directly. In this section, a case was made for the value of qualitative mental

models in creative cognition. In the proposed method, we develop a representation of

biological systems that can aid engineers in understanding and leveraging biological

phenomena in idea generation. In engineering design, functional, behavioral, and

structural representations of systems serve as models that can be manipulated throughout

the design process to create engineering artifacts. In the proposed method for Reverse

Engineering Biological Systems, a multi-viewed representation of biological systems is

leveraged. This will not only aid in comprehension of the behavioral strategy utilized by

the system, but also aid in reusing and cataloguing these models for future use in

ideation.

A review of representations in engineering design was presented in Section 1.2.3.

In Chapter 3, these engineering representations will be reviewed with respect to

representing biological systems.

53

2.3 ONTOLOGY DEVELOPMENT

2.3.1 Design repositories

A design repository is an intelligent knowledge-based design artifact modeling

system used to facilitate the representation, capture, sharing, and reuse of design

knowledge [70]. In a review of design repositories, Szykman and co-authors distinguish

repositories from traditional design databases in several ways, including [70]:

 Traditional design databases are typically more data-centric than knowledge

centric; design repositories attempt to capture more comprehensive information

such as characterization of function, behavior, design rules, simulation models,

etc.

 Design repositories tend to be more heterogeneous in the types of information

they contain, whereas databases tend to be homogenous.

 Design repositories allow not only the storage of complex information, but also

support the retrieval and reuse of design knowledge through sophisticated

methods.

In the engineering domain, there have been several research efforts with the purpose of

developing design repositories to aid in the storage and retrieval of complex information.

Particularly, case-based reasoning approaches (CBR) have been heavily used (See Refs.

[71-74] for a review of CBR approaches). Although CBR approaches have shown value

in aiding the storage and retrieval of complex information, there are limitations in the

current research. One major limitation is that of extensibility [75]. Current CBR

approaches require representing the domain knowledge, indexing cases, and detecting

similarities; however, these procedures are performed in an ad-hoc fashion [76]. Yim

[75] comments that there is no formalism for representing and reasoning cases, which

makes extending previously built repositories using CBR extremely difficult, especially

in a distributed environment.

54

To overcome the limitations of traditional CBR, several researchers [70, 77-81,

30] are developing repositories following an ontological approach. In the ontological

approach, domain knowledge is formally and explicitly represented, while retrieval is

performed using semantic inference using rule-based logics or ontological matching [75].

An ontology is a highly structured system of concepts covering the processes, objects,

and attributes of a domain along with the relationships between these concepts [30]. Noy

and McGuinness [82] list several advantages to developing ontologies, including that of

(1) sharing a common understanding of the strucure of information among people or

software agents and (2) enabling reuse and extension of domain knowledge.

Because of the many advantages, several researchers have worked on developing

ontologies for the engineering domain. Kim and coauthors developed of a method for

storing and retrieving electromechanical components [77] using the knowledge

representation environment LOOM. Ramani and co-authors developed an approach for

building a design repository using ontologies and natural language processing [83].

Kopena and coauthors [84] developed a method for retrieving mechanical devices in

Concepual Design using description logics. Li and coauthors [78, 79, 83, 81, 30]

developed an engineering ontology for information retrieval of unstructured engineering

documents. Yim [75] demonstrated utilization of description logics to represent and

retrieve design for additive manufacturing problems to support a new process planning.

Udoyen [85] demonstrated usage of description logics to represent and retrieve finite

element analysis models for electronics package to support a new finite analysis model.

2.3.2 Semantic Retrieval

Of critical importance to the field of design repositories is that of efficient

retrieval of engineering knowledge from the repository [85, 75, 86]. Semantic retrieval,

also termed content-based retrieval, is founded in the use of semantically-rich

representations and associated algorithms to facilitate retrieval [85]. As stated by

Udoyen, to ensure precise queries, retrieval must be based on a definition of relevance

that reflects the user’s conceptualization and intended data use. To overcome the

challenges with retrieval of relevant information from large, complex information

55

repositories, research into different semantic retrieval methods has been prevalent in the

field of repository structuring and development.

Semantic retrieval methods can be classified into three main categories [87],

including: distance-based method, indexing methods, and hybrids. As reviewed by

Udoyen [85], distance-based methods compute a semantic distance between concepts by

measuring the distance between the attributes of the concepts. The semantic distance can

be calculated using ad hoc routines or operations using mathematical routines such as a

feature vector. On the other hand, indexing methods are based on the creation of

indexing structures that represent and organize the information to be retrieved. These

methods also support reasoning about the structures.

In reviewing semantic retrieval methods, Udoyen [85] concludes that distance-

based methods are overall unsuitable for retrieval where extensibility is needed. Vector-

based methods are not easily extensible and are most useful for small, stable

vocabularies. These methods rely on comparisons of vectors of the same size, and

expansion of the vocabulary entails updating the vector length for every term in the

vocabulary. The change in length of the feature vector makes recomputation of semantic

distances between defined concepts intractable for large vocabularies. Ad hoc

computational methods, such as those used in semantic nets, are also limited with respect

to extensibility due to the high cost of computing semantic distance when adding large

numbers of concepts.

Indexing methods, on the other hand, rely on symbolic representations of

information. These representations can be manually created or automatically extracted

from documents. These methods preclude the use of simple mathematical operations to

determine relevance and shifts the emphasis in retrieval to the efficient reduction of the

number of options accessed, while retrieving the most relevant [85]. These classification-

based searches are efficient, as long as the classification hierarchies can be easily and

consistently expanded.

Description Logics (DLs) is a formal and well-understood indexing-based

approach to semantic retrieval. In the following section, referenced from Yim [75], is a

brief introduction to Description Logics.

56

2.3.3 Description Logics

Description logics are knowledge representation formalisms that represent domain

specific concepts and their relationships by first defining the relevant concepts of the

domain (its terminology), and then using these concepts to specify the properties of

objects and individuals occurring in the domain. The description logics can be viewed as

formal languages for representing knowledge and reasoning about it. Among the many

things that description logic provides, description language and inference algorithms are

relevant to this research. The description language is used to define and manage concepts

and their relationships. The inference algorithms are used to determine the relationships

between concept descriptions. The basics of DL are described in the following section.

2.3.3.1 Basics

In description language, elementary descriptions are atomic concepts and atomic

roles. Complex descriptions can be built inductively from these by using concept

constructors. Description logics provide the attributive language (AL) and other

languages of this family are extensions of AL. Concept descriptions in AL are formed

according to the following syntax rules:

C, D → A (atomic concept)

⊤ (universal concept)

⊥ (bottom concepts)

¬A (atomic negation)

C ⊓ D (intersection)

∀R.C (value restriction)

∃R.⊤ (limited existential quantification)

where A denotes atomic concepts, R denotes atomic roles, and C, D denotes concept

descriptions. The expressive power can be further enhanced by the following

constructors:

57

U → C ⊔ D (union of atomic concepts)

E → ∃R.C (full existential quantification)

N → ≥nR, ≤ nR (number restriction)

C → ¬C (negative for arbitrary concepts,
“complement”)

Extending AL by any subset of the above constructors yields a particular AL

language [88]. Their names are AL[U][E][N][C]. The concept descriptions using

description logics are constructed by determining base symbols for atomic concepts and

roles first. Then, the set theory constructors are used with atomic concepts and roles to

describe more specific and complex concepts. In this research, to balance the trade-off

between expressive power and computational complexity, the attribute language with full

existential quantification (ALE) is used. The inference algorithms that are relevant to

this research are satisfiability and subsumption.

Satisfiability algorithm determines the logical soundness of concepts with respect

to terminologies. When the domain specific concepts are modeled, terminology is

constructed by defining new concepts, possibly in terms of other concepts that have been

defined before. During this process, a newly defined concept is checked to determine

whether the concept makes sense or whether it contradicts existing concepts. The

satisfiability algorithm tests the newly defined concept by determining whether there is

some interpretation that satisfies the axioms of the terminology such that the newly

defined concept denotes a nonempty set in that interpretation.

Subsumption is an algorithm that determines whether one concept or role is more

general expression of another concept or role. For example, a concept C subsumes

concept D if every member of concept D is also a member of C [89].

2.3.3.2 Utilization example

Figure 2.12 displays a simple example of description logics representation of

concepts woman and mother[88]. Also, it presents subsumption reasoning procedures

that determine their subsumption relations.

58

Atomic concepts:
Person
Female

Atomic roles:
hasChild

Concept description of woman and mother:
Woman

�

≡ Person.Female
Mother

�

≡ Woman ⊓ ∃hasChild.Person

Subsumption reasoning:
Query: Mother ⊏ Woman ?
Proof:
Mother ⊏ Woman Mother ⊓ ¬Woman = ∅
Substituting definitions for Mother from concept descriptions, above
becomes
(Woman ⊓ ∃hasChild.Person) ⊓ ¬Woman = ∅
(Woman ⊓ ¬Woman) ⊓ (∃hasChild.Person ⊓ ¬Woman) = ∅
Due to Woman ⊓ ¬Woman = ∅, above equation is true
Therefore, Mother ⊏ Woman is true

Figure 2.12 Description Logic representation example [75]

In Figure 2.12, the atomic concepts and roles are defined. For this example, Person and

Female are chosen for atomic concepts. Also, hasChild is selected as atomic role. Then,

mother and woman are defined using atomic concepts, role and set theory operators

including full existential operator (∃) and intersection operator (⊓). For example,

Woman is defined as something that is a Person and Female (ie. intersects Person and

Female). Also, Mother is defined as something that is a Woman and something that has a

person as its child. Then, the subsumption reasoning is presented. The set of presented

procedures is called a tableau algorithm. It reduces subsumption to satisfiability. For

example, the statement “Mother subsumed by Woman” is reduced to a statement “Mother

intersect with not Woman is null”. Using the tableau algorithm, the subsumption relation

between Mother and Woman is determined as Mother ⊏ Woman, or a mother is a

woman.

59

2.3.4 Research Opportunity

One of the key difficulties in the use of biological analogies in engineering design

is that of identification of relevant biological design solutions. To overcome these

difficulties, in this research, a strategy repository is used to capture biological and

engineering design solutions and allow retrieval of these solutions in the conceptual

design process. To enable efficient retrieval of these solutions from the repository, an

ontology is structured and encoded using Description Logics. The foundations for

ontologies and Description Logics was discussed in this section. The development of this

repository is discussed in Chapter 5.

2.4 EVALUATION TECHNIQUES

Evaluation of idea generation techniques can be broadly grouped into two

categories: process-based and outcome-based. Process-based approaches seek to evaluate

idea generation by the occurrence of cognitive processes inherent to creative thought.

Protocol studies are commonly used in process-based approaches. One such study, using

the “think aloud” protocol, asks the designers to think aloud in idea generation, while

being videotaped. It should be noted that there are no commonly agreed upon techniques

to conduct and analyzed the data from these protocol studies. Due to the inherent

complexity and subjectivity in using process-based approaches, outcome-based

evaluation approaches been used [35]. Outcome-based approaches seek to evaluate the

ideation process on the designs (outcomes) produced by the designers during ideation

exercises. The premise of outcome-based approaches is that an idea generation technique

is considered effective if its use results in ‘good’ ideas, with specific metrics being used

to relate goodness of design ideas to the performance of the idea generation technique

[35].

There have been several metrics used to evaluate the performance of idea

generation techniques, including the total number of design ideas generated, the total

number of categories of design ideas generated, the uniqueness or novelty of design

ideas, and the practicality of design ideas. However, the most comprehensive set of

60

metrics proposed for evaluating idea generation were put forth by Shah et al.,[35] in

which the authors identify four key metrics for evaluating the exploration and expansion

of design space by a given designer: novelty, variety, quality, and quantity. Design space

can be thought of as a hypothetical space encompassing all possible solutions to a given

problem [90]. Novelty was defined as the degree to which a given design concept was

unusual relative to other ideas, including those from other individuals. Variety was

defined as the degree to which the concepts from a single designer were dissimilar from

one another. Quantity was simply the number of different concepts generated by a

designer. Higher scores for novelty, variety, and quantity implied greater exploration of

the design space during ideation exercises. Quality was a somewhat subjective measure

of the degree to which a concept was feasible and met design specifications. These will

be discussed in the following section.

2.4.1 Evaluation Metrics for Idea Generation

2.4.1.1 Novelty

To assess novelty, the design problem is first decomposed into its key functions or

characteristics. Next, each design idea is categorized on the basis of the solution method,

or principle, used to address the key functions and characteristics of the design problem.

Finally, a count of the number of instances of each solution method is taken and the

overall novelty for each idea calculated. Using this method, the lower the count of

instances of a solution method used in an idea, the higher the novelty score for that idea.

Overall novelty for each idea can be calculated from the following equations:

where N is the overall novelty score for an idea with m functions or attributes and n

stages; fj is a weight assigned according to the importance of each function or

 

�

N = f j
j=1

m

∑ S1 jk pk
k=1

n

∑  

Equation 2.1

61

characteristic; pk is the weight assigned to stage k, where stage k is the stage at which the

function is addressed; S1jk is given by the following equation:

�

S1 jk =
Tjk − C jk

Tjk

×10
Equation 2.2

where Tjk is the total number of ideas produced for function j and stage k; Cjk is the count

(number of ideas) of the current solution for that function.

The novelty scores for each idea are then averaged to compute a novelty score for

each participant. Such a measure of novelty by frequency of occurrence was shown to be

similar to subjective novelty scores assigned by external judges [35].

2.4.1.2 Quality

The quality metric is used to assess the technical feasibility and performance of a

set of design ideas. These ideas are evaluated using both analytical and experiential

knowledge. Shah and his colleagues recommend using domain specific means to

determine key characteristics for performance, then evaluating the design ideas based on

these characteristics. The quality scores for all the alternatives are then summed for all

design ideas to get a total score for the set of ideas. The quality score is calculated using

the following equation

�

Ql = f j
j=1

m

∑ S jk pk
k=1

2

∑ n ∗ f j
j=1

m

∑

Equation 2.3

where Ql is the overall novelty score for an idea with m functions or attributes and n

stages; Sjk is the quality score for function j at stage k; fj is a weight assigned according to

the importance of each function j; pk is the weight assigned to stage k; the denominator

normalizes the score to a scale of 10.

2.4.1.3 Variety

Shah and his colleagues developed the variety metric to characterize the degree of

difference within a set of designs generated by a designer, giving a score between zero

and ten [35]. Measuring the variety requires first creating a genealogy tree of the solution

approaches for each function being executed by the designed device. Solutions are first

62

differentiated among the hierarchical branches of the tree by the physical principle used

to achieve the function. The next level of division occurred based on the working

principle of the solution, followed by the embodiment of the solution, and then the details

of the solution. After generating the tree, the number of ideas in each differentiated

category is tabulated. Differentiation at higher hierarchical levels implies greater variety

within the design set and is given higher point totals than differentiation at lower levels of

the hierarchy. The total variety score is given by the equation

 

�

V = f j Skbk /n
k=1

4

∑
j−1

m

∑  
Equation 2.4

 

where V is the variety score, m is the total number of required functions solved by the

design, jf is a weighting factor for the relative importance of each function, kS is the

score for hierarchical level k (Shah et al. suggest scores of 10, 6, 3, and 1 for the four

levels, respectively[35]), kb is the number of branches at hierarchical level k , and

�

n is

the total number of ideas in the set.

 

Figure 2.13 Example design genealogy tree for a set of 6 designs

As an example calculation, Figure 2.13 shows a sample genealogy tree for a set of

6 designs for a single function. The set of designs utilizes three separate physical

principles to achieve the required function, resulting in 3 physical principle branches.

63

The set also includes 3 working principle branches, 3 embodiment branches, and 2 detail

branches. Using Equation 1.4, variety would be calculated as

 () () () () 839
6

213336310 .****V =+++=

 Equation 2.5

2.4.1.4 Quantity

Quantity is the total number of ideas generated by a participant over the course of

the study. Quantity is simply a count of the ideas.

2.4.2 Revised Metrics for Variety

In reviewing the metrics for variety in practice, several key shortcomings were

found. These shortcomings are discussed in the following sections.

2.4.2.1 Lower Scores for Higher Variety

Figure 2.14 shows hypothetical genealogy trees for 2 sets of designs, with 3

designs in each set. In Genealogy A, the 3 designs utilize only 2 physical principles, with

the third differentiation occurring at the working principle level. In Genealogy B, the 3

designs each utilize separate physical principles, which should be the maximum possible

variety. However, applying Equation 2.4 yields a score of 6710.V = for Genealogy A

and 10=V for Genealogy B. Thus, the higher variety of Genealogy B resulted in a

lower overall variety score. Additionally, the metric was intended to scale from 0-10,

and using Equation 2.4 to calculate the variety gives a score outside this range to

Genealogy A.

Figure 2.14. Higher variety can result in lower score

64

The shortcoming in Equation 2.4 comes from essentially double-counting design

ideas. Note that in Equation 2.5 points are given 112333 =+++ times, yet the set

consists of only 6 designs. The flaw can be resolved by counting the number of

differentiations in design principles rather than counting the number of branches at each

level. For example, 2 physical principle branches only correspond to a single

differentiation between physical principles, and 3 physical principle branches

corresponds to 2 differentiations, and so on. Thus the number of differentiations is

always one less than the number of branches at a given hierarchical level of a given

branch. No differentiations occur when a single branch emanates from a node.

Assigning points at nodes where differentiation occurs rather than counting the

number of branches readily resolves the double-counting flaw. This modifies the variety

metric to

 
() ()∑ ∑ ∑

− = =
⎟⎟⎠

⎞
⎜⎜⎝

⎛
−+−=

−m

j k

b

l
lkj N/dSbSfV

k

1

4

2 1
11 11

1

 

Equation 2.6

 

where the first term inside the parenthesis is the score for differentiation at the physical

principle level, ld is the number of differentiations at node l (one less than the number

of branches emanating from node l), and 1 is subtracted from N to preserve the

normalization from 0-10 since the maximum number of differentiations is one less than

the number of designs. Points are given only when branches differentiate, and Equation

1.6 calculates the average level at which differentiation between ideas occurs.

Applying Equation 2.6 to the genealogies shown in Figure 2.14 yields

() () 8
2

16110 =+= **V for Genealogy A and () 10
2
210 == *V for Genealogy B. As a

more complex example, applying Equation 1.6 to the genealogy in Figure 2.13 yields a

variety score of () () () () 6
5

111316210 =+++= ****V , which is a better indication of

the displayed variety. Using Equation 2.4 yielded a variety score close to 10, which

should be reserved only for genealogies with the majority of the design differentiation

occurring at the physical principle level. Note that in the described calculation, nodes

65

without differentiation are simply ignored, as they make no contribution to the variety

score.

2.4.2.2 Normalizing a Group Score

Variety can only be calculated for a set of multiple design ideas, unlike novelty,

which can be calculated for a single design. An average novelty score for a set of designs

is therefore a relevant metric for a set of designs, whereas an average variety score per

design is not, as the variety score only applies to the set itself. Figure 2.15 demonstrates

the flaw encountered by normalizing the variety score by the number of designs.

Genealogy D can be viewed as an expansion of Geneology C since since Genealogy C

could be a subset of Genealogy D. However, using Equation 2.6, the variety scores for

Genealogies C and D are 10 and 8, respectively. Genealogy D added more physical

principles, working principles, and designs to Genealogy C, thus demonstrating greater

exploration of the design space yet receiving a lower variety score. A non-normalized

variety score would measure actual design space exploration, applying to the entire set of

ideas rather than averaged per idea. Variety would then be calculated as

 

 
()∑ ∑ ∑

− = =
⎟⎟⎠

⎞
⎜⎜⎝

⎛
+−=

−m

j k

b

l
lkj

k

dSbSfV
1

4

2 1
11

1

1  

Equation 2.7

   

 

Changing the values of kS to 10, 5, 2, and 1 assures that at least two ideas at one

hierarchical level must be added to equal the variety gain by adding a single idea at the

next higher hierarchical level. Using Equation 2.7 and the new values for kS , the variety

scores for Genealogies C and D become 10 and 30, respectively, giving a more accurate

representation of their relative degrees of design space exploration. Not normalizing the

variety in Equation 2.7 also eliminates the need for the quantity metric, as Equation 2.7

incorporates the quantity of designs by not normalizing.

66

Figure 2.15. Normalized variety score can penalize greater actual variety.

2.5 CLOSURE AND VALIDATION

The role of Chapter 2 was to lay the theoretical foundation to support the method

for Reverse Engineering Biological Systems and the engineering ontology developed in

this work. The four foundational constructs of systematic design and idea generation

(Section 2.1), engineering representations (Section 2.2), ontology development (Section

2.3), and evaluation metrics (Section 2.4) were presented. The literature supporting these

constructs was also presented and reviewed.

In Section 2.1, systematic design and idea generation was reviewed. The Pahl and

Beitz systematic method was reviewed in Section 2.1.1, followed by a review of idea

generation techniques in engineering design in Section 2.1.2. Analogical reasoning, the

idea generation technique used in this research, was also reviewed in Section 2.1.3. It

was concluded that due to their large analogical distance from the engineering domain,

biological systems provide a good source of analogies for innovative design.

In Section 2.2, representations in engineering design are reviewed. In Section

2.2.1, general models of cognitive processing in creativity were reviewed, followed by a

review of the role of representations in creative cognition in Section 2.2.2. In Section

2.2.3, specific representations used in engineering design were reviewed. The backbone

of the proposed method for Reverse Engineering Biological Systems is the hierarchical

Petri net representation. Biological strategies are extracted from these representations and

used to inspire new and innovative design solutions in Conceptual Design. In

engineering design, representations are used throughout the design process to create

design artifacts. In this research, complete representations (including functional,

behavioral and structural information) of systems are needed to aid in manipulating and

67

understanding the related biological behavior and strategy. The hierarchical Petri net

representation is developed in Chapter 3.

In Section 2.3, engineering ontology development is reviewed. Specifically,

design repositories are reviewed in Section 2.3.1, followed by semantic retrieval and

Description Logics in Sections 2.3.2 and 2.3.3, respectively. In this work, ontologies are

used to build a repository of biological and engineering strategies. Semantic retrieval

strategies were reviewed and indexing-based approaches were found to be more efficient

and accurate at retrieving strategies from these ontologies. One such method, Description

Logics, was reviewed and used in this work to identify relevant biological strategies.

In this work, the value of bio-inspired design is evaluated empirically through

cognitive studies. Evaluation metrics for idea generation techniques, such as the use of

biological strategies proposed in this work, were reviewed in Section 2.4. These metrics,

reviewed in Section 2.4.1, include novelty, variety, quality, and quantity metrics. The

variety metric is refined in Section 2.4.2.

Validation Strategy: Theoretical Structural Validity

The validation strategy for this dissertation is presented in Figure 2.16.

Figure 2.16 Validation for Chapter 2

68

As presented in Section 1.4, Theoretical Structural Validation (TSV) involves

checking the individual constructs and assumptions upon which the method is built, as

well as checking the internal consistency of the method when combining the individual

constructs. In this chapter, the theoretical foundations of the method for Reverse

Engineering Biological Systems and the engineering ontology were validated through

review of the relevant literature. In Chapter 3, the specific representation used in the

proposed method, the hierarchical Petri net representation is validated. In Chapter 4, the

latter part of TSV will be considered, where the internal consistency of the method when

combining the individual constructs will be evaluated.

69

CHAPTER 3 BIOLOGICAL SYSTEM REPRESENTATION

In Chapter 2, the theoretical foundations of the method for Reverse Engineering

Biological Systems were presented. In this chapter, the backbone of the proposed

method, biological system representation, is presented. The role of this chapter to the

dissertation as a whole is presented in Figure 3.1.

Figure 3.1 Chapter 3 and the Dissertation Overview

The goal of this research is to aid the designer in the ideation process through the

use of biological strategies. Given this aim, the designer must first be able to

systematically extract correct strategies from the biological systems of interest. To aid in

extracting this strategy, representations can be used to (1) filter out unimportant

information and present the designer with information relevant to the given task and (2)

aid the designer in reasoning about the system. In this chapter, the hierarchical

70

representation used to represent biological systems is developed as a means for extracting

behavioral strategies. In this research, biological strategies are viewed as refinements of

behavior, where specific physical phenomena driving a particular behavior (and function)

are identified as the underlying behavior used to accomplish the function of the system of

interest.

For example, in the context of an engineering system, consider the function of a

garage door opener. The function can be defined as “send control signal to the garage

door unit”. By examining the garage door opener as a system, the behavior can be simply

defined as “based on a hand pressing a button, the remote produces an IR signal, which

controls the garage door”. At this level of abstraction of behavior, there is not much

knowledge about strategy that can be extracted from the system. By further decomposing

the behavior, the underlying mechanism that actually converts the hand input to the IR

signal can be viewed. This strategy can be extracted by viewing the system at multiple

levels of abstraction, examining the behavior of subsystems and components of the

system. For instance, the garage door opener includes a controller chip, DIP switch,

power source, transmitter, etc. By viewing the behavior of these subsystems, and how

they impact the behavior of the top level system, a much richer description of system

behavior can be extracted.

In this research, behavioral strategies are systematically extracted using a

hierarchical representation of the biological system, allowing the system to be viewed at

multiple levels of abstraction. Specifically, in this chapter, the following research

question is considered:

RQ1: “What type of representation can be used to model the behavior of biological

systems?”

To answer this question, Hypothesis 1 proposed in Chapter 1 is as follows:

Hypothesis 1: A representation based on (1) a causal behavioral description and (2)

hierarchical Petri nets can be used to model the behavior of biological systems

This hypothesis is validated using the following procedure:

71

1. Identify several defining characteristics of biological systems (Section 3.1.1).

2. Define requirements for representation of biological systems (Section 3.1.2)

3. Review several knowledge representation formalisms for modeling engineering

systems (Section 3.1.3), and evaluate them against the biological representation

requirements (Section 3.1.4)

4. Develop a knowledge representation framework (Section 3.2)

5. Define requirements for expressing the biological representation (3.3.1)

6. Review and evaluate several representation expressions versus the requirements

(Sections 3.3.2 and 3.3.3)

Lastly, develop a hierarchical Petri net representation for biological systems and

evaluate versus representation criteria

3.1 REPRESENTING BIOLOGICAL SYSTEMS

In this section, we characterize biological systems and evaluate traditional

representation methods in the context of representing biological systems.

3.1.1 Biological System Characterization

There are several characteristics of biological systems that make them extremely

difficult to represent, as opposed to traditional engineering systems, using traditional

methods of representation, including:

• Complexity and Hierarchical arrangement – Biological systems are arranged

and organized hierarchically, meaning that systems contain subsystems that

contribute to their overall behavior. This hierarchical arrangement is used to cope

with the large complexity inherent to biological systems [91]. Jagers op

Akkerhuis [92] comments, “the organization of nature is profoundly hierarchical,

because from its beginning, interactions between simple elements have

continuously created more complex systems, that themselves served as the basis

for still more complex systems”.

72

Consider the example of human muscle displayed in Figure 3.2. Human

muscle contains groups of muscle fiber bundles. These muscle fiber bundles

consist of many muscle fibers, whose basic unit is that of the myofibril. The

myofibril is made of groups of actin and myosin myofilaments.

Figure 3.2 Diagram of Human Muscle[93]

This hierarchical arrangement helps assure system robustness, meaning that lower

levels of the system hierarchy cope with the changing environment, while keeping

the external properties of the system the same.

• Dynamic (living) – Biological systems are dynamic, meaning the properties of

these systems change with respect to time. The change of state is usually a result

to a change in an external environmental condition. For instance, human bone has

the ability to adapt to varying mechanical loading conditions by either locally

adding or removing mass and by changing shape. Another example is that of

tropic movement in many plants found in nature. Many plants exhibit tropic

movement in response to environmental stimuli, including sunlight, chemical,

touch, etc. A change in internal pressure allows this movement.

• Multifunctional – Many biological systems can be characterized as being

multifunctional, meaning that multiple functions are carried out by one system.

73

Since resources in nature are limited, by sharing resources, multifunctionality

helps to reduce the resources needed for a given function. In the words of

McShea [94], some overlap is expected as it allows an economical use of parts,

and therefore favorable in natural selection. An example of multifunctionality

can be seen in the human nose, which functions simultaneously as a sensory and

respiratory feature.

• Integrated Architecture - With respect to integration, many-to-one mapping also

plays a significant role in biological systems. As stated in our previous discussion

on hierarchical organization, integration, or the coupling of many systems to

accomplish a given function, has large implications in reducing biological

complexity.

3.1.2 Representation Requirements

When designers cannot experience phenomena directly, representations can play a

crucial role in helping them understand and reason about the phenomena [95]. In

essence, a representation is sought that can accurately cope with biological systems and

their inherent properties of hierarchy, dynamic behavior, and

multifunctionality/integration. In this research, this representation will be used to aid

designers and engineers in understanding and extracting biological design strategies.

These design strategies will then be used to stimulate the generation of new and novel

design ideas for the engineering domain.

Based on these characteristics, the following requirements were derived and are

presented as follows:

• Hierarchical Representation – Because of their ability to simplify and systematize

complexity, hierarchical representations have been commonly used by biologists

to represent complex, biological systems [96]. Hierarchical representations have

the advantage of “implicitly incorporating abstraction and refinement[97], thus

making the systems easier to study. Because of the inherent complexity of

biological systems, the representation must explicitly allow for hierarchical

arrangement. Jagers op Akkerhuis [92] comments that scientists have attempted to

74

capture the essence of this complexity in easy to understand hierarchies, including

those levels defined by Miller [98] as cell, organ, organism, group, organization,

community, society, and supranational system. This requirement implicitly

allows for representation of integrated biological systems.

• Dynamic System Representation – Since biological systems are “living”, our

representation must allow for a dynamic, causal behavioral model to be explicitly

represented. This causal behavioral model establishes the flow of causality

throughout the system. This requirement also specifies an explicit representation

of the state, or change of state, of the system of interest.

• Explicit Representation of Working Environment – The working environment is

defined as other surrounding systems external to the system boundary. Because

of their dynamic nature, biological systems react to and buffer environmental

inputs. Given the high level of environmental interaction of these biological

systems, the representation must explicitly represent external relations (inputs and

outputs) to and from its working environment.

• Behavior-centric approach – The purpose of reverse-engineering is to map the

structure of a system to a function of that system. We use behavior as a means of

extracting this functional information from the structure of the system. Therefore,

our representation must utilize a behavior-centric approach, allowing for analysis

of the system in an objective fashion. This behavior-centric approach allows a

representation independent of the so-called “purpose” of the system and allows us

to better separate the objective and subjective views of the system. The objective

views of a system include views of the behavior and structure of the system,

without ascribing a specific purpose to this behavior and structure. The subjective

view, on the other hand, include some forms of function in which a purpose is

ascribed to the system.

• Completeness of representation – In our representation, we wish to include

information about what the system is (structure), what the system does (behavior),

and “why” it does what it does (function). A complete system representation

includes structural, behavioral, and functional views of the system, as well as the

75

relationships and mapping between the different views [61]. The completeness is

measured by its accounting of these views of the system.

• Uniqueness of Representation – Uniqueness implies the ability to represent a

system in a “single” way [61]. To achieve uniqueness, the system must be

represented objectively, and minimize subjective treatments of function and

behavior.

3.1.3 Existing Knowledge Representations in Design

In this section, several existing knowledge representation frameworks for

engineering systems (reviewed in Section 2.2.3.3) currently employed in the design and

artificial intelligence research communities are highlighted. These include that of the

Structure-Behavior-Function (SBF) model [16-20], Function Behavior-State (FBSt)

model [62-64], Functional Rationale (FR) [65], Function-Behavior-Structure (FBS)

model [67-69], Function-Environment-Behavior-Structure (FEBS) model [34], and the

Causal Behavioral Model (SAPPhIRE) [24].

In the Section 3.1.2, requirements for adequately representing biological systems

was set forth. In the next section, the current knowledge representations for engineering

systems are evaluated for feasibility in representing biological systems.

3.1.4 Comparison of Representations against Requirements

In this section, the current knowledge representation frameworks are evaluated

against the criteria for representing biological systems.

1. Hierarchical Representation – With respect to hierarchical representation, none of

the knowledge representations explicitly represent hierarchy, allowing for view of

the system and multiple levels of abstraction.

2. Dynamic Representation - With respect to dynamic representation, all the

representations except that of FBS and FEBS utilized some sort of causal

behavioral process and state change to represent the behavior of the system. The

FBS representation lacks an explicit representation of causality in the

76

frameworks, while the FEBS representation lacks an explicit representation of the

state of the system.

3. Environmental Representation – With respect to an explicit representation of the

environment, the FEBS and SAPPhIRE representations were the only knowledge

representations to explicitly represent environmental inputs and outputs. FEBS

represents the environment as driving inputs and functional outputs to the system

of interest, while SAPPhIRE implicitly represents the working environment in the

form of inputs to the causal behavioral model.

4. Behavior-centric approach - As for behavior-centric approaches, the SBF, FEBS,

and SAPPhIRE employ a behavior-centric representation, allowing for objective

representation of the system for analysis. The remaining representations employ a

more subjective, function-based approach.

5. Completeness - All the knowledge representations were complete in the sense that

they allowed for representation of structure, function, and behavior, and the

relations between, however, SAPPhIRE implicitly represents these views.

6. Uniqueness – FBSt, FR, and FBS lacked unique representations, as they all

focused on a subjective representation of function, allowing multiple

interpretations of a given device or system.

The evaluation of these systems is summarized in Table 3.1 below.

77

Table 3.1 Evaluation of existing knowledge representation frameworks

In Section 3.1.2, the requirements for the representation of complex, biological

systems were developed. As can be seen in Table 3.1, none of the existing knowledge

representations meet all the requirements for representation of these systems. They

specifically lack in the representation of the hierarchy of the biological systems. The

causal behavioral model, SAPPhIRE did however meet most of the requirements for

representation of biological systems, but lacked in the explicit representation of the

working environment as well as the completeness of the representation. In this work, we

utilize a causal behavioral process model similar to that of SAPPhIRE to represent our

system of interest but improve on many of the shortcomings of this type of

representation.

78

3.2 HIERARCHICAL REPRESENTATION DEVELOPMENT

In the previous section, current knowledge representation frameworks were

evaluated against the requirements put forth for representing biological systems and

several shortcomings were identified. In this section, we improve on the shortcomings of

these representations and develop a hierarchical representation suitable for representing

biological systems. We believe this hierarchical systems view aids in exploring the

complexity of biological systems, especially with respect to behavior. We also believe

this representation can aid in the systematic extraction of functional strategies of

biological systems.

We begin this section by defining our view of a “system”. In Section 3.2.2, we

present our causal behavioral description, which is used as the foundation for the

proposed hierarchical representation.

3.2.1 What is a ‘System’?

In this research, we view a system similarly in terms of (1) the system itself, (2)

its supersystem, and (3) its subsystems. The system itself is the specific level of interest

of the identified behavior or function. We identify this system by a boundary.

Everything external to this boundary is considered the system’s working environment.

This includes all other systems that the system of interest interacts with. The system and

its environment combine in forming the system’s supersystem. The system itself can be

decomposed into its subsystems. We define subsystems as lower-level systems and

components, within the system boundary, that contribute to the function and behavior of

the system. These sub-systems can also be decomposed into their sub-systems in an

iterative fashion.

We now turn to the definition of the system and its super- and subsystems. In this

research, we define systems following the view of McShea [94, 91, 99], where object

parts are used to define the hierarchy of parts in simple biological systems. These systems

function in an integrated fashion with little interaction (relatively) with surrounding

systems. We define these systems by a high level of internal interaction and low level of

external interaction (see Figure 3.3) [91, 99]. In Figure 3.3, the small circles represent

79

parts and the arrows represent interactions between them. The thickness of the arrows

denote the strength of interaction.

Figure 3.3 Definition of a ‘system’ [99]

In Figure 3.3, the dashed lines are definitions of what we consider a system based

on tight integration and isolation. System A is defined as a system because although it has

weak internal interactions, they are many compared to its external interactions. System B

has few internal interactions, but the strength of these interactions is high relative to that

of its external interactions. System C is defined as a system because of its large number

of internal interactions compared to that external to the system [99].

This systems view is also similar to that of modules by Wagner [100]. Modules

also function in an integrated fashion (large internal interaction), with little external

interaction with surrounding systems (isolated). The difference between object parts and

modules is that parts are units in the operation of the organism[99], whereas modules

relate to the evolution or development of the organism.

3.2.2 Causal Behavioral Description

Based on this systems view in Section 3.2.1, our causal behavioral description

(CBD) can now be defined. This CBD is used as the foundation of our biological system

representation. In our causal behavioral description, we wish to link structure, behavior,

80

and function in a representation where each can be easily extracted in a systematic

fashion. In this research, we define structure as the entities of interest and the

interactions or relations between these entities. Each entity is defined by a set of

properties, or attributes. Behavior is then defined as the intrinsic change of state of these

attributes. We define function as a mapping of the behavior of a system to the behavior

of its supersystem [101], as well as the mapping of a subsystem to that of its system. In

other words, we view function as the effect of a component on its working environment

(ie. other components), which makes up the supersystem. Based on this view of

structure, behavior, and function, we define the causal behavioral description. To do so,

we define the following six individual constructs:

1. System: The set of physical components and interactions between these

components. These interactions can be either (1) flows of energy, material, and

signal or (2) physical interactions between components.

2. Working Environment: The working environment is defined by the boundary of

the specific entity or system as all entities or systems external to the defined

boundary. It includes “environmental elements that contribute to the product’s

functions” [34], such as temperature, force, etc.

3. Driving inputs: the driving input is considered the flow of energy, material, or

signal needed to activate the physical phenomenon that causes the change of state

of the system of interest. Driving inputs originate from the working environment.

[34]

4. Functional output: Functional output is the output flow of energy, material, or

signal from the system resulting from the change of state. Functional outputs

affect the system’s target enviornment. [34]

5. State: the value of the system attributes (or specific characterics) at a given

instant of time.

6. Physical phenomena: The physical phenomenon is considered the action

governing the change of state of the system.

The relationship between these constructs is displayed in Figure 3.4.

81

Figure 3.4 Causal Behavioral Description

As seen in Figure 3.4, systems operate in a working environment. Driving inputs

from the source environment activate physical phenomena. Physical phenomena create a

change of state in the entity. The change of state of the system creates functional outputs

to the target environment.

Using the definitions put forth earlier in our discussion, structure, function, and

behavior can easily be extracted from the CBD. Structure is defined as our system of

interest and its working environment. Behavior is defined as the states of the system and

the physical phenomena causing the change of the state. Function is defined as a

mapping of the behavior of the system to that of its supersystem [54]. We define the

function in the CBD framework as a set containing the driving input and the functional

output of the system. From this, we see how the representation is complete with respect

to explicitly representing function, behavior, and structure. For clarity, consider the

following piston-cylinder assembly example in Figure 3.5.

Piston-Cylinder Example

The system in question is the gas inside the piston-cylinder assembly, whereby

the boundary is denoted by the dashed line. Heat (Qin) is being added to the system,

causing the gas inside the system to expand. The expansion of the gas forces the piston

upward, thus causing work (Wout) to be transferred to the environment. In the automotive

context, the piston-cylinder (system) operates in an internal combustion engine (working

environment). Heat (driving input) causes the gas to expand (change state) inside the

82

piston cylinder assembly following the First Law of Thermodynamics and the Ideal Gas

Law (physical phenomena). This expansion causes work (functional output) to be done

on the connecting rod, which turns the engine crankshaft.

Figure 3.5 Piston-Cylinder Assembly

Based on the causal behavioral model of the piston-cylinder assembly, the

function, behavior, and structure of the system can also be defined. Specifically, the

structure is defined as the system of interest, or the piston-cylinder assembly. The

behavior is defined as the change of the state of the system, or the expansion of the gas

from State 1 (T,P,v) and State 2 (T, P, v). The function of the system is defined as the

driving input and functional output of the system, [Thermal Energy, Mechanical Energy].

3.2.3 Hierarchical System Representation

Using the hierarchical view of systems discussed in Section 3.2.1, we can also

construct a hierarchical representation based on the causal behavioral model. In this

hierarchical systems view, the super-system is composed of the system and its working

environment and the sub-systems compose the system of interest. By defining a causal

behavioral model, it allows us to view a system at multiple levels of abstraction. In

Figure 3.6, the behavior of the super-system can be viewed at the system level, whereby

the system interacts with its working environment. The behavior of the system itself can

also be viewed at the sub-system level. For each component in the system hierarchy, a

causal behavioral model is defined. Multiple systems are linked by their respective

83

driving inputs and functional outputs. It should be noted that the functional outputs of

one system are in fact the driving inputs of other systems on the same hierarchical level.

Figure 3.6 Hierarchical Causal Behavioral Model

Given the piston-cylinder assembly example in Figure 3.5, let us view the

assembly as a system composed of the heat source, the gas inside the assembly, and the

piston itself. Therefore, the causal behavioral model of the system can be viewed at the

subsystem level as the behavior of the heat source, gas, and piston subsystems. In this

case, the functional output of the heat source, heat, will also be the driving input for the

gas, causing the expansion of the gas. The functional output of the gas, expansion or

work, will be the driving input of the piston, causing it to change its relative position in

the assembly. The system can also be viewed in similar fashion at the super-system level

of the internal combustion engine.

3.2.4 Evaluation of Causal Behavioral Description

In this section, the CBD is evaluated against the criteria put forth earlier for the

representation of complex, biological systems. This evaluation is displayed in Table 3.2.

84

Table 3.2 Evaluation of CBD

As displayed in the table, the CBD meets all the requirements for a representation

of a biological system, including that of hierarchical representation, explicit dynamic

representation, explicit representation of the environment, behavior-centric approach, and

completeness and uniqueness of representation. In Section 3.3, we define a

representation, or an expression, of the CBD.

3.3 REPRESENTATION OF THE CAUSAL BEHAVIORAL DESCRIPTION

Now that the causal behavioral description has been put forth, we now turn to

how this representation will be expressed in a manner to aid in the extraction of

behavioral strategy from the system. In simpler terms, we define how this representation

will look, or its expression. To do so, we define specific requirements for the expression

(Section 3.3.1), as well as evaluate several commonly used representation expressions

against these requirements (Section 3.3.2).

85

3.3.1 Expression Requirements

To aid in strategy extraction, we examine several different requirements for the

expression of our causal behavioral model, including: cognitive offloading, inference,

validity, consistent reasoning, isomorphism, model complexity, and model verification.

These requirements are explored in further detail as follows:

1. Computational offloading - Computational offloading [102] is the extent to which

a representation reduces the amount of cognitive effort required to solve a

problem. Computation offloading is directly related to the amount and type of

information that is presented explicitly in a representation.

2. Inference - Inference refers to the extent to which a representation allows the user

to infer new knowledge, based on the existing information presented. Inference is

also linked to graphical constraining, which refers to the way graphical

information is able to constrain the types of inference that can be made about the

represented world [102].

3. Validity – Validity refers to the extent at which a representation is based in theory

and rigorously defined. This includes the extent to which the theoretical

foundations of the representation have been researched and validated.

4. Consistent Reasoning across abstraction levels [103] - Most design

representations operate at a single layer of abstraction. In order to model complex

systems, hierarchical representations are needed to reduce and order the

complexity. In the case of hierarchical system representation, the representation

must allow for consistent reasoning across different levels of abstraction of the

system, and its Causal Behavioral Description.

5. Isomorphism – Isomorphism can be described as the direct structural mapping

relationship between two objects. For example, a wristwatch and a wall clock can

be said to be isomorphic because there exists a direct mapping of time between

the two objects. With this requirement, we require that there exists a direct

mapping between the Causal Behavioral Description and that of the representation

expression.

86

6. Model Complexity – Model complexity refers to the ability of a representation to

model complex relationships between subsystems and components, such as

precedence of action, synchronization, mutual exclusion of resources, and

concurrency. [104]

7. Model Verification – One of the key issues in modeling systems is the ability to

check the model for correctness. Model verification refers to the ability of a

representation to be verified that it is indeed doing what it is put forth to do. This

usually involves some form of qualitative simulation.

3.3.2 Current Expressions of Representations

In this work, we wish to extract the behavioral strategy directly from the causal

behavioral model of the biological system. To aid in this process, we wish to choose a

suitable expression for the causal behavioral model for strategy extraction. The manner in

which a representation is visualized, or expressed, is extremely important to how

designers can access and process the information contained within it. [105]. There are

three general types of representation expressions, including: sentential (textual),

mathematical, and diagrammatic. Sentential, or textual, expressions are written in text

format and may be structured either in natural language format or in list format [105].

Mathematical expressions use equations and rules that describe knowledge about a

system. Diagrammatic expressions use iconic or pictorial representations of knowledge,

and preserve explicitly topological and geometric information [106]. When examining

biological systems, many of the quantitative relationships that are the foundation of

mathematical expressions are not known. Therefore, exclusive mathematical expressions

are excluded from further study. For clarity, consider the following Piston-cylinder

assembly example. The behavior of a piston-cylinder being heated is expressed

sententially in Figure 3.7.

87

(i) A piston-cylinder assembly contains an ideal gas.
(ii) The piston-cylinder assembly is heated by an external flame
(iii) Heat is transferred to the gas, causing expansion.
(iv) The expansion of the gas causes the piston to do work on the
environment

Figure 3.7 Sentential representation of the piston-cylinder example

The piston-cylinder assembly is expressed diagrammatically in Figure 3.8.

Figure 3.8 Diagrammatic representation of the piston-cylinder example

For expression of the causal behavioral description, three different representations

are explored, including the textual expression as used by Chakrabarti [24], a static

diagrammatic expression as seen in bond graphs, and a Petri net model as used by [60].

These representations are reviewed in Section 2.2.3.2.2.

3.3.3 Evaluation of Current Expressions

In this section, the three expressions (textual, static diagrammatic, and dynamic

diagrammatic) are compared to the requirements put forth earlier in this section.

1. Computational Offloading - With respect to computational offloading, diagrammatic

representations have the advantage in representing more information explicitly in the

expression. This is largely due to the fact that textual descriptions typically are

implicit and need to be mentally formulated, requiring greater computational effort.

The general conclusion from the body of literature in cognitive offloading is the need

88

to maximize the load on the external representation so as to minimize the cognitive

load needed to reason about the representation[102]. In other words, an increase in

information presented explicitly in a given representation (computational offloading)

leads to a reduction in the cognitive load on the reasoner of the representation. For

example, consider the example of the transitivity relations between sets A, B, and C

in the following textual (Figure 3.13) and diagrammatic (Figure 3.14) figures [107].

The transitivity relation is sententially expressed in Figure 3.9.

(i) All A are B
(ii) All B are C
(ii) (therefore) All A are C

Figure 3.9 Textual description of the transitivity relation

The diagrammatic representation of the transitive relation is displayed in

Figure 3.10.

Figure 3.10 Transitivity in Euler’s circle (modified from [107]

As can be seen in the Figure 3.9 and Figure 3.10, the conclusion of “All A are C” is

more direct and straightforward in the diagram, as opposed to the sentential

representation. The conclusion appears “for free”, whereas in the case of the

sentential representation, some logical inference is needed [107].

With respect to computational offloading, many of the same conclusions as

above can be applied to the static versus animated diagrammatic representation case.

Specifically, general statements of visual explicitness and directness of representation

apply. Studies by Kaiser [108] and Jones, Scaife [109] conclude that dynamic

representations include more explicit information about the state and dynamics of the

89

system, thus allowing more cognitive offloading by the reasoner. However, as Jones,

Scaiffe [109] points out, this increased amount of information can also lead to user

overconfidence and added complexity. They also point out that these negative effects

can be countered by enabling user control of the dynamic representation.

2. Inference - With respect to the ability to infer new information from a representation,

diagrammatic representations are preferred over textual representations. In

diagrammatic representations, information and relationships are more direct, and

offer clearer path to that of the represented system. Because of this, interpretation

and inference from these representations is more obvious and more immediate [107]

than that of textual representations. Diagrammatic representations also have the

advantage of inference in that these representations can restrict (or enforce) kinds of

interpretations or inferences that can be made about the represented system [110].

By restricting the possible interpretation of the representation, the representation can

guide the reasoner in making the correct assumptions about the system and in the case

of the CBD, guide them towards extracting the correct strategy.

3. Validity - Representation validity denotes the extent and rigor by which a

representation is defined. Beyond common grammar rules, the textual representation

offers the least rigor of definition. The advantage of textual representation is the

freedom by which it can be expressed. Due to their basis in engineering and systems

analysis, bond graph representations have been rigorously defined and extended over

the years. The advantages of bond graphs are the direct expression of causality and

the conservation of energy principle across the systems. The graphical representation

can also be easily converted to differential equations and behavior analyzed through

traditional means.

Petri nets have the most extensive body of work in the literature, as well as

many extensions and applications to varying fields. Although expressed graphically,

Petri nets are also used as a mathematical tool for formal analysis of the behavior of

systems. Petri nets also have a strong mathematical definition and rigorous rules for

application.

90

4. Consistent Reasoning across abstraction levels - With respect to consistency in

reasoning across abstraction levels, the textual description typically does not

explicitly represent hierarchy. In the textual description, multiple levels of

abstraction are typically described within the same view. Due to its flexibility, the

natural language representation lacks a consistent reasoning structure. The

diagrammatic representations discussed in this section both offer a consistent

reasoning structure. The port-based approach employed by the bond graph

representation offers very consistent reasoning in the transformation of power across

the system. This same view holds for the system, as well as its subsystems. The

state-based approach employed by the Petri net framework works equally as well, in

that the reasoning structure is unchanged for the system.

5. Isomorphism - With respect to directness of representation, although the textual

description lacks a structured representation, the freedom of expression allows a

direct isomorphic mapping to the causal behavioral model being used. As seen in the

textual description used for the SAPPhIRE representation [24], each construct of

causal behavioral model can be directly described and mapped.

The bond graph representation does not allow for a direct mapping from the

causal behavioral model. Specifically, the physical phenomena and the states of the

system are not explicitly represented. The Petri net representation allows for

mapping of the physical phenomena (transitions) and states (places) of the system

explicitly, but there is no direct representation of driving input and functional output

in the representation.

6. Model Complexity – Model complexity refers to the ability of a representation to

model complex relationships between subsystems and components, such as

precedence of action, synchronization, mutual exclusion of resources, and

concurrency [104]. With respect to model complexity, the textual description, due to

its freedom of expression, can represent these complex relationships. It should be

noted that although a textual description can represent complexity, it fails in

representing complexity efficiently. On the other hand, Bond graphs, with the causal

strokes, can represent precedence of action and synchronization. However, based on

91

its flow-based representation, bond graphs fail in the ability to represent concurrency

and also lack to represent resources in the model. Due to the token-based approach of

Petri nets, precedence, synchronization, resources, and concurrency can all be

explicitly represented.

7. Behavior Verification – One of the key issues in modeling systems is the ability to

check the behavioral model for correctness. Model verification refers to the ability of

a representation to be verified that it is indeed doing what it is put forth to do. This

usually involves some form of qualitative simulation.

With respect to behavior verification, textual descriptions allow no means to

formally check the properties of the behavior, aside from mental simulation. Bond

graphs allow for behavior and power flows to be checked by causal analysis at the

ports of the system. One of the strengths of the Petri net framework is that it allows

analysis of many behavioral properties, including reachability, boundedness, and

liveness [59]. A system is said to be reachable if there exists a set of transitions that

can transform M0 to Mn. Analysis of reachability of a system allows verification of

reachable states of the system. A Petri net is said to be bounded “if the number of

tokens in each place does not exceed a finite number k for any marking reachable

from M0”[59]. Analysis of boundedness prevents an overload of tokens at a state. A

Petri net is considered live “if, no matter what marking has been reached from M0, it

is possible to ultimately fire any transition of the net by progressing through some

further firing sequence”[59]. Analysis of liveness assures that there are no overflows

in the system and that the system is deadlock-free.

The above analysis is summarized in Table 3.3 below. In the table, ✓ means fulfillment

of a specific requirement, ✗ means that the requirement is not fulfilled, ✓✓ means a

higher degree of fulfillment of a specific requirement, and ✓/✗ means in some cases the

requirement is fulfilled and in others it is not fulfilled.

92

Table 3.3 Summary of Expression Analysis

Based on the table above, Petri nets offer a very flexible framework for modeling the

behavior of biological systems. Based on the analysis, the Petri net modeling framework

should be used as a baseline for our representation. The Petri net framework is flexible in

the sense that it can be used to model many different types of dynamic systems. In the

next section, we extend the Petri net framework to be used with biological systems.

3.4 REPRESENTATION DEVELOPMENT

In this section, the Petri net formalism is extended for use in hierarchically

representing biological systems. Peleg et al. [111] comment that one of the primary

advantages of using Petri nets to represent biological systems is that the system behavior

can be represented even when the biological mechanism is not fully understood.

Additionally, they allow qualitative simulation, allowing a process to be described at

variable levels of granularity [111]. Petri nets have been extensively used in modeling

communications and workflow systems in manufacturing, software development, safety-

critical control systems, etc. Petri nets have also been used to some extent in the

biological domain. However, use of the Petri nets in this domain has been limited to

modeling biological process, such as metabolic and biochemical pathways and networks

[112-117, 111]. In Section 3.4.1, the hierarchical Petri net representation utilized in this

research is presented, followed by a review of current approaches for creating these

representations in Section 3.4.2.

93

3.4.1 From Causal Behavioral Description to Petri Nets

The foundations of the Petri net modeling framework are presented in Section 2.4.

Peterson[118] comments that a valuable feature of Petri net modeling framework is the

ability to model a system hierarchically. In doing so, entire nets can be replaced by

single places and transitions at more abstract levels [118]. In this research, similar to

that of Koga and Aoyama [60], a hierarchical system model, Gsystem, is defined using the

Petri net framework for hierarchical behavioral representation. Specifically, a system is

composed of components, Gstructure, and the behavior of the systems, Gbehavior. This

system is defined at different levels, i, of abstraction, denoted simply as Gi, for i=1,2,…,n.

This coupled structure-behavior system model allows us to decompose the behavioral

hierarchy alongside that of the structural hierarchy. This allows us to view the system,

and its associated structure and behavior, at different levels of refinement and abstraction.

The behavior of the system is described using the Petri net framework in the form

of hierarchical Petri nets. A simple Petri net is defined as a 4-tuple, PN = (P, T, F, M0),

whereby P = {p1, p2, ……, pm) is a finite set of places, T = {t1, t2, ……, tm) is a finite set of

transitions, F ⊆ (P × T)∪ (T × P) is a set of arcs, and M 0 :P→ 0,1,2,.....{ } is the initial

marking. A hierarchical Petri net is further defined as follows:

1. A system on the ith level (i=0,….,L) is defined as Gi
system = (Gi

structure,Gi
behavior)

2. Gi
structure =(Si,Ii), where Si are the components of the system on level i and Ii are the

flows of material, signal, and energy between components on that level.

3. Gi
behavior =(PNi)= (Pi, Ti, Fi) where: Pi = {p1, p2, ……, pm) is a finite set of places

on level i, T = {t1, t2, ……, tm) is a finite set of transitions on level i, and

Fi ⊆ (Pi × Ti)∪ (Ti × Pi) is a set of arcs or flow relations.

4. Arcs Fi can be further divided into internal arcs, FIN , and external arcs, FEXT.

Internal arcs denote the internal behavior of the system and external arcs denote

interactions with other components of the system at level i. External arcs define

relationships, such as precedence and synchronous. In this model, interfaces Ii of

Gstructure map to the external arcs of Gbehavior.

94

5. A transition ti in this model may be associated with another lower level system net

PNi+1=(P i+1,T i+1, F i+1). This net is called a “subnet” of transition ti. The

transition ti with an associated subnet is termed a macrotransition. The term

macro is used to denote an associated micro-graph, or subnet.

For clarity, consider the following generic Petri net model, displayed in Figure

3.11.

Figure 3.11 Petri Net System Model

In Figure 3.11, the Gstructure=(s1) and Gbehavior=(PN)= (P, T, F) where: P = (p1, p2), T =

(t1), FIN=(a1, a2) and FEXT =(a3 , a4). Based on this Petri net system model, a hierarchical

Petri net representation is displayed in Figure 3.12.

95

Figure 3.12 Hierarchical Petri Net model

As seen is Figure 3.12, the most abstract level of the system is denoted by G0. This

system is viewed as its associated structure, containing component s0, and an associated

behavior, PN0. In this model, PN0 is considered the combined behavior of the

components on level 1. PN0 has 3 states (represented as circles) associated with the

system and two transitions. These transitions are termed macro-transitions since they

each have a subnet associated with them. In the hierarchical representation, macro-

transitions are modeled as a double-bar. On level G1, the physical structure of the

system is decomposed into components s1,1 and s1,2 , as well as its behavior PN1. PN1

represents the combined behavior of components s1,1 and s1,2. As seen in the figure, the

transitions on level G0 are associated with subnets on level G1. When viewed at this

lower level of abstraction, we can view how the behavior of components s1,1 and s1,2

contribute to that of s0. One can easily see how continued decomposition leads to a more

complete view of the behavior of the system, and how components and subsystems

contribute to the behavior of that system.

The hierarchical Petri net representation presented in Figure 3.12 has advantages

in representing many types of biological system behaviors. The primary type of behavior

that the representation is intended is that of biological systems whose structure is

96

decomposable and whose behavior can be discretized. To use this representation, the

physical structure of the biological system must be decomposable, meaning that the target

system must have subsystems associated with it. Also, behavior can be defined by the

change of state of the system. To describe the behavior of the system using hierarchical

Petri nets, the physical characteristics of interest of the system (ie. size, shape, color,

orientation) must be discretizable into distinct states.

3.4.2 Creating Hierarchical Petri Nets

There have been several approaches introduced for generating hierarchical Petri

nets [119-123], with all having their respective merit. The approach utilized in this work

is that of Lee and Favrel [119]. Lee and Favrel [119] propose a step-by-step reduction

method for creating hierarchical Petri nets. The approach introduces the concepts of

macronets, which are composed of macrotransitions and macroplaces, the degree of a

subnet, and the reducible subnet (RSN). In each step of the method, the lowest RSN is

reduced into a macroplace or macrotransition. These macroplaces and macrotransitions

correspond to the subnets. The sequence of reduction defined by the authors allows the

study of complex systems in a step-by-step fashion. Lee and Favrel [119] define four

different classes of RSNs: RSN-1, RSN-2, RSN-3P, and RSN-4T. These classes are

displayed in Figure 3.13 and described below.

97

Figure 3.13 Reducible Subnets (RSN), adapted from Lee and Favrel [119]

RSN-1 is divided into two subclasses, RSN-1T, which denotes a subnet of

transition, and RSN-1P, which denotes a subnet of place. RSN-1T (or P) forms (1) a

directed path having only one input and one output door and (2) where the output and

input degree of the doors is 1. Input and output doors are the nodes connected to the

incoming and outgoing arcs of the subnet, respectively, and the degree of a node refers to

the number of incoming and outgoing arcs from a node. The RSN-1T (or P) can then be

replaced by a macrotransition (place). RSN-2T (or P) constructs a directed circuit

containing at least one token, and can be replaced by a macrotransition (or place). RSN-

3P, described as a unidirected cycle containing only one input door and one output door,

can be replaced by a macroplace. RSN-4T describes a subnet that (1) contains all the

paths from its input door to output door and (2) where the places within these paths

contain only places with a degree of 2.

Lee and Favrel [119] then define an algorithm for creating the hierarchical Petri

net which includes two steps in each iteration (i): (1) the determination step of the RSN

(Ai) to be reduced and (2) and the replacement of the RSN with a macronode (ai). For

synchronization of macronodes and subnets, the author uses the concepts of keys and

98

doors. Keys refer to the input and output nodes of the subnet, whereas doors refer to the

input and output nodes of the macrotransition. This approach allows the behavior of the

subnet to be synchronized to that of the macrotransition or macroplace of interest.

In this approach, the RSNs preserve many of the fundamental properties of the

original net. The properties of most interest in this research are that of liveness,

boundedness, and reachibility. These properties give us a means for checking the

‘correctness’ of our models. A biological system at any moment in time can only have

one state, meaning that only one token is allowed in the net. By checking boundedness,

specifically making sure the net is 1-bounded, we can assure the net only has one token.

Biological systems are also free of behavioral deadlocks, and thus, the model must also

be free of deadlocks, or live. Reachability allows us to assure that the model represents

the behavior of the biological system correctly. In modeling a biological system, we wish

to represent how the system gets from one state to another. Reachability assures that the

model can indeed reach that state.

When building a hierarchical model based on the Petri nets, we must be able to

assure that the properties of liveness, boundedness, and reachability are preserved among

hierarchical levels. Lee and Favrel [119] put forth the following theorems and proofs

regarding the preservation of liveness and boundedness, displayed below.

Theorem 1: A Petri net is live iff its subnets and macronet are live.

Proof: The liveness of a Petri net is defined by the firing sequence of transitions.
If a reduction does not change any firing sequence, the liveness is not changed.
A reduction of RSN by a macrotransition means a replacement of the subfiring
sequence by a macrotransition. Because RSN-1T, RSN-2T, and RSN-4T
construct subfiring sequences and can be fired by these subsequences, the
replacement of these RSN’s does not change the original firing sequence and
hence does not change liveness. A reduction of RSN by a macroplace means a
deletion of a subfiring sequence in the original sequence. Because all RSNs can
fire by subfiring sequences and the input and output keys of a macronode are the
same as those of the corresponding RSN, then RSN-1P, RSN-2P, and RSN-3P do
not change the liveness.

Theorem 2: A Petri net is bounded iff its subnets and macronet are bounded.

99

Proof: The boundedness can be studied with a difference between the number
of input keys and output keys of an RSN. Because the input keys and output
keys of a macronode are the same as those of the corresponding RSN, the
reduction does not change the boundedness of the Petri net.

3.5 CLOSURE AND VALIDATION

At the beginning of this chapter, the following research question was posed:

(RQ1) “What type of representation can be used to model the behavior of biological
systems?”

To answer this question, it was hypothesized in Hypothesis 1 that a representation based

on (1) a causal behavioral description and (2) hierarchical Petri nets can be used to model

the behavior of biological systems. In validating this hypothesis, a qualitative evaluation

of the proposed representation versus several representation requirements was performed.

In Section 3.1.2, the following requirements for representation of biological systems were

presented: hierarchical representation, explicit dynamic representation, explicit

representation of the environment, behavior-centric approach, and completeness and

uniqueness of representation. In Section 3.2.4, the proposed hierarchical causal

behavioral description of biological system behavior was found to meet these

requirements. With respect to expression of the causal behavioral description, the

following requirements were developed in Section 3.3.1: computational offloading,

inference, validity, consistency, isomorphism, model complexity, and behavior

verification. After evaluation, the Petri net representation was found to meet these

requirements. After qualitative evaluation, a representation based on a causal behavioral

description and hierarchical Petri nets was found to meet the requirements for modeling

the behavior of biological systems.

The overall goal of this research is to leverage biological strategies in the

conceptual design of engineering systems. The hierarchical Petri net representation not

only affords representation of the behavior of these systems at multiple levels of

abstraction, but also allows functional and structural information to be represented. The

multi-layered view of behavior proposed in this chapter gives a much richer description

100

of behavior needed to aid in the systematic extraction of these strategies from biological

systems.

Validation Strategy – Theoretical Structural Validity

With respect to our validation strategy for the Method for Reverse Engineering

Biological Systems, the key theoretical construct of the proposed method, the hierarchical

Petri net representation, was reviewed. The validation found in this chapter is presented

in context of the validation strategy for this dissertation in Figure 3.14. Specifically,

Theoretical Structural Validity was addressed.

Figure 3.14 Validation in Chapter 3

Theoretical Structural Validity involves accepting the validity of the individual constructs

that constitute the method. In this chapter, a rigorous assessment of both engineering

representations and representation expression against several key requirements for

representing biological systems was presented. In our evaluation, Petri nets presented the

best foundation to represent the behavior of biological systems. Building on this

foundation, the hierarchical Petri nets were developed to represent the behavior of

biological systems. Through this assessment, along with the assessment performed in

Chapter 2, the theoretical structure of the proposed method has been validated.

101

In Chapter 3, the backbone of the proposed method for Reverse Engineering

Biological Systems, the hierarchical Petri net representation, was presented and

evaluated. In Chapter 4, building on this representation, the proposed method for

Reverse Engineering Biological Systems is developed.

102

CHAPTER 4 METHOD FOR REVERSE ENGINEERING

BIOLOGICAL SOLUTIONS

In Chapter 3, the backbone of the proposed method, hierarchical Petri net

representation, was put forth. In this chapter, the proposed method for Reverse

Engineering Biological Systems is presented. The dissertation outline is displayed in

Figure 4.1.

Figure 4.1 Chapter 4 and the Dissertation Overview

The overall goal for this dissertation is to put forth an approach for aiding the

designer in generating ideas in Conceptual Design through the use of biological

strategies. It is believed that leveraging biological strategies in Conceptual Design will

lead to a more effective ideation process. In this work, a method for extracting behavioral

103

strategies from biological systems, the method for Reverse Engineering Biological

Systems, is developed. As the name suggests, the proposed method aids the designer in

reverse engineering biological systems and extracting behavioral strategies. Reverse

engineering can be defined as the “process of developing a set of specifications for a

complex hardware system by an orderly examination of specimens of that system”[124].

This process is conducted “without the benefit of any of the original drawings” [124].

The main purpose of reverse engineering is to (1) identify the system’s components and

relationships between those components and (2) represent the system in another form or

higher level of abstraction [31].

The backbone of the proposed method is the hierarchical Petri net representation

of biological systems. Using hierarchy, this representation allows the designer to

visualize the behavior of lower subsystems (strategy) and how it affects the overall

behavior of the system. To extract the correct strategy, behavior must be consistent

across these levels of hierarchy. To ensure consistency, three fundamental properties of

Petri nets, reachability, liveness, and boundedness, are considered.

Specifically, in this chapter, the following question is addressed:

(RQ2) How can the behavior of biological systems be hierarchically represented

using Petri nets, while preserving the fundamental properties at each hierarchal level?

In answering this question, Hypothesis 2 from Chapter 1 is as follows:

Hypothesis 2: Using the systematic method for Reverse Engineering Biological

Systems will ensure that the fundamental properties of boundedness, reachability, and

liveness will be preserved across hierarchical levels.

To validate this hypothesis, the following approach is followed:

1) Develop the general phases of the proposed method (Section 4.1)

2) Present specific steps for the method for Reverse Engineering Biological Systems.

(Section 4.2)

3) Evaluate the preservation of fundamental properties (Section 4.3)

104

4) Put forth several example problems in which the proposed method is used

(Sections 4.4)

4.1 METHOD DEVELOPMENT

In Chapter 3, the hierarchical Petri net representation for biological systems was

presented. In this chapter, the two key phases of hierarchical Petri net generation, System

Decomposition and Behavioral Mapping, are defined. These phases, displayed in Figure

4.2, are discussed in further detail in Section 4.1.1 and 4.1.2 below. In Section 4.1.3, a

method for extracting behavioral strategies from these representations is presented.

Figure 4.2 System Decomposition and Behavioral Mapping Phases

4.1.1 System Decomposition

In the System Decomposition phase of hierarchical net generation, the system,

Gsystem, is decomposed into its two parts, Gstructure and Gbehavior. Following a top-down

approach, the physical structure and individual behaviors are decomposed in a coupled

fashion. This coupling helps assure only relevant behaviors and systems are represented.

It should be noted that the accessibility of these systems will vary, thus, reliance on

biological literature on the subject system will also vary. The two key steps of System

Decomposition, Structural Decomposition and individual Behavior Generation, are

discussed in further detail in Sections 4.1.1.1 and 4.1.1.2.

4.1.1.1 Structural Decomposition

105

In the Structural Decomposition step, the physical structure, Gstructure, of the

system is decomposed. The purpose of the decomposition phase is to decompose the

system into its subsystems and components, and create hierarchical relationships between

these systems. Due to the inherent complexity of biological systems, these hierarchical

relationships are not easily defined. However, biological systems perform specific

functions, and through natural selection, these systems are produced and localized within

parts to some extent [125]. The reason is that to achieve the coordination of internal

activity that function demands, these systems must be integrated internally and isolated

externally to limit interference from other functions [94]. Using the assumption of tight

integration and isolation, the structural decomposition of these biological systems

becomes more manageable.

To aid in defining the hierarchical relationships between biological systems and

subsystems, we suggest using a structured decomposition framework such as the

decomposition protocols put forth by McShea [99]. According to McShea’s [99]

protocols for classifying biological parts, “partness” is evaluated based on two criteria:

(1) enclosure (physically isolated) and (2) contiguity with a difference in composition.

According to McShea, the appearance of an object is usually a consequence of a

relatively tight integration and the object’s boundary corresponds to isolation from its

surroundings. McShea developed these protocols, displayed in Figure 4.3, for somewhat

structurally simple organisms, but also includes the notion that they may be extendable to

the more complex biological systems that are used in this work.

106

Figure 4.3 McShea’s protocols for identifying hierarchy of parts [99]

McShea’s protocols, displayed in Figure 4.3, are a means for generating

hierarchical relationships in the structural decomposition process. Specifically, the

criteria for enclosure and contiguity with a difference in composition are especially useful

when identifying the level at which systems and subsystems fit into the hierarchy. It

must also be noted that in many cases, it is infeasible to use systematic protocols such as

those presented by McShea. In these cases, we rely on biological literature to guide the

decomposition process.

4.1.1.2 Behavior Generation

In the second step of decomposition, the individual behaviors, Gbehavior, of the

system are generated using the Petri net modeling framework. Specifically, system

attributes by which to define behavior are first identified. Discrete states of these

attributes are then identified and labeled as places. Next, the physical phenomena driving

the change of state of the system are labeled as transitions. The behavior of the system is

107

then characterized by a firing sequence transforming from one state of the system, M0, to

another state, Mn. A firing sequence is denoted by

�

σ (M0,Mn) = M0,t1,M1,t2,⋅ ⋅ ⋅ ⋅ ⋅tn ,Mn or

simply as

�

σ (M0,Mn) = t1,t2,⋅ ⋅ ⋅ ⋅ ⋅tn .

Next, the behaviors of the individual subsystems are joined using precedence and

synchronous relations [60]. Synchronous arcs are events (physical phenomena) that occur

concurrently and Precedence arcs set order to events. For clarity, consider the arbitrary

system in Figure 4.4. In the figure, system s0 is decomposed into subsystems s1,1 and s1,2.

The individual behaviors of two components, s1,1 and s1,2, are modeled. Precedence

relations (denoted by a dashed arrow) are also defined between the two components from

place B2 and transition t6 and from place B3 and t5. The precedence relations mean that

places B2 and B3 must have tokens before transitions t6 and t5 can fire, respectively.

Figure 4.4 Decomposition

In the decomposition step, a mapping is created between the states of the higher

level system, s0, and the states of the lower level subsystems, s1,1 and s1,2. For example,

consider the arbitrary system in Figure 4.4. When the system s0 is in state A1, subsystem

s1,1 is in state B1 and subsystem s1,2 is in state C1, thus a mapping can be created between

state A1 of s0 and state B1 of s1,1 and C1 of s1,2. This mapping is denoted as (B1, C1) ⊆ A1.

Similarly, when the system s0 is in state A2, subsystem s1,1 is in state B2 and subsystem s1,2

is in state C1, thus (B2, C1) ⊆ A2. Also, when the system s0 is in state A3, subsystem s1,1 is

108

in state B3 and subsystem s1,2 is in state C2. It follows that (B3, C2) ⊆ A3. These

mappings will be used later to map the subnets of the lower level subsystems to the

higher level system.

4.1.2 Behavioral Mapping

The next phase of the hierarchical net generation is Behavioral mapping. In this

phase, following a bottom-up approach, the behaviors of the lower level systems are

mapped to that of the higher level system. This phase includes two steps, Combined

Behavior Generation and Inheritance. These steps are discussed in detail in Sections

4.1.2.1 and 4.1.2.2.

4.1.2.1 Combined Behavior Generation

The first step of Combined Behavior Generation is behavioral mapping, the

behaviors of the individual subsystems are combined to form a joint behavioral net. In

phase 1, the individual behaviors of each system in the hierarchy were generated. In this

step, a combined behavioral graph is generated using the precedence and synchronous

relationships between the subsystems determined in Section 4.1.1.2.

The behavior of the individual subsystems is combined using a reachability graph,

which is a graph of all possible markings in a given Petri net. In a reachability graph, the

nodes represent markings of the system and the arcs represent the transition firing

sequences, transforming one marking of the system to another (murata, 89). For clarity,

consider the Petri net displayed in Figure 4.5.

Figure 4.5 Reachability graph example: (a) Petri net model and (b) Reachability graph

109

In Figure 4.5, an example of a Petri net containing places P1- P5 and transitions t1-

t4 is displayed. In the initial marking of the net, tokens are located at places P1 and P4. A

reachability graph is then generated for the net containing all the possible markings. The

reachability graph begins by defining a node for the initial marking (P1, P4). When

transition t1 is fired in the net, the marking becomes (P2, P4), meaning that a token has

moved from P1 to P2. In the reachablity graph, this new state is denoted by place (P2, P4).

When t2 is fired, transition P3 receives a token from both P2 and P4, denoted by place (P3)

in the reachability graph. Following this procedure, the reachability graph is generated

for all possible states of the net. In the graph, a token is used to denote the current state,

or marking, of the net. This also transforms the reachablity graph into a Petri net itself,

able to represent the movement of both tokens in the original net in a concise fashion.

For the initial marking of the system, a token is placed in place (P1, P4) of the

reachability graph.

In this work, similar to that of Koga and Aoyama [60], the reachability graph is

used to combine the behaviors of individual components of a system. For clarity,

consider the arbitrary system from Figure 4.4. The procedure for generating the

combined behavior graph is displayed in Figure 4.6.

Figure 4.6 Combined Behavior Generation

In Figure 4.6, a reachability graph is generated for the combined behavior of

subsystems s1,1 and s1,2. In the decomposition phase, precedence and synchronous

relations between the individual subsystem behaviors were identified. Using these

relations, the reachability graph is generated for both subsystems s1,1 and s1,2. First the

110

initial marking of the subsystems is identified as state B2 of s1,1 and C1 of s1,2. We denote

this as place (B2,C1) in the reachability graph. From this state, transition t2 and t3 can be

fired. We begin by firing t2, which moves tokens to state B3 of s1,1. This is denoted by

place (B3,C1) in the reachability graph. Next, based on the precedence relation, t5 can

now be fired and moves a token from place C1 to C2 of s1,2. This is denoted by place

(B3,C2). This procedure is followed until all reachable markings of the systems are

represented. Using the reachability graph, the behaviors of subsystems s1,1 and s1,2 are

combined into one Petri net model with the behavior of both systems represented by the

path of a single token.

4.1.2.2 Inheritance

The final step of the Behavioral Mapping phase is Inheritance, where the

hierarchical Petri net model of the biological system is generated. Similar to Lee and

Favrel [119], model generation involves two key steps: (1) subnet identification and (2)

subnet replacement. However, several refinements are made to the method proposed to

Lee and Favrel. In the case of the reachability graph (combined behavioral model), this

research only deals with reducible subnets (RSN) of the RSN-1T variety. Also, a much

more targeted identification of subnets is performed, as this research attempts to directly

link the behavior of the lower level components to that of the system. With respect to step

2 (replacement), instead of replacing the RSN with a macronode on the same level of

hierarchy Gi+1, this subnet is inherited by a macrotransition on level Gi. This process is

displayed in Figure 4.7.

111

Figure 4.7 Subnet Inheritance

Figure 4.7 displays two levels of decomposition of an arbitrary system, Gi and

Gi+1. In step 1 of Inheritance, the subnets are identified. The following is defined to aid

in identifying subnets.

Let:

�

•t = p (p,t)∈F{ } is the set of input places (p) of transition (t) through an arc in F, and

�

t• = p (t, p)∈F{ } is the set of output places (p) of transition (t) through an arc in F,

where

�

•t = t• = ∅ and F is the set of arcs.

This notation can also be extended to a net of transition St, meaning that its input and

output doors are transitions. In this case, let:

�

St• = p (p,t)∈F{ } is the set of input places (p) of transition (t) through an arc in F

�

•St = p (p,t)∈F{ } is the set of output places (p) of transition (t) through an arc in F

where

�

•St = St• = ∅ and F is the set of arcs.

Subnet definition

�

St ⊆ t (ie. net of transition St is a subnet of transition t) if and only if

�

•St ⊆ •t and

�

St• ⊆ t •

112

For example, consider the arbitrary system in Figure 4.7. Let St = (t2,(B3,C1),t5)

and t = tb. If B2,C1 ⊆A2 and B3,C2 ⊆A3, then (t2,(B3,C1),t5) ⊆ tb. In other words, net

(t2,(B3,C1),t5) is a subnet of transition, tb, meaning that subnet (t2,(B3,C1),t5) refines the

behavior of tb.

In step 2 of Subnet Inheritance, the subnet, St, is inherited to transition t, thus

making t a macro-transition for the subnet.

4.1.3 Strategy extraction

In this work, biological strategies are viewed as refinements of behavior, where

specific physical phenomena driving a particular behavior (and function) are identified.

The hierarchical Petri net representation is key as it gives us a means to view the multiple

levels of system behavior needed to extract a strategy, as well as a causal path of

behavior across levels of abstraction of the system. To systematically extract strategy

from the biological systems, the hierarchical Petri net model generated in Section 4.1 is

utilized.

In Section 4.1, the method for identifying subnets was defined. These subnets are

considered refinements of macro-transitions t. In the Petri net modeling framework,

behavior is defined as a path,

�

σ , where

�

σ (M0,Mn) = t1,t2,⋅ ⋅ ⋅ ⋅ ⋅tn , transforming an initial

state of a system, M0, to another state, Mn. Based on the definition of strategy put forth in

this work, subnets are considered the strategies by which the behavior t is performed.

Therefore, the strategy (S’) of behavior (t) is denoted by the behavioral path

(

�

σ (

�

•St ,

�

St •)) of its subnet St, or S’(t) =

�

σ (

�

•St ,

�

St •).

4.2 METHOD FOR REVERSE ENGINEERING BIOLOGICAL SYSTEMS

In Section 4.1, the three phases of the method for Reverse Engineering Biological

Systems were presented. In this section, systematic steps for the proposed method are

prescribed. A flowchart for the proposed method is displayed in Figure 4.8.

113

Figure 4.8 Flowchart for Method for Reverse Engineering Biological Systems

The individual steps for generating the hierarchical Petri net representation are

detailed as follows:

System Decomposition

1) Define root system:

In this step, the designer defines the root biological system of interest, Gsystem. This

system is defined by a boundary around the system. Each component, Gstructure, is then

defined by its attributes of interest, or properties, by which we describe the behavior,

Gbehavior, of the system. Once the system is defined, the working environment is also

defined, including the system’s interactions with the environment. These interactions

are either (1) flows of material, signal, energy or (2) physical interactions between the

entity and its environment. These interactions also have attributes. For instance, an

attribute of energy flow may be mechanical energy at one level of abstraction, and

force at another.

114

2) Define standalone behavior:

In step 2, the designer defines the behavior of the root system using the Petri Net

modeling formalism. In this step, the behavior is defined by a change of state of a

given system. These states are defined by different levels of the attributes defined in

step 1. If the behavior is considered continuous, then it is discretized into discrete

states. Using the PN formalism, these states are defined as places and the physical

phenomena driving the state change are defined by transitions.

3) Decompose system and sub-systems

Once behavior of the root entity is defined, if the entity has subsystems, these

subsystems are identified using McShea’s protocols for partness (because bio systems

are highly integrated and modular). It should be noted that only the entities that

directly affect the behavior of the root entity are modeled. Attributes for these

subcomponents are also identified. Interactions between these subcomponents are

also defined.

4) Define standalone behaviors of sub-systems

Following the procedure from Step 2, the standalone behavior of the subcomponents

are identified. In this step, the states of the root system are mapped to the states of the

lower entities. The subsystem interactions are inherited from the subsystems into the

behavioral model as external arcs. These external arcs are used to describe the

interaction between the subsystems in the behavioral model. In this step, the states of

the root system to that of the subsystems are also mapped.

5) Define interface relationships between subsystems

External arcs are used to define the interface relationships between subsystems. These

external arcs are defined as either (1) synchronous or (2) precedence [60].

Synchronous relationships are denoted using a dashed, double bar, and precedence

relationships using a dashed arrow.

Behavioral Mapping

6) Generate combined behavioral model

115

Using the external arcs defined between the subsystems in Step 4, a reachability

graph is generated beginning with the initial marking (M0) of the system. With this, a

causal behavioral model for the combined subsystems is generated.

7) Identify subnets

Using the subnet definition from Section 4.1.2.2 and the state mappings from step 4,

subnets from the combined behavioral model are identified and mapped to transitions

in the upper behavioral model.

8) Create Macro-transitions

In this step, the subnets identified in Step 7 are inherited to their corresponding

macro-transitions. A hierarchical model of behavior consisting of macro-transitions

and subnets describing the behavior at increasing levels of detail has now been

created.

Strategy Extraction

9) Extract System Strategy

Using the hierarchical Petri net representation, strategy is systematically extracted

from the subnet representing the behavior of the lower level systems. Behavioral

strategies (S’) are defined with respect to macro-transitions, such that S’(t) =

�

σ (

�

•St ,

�

St •). Strategy can also be denoted between two states as S’(

�

•t,t •) =

�

σ (

�

•St ,

�

St •).

4.3 LIVENESS, BOUNDEDNESS, AND REACHABILITY

In Section 4.2, the systematic steps for the Method for Reverse Engineering

Biological Systems were presented. Consistency in behavior across hierarchical levels is

key to the extraction of correct strategies using the proposed method. To examine

consistency across hierarchical levels, three fundamental properties are considered:

boundedness, liveness, and reachability. Specifically, in this research, it was

hypothesized that:

116

Hypothesis 2: Using the systematic method for Reverse Engineering Biological

Systems will insure that the fundamental properties of boundedness, reachability, and

liveness will be preserved across hierarchical levels.

In the following section, mathematical evidence is presented to validate this

hypothesis.

Boundedness

A system is considered bounded if the number of tokens in each place does not

exceed 1, or M(p) ≤ 1. In the Combined Behavior Generation phase, the reachability

graph is used to combine the behavior of the individual subsystems. This combined

behavior graph is then inherited by its upper level behavioral graph in the Inheritance

phase.

The reachability graph is defined in this work such that

�

•t = t • = 1 (each

transition has exactly one input and output place) and

�

M(p)∑ = 1 (a system can only

have 1 live marking at a given instant). Therefore,

�

M(p) ≤ 1 , or the system is fully

bounded.

By subnet definition

�

St ⊆ t , M(

�

•St)=M(

�

•t) and M(

�

St •)=M(

�

t •) (ie. the marking

of the input and output place of subnet is equal to that of its macro-transition). Therefore,

boundedness is preserved across hierarchical levels.

Liveness

The liveness is defined by the firing order of transitions. By definition of a

reachability graph, a transition t appears only if t is live for marking M in R(M0), where R

is the reachability. Therefore, St is live.

By defining

�

St ⊆ t , then

�

σ (

�

•St ,

�

St •)⊆

�

σ (

�

•t ,

�

t •), meaning that the firing order is

not changed. Since subnet inheritance does not change the firing order, the liveness is

preserved.

Reachability

117

A marking Mn is reachable from M0 if there exists a sequence of transition firings

transforming M0 to Mn. By definition, a reachability graph, R(M0), generates all reachable

states, M, from state M0. Thus, all the states in St are reachable.

Since

�

St ⊆ t , M(

�

•St)=M(

�

•t) and M(

�

St •)=M(

�

t •). Therefore, reachability is

preserved.

4.4 EXAMPLES

In Section 4.2, the systematic steps for the method for Reverse Engineering

Biological Systems were presented. In this section, illustrative examples of the proposed

method are presented. In Section 4.4.1, strategy is extracted from the Mutable

Connective Tissue of the Echinoderm. In Section 4.4.2, strategy is extracted from

Human Muscle in Isometric Contraction.

4.4.1 Strategy Extraction from the Mutable Connective Tissue of Echinoderms

1) Define root system:

In this first step, the root system is identified as the dermis of the sea cucumber.

The boundary of the system is drawn just around the mutable connective tissue of the

dermis. The interactions with the environment, displayed in Figure 4.9, include neural

control signal (chemical) coming into the system and mechanical energy (reaction force)

output to the environment as the dermis changes stiffness. The attribute of interest is

defined as the stiffness of the dermis.

Figure 4.9 Root system (Dermis)

2) Define standalone behavior:

118

In step 2, the behavior of the root system, the dermis, is modeled using the Petri

net modeling formalism (displayed in Figure 4.10). The states of the system are defined

as Flexible (Fl), Natural (Nat), and Rigid (Rgd). The transitions are defined in Table 4.1

Figure 4.10 PN model of Dermis

Table 4.1 Terms for PN model of Dermis

t1 Increase stiffness

t2 Increase stiffness

t3 Decrease stiffness

t4 Decrease stiffness

3) Decompose system and sub-systems

In step 3, the system is decomposed into its subsystems. Through review of

literature [126-133] on the dermis of the sea cucumber and use of McShea’s protocols for

partness[99] , the physical structure, displayed in Figure 4.11, was decomposed. The

dermis consists of collagen fibril bundles, neurosecretory cells, and an extracellular

matrix. The collagen fibril bundles are groupings of parallel collagen fibrils associated

by a microfibrillar network. These fibrils are held in close association by a protein

named ‘Stiparin’. Under inputs from the nervous system, the neurosecretory cells

release a protein called ‘stiffener’, which binds the collagen fibrils to one another. The

neurosectory cells also release a protein called a ‘stiparin-inhibitor’, which inhibits the

close association of fibrils caused by the ‘stiparin’ protein. The extracellular matrix

contains many other soluble proteins, glycans, and proteoglycans dissolved in the liquid

phase of the matrix.

119

Figure 4.11 Structural Decomposition of Dermis

Next, the interactions between the components are modelled and displayed in

Figure 4.12 and Figure 4.13. In reaction to a chemical control signal (Schem), the

neurosecretory cells release a stiffener or a stiparin inhibitor into the extracellular matrix.

The chemical energy (Echem) of these proteins cause either a binding of the collagen fibril

bundles or association between the fibrils to be broken, respectively. Based on these

chemical bonds between the fibrils, the system’s stiffness is changed and a change in the

reaction force (Emech) output to the environment follows.

Figure 4.12 Interactions for first layer of Dermis decomposition

Figure 4.13 Interactions in Collagen Fibril Bundle decomposition

4) Define standalone behaviors of sub-systems

120

In step 4, the standalone behaviors of each of the subsystems are modeled using

the Petri net model (displayed in Figure 4.14). The states and transitions of the

behavioral models are displayed in Table 4.2.

Figure 4.14 Standalone behaviors of the subsystems of the dermis

Table 4.2 Terms for Figure 4.14

R.Stp.I Releasing Stiparin-
Inhibitor

UnGr Ungrouped

N. R. No Release Gr Grouped
R.St Releasing Stiffener Ag.Gr Aggregated and

Grouped
t5 Stop release of Stiparin-

Inhibitor
t9 Group fibrils

t6 Release Stiffener t10 Aggregate fibrils
t7 Release Stiparin-Inhibitor t11 Ungroup fibrils
t8 Stop release of stiffener t12 Un-aggregated fibrils
Nat Natural

In this step, the states of the subsystems are mapped to that of the root system. In

this case, the states of the collagen fibril bundles (CFBs), neurosecretory cells (NCs), and

extracellular matrix (EM) are mapped to the states of the dermis. This mapping is

displayed in Table 4.3.

121

Table 4.3 State Mappings for Sea Cucumber Dermis

Dermis (Fl) CFBs (R.Stp.I), NC (UnGr), EM (Nat)

Dermis (Nat) CFBs (N.R.), NC (Gr), EM (Nat)

Dermis (Rgd) CFBs (R.St), NC(Ag.Gr), EM (Nat)

As displayed in Table 4.3 when the Dermis is in the Flexible (Fl) state, the

collagen fibrils bundles, neurosecretory cells, and extracellular matrix are in the

Releasing Stiparin Inhibitor (R.Stp.I), Ungrouped (UnGr), and Natural (Nat) states,

respectively. The state mappings for the Dermis in the Natural (Nat) and Rigid (Rgd)

state are similarly defined in Table 4.3. After the standalone behaviors and state

mappings for the subsystems of the dermis are determined, the behaviors for the

subsystems of the Collagen Fibril Bundles are defined (displayed in Figure 4.15 and

Table 4.4). The subsystems of the Collagen Fibril Bundles are Stiparin Inhibitor

(Stip.Inh), Stiparin (Stip), Collagen Fibrils (CFs), Stiffener (Stiff), and Microfibrils

(MFs).

122

Figure 4.15 Standalone behaviours for subsystems of Collagen Fibril Bundles

Table 4.4 Terms for Figure 4.15

N.Act Not Active t17, t19, t21 Activate
Act Active t18, t20 ,t22 De-activate
NB No binding t13 Associate fibrils
Stp.B Stiparin-bound t14 Bind fibrils
St.B Stiffener-bound t15 De-associate fibrils
 t16 Un-bind fibrils

Next, the states of the collagen fibril bundles are mapped to that of its subsystems.

The mappings are displayed in Table 4.5.

Table 4.5 State Mappings for Collagen Fibril Bundles

CFBs(UnGr) Stip.Inh(Act), Stip (N.Act), CFs (NB), Stiff (N.Act), MFs (nat)
CFBs (Gr) Stip.Inh(N.Act), Stip (Act), CFs (Stp.B), Stiff (N.Act), MFs (nat)
CFBs (Ag.Gr) Stip.Inh(N.Act), Stip (Act), CFs (Stp.B), Stiff (Act), MFs (nat)

123

5) Define interface relationships between subsystems

The interface relationships are defined in Figure 4.14 and Figure 4.15 above.

Precedence arcs are denoted by dashed arrows and synchronous arcs are denoted using

the double, dashed lines.

6 - 8) Generate combined behavioral model, Identify Subnets, and Create

Macrotransitions

Since steps 6-8 are iterative, the discussion below is combined.

Next, the reachability graph of the lowest decomposition level is generated. The

reachability graph begins with the initial state (or marking) of the combined system.

Next, using the firing sequences and the external arcs of the system, the combined

behavioral model is generated. The combined behavioral model for the subsystems of the

collagen fibril bundles is displayed in Figure 4.16. As displayed in the figure, the initial

marking of the system is [Stip.Inh(N.Act), Stip (Act), CFs (Stp.B), Stiff (N.Act), MFs

(nat)]. When transition t21 and t14 (linked by a synchronous relationship) are fired, the

marking of the system becomes [Stip.Inh (N.Act), Stip (Act), CFs (Stp.B), Stiff (Act), MFs

(nat)], denoting an aggregated/grouped state of the collagen fibril bundles.

Figure 4.16 Combined Behavioral Model for subsystems of the Collagen Fibril Bundles

Next, the subnets are identified using the isomorphic state mappings in Table 4.5

above. Using the inheritence procedure, the subnets are inherited to the macrotransitions

of the collagen fibril bundle system. For instance, following the definition put forth in

Section 4.1.2.2, subnet (t18,(N.Act/N.Act/N.B/N.Act), t19/t13) is inherited by

macrotransition t5 of the collagen fibril bundle behavior graph. This process is displayed

in Figure 4.17. In Figure 4.17, subnets are denoted by a gray shadow with its associated

124

macrotransition listed in a white box. Macrotransitions are denoted using a double black

bar. Similarly, subnets (t17,(Act/Act/Stp.B/N.Act),t20/t15), (t21/t14), and (t22/t16) are

inherited by macrotransitions t11, t10, and t12 respectively. Using this notation, we can

view how the behavior of the subsystems contributes to that of the higher level system.

In this case, we can view how the subsystems of the collagen fibril bundles contribute to

that of the system.

Figure 4.17 Identification of subnets for Collagen Fibril Bundles

Next, the combined behavioral graph for the subsystems of the dermis (Collagen

fibril bundles, neurosecretory cells, and extracellular matrix) is generated using the

reachability graph. This graph is displayed in Figure 4.18.

Figure 4.18 Combined Behavior Graph for subsystems of the Dermis

In the figure, notice that the subnets of the lower systems are included in the

combined behavioral graphs as macrotransitions t5, t6, t7, t8. Using this combined

125

behavioral graph, the subnets are identified and inherited into the behavior graph of the

dermis. The overall hierarchical model is displayed in Figure 4.19. The overall

hierarchical model displays three levels of abstraction of the Dermis system. As can be

seen in Figure 4.19, hierarchical Petri net modeling allows us to map the behaviors of the

lower level subsystems to that of the Dermis. The hierarchical relationships are

expressed in the form of macrotransitions and subnets.

Figure 4.19 Overall Hiearchical PN Model for Sea Cucumber Dermis

Based on this hierarchical model displayed in Figure 4.19, the behavior of the

dermis can be viewed at multiple levels of abstraction. This model combines the

individual subsystem behaviors found in Figures 4.10, 4.14 and 4.15. This multi-layered

view allows us to systematically extract the functional strategy from the system.

9) Extract system strategy

Based on the hierarchical net in Figure 4.19, the strategy can be extracted as

follows:

126

Strategy (Nat, Rgd) = (t6, t10)=(NCs(Release stiffener),CFBs(aggregate fibrils)).

We can also expand t10 to reveal another layer of behavior as Strategy (Nat, Rgd) = (t6

,t21/t14)= (NCs(Release stiffener),Stiffener(activated), CFs(bind fibrils)). Using natural

language, the strategy is as follows:

“An increase of stiffness from the natural state of the dermis to the rigid state is

caused by release of stiffener by the neurosecretory cells, which causes the collagen fibril

bundles to aggregate. The stiffener released by the neurosecretory cells becomes active

and binds the individual fibrils together, causing fibril aggregation.”

Following the same procedure, Strategy (Nat, Fl) = (t7, t11)=(NCs(release

stiparin-inhibitor), CFBs(ungroup fibrils)). By expanding t11, Strategy (Fl, Nat) = (t7, (t17,
t20/t15)) = (NCs(release stiparin-inhibitor), ((Stiparin-Inhibitor (activate stiparin-

inhibitor), Stiparin (de-activate stiparin)/CFs(de-associate fibrils)). Using natural

language, the strategy is as follows:

“A decrease in stiffness from the natural state of the dermis to the flexible state is

caused by the release of stiparin-inhibitor by the neurosecretory cells, causing the

collagen fibril bundles to ungroup. The stiparin-inhibitor released by the neurosecretory

cells de-activates the stiparin, causing de-association of the individual collagen fibrils.

This causes the collagen fibril bundles to ungroup.”

By considering the strategies used for changes of state of the entire system, the

overall strategy can be abstracted and stated in simpler terms as:

“Stiffness in the dermis is changed by controlling the association of the

collagen fibril bundles”

In Section 4.4.2, we use the method for Reverse Engineering Biological Systems

to extract the behavioral strategy from Muscle Fiber.

127

4.4.2 Strategy Extraction from Muscle Fiber in Isometric Contraction

For this example, behavioral strategy is extracted from the human muscle using

the method for Reverse Engineering Biological Systesm. The human muscle is displayed

in Figure 4.20.

Figure 4.20 Human Muscle (Figure 3.2)

1) Define root system:

In this step, the root system is identified as the muscle fiber subunit of human

muscle. The boundary of the system is drawn just around the muscle fiber. The

interactions with the environment include an action potential (electrical) from the motor

end plate coming into the system, controlling the mechanical energy (force) output to the

environment as the muscle fiber changes stiffness. As in the case of the sea cucumber

dermis, the attribute of interest is defined as the stiffness of the muscle fiber. The muscle

fibers and its interactions with the environment are displayed in Figure 4.21.

Figure 4.21 Root system (Muscle Fiber)

2) Define standalone behavior:

128

The behavior of the root system, the muscle fiber, is modeled using the Petri net

modeling formalism. This model is displayed in Figure 4.22. The states of the system

are defined as Flexible (Fl) and Rigid (Rgd). The transitions are defined in Table 4.6.

Figure 4.22 PN model of Muscle Fiber

Table 4.6 Terms for PN model of Dermis

t1 Increase stiffness

t2 Decrease stiffness

3) Decompose system and sub-systems

The system is decomposed into its subsystems in Step 3. Through review of

literature [134, 135] on the muscle fiber, the physical structure was decomposed. This

decomposition is displayed in Figure 4.23.

Figure 4.23 Structural Decomposition of the Human Muscle

129

The human muscle is composed of the muscle fiber, connective tissue connecting

the fibers, nerves, and blood vessels. The muscle fiber can be further decomposed into

the sarcolemma, myofibrils, transverse tubules (T-tubules), and the sarcoplasmic

reticulum. The sarcolemma acts as the muscle fiber’s plasma membrane. The myofibrils

are the fiber’s “contractile machinery”. Each myofibril is a bundle of overlapping thick

and thin filaments. The thick filaments are composed of the protein myosin and thin

filaments composed of the protein actin. The transverse tubules and sarcoplasmic

reticulum both play a key role in the activation of the muscle fiber. An action potential

(Eelec), from the axon, propagates through the sarcolemma and down the T-tubules to the

interior of the cell. This action potential triggers Ca2+ release (Echem) in the sarcoplasmic

reticulum, which causes the thick and thin filaments of the myofibril to bridge.

Specifically, the Ca2+ release (Echem) in the sarcoplasmic reticulum exposes the myosin-

binding sites on the actin filament, which triggers (Schem) the myosin filaments to bridge

(Emech) with the actin filaments. These interactions are displayed in Figure 4.24 and

Figure 4.25.

Figure 4.24 Interactions for first layer of the Muscle Fiber decomposition

Figure 4.25 Interactions in Myofibril decomposition

4) Define standalone behaviors of sub-systems

In step 4, the standalone behaviors of each of the subsystems are modeled using

the Petri net model (displayed in Figure 4.26). The states and transitions of the

behavioral models are displayed in Table 4.7.

130

Figure 4.26 Standalone behaviors of the subsystems of the Muscle Fiber

Table 4.7 Terms for Figure 4.26

N.Act (T-tubule) Action potential not
active

t3 Transmit action
potential

Act (T-tubule) Action potential active t4 Stop action potential
N.Act (Sarc.
Reticulum)

No Ca2+ release t5 Activate release of
Ca2+

Act (Sarc.
Reticulum)

Ca2+ release active t6 Stop release of Ca2+

UnBr Unbridged t7 Bridge myofibrils
Br Bridged t8 Unbridge myofibrils

In this step, the states of the subsystems are mapped to that of the root system. In

the case of the muscle fiber, the states of the T-tubules (T-ts), Sarcoplasmic Reticulum

(SR), Myofibril (Myo) and the Sarcolemma (S) are mapped to the states of the muscle

fiber. This mapping is displayed in Table 4.8. The state of the Sarcolemma does not

change, thus it is in its Natural state (Nat).

131

Table 4.8 State Mappings for the Muscle Fiber

Muscle Fiber (Fl) T-ts (N.Act), SR (N.Act), Myo (UnBr), S (Nat)

Muscle Fiber (Rgd) T-ts (Act), SR (Act), Myo (Br), S (Nat)

As displayed in Table 4.8, when the Muscle Fiber is in the flexible (Fl) state, the T-

tubules and Sarcoplasmic Reticulum are not active (N.Act) and the myofibril is in its

unbridged (UnBr) state. When the Muscle Fiber is in its rigid (Rgd) state, the T-tubules

are transmitting the action potential (Act), the Sarcoplasmic Reticulum is releasing Ca2+

(Act), and the Myofibrils are in the bridged (Br) state.

The subsystems of the Myofibril, the actin and myosin filaments, can now be

modeled. The standalone behaviors and state mappings are displayed in Figure 4.27 and

Table 4.9.

Figure 4.27 Standalone behaviors for subsystems of Myofibril

Table 4.9 Terms for Figure 4.27

Blkd Myosin-binding
sites blocked

t9 Expose myosin-
binding sites

Exp Myosin-binding
sites exposed

t10 Block myosin-
binding sites

UnBnd Myosin unbound to
actin

t11 Fire myosin head

Bnd Myosin bound to
actin

t12 Release myosin
head

132

Next, the states of the collagen fibril bundles are mapped to that of their

subsystems. The mappings are displayed in Table 4.10.
Table 4.10 State Mappings for Myofibril

Myo (UnBr) Actin(Blkd), Myosin (UnBnd)
Myo (Br) Actin(Exp), Myosin (Bnd)

5) Define interface relationships between subsystems

The interface relationships are defined in Figure 4.26 and Figure 4.27.

Precedence arcs are denoted by dashed arrows and synchronous arcs are denoted using

the double, dashed lines.

6-8) Generate combined behavioral model, Identify Subnets, and Create

Macrotransitions

Since steps 6-8 are iterative, the discussion below is combined.

The reachability graph of the lowest decomposition level, the actin and myosin

filaments are now generated. The combined behavioral model for the actin and myosin

filaments is displayed in Figure 4.28. As displayed in the figure, the initial marking of

the system is [Actin(Blkd), Myosin (UnBnd)]. When transition t9 fires, the marking of

the system becomes [Actin(Exp), Myosin (UnBnd)], denoting that the myosin-binding

site of the actin filament is exposed.

Figure 4.28 Combined Behavioral Model for subsystems of the Myofibril

Next, using the isomorphic state mappings in Table 4.10 above, the subnets are

identified. Following the inheritance procedure, the subnets are inherited to the

macrotransitions of the Myofibril. The subnets and macrotransitions of the Myofibril are

displayed in Figure 4.29.

133

Figure 4.29 Identification of subnets for the Myofibril

As displayed in Figure 4.29, subnet (t9,(Exp/UnBnd),t11) is inherited to

macrotransition t7 of the Myofibril. Next, the combined behavioral graph for the

subsystems of the Muscle Fiber (Sarcolemma, Myofibril, Sarcoplasmic Reticulum, and

T-tubule) is generated using the reachability graph. This graph is displayed in Figure

4.30.

Figure 4.30 Combined Behavior Graph for subsystems of the Dermis

Using this combined behavioral graph, the subnets are identified and inherited

into the behavior graph of the Muscle Fiber. The overall hierarchical model of the

behavior of the Muscle Fiber is displayed in Figure 4.31.

134

Figure 4.31 Overall Hierarchical PN Model for Sea Cucumber Dermis

Based on this hierarchical model displayed in Figure 4.31, the behavior of the

dermis can be viewed at multiple levels of abstraction. This multi-layered view allows us

to systematically extract the functional strategy from the system.

9) Extract system strategy

Based on the hierarchical net in Figure 4.31, the strategy can be extracted as

follows:

Strategy (Fl, Rgd) = (t3/t5, t7)=(T-ts(transmit action potential)/Sarc. Reticulum

(Activate release of Ca2+), Myofibril (Bridge myofibrils)). We can also expand t7 to

reveal another layer of behavior as Strategy (Nat, Rgd) = (t3/t5,t9,t11) = (T-ts(transmit

action potential)/Sarc. Reticulum (Activate release of Ca2+), Actin (Expose myosin-

binding sites), Myosin(Fire myosin head)). Using natural language, the strategy is as

follows:

135

“An increase of stiffness from the flexible state of the Muscle Fiber to the rigid

state is caused by the following process: an action potential of the T-tubules causes the

Sarcoplasmic Reticulum to release Ca2+, which then causes the Myofibrils to become

bridged. The Myofibrils become bridged because the Ca2+causes myosin-binding site of

the actin filament to be exposed, which then triggers the myosin filament to fire and bind

to actin.”

Following the same procedure, Strategy (Rgd, Fl) = (t4/t6, t8)=(T-ts(stop action

potential)/Sarc. Reticulum (stop release of Ca2+), Myofibril (Unbridge myofibrils)). By

expanding t8, Strategy (Rgd, Fl) = (t4/t6, t10 ,t12) = T-ts(stop action potential)/Sarc.

Reticulum (stop release of Ca2+), Actin (Block myosin-binding sites), Myosin(release

myosin head)). Using natural language, the strategy is as follows:

“A decrease in stiffness from the rigid state of the Muscle Fiber to the flexible

state is caused by an unbridging of the myofibrils, which unbridge in the absence of Ca2+

release by the Sarcoplasmic Reticulum. The absence of Ca2+ causes the myosin-binding

site of the actin filament to become blocked again, which causes the head of the myosin

filament to retract.”

By considering the strategies used for changes of state of the entire system, the

overall strategy can be abstracted and stated in simpler terms as:

“Stiffness in the Muscle Fiber is changed by controlling the bridging of the

actin and myosin filaments of Myosin”

4.5 CLOSURE AND VALIDATION

At the onset of this chapter, the following question was proposed:

(RQ2) How can the behavior of biological systems be hierarchically represented using

Petri nets, while preserving the fundamental properties at each hierarchal level?

It was hypothesized in Hypothesis 2 that using the systematic method for Reverse

Engineering Biological Systems will ensure that the fundamental properties of

boundedness, reachability, and liveness will be preserved across hierarchical levels. To

136

validate this hypothesis, mathematical proofs of boundedness, liveness, and reachability

across hierarchical levels were presented in Section 4.3. Through this analysis, it was

concluded that the proposed method does indeed ensure that the fundamental properties

are preserved. This was largely due to the use of the reachability graph to generate the

combined behavioral graph and the subnet inheritance definition. Example problems of

the use of the proposed method in representing biological system behavior and extracting

behavioral strategies were also presented in Section 4.4.

Theoretical Structural Validity

With respect to our validation strategy presented in Figure 4.32, theoretical

structural validity was addressed.

Figure 4.32 Validation Summary for Chapter 4

Theoretical Structural Validation involves checking the individual constructs and

assumptions upon which the method is built, as well as checking the internal consistency

of the method when combining the individual constructs. In Chapters 2 and 3, the

theoretical constructs of the method were addressed. In this chapter, the internal

consistency of the method is checked using a flowchart and systematic steps presented in

Section 4.2.

137

In this chapter, the method for Reverse Engineering Biological Systems was

presented. In Chapter 5, identification of relevant biological solutions and strategies is

addressed. Specifically, a repository structure for efficiently storing and retrieving

biological strategies is presented.

138

CHAPTER 5 STRATEGY REPOSITORY DEVELOPMENT

The overarching aim of this research is that of aiding the designer in the ideation

process through the use of biological strategies. We believe that leveraging biological

strategies in the design process will lead to a more thorough navigation of the designer’s

design space. In Chapters 3 and 4, the hierarchical Petri net (hPN) representation for

biological systems, as well as a method to extract behavioral strategies from these

representations, was presented. In this chapter, a repository is developed to capture

biological (and engineering) strategies and allow speedy access to these strategies in the

Conceptual Design process. The hPN representation is used to structure this repository.

The outline of this dissertation is displayed in Figure 5.1.

Figure 5.1 Chapter 5 and the Dissertation Outline

Several researchers have attempted to systematize the bio-inspired design process.

Vincent and coauthors [3, 13] seek to integrate knowledge from nature into TRIZ, a

systematic method for inventive problem solving developed by Russian researchers.

139

Researchers from the University of Toronto [136, 22, 23] proposed using a functional

keyword search through biological literature to identify potential analogies. Researchers

from the Rocky Mountain Institute/Biomimicry Guild and the University of Maryland

[26] have developed searchable databases of biological systems. Other researchers [24]

have developed a searchable database containing both natural and artificial systems.

Refer to Section 2.2 for a lengthier presentation of the current approaches.

Although the current approaches are useful in storing and providing access to

biological information in design, the generic keyword-based retrieval process often

suffers by either providing too many and/or irrelevant design results [30]. By structuring

biological information using ontologies, biological strategies can be more efficiently

retrieved from a knowledge base. Specifically, in this chapter, we ask the following

research question:

“ How can hierarchical Petri net representations of biological systems be structured to

aid retrieval of relevant strategies from a knowledge repository?”

To answer this question, it was hypothesized in Chapter 1 that:

Hypothesis 3: An ontology of concepts from hierarchical Petri net representations of

biological systems can be represented using Description Logics. Subsumption in

Description Logics will enable consistent and precise retrieval of relevant biological

strategies from a knowledge repository.

To test this hypothesis, an ontology is developed for representing the strategy, as

well as the functional, behavioral, and structural information, of biological and

engineering systems (Section 5.1). Next, Description Logics (DL) are used to encode this

ontology into the repository (Section 5.2). Once encoded, the subsumption inference

mechanisms in DL are utilized to ensure consistent and precise retrieval of biological and

engineering strategies (Section 5.3). Lastly, a testbed repository of biological and

engineering strategies is developed to empirically evaluate the retrieval process afforded

by subsumption in DL (Section 5.4)

140

5.1 ONTOLOGY DEVELOPMENT

In this research, biological systems are represented using a hierarchical Petri net

representation (Chapters 3 and 4) and behavioral strategies are extracted from these

systems using this representation. The goals of the repository are to aid the designer in

identifying relevant biological systems and allowing access to their respective strategies.

To aid in retrieval of these strategies, the information contained in the hPN representation

is structured using an ontology. An overview of the Petri net representation is displayed

in Figure 3.12, and presented here for convenience.

Figure 5.2 Petri net representation (Figure 3.11)

To develop the ontology, this research follows the steps outlined by [30] for

ontology development. First the overall schema, or scope, of the ontology is identified

and primary concepts identified. Next, taxonomies under these individual concepts are

constructed. Inter-relationships are then formed between concepts across taxonomies.

Lastly, the ontology is structured using the concepts and inter-relationships between these

concepts.

141

5.1.1 Schema definition

The first step in developing an ontology is to define the overall schema of the

ontology [30]. This schema indicates the relevant set of concepts that will be represented

in the ontology. The following concepts, or themes, of the hPN model are important for

retrieval in Conceptual Design, and must be explicitly represented in the ontology.

Functional information - Functional information is needed to aid in the retrieval of these

strategies from the repository. In the Conceptual Design phase of P&B [5], one of the

primary tasks of the designer is the search for working principles to fulfill the function of

interest. Because of this, systems and their associated behavioral strategies are

represented by the functions they achieve. In this research, function is viewed as a

mapping of the behavior of a system to the behavior of its supersystem [54]. In the hPN

representation (see Figure 5.2), function is defined as a tuple of the driving inputs (a3, in

Figure 5.2), and the functional outputs (a4) of the system. Therefore, in the ontology, the

driving inputs and functional outputs of the system should be explicitly represented. For

example, in the search for a system that produces force as a response to an electrical

input, biological and engineering strategies can be supplied that fulfill this function, such

as that of piezoelectric effect.

Behavioral information – Behavioral information includes information on how a

particular system achieves its function. Behavioral information needs to be described for

situations where designers are looking for novel strategies for performing a particular

behavior. In the hPN, behavior is defined as the intrinsic change of state of the system.

Specifically, in the hPN representation, behavior is defined by the states of specific

attributes of the system (P) and the actions governing the change of state (t). In this

ontology, the attributes by which the system is defined as well as the actions governing a

change of state of these attributes should be explicitly defined. For example, if the

designer is searching for a particular strategy for increasing the stiffness of a particular

system, strategies for electrorheological fluids can be supplied.

142

System Strategy- The aim of the repository is allow access to and retrieval of relevant

biological and engineering strategies. Therefore, this information must be explicitly

represented in the ontology. In this research, the strategy of a system is defined as the

means by which a system achieves a behavior. In the hPN representation, the strategy is

considered the behavior of the lower level subsystems that contribute to the behavior of

the system, and defined using the subnets of behaviors (t). The strategy is extracted from

the hPN representation through simulation of the net. For example, the behavior of a

magnetorheological fluid may be defined as “increase stiffness”, whereby the strategy

can be stated shortly as the “stiffness in the MR fluid is changed by controlling the

bonding between magnetic particles in a carrier fluid with a magnetic field”. Strategy

gives a much richer view of behavior, describing how the individual components of the

system contribute to the system behavior of increasing stiffness.

Structure – Structural information allows the user to identify the strategies of specific

systems. The structure of the system is the identifier for the component of the system. In

this research, the terms system and structure are used synonymously. In the hPN, the

system is defined by its boundary.

Domain – Domain allows the designer to do a specialized search for a system or strategy

within a particular domain, such as a biological or engineering domain.

The schema can now be described as including functional, behavioral, structural,

strategy, and domain information. The specific concepts from the hPN representation

that will be defined are as follows: function by its driving inputs and functional outputs,

behavior by its attributes and actions governing change of these attributes, system type,

and environment of operation. The ontology model is displayed in Figure 5.3.

143

Figure 5.3 Overall schema for strategy ontology

5.1.2 Taxonomy development

Now that the concepts of the ontology have been defined, taxonomies of these

concepts are constructed. “Taxonomies are hierarchical classifications of concepts within

a subdomain” [30]. Taxonomies utilize ‘is_a’ relationships, which denote parent-child

relationships between concepts. Taxonomies for the concepts defined in Figure 5.3 are as

follows:

Flow (Driving Input and Functional Output) Taxonomy

The driving inputs and functional outputs of the systems are flows of energy, material,

and signals into and out of the system. To define these taxonomies, we leverage the

functional basis [30], a classification of functions (verbs) and flows (nouns) used to

formally describe the function of a system. The functional basis integrates research

efforts from the National Institute of Standards and Technology (NIST) and two US

universities and their industry partners into a single classification system. Specifically,

we leverage the flow classification scheme from the functional basis to define the flow

taxonomy. A sample of the flow taxonomy is displayed in Figure 5.4.

144

Figure 5.4 Sample of Flow Taxonomy

Action Taxonomy

Given a driving input, the actions of the system govern the change of state of the system.

These actions are described using verbs, such as increase, control, stop, etc. The action

taxonomy also leverages the work done in the functional basis. In the functional basis, a

verb classification scheme is developed to describe the action of the function. In this

case, we use these verbs to describe the actions of the behavior of the system. In

evaluating the functional basis, Ahmed and Wallace [137] found that the functional basis

could be used to describe 94% of the verbs used by engineers in describing their designs.

A sample of the action taxonomy is displayed in Figure 5.5.

145

Figure 5.5 Sample of the Action Taxonomy

Attribute taxonomy

The attributes of the system are used to define the context by which the states of the

system are defined. Attributes are defined using properties of the system. To define the

attribute taxonomy, a comprehensive survey of mechanical engineering textbooks and

reference books was performed. Common properties were classified and the taxonomy

was structured. A sample of the property taxonomy is displayed in Figure 5.6.

Figure 5.6 Sample of the Attributes Taxonomy

146

System strategy taxonomy

The system strategy is the means by which the behavior of the system is performed. The

strategy taxonomy is composed of defined concepts, meaning that not only is the

taxonomy defined by is_a relationships, but is also defined by relationships with other

concepts. These inter-relationships are defined in Section 5.1.3. A sample of the

strategies entered into the ontology is displayed in Figure 5.7. In Figure 5.7, these

strategies are only structured using is_a relationships.

 

Figure 5.7 Sample of the System Strategy Taxonomy

Structure Taxonomy

The structure taxonomy is composed of the systems in which the strategy is performed.

In the hierarchical Petri net representation, a strategy is attached to the top-level system

of interest, as opposed to its subsystems. Therefore, the scope of the structure taxonomy

only includes representation of this top-level system. For instance, consider the

Magnertorheological Effect strategy. This strategy is enacted by Magnetorheological

fluids, not by the components of the fluid, such as the carrier fluid and particles. A

147

structure can have multiple strategies enacted within it (ie. the human muscle (structure)

can have a strategy for contraction and for stiffness change). A sample of the structure

taxonomy used in this work is displayed in Figure 5.8.

 

Figure 5.8 Sample of the Structure Taxonomy

Domain taxonomy

The domain taxonomy is used to distinguish the domain from which the system

originates. In this research, we focus on two domains, engineering and biological. These

domains can also be divided into smaller sub-domains, but this was excluded as part of

this work.

5.1.3 Ontology Structuring

In the next step in the development of the ontology, inter-relationships between

concepts across different taxonomis are formed. The relationships and their definitions

are summarized in Table 5.1.

148

Table 5.1 Definitions of the Relationships

Relationship Concept Filler Definition of the relationship
satisfiesFunction System

strategy
has_input,
has_output

Describes the function that the strategy
fulfills

 hasInput System
strategy

Flow concept A nested role of satisfies_function
representing the relationship between a
system strategy and the driving input of the
system

 hasOutput System
strategy

Flow conept A nested role of satisfies_function
representing the relationship between a
system strategy and the functional output
of the system

refinesBehavior System
strategy

has_property,
has_action

Describes the behavior that the strategy
refines.

 hasAttribute System
strategy

Attribute
concept

A nested role of has_behavior representing
the relationship between a system strategy
and the attribute of the system

 hasAction System
strategy

Action
concept

A nested role of has_function representing
the relationship between a system strategy
and the action of the system

hasSystem System
strategy

Structure
concept

Describes the structure that the strategy is
performed in.

hasStrategy Structure
Concept

System
Strategy

Inverse relationship of hasSystem.
Describes the strategy that the structure
uses to fulfill its respective function.

fromDomain System
strategy

System type
concept

Describes the domain that the strategy
originates.

The last step in developing the ontology is structuring the ontology using the

concepts and relationships defined in Table 5.1. The basic structure of the ontology is

displayed in Figure 5.9.

149

Figure 5.9 Ontology Structure

As seen in the figure, the ontology is structured by relationships between the

system strategy and its functional, behavioral, structural, and domain concepts.

5.2 DESCRIPTION LOGICS

Description logics [138] are formalisms used to represent domain-specific

concepts and relationships between them. DLs, reviewed in Section 2.3, provide a formal

syntax and semantics for describing knowledge within a domain in terms of concepts and

properties that specific individuals must satisfy. In this ontology, the concepts in Figure

5.9 are formally defined using Description Logics as follows:

Flows ⊑ ⊤
Actions ⊑ ⊤
Attributes ⊑ ⊤
Domain ⊑ ⊤
Structure ⊑ ⊤ ⊓ ∃hasStrategy.SystemStrategy
SystemStrategy ⊑ ⊤ ⊓ ∃ satisfiesFunction.[∃hasInput.Flow ⊓

∃hasOutput.Flow] ⊓ ∃refinesBehavior.[∃hasAction.Action
⊓ ∃hasAttribute.attribute] ⊓ ∃hasStructure.Structure ⊓
∃fromDomain.Domain

150

The focus of this ontology is the retrieval of relevant strategies. In this work,

strategies are extracted using the Method for Reverse Engineering Biological Systems

(see Chapter 3). Strategies are viewed as refinements of system behavior, or specific

physical phenomena driving a particular behavior. Strategies (and behaviors) are used to

satisfy a particular function of a system. Strategies are also utilized by a particular system

or structure. A domain specification is used for strategy to distinguish between strategies

from the engineering and biological domains. Therefore, as seen above, system strategy

is defined as something that (1) satisfies a function, (2) refines a behavior, (3) has a

structure, and (4) from a particular domain of application.

The schema of the proposed ontology is illustrated using the example of the

mutable connective tissue of the sea cucumber (Section 4.4.1). The strategy extracted

using the hierarchical Petri net representation is as follows:

“Stiffness in the dermis is changed by controlling the association of the collagen fibril

bundles”

This strategy is short-termed 'mutable connectivity', and listed in the ontology as

'MutConn-SeaCucumber'. Using the relationships defined in Table 5.1, the strategy is

represented in the ontology as follows:

MutConn-SeaCucumber ≡ SystemStrategy ⊓ ∃satisfiesFunction.[∃hasInput.Affinity ⊓

∃hasOutput.Force] ⊓ ∃ refinesBehavior.[∃hasAction.Increment ⊓

∃hasAttribute.Stiffness] ⊓ ∃hasStructure.SeaCucumberDermis ⊓

∃fromDomain.Biological

This representation describes the strategy 'Mutconn-SeaCucumber' as :

• something that satisfies a function having an input of chemical affinity and

an output of force

• something that refines a behavior of 'increase stiffness'

• something performs with the dermis of the Sea Cucumber

• something that is from the biological domain.

151

5.3 IMPLEMENTATION

5.3.1 Software Implementation

The ontology and its description logic implemention are encoded using an ontology

editor software (Protégé), a DL reasoner software (RacerPro), and a DIG interface

between them. These components are displayed in Figure 5.10 [139].

Protégé-OWL

OWL File
Storage

DIG Adapter /
HTTP Interface RacerPro

Figure 5.10 Ontology Software Implementation Environments

The individual components and their descriptions, referenced from [75], are as

follows:

Protégé-OWL

Protégé-OWL editor is an extension of Protégé that supports developing

ontologies using the Web Ontology Language (OWL) [140-142]. Protégé-OWL is an

open-source ontology development environment with functionality for editing OWL

based ontologies[65].

RacerPro

RacerPro is a knowledge representation system that implements a highly

optimized tableau calculus for various DLs. RacerPro is the back-end reasoner used

within Protégé-OWL and implements the HTTP interface called DIG for connecting with

Protégé-OWL. This reasoner was initially developed at the University of Hamburg,

Germany. RacerPro is actively supported and future releases are developed at Concordia

University in Montreal, Canada, and at the University of Applied Sciences in Wedel near

Hamburg, Germany.

152

OWL DL File Storage

OWL DL is a standard XML-based language that is used for explicitly

representing the meaning of terms in vocabularies and the relationships between those

terms. OWL DL provides support for developing ontologies using DLs representations.

OWL is a standard ontology language by W3C. OWL is the markup language used to

store DL ontologies [66].

DIG Interface

The DIG Interface is a standardized interface based on XML for DLs systems.

The DIG interface is developed by the DL Implementation Group (DIG). The DIG

interface is an emerging standard for providing access to description-logic reasoning via

an HTTP-based interface to a separate reasoning process [143].

Using the above environment, concepts (termed classes in Protégé) and

representations (termed roles within Protégé) are implemented, as shown in Figure 5.11

and Figure 5.12, respectively.

153

Figure 5.11 Concept (class) Taxonomies implemented in Protégé

Figure 5.12 Relationship (role) implementation in Protégé

154

Figure 5.11 displays the basic 'is_a' relationships used to structure the concept

taxonomies and Figure 5.12 shows the more complex relationships used to link concepts

from different taxonomies. Strategy concepts are linked to other concepts using these

inter-relationships. The Protégé condition window for the mutable connectivity example

from Section 5.2 is displayed in Figure 5.13.

Figure 5.13 Protégé Implementation of Sea Cucumber Dermis

5.3.2 Repository Implementation

The software implementation of the repository was considered in Section 5.3.1.

In this section, the different roles that are needed to build the repository are considered.

There are two distinct roles needed in building the repository: the information gatherer

and repository encoder. The primary role of the information gatherer is to retrieve

biological system information from the biological domain. This includes decomposing

the biological system into its functional, behavioral, and structural parts (using the

155

method for Reverse Engineering Biological Systems). Someone familiar with the

biological domain should perform this role.

The role of the encoder includes encoding the information from the biological

domain into the repository. Specifically, this role includes encoding the functional,

behavioral, and structural information into the repository using Description Logics. A

simple software interface could be used to reduce the load on the encoder. This interface,

such as that found in Section 5.5.2.1, can be used to shield the DL representation process

from the repository encoding process. The interface could then allow the information

gatherer the tools to encode the biological information into the repository.

5.4 SUBSUMPTION IN DESCRIPTION LOGICS AND RETRIEVAL

In this research, we utilize inference mechanisms from Description Logics to aid

in retrieval of relevant strategies from the repository. The two mechanisms of primary

interest in this research are subsumption and satisfiability. Satisfiability determines the

logical soundness of concept descriptions with respect to a terminology, whereas

subsumption tests whether a concept or a role is a more general expression of another

role [85]. As described in Section 2.3, using the tableau methods, subsumption can be

reduced to the satisfiability of concept descriptions expressed as follows:
 C ⊑ D iff C ⊓ ¬D ∅ Equation 5.1

In other words, C is subsumed by D if and only if the intersection of C and the

negation of D is null.

In this research, two types of subsumption hierarchies are identified. A type I

subsumption is formed by the modification of expressions without using the taxonomic

structure of the defined vocabularies. A type II subsumption is formed using the

taxonomic structure of the vocabularies. In a simplified example, let us define three

general concepts as follows:

• Concept A ≡ ∃satisfiesFunction.[∃hasInput.Current ⊓ ∃hasOutput.Force]

156

• Concept B ≡ ∃ satisfiesFunction.[∃hasInput.Electrical_Energy ⊓

∃hasOutput.Mechanical Energy]

• Concept C ≡ ∃satisfiesFunction.[∃hasInput.Current ⊓ ∃hasOutput.Force]

⊓ ∃fromDomain.Engineering

From this example, Concept A ⊑ Concept B by type II subsumption. Type II

subsumption is formed because Electrical_Energy and Mechanical Energy subsume

Current and Force, respectively, in the Flow taxonomy (defined in Section 5.1). With

respect to querying the repository, this means that a strategy satisfying a function with an

input of current and output of force (Concept A) will also satisfy a more general query

requesting a strategy for a function with an input of electrical energy and output of

mechanical energy (Concept B). Also, due to the addition of the Engineering domain

restriction in Concept C, Concept C ⊑ Concept A by type I subsumption. In this case, a

strategy from the engineering domain satisfying a function with an input of current and

output of force (Strategy C) will satisfy the more general function without the domain

restriction (Straegy A).

5.5 CONSISTENCY AND PRECISION IN RETRIEVAL

In this research, subsumption is used to retrieve relevant strategies from the

strategy repository. For retrieval through subsumption, query nodes are utilized. These

queries into the repository are viewed as concept descriptions with necessary and

sufficient conditions for objects to satisfy. Therefore, query nodes are entered into the

repository as a search mechanism. Through subsumption, only the relevant strategies that

satisfy the query should be returned. Specifically, it is hypothesized that

Hypothesis 2: Subsumption in Description Logics will enable consistent and precise

retrieval of relevant biological strategies from a knowledge repository.

157

The two key claims in this hypothesis are that of (1) consistency and (2) precision of

subsumption in DLs. Consistency in retrieval is important because it shows that the order

in which we build the repository, as well as the order in which we query the repository,

have no impact on the retrieval process. Precision is important in retrieval as it shows

that all the results returned will be directly relevant to the query. These claims will be

evaluated in the following sections.

5.5.1 Consistency in retrieval

Yim [75]and Udoyen [85] have shown subsumption in DL to produce unique and

consistent hierarchies. Hierarchies created using subsumption in DL can be shown to be

consistent and correct for acyclic terminologies by proving that subsumption in DL

imposes an order relation, or partial order on entities when the subsumption relation is

computed. Wille and Ganter [144] list conditions for asserting that a binary relation R on

a set M is a partial order relation. They state that for all elements x, y, z ∈ M,

• the relation is reflexive, i.e., xRx

• the relation is antisymmetric, i.e., xRy and x ≠ y ⇒ not yRx

• the relation is transitive, i.e., xRy and yRz ⇒ xRz

These conditions can be shown to hold for subsumption by evaluating the

condition for logical subsumption, which is a binary relation. The three conditions can be

shown to hold by asserting their truth value when the condition for logical subsumption

expressed in Equation 5.1 is true. Equation 5.1 represents the tableau algorithm of

subsumption in DL. Udoyen presents the mathematical proof for showing that Equation

5.1 satisfies the above three conditions[145]. This proof is generic such that it is

applicable to subsumption for any description logics. Subsumption in DL has been

shown to be consistent and correct, therefore retrieval through subsumption should also

be consistent and correct.

158

5.5.2 Precision in retrieval

Now that subsumption in DL has been shown to be consistent, we now

empirically evaluate the precision in retrieval of biological and engineering strategies

through subsumption. Precision is defined [85] as follows:

�

Precision = Number of retrieved relevant documents
Number of retrieved documents

 Equation 5.2

As seen in Equation 5.2, a precision of 1 means that 100 percent of the documents

retrieved were relevant, and thus the search was fully precise. A precision score of less

than 1 means that some (or many) irrelevant results were returned and some secondary

filtering process is needed to identify the relevant results.

5.5.2.1 Test-bed development

A testbed was developed to aid in querying the ontology and receiving the

retrieval results. The repository testbed can be divided into three major components: the

user interface, the reasoner, and the processing modules. A graphical illustration of this

testbed is displayed in Figure 5.14.

159

Figure 5.14 Illustration of the Repository Testbed

User Interface

Communication with repository begins with the user interface. The user interface

is the only component that directly interacts with the user. The interface has two major

functions: (1) to take information from the user and pass it to the process modules and (2)

to display search results. No major computations or calculations occur within the user

interface—it simply facilitates the searching of the repository.

Process Modules

After the user interface has collected the data, the information is passed to the

processing modules. The processing modules can be viewed as ‘translators”—the

processes that convert information into languages recognizable by the user interface or

the reasoner. First, the information is parsed into specific categories, such as “Input” and

“Verb,” using a parser. After the categories are parsed, they are then encoded into

information modules using the DIG module. The DIG module utilizes the DIG interface

to encode these modules. The DIG interface is a standardized XML (extensible markup

language) developed by the Description Logic Implementation group specifically to

160

interface with description logic systems. Once the information has been processed using

the DIG interface, the information modules will be ready to interface with the reasoner.

In addition to these modules, another process module is used singularly to convert query

results from the reasoner to a form that is easily understandable by the user.

Reasoner

The third and final component, the reasoner, functions as the repository, storing

and retrieving all biological and engineering design models. The actual information

models are implemented in a specialized language, OWL, (web ontology language) by

using the program, Protégé (see Section 5.3). These models are then converted into the

DIG interface in Protégé and are subsequently stored in the reasoner. For the purposes of

this research, the open source reasoner, RacerPro, has been utilized (see Section 5.3). The

information modules created by the process modules component are used to query the

reasoner. The reasoner searches through the design hierarchy and returns the relevant

search results. These results are passed back to the processing modules, converted, and

eventually back to the user interface. The user interface and process modules were

developed using Microsoft Visual C# 2008 Express Edition, XML DOM (Document

Object Model), and XSLT (Extensible Stylesheet Language).

The user interface is displayed in Figure 5.15, Figure 5.16, and Figure 5.17. The

code for the user interface is presented in Appendix A.

161

Figure 5.15 User Interface

Figure 5.16 User Interface - Drop-down menu

162

Figure 5.17 Formatted results of the User Interface

In Figure 5.15, the user interface for querying the repository is displayed. The

interface includes inputs for function, behavior, structure, domain, and strategy. The user

inputs a function-based strategy search using ‘Input’ flow and ‘Output’ flow menu boxes.

Flow concepts are hierarchically arranged in drop-down menus for user selection (see

Figure 5.16). A behavior-based strategy search is input using the verb-noun pairing of

‘Action’ and ‘Attribute’ concepts. These concepts are also arranged using drop-down

menus. Users can further refine the function and behavior-based searches using

‘Structure’ and ‘Domain’ concepts. A strategy-based structure search can also be used to

query the repository using the “Strategy” drop-down menu. This will retrieve the

strategies related to a specific structure. Once all the desired criteria are entered into the

user interface, the query is formed using the ‘Search’ button. The retrieval results are

then formatted and returned to the user, as displayed in Figure 5.17. In the results tab, the

name of the retrieved concepts is displayed. In the future iteration of this user interface,

163

other relevant information, such as the extended strategy description, will also be

displayed.

One of the advantages of ontologies is concept abstraction, where a query can be

further abstracted up the hierarchy to give a broader range of results. Arrow buttons have

been included in the User Interface beside each input to allow the results from the parent

of an existing concept to be retrieved.

The top menu bar of the User Interface has 3 tabs: ‘File’, ‘Results’, and’Log’. The

‘File’ tab allows the user the close the application. The results from the query can be

saved to a text file or launched in a web browser using the ‘Results’ tab. The ‘Log’ tabs

allows the user to clear the log.

In this section, the repository testbed was presented. In the next section, this

repository is populated with biological and engineering strategies.

5.5.2.2 Repository population

To test the hypothesis, a set of 38 biological and engineering systems was selected

and encoded into the repository. Nine of these systems with variable-stiffness properties

are described below; the remaining systems are displayed in Appendix B:

• Human muscle in isometric contraction (Human_Muscle-IsomContraction)

with a strategy of “Stiffness in the Muscle Fiber is controlled by controlling the

bridging of the actin and myosin filaments of Myosin” (Crossbridge effect)

• Electrorheological fluids (ER_Fluid) with a strategy of “Stiffness in the ER

Fluid is changed by controlling the alignment of dielectric particles with an

electrical field” (Electrorheological Effect)

• Shear-thickening fluids (Shear-Thickening_Fluid) with a strategy of “Stiffness

in the Shear-thickening fluids is changed by the hydro-clustering of particles in a

carrier fluid as a result of high velocity force” (Hydro-clustering)

• Magnetorheological fluids (MR_Fluid) with a strategy of “Stiffness in the MR

fluid is changed by controlling the bonding between magnetic particles in a carrier

fluid with a magnetic field” (Magnetorheological_Effect)

164

• Dermis of the Sea Cucumber (SeaCucumberDermis) with a strategy of

“Stiffness in the dermis is changed by controlling the association of the collagen

fibril bundles” (MC-SeaCucumber) for mutable connectivity.

• Invertebral Ligaments of the Brittle Star (BrittleStar-InvertebralLigaments)

with a strategy of “Stiffness in the invertebral ligaments is changed by controlling

the association of the collagen fibril bundles” (MC-BrittleStar)

• Arm Ligaments of the Feather Star (FeatherStarArmLigaments) with strategy

of “Stiffness in the arm ligaments is changed by controlling the association of the

collagen fibril bundles” (MC-FeatherStar)

• Tooth and spine ligaments of the Sea Urchin (SeaUrchinToothSpineLigaments)

with a strategy of “Stiffness in the tooth and spine ligaments is changed by

controlling the association of the collagen fibril bundles” (MC-Sea Urchin)

• Spine of the Starfish (StarfishSpine) with strategy of “Stiffness in the starfish

spine is changed by controlling the association of the collagen fibril bundles”

(MC-Starfish)

Next, these strategies were described using Description Logics. The DL

descriptions of the above strategies are displayed in Table 5.2.
Table 5.2 Description Logic descriptions

Strategy DL Description
Crossbridge-
Effect_SlidingFilament

∃satisfiesFunction.[∃hasInput.Affinity ⊓ ∃hasOutput.Force] ⊓ ∃
refinesBehavior.[∃hasAction.Increment ⊓ ∃hasAttribute.Stiffness]
⊓ ∃hasStructure.Human_Musle-IsomContraction ⊓
∃fromDomain.Biological_Domain

Electrorheological_Effect ∃satisfiesFunction.[∃hasInput.Current ⊓ ∃hasOutput.Force] ⊓ ∃
refinesBehavior.[∃hasAction.Increment ⊓ ∃hasAttribute.Stiffness]
⊓ ∃hasStructure.ER_Fluid ⊓ ∃fromDomain.Engineering_Domain

Hydro_clustering ∃satisfiesFunction.[∃hasInput.Force ⊓ ∃hasOutput.Force] ⊓ ∃
refinesBehavior.[∃hasAction.Increment ⊓ ∃hasAttribute.Stiffness]
⊓ ∃hasStructure.Shear-Thickening_Fluid ⊓
∃fromDomain.Engineering_Domain

Magnetorheological_Effect ∃ satisfiesFunction.[∃hasInput.MagneticFluxRate ⊓
∃hasOutput.Force] ⊓ ∃refinesBehavior.[∃hasAction.Increment ⊓
∃hasAttribute.Stiffness] ⊓ ∃hasStructure.MR_Fluid ⊓
∃fromDomain.Engineering_Domain

165

Table 5.2 Continued

MutConn-
BrittleStarLigaments

∃ satisfiesFunction.[∃hasInput.Affinity ⊓ ∃hasOutput.Force] ⊓ ∃
refinesBehavior.[∃hasAction.Increment ⊓ ∃hasAttribute.Stiffness] ⊓
∃hasStructure. BrittleStar-InvertebralLigaments ⊓
∃fromDomain.Biological_Domain

MutConn-
FeatherStarArmLigaments

∃ satisfiesFunction.[∃hasInput.Affinity ⊓ ∃hasOutput.Force] ⊓ ∃
refinesBehavior.[∃hasAction.Increment ⊓ ∃hasAttribute.Stiffness] ⊓
∃hasStructure. FeatherStarArmLigaments ⊓
∃fromDomain.Biological_Domain

MutConn-
SeaCucumberDermis

∃ satisfiesFunction.[∃hasInput.Affinity ⊓ ∃hasOutput.Force] ⊓ ∃
refinesBehavior.[∃hasAction.Increment ⊓ ∃hasAttribute.Stiffness] ⊓
∃hasStructure.SeaCucumberDermis ⊓
∃fromDomain.Biological_Domain

MutConn-SeaUrchinTooth ∃ satisfiesFunction.[∃hasInput.Affinity ⊓ ∃hasOutput.Force] ⊓ ∃
refinesBehavior.[∃hasAction.Increment ⊓ ∃hasAttribute.Stiffness] ⊓
∃hasStructure. SeaUrchinToothSpineLigaments ⊓
∃fromDomain.Biological_Domain

MutConn-StarfishSpine ∃ satisfiesFunction.[∃hasInput.Affinity ⊓ ∃hasOutput.Force] ⊓ ∃
refinesBehavior.[∃hasAction.Increment ⊓ ∃hasAttribute.Stiffness] ⊓
∃hasStructure. StarfishSpine ⊓ ∃fromDomain.Biological_Domain

In Table 5.2, the strategies MutConn-BrittleStarLigaments, MutConn-

FeatherStarArmLigaments, MutConn-FeatherStarArmLigaments, MutConn-

SeaCucumberDermis, and MutConn-SeaUrchinTooth share a common parent strategy of

MutuableConnectivity but have different structures. All the concepts listed in Table 5.2

share a common parent of “Stiffness Change”, where all the strategies listed are strategies

for controlling stiffness.

5.5.3 Strategy Retrieval

In Section 5.5.2, the testbed repository was presented. In this section, retrieval of

strategies from the repository is discussed. Specifically, in Section 5.5.3.1, different

types of queries used in engineering design are discussed how to structure these queries

to retrieve strategies. In Section 5.5.3.2, precision of the retrieval strategy is test

empirically.

5.5.3.1 Querying the Repository

166

In the proposed repository, designers use queries to describe the intent of their

search in a manner that allows it to be compared to other concepts in the ontology.

Retrieval is based on comparing the prescriptive function convention of the function

structure to the descriptive function and behavior representation utilized in the repository.

In the search for solutions, there are several types of relevant queries that are

envisioned in this research: (1) search for a strategy to satisfy a function using

input/output flows of energy, material, and signal (2) search for a strategy that refines a

particular behavior (function) using a verb-noun pairing (3) search for the strategies that a

particular system or structure uses to satisfy a function and/or behavior and (4) search for

strategies from a particular domain that satisfy a function and/or behavior.

Verb-noun pairings of function are considered purpose functions and input/output

flow pairings are considered action functions [56]. In defining function, the intention, or

purpose, of the device or component is expressed using a verb-noun pairing. Action

functions, on the other hand, are defined at much lower levels of design specification.

At higher levels of the design specification, when only the intention, or purpose,

of the device is known, a behavior-based (verb-noun) search is advantageous. This

allows comparison of the intended function of the to-be-designed device to the actual

behavior that a strategy satisfies. Using DL, this query is structured as ∃

refinesBehavior.[∃hasAction.Action ⊓ ∃hasAttribute.attribute], where the verb is termed

“action” and the noun is termed “attribute” in the representation. For instance, consider a

designer that is searching for a strategy that can “change the color of an artifact”. The

query will be structured as ∃ refinesBehavior.[∃hasAction.Change ⊓

∃hasAttribute.Color], where “change” is the action (verb) and “color” is the attribute

(noun) of interest. In this case, the designer is searching for a strategy for achieving the

intended function of changing color, such as “variable refraction”. Since strategies are

defined in terms of the behaviors that they refine (or intended functions that they satisfy),

the query node will subsume all strategies that refine a behavior of “change color”.

At more refined levels of design specification, when input/output flows are

known, a function-based input/output search is useful. This search allows comparison of

the flows of the intended device to that of the function that the strategy satisfies. Using

167

DL, this query is structured as ∃satisfiesFunction.[∃hasInput.Flow ⊓ ∃hasOutput.Flow].

For instance, consider a designer that is searching for “a strategy that produces (outputs)

color based on an input of mechanical force”. A query will be structured as ∃

satisfiesFunction.[∃hasInput.Force ⊓ ∃hasOutput.Color]. This search is often used to

refine the verb-noun search, giving a much more specific set of strategies. For instance,

consider a designer searching for “ a strategy the changes color using an input of

mechanical force”. Using DL, a query can be structured as ∃

refinesBehavior.[∃hasAction.Change ⊓ ∃hasAttribute.Color] ⊓ ∃

satisfiesFunction.[∃hasInput.Force ⊓ ∃hasOutput.Color].

Designers can also search for the strategies that a particular system uses to satisfy

a function or behavior. For instance, the designer is searching for the strategy that human

muscle uses to generate force. This type of search is useful when browsing for novel

strategies to mimic or in narrowing the search field of possible strategies. Using DL, the

query is structured as ∃hasStructure.Structure.

Using the domain concept, designers can specify the domain of application in

which the strategy is applied. This is particularly useful when designers only want to

retrieve novel biological strategies or in the case where designers are looking for ready-

made strategies and solutions from the engineering domain. In this case, the designer

would add the domain concept as ∃fromDomain.Domain to an existing search.

To test the precision of retrieval through subsumption, several queries were

developed to represent different scenarios upon which the repository may be searched.

The queries used for this study are displayed in

Table 5.3.

168

 Table 5.3 displays the query description in natural and DL language, as well as

strategies considered as relevant through comparison.
Table 5.3 Query Concepts

Query Description
(Natural
Language)

Description
(DL Representation)

Relevant

Q1 A strategy that
allows one to
increment stiffness
of a system

∃refinesBehavior.
[∃hasAction.Increment ⊓
∃hasAttribute.Stiffness]

Magnetorheological effect,
Electrorheological effect,
Crossbridge effect, Hydro-
clustering, MC-(All)

Q2 A strategy that
allows one to
change the stiffness
of a system

∃

refinesBehavior.[∃hasAction.Chang
e ⊓ ∃hasAttribute.Stiffness]

Magnetorheological effect,
Electrorheological effect,
Crossbridge effect, Hydro-
clustering, MC-(All)

Q3 An engineering
strategy that allows
one to change the
stiffness of a
system

∃

refinesBehavior.[∃hasAction.Chang
e ⊓ ∃hasAttribute.Stiffness] ⊓
∃fromDomain.Engineering_Domain

Magnetorheological effect,
Electrorheological effect,
Hydro-clustering

Q4 A strategy that
transforms
chemical energy
into mechanical
energy

∃

satisfiesFunction.[∃hasInput.Chemi
cal ⊓ ∃hasOutput.Mechanical]

Crossbridge effect, MC-
(All)

Q5 Any strategy that
produces force

∃

satisfiesFunction.[∃hasInput.Flows
⊓ ∃hasOutput.Force]

Magnetorheological effect,
Electrorheological effect,
Crossbridge effect, Hydro-
clustering, MC-(All)

Q6 A strategy that
allows a system to
change shape

∃

refinesBehavior.[∃hasAction.Chang
e ⊓ ∃hasAttribute.Shape-Physical]

None

Q7 A strategy that
increments the
stiffness of the
system and has a
chemical affinity
input and force
output

∃

satisfiesFunction.[∃hasInput.Affinit
y ⊓ ∃hasOutput.Force]] ⊓ ∃
refinesBehavior.[∃hasAction.Incre
ment ⊓ ∃hasAttribute.Stiffness]

Crossbridge effect, MC-
(All)

Q8 The strategy that
the human muscle
in isometric
contraction

∃hasStructure.Human_Musle-
IsomContraction

Crossbridge effect

Using the testbed repository presented in Section 5.5.2, the queries in

169

Table 5.3 were processed. These results are presented in the following section.

5.5.3.2 Retrieval results

Protégé represents subsumption through a concept hierarchy. In the hierarchy,

subsumption is represented using arrows, with the tail representing the subsumed concept

and the head represented the subsumer concept. It should also be noted that subsumption

extends to all the children of the subsumed concept. Using the queries above for

retrieval, the following subsumption hierarchy, displayed in Figure 5.18, was computed.

Figure 5.18 Subsumption hierarchy

The results from the test-bed for the individual queries are described below:

Query 1: Query 1 seeks to find a strategy that allows one to increment stiffness in a

system. Through subsumption, all the strategies are retrieved. Since all the retrieved

strategies refine a behavior that increments stiffness, the precision is calculated as 1.

Query 2: Query 2 seeks a strategy that allows one to change the stiffness of a system.

Through subsumption, all the strategies are retrieved. Since the action ‘change’

subsumes ‘increment’ in the action taxonomy, the query retrieves all the strategies all the

strategies that refine a behavior that increments stiffness. Precision is also calculated as 1

in this case.

170

Query 3: Query 3 seeks an engineering strategy that allows one to change the stiffness of

a system. Query 3 subsumes strategies Magnetorheological fluid, Electrorheological

fluid, and Hydro-clustering. Since all the concepts from the engineering domain that

increment stiffness are retrieved, precision is calculated as 1.

Query 4: Query 4 seeks a strategy that transforms chemical energy into mechanical

energy. Query 4 subsumes strategies Crossbridge effect and Mutable Connectivity.

These strategies have an input of chemical affinity (a type of Chemical energy) and an

output of force (a type of Mechanical energy), thus the precision is calculated as 1.

Query 5: Query 5 seeks any strategy that produces force. Since all the strategies have an

output of force, all the strategies are retrieved. Precision is calculated as 1.

Query 6: Query 6 seeks a strategy that allows a system to change shape. None of the

strategies refine a strategy that refines shape, therefore none are subsumed by Query 6.

Query 7: Query 7 seeks a strategy that increments the stiffness of the system and has a

chemical affinity input and force output. Query 7 subsumes strategies Crossbridge effect

and Mutable Connectivity, which both have inputs of affinity and outputs of force and

behaviors that increment stiffness. In query 7, precision is calculated as 1.

Query 8: Query 8 seeks the strategy of the human muscle in isometric contraction. The

query retrieves the crossbridge effect, which is indeed the strategy of the human muscle.

Therefore, the precision of this query is 1.

In this section, the precision of subsumption in DL was empirically tested. Using

the test queries on the testbed repository, subsumption-based retrieval was found to be

precise. In every case except for when no relevant results were found (Query 6), the

precision was found to be 1.

171

5.5.4 Comparison with current approaches

In this section, the performance of the strategy repository is compared with the

performance of the Biomimicry Database [21] and the Functional Keyword Search [22,

23, 29] (reviewed in Section 1.2.2). In Section 5.5.3, the precision of the subsumption-

based retrieval strategy utilized in the Strategy Repository was empirically tested.

However, in order to get a full picture of the performance of a retrieval strategy, retrieval

recall must also be considered. Recall is defined using Equation 5.3 [85].

�

Recall = Number of retrieved relevant documents
Number of relevant documents

 Equation 5.3

 In this comparison, retrieval performance is defined in terms of a retrieval

effectiveness score, or an F1 score [146]. This F1 score, defined by Equation 5.4, takes

into account retrieval precision and recall in a single metric.

�

F1 score = 2 ⋅Precision ⋅Recall
Precision + Recall

 Equation 5.4

Based on Equation 5.4, an F1 score of 1 means that all retrieved results are relevant and

all the relevant results were retrieved. A low score means that a large number of

irrelevant results were retrieved and/or only a small number of the relevant results was

retrieved.

With respect to the Strategy Repository, using the results from Section 5.5.3.2, the

F1 was found to be 1 for all queries except Query 6 (when no results were retrieved).

This is because the subsumption algorithm in DL not only ensures that all the strategies

retrieved are relevant (Section 5.5.3.2), it also assures that all the relevant results are

retrieved. Therefore, subsumption in DL ensures both high precision and recall in

retrieval of biological strategies.

172

Biomimicry Database

 The Biomimicry Database utilizes a searchable database of biological information

to identify biological analogs. In this study, the effectiveness of the database is tested by

running test queries into the database and computing the precision, recall, and F1 score

for the results. First, the queries were formulated and the relevant results were

determined by browsing the repository. Next, the queries were performed and the

performance metrics calculated. The queries, relevant results that should be retrieved for

these queries, the actual retrieved results, and the performance metrics are displayed in

Table 5.4.
Table 5.4 Query Results for the Biomimicry Database

 Query Relevant Results Retrieved Results Precision Recall F1
Q1 Create color • Diffraction

• Photonic Crystals
• Pigments
• Structural Color
• Thin-film

Interference
• Emission of

Colored Light
• Scattering

• Diffraction
• Photonic

Crystals
• Pigments
• Structural

Color
• Thin-film

Interference

1 0.71 0.83

Q2 Color
creation

• Diffraction
• Photonic Crystals
• Pigments
• Structural Color
• Thin-film

Interference
• Emission of

Colored Light
• Scattering

• Diffraction
• Scattering
• Thin-film

Interference

1 0.42 0.60

173

Table 5.4 Continued

 Query Relevant Results Retrieved Results Precision Recall F1
Q3 Change

temperature
• Color Change for

Thermoregulation
• Conventional Air

Heating/Cooling
Direct Evaporative
Cooling

• Emissivity for
Temperature
Regulation

• Evaporative
Cooling

• Varying Insulation
• Varying Posture
• Regional

Heterothermy

• Direct
Evaporative
Cooling

1 0.13 0.22

Q4 Regulate
temperature

• Color Change for
Thermoregulation

• Conventional Air
Heating/Cooling

• Countercurrent
Heat Exchange

• Emissivity for
Temperature
Regulation

• Evaporative
Cooling

• Fur Insulation
• Gular Flutter
• Varying Insulation
• Varying Posture
• Regional

Heterothermy

• Varying
Posture

1 0.10 0.18

Q5 Generate heat • Non-shivering
Thermogenesis
(NST)

• Brown Adipose
Tissue

• Brown
Adipose
Tissue

1 0.50 0.67

In the results found in Table 5.4, the retrieval effectiveness was found to be less

than one in every case, with query effectiveness going as low as 0.18 in the case of Q4.

174

The low retrieval performance is a product of the keyword-based search strategy utilized

in the database. In the retrieval strategy used, an exact match of terms is needed for

retrieval. Although the exact keyword match aids in increasing precision, the tightened

criteria for exact matching excludes many relevant results. This results in low recall

scores, thus lowering the overall effectiveness of the retrieval strategy. For instance,

consider Queries 1 and 2, where a strategy was sought for color creation and queries were

structured as both “create color” and “color creation”. As can be seen by the results, Q1

retrieved more relevant strategies than Q2, even though the only difference between the

searches is the verb tense. The lower effectiveness scores means that relevant and

potentially useful strategies are not identified. This can be contrasted with the

subsumption-based retrieval strategy, where a classification system of the keywords is

utilized and where exact keyword matches are not needed for retrieval. The classification

based matching and the rigorous subsumption algorithm used in the Strategy Repository

results in higher effectiveness scores, and thus better performance, when compared to the

keyword-based system used in the Biomimicry Database.

Functional Keyword Search

For comparison of the performance of the Functional Keyword Search to that of

the Strategy Repository, results published in literature were used. In [147], Stroble and

co-authors demonstrated the use of an organized verb-noun search through biological

literature for a smart flooring example. The text was searched using the verb “detect”

and a series collocated nouns. A sample of the retrieved results is displayed in Figure

5.19. The relevant results are denoted by bold text.

175

Figure 5.19 Sample results from the Functional Keyword Search [147]

In the study, a total of 22 matches were found, with only 8 of them being deemed

relevant to the query. Because the total number of relevant results in the text was not

reported, the effectiveness score could not be calculated. However, from these results,

the precision was calculated to be 0.36. This low precision means that a large number of

irrelevant results were retrieved. This can negatively impact the idea generation process,

as the user will have to go through and filter out the irrelevant results. Depending on the

number of irrelevant results retrieved, this secondary filtering process could potentially

be a very time consuming and tedious process. Because the subsumption-based retrieval

strategy used in the Strategy Repository results in a precision and recall of 1, the

secondary filtering of irrelevant results is avoided.

5.6 CLOSURE AND VALIDATION

Current keyword-based retrieval strategies utilized in the current approaches to

bio-inspired design suffer from inefficient retrieval, either retrieving too many and/or

176

irrelevant results. This requires the designer to go through an additional step of filtering

out relevant results. In this chapter, to improve on the current inefficiencies in retrieval,

we address the following question:

“ How can hierarchical Petri net representations of biological systems be structured to

aid retrieval of relevant strategies from a knowledge repository?”

To answer this question, it was hypothesized that

Hypothesis 3: An ontology of concepts from hierarchical Petri net representations of

biological systems can be represented using Description Logics. Subsumption in

Description Logics will enable consistent and precise retrieval of relevant biological

strategies from a knowledge repository.

To validate this hypothesis, an ontology of concepts from hierarchical Petri net

representations of biological systems was implemented using Description Logics in

Sections 5.1 and 5.2. Then, subsumption in Description Logics was used to enable

consistent and precise retrieval of relevant biological strategies from a knowledge

repository. The two primary components validated in this chapter were the consistency

(Section 5.5.1) and precision (Section 5.5.2) of subsumption-based retrieval.

Consistency in retrieval is important because it ensures that our retrieval results

will always be the same. To validate consistency in our hypothesis, we presented

mathematical evidence in Section 5.5.1 that subsumption in DL was consistent, thus

retrieval based on subsumption in DL will also be consistent. Precision is particularly

important in retrieval as it shows that all the results returned will be directly relevant to

the query, thus eliminating the need for a secondary filtering process. To test precision in

retrieval, we do so empirically by developing a test repository of biological and

engineering strategies. We then test the precision of subsumption-based retrieval using

subsumption hierarchies formed by queries (formal search nodes). In Section 5.5.3,

subsumption-based retrieval was found to be precise. This means that all the strategies

retrieved in every query were relevant.

177

In all, subsumption in DL was found to enable both consistent and precise

retrieval of strategies from a repository. Because of this, the use of DL as a structuring

mechanism for an ontology of hierarchical Petri net concepts is also justified. Although

the repository structure was found to be beneficial to the user, these advantages do bear a

cost. The drawback to this approach is the fact that it is information front-loaded,

meaning that a significant pre-work is needed to build the repository to a point that it is

useful beyond narrow scopes. This pre-work includes finding the biological systems

and associated strategies, as well as encoding these strategies for retrieval using DL. The

Biomimicry Database bears a similar front-loaded cost, whereas the Functional Keyword

Search alleviates much of this cost by searching through biological literature. By using

an existing resource, the information does not need to be previously extracted and

encoded.

It should also be noted that the retrieval results from Section 5.5 were found using

a sparsely populated state of the repository, compared to the vast number of biological

and engineering strategies within their respective domains. Therefore, the question

becomes, “What should we expect from a much larger repository?” To answer this

question, we examine how the retrieval consistency, retrieval precision, and

computational time are expected to change as the repository grows. Consistency in DL

assures that the order in which the repository is built does not matter and precision

assures only relevant results are retrieved. Because of the mathematics-based tableau

algorithm for calculating subsumption, the consistency and precision in retrieval are

expected to be consistent as the repository grows. However, as the repository grows, the

consistency and precision in retrieval afforded by DL comes at the cost of computational

complexity. In this research, the attribute language with full existential quantification

(ALE) was used. With respect to complexity, ALE has a computational complexity of

NP (non-deterministic polynomial time), meaning that problems of this class cannot be

solved in polynomial time. NP refers to how the computation time for comparing two

concepts in the ontology for subsumption relationships varies with the size of the

concepts [85]. As the repository grows and new taxonomies are added, strategies can be

described using additional concepts from these ontologies to aid in retrieval. As the

178

number of additional concepts used to describe the strategy grows, the computational

complexity and computational time will grow in non-deterministic polynomial time.

To examine the performance of the DL-based repository as the number of

concepts in the repository grows, we consider experiments performed by Moller et al.

[148] on the scalability of description logic instance retrieval. In this study, the authors

described a set of university databases using DL. The authors measured the

computational time of a constant set of 14 queries as the number of concepts

(universities) in the repository grew. To give an idea of the number of concepts

considered in the experiments, 1 university had approximately 1714 individuals, 53738

concept assertions, and 49336 role assertions. The experiments were conducted on an

AMD 64-bit processor, 4GB, Linux operating system. The results from this experiment

are displayed in Figure 5.20.

Figure 5.20 Computational time versus concept number in DL [148]

In the experiments, the authors found linear relationships between the indexing, loading,

and preparation times and the number of universities. This means that the computational

time will grow linearly with the size of the repository. Yim [75] and Udoyen [85] also

179

found linear growth of computation time with the number of concepts in their respective

repositories.

Validation

With respect to our validation strategy, displayed in Figure 5.21, the validity of

the strategy repository was addressed in this chapter.

Figure 5.21 Validaton Overview in Chapter 5

In Chapter 2, the constructs of the proposed repository and retrieval method,

engineering ontologies and Description Logics, were addressed. In this chapter,

Empirical Structural Validity and Empirical Performance Validity follow the Theoretical

Structural Validity from Chapter 2.

Empirical Structural Validity (ESV)

ESV includes accepting the appropriateness of the example problems used to

verify method performance. In this research, the repository is used to store and

efficiently retrieve biological and engineering strategies in Conceptual Design. This

repository structure is tested within this context using a testbed repository. Using this

testbed, the precision of the retrieval method was tested. The queries used to test the

180

retrieval method are structured after typical requests made by designers, thus the test

method is deemed appropriate.

Empirical Performance Validity (EPV)

EPV involves accepting the usefulness of the method for some representative

example problems. In this case, the usefulness of the repository and the retrieval method

is tested using the testbed repository and test queries. It was found that subsumption in

DL leads to consistent and precise retrieval of biological strategies. Comparing this to

the typical keyword search, in which precision is < 1, this repository structure and

retrieval method is deemed useful.

In addition, the retrieval performance of subsumption-based retrieval was

compared to that of the Biomimicry Database and the Functional Keyword Search. The

performance, measured with an effectiveness score F1, was found to be less than 1 for

both alternatives. This was compared to an effectiveness score equal to 1 for

subsumption-based retrieval. With that, the subsumption-based retrieval strategy is

deemed useful.

181

CHAPTER 6 BIO-INSPIRED CONCEPT GENERATION

In Chapter 3, the proposed hierarchical Petri net (hPN) representation for

biological systems was presented. Building on this representation, a method for

extracting biological strategies from these representations, the method for Reverse

Engineering Biological Systems, was presented. In Chapter 5, a repository for storing

and retrieving these strategies from a knowledge base was presented. In this chapter, the

constructs of the method for Reverse Engineering Biological systems and the strategy

repository are synthesized into approaches for Bio-Inspired Concept Generation. The

dissertation outline is displayed in Figure 6.1.

Figure 6.1 Dissertation Outline and Chapter 6

Bio-Inspired Concept Generation typically follow two distinct approaches [20]:

problem-based and solution-driven. In the problem-based approach, the designer begins

with an engineering problem and searches for solutions to this problem through the

engineering design process. In the solution-driven approach, the designer begins with a

182

biological solution and attempts to mimic the behavior of this system in the engineering

domain. These approaches will be addressed in the following sections.

6.1 THE FOUNDATION

In Chapter 4, the Method for Reverse Engineering Biological Systems was

presented. This method is used as a means for systematically decomposing the function,

behavior, and structure of biological systems using hierarchical Petri nets. This

decomposition process has value to both engineers seeking to be inspired by biological

strategies (problem-based approach) and those seeking to reverse engineer and extract a

design strategy from a biological system (solution-driven approach). In the problem-

based approach, the proposed method can be used indirectly in populating the strategy

repository (Chapter 5). This strategy repository is then used to retrieve relevant

biological strategies to inspire design. In the solution-driven approach, the proposed

method can be used directly as a means of analyzing the biological system and extracting

a design strategy from this system.

In Chapter 5, the strategy repository was developed as a means of retrieving

relevant biological strategies in Conceptual Design. This repository also has value in

both the problem-based and solution-driven approach. In the problem-based approach,

the strategy repository can be used to access biological strategies, which are then used to

inspire novel engineering systems. In the solution-based approach, the strategy

repository can be used as a means for locating engineering systems, as well as other

biological systems, that mimic the strategy of the reverse engineered system. This will

aid in generating new ideas to mimic the strategy of the biological system.

Building upon this foundation, the problem-based and solution-driven approaches

to bio-inspired Conceptual Design are presented in Sections 6.2 and 6.3, respectively.

183

6.2 PROBLEM-BASED BIO-INSPIRED CONCEPT GENERATION

6.2.1 Conceptual Design

In the problem-based approach to Bio-Inspired Design, the designer follows the

systematic design method and uses biological strategies in the search for solutions. The

Pahl and Beitz Systematic Design Method is divided into four phases: Planning and

Clarifying the Task, Conceptual Design, Embodiment Design, and Detail Design. The

phase of particular interest in this research is Conceptual Design (displayed in Figure

6.2). The goal of the Conceptual Design phase is for the designer to determine the

principle of a solution, or the concept. In the Conceptual Design phase, the designer

takes the specification of the artifact being designed and develops it into a concept

through various steps. Abstraction identifies the critical specifications and requirements

of the artifact. Using a solution-neutral problem statement, a function structure is created

to identify functional relationships of different sub-functions of the solution. Solution

variants are established for the sub-functions by identifying working principles, then

assembling them into working structures and combining feasible combinations of those

working structures. These variants are then evaluated based on technical and economic

criteria, and the best identified as concepts to be embodied and detailed in the

Embodiment and Detail Design phases.

184

Figure 6.2 Conceptual Design phase of the Pahl and Beitz Systematic Design Methodology

One of the key steps in Conceptual Design is the ‘Search for Working Principles’.

In this step, the designer searches for specific solutions (working principles) to the sub-

functions defined in the function structure. In this search for solutions, the aim of the

designer should be to canvas as much of the design space as possible. To aid in this

process, Pahl and Beitz [5] suggest several methods for identifying solutions for each

sub-function, including literature search, analyzing natural and other known technical

systems, and intuition-based methods (see Section 2.1). It should be noted that it is

beneficial to use multiple methods for identifying solutions so as to widen the solution

field as broadly as possible.

6.2.2 Problem-based Bio-Inspired Conceptual Design development

As stated in Section 6.1, this method is intended to be used as an alternative to

other solution finding methods. Specifically, with respect to the Conceptual Design

phase of Pahl and Beitz, we use this method in the Search for Working Principles. We

also specify the inputs to the method as the functions and/or subfunctions elaborated in

185

the Establish Function Structures step of Conceptual Design, and the outputs being

several design solutions (working principles) for consideration in the morphological

matrix. The method placement is displayed in Figure 6.3.

Figure 6.3 Bio-inspired Concept Generation and Conceptual Design

Now that the proposed method has been interfaced with the systematic design method,

we now turn to development of the method itself. The problem-based approach to Bio-

Inspired Concept Generation can be divided into three key steps: Detail requirements for

function of interest, Identify biological strategies, Generate ideas. These key steps are

displayed in Figure 6.4.

186

Figure 6.4. Problem-based Bio-Inspired Concept Generation

As seen in Figure 6.4, based on the requirements for the functions and sub-functions of

interest identified from the function structure, candidate biological systems exhibiting

these same functions are identified. The identified biological strategies are then used to

stimulate ideas in idea generation. Specific steps for the proposed method for Bio-

Inspired Concept Generation in the problem-based context are detailed as follows:

1) Detail the sub-function of interest

In this initial step of the approach, the requirements and specifications for the sub-

function of interest are identified. First, the input and output flows of the function

are documented. Next, the environment of use of the component, as well as any

other information deemed critical to carry out the function, is documented. The

more information considered in this step eases the search for feasible working

principles in the following steps.

2) Identify biological strategies

187

In this step, biological strategies are identified. The first step in identifying

biological strategies is identifying analogous biological systems. These analogous

systems solve a similar problem or fulfill a similar function to the function of

interest (detailed in Step 1). Behavioral strategies used by the biological system to

fulfill this function of interest are then extracted.

In this research, biological systems and their associated strategies are

identified using the strategy repository defined in Chapter 5. Several retrieval

scenarios are discussed in Section 5.5.3. Additional approaches for identifying

biological strategies include: a review of biological literature, a functional

keyword search through biological literature [136, 22, 23], and the use searchable

databases of biological strategies [12, 3, 24, 26, 13, 21]. The use of experts in

biology and related fields provides a good starting point for this search.

3) Generate ideas

In this step, the retrieved biological strategies are used to stimulate the generation

of working principles and populate the morphological matrix. Using the

biological strategies, the designer is tasked with the search for engineering

technologies that mimic the strategies. These technologies are then entered into

the morphological matrix and Conceptual Design continues with the selection and

combination of working principles.

In the problem-based approach to Conceptual Design, the strategy repository allows

direct access to biological strategies, which otherwise are difficult and time-consuming to

identify. The method for Reverse Engineering Biological Systems is used to populate the

repository with novel biological systems and strategies.

6.2.3 Method Characteristics and Validation

In this research, the proposed method for Reverse Engineering Biological

Systems (Chapter 4) and the strategy repository (Chapter 5) are validated in the context

of problem-based and solution-driven Conceptual Design. In this section, the problem-

based approach was presented. The problem-based approach to Bio-inspired Conceptual

Design is intended for problems with the following characteristics:

188

1. Problem-based, meaning the designer begins with a design problem and proceeds

through the design process systematically in the search for solutions

2. Open solution field – there are multiple solutions that can satisfy a given problem

3. The designer wishes to be inspired by biological strategies, implying a transfer of

strategy at a high level of abstraction

4. Novelty of solution is valued

In Chapter 7, the problem-based approach is tested using cognitive studies

(Section 7.1) and a comprehensive example of the design of a hybrid, bullet resistant

armor system (Section 7.2). In the cognitive studies, students are given a design problem

and asked to generate solutions. In the studies, some of the students are exposed to

biological strategies in the idea generation process, where others are either exposed to no

strategy or a human-engineered strategy. The ideas generated are compared on a basis of

novelty and variety. In the comprehensive example, we start with a design problem and

proceed through the design process systematically. In this example, the strategies are

retrieved using the strategy repository, as opposed to being given, as in the case of the

cognitive studies. The novelty of the concept developed is compared to other concepts

found in industry. As can be seen from the discussion above, both the cognitive studies

and the comprehensive example possess the characteristics of the problems in which the

proposed approach is intended, including: starting with a problem with an open solution

field, bio-inspiration is desired, and novelty is valued. Therefore, these tests are

accepted.

6.3 SOLUTION-DRIVEN BIO-INSPIRED CONCEPTUAL DESIGN

In the solution-driven approach to Bio-inspired Design, the designer takes a

reverse engineering approach to engineering design. In this approach, the designer

begins with a biological solution and seeks to decompose the system physically and

functionally. With respect to the Pahl and Beitz systematic design method, the proposed

approach is used as a means of adaptive design. In adaptive design, the designer begins

with analysis of an existing solution and decomposes the system into a function structure.

189

Depending on the requirements of the design, the functions can be modified by variation,

addition, or omission of individual sub-functions or by changes in their combination [5].

The method for solution-driven Bio-inspired Conceptual Design is developed in Section

6.2.1.

6.3.1 Solution-driven Bio-Inspired Conceptual Design development

The method for solution-driven bio-inspired Conceptual Design is displayed in

Figure 6.5.

Figure 6.5 Solution-driven Bio-Inspired Concept Generation

After the biological system is identified, it is analyzed using the Method for Reverse

Engineering Biological Systems put forth in Chapter 4. Using this method, the biological

strategies are extracted from the system and used as a basis for the design of a new

engineering system. The four key steps are detailed as follows:

1) Identify biological system of interest

In the first step, the biological system of interest is identified. Identified systems

typically possess some form of novel quality or feature that can be leveraged in

the engineering domain.

190

2) Analyze biological system

In this step, the biological system is analyzed using the method for Reverse

Engineering Biological Systems. In the first step, the system is decomposed into

its physical units. A behavioral model is then created using the hierarchical Petri

net representation.

3) Extract biological strategies

Using this representation, the biological strategy is extracted using the method

presented in Section 4.2. Specifically, the strategy (S’) of behavior (t) is denoted

by the behavioral path (

�

σ (

�

•St ,

�

St •)) of its subnet St, or S’(t) =

�

σ (

�

•St ,

�

St •),

where the behavior from an initial state of the system to another state is defined as

�

σ (M0,Mn) = t1,t2,⋅ ⋅ ⋅ ⋅ ⋅tn .

4) Generate Ideas

In this step, the biological strategies are used to stimulate the generation of

working principles. In this approach, engineering solutions are found that mimic

the behavior of the biological strategies. The current strategy repository has also

been set up to aid in identifying engineering solutions that satisfy a particular

function or behavior. These technologies are then entered into the morphological

matrix and Conceptual Design continues with the selection and combination of

these working principles.

In the solution-based approach, the method for Reverse Engineering Biological Systems

aids the designer in systematically decomposing the function, behavior, and structure of

the biological system of interest. Using the hierarchical Petri net representation

developed, the biological strategies can be easily extracted from the system and used to

generate engineering alternatives. The strategy repository adds additional value in aiding

the designer in locating engineering solutions that also share this same strategy.

6.3.2 Method Characteristics and Validation

In this section, the solution-based approach to Bio-inspired Conceptual Design

was presented. The solution-driven is intended for problems with the following

characteristics:

191

1. Solution-driven, meaning a reverse engineering approach is followed in

mimicking a novel feature or behavior from an analogous system

2. Target system can be systematically decomposed

3. Quality of solution is valued

4. The designer has the initial time to invest in reverse engineering an analogous

system

In Chapter 8, the solution-driven approach is tested using historical case studies

(Section 8.1) and a comprehensive example of the design of a novel renal replacement

system. In the historical case studies, advances in the bio-inspired systems of aviation

and renal replacement are documented and compared to the behavior of their respective

systems with respect to performance. In the comprehensive example, the human kidney

is decomposed using the proposed method for Reverse Engineering Biological Systems.

The strategy from the kidney is then used to design a new renal replacement therapy that

closely mimics this strategy.

Both of the historical case studies consider advances in fields that were

historically bio-inspired, whereby aviation seeks to defy gravity like birds and renal

replacement seeks to replace the function of the kidney. In both cases, significant effort

was put into studying their biological counterparts and mimicking them in an effort to

design better performing systems. Because both case studies involved design systems

based on an understanding and mimicking of nature, the historical case studies are

accepted as a means for validation. The comprehensive example details the solution-

driven approach to developing a renal replacement therapy that closely mimics the human

kidney. The behavior of the kidney is decomposed and the strategy extracted is used to

develop a quality renal replacement therapy. Since the characteristics of the example

closely mimic that of the intended problem of the proposed approach, the example

problem is accepted as a means for validation.

192

6.4 CLOSURE AND VALIDATION

In this chapter, the method for Reverse Engineering Biological systems and the

strategy repository are synthesized into approaches for Bio-Inspired Concept Generation.

These approaches include a problem-based and solution-driven approach to concept

generation. In Section 6.1, the Conceptual Design process was detailed. The problem-

based approach utilizing the tools introduced in this work was presented in Section 6.2.

This method was integrated into the Conceptual Design process and systematic steps for

implementation were presented. In Section 6.3, the solution-driven approach was

detailed. Specifically, the proposed method and the strategy repository were synthesized

into a method to aid in reverse engineering and mimicking novel behavior from

biological systems.

With respect to validation, Empirical Structural Validity (ESV) is addressed in

this chapter. The validation strategy for this chapter is displayed in Figure 6.6.

Figure 6.6 Validation Strategy and Chapter 6

ESV involves accepting the appropriateness of the example problems that are

used to verify the method performance. In Section 6.1.3, the characteristics for which the

proposed method for problem-based Bio-inspired Conceptual Design is intended are

presented. These characteristics were then compared to the characteristics of the

cognitive studies and comprehensive example used for validation. Based on this

193

comparison, the tests were accepted as appropriate for validating the proposed approach

in the problem-based context. In Section 6.2.2, the characteristics for which the solution-

driven approach to Bio-inspired Conceptual Design is intended are presented. These

results were compared to the characteristics of the historical case studies and

comprehensive example used for validation of the solution-driven approach. These tests

were accepted as appropriate after comparing them to the characteristics for which the

proposed method is intended.

194

CHAPTER 7 PROBLEM-BASED BIO-INSPIRED CONCEPTUAL

DESIGN

In the problem-based approach to Conceptual Design, the designer is tasked with

searching for novel and innovative solutions to engineering problems. However, humans

are imperfect search engines [6] and tend to focus on a narrow part of the design space

and overlook many valuable solutions [4]. According to the theory of bounded

rationality [7-9], the space searched is bounded by the limited cognitive abilities of the

designer [2]. To overcome this limitation, designers often employ several techniques to

aid in idea generation (i.e, see [5]). These techniques aid the designer in expanding and

exploring his/her design space more efficiently.

The goal of this research is to aid the designer in generating design ideas in

Conceptual Design through the use of biological strategies. The proposed method for

Reverse Engineering Biological Systems (Chapter 4) is used to systematically extract

biological strategies from biological systems using the hierarchical Petri net

representation (Chapter 3). A strategy repository was structured in Chapter 5 to aid in

consistently retrieving these strategies. In Chapter 6, the constructs of the Method for

Reverse Engineering Biological Systems and the accompanying strategy repository were

synthesized into two approaches for Bio-inspired Conceptual Design: the problem-based

and solution-driven approach. The role of this chapter in the dissertation plan is

displayed in Figure 7.1.

195

Figure 7.1 Dissertation plan and Chapter 7

In this chapter, the impact of biological strategies in the problem-based approach

is reviewed. Specifically, in this chapter, the following research question is addressed:

RQ4: “What is the impact of biological strategies in the conceptual design process?”

To answer this question, it was hypothesized in Chapter 1 that:

Hypothesis 4: 4(a) Exposure to biological strategies will increase the novelty of design

ideas generated and 4(b) will increase the variety of design ideas generated.

To validate this hypothesis, cognitive studies were performed on Mechanical Engineering

students using biological strategies in ideation (Section 7.1). In Section 7.2, a

comprehensive example of the problem-based approach to Bio-inspired Conceptual

Design is presented. In this study, the proposed approach is used in the development of a

hybrid bullet resistant armor system.

196

7.1 COGNITIVE STUDIES

7.1.1 Background

Theories on the effects of exposure to examples in idea generation have

converged on a dual influence model of both negative (design fixation) and positive

(cognitive stimulation) effects [4]. Design fixation refers to conformity effects that result

in subsequent designs after exposing designers to example solutions. Cognitive

stimulation refers to the stimulation of new ideas that occurs as a result of exposure to the

ideas of others. Jansson and Smith [149] found that participants generated a larger

amount of ideas containing features of examples to which they were exposed than did a

control group not exposed to the examples. Similar results were found in studies by

Purcell and co-authors [150, 151], but only when the principles from the example

problem were considered to involve the same knowledge base as the expertise of the

mechanical engineering participants. On the contrary, students in Industrial Design did

not show these conformity effects. Conformity effects were also found in several other

studies [48, 152, 153].

Examples have been shown to also positively influence idea generation through

cognitive stimulation, with the knowledge embodied in the examples stimulating ideas

that designers would not otherwise have been able to access [4]. In a study on idea

generation in groups, Paulus and Yang [154] found enhanced performance in group

brainstorming due to cognitive stimulation. Nijstad [155] found that participants exposed

to ideas from a wide variety of categories surveyed more categories of ideas, compared to

that of participants not exposed to any ideas and participants exposed to ideas from fewer

categories. The authors also argued that problems with larger design spaces are more

likely to show these stimulation effects than ones with smaller spaces. Dugosh [156] also

found stimulation effects in group brainstorming and increased amounts in cases where

participants were asked to attend to the ideas of others.

In this research, the value of bio-inspired techniques in aiding the designer expand

and explore his/her design space in idea generation is assessed. Specifically, the impact

of biological examples on design space exploration and expansion was quantified.

197

Defined metrics [35, 157] relating the novelty and variety of ideas generated in ideation

to expansion and exploration of the design space were used (see Section 2.4). These

metrics for novelty and variety are used to assess the value of biological examples in

ideation. To examine this two experimental studies are conducted in which participants

are exposed to biological examples in the idea generation process. These results are then

compared to that of participants receiving no examples and to those receiving human-

engineered examples.

7.1.2 Experimental Methods

To test Hypothesis 4, two studies were performed. In the first study, participants

generated conceptual designs to solve conflicting design requirements of portability and

effectiveness for a leg immobilization device designed for use in the wilderness. Three

conditions were designed to test Hypotheses 4(a) and 4(b): (1) a condition in which

participants received a biological example after some time in ideation, (2) a condition in

which participants received a human-engineered example after some time, and (3) an

unaided condition where no example was presented. The unaided condition established

a baseline for unaided concept generation. The human-engineered condition established

a baseline for concept generation using within-domain design examples. In the biological

condition, we assessed the value of biological design examples. Comparisons to test our

hypotheses were made both within groups and between groups. The within-group

analysis compared the design ideas generated before and after exposure to the design

example, while the between-group analysis compared the ideas generated after exposure

to a design example in each of the different conditions. In Study 2, a similar procedure

was followed to test the robustness of the results from Study 1.

7.1.2.1 Study 1 – Leg Immobilization versus Portability

 Participants

Twenty-six mechanical engineering students from Georgia Institute of

Technology participated in the Study 1. The students were recruited from a senior level

capstone design course. To be eligible for the course, students must have at least three

198

years of undergraduate engineering coursework and at least one semester of a formal

undergraduate design course. All participants were volunteers and did not receive

payment or course credit for participation in the study.

Materials

All participants were asked to solve the same design problem individually. The

design problem given in Study 1 is displayed in Figure 7.2. In Study 1, participants were

asked to solve a design problem with conflicting design requirements of leg

immobilization and portability.

Mountain-TREK
Mountain-TREK (MTREK) is an outdoor wilderness company that

organizes backpacking trips to the mountains throughout the year.

During these trips, MTREK utilizes trip guides to lead a group of

participants through these wilderness expeditions. For safety reasons,

MTREK requires each of its guides to carry emergency kits containing an

assortment of medical supplies. These kits contain items that can be used

in the case of sickness, insect bites, wounds, trauma, etc. Due to the

other items outfitted in the guides’ packs, available space is limited. In

extreme hiking conditions, MTREK has noticed a significant risk of leg

and ankle dislocations and fractures.

Design challenge

Due to the potential for leg injuries, MTREK is now requiring guides to carry additional supplies to treat

these injuries. In this design challenge, MTREK has hired you to design a device that can be used to

immobilize a joint or limb in case of an extreme injury. This device must (1) be as light and small as

possible when stored in the guides’ packs but (2) rigid enough and large enough to immobilize the leg of an

average-sized male.

Figure 7.2 Design problem for Study 1

Experimental Procedure

This design study was carried out in a classroom setting on the second meeting of

the senior capstone design course. Two experimenters, including the author,

administered the study. At the onset of the study, participants were given the design

problem, several sheets of paper, and a black pen by the experimenters. Participants were

assigned to either the biological (N = 9), the human-engineered (N = 9), or the unaided

199

(N = 8) condition in an alternating fashion based on seating location. The condition

assignment was designated by the color paper they received, although the students were

unaware of this. The students received verbal instructions on how to proceed. Students

were asked to generate and label distinct design ideas, with no explicit instructions being

given regarding quantity or creativity of the design ideas (so as not the bias the

participants). After the instruction and time for questions, the students were given 20

minutes to generate design ideas for the design problem. After the 20 minutes for initial

idea generation, the participants were given blue pens to enable distinguishing design

work from the initial 20 minutes from the second 20 minutes. The participants in the

biological and human-engineered conditions were handed their respective design aids and

verbally instructed that they were receiving design aids that may or may not prove useful

to them and that they were not required to use the aids. Specific procedures for each

condition are described as follows:

Biological Condition - Participants in the biological condition were given a biological

design example at the midpoint of the study that described the variable-stiffness behavior

of the mutable connective tissue of the sea cucumber. The design example included a

pictorial and textual description of the biological systems and is displayed in Figure C. 1

of Appendix C.

Human-engineered Condition – Participants in the human-engineered condition received

a design example with a pictorial and textual description of a human-engineered system

with similar behavior to that of the biological system. The design example described the

variable-stiffness behavior of electro-rheological fluids and is displayed in Figure C. 2 of

Appendix C.

Unaided Condition – After the initial 20 minutes of concept generation, participants in

the unaided condition received no design example and were instructed to continue with

concept generation.

200

After an additional 20 minutes to generate design ideas, the students were stopped

and given a post survey to evaluate their prior knowledge and experience as well as their

understanding of the design examples given to them. Figure 7.3 displays examples of

design solutions generated in Study 1.

(a) (b)

(c) (d)

Figure 7.3 Sample of design ideas from Study 1 (a) Inflatable (b) multiple-part snap (c) electrorheological
fluid chambers with power source (d) chemically-rigidizable

7.1.2.2 Study 2 – Protection versus Comfort

Participants

Twenty-one mechanical engineering graduate students from Georgia Institute of

Technology participated in Study 2. The students were recruited from a design research

201

laboratory. All students had undergraduate degrees in an engineering discipline and

conducted research in a field related to engineering design.

Materials

The design problem given in Study 2 is displayed in Figure 7.4. In this study,

participants were asked to solve a design problem with conflicting design requirements of

level of protection and comfort.

Hybrid Armor
Combat-Zone (CZ) is a defense contractor that develops specialty armor for military and state and

local police units. Current armor comes in two varieties: (1) hard armor (i.e. ceramic plates or shields) for

high risk situations, and (2) soft armor (i.e. Kevlar) for low risk, everyday wear. Soft armor provides

comfort and portability for the user, but offers little protection in the face of high-caliber projectiles or

explosions. Hard armor, on the other hand, provides a maximum level of protection but are too

cumbersome and heavy for long-time use.

Design Challenge

CZ is currently trying to develop a form of hybrid armor for use in high and low risk situations.

There are no restrictions on the design, only that the armor must (1) not restrict the user in everyday

activities and (2) be protective enough for use in high risk situations, should one come about suddenly.

Figure 7.4 Design Challenge from Study 2

Experimental Procedure

Study 2 was carried out in a conference room setting where the design research

lab meetings were normally held. The author administered the study. At the onset of the

study, participants were given a packet containing the design problem, several sheets of

paper, the design example, and a black writing utensil by the experimenters. The design

example was located at the back of the packet and the students were instructed not to flip

202

through the packet. As in the previous study, the domain of design example (biological

vs. human-engineered) was again manipulated in this study. Within their respective

domain, the type of design example was also manipulated. Participants in the biological

condition (N=10) were presented either a variable-stiffness (N=4) or a shape-changing

(N=6) biological example. Participants in the human-engineered condition (N=11) were

likewise presented with either a variable-stiffness (N=5) or shape-changing (N=6)

human-engineered example. Verbal instructions were then given on how to proceed. As

in Study 1, the students were asked to generate and label distinct design ideas, with no

explicit instructions given regarding originality or the number of ideas that the students

were expected to generate. Particular attention was paid to not biasing the participants.

After the instructional period, the students were given 20 minutes to generate

design ideas for the design problem. After the 20 minutes of initial idea generation, the

students were asked to flip to the back of their study packets to the design aid. At this

time, the students were given green pens and verbally instructed that the design aids may

or may not prove useful to them and that they are not required to use the aids. Specific

procedures for each condition are described as follows:

Concept generation using biological design examples - In the biological condition, after

20 minutes of initial concept generation, participants were given a biological design

example describing either (1) the variable-stiffness behavior of human muscle in

isometric contraction or (2) the shape-changing behavior of plants possessing nastic

movement. The design example included a pictorial and textual description of the

biological phenomena of interest. The design examples presented are displayed in

Figure C. 3 and Figure C. 4 of Appendix C.

Concept generation using human-engineered design examples - Similar to that of the

biological test condition, participants in the human-engineered condition were given

human-engineered examples after the initial 20 minutes of concept generation. The

participants in this condition received a pictorial and textual description of either (1) the

variable-stiffness behavior of electro-rheological fluids or (2) the shape-changing

203

behavior of shape memory polymers. The human-engineered design examples used are

displayed in Figure C. 5 and Figure C. 6 of Appendix C.

After an additional 20 minutes of generating design ideas the students were stopped and

given a post survey. Examples of design solutions generated during the study are

displayed in Figure 7.5.

(a) (b)

(c) (d)
Figure 7.5 Sample design solutions from Study 2 (a) Segmented armor (b) armor scales (c) pull-string

activated variable-stiffness armor (d) foldable armor plates

7.1.3 Data Analysis

To investigate the impact of biological design examples on idea generation, we

examined how exposure to biological examples aided designers in expanding their design

space (increased novelty of ideas generated) and exploring their design space (increased

204

variety of ideas generated). Metrics for novelty and variety were assessed using the

drawings and descriptions generated by the participants. The experimenters first coded

the participants’ design ideas. These ideas were categorized with respect to the working

principle used to solve the design problem. After coding the results separately, the

experimenters compared and agreed upon a common categorization. After this point, the

metrics for novelty and variety were calculated based on this categorization. These

metrics are defined and discussed in Section 2.4.

7.1.4 Results

The novelty and variety of the design ideas generated by the participants were

calculated using the metrics defined in Section 2.4. The results were analyzed using two-

tailed, nonparametric Wilcoxon signed-ranked tests and Mann-Whitney U tests at an alpha

level of 0.05 (α = 0.05). The more conservative nonparametric tests were chosen due to

the small sample sizes resulting in non-normally distributed results.

7.1.4.1 Results from Study 1

Novelty

Hypothesis 4a stated that exposure to biological design examples would increase

the novelty of design ideas generated. This hypothesis was tested by comparing the

novelty scores of the participants in the biological condition before and after the design

example was introduced. These results were then compared to that of the human-

engineered and unaided conditions. The mean and standard deviation (SD) of the novelty

scores for the three conditions are displayed in Table 7.1.

Table 7.1 Novelty scores for Study 1

 Control (SD) Bio-Inspired (SD) Human-engineered (SD)
Before 0.31(0.25) 0.34 (0.09) 0.30 (0.20)
After 0.41 (0.33) 0.76 (0.24) 0.89 (0.18)

Analysis of the results from Table 7.1 yields the following:

205

• Participants in both the biological and human-engineered condition showed

statistically-significant increases in novelty (W = 1, p < 0.01 and W = 1, p < 0.01,

respectively) after being exposed to the example; participants in the unaided

condition showed no significant change in the novelty of their design ideas.

• Participants in both the biological and human-engineered conditions generated

design ideas with higher novel (U = 68, p < 0.01) than participants in the unaided

condition, but the novelty scores of participants in the biological and human-

engineered condition did not differ significantly from each other.

These results supported the hypothesis that exposure to biological examples leads to

design ideas of greater novelty. However, we also found the same effect with

participants exposed to the human-engineered example.

Variety

Hypothesis 4b stated that exposure to biological examples would lead to a greater

variety of design ideas. This hypothesis was tested by comparing the variety of the

design ideas produced by the participants before and after the design examples were

introduced. The mean and standard deviation (SD) of the variety scores of participants in

the three conditions are displayed in Table 7.2.

Table 7.2 Variety Scores for Study 1

 Control Bio-Inspired Human-engineered
Before 5.8(5.6) 12.1 (7.8) 13.1 (8.7)
After 5.6 (6.8) 9.4 (7.6) 3.2 (4.3)

The results from Table 7.2 are summarized as follows:

• Participants in the biological and unaided conditions showed no statistically-

significant change in the variety of design ideas during the two phases of the

study while participants in the human-engineered condition showed a significant

decrease (W = 5, p < 0.05) in the variety of design ideas generated after receiving

the example.

206

• The variety of design ideas of participants in the biological and unaided

conditions did not differ significantly.

The hypothesis that exposure to biological examples will lead to a greater variety of

design ideas was unsupported with these results. However, while the biological example

did not increase the variety of design ideas relative to the unaided condition, it did not

decrease the variety of the design ideas, which had resulted in the human-engineered

condition.

7.1.4.2 Results from Study 2

As in Study 1, the novelty and variety of the design ideas generated by the

participants in Study 2 were calculated using the metrics defined in Section 2.3. The

results were analyzed using the nonparametric Wilcoxon signed-rank and Mann-Whitney

U tests at an alpha level of 0.05 (α = 0.05).

Novelty

Hypothesis 4a stated that exposure to biological design examples in ideation

would increase the novelty of design ideas generated. In this study, we aimed to build

upon the results from Study 1 and provide further support for Hypothesis 4a using

multiple examples. Table 7.3 displays the results for the novelty scores of the

participants in Study 2.
Table 7.3 Novelty scores for Study 2

 Biological (SD) Human-
engineered (SD)

Before 0.42 (0.23) 0.52 (0.27)
After 0.93 (0.06) 0.76 (0.28)

Analysis of the results in Table 7.3 yields the following: 

• Participants in the biological condition showed a statistically-significant increase

(W = 0, p < 0.01) in the novelty scores after exposure to the design example.

207

• Participants in the human-engineered condition showed a statistically-significant

increase (W = 6, p < 0.05) in the novelty of design ideas after exposure to the

design example.

The results for this study further support Hypothesis 4a in that exposure to biological

examples aids the designer in generating higher novelty solutions. Participants in the

biological condition showed significant increases in novelty after being exposed to the

biological example.

Variety

Hypothesis 4b stated that the exposure to biological strategies in idea generation

will increase the variety of the design ideas generated. Table 7.4 displays the variety

scores for the participants in Study 2.
Table 7.4 Variety Score for Study 2

 Biological (SD) Human-
engineered (SD)

Before 13.8 (10.9) 14.7 (9.5)
After 7.1 (9.64) 4.73 (5.8)

Analysis of the results in Table 7.4 are summarized below. 

• The biological design example showed no statistically-significant effect on the

variety of design ideas generated.

• The human-engineered design example significantly decreased the variety (W = 3,

p < 0.01) of design ideas generated.

These results further support the results from Study 1 in that exposure to biological

examples had no significant effect on the variety of ideas generated. With that, we could

not find evidence to support Hypothesis 4b.

7.1.5 Discussion

The results from the studies presented in this chapter supported the hypothesis

(4a) that exposure to biological examples in the idea generation process increases the

208

novelty of design ideas. The results from the study did not support the hypothesis that

exposure to biological examples in the idea generation process increases the variety of

design ideas generated, although biological examples do not have the negative effects on

variety that occur with human-engineered examples.

In this work, novelty was defined as the uniqueness of an idea with respect to the

unaided group of ideas generated by the group of participants. Hypothesis 4a stated that

exposure to biological examples in the idea generation process would increase the

novelty of ideas generated, and it was found that exposure to biological examples did

indeed increase the novelty of ideas generated. This increase in novelty signifies that

participants were able to generate ideas that otherwise would not have been accessed

without exposure to the biological example. Shah et al. [35] correlated this increase in

novelty to a broadening of the design space of the designer. In the first study,

participants not receiving any examples showed no increase in the novelty of their design

ideas during the study, while those receiving a human-engineered example showed an

increase in novelty in both studies.

Hypothesis 4b stated that exposure to biological examples would increase the

variety of the design ideas generated. This hypothesis was unsupported by the results

from the two studies. In both studies, the variety before and after exposure to the

biological example showed no statistically-significant difference in variety. Although

exposure to the biological examples did not increase the variety of ideas generated, it did

however seem to maintain the variety of the generated ideas (note: we can not

definitively conclude this from the above studies). Exposure to examples in idea

generation has been shown to cause fixation[149-151], decreasing the variety of the

generated ideas. In both studies, a significant decrease occurred in the variety of ideas

generated after exposure to the human-engineered example, while participants in the first

study that were not exposed to an example showed no change in variety. To find a

possible explanation for these phenomena, we examined the abstraction level at which

characteristics of the example problem were transferred to the design ideas generated.

Knowledge can be transferred from design examples at varying levels of

abstraction. To assess the level of transfer of ideas, we first decomposed the design

209

example into its key characteristics. Next, scores were calculated by analyzing the level

at which the key characteristics were transferred to the design ideas of the particiapants.

The physical principle and working principle levels of transfer were considered. The

results from both studies are displayed in Table 7.5.

Table 7.5 Level of Transfer scores

Level of transfer Bio-Inspired Human-engineered

Physical Principle 1.46 1.71

Working Principle 0.37 1.31

While there was no difference in the number of ideas generated or the number of

ideas possessing characteristics at the physical principle of the example, participants

exposed to human-engineered examples transferred significantly more characteristics (U

= 300, p < 0.01) at the working principle level of abstraction than those exposed to

biological examples. In the human-engineered case, this fixation at lower levels of

abstraction could have constrained the variety of ideas in idea generation. In the

biological case, transferring principles at a high level of abstraction could have allowed a

greater variety of ideas to still be generated.

In reviewing these results, a case for the validity of the results with respect to bias

can also be made. In these studies, two sources of bias could be imagined. The first

source is that of the experimenters influencing the results when giving the instructions.

In these studies, the experimenters gave no specific instructions to the participants

regarding the number and/or type of ideas that they should generate. They also gave

explicit instructions that the participants did not have to use the design aids. The other

source of bias can come from coding the results. To reduce the bias in coding the results,

the experimenters first coded the ideas separately. Then, the categorizations were

compared and a common categorization found. After this point, the scores calculated for

novelty and variety lacked the subjectivity of the experimenters. The metrics were

simply calculated based on the categorizations.

210

In Section 7.1, the benefits of biological strategies in Conceptual Design were

presented. In the cognitive studies, access to relevant biological strategies was assumed.

In the Section 7.2, a comprehensive example of problem-based Bio-inspired Conceptual

Design of a hybrid bullet resistant armor system is presented.

7.2 COMPREHENSIVE EXAMPLE: DEVELOPMENT OF HYBRID, BULLET

RESISTANT ARMOR

In Section 7.1, cognitive studies were performed on mechanical engineering

students using biological strategies in idea generation. These studies tested the value of

the end product of the Method for Reverse Engineering Biological Systems, biological

strategies, in the context of the problem-based approach to Bio-Inspired Concept

Generation. In the cognitive studies, access to relevant strategies was assumed. In this

section, a comprehensive example of the development of hybrid, bullet resistant armor is

presented. The purpose of this example is to detail the entire process of problem-based

Bio-Inspired Concept Generation. In this example, the strategy repository developed in

Chapter 5 is used to identify relevant biological strategies.

The defense community is currently focusing on equipping military troops and

law enforcement personnel with better performing and more comfortable body armor.

Presently, body armor comes in two types: hard and soft. Hard body armor (displayed in

Figure 7.6) incorporates thick ceramic or metal plates, inserted into pockets in the vest

covering vital areas, and deflects bullets. Such vests are rigid, the plates make them

cumbersome and heavy, and they restrict the wearer's movement.

Figure 7.6 Steel armor plates for hard body armor

211

In contrast, soft body armor (displayed in Figure 7.7) operates on a different

principle. Soft armor is comprised of a strong, dense net of fibers which absorb the

impact energy of a bullet and disperse the load evenly over the rest of the vest. One such

material is Kevlar®, manufactured by DuPont, which is lightweight but nearly five times

stronger than steel of the same weight. When bullets impact the armor, they are caught in

the web of fibers, absorbing and dispersing the impact energy, and deforming the bullet.

Additional energy is absorbed by each layer in the vest until the bullet stops penetrating

any further. The layers of material working together permit the breadth of the vest to

assist in preventing the bullet from penetrating. This also prevents "non-penetrating"

injuries, such as blunt trauma to internal organs.

Figure 7.7 Kevlar® based Soft Body Armor (HowStuffWorks)

7.2.1 The Problem

Current vest styles necessitate tradeoffs between the level of protection and the

level of comfort and flexibility. As the level of the threat increases, vests must be heavier

and bulkier in order to protect the wearer and disperse the projectile load. More

protective vests incorporate materials which are rigid, heavy and bulky and are therefore

impractical for routine use. Such vests are typically reserved for use in tactical situations,

and worn for short periods of time when confronted with higher threat levels. In lower

risk situations, soft armor is appropriate because it is flexible and light. However, this

compromises the level of protection the vest offers. Military and police alike are

searching for vests that offer more protection without increasing bulk or decreasing

comfort.

212

7.2.2 Conceptual Design of Hybrid, Bullet Resistant Armor

In the problem-based approach to Bio-inspired Conceptual Design, the designer

begins with an engineering problem and searches for solutions to these problems. Given

the problem presented in Section 7.2.1, a comprehensive example of the use of the

proposed approach is presented in this section.

The steps for problem-based approach to Bio-inspired Conceptual Design include

(1) identifying and detailing the sub-function of interest, (2) identifying candidate

biological systems, and (3) idea generation.

6) Identify and detail the sub-function of interest

In this initial step, the requirements and specifications for the function/sub-

function of interest are identified. The specific function of the current vest is to

absorb/disperse the energy from projectile impact, with functional inputs of mechanical

energy (force) and outputs of mechanical energy (reaction force). The vest is used as a

means for protection in high and low risk situations.

In the current vest, impact absorption/dispersion is enacted by the mechanical

stiffness of the material, either in a plate (in hard armor) or weave (in soft armor)

configuration. In order to allow varying levels of protection and comfort for different

conditions, the stiffness of the vest material can be controlled.

7) Identify candidate biological systems

In this step, candidate biological systems of interest are identified based on the

requirements and specifications of the sub-function put forth in Step 1. In the proposed

approach, the strategy repository developed in Chapter 5 is utilized to aid in identifying

relevant biological strategies. Since the goal is to develop a system that allows control

over the stiffness of the vest, a search for strategies that “increment stiffness” is input in

the repository. This search and the retrieved strategies are displayed in Figure 7.8.

213

Figure 7.8 Repository search and results

Two primary strategies were retrieved from the repository: Crossbridge Effect

(Result 1) and Mutable Connectivity (Results 2-6). These strategies are defined as

follows:

Mutable Connectivity: “Stiffness in the dermis is changed by controlling the

association of the collagen fibril bundles”

Crossbridge Effect: “Stiffness in the Muscle Fiber is changed by controlling the

bridging of the actin and myosin filaments of Myosin”

By comparing these two strategies, the similarity in strategy between these two

very different biological systems can be seen. Specifically, the stiffness of both systems

is controlled by an association, or bridging, of the major structural elements. In domain-

insensitive terms, a unified strategy can be expressed as follows:

“Stiffness can be changed by controlling the association, or bridging, between

free, rigid elements in a system”

214

8) Idea Generation

In this step, the strategies are used to stimulate engineering concepts.

Specifically, engineering strategies that mimic the retrieved strategies are sought. Using

the strategy from Step 2 as a starting point, several ideas were generated that utilize this

strategy, including:

• Electrorheological (ER) and Magnetorheological (MR) fluids- Electrorheological

(ER) fluids are fluids that experience increased yield stress in the presence of

electric fields. ER fluids consist of electrically polarizable particles suspended

within a non-conductive fluid medium. In the absence of an electric field, ER

fluids behave as Newtonian fluids, whereas in the presence of such field, they

immediately solidify [158]. Magnetorheological (MR) fluids are considered the

magnetic analog to ER fluids. Consisting of small magnetic particles dispersed in

a carrier fluid, the shear yield stress of these fluids exhibits a strong dependence

on the magnetic field applied. When used within composite materials, these

fluids add the ability of active control of the material properties of a composite

material [159-162]. With these fluids, an external field (magnetic/electric) is used

to control the stress transfer between the rigid elements (particle suspensions).

• Shape Memory Polymers (SMPs)- SMPs are polymers that can be deformed into

one shape, and under thermal activation, be restored back to its original shape.

Under this thermal activation, the SMP also changes stiffness and becomes

flexible. SMPs return to their predefined shape under thermal cycling, whereas

typical high-strength polymers or liquids are not able to recover this strain. This

recovery strain is needed because tension must be kept on the skin during

deformation to eliminate buckling. The tailorable mechanical properties of these

SMPs also make them attractive, especially when reinforced with a higher

stiffness element, such as a carbon nanofiber. With SMP composites, thermal

activation is used to control the state of the polymer, thus controlling the stress

transfer between the reinforcement.

• Phase Change Materials - Phase change materials (PCM) can be defined as

materials (commonly polymers) formulated to undergo phase transitions at

215

prescribed temperatures [163]. Once a solid state PCM reaches the prescribed

temperature, it liquifies, and absorbs heat without any additional temperature

change. Once the ambient temperature drops, the PCM solidifies releasing the

stored latent heat [164]. PCM are commonly used for thermal energy storage for

insulation and electronics and recently as nonvolatile memory in computer

microchips. These phase change materials can be used to control the stress

transfer between rigid elements in a matrix material. In the flexible state, a

composite material is heated and the PCM changes to a liquid state, thus

effectively inhibiting stress transfer between the rigid elements in the composite.

Next, the concept is firmed up into working principles. A possible working

principle utilizing electrorheological fluids is displayed in Figure 7.9.

Figure 7.9 Hybrid Armor Concept

In this design concept, layers of woven soft armor are alternated with layers of ER

fluid, with the ER fluid controlling the coupling between the soft armor layers. When

activated, the ER fluid rigidizes and forms a rigid load absorption layer. This layer also

couples the soft armor layers, allowing stress transfer between these layers and increased

load dispersion. The ER fluid is composed of high aspect ratio particles. These long

fibers allow for increased load dispersion over traditional spherical particles. This

concept allows the user to actively modify the properties of the armor for the situation.

thus allowing the flexibility and comfort of a traditional soft armor vest in low risk

situations and the rigidity needed in higher risk situations.

216

7.2.3 Discussion

The goal of this research is to aid the designer in idea generation through the use

of biological strategies. This concept utilizes the strategy of controlled association from

the mutable connectivity and crossbridge effect strategies retrieved from the repository.

This strategy allows the conflicting design requirements of comfort and protection posed

in the design problem to be solved.

Assessment of Novelty

Novelty can be viewed as the uniqueness of a given design idea with respect to a

universal world of ideas. In this case, the active armor concept is compared to others

found in industry. As mentioned in Section 7.2.1, there are currently two forms of armor

available in industry: hard and soft armor. When surveying the research community, one

instance of active armor was found. The Institute of Soldier Nanotechnology at MIT is

currently developing active vests utilizing MR Fluids as the active stiffness mechanism.

Although using a similar strategy, there are a couple fundamental differences between the

two concepts, including the (1) use of high aspect ratio particles in the current design

versus spherical in the MIT concept and (2) use of an electrical activation method versus

a magnetic. Even still, one could argue that these concepts are indeed similar. Even if

this is the case, novelty is measured using a relative number of instances found in the

universal world of ideas. Given that, both ideas are deemed novel when looking at the

lack of total concepts found for active armor. It should also be noted that using the

biological strategy of controlled association, many more novel strategies can be generated

from the micro to macro level of system development.

7.3 CLOSURE AND VALIDATION

Currently, there is little empirical evidence as to the effects of bio-inspired

techniques in the idea generation process. The aim of this work was to quantify the value

of these techniques in ideation as it relates to design space expansion and exploration.

The research question addressed in this chapter is as follows:

“What is the impact of biological strategies in the conceptual design process?”

217

With this question, this research seeks to assess the value of bio-inspired design in the

conceptual design process. In this research, the value is assessed using two different

contexts: (1) problem-based Conceptual Design, where the designer seeks to be inspired

by biological strategies in the ideation process and (2) solution-driven Conceptual

Design, where the designer seeks better solutions to engineering problems by mimicking

the biological strategies. In this chapter, the value of biological strategies and the

proposed approach for problem-based Conceptual Design are assessed.

Specifically, in the problem-driven context, it was hypothesized that (Hypothesis

4a) exposure to biological design examples in ideation will increase the novelty of design

ideas generated and (Hypothesis 4b) exposure to biological design examples in ideation

will increase the variety of design ideas generated. In Section 7.1 two experimental

studies were presented in which senior and graduate mechanical engineering students

were exposed to biological examples in the idea generation process, and these results

were compared to participants receiving no examples and to those receiving human-

engineered examples. Exposure to biological examples was found to increase the novelty

of design ideas generated after exposure without decreasing the variety of design ideas

generated. In Section 7.2, a comprehensive example of the design of hybrid, bullet

resistant armor was presented. In this study, the designs generated using the problem-

based approach were found to be novel relative to other solutions currently found in

industry.

The results of the work presented in this dissertation have a number of

implications in engineering design. One of the primary goals of engineering design is to

discover new and innovative solutions to encountered problems. In the development of

these solutions, idea generation is key. Dylla has demonstrated significant correlation

between the amount of design space considered in idea generation and the quality of the

final design [1]. It follows that methods for aiding designers in expanding and exploring

their design space should yield better designs. The results show that search strategies that

include biological examples help expand the design space of the designer, while also

negating the negative effects on variety typically seen with exposure to examples. These

218

results have been found for senior and graduate mechanical engineering students, but

should be extendable beyond the current sample group.

Empirical Performance Validity

The validation strategy in this dissertation is displayed in Figure 7.10.

Figure 7.10 Validation Strategy and Chapter 7

Empirical Performance Validation involves accepting the usefulness of the

method for some representative example problems. In Section 7.1, cognitive studies were

used to show the value of biological strategies in problem-based Conceptual Design. In

the cognitive studies, participants generated design ideas that were more novel after

exposure to the biological strategies than before. With respect to variety, there was no

significant difference found in the variety of design ideas before and after exposure to the

biological strategies. Therefore, the proposed approach, which utilizes biological

strategies to aid in idea generation is deemed useful. In Section 7.2, a comprehensive

example of the design of a hybrid, bullet resistant armor system using the problem-based

approach was presented. In this example, the design generated was found to be novel

compared to current protection systems found in industry, thus showing usefulness in the

proposed approach.

219

CHAPTER 8 SOLUTION-DRIVEN BIO-INSPIRED CONCEPTUAL

DESIGN

In the solution-driven approach, the designer begins with a biological solution and

attempts to mimic some novel feature or behavior of this system through engineering

design. The specific goal in this approach is to develop innovative solutions by reverse

engineering biological solutions. In this research, the value of biological strategies in this

context is assessed. In this Chapter 7, the impact of biological strategies on the

Conceptual Design process in the problem-based context was assessed. In this chapter,

the impact of these strategies in the solution-driven context is explored. The dissertation

plan is displayed in Figure 8.1.

Figure 8.1 Dissertation plan and Chapter 8

220

Continuing  from  Chapter  7,  the  following  research  question  is  addressed  in  this 
chapter:  

RQ4:  “What  is  the  impact  of  biological  strategies  in  the  conceptual  design 
process?” 

To answer this question, it is hypothesized in Chapter 1 that: 

Hypothesis 4c: Bio-inspired engineering systems possessing a deeper level of biological

system behavior will perform better than those possessing superficial behavioral

similarities.

In essence, the value of rich behavioral descriptions in bio-inspired design is assessed

with this hypothesis. To validate this hypothesis, historical case studies on bio-inspired

systems are presented (Section 8.1). In Section 8.2, a case study of the solution-driven

approach to Bio-inspired Conceptual Design is present. In this study, the proposed

approach is used in the development of a novel renal replacement therapy.

8.1 CASE STUDIES

In Chapter 7, the value of biological strategies in the ideation process was

explored with respect to the novelty and variety of design ideas generated. In this

chapter, the value of rich behavioral descriptions in bio-inspired design is explored.

Specifically, it is hypothesized that bio-inspired engineering systems possessing a deeper

level of biological system behavior will perform better than those possessing superficial

behavioral similarities. In Section 8.1.1, this hypothesis is tested in the field of aircraft

flight control. In Section 8.1.2, this hypothesis is tested further in the field of renal

replacement therapy.

8.1.1 Avian Flight

The adaptability and control in avian flight has intrigued engineers for centuries.

The morphing ability of the wings over varying conditions has been a primary source of

221

interest. In this case, we explore control in avian flight and its varying levels of impact

on engineering innovations in the area of aviation.

8.1.1.1 Avian Flight Control

An annotated figure of the bird wing is displayed in Figure 8.2. The primary load

bearing structures of the bird wing are a series of interconnected bones, much in the same

fashion as the human arm [165]. This structure consists of the upper and lower arm

bones, and the hand bone. Several joints between these bones allow the range of motion

of flight, including the shoulder, elbow, and wrist joint. The skin and feathers, attached to

the bone structure, produce the aerodynamic shape necessary for flight [165]. The main

feathers of the bird wing used in flight include the primaries, secondaries, alula, and

coverts. The primaries are connected to the hand bone and can be individually

controlled. The seconaries are connected to the lower arm bone, while the alula feathers

are attached to the bird’s thumb. These feathers can be rotated to aid in slower flight.

The covert feathers cover the secondary and primary feathers and help smooth airflow

over the wings.

Figure 8.2 Skeletal and feather feathers of the bird wing [165]

For control in varying flight conditions, the bird has the ability to change the

shape of its wing, both in planform and profile view. Examples of the large range of

configuration for the Bald Eagle is displayed in Figure 8.3.

222

Figure 8.3 Bald Eagle in various flight configurations [166]

Specifically, one of the main problems of flying animals is the manipulation of lift

while maneuvering and in unfavorable flight conditions such as landing and take-off. To

increase lift in these conditions, birds can manipulate the surface of the wing, such as

increasing the angle of incidence and/or the camber, or curvature, of the wing [167].

However, one of the limits on the camber and angle of incidence of the wing is stall.

When this point is reached, the airstream separates from the wing’s upper surface,

producing a sudden fall in lift and increase in drag of the wing. To generate lift and

overcome this stall condition, birds alter several features of their wings, including the

leading edge, alula, and covert feathers. The alula feathers are projected on the leading

edge to direct wind over the wing, which prevents stall at high angles of incidence. The

covert feathers, under turbulence, also rise to prevent flow separation for high lift. Birds

have been also shown to project feathers on the leading edge of its wings to increase the

camber of the wing [168]. The tails of certain birds, such as swifts, swallows, and fork-

tailed falcon, also act in conjunction with the wing to increase the overall camber and

increase the overall area of the wing [167].

A hierarchical Petri net model for the flight control behavior of the bird wing is

displayed in Figure 8.4. As seen in the figure, the bird wing has three physical states with

respect to flight control: natural, tilted, and tilted/morphed. In the natural state, the wing

has the incidence angle and camber most efficient for soaring. To increase lift in either

or both wings, the bird increases the angle of incidence of the wing, moving into the tilted

state of the wing. For additional lift in unsteady conditions such as takeoff and landing,

the bird increases the camber of its wing, causing the tilted/morphed state of the wing.

223

The behavior of the wing can also be viewed at a deeper level of abstraction. In

the natural state, the skeletal components are in a relaxed state, the alula and leading edge

feathers are undeployed, and the covert feathers are unerect. To increase lift, the bird

supinates its wrist, causing the tilted state of the wing. To further increase lift when the

critical angle for stall is reached, the alula and leading edge feathers deploy and the

covert feathers erect. This increases the camber of the wing and brings the state of the

wing to a tilted and morphed state.

Figure 8.4 Hierarchical Petri net model of the flight control mechanisms of the bird wing

Using the method presented in Chapter 4, the following strategy can be extracted

from the model:

Strategy(Natural, Tilted/morphed) = Bird Wing (increase angle, increase camber)

In natural language, the strategy is as follows:

“Lift is controlled by tilting and morphing the wing”

224

The behavior of the wing can be expanded to also reflect how the behavior of its

components contribute to its behavior. The expanded strategy can be extracted as

follows:

Strategy (Natural, Tilted/Morphed) = Skeletal (supinate wings), if ang≥angcritical (alula

(deploy)/covert (erect)/leading edge feathers (deploy))

In natural language, this strategy reads:

“Lift is controlled in the wing by first supinating the wing to increase the angle

of attack. As the angle approaches the critical angle for stall in the wing, the bird then

increases the camber of the wing by deploying the leading edge and alula feathers.

The covert feathers also become erect to direct flow over the wing.”

In the following section, we present specific innovations in flight control in modern

aviation.

8.1.1.2 Brief history of control surfaces in flight control

Figure 8.5 displays a brief history of innovations in control and manipulation in

flight over time.

Figure 8.5 Brief history of flight

225

Beginning in the 1500s, Leonardo da Vinci started devising ways to mimic flight

by observing birds. Attempts at flight were rather unsuccessful until the idea of wing

warping by the Wright brothers in the early 1900s. Building on the idea of flight control

using wing warping, engineers further devise ways of manipulating lift through the use of

wing flaps and slats. Scientists at DARPA and NASA have further devised methods for

control using smooth wing morphing during flight. These key innovations will be

discussed in the following sections.

In this study, we look at several key leaps in innovation that significantly

impacted the control of the aircraft. We then compare these key innovations to the

behavioral strategies extracted from the control mechanisms in bird flight. Lastly, we

correlate this similarity to the performance of the aircraft.

The progress and failures of Pre-20th century flight

Humans attempting to imitate natural flight can be traced back to 8 B.C. with the

ancient Greek legend of Daedalus and Icarus. In the 16th century, during the Italian

Renaissance, Leonardo da Vinci designed several flying machines, called ornithopters

(Greek for “bird” and “wing”). Leonardo di Vinci based his machines on the flapping

wings of birds, believing that the body could power and control the aircraft.

Figure 8.6 Ornithopters

Following da Vinci’s vision, in the 18th century, there were many designs relying

on the shape of birds, including “Passarola”, or “Great Bird”, designed by Father

Laurence de Gusmao. During this century, there were also many fictional stories

226

adopting the view that flight was simply a matter of wings, including “A Dissertation on

the Art of Flying” by Samuel Johnson. At the end of this century, in 1799, George

Cayley defined the problem of heavier-than-air human flight as “to make a surface

support a given weight by the application of power to the resistance of the air”. In

defining the forces of lift, drag, and thrust, he was the first to distinguished between the

mechanism for lift (wing) and thrust (assisters) [169].

The 19th century was the period of the glider. In 1804, Cayley designed and

tested his first hand-launched glider [169]. This design gave idea to the configuration of

the modern airplane; Cayley’s design consisted of a wing, fuselage, empennage, rudder

and elevator. Building on the glider concept, two people made significant contributions

to modern, human-powered flight: Horatio Phillips and Otto Lilienthal. Phillips tested

several cambered airfoil shapes in a wind tunnel for aerodynamic performance, including

that of the rook. Lilienthal, famous for the book “Bird Flight as a Basis for Aviation”,

studied the flight of birds and constructed aircraft based on his studies. Through his

experiments, Lilienthal contributed greatly to the advancement of the glider modern flight

[169]. However, Lilienthal faulted in his fixation on previous ornithopter designs to

power flight, which were limited as they relied on human power. Octave Chanute, a civil

engineer, also experimented with flight during this period and advanced the science of

flight through his work with gliders [169].

During the period prior to the 20th century, human flight had progressed from di

Vinci’s human-powered ornithopter to the level of the stable glider. Many inventors

explored with the idea of flight based on observing bird flight. Early in the history of

flight, inventors became fixated on flight as merely a flapping of wings. While the

flapping powered flight, the key to flight at this level, as discovered by Cayley, was the

balance of lift, drag, weight and thrust. Driven by Cayley’s airfoils, much attention was

paid to the shape of the airfoil and maximizing the lift for stable flight, while not paying

much attention to dynamic control in flight. This stable flight led to flying machines that

would “proceed on a straight and level course with the pilot intervening only when a

change in direction or altitude was required” [170].

227

With respect to successfully imitating the bird flight, leading up to the 20th

century, flight had only progressed to mimicking of the static behavior and form of bird

wings to produce lift. Although incremental advances were made to the glider, the

engineers and scientists of this day had yet to understand the importance of control and

maneuverability to sustained flight.

The Age of the Wright Brothers

The first key innovation in flight control came with the Wright Brothers and their

method for producing differential lift in the wings of a glider for roll control. During the

20th century, after taking interest in the works of Lilienthal, the Wright brothers, Otto and

Wilber Wright, began to study flight. At this time, the Wright brothers recognized the

true problem of modern flight, that of control (stability vs. maneuverability). Wilber, an

avid bird watcher, wrote in 1900 to Octave Chanute, “My observation of the flight of

buzzards leads me to believe that they regain their lateral balance when partly overturned

by a gust of wind by a torsion at the tips of their wings. If the rear edge of the right wing

is twisted upward and the left downward, the bird becomes an animated windmill and

instantly begins to turn a line from its head to its tail being the axis…..In the apparatus I

intend to employ and make use of the torsion principle” [10]. In watching birds, the

Wrights found that birds controlled roll in flight changing the angle and shape of each of

its wings to produce differential lift. This asymmetry in lift would cause rotation about

the centerline of the birds. The Wright brothers understood that by controlling the wing,

they could control and maneuver the plane easier. This idea was the first to provide the

much needed dynamic control over the lift of the wing, allowing increased steering and

maneuverability. The Wright brothers’ 1903 Flyer is displayed in Figure 8.7.

228

Figure 8.7. Wright brothers’ 1903 Flyer

The period through the 1920s was regarded as the period of strut-and-wire

biplanes, which built upon the Flyer of the Wright Brothers. From 1905 until the end of

WWI, no significant advances in flight control were made. Towards the latter part of this

period, these biplanes utilized rigid wings, thus wing warping was limited. Instead, these

designs utilized ailerons, or small wing flaps, for roll control in rigid wing aircraft. The

period that followed, the era of the mature propeller-driven airplane, was a period of

improvement.

High lift surfaces and increased control

The second key innovation in flight control involved more control over the wing

surface. During the 1930s, wind loading (weight of the plane/ wing planform area)

almost quadrupled. This was mainly due to the fact that airplanes flew faster and were

able to generate more lift. With the higher wing loading came higher required takeoff

and landing speeds. To allow planes to fly slower during these times for balance, planes

utilized several features such as flaps, which increased the lift of the airplane. These

flaps were designed directly after that of ailerons, but both were simultaneously deflected

in the same direction to increase the camber of the airfoil and provide lift [171]. To

increase lift while also preventing stall (or sudden reduction in lift), development

continued on advancing control surfaces, including slots, spoilers, leading and trailing

edge flaps, and slats. An annotated diagram [172] of these high lift surface features is

displayed in Figure 8.8.

229

Figure 8.8 High-lift features – (1) Wingtip, (2) Low Speed Aileron, (3) High Speed Aileron, (4) Flap
track fairing, (5) Krüger flaps, (6) Slats, (7) Three slotted inner flaps, (8) Three slotted outer flaps, (9)

Spoilers, and (10) Spoilers Air-brakes [172]

More recently (1985-1988), as part of the NASA Ames Mission Adaptive Wing

(MAW), scientists developed a smooth camber control to reduce drag produced by

discontinuous surfaces. The MAW wing had an internal mechanism to flex the wing and

produce optimal camber configurations for different flight conditions [173]. Even more

recently, FlexSys Inc. [174], used compliant mechanisms to achieve smooth shape

change of the leading and trailing edge flaps. With their hinge-less, smoothly contoured

control surfaces, FlexSys demonstrated high actuation rates, large deflections, and large

shape variability.

8.1.1.3 Performance assessment and Validation of hypothesis

In this study, we look at the role of key innovations in wing surfaces, and control

over these surfaces, in the advancement of aerodynamic performance in flight. We look

at how these innovations have led to increased control of aerodynamic parameters, such

as the lift coefficient. The lift coefficient, CL , can be defined as a characteristic of the

cross section of the airfoil and the angle of attack of the wing. CL helps define both the

230

lift generated over varying flight conditions and the maneuverability of the aircraft.

Controlling the shape of the airplane wing in flight allows us direct manipulation of the

lift coefficient.

Manipulation of lift is particularly important for stability at low flight speeds,

such as in takeoff and landing, and for maneuverability of the aircraft. Low flight speeds

are desirable at take-off and landing. However, at low flight speeds, the air over the wing

becomes turbulent and causes a sudden decrease in lift (stall). Control over the shape

(and CL) of the airfoil can increase the lift of the wing and delay the onset of stall, thus

allowing lower flight speeds for takeoff and landing. A low turning radius is important

for maneuverability of the aircraft. Control over the shape of the wing helps to reduce

the turning radius of the aircraft. The lift coefficient is inversely proportional to turning

radius, thus increasing the lift coefficient reduces the turning radius of the aircraft.

Therefore, since a high lift coefficient of the wing is desired for flight stability and

maneuverability, the CL, max of aviation technologies will be compared to their level of

biological similarity in this study.

Our hypothesis states that bio-inspired engineering systems possessing a deeper

level of biological system behavior will perform better than those possessing superficial

behavioral similarities. Specifically, in this section, we make the claim that deeper

behavioral similarity between the flight mechanics of the bird wings and the control

mechanisms developed in aviation can be correlated to increased performance in lift

control, CL, max. The amount of lift control (% change in lift coefficient) allowed by the

key innovations in aviation is displayed in Figure 8.9.

231

Figure 8.9 Key innovations in aviation (values used were derived from typical max lift coefficient for

airfoil shapes [175])

These key innovations and advances in performance can now be correlated to the

level of behavioral similarity to that of the bird wing. In Table 8.1, the correlation

between the level of avian behavioral strategy used and the performance (amount of lift

control) is presented.

Table 8.1 Summary Table for Aviation Case

Level of Decomposition -
Strategy

% Change
in Max Lift

(%)

Description

Level G(-1) – Wing shape
providing lift

0 Pre-1900 – Aviation focused mimicking of the
static behavior and form of bird wings to enable
flight. This led to severals glider design that were
used to produce lift, but not sustained flight.

Level G0 - “Lift is controlled
by tilting and morphing the
wing”

10 1900-1915 - Wing warping was developed by the
Wright Brothers after observing the means by
which birds controlled the shape of their wings.
Wing warping allowed more stable flight by
affording the ability to manipulate lift by up to
10%.

232

Table 8.1 Continued

Level of Decomposition -
Strategy

% Change
in Max Lift

(%)

Description

Level G1 - “Lift is controlled
in the wing by first supinating
the wing to increase the angle
of attack. As the angle
approaches the critical angle
for stall in the wing, the bird
then increases the camber of
the wing by deploying the
leading edge and alula feathers.
The covert feathers also
become erect to direct flow over
the wing.”

50-100 Post-1915 – By observing and utilizing the control
features of the bird wing, engineers developed
high lift control surfaces, such as ailerons, flaps,
and slats, to enable increased lift manipulation in
the aircraft. This allowed sustained flight and
control in flight in varying flight conditions, and
thus better flight performance.

As seen in Table 8.1, performance with respect to lift control (maneuverability) in

aviation increases as the level of behavioral similarity increases. Mimicking the overall

form and static behavior of bird flight yielded only the development of static gliders,

which were not able to sustain flight. Using the behavioral strategy of tilting and

morphing the wing for control of lift (from studying birds in flight), the Wright brothers

were able to achieve a nearly 10% increase in lift through wing warping. Wing warping,

the first key innovation in flight control, allowed control over roll about the centerline of

the plane and high radius turning. This control was significant as it has been attributed as

the key innovation enabling sustained flight.

As one goes deeper into the behavioral strategy of the bird wing, additional

parallels can be drawn. The richer biological strategy of controlling lift in unfavorable

conditions by controlling the camber of the wings surface through deployment of special

feathers on the wing’s surface, such as the alula, leading edge, and covert feathers. This

strategy is used in situations such as take-off and landing. This strategy of controlling the

specific control surfaces of the wing, as opposed to simply wing warping, is used in

current aviation technologies and has enabled truly sustained flight and maneuverability

in flight. Specifically, in the post-1915 era, wing warping was replaced by ailerons on

the trailing edge of the wing. Larger flaps and slots offered even more control over the

233

surface of the wing, allowing the angle of incidence as well as camber of the wing to be

morphed. These led to increased angle of incidences achievable without stall, and

increased aircraft control for maneuvering and take-off and landing.

As seen in the aviation case, advances in flight depended strongly on the

understanding of how birds fly. Wing designs possessing deeper level of similarity to the

actual behavior of the bird wing perform better with respect to manipulating lift. This

supports our hypothesis. From this, we can realize the value of having richer behavioral

models of biological systems, which aid in the understanding of biological technologies.

In section 8.1.2, further support is provided for our hypothesis by looking at renal

replacement therapies.

8.1.2 Renal Replacement Therapy

In this case, we explore key innovations in the field of renal replacement therapy.

All living organisms must constantly regulate their condition in order to maintain life.

The human kidneys play an important role in this homeostasis by providing several

functions that help to maintain a healthy balance inside the body. The kidneys perform

the following primary functions: (1) removal of metabolic waste products and foreign

substances from the plasma, (2) regulation of plasma ionic composition, (3) regulation of

plasma osmolarity, (4) regulation of plasma volume, and (5) regulation of plasma pH.

While the primary functions of the kidney include removal of wastes and regulation of

the plasma, it is also responsible for secreting hormones and enzymes. The kidney is a

part of the urinary system, which consists of two kidneys, two ureters, the urinary bladder

and the urethra. Blood is supplied to the kidney by the renal arteries, and the clean blood

exits the kidney through the renal veins. The waste cleared from the blood exits as urine.

This urine then flows through the ureters to the bladder, where it is stored until it is

excreted.

8.1.2.1 The Human Kidney

The basic functional unit of the human kidney is called a nephron (displayed in

Figure 8.10). It is composed of five main parts: the renal corpuscle, the proximal tubule,

the loop of Henle, the distal tubule, and the collecting ducts. In these parts, the kidney

234

utilizes four main functions to provide homeostasis: filtration, reabsorption, secretion,

and excretion. First it filters most substances across the glomerulus (Figure 8.10), a

collection of capillaries surrounded by the Bowman’s capsule, which together form the

renal corpuscle. There are many factors affecting glomerular filtration, including: (1) size

and charge of the molecules being filtered, (2) Size of the filtration slits of the glomerulus

and charge of the glomerular basement membrane, and (3) several hemodynamic factors.

Hemodynamic features include blood flow, convection, diffusion, the glomerular

capillary pressure difference, and the Bowman’s capsule pressure difference [176].

Figure 8.10. A complete nephron is shown on the left. To the right, the dark-red glomerulus is surrounded
by the pink Bowman’s capsule, forming the renal corpuscle

 Next, important substances are reabsorbed back into the blood stream at the

proximal tubule, loop of Henle, the distal tubule, or collecting ducts. Lastly, substances

that were not filtered across at the glomerulus can be excreted from the kidney at one of

the later stages.

235

Approximately 625 mL of plasma flows through the kidney every minute. Of this

625 mL, the kidney filters approximately 20%, or 125 mL, across this membrane every

minute. However, only 1mL/min of urine is excreted. This discrepancy between the

filtered and excreted amounts is accounted for by reabsorption and secretion. After

removing so much from the blood, the human kidney then works to reabsorb back into

the blood those substances that are beneficial for homeostasis. As an example, all glucose

found in the blood in the renal artery is filtered out of the blood in the renal corpuscle.

However, glucose is vital for homeostasis, so it is immediately reabsorbed in the

proximal tubule.

A hierarchical Petri net model of the kidney for removal of waste from the blood

is displayed in Figure 8.11. The generation of this model is detailed in Section 8.2. The

model of the kidney displays how the composition of the blood (represented as

numerical tokens) changes with respect to the different kidney processes. The PN arcs

represent the different rates at which the composition of the blood changes.

Figure 8.11 Hierarchical Petri net model of waste removal in the kidney

236

As seen in Figure 8.11, at the kidney level of abstraction, dirty blood comes in

from the renal vein and wastes are filtered out into the urine and the remaining clean

blood returns to the body through the renal artery. The subsystem level of decomposition

includes the Bowman’s capsule, Proximal Tubule, Loop of Henle, Distal Tubule, and the

Collecting Duct. At this level, the blood plasma and its solutes are convected and

diffused across the Bowman’s capsule. The solutes in the plasma then go through several

steps of reabsorption and secretion, finally being excreted through the collecting duct as

urine.

Based on the hierarchical net in Figure 8.11, the strategy for the kidney is

extracted as follows:

Strategy(Compositioniniital, composition 1/composition 2) = (Kidney (filter))

In natural language, the strategy of the kidney is as follows:

“The composition of blood in the kidney is modified through filtration”

The strategy of the kidney can now be expanded to reflect the behavior of the glomerulus,

nephron, and ureter as follows:

Strategy(Compositioniniital, composition 1/composition 2) = BowCap (Conv./Diff.),

PrTub (Reabs/Secr), LHen (Reabs/Secr), DisTub (Reabs/Secr), ColDuct

(Reabs/Secr/Excr)

In natural language, the strategy of the kidney is as follows:

“Filtration in the kidney is performed by removing mostly all substances from the

blood through convection/diffusion in the Bowman’s Capsule and reabsorbing and

secreting needed substances in the Proximal tubule, Loop of Henle, and Distal Tubule,

and Collecting Duct. The remaining solutes are excreted through the Collecting

Duct.”

In the following section, the development of several renal replacement therapies is

reviewed.

8.1.2.2 Artificial Kidney Development

237

In this section we focus on the development of two key forms of renal

replacement therapy, including: (1) hemodialysis and (2) hemodiafiltration. These renal

replacement therapies are discussed in the following sections.

Hemodialysis

The first major innovation in treating kidney desease came in the 1940s. Williem

Kolff is credited with constructing the first hemodialysis machine in 1943. His artificial

kidney utilized blood flowing through cellophane tubing in a rotating drum assembly.

This drum rotated in a tank of dialyzer medium [177]. In the 1950s, Kolff’s invention

was advanced enough to solve the problem of acute renal failure. It was not until the

works of Belding Scribner that a solution for chronic end stage renal disease was

envisioned. Scribner devised an idea of using Teflon tubes inserted into the artery and

veins. After treatment, these tubes were connected using a U-shaped device, completing

the circulatory circuit. This advancement allowed direct access to the circulatory system

and ended the need for making incisions every time. Although several incremental

advances have been made with traditional hemodialysis, the basic ciruit and principle has

remained the same.

In hemodialysis, displayed in Figure 8.12, solutes are filtered by diffusion across

a semipermeable membrane. The primary component of modern hemodialysis is the

dialyzer (labeled ‘filter’ in Figure 8.12), which contains the semipermeable membrane.

In the dialyzer, blood from the patient flows along one side of the membrane

countercurrent to that of the dialysate, creating a concentration gradient across the

membrane. The general principle of hemodialysis is that small molecules will diffuse

across the membrane to areas of lower concentration. The concentration of solutes to be

filtered is zero, while concentrations of those solutes to be kept in the blood is equal to

that of the blood. Based on the laws of diffusion, the larger the molecule, the slower the

rate of transfer across the membrane will be. Given that, molecules of small molecular

weight, such as urea (60 dA), are filtered efficiently, while molecules with higher

molecular weights, such as creatinine (113 daltons), less efficiently[178]. The waste,

which is filtered across the membrane into the dialysate, is disposed of with the dirty

dialysate.

238

Figure 8.12 Hemodialysis circuit [179]

Hemodiafiltration

Another key innovation came by way of combining hemodialysis with a

convective renal replacement therapy known as hemofiltration. This hybrid process is

called hemodiafiltration. In the 1960s, hemofiltration was introduced to enhance the

removal of larger substances from the blood and improve hemodynamic tolerance [178].

In the 1970s, building on benefits of hemofiltration, work began on creating a renal

replacement therapy harnessing the benefits of hemodialysis (small molecular weight

substance removal) and hemofiltration (middle molecular weight solute removal).

Hemodiafiltration works in a similar fashion to the human kidney; a large amount of

filtrate is filtered from the blood and then desirable components are replaced. In

hemodiafiltration, blood and dialysate are pumped through the filter in a counter-current

manner. Similar to that of glomerular filtration, water and substances up to a molecular

weight of 20,000 Da are convected and diffused across the membrane and into the

dialysis fluid. Desirable substances are then replaced in the distal part of the

hemodiafiltration circuit using a replacement fluid. The typical composition of the

replacement fluid is displayed in Table 8.2.

239

Table 8.2 Hemodiafiltration replacement fluid

Component Value (mmol/L)

Sodium 140

Potassium 0-4

Calcium 1.6

Magnesium 0.75

Chloride 101

Lactate 45

Glucose 11

The typical hemodiafiltration circuit is displayed in Figure 8.13.

Figure 8.13 Hemodiafiltration circuit [179]

As displayed in the figure, blood and dialysate are pumped through the filter and

the filtrate is drained. The substitution fluid containing the desired substances is then

infused into the blood in the distal part of the circuit.

8.1.2.3 Performance assessment and Validation of Hypothesis

In this study, we compare these renal replacement techniques on the basis of

solute removal and mortality rate. A summary of results from recent studies is as

follows:

240

Studies on small molecular weight solute removal

• Clearance of small solutes (< 500 Da) such as urea (60 Da) and creatinine (113

Da) is largely dependent on diffusion processes. Hemodialysis and

hemodiafiltration both showed effective removal of these small solutes, while

hemofiltration did not. There was little difference between hemodialysis and

hemodiafiltration in clearance of these small solutes [180].

• Studies by Ward, et al. [181] showed small improvements (10-15%) of urea and

creatinine removal for hemodiafiltration and high-flux hemodialysis.

Studies on medium molecular weight solute removal

• In a study by Ahrenholz, et al. [182], the experimenters showed a 123%

improvement in clearance of inulin (5200 Da) in hemodiafiltration versus high-

flux hemodialysis. [180].

• β2-microglobulin (11,800 Da) is not removed at all by hemodialysis because it is

larger than the typical hemodialysis membrane pore. Kerr et al. [183]reported

54.8% reduction of β2-microglobulin of high-flux hemodialysis and 62.7%

reduction in hemofiltration after a 3 hour session. Lorney et al [184]reported a

49.7% reduction using high-flux hemodialysis, compared to 72.7% with

hemodiafiltration, in a 4 hour session. In a 245-minute session, Maduell et al.

[180] reported -0.2, 60, and 75% reductions with hemodialysis, high-flux

hemodialysis, and hemodiafiltration, respectively. [180]

• In a study by Ward et al. [181], hemodiafiltration resulted in greater removal of

β2-microglobulin than high-flux hemodialysis, as indicated by a significantly

higher pre- to posttreatment change in concentration (73 ± 1% versus 58 ± 1%,

respectively).

• In renal failure, β2-microglobulin accumulates in the body and can be deposited in

bone and joints in the form of amyloid. In the HEMO study [185], a significant

relationship was found in pre-dialysis β2-microglobulin and all causes of

mortality; mortality increased by 11% for every 10mg/L rise in β2-microglobulin

concentration [186].

241

• Dember and Jaber [187] estimated yearly accumulation of 111 g, 97 g, and 51 g

for hemodialysis (4 hrs, 3 times per week), high-flux hemodialysis (4 hrs, 3 times

per week), and hemofiltration (2 hrs, 6 times per week), respectively.

Hemodiafiltration should show results similar to that of hemofiltration [186]

Recent studies on Mortality

• In the Dialysis Outcomes and Practice Patterns (DOPPS) study [188], after

adjusting for demographic and other contributors to mortality, experimenters

reported a 35% better survival rate with hemodiafiltration (11.9 deaths/100 patient

years) versus hemodialysis (14.2 deaths/100 patient years).

• In analysis of data from The European Clinical database, Jirka et al.[189] reported

a 35.3% better survival rate with hemodiafiltration versus hemodialysis. This

study was also adjusted for other contributors to mortality.

In summary, in studies of small molecular weight solute removal such as urea and

creatinine, both hemodiafiltration and hemodialysis showed efficient removal, with

hemodiafiltration showing slight improvement. In studies of middle molecular weight

solute removal, hemodiafiltration was shown to significantly improve the removal of β2-

microglobulin. β2-microglobulin amounts were shown to positively correlate to increased

mortality. In specific large scale studies on mortality, hemodiafiltration was shown to

have a nearly 35% improvement in survival rate. A table summarizing the use of kidney

filtration strategies in renal replacement systems is displayed in Table 8.3.

242

Table 8.3 Summary Table for Renal Replacement Therapy Case

Level of Decomposition - Strategy Renal Therapy Description
Level G0 - “The composition of
blood in the kidney is modified
through filtration”

Hemodialysis Removal of waste from the blood
through one-step filtration
process. Shows only good small
solute removal.

Level G1 - “Filtration in the kidney
is performed by removing mostly all
substances from the blood through
convection/diffusion in the
Bowman’s Capsule and reabsorbing
and secreting needed substances in
the Proximal tubule, Loop of Henle,
and Distal Tubule, and Collecting
Duct. The remaining solutes are
excreted through the Collecting
Duct.”

Hemodiafiltration Removal of waste through a two-
step filtration and reabsorption
process. Shows good small,
medium, and large solute
removal.

Our hypothesis states that bio-inspired engineering systems possessing a deeper

level of biological system behavior will perform better than those possessing superficial

behavioral similarities. In the early development of renal replacement therapies,

engineers developed hemodialysis as a means to replace the function of the kidney and

treat kidney disease. Hemodialysis mimics the general behavioral strategy of the kidney

in filtering the blood of waste, however it is not very efficient at removing harmful

middle molecular weight solutes from the blood and does not have a particularly high

survival performance. In the 1970s, scientists developed hemodiafiltration as a means of

improving on the performance of renal replacement therapy. Hemodiafiltration functions

in a similar fashion as that of the human kidney; hemodiafiltration filters large amounts

of water and substances from the blood through convection and diffusion, then replaces

the substances needed for bodily function. This setup has shown improved performance

in removal of small and middle molecular weight solutes, as well as significant

improvements in the survival rates of patients receiving this form of treatment. Through

this case study, we have shown that renal replacement therapies possessing a deeper level

243

of similarity perform better with respect to mortality and solute removal, thus providing

support for our hypothesis.

In Section 8.1, a case was made that bio-inspired engineering systems possessing

a deeper level of similarity to biological system behavior will perform better than those

possessing superficial behavioral similarities. This was shown through 2 case studies:

avian flight control compared to innovations in aviation (Section 8.1.1) and the human

kidney compared to current renal replacement therapies (Section 8.1.2).

In Section 8.2, a comprehensive example of solution-driven Bio-inspired

Conceptual Design is presented. In this case study, the human kidney is reverse

engineered and a novel renal replacement therapy is designed.

8.2 COMPREHENSIVE EXAMPLE: CONCEPTUAL DESIGN OF A NOVEL

RENAL REPLACEMENT THERAPY

In Section 8.1, 2 historical case studies of aviation and renal replacement therapy

were presented. In these studies, it was found that bio-inspired engineering systems

possessing a deeper level of similarity to biological system behavior perform better than

those possessing superficial behavioral similarities. Using this finding as motivation, in

this section, a novel renal replacement therapy that closely mimics the behavior of the

kidney is developed. In this example, the process of solution-driven Bio-inspired

Concept Generation is detailed. Specifically, the Method for Reverse Engineering

Biological Systems is used to decompose the behavior of the kidney and extract the

behavioral strategy. This strategy is then used in the development of the renal

replacement therapy system.

8.2.1 The Problem

The functional output of a human kidney is measured by its glomerular filtration

rate (GFR). End-Stage Renal Failure (ESRD) is a disease inflicting hundreds of

thousands of patients worldwide that is defined by a GFR below 15% of normal kidney

function. Patients diagnosed with ESRD have two survival options: receive a donor

kidney, or begin dialysis.

244

While organ transplant is the best option, there are simply not enough donor

kidneys available. Consequently, most patients begin peritoneal dialysis – a reasonable

form of treatment that uses the body’s own peritoneum as a filter – allowing users to

retain many aspects of their normal pre-ESRD lifestyle. After a few years of peritoneal

dialysis, the filtration ability of the peritoneum becomes inadequate for peritoneal dialysis

and patients are forced to begin traditional hemodialysis.

Hemodialysis requires most patients to visit a clinic three times a week for three

to five hour treatment sessions. Blood is circulated out of the body, cleansed through

dialysis, and then returned to the body. Unfortunately, modern hemodialysis fails in two

major ways: it is unable to perfectly clean the blood, and it is a very invasive process.

Advancements have been made by several private companies to bring

hemodialysis into the home, releasing patients of the need to travel to a clinic for

treatment. While this is a considerable advancement, the actual hemodialysis process

patients endure is fundamentally the same: needle sticks, blood filtered across a

membrane, patients tied to a stationary machine for hours on end.

In Section 8.1.2, it was found that renal replacement therapies that more closely

mimic the behavior of the human kidney on the systems level perform better. Therefore,

in this study, the solution-driven approach is used to conceptually design a novel RRT

system that closely mimics the behavior of the kidney. The specific problem statement

for this study is as follows:

Problem Statement: Design a renal replacement therapy system that closely mimics the

waste removal function of the kidney. Specifically, we wish to design a renal therapy

that allows the regulation of solutes that are reabsorbed into the blood. This regulation

will allow for more hemodynamic stability and continuous waste regulation of the blood.

8.2.2 Solution-driven Conceptual Design

The solution-driven approach includes the following steps: (1) Identify biological

systems of interest, (2) Analyze system, (3) Extract biological strategies, and (4)

Generate ideas.

245

Step 1: Identify biological systems of interest

In this step, the biological system of interest is identified. In this study, the

human kidney is identified as the system of interest. As mentioned earlier, the goal of

this study is the design of a more biologically-correct renal therapy. Specifically, a

system is sought that mimics the waste removal function of the human kidney at the

systems level.

Step 2: Analyze system

In this step, the Method for Reverse Engineering Biological Systems is used to

systematically analyze the function, behavior, and structure of the human kidney.

Specifically, the waste removal function of the kidney is analyzed.

1) Define root system:

In this step, the designer defines the root biological system of interest. The

root system is the human kidney. As displayed in Figure 8.14, the human kidney

inputs dirty blood and outputs urine and clean blood. There is also a control signal

dictating kidney operation.

Figure 8.14 Root System – Human Kidney

2) Define standalone behavior:

In step 2, the designer defines the behavior of the root system using the Petri

Net modeling formalism. The behavior of kidney is displayed in Figure 8.15. As

opposed to being modeled as a discrete system, the human kidney is modeled as a

continuous system with the state of the system dictated by the composition of solutes

at different places. The behavior of the kidney, filter, is represented by a transition.

The composition of the blood before and the blood and urine after filtration is

represented within the places.

246

Figure 8.15 PN model of the overall behavior of the human kidney

3) Decompose system and sub-systems

In step 3, the system is decomposed into its subsystems. The functional unit

of the kidney is the nephron. The nephron can be further decomposed into its

different subsystems, including the Bowman’s capsule, proximal tubule, loop of

Henle, distal tubule, and the collecting duct.

Figure 8.16 Structural Decomposition of the Human Kidney

Next, the interactions between the components are modeled and displayed in

Figure 8.17. As seen in the figure, blood solutes from the Bowman’s capsule flow

through the proximal tubule, loop of Henle, and the distal tubule, before exiting at

the collecting duct as urine. Solutes are also exchanged with the Vasa Recta before

leaving the kidney in the clean blood.

247

Figure 8.17 Kidney subsystem interactions

4) Define standalone behaviors of sub-systems

Following the procedure from Step 2, the standalone behaviors of the

subcomponents are identified. The individual behaviors of the kidney subsystems

displayed in Figure 8.16 are defined in Figure 8.18. In this figure, the behavior of 3

solutes (Ca2+, glucose, and urea) are represented. Consider the behavior of the

proximal tubule. The composition of Ca2+, Glucose, and Urea at entry to the

proximal tubule are 540, 800, and 933 mmol/day, respectively. In this tubule, 70 %

of Ca2+, 100% of Glucose, and 50% of Urea are reabsorbed into the blood.

248

Figure 8.18 Standalone behaviors of the Kidney subsystems

5) Define interface relationships between subsystems

In this step, the interface relationships between subsystems are defined using

external arcs and are displayed in Figure 8.19. Double-dashed lines are defined

between the places of the subsystems, indicating these places are synchronized.

249

Figure 8.19 Interface relationships between the Kidney subsystems

6 - 8) Generate combined behavioral model, Identify Subnets, and Create

Macrotransitions

Since steps 6-8 are iterative, the discussion below is combined. Figure 8.20

displays the hierarchical Petri net model for the human kidney. After generating the

reachability graph, the subnet of the filter transition is identified. In the figure, the

subnet of the transition ‘filter’ is defined using a gray outline in the lower net. The

transition filter is now defined as a macrotransition because it has a subnet associated

with it.

250

Figure 8.20 Hierarchical Petri net representation of the Human Kidney

Step 3: Extract Biological Strategies

In this step, strategy is systematically extracted from the subnet representing the

behavior of the lower level systems. Using the method defined in Section 4.1, strategy is

extracted from the model as follows:

Strategy (Filtration) = BowCap (Conv./Diff.), PrTub (Reabs/Secr), LHen (Reabs/Secr),

DisTub (Reabs/Secr), ColDuct (Reabs/Secr/Excr)

The strategy of the Human Kidney to filter specific solutes can also be defined:

Strategy (Filtr. - Glucose) = BowCap (Conv./Diff.), PrTub (Reabs 100%)

Strategy (Filtr.- Ca2+) = BowCap (Conv./Diff.), PrTub (Reabs 70%), LHen (Reabs 20%),

ColDuct (Excr 10%)

Strategy (Filtr. - Urea) = BowCap (Conv./Diff.), PrTub (Reabs 50%), LHen (Secr 60%),

ColDuct (Reabs 70% / Excr 40%)

251

In natural language, the strategy of the Human Kidney can be defined as:

 “Filtration in the kidney is performed by removing mostly all substances from the blood

through convection/diffusion in the Bowman’s Capsule and reabsorbing and secreting

needed substances in Proximal tubule, Loop of Henle, and Distal Tubule, and Collecting

Duct . The remaining solutes are excreted through the Collecting Duct.”

Step 4: Idea Generation

In this step, the biological strategies are used to stimulate the generation of

working principles. Based on the strategy extracted for waste removal in the kidney in

Step 3, the following high-level function structure, displayed in Figure 8.21, was

generated. This model will help guide the conceptual design process.

Figure 8.21 High level function structure of the Kidney

In the model, the dirty blood is first separated into blood filtrate and retentate. In

the regulation step, substances in the filtrate are separated in order to selectively reabsorb

the needed substances into the blood and remove the unneeded substances (waste) in the

form of urine. After reabsorbing the needed substances and secreting the unneeded ones,

the now clean blood is circulated back into the body. The rate of reabsorption and

secretion of the substances is regulated by the body. Since the goal of this case study is

the conceptual design of a new renal therapy that closely mimics waste removal in the

kidney, we use this model as a base for our design.

252

Based on the function structure, the Strategy Repository is used to retrieve

potential strategies to use in mimicking the kidney. The primary function of the kidney is

separation, therefore, the repository is used to retrieve strategies for separation. The

search is structured as follows:
∃ satisfiesFunction.[∃hasInput.Mixture ⊓ ∃hasOutput.Mixture ⊓ ∃hasOutput.Mixture] ⊓ ∃

refinesBehavior.[∃hasAction.Separate] ⊓ ∃fromDomain.Engineering_Domain.

With this search, an engineering strategy that separates a mixture into two

mixtures is sought. The repository search is displayed in Figure 8.22.

Figure 8.22 Repository search for separation strategies

The retrieved strategies are described briefly as follows:

Diffusion - Diffusion is a membrane-based separation strategy in which a solute

concentration gradient is the primary driver. In diffusion, solutes flow across a

membrane from areas of higher concentration to areas of lower concentration. Control

over which solutes in a mixture cross the membrane is usually done by modifying the

relative concentration between both sides of the membrane and by altering the properties

of the membrane itself.

253

Ultrafiltration - Ultrafiltration is a membrane-based separation strategy in which

hydrostatic pressure forces a mixture across a semi-permeable membrane. Large solutes

in the mixture are retained, while smaller solutes and the liquid pass through the

membrane.

Electrical Charge - Another separation strategy is driven by the electric charge of the

solutes in a mixture. This process, termed electrophoresis, is commonly used to sort ions

in a fluid. A fluid, full of ions to be sorted, is mixed with a buffer solution and run

between two oppositely charged plates. As the fluid and buffer flow parallel along the

plates, the charged ions are pulled towards the plates based upon their electric charge.

Bio-artificial - Bio-artificial separation uses actual mammalian renal cells as part of a

membrane-based filtering system. Living renal cells can be suspended onto a polymer

membrane scaffold, and behave as actual renal cells in the kidney: pumping solutes in

and out of the blood.

Centrifugation - Centrifugation is a separation strategy involving the use of centrifugal

force for the separation of substances in a mixture. In this case, the heavier components

of the mixture move away from the axis of the centrifuge, while lighter components

move towards the axis.

Adsorption - Adsorption is a separation strategy that uses chemical affinity to separate

specific substances from a mixture. In this case, a sorbent is used to adsorb the unwanted

substances from the mixture.

These strategies can now be used to stimulate working principles for the artificial

human kidney. First, the first separation process, where most of the substances are

removed from the blood, is addressed. The goal of this separation process is simply the

removal of many of the substances, including wastes and needed substances, from the

blood. For this process, many of the strategies can be used, however, the membrane-

based ultrafiltration strategy was chosen. Ultrafiltration is used in this case to separate

the plasma from the whole blood. The plasma contains both needed and unneeded

substances. In ultrafiltration, control over which solutes cross the membrane barrier is

254

primarily done by either modifying the pore size of the membrane or the filtration

pressure (blood pressure).

The goal of the second separation process is regulation of substances reabsorbed

back into the blood. This means that the traditional membrane-based systems won’t

work, as they don’t allow active control of which solutes are removed. This separation

must be performed on a continuous basis, as is done in the human kidney. For this

second separation process, electrophoresis is considered. With electrophoresis, the

substances in the blood are sorted by electrical charge. Using this strategy, the filtered

solutes can be reclaimed and directed back into the blood. Because the electrical input

can be varied, the substances that are separated can also be controlled on a continuous

basis. This allows for regulation of solutes similar to that of the kidney.

Based on the discussion above, the two specific principles chosen for use in our

renal replacement system are ultrafiltration-based separation followed by electrophoresis-

based separation. Thus, the functions in the kidney function structure from Figure 8.21

can be replaced by specific working principles, as displayed in Figure 8.23.

Figure 8.23 Specific working principles for renal replacement therapy concept

Based on the working principles in Figure 8.23, the following concept, displayed

in Figure 8.24, is developed.

255

Figure 8.24 Renal replacement therapy (RRT) concept

The concept displayed in Figure 8.24 combines ultrafiltration for the glomerular filtration

function of the kidney and electrophoresis for the substance regulation function of the

kidney. In the concept, dirty blood leaving the body is filtered by ultrafiltration to

separate the blood plasma from the whole blood. This plasma is then sent to a multi-

stage electrophoresis system, whereby unwanted substances, such as urea and Beta-2-

microglobulin, are separated from the plasma. The multi-phase system is used to get

better resolution between substances in the separation process. The clean plasma is then

recombined with the blood retentate and returned to the body. The waste is collected for

disposal. A control unit is used to regulate the concentration of solutes that are removed

by the multi-stage electrophoresis system.

8.2.3 Comparison and Discussion of performance

The goal of this design example was to design a renal replacement therapy that

more closely mimics the waste removal strategy of the kidney. This comparison is

summarized in Table 8.4 (referencing Figure 8.20). In Section 8.1.2, hemodialysis and

256

hemodiafiltration were compared on the basis of their behavioral similarity to the kidney.

Hemodialysis can be seen as similar to the first level of behavior of the human kidney,

which is simply filtration of the blood. Hemodiafiltration, on the other hand, possesses a

deeper level of behavioral similarity by first filtering most of the substances from the

blood, and then replacing the needed substances using a substitution fluid. Although this

method is more similar to the actual behavior of the kidney than hemodialysis, it still

lacks in allowing regulation of the reabsorbed solutes. In the kidney, needed substances

are regulated through multiple steps of secretion and reabsorption throughout the

nephron. The RRT concept developed in Section 8.2.2 allows for continuous regulation

of the needed solutes using a multi-stage electrophoresis system.
Table 8.4 Renal Replacement Therapy Comparison

 Kidney Strategy Renal Therapy Strategy

G0

G1

G1

The question now becomes, “What type of advantage would this RRT concept

have over existing renal therapies?” As this is just a research concept, the performance of

the system can only be theorized. To get a true estimate of performance, many years of

257

development and trials are needed. However, the RRT concept presented in Figure 8.24

has several theorized advantages over the current renal therapies, including:

1. Selectivity in filtration

2. Two-stage processing

3. Continuous solute regulation

One of the key advantages of the RRT concept is its ability to selectively reabsorb

molecules. There are two obvious ways to filter out individual molecules: by size or by

charge. Size selectivity is limited by the manufacturing capabilities of current membrane

technologies. In order to selectively filter by charge, a membrane must be made with the

exact pore size of the selected molecule. Today’s technology is currently not capable of

such precision manufacturing (pore sizes are around fifteen nanometers in size). Even if

this was possible, the membrane would still allow any molecule smaller than this cutoff

point through the membrane. Charge selectivity, on the other hand, allows filtration of

molecules by charge. The strength of the filter is defined by the electric field and the

resolution of the charges of the molecules. Thus, the electrophoresis-based reabsorption

strategy allows individual molecules to be selectively reabsorbed, which is not currently

feasible with current membrane-based technologies.

Another key advantage of the RRT concept is the two-stage solute processing. In

the RRT concept, ultrafiltration is used to separate all of the substances from the blood

and multi-stage electrophoresis is used to selectively reabsorb the needed substances. It

is believed that it is much more efficient to remove all the substances from the blood and

selectively reabsorb the needed substances than to try to only remove selected waste from

the blood in a “one shot” fashion, as is done in current dialysis technologies.

In addition, the electrophoresis-based separation process in the RRT concept

allows for continuous solute regulation. In the RRT concept, solute regulation can be

performed on a continuous basis, as opposed to intermittently when using a replacement

fluid in hemodiafiltration. A continuous-based therapy will help to increase the

hemodynamic stability and biocompatibility of the treatment.

258

8.3 CLOSURE AND VALIDATION

The research question posed at the onset of this chapter is as follows:

“What is the impact of biological strategies in the conceptual design process?”

In essence, with this question, the value of bio-inspired design in the conceptual design

process is assessed. In this research, the value of biological strategies is assessed in two

different contexts: (1) problem-based Conceptual Design, where the designer seeks to be

inspired by biological strategies in the ideation process and (2) solution-driven

Conceptual Design, where the designer is seeking better solutions to engineering

problems by mimicking the biological strategies. The value of the biological strategies

and the proposed method in the problem-driven context was assessed in Chapter 7. In

this chapter, the value was assessed in the solution-driven context.

Specifically, in the solution-driven context, it was hypothesized that Bio-inspired

engineering systems possessing a deeper level of biological system behavior will perform

better than those possessing superficial behavioral similarities. In Section 8.1, historical

case studies were presented and it was concluded that systems possessing deeper levels of

similarity did perform better with respect to the chosen metrics. In both the avian flight

control and the artificial human kidney case studies, support was found for this

hypothesis. Specifically, in the avian flight control case (Section 8.1.1), it was concluded

that the ability to manipulate lift in maneuvering and control increased as the level of

similarity between the behavior of the bird wing and flight control surfaces on aircraft

increased. In the artificial kidney example presented in Section 8.1.2, it was concluded

that the survival rate and removal of solutes increased with the level of similarity of the

renal replacement therapy to that the human kidney. Since it is concluded that there is

value in high levels of behavioral similarity with biological systems, there is also value in

rich representations of this behavior. These representations allow more behavioral

knowledge to be extracted and represented from biological systems. Specifically, the

hierarchical Petri net representation allows for biological system behavior and strategy to

be represented at multiple levels of refinement.

In Section 8.2, these historical case studies were followed by a case study in

solution-based Bio-Inspired Conceptual Design. In this case, a novel renal replacement

259

therapy was designed and compared to others in industry. In this case, it was found that

the proposed method for solution-driven Conceptual Design resulted in not only a renal

therapy that was more similar to that of the kidney, but also one that was hypothesized to

be better performing.

Empirical Performance Validity

The validation strategy in this dissertation is displayed in Figure 8.25.

Figure 8.25 Validation Strategy and Chapter 8

Empirical Performance Validation involves accepting the usefulness of the

method for some representative example problems. In Section 8.1, historical case studies

were used to show the value of rich behavioral models in solution-driven Conceptual

Design. In the historical case studies, bio-inspired systems that more closely mimicked

the behavior of the target biological system were found to perform better. In Section 8.2,

a case study on the design of a novel renal replacement therapy system was presented. In

this study, several advantages of the design generated were found over current renal

therapies.

260

CHAPTER 9 CLOSURE AND CONTRIBUTIONS

In this chapter, the research questions and their respective hypotheses are

revisited. The specific contributions to the body of knowledge are also reviewed in this

chapter.

9.1 REVISITING THE RESEARCH QUESTIONS

Due to its inherent difficulties, bio-inspired design has thus far followed an ad hoc

path. Although several researchers have developed approaches for identifying and

transferring biological strategies to the engineering domain, several shortcomings were

identified in Section 1.2.3. These shortcomings include the lack of research on

representing biological systems so that strategies can be easily accessed and

comprehended, inefficient identification of these strategies, and a lack of empirical

evidence on the advantage of these biological strategies in Conceptual Design. Given

these shortcomings, the author set out to answer the following primary research question

in this research:

Primary Research Question:

How can we aid the designer in more “effective” idea generation in Conceptual Design?

To answer this question, the following hypothesis is proposed:

Primary Research Hypothesis:

Building upon a rich behavioral model of biological systems and a strategy repository,

the proposed approaches to Bio-inspired Conceptual Design can be used to aid the

designer in (1) identifying relevant biological strategies and (2) using biological

strategies in Conceptual Design to produce 2a) a larger variety of design ideas (2b)

design ideas of greater novelty and (2c) higher quality design ideas.

261

The fundamental claims of the primary hypothesis of this research include that of

biological representation, efficient retrieval, and assessing the impact of biological

strategies on Conceptual Design. To validate these claims, several sub-research

questions were proposed and are discussed in the following sections.

9.1.1 Research Question and Hypothesis 1

Representations play a key role in understanding complex systems, especially

when these systems can’t be experienced directly. However, representing and

understanding biological systems is very difficult. It is believed that an explicit

representation of biological systems can aid in bridging the gap in the transfer of these

technologies to engineering systems. This motivation led to the following question:

Question 1: “What type of representation can be used to model the behavior of

biological systems?”

To answer this question, Hypothesis 1 stated that

Hypothesis 1: A representation based on (1) a causal behavioral description and (2)

hierarchical Petri nets can be used to model the behavior of biological systems.

 In Chapter 3, Hypothesis 1 was validated through qualitative evaluation of the causal

behavioral description and the hierarchical Petri net representation against several

representation criteria derived from the psychology and design literature. Specifically,

the Structure-Behavior-Function (SBF) model, Function Behavior-State (FBSt) model,

Functional Rationale (FR), Function-Behavior-Structure (FBS) model, Function-

Environment-Behavior-Structure (FEBS) model, and the Causal Behavioral Model

(SAPPhIRE) were evaluated against requirements for representing biological systems.

These requirements include hierarchical representation, explicit dynamic representation,

explicit representation of the environment, behavior-centric approach, and completeness

and uniqueness of representation. After evaluation, a derivative of the SAPPhIRE

262

Model, termed the causal behavioral description (Section 3.2.4), was found to meet these

representation requirements.

In Section 3.3, the representation, or expression, of the causal behavioral

description was considered. In this case, several expressions were evaluated, including

the textual, static diagrammatic, and dynamic diagrammatic expressions. The Petri net

representation, a dynamic diagrammatic expression, of the causal behavioral description

was found to meet the requirements put forth for computational offloading, inference,

validity, consistency, isomorphism, model complexity, and behavior verification. In

Section 3.4, building on the Petri net representation validated in Section 3.3, the

hierarchical Petri net representation was developed. Therefore, after qualitative

evaluation, a representation based on a causal behavioral description and hierarchical

Petri nets was found to meet the requirements for modeling the behavior of biological

systems.

9.1.2 Research Question and Hypothesis 2

The purpose of the Method for Reverse Engineering Biological Systems is to aid

the designer extracting behavioral strategies from biological systems. Consistent strategy

extraction requires consistency in behavior across hierarchical levels of the Petri net

representation. This motivation led to the following research question:

Question 2: How can the behavior of biological systems be hierarchically represented

using Petri nets, while preserving the fundamental properties at each hierarchical level?

In answering this question, it was hypothesized in Hypothesis 2 that:

Hypothesis 2: The systematic method for Reverse Engineering Biological Systems will

ensure that the fundamental properties of boundedness, reachability, and liveness will be

preserved across hierarchical levels.

263

To validate this hypothesis, mathematical proofs for the preservation of boundedness,

liveness, and reachability across hierarchical levels when using the proposed method

were presented in Section 4.3. Preservation of these properties was found to be a direct

result of behavioral mapping in the proposed method. In behavioral mapping, a

reachability graph is used to systematically combine the individual behaviors of the

subsystems, while the subnet definition is used to map the behaviors of lower-level

subnets to the more abstract behavioral net. Specifically, boundedness is preserved by the

combined behavioral graph generation, where

�

M(p) ≤ 1, and the subnet definition, where

M(

�

•St)=M(

�

•t) and M(

�

St •)=M(

�

t •). Liveness is also preserved by the combined

behavioral graph, where a transition t only appears if it is live. By subnet definition,

�

σ (

�

•St ,

�

St •)⊆

�

σ (

�

•t ,

�

t •), or the firing order is unchanged. Therefore, liveness is

preserved. By definition, the reachability graph R(M0) used to generate the combined

behavioral graph, generates all reachable states, M, from state M0. By subnet definition,

M(

�

•St)=M(

�

•t) and M(

�

St •)=M(

�

t •), and reachability is preserved. From this, it was

concluded that the fundamental properties were preserved when following the proposed

method for Reverse Engineering Biological Systems.

Two illustrative examples detailing the proposed method were presented in

Section 4.4. In Section 4.4.1, the method for Reverse Engineering Biological Systems

was used to extract the behavioral strategy from the mutable connective tissue of

echinoderms. In Section 4.4.2, the proposed method was used to extract the behavioral

strategy from muscle fiber in isometric contraction.

9.1.3 Research Question and Hypothesis 3

Identification of relevant biological strategies is a key issue in bio-inspired design.

Current approaches are useful for storing and providing access to biological information,

however, the generic keyword-based retrieval process utilized by these approaches

suffers from providing too many and/or irrelevant results [30]. In this research, it is

believed that structuring biological information using ontologies can lead to more

accurate and efficient retrieval of biological strategies. The following research question

was posed:

264

Question 3: How can hierarchical Petri net representations of biological systems be

structured to aid retrieval of relevant strategies from a knowledge repository?

To answer this question, Hypothesis 3 stated:

 Hypothesis 3: An ontology of concepts from hierarchical Petri net representations of

biological systems can be represented using Description Logics and that the subsumption

algorithm in Description Logics will enable consistent and precise retrieval of relevant

biological strategies from a knowledge repository.

To validate this hypothesis, an ontology of concepts from the hierarchical Petri net

representation of biological systems was structured using taxonomies for energy,

material, and signal flows, actions, attributes, strategies, domain, and structures.

Specifically, the ontology was structured by relationships between the system strategy

and its functional (flows), behavioral (actions, attributes), structural, and domain concepts.

This ontology was then encoded using Description Logics.

With respect to retrieval, mathematical evidence that subsumption in DL ensures

consistency in retrieval was presented in Section 5.5.1. Specifically, subsumption in DL

can be shown to impose a partial order relation on entities when subsumption is

computed. Since subsumption, in general, is found to compute a consistent and correct

hieararchy, retrieval through subsumption is also consistent and correct. Precision in

subsumption-based retrieval was validated empirically in Section 5.5.3. Specifically, a

strategy repository testbed was developed and used to empirically test the precision of

subsumption-based retrieval. Test queries were formulated and used to retrieve strategies

from the repository. Precision was calculated to be 1 for every query except when no

matches were found, therefore, it was concluded that subsumption in DL ensured precise

retrieval of biological strategies. Because subsumption in DL was found to enable both

consistent and precise retrieval, the use of DL as a structuring mechanism for an ontology

of hierarchical Petri net concepts is also justified.

Additionally, in Section 5.5.4, the retrieval performance of subsumption-based

retrieval was compared to that of the Biomimicry Database and the Functional Keyword

265

Search. The performance of the alternatives were compared using a retrieval

effectiveness score, F1. In the study, the retrieval effectiveness was found to be less than

1 for both the Biomimicry Database and the Functional Keyword Search. This was

compared to an effectiveness score of 1 for subsumption-based retrieval. Because of this,

it was concluded that subsumption-based retrieval was useful.

9.1.4 Research Question and Hypothesis 4

In this research, bio-inspired design is used in two different contexts: problem-

based and solution-driven Conceptual Design. Until this point, there has been very little

research in quantifying its impact on the designer in Conceptual Design. This motivates

the following research question:

Question 4: What is the impact of biological strategies in the Conceptual Design

process?

In answering this question, it was hypothesized in Hypothesis 4 that

Hypothesis 4: 4(a) Exposure to biological strategies will increase the novelty of design

ideas generated and 4(b) will increase the variety of design ideas generated.

Additionally, 4(c) bio-inspired engineering systems possessing a deeper level of

biological system behavior will perform better than those possessing superficial

behavioral similarities.

Hypotheses 4(a) and 4(b) were validated in the context of problem-based

Conceptual Design. In Section 7.1, two experimental studies were presented in which

mechanical engineering students were exposed to biological examples in the idea

generation process; these results were then compared to participants receiving no

examples and to those receiving human-engineered examples. In Section 7.1.4, exposure

to biological examples was found to increase the novelty of design ideas generated after

exposure, thus providing support for Hypothesis 4(a). This result agrees with others

found in literature where distant analogies (biological systems) have been positively

266

related to more original designs [43] and been considered the main drivers of truly

innovative thought [46]. Additionally, exposure to biological examples was found to

preserve the variety of design ideas generated. This result did not support Hypothesis

4(b), where it was hypothesized that the variety of ideas would increase. Although no

support for Hypothesis 4(b) was found, the results were still favorable. This contradicts

results found in the literature [149, 150, 48, 152, 151, 153] where exposure to design

examples has been shown to have conformity or fixation effects on the resulting design.

In Section 7.2, these cognitive studies were followed with a comprehensive example

problem-based Bio-inspired Conceptual Design. In this example, a hybrid bullet resistant

armor system was designed and compared to other designs in industry. Based on a

survey of other technologies, the system was found to be novel.

Hypothesis 4(c) was validated in the solution-driven Conceptual Design context.

In Section 8.1, historical case studies were performed on bio-inspired engineering

systems, including that of aviation and renal replacement therapy. It was found that the

bio-inspired systems possessing a deeper level of behavioral similarity did indeed

perform better than those possessing only superficial similarities. Specifically, in Section

8.1.1, aircraft wings possessing more similarity to the actual behavior of the bird wing

perform better with respect to manipulating lift for flight control. Also, in Section 8.1.2,

hemodiafiltration, which possesses more behavioral similarity with the human kidney

than hemodialysis, was also found to perform better largely because of this similarity. It

was concluded that advances in both aviation and renal replacement therapy were a result

of a better understanding of and similarity to their respective source biological systems.

In Section 8.2, the historical case studies were followed by a comprehensive example

solution-based Bio-Inspired Conceptual Design. In this case, a novel renal replacement

therapy closely mimicking the behavior of the kidney was designed. This concept was

compared to other renal replacement therapies and was hypothesized to have many

performance benefits.

A summary of the hypothesis validation performed in this dissertation is

displayed in Table 9.1.

267

Table 9.1 Summary of Hypothesis Validation

 Hypothesis Validation Tests
Hyp 1 A representation based on (1) a causal

behavioral description and (2)
hierarchical Petri nets can be used to
model the behavior of biological
systems

- Qualitative evaluation with respect
to requirements put forth for
representation of biological systems
(Chapter 3)

Hyp 2 Using the systematic method for
Reverse Engineering Biological
Systems will insure that the
fundamental properties of
boundedness, reachability, and liveness
will be preserved across hierarchical
levels.

Find mathematical evidence of
boundedness, reachibility, and
liveness for hieararchical Petri net
representation (Chapter 4)

Hyp 3 An ontology of concepts from
hierarchical Petri net representations of
biological systems can be represented
using Description Logics.
Subsumption in Description Logics
will enable consistent and precise
retrieval of relevant biological
strategies from a knowledge repository.

- Find mathematical evidence of
consistency through subsumption
(Chapter 5)
- Evaluate retrieval precision in
various scenarios using test queries
(Chapter 5)

Hyp 4a Exposure to biological strategies will
increase the novelty of design ideas
generated and will increase the variety
of design ideas generated and

- Cognitive studies on mechanical
engineering students (Chapter 7)
- Problem-based Conceptual Design
Example (Design of Hybrid Bullet-
Resistant Armor) (Chapter 7)

Hyp 4b Bio-inspired engineering systems
possessing a deeper level of biological
system behavior will perform better
than those possessing superficial
behavioral similarities.

- Historical case studies on bio-
inspired design (Chapter 8)
- Solution-driven Conceptual Design
Example (Design of a wearable,
artificial kidney) (Chapter 8)

As seen in Table 9.1 and the prior discussion, each of the hypotheses was

thoroughly tested and validated. The second part of the validation strategy in this

dissertation involves the Validation Square, which is discussed in Section 9.2.

9.2 VALIDATION SUMMARY

The focus of this dissertation is the proposed method for Reverse Engineering

Biological systems and its accompanying hierarchical Petri net representation, therefore,

268

validation of the method as a whole is also of primary importance. To do so, the

Validation Square [190] is employed. This validation strategy is presented in the

following sections.

9.2.1 Theoretical Structural Validity (TSV)

The first step in validating the method for Reverse Engineering Biological

Systems is evaluating the theoretical structural validity of the proposed method. TSV

involves checking the individual constructs and assumptions upon which the method is

built, as well as checking the internal consistency of the method.

In Chapter 2, the theoretical foundations of the method for Reverse Engineering

Biological Systems and the Strategy Repository were validated through review of the

relevant literature. In Section 2.1, relevant literature on systematic design and idea

generation was reviewed. In Section 2.2, representations in engineering design were

reviewed. This review included general models of cognitive processes in idea generation,

mental models, and common representations used in engineering design. The

foundations of the strategy repository, engineering ontologies and Description Logics

were reviewed in Section 2.3. In Section 2.4, metrics for empirical evaluation of idea

generation techniques were reviewed.

In Chapter 3, the foundations of the specific representation used in the proposed

method, the hierarchical Petri net representation, were reviewed. Specifically, a rigorous

assessment of both engineering representations and representation expression against

several key requirements for representing biological systems was presented.

The latter part of TSV involves a check of the internal consistency of the method.

In Chapter 4, the Method for Reverse Engineering Biological Systems was presented.

The check of internal consistency was performed using the systematic steps and process

flowchart presented in Section 4.2.

9.2.2 Empirical Structural Validity

Empirical Structural Validity involves accepting the appropriateness of the

example problems that are used to verify the method performance. In this research, the

269

Method for Reverse Engineering is used in both a problem-driven and the solution-based

conceptual design context. In the problem-based approach, the designer begins with an

engineering problem and searches for solutions to this problem through the engineering

design process. In the solution-driven approach, the designer begins with a biological

solution and attempts to mimic the behavior of this system in the engineering domain.

Example problems were developed for each approach. In Section 6.1.3, the cognitive

studies (Section 7.1) and the comprehensive example on bullet resistant armor

development (Section 7.2) were both accepted as appropriate to verify the performance of

the proposed method in the problem-driven context. These studies test the impact of the

proposed method when using biological strategies in the search for solutions. In Section

6.2.2, the historical case studies presented in Section 8.1 and the comprehensive example

on renal replacement therapy development presented in Section 8.2 were both accepted as

appropriate for testing the proposed method in the solution-driven context. These studies

test the impact of the proposed method in aiding the designer in designing engineering

systems that successfully mimic novel biological behavior.

The ESV of the strategy repository is considered in Chapter 5. The repository

structure and retrieval method were tested using a testbed repository (Section 5.5.2.1).

Specifically, test queries to the testbed were used to test the precision of subsumption in

DL. The queries used to test the retrieval method were structured after typical requests

made by designers, thus the test method is deemed appropriate.

9.2.3 Empirical Performance Validation

Empirical Performance Validation involves accepting the usefulness of the

method for some representative example problems. In this research, the goal of the

proposed method is to aid the designer in generating ideas in Conceptual Design using

biological strategies. Therefore, the usefulness of the method is measured by its ability to

aid the designer in generating a large variety of novel solutions (in the problem-based

approach) and in generating quality solutions (in the solution-driven approach).

In the problem-based approach, the proposed method was tested using cognitive

studies (Section 7.1) and a comprehensive example of the design of hybrid, bullet

270

resistant armor (Section 7.2). In the cognitive studies, the biological strategies were

found to aid the designer in generating novel solutions while preserving the variety of

design ideas generated. In the example problem, the designs generated using the

proposed method were found to be novel relative to other solutions currently found in the

market.

In the solution-driven context, the proposed method was tested using historical

case studies (Section 8.1) and a comprehensive example of the design of a novel renal

replacement therapy (Section 8.2). In the historical case studies, bio-inspired systems

that more closely mimicked the behavior of the target biological system were found to

perform better. In the comprehensive example , several advantages of the design

generated were found over current renal therapies.

With respect to the strategy repository, the precision of subsumption-based

retrieval was tested using test queries and a repository testbed (Chapter 5). Retrieval

using subsumption in DL was found to have a precision of 1. This was found to have a

significant advantage over keyword-based retrieval methods, which typically have a

precision less than 1.

9.2.4 Theoretical Performance Validation

Success in the previous validation steps helps to build a case for this generality.

Although a case can be made for generality, every validation strategy relies ultimately on

a “leap of faith” [190].

The scope of the proposed method and strategy repository is idea generation in

Conceptual Design. Theoretical Performance Validation involves building confidence in

the generality of the method and its usefulness beyond the example problems. The goal

of the proposed method and repository is to aid the designer in generating a large variety

of novel solutions (in the problem-based Conceptual Design approach) and quality design

solutions (in the solution-driven Conceptual Design approach). Theoretical Performance

Validity is inferred from the Theoretical Structural Validity (TSV), Empirical Structural

Validity (ESV), and Empirical Performance Validity (EPV) presented throughout this

dissertation. Specifically, with TSV, the individual constructs of the proposed method

271

were accepted, as well as demonstrated the internal consistency of the way the constructs

were put together in the method. With ESV, the example problems (cognitive studies

case studies, and comprehensive examples) were found to be appropriate for testing the

proposed method in both the problem-based and solution-driven Conceptual Design

context. With respect to EPV, the proposed method and repository were found to be

useful for the cognitive studies and case studies presented. Collectively, these validation

steps show that the method is useful within the scope of the example problems presented.

In extending the usefulness of the proposed method beyond the scope of the

example problems, the general class of problems in which the method is useful is

examined. In the problem-based approach, the general class of problems has the

following characteristics:

1) Problem-based, meaning the designer begins with a design problem and proceeds

through the design process systematically in the search for solutions

2) Open solution field – there are multiple solutions that can satisfy a given problem

3) The designer wishes to be inspired by biological strategies, implying a transfer of

strategy at a high level of abstraction

4) Novelty of solution is valued

Given the general class of problems, the proposed method can be extended beyond the

scope of example problems and generalized for applicability in all problem-based

Conceptual Design scenarios.

With respect to the solution-driven approach, the general class of problems has

the following characteristics:

1) Solution-driven, meaning a reverse engineering approach is followed in

mimicking a novel feature or behavior from an analogous system

2) Target system can be systematically decomposed

3) Quality of solution is valued

4) The designer has the initial time to invest in reverse engineering an analogous

system

272

Given this general class of problems, the proposed method can be extended beyond the

scope of the example problems and generalized for applicability in all solution-driven

Conceptual Design scenarios.

9.3 REVIEW OF RESEARCH GAP AND CONTRIBUTIONS

Based on the review of current approaches to bio-inspired design reviewed in

Section 1.2.2, several gaps were identified. These gaps include:

1) Biological representations to bridge the gap between biological and engineering

domains

2) Systematic method to guide decomposition and strategy extraction

3) Efficient retrieval of relevant solutions to aid in identifying relevant solutions

4) Lack of empirical evidence to support bio-inspired design.

Biological System Representation

In the reviewed approaches, a significant gap was identified between the

biological and engineering research being performed by biologists in their respective

fields and the analogical translation that aims to transfer knowledge from biology to

engineering. To bridge this gap between biology and engineering, a hierarchical Petri net

representation for biological systems was developed. This representation offers a

mathematically-founded representation that allows qualitative simulation of biological

system behavior. To aid the engineer in understanding biological phenomena, this

representation also offers a multi-leveled view of system behavior, allowing both

behavior abstraction and refinement in a single model.

The hierarchical Petri net representation was used to structure an ontology of

biological concepts. This ontology, when implemented in a repository, is used to aid the

identification and retrieval of relevant biological strategies to stimulate idea generation.

For engineers seeking to mimic novel biological behavior, positive correlation was found

between the performance and the level of biological similarity of bio-inspired systems.

Given that, there is value in rich behavioral models of biological system behavior, such as

273

the hierarchical Petri net representation. The proposed method aids in systematically

decomposing the biological system behavior and creating these rich behavioral models.

Systematic Decomposition

Systematic and consistent decomposition of the behavior of biological systems is

key to extracting complete and correct biological strategies. Along with hierarchical

representation, this systematic decomposition is key to bridging the gap between

biological knowledge and engineering design. To address the gap, the Method for

Reverse Engineering Biological Systems was developed as a means to aid the engineer in

systematically decomposing biological systems using the hierarchical Petri net

representation and extracting behavioral strategies from these systems. This method was

found to have value for both engineers seeking to be inspired by biological strategies and

those attempting to mimic them. For those seeking bio-inspiration, the biological

strategies extracted using the proposed method were found to aid designers in generating

novel design solutions, without sacrificing the variety of these ideas (as in the case of

human-engineered strategies).

Retrieval of relevant solutions

Efficient identification of relevant biological strategies to use in Conceptual

Design is key to harnessing biological technologies in engineering, however, this

identification is one of the most difficult tasks in bio-inspired design. In this research, a

strategy repository was developed to aid in the identification of relevant biological

strategies. This repository was structured using an engineering ontology of concepts

from the hierarchical Petri net representation and implemented using Description Logics.

Subsumption in Description Logics was shown to enable consistent and precise retrieval

of biological strategies. This consistency and precision in retrieval can aid in reducing the

time needed for a secondary “weeding” process of irrelevant results. Although the current

approaches to biological databases offer access to these biological solutions, the generic

keyword-based retrieval mechanisms utilized by these approaches often suffer from

providing either too many and/or irrelevant results [30]. When compared to the keyword-

274

based search strategies utilized by the Biomimicry Database and the Functional Keyword

search, subsumption-based retrieval was shown to outperform these keyword-based

strategies in retrieval effectiveness. Effectiveness was defined by a combined metric for

both retrieval precision and recall.

Lack of empirical evidence to support bio-inspired design

Although significant advantages of bio-inspired design have been theorized by

examining scattered examples of successful cases, there has been a lack of research on

how the use of biological strategies in engineering impacts the designer and the products

that follow. In this research, cognitive studies were performed on engineering students

exposed to biological strategies in the idea generation process. These results were then

compared to students exposed to either no strategies or human-engineered strategies in

idea generation. Students exposed to biological strategies showed a significant increase

in the novelty of their design ideas after exposure, while no significant difference was

found between the variety of the design ideas produced before and after exposure. This is

a significant result since examples in idea generation have been shown to typically be

fixating, which would reduce the variety of design ideas produced.

9.4 RESEARCH LIMITATIONS

Although there are several advantages to using the research presented in this

dissertation, it does not come without its limitations. In this section, the main limitations

of this research are discussed. These limitations open up avenues for future work, which

is also discussed in this section.

The first limitation to this research relates to the hierarchical Petri net

representation and the Method for Reverse Engineering Biological Systems. The main

limitation of this representation, as is the case for all representations, is that the quality of

the information that can be extracted from the representation is strongly dependent on the

quality of information used to build the representation. In other words, “Garbage in =

Garbage out”. The proposed method is used as a means for facilitating systematic and

consistent behavior decomposition. Although the proposed method aids in systematizing

275

the decomposition and strategy extraction process, the strategy extracted from the

representation is only as correct and complete as the information used to build it. Because

of this, it is recommended that persons with a modest level of biological knowledge

construct these representations. However, since this approach uses a behavior-centric

approach to representing the system, the problem of subjectivity that usually plagues

function-based representations is alleviated.

The second limitation to this research relates to the Strategy Repository. The

Strategy Repository is constructed using defined taxonomies of concepts for functional,

behavioral, and structural information. Currently, the user is restricted to this same

vocabulary for querying the repository. It should be noted that although the structured

queries increase the performance of the retrieval strategy, they lack the expressiveness

found in natural language-based systems. The tradeoff between retrieval performance and

query expressiveness can be better managed using grammar processing systems, such as

Wordnet [27]. These grammar processing systems can be used to expand the query space

and increase the expressiveness of the retrieval strategy. Currently, Sungshik Yim is

working on grammar templates using Wordnet to help improve the expressiveness of the

queries.

The size of the repository is also a limitation. In order for the repository to

become truly useful, it needs to be populated much more than its current state.

Populating the repository to a level that extends beyond the current scope will take the

efforts of many different individuals and research groups. We believe that this limitation

can be overcome using a crowd-sourcing scheme, similar to that of Wikipedia. By

allowing the repository to be open to and governed by the users, the repository can

become populated very quickly. This will also aid in reducing the upfront cost of this

type of repository.

The final limitation comes by way of the cognitive studies performed. In these

studies, a relatively small sample of Mechanical Engineering students at Georgia Institute

of Technology were used. This small sample size limits the level of generality that can

be claimed from the studies. As part of future work, these cognitive studies should be

276

performed on a larger set of diverse participants. This will help expand further the case

for value in bio-inspired design.

9.5 BEYOND TOMORROW (FUTURE WORK)

In Section 9.4, the current limitations of the work are addressed. In this section,

we look beyond these limitations and propose several research directions that will aid in

completing this work. The overall vision of the proposed method for Reverse

Engineering Biological Systems and the Strategy Repository is that of an ideation tool,

similar to that of brainstorming and the Delphi method (others reviewed in Section 2.2).

As with the other idea generation tools, these tools can be used to aid the designer in

systematically expanding and exploring his/her design space. These tools can also be

used beyond the current scope of biological systems. Specifically, the proposed method

can be used beyond the current scope of biological systems as a means for decomposing

the function, structure, and behavior of any type of physical system. In addition, the

repository can be used to store and retrieve knowledge and design strategies outside the

current scope of biological systems. The strategy repository is seen as a tool to bridge the

knowledge gap between many otherwise distant domains. These domains can include the

electrical, chemical, and materials domains.

Given this overall vision for the research, there are several research issues that

must be addressed to build upon its current state. These future research directions are

focused in the areas of method validation, the expressiveness of the retrieval algorithm,

systematically increasing variety, and model simulation. The first area identified for

future research is that of method validation. In the current research, the method for

REBS, as a whole, was not validated. To truly prove value, an unbiased comparison of

this method versus others for decomposing biological systems must be performed. This

study should be performed in a controlled environment using either students or

design/engineering professionals.

Another research area identified deals with the expressiveness of the DL used to

build the repository. In its current state, strategies are retrieved from the repository by

using a very limited vocabulary, which is also used to build the repository. Although this

277

method is useful with respect to retrieval performance, it lacks in allowing a natural

expression of a search query by the user. Future work should include the use of grammar

processing templates, which allow the use of natural language sentence formulation for

querying the repository, but then convert this query to one that is understandable for DL

retrieval. Also, the Description Logic ALE was used in this research. Although not as

expressive as other attribute languages, ALE is also less computationally complex than

the more expressive languages. Future work in this area should include the use of a more

expressive DL, while also reducing the computational complexity of the inference

algorithms.

Extending the method for increasing the variety of the design ideas generated

using biological strategies is also an area of future work. In this work, Hypothesis 4b

(increased variety of design ideas) was not validated. It is believed that this hypothesis

was not validated due to the use of only one biological strategy in the studies. Variety

can be increased through the use of multiple design strategies as inspiration in idea

generation. To test this hypothesis, studies must be conducted with the number of design

strategies used as an experimental factor. Based on these studies, the proposed method

can be extended to aid the designer in systematically increasing the variety of his/her

design ideas.

Lastly, behavioral simulation is also an area of future work. Currently, the

hierarchical Petri net representation is used to represent the behavior of biological

systems. One of the advantages of this type of representation is that it allows the

hierarchical and dynamic simulation of biological system behavior. The systems

modeled in this dissertation were simple enough to model and simulate manually.

However, with more complex biological sytems, software tools are needed to aid in

producing and simulating these hierarchical and dynamic representations and handling

the complexity usually involved in modeling complex biological systems. Adding

computer support and simulation capabilities to the representation can give an easy way

of building and interacting with these hierarchical and dynamic models. Two software

tools that hold promise are STELLA [191] and SysML [192], which allow for formal and

dynamic modeling of physical systems. STELLA (Structural Thinking Experimental

278

Learning Laboratory with Animation) utilizes an icon-based graphical interface to model

and simulate system behavior. Using the software, STELLA allows the simulation of

discrete and continuous system behavior using user-defined mathematical relationships

and mappings. The main advantage of this type of model is the simple, easy-to-use

interface used to build and simulate the system behavior. This software also allows

multi-leveled, hierarchical system modeling and simulation. This will allow hierarchical

Petri net models of biological systems to be built and simulated using the software.

Another possible tool is SysML, which is a generic modeling language made for

modeling systems and processes. SysML allows the modeling of systems using different

types of diagrams, including structure diagrams, behavioral diagrams, parametric

diagrams, and requirement diagrams. A generic, top-level SysML model is displayed in

Figure 9.1.

Figure 9.1 SysML model diagram [192]

In SysML, structure diagrams are designed to represent the physical components of the

systems, as well as the relationships between these components. Behavioral diagrams

utilize state diagrams, use case diagrams, activity diagrams, and sequence diagrams to

represent the behavior of the system. Requirement diagrams are used show the different

relationships between the requirements of the system. In essence, SysML allows one to

model and simulate the functional, behavioral, and structural aspects of these systems.

279

Although providing easy user interfaces and complete system modeling, it should

be noted that neither STELLA nor SysML currently enable the ability to represent system

behavior using hierarchical Petri nets. However, there are several dedicated programs for

modeling hierarchical Petri nets. One such program is QPME (Queueing Petri net

Modeling Environment) [193], developed by the Databases and Distributed Systems

Group at the Technische Universitat Darmstadt. QPME offers a simple, graphical

software tool for modeling Petri nets and allows one to analyze the formal properties

these systems. The primary advantage of QPME is its ability to handle and analyze very

large and complex systems. QPME also supports the modeling of hierarchical (queueing)

Petri nets and allows simulation across multiple levels of hierarchy. QPME is made of

two primary components, a hierarchical Petri net editor (QPE) and a simulator

(SimQPN). QPE provides the graphical interface for modeling the system behavior,

while SimQPN is a portable and platform-independent simulation tool for simulating the

net [193]. A screenshot of the QPE interface is displayed in Figure 9.2.

280

Figure 9.2 QPME Interface [193]

9.6 CLOSING THOUGHTS

In closing, I present a few remarks on the ‘value’ of the research presented in this

thesis. As presented earlier, this work presented in this dissertation is used to aid the

designer in more “effective” idea generation in Conceptual Design. This research was

focused on developing a hierarchical Petri net representation and method for Reverse

Engineering Biological Systems to aid in bridging the gap between the biological and

engineering domains and developing a repository and retrieval method to aid in

identifying biological strategies.

This question of concern in this closing section is, “What is the value of the work

presented in this dissertation to the businesses and engineers that seek novel and

innovative solutions?” Value can be defined as ‘benefit’ divided by ‘cost’. In the context

of design, ‘benefit’ considers the added advantage to using the tools presented in this

research and ‘cost’ considers such factors as time that typically plague the design process.

281

In the problem-based approach to Bio-inspired Conceptual Design, the strategy

repository is used as means to identify relevant biological strategies in Conceptual

Design. These strategies are then used to stimulate ideas for new and innovative

concepts for design. With respect to the benefit of this research, these strategies were

shown to increase the novelty of the design ideas produced without sacrificing the variety

of design ideas produced. This increase in novelty can be correlated to a broadening of

the designer’s design space. A broad design space provides a better opportunity for

developing a truly innovative and winning design. With respect to cost, the majority of

the cost is taken upfront in populating the repository. Although this cost may be

significant, the designer utilizing the repository is shielded from this responsibility.

In the solution-driven approach, the method for Reverse Engineering Biological

Systems is used to decompose biological system behavior and extract biological

strategies. The true benefit of the proposed method is that it gives a systematic way of

handling the complexity found in biological systems and guiding the designer more

quickly and directly through behavioral decomposition and strategy extraction. The cost

of the proposed method also relates to the systematic nature of the method. The

systematic nature of the method can sometimes be more time-consuming and labor-

intensive than ad hoc approaches. However, the benefits of the systematic procedure are

argued to outweigh the costs.

In closing, the primary conclusions of this research can be summarized as

follows:

 A new representation framework for biological systems was developed.

Considering several requirements from both the psychological and design

domain, the hierarchical Petri net representation was found to be acceptable

for representing the physical behavior of biological systems.

 The Method for Reverse Engineering Biological Systems was shown to

facilitate systematic decomposition of the behavior of biological systems.

 The Method for Reverse Engineering Biological Systems was shown to

preserve reachability, boundedness, and liveness across hierarchical levels of

282

the representation. This enables consistency in behavioral representation and

strategy extraction.

 Exposure to biological strategies in the design process was shown to increase

the novelty of design ideas generated for Mechanical Engineering students,

thus increasing the likelihood of developing a novel solution.

 Exposure to biological strategies in the design process was shown to preserve

the variety of design ideas generated for Mechanical Engineering students,

thus negating the fixation effects typically associated with exposure in idea

generation.

 Using historical case studies, bio-inspired designs showing closer similarity to

their analogous biological systems were shown to outperform those with less

similarity.

 Subsumption in Description Logics was shown to enable consistent and

precise retrieval of biological strategies.

 When compared to the keyword-based retrieval strategies used in current

approaches to biological strategy retrieval, subsumption-based retrieval

outperformed these retrieval strategies with respect to retrieval effectiveness.

 Description Logics was found to be useful in structuring an ontology of

biological and engineering concepts.

283

APPENDIX A – REPOSITORY USER INTERFACE CODE

In Appendix A, the computer code used to build the user interface for the strategy

repository is presented. The user interface to the repository was programmed by Patrick

Chang, a graduate student in Mechanical Engineering at Georgia Institute of Technology,

under the advisement of Jamal Wilson and David Rosen.

Form CLASS

using System;

using System.IO;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Linq;

using System.Text;

using System.Windows.Forms;

using System.Xml;

using System.Xml.XPath;

namespace RepositoryGUI

{

 public partial class GUI : Form

 {

 #region Variables

 InitializeKnowledgeBase kb;

 public string uri;

284

 public string reasonerAddress;

 public string input;

 public string output;

 public string action;

 public string attribute;

 public string structure;

 public string domain;

 public string strategy;

 #endregion

 #region Constructor

 public GUI()

 {

 InitializeComponent();

 reasonerAddress = "http://localhost:8080";

 kb = new InitializeKnowledgeBase(reasonerAddress);

 uri = "";

 input = "";

 output = "";

 action = "";

 attribute = "";

 structure = "";

 domain = "";

 strategy = "";

 }

 #endregion

285

 #region Form Startup Method

 private void GUI_Load(object sender, EventArgs e)

 {

 try

 {

 kb.newKB();

 }

 catch

 {

 MessageBox.Show("ERROR: Cannot find RacerPro! Please open

RacerPro before running this program.", "Error Message");

 Application.Exit();

 }

 input_comboBox.Items.Clear();

 output_comboBox.Items.Clear();

 action_comboBox.Items.Clear();

 attribute_comboBox.Items.Clear();

 structure_comboBox.Items.Clear();

 strategy_comboBox.Items.Clear();

 input_comboBox.Items.Add("No Input Selected");

 input_comboBox.Items.Add("Energy_Flow");

 input_comboBox.Items.Add(" Acoustic");

 input_comboBox.Items.Add(" Particle_Velocity");

 input_comboBox.Items.Add(" Pressure");

 input_comboBox.Items.Add(" Biological");

 input_comboBox.Items.Add(" ParticleVelocity");

 input_comboBox.Items.Add(" PressureBiol");

286

 input_comboBox.Items.Add(" Chemical");

 input_comboBox.Items.Add(" Affinity");

 input_comboBox.Items.Add(" ReactionRate");

 input_comboBox.Items.Add(" Electrical");

 input_comboBox.Items.Add(" Current");

 input_comboBox.Items.Add(" ElectromotiveForce");

 input_comboBox.Items.Add(" Electromagnetic");

 input_comboBox.Items.Add(" Optical");

 input_comboBox.Items.Add(" Intensity_Optical");

 input_comboBox.Items.Add(" Velocity_Optical");

 input_comboBox.Items.Add(" Solar");

 input_comboBox.Items.Add(" Intensity_Solar");

 input_comboBox.Items.Add(" Velocity_Solar");

 input_comboBox.Items.Add(" Human");

 input_comboBox.Items.Add(" Force_Human");

 input_comboBox.Items.Add(" Velocity_Human");

 input_comboBox.Items.Add(" Hydraulic");

 input_comboBox.Items.Add(" Pressure_Hydraulic");

 input_comboBox.Items.Add(" VolumetricFlow_Hydraulic");

 input_comboBox.Items.Add(" Magnetic");

 input_comboBox.Items.Add(" MagneticFluxRate");

 input_comboBox.Items.Add(" MagnetomotiveForce");

 input_comboBox.Items.Add(" Mechanical");

 input_comboBox.Items.Add(" Rotational");

 input_comboBox.Items.Add(" Torque");

 input_comboBox.Items.Add(" Velocity");

 input_comboBox.Items.Add(" Translational");

 input_comboBox.Items.Add(" Force");

 input_comboBox.Items.Add(" LinearVelocity");

 input_comboBox.Items.Add(" Pneumatic");

287

 input_comboBox.Items.Add(" MassFlow_Pneumatic");

 input_comboBox.Items.Add(" Pressure_Pneumatic");

 input_comboBox.Items.Add(" Radioactive_Nuclear");

 input_comboBox.Items.Add(" DecayRate");

 input_comboBox.Items.Add(" Intensity");

 input_comboBox.Items.Add(" Thermal");

 input_comboBox.Items.Add(" HeatFlow");

 input_comboBox.Items.Add(" Temperature");

 input_comboBox.Items.Add("Material_Flow");

 input_comboBox.Items.Add(" Gas_Material");

 input_comboBox.Items.Add(" Human_Material");

 input_comboBox.Items.Add(" Liquid_Material");

 input_comboBox.Items.Add(" Mixture_Material");

 input_comboBox.Items.Add(" Colloidial");

 input_comboBox.Items.Add(" Gas-Gas");

 input_comboBox.Items.Add(" Liquid-Gas");

 input_comboBox.Items.Add(" Liquid-Liquid");

 input_comboBox.Items.Add(" Solid-Gas");

 input_comboBox.Items.Add(" Solid-Liquid");

 input_comboBox.Items.Add(" Solid-Liquid-Gas");

 input_comboBox.Items.Add(" Solid-Solid");

 input_comboBox.Items.Add(" Plasma_Material");

 input_comboBox.Items.Add(" Solid_Material");

 input_comboBox.Items.Add(" Composite");

 input_comboBox.Items.Add(" Object");

 input_comboBox.Items.Add(" Particulate");

 input_comboBox.Items.Add("Signal_Flow");

 input_comboBox.Items.Add(" Control_Signal");

 input_comboBox.Items.Add(" Analog");

 input_comboBox.Items.Add(" Discrete");

288

 input_comboBox.Items.Add(" Status_Signal");

 input_comboBox.Items.Add(" Auditory");

 input_comboBox.Items.Add(" Olfactory");

 input_comboBox.Items.Add(" Tactile");

 input_comboBox.Items.Add(" Taste");

 input_comboBox.Items.Add(" Visual");

 output_comboBox.Items.Add("No Output Selected");

 output_comboBox.Items.Add("Energy_Flow");

 output_comboBox.Items.Add(" Acoustic");

 output_comboBox.Items.Add(" Particle_Velocity");

 output_comboBox.Items.Add(" Pressure");

 output_comboBox.Items.Add(" Biological");

 output_comboBox.Items.Add(" ParticleVelocity");

 output_comboBox.Items.Add(" PressureBiol");

 output_comboBox.Items.Add(" Chemical");

 output_comboBox.Items.Add(" Affinity");

 output_comboBox.Items.Add(" ReactionRate");

 output_comboBox.Items.Add(" Electrical");

 output_comboBox.Items.Add(" Current");

 output_comboBox.Items.Add(" ElectromotiveForce");

 output_comboBox.Items.Add(" Electromagnetic");

 output_comboBox.Items.Add(" Optical");

 output_comboBox.Items.Add(" Intensity_Optical");

 output_comboBox.Items.Add(" Velocity_Optical");

 output_comboBox.Items.Add(" Solar");

 output_comboBox.Items.Add(" Intensity_Solar");

 output_comboBox.Items.Add(" Velocity_Solar");

 output_comboBox.Items.Add(" Human");

 output_comboBox.Items.Add(" Force_Human");

289

 output_comboBox.Items.Add(" Velocity_Human");

 output_comboBox.Items.Add(" Hydraulic");

 output_comboBox.Items.Add(" Pressure_Hydraulic");

 output_comboBox.Items.Add(" VolumetricFlow_Hydraulic");

 output_comboBox.Items.Add(" Magnetic");

 output_comboBox.Items.Add(" MagneticFluxRate");

 output_comboBox.Items.Add(" MagnetomotiveForce");

 output_comboBox.Items.Add(" Mechanical");

 output_comboBox.Items.Add(" Rotational");

 output_comboBox.Items.Add(" Torque");

 output_comboBox.Items.Add(" Velocity");

 output_comboBox.Items.Add(" Translational");

 output_comboBox.Items.Add(" Force");

 output_comboBox.Items.Add(" LinearVelocity");

 output_comboBox.Items.Add(" Pneumatic");

 output_comboBox.Items.Add(" MassFlow_Pneumatic");

 output_comboBox.Items.Add(" Pressure_Pneumatic");

 output_comboBox.Items.Add(" Radioactive_Nuclear");

 output_comboBox.Items.Add(" DecayRate");

 output_comboBox.Items.Add(" Intensity");

 output_comboBox.Items.Add(" Thermal");

 output_comboBox.Items.Add(" HeatFlow");

 output_comboBox.Items.Add(" Temperature");

 output_comboBox.Items.Add("Material_Flow");

 output_comboBox.Items.Add(" Gas_Material");

 output_comboBox.Items.Add(" Human_Material");

 output_comboBox.Items.Add(" Liquid_Material");

 output_comboBox.Items.Add(" Mixture_Material");

 output_comboBox.Items.Add(" Colloidial");

 output_comboBox.Items.Add(" Gas-Gas");

290

 output_comboBox.Items.Add(" Liquid-Gas");

 output_comboBox.Items.Add(" Liquid-Liquid");

 output_comboBox.Items.Add(" Solid-Gas");

 output_comboBox.Items.Add(" Solid-Liquid");

 output_comboBox.Items.Add(" Solid-Liquid-Gas");

 output_comboBox.Items.Add(" Solid-Solid");

 output_comboBox.Items.Add(" Plasma_Material");

 output_comboBox.Items.Add(" Solid_Material");

 output_comboBox.Items.Add(" Composite");

 output_comboBox.Items.Add(" Object");

 output_comboBox.Items.Add(" Particulate");

 output_comboBox.Items.Add("Signal_Flow");

 output_comboBox.Items.Add(" Control_Signal");

 output_comboBox.Items.Add(" Analog");

 output_comboBox.Items.Add(" Discrete");

 output_comboBox.Items.Add(" Status_Signal");

 output_comboBox.Items.Add(" Auditory");

 output_comboBox.Items.Add(" Olfactory");

 output_comboBox.Items.Add(" Tactile");

 output_comboBox.Items.Add(" Taste");

 output_comboBox.Items.Add(" Visual");

 action_comboBox.Items.Add("No Action Selected");

 action_comboBox.Items.Add("Branch");

 action_comboBox.Items.Add(" Distribute");

 action_comboBox.Items.Add(" Seperate");

 action_comboBox.Items.Add(" Divide");

 action_comboBox.Items.Add(" Extract");

 action_comboBox.Items.Add(" Remove");

 action_comboBox.Items.Add("Channel");

291

 action_comboBox.Items.Add(" Export");

 action_comboBox.Items.Add(" Guide");

 action_comboBox.Items.Add(" Rotate");

 action_comboBox.Items.Add(" Translate");

 action_comboBox.Items.Add(" Import");

 action_comboBox.Items.Add(" Transfer");

 action_comboBox.Items.Add(" Transmit");

 action_comboBox.Items.Add(" Transport");

 action_comboBox.Items.Add("Connect");

 action_comboBox.Items.Add(" Couple");

 action_comboBox.Items.Add(" Join");

 action_comboBox.Items.Add(" Link");

 action_comboBox.Items.Add(" Mix");

 action_comboBox.Items.Add("Control");

 action_comboBox.Items.Add(" Actuate");

 action_comboBox.Items.Add(" Regulate");

 action_comboBox.Items.Add(" Decrease");

 action_comboBox.Items.Add(" Increase");

 action_comboBox.Items.Add("Convert");

 action_comboBox.Items.Add("Magnitude");

 action_comboBox.Items.Add(" Change");

 action_comboBox.Items.Add(" Condition");

 action_comboBox.Items.Add(" Decrement");

 action_comboBox.Items.Add(" Increment");

 action_comboBox.Items.Add(" Shape");

 action_comboBox.Items.Add(" Stop");

 action_comboBox.Items.Add(" Inhibit");

 action_comboBox.Items.Add(" Shape");

 action_comboBox.Items.Add("Provision");

 action_comboBox.Items.Add(" Store");

292

 action_comboBox.Items.Add(" Collect");

 action_comboBox.Items.Add(" Contain");

 action_comboBox.Items.Add(" Supply");

 action_comboBox.Items.Add("Signal");

 action_comboBox.Items.Add(" Indicate");

 action_comboBox.Items.Add(" Display");

 action_comboBox.Items.Add(" Track");

 action_comboBox.Items.Add(" Process");

 action_comboBox.Items.Add(" Sense");

 action_comboBox.Items.Add(" Detect");

 action_comboBox.Items.Add(" Measure");

 action_comboBox.Items.Add("Support");

 action_comboBox.Items.Add(" Position");

 action_comboBox.Items.Add(" Secure");

 action_comboBox.Items.Add(" Stabilize");

 attribute_comboBox.Items.Add("No Attribute Selected");

 attribute_comboBox.Items.Add("Physical_Attributes");

 attribute_comboBox.Items.Add(" Color");

 attribute_comboBox.Items.Add(" Shape-Physical");

 attribute_comboBox.Items.Add(" Length");

 attribute_comboBox.Items.Add(" Radius");

 attribute_comboBox.Items.Add(" Inner_Radius");

 attribute_comboBox.Items.Add(" Outer_Radius");

 attribute_comboBox.Items.Add(" Diameter");

 attribute_comboBox.Items.Add(" Inner_Diameter");

 attribute_comboBox.Items.Add(" Outer_Diameter");

 attribute_comboBox.Items.Add(" Width");

 attribute_comboBox.Items.Add(" Height");

 attribute_comboBox.Items.Add(" Thickness");

293

 attribute_comboBox.Items.Add(" Area");

 attribute_comboBox.Items.Add(" Cross_Sectional_Area");

 attribute_comboBox.Items.Add(" Surface_Area");

 attribute_comboBox.Items.Add(" Volume");

 attribute_comboBox.Items.Add(" Mass");

 attribute_comboBox.Items.Add("Intrinsic_Attributes");

 attribute_comboBox.Items.Add(" Mechanical-Intrinsic");

 attribute_comboBox.Items.Add(" Stiffness");

 attribute_comboBox.Items.Add(" Axial_Stiffness");

 attribute_comboBox.Items.Add(" Modulus_of_Elasticity");

 attribute_comboBox.Items.Add(" Rotational_Stiffness");

 attribute_comboBox.Items.Add(" Bending_Stiffness");

 attribute_comboBox.Items.Add(" Strength");

 attribute_comboBox.Items.Add(" Tensile_Strength");

 attribute_comboBox.Items.Add(" Yield_Strength");

 attribute_comboBox.Items.Add(" Ultimate_Strength");

 attribute_comboBox.Items.Add(" Breaking_Strength");

 attribute_comboBox.Items.Add(" Compressive_Strength");

 attribute_comboBox.Items.Add(" Shear_Strength");

 attribute_comboBox.Items.Add(" Torsional_Strength");

 attribute_comboBox.Items.Add(" Ductility");

 attribute_comboBox.Items.Add(" Malleability");

 attribute_comboBox.Items.Add(" Strain");

 attribute_comboBox.Items.Add(" Strain_Hardening");

 attribute_comboBox.Items.Add(" Hardness");

 attribute_comboBox.Items.Add(" Scratch_Hardness");

 attribute_comboBox.Items.Add(" Indention_Hardness");

 attribute_comboBox.Items.Add(" Rebound_Hardness");

 attribute_comboBox.Items.Add(" Toughness");

 attribute_comboBox.Items.Add(" Impact_Toughness");

294

 attribute_comboBox.Items.Add(" Poisson’s_Ratio");

 attribute_comboBox.Items.Add(" Fatigue_Limit");

 attribute_comboBox.Items.Add(" Permeability-Intrinsic-Mechanical");

 attribute_comboBox.Items.Add(" Porosity");

 attribute_comboBox.Items.Add(" Elasticity");

 attribute_comboBox.Items.Add(" Plasticity");

 attribute_comboBox.Items.Add(" Brittleness");

 attribute_comboBox.Items.Add(" Density");

 attribute_comboBox.Items.Add(" Linear_Density");

 attribute_comboBox.Items.Add(" Area_Density");

 attribute_comboBox.Items.Add(" Volume_Density");

 attribute_comboBox.Items.Add(" Electrical-Intrinsic");

 attribute_comboBox.Items.Add(" Electrical_Conductivity");

 attribute_comboBox.Items.Add(" Electrical_Resistivity");

 attribute_comboBox.Items.Add(" Permittivity");

 attribute_comboBox.Items.Add(" Dielectric_Constant");

 attribute_comboBox.Items.Add(" Dielectric_Strength");

 attribute_comboBox.Items.Add(" Capacitance");

 attribute_comboBox.Items.Add(" Thermodynamic_Intrinsic");

 attribute_comboBox.Items.Add(" Absorptivity-Intrinsic-

Thermodynamic");

 attribute_comboBox.Items.Add(" Conductivity");

 attribute_comboBox.Items.Add(" Diffusivity");

 attribute_comboBox.Items.Add(" Heat_of_Vaporization");

 attribute_comboBox.Items.Add(" Heat_of_Fusion");

 attribute_comboBox.Items.Add(" Entropy");

 attribute_comboBox.Items.Add(" Enthalpy");

 attribute_comboBox.Items.Add(" Emissivity");

 attribute_comboBox.Items.Add("

Coefficient_of_Thermal_Expansion");

295

 attribute_comboBox.Items.Add(" Specific_Heat");

 attribute_comboBox.Items.Add(" Flammability");

 attribute_comboBox.Items.Add(" Melting_Point");

 attribute_comboBox.Items.Add(" Boiling_Point");

 attribute_comboBox.Items.Add(" Triple_Point");

 attribute_comboBox.Items.Add(" Flash_Point");

 attribute_comboBox.Items.Add(" Curie_Point");

 attribute_comboBox.Items.Add(" Chemical-Intrinsic");

 attribute_comboBox.Items.Add(" Reactivity");

 attribute_comboBox.Items.Add(" Stability");

 attribute_comboBox.Items.Add(" Corrosion_Resistance");

 attribute_comboBox.Items.Add(" Adhesion");

 attribute_comboBox.Items.Add(" Optical-Intrinsic");

 attribute_comboBox.Items.Add(" Absorptivity-Intrinsic-Optical");

 attribute_comboBox.Items.Add(" Reflectivity");

 attribute_comboBox.Items.Add(" Refractive_Index");

 attribute_comboBox.Items.Add(" Photosensitivity");

 attribute_comboBox.Items.Add(" Luminosity");

 attribute_comboBox.Items.Add(" Magnetic-Intrinsic");

 attribute_comboBox.Items.Add(" Permeability-Intrinsic-Magnetic");

 attribute_comboBox.Items.Add(" Biological-Intrinsic");

 attribute_comboBox.Items.Add(" Toxicity");

 attribute_comboBox.Items.Add(" Fluid-Intrinsic");

 attribute_comboBox.Items.Add(" Viscosity");

 attribute_comboBox.Items.Add(" Dynamic_Viscosity");

 attribute_comboBox.Items.Add(" Kinematic_Viscosity");

 attribute_comboBox.Items.Add(" Volume_Viscosity");

 attribute_comboBox.Items.Add(" Bulk_Viscosity");

 attribute_comboBox.Items.Add(" Shear_Viscosity");

 attribute_comboBox.Items.Add(" Extensional_Viscosity");

296

 attribute_comboBox.Items.Add(" Surface_Tension");

 attribute_comboBox.Items.Add(" Dimensionless_Numbers");

 attribute_comboBox.Items.Add(" Cauchy_Number");

 attribute_comboBox.Items.Add(" Euler_Number");

 attribute_comboBox.Items.Add(" Froude_Number");

 attribute_comboBox.Items.Add(" Mach_Number");

 attribute_comboBox.Items.Add(" Strouhal_Number");

 attribute_comboBox.Items.Add(" Weber_Number");

 attribute_comboBox.Items.Add("Extrinsic_Attributes");

 attribute_comboBox.Items.Add(" Mechanical-Extrinsic");

 attribute_comboBox.Items.Add(" Force-Extrinsic-Mechanical");

 attribute_comboBox.Items.Add(" Gravitational_Force");

 attribute_comboBox.Items.Add(" Spring_Force");

 attribute_comboBox.Items.Add(" Normal_Force");

 attribute_comboBox.Items.Add(" Friction_Force");

 attribute_comboBox.Items.Add(" Weight");

 attribute_comboBox.Items.Add(" Electrical-Extrinsic");

 attribute_comboBox.Items.Add(" Current-Extrinsic-Electrical");

 attribute_comboBox.Items.Add(" Resistance-Extrinsic-Electrical");

 attribute_comboBox.Items.Add(" Voltage");

 attribute_comboBox.Items.Add(" Charge");

 attribute_comboBox.Items.Add(" Flux-Extrinsic-Electrical");

 attribute_comboBox.Items.Add(" Thermodynamic-Extrinsic");

 attribute_comboBox.Items.Add(" Temperature-Extrinsic-

Thermodynamic");

 attribute_comboBox.Items.Add(" Autoignition_Temperature");

 attribute_comboBox.Items.Add(" Critical_Temperature");

 attribute_comboBox.Items.Add(" Pressure-Extrinsic-

Thermodynamic");

297

 attribute_comboBox.Items.Add(" Resistance-Extrinsic-

Thermodynamic");

 attribute_comboBox.Items.Add(" Flux-Extrinsic-Thermosynamic");

 attribute_comboBox.Items.Add(" Chemical-Extrinsic");

 attribute_comboBox.Items.Add(" Acidity");

 attribute_comboBox.Items.Add(" Specific_Internal_Surface_Area");

 attribute_comboBox.Items.Add(" Concentration");

 attribute_comboBox.Items.Add(" Optical-Extrinsic");

 attribute_comboBox.Items.Add(" Transmittance");

 attribute_comboBox.Items.Add(" Magnification");

 attribute_comboBox.Items.Add(" Focal_Length");

 attribute_comboBox.Items.Add(" Aperture_Size");

 attribute_comboBox.Items.Add(" Magnetic-Extrinsic");

 attribute_comboBox.Items.Add(" Magnetic_Moment");

 attribute_comboBox.Items.Add(" Magnetization");

 attribute_comboBox.Items.Add(" Intensity_of_Magnetization");

 attribute_comboBox.Items.Add(" Magnetic_Field_Strength");

 attribute_comboBox.Items.Add(" Magnetic_Induction");

 attribute_comboBox.Items.Add(" Acoustic-Extrinsic");

 attribute_comboBox.Items.Add(" Absorption");

 attribute_comboBox.Items.Add(" Frequency");

 attribute_comboBox.Items.Add("

Frequency_of_Damped_Free_Vibration");

 attribute_comboBox.Items.Add(" Excitation_Frequency");

 attribute_comboBox.Items.Add(" Period");

 attribute_comboBox.Items.Add("

Period_of_Free_Damped_Oscillation");

 attribute_comboBox.Items.Add(" Wavelength");

 attribute_comboBox.Items.Add(" Quality");

 attribute_comboBox.Items.Add(" Logarithmic_Decrement");

298

 attribute_comboBox.Items.Add(" Environmental-Extrinsic");

 attribute_comboBox.Items.Add(" Embodied_Energy");

 attribute_comboBox.Items.Add(" Embodied_CO2");

 attribute_comboBox.Items.Add(" Embodied_Water");

 attribute_comboBox.Items.Add(" Fluid-Extrinsic");

 attribute_comboBox.Items.Add(" Mass_Rate_of_Flow");

 attribute_comboBox.Items.Add(" Head");

 attribute_comboBox.Items.Add(" Pressure-Extrinsic-Fluid");

 attribute_comboBox.Items.Add(" Volumetric_Flow_Rate");

 attribute_comboBox.Items.Add(" Internal_Energy");

 attribute_comboBox.Items.Add(" Specific_Weight");

 attribute_comboBox.Items.Add("Kinematic_Attributes");

 attribute_comboBox.Items.Add(" Position_and_Orientation");

 attribute_comboBox.Items.Add(" Angle");

 attribute_comboBox.Items.Add(" Roll");

 attribute_comboBox.Items.Add(" Pitch");

 attribute_comboBox.Items.Add(" Yaw");

 attribute_comboBox.Items.Add(" Displacement");

 attribute_comboBox.Items.Add(" X-Coordinate");

 attribute_comboBox.Items.Add(" Y-Coordinate");

 attribute_comboBox.Items.Add(" Z-Coordinate");

 attribute_comboBox.Items.Add(" Velocity-Kinematic");

 attribute_comboBox.Items.Add(" Linear_Speed");

 attribute_comboBox.Items.Add(" Linear_Velocity");

 attribute_comboBox.Items.Add(" Angular_Speed");

 attribute_comboBox.Items.Add(" Angular_Velocity");

 attribute_comboBox.Items.Add(" Acceleration");

 attribute_comboBox.Items.Add(" Linear_Acceleration");

 attribute_comboBox.Items.Add(" Angular_Acceleration");

 attribute_comboBox.Items.Add("Time_Attributes");

299

 attribute_comboBox.Items.Add("Energy_Attributes");

 attribute_comboBox.Items.Add(" Kinetic_Energy");

 attribute_comboBox.Items.Add(" Electrical_Energy");

 attribute_comboBox.Items.Add(" Mechanical_Energy");

 attribute_comboBox.Items.Add(" Potential_Energy");

 attribute_comboBox.Items.Add(" Chemical_Energy");

 attribute_comboBox.Items.Add("Power_Attributes");

 structure_comboBox.Items.Add("No Structure Selected");

 structure_comboBox.Items.Add("African_Reed_Frog");

 structure_comboBox.Items.Add("BrittleStar-InvertebralLigaments");

 structure_comboBox.Items.Add("Butterfly_Wing");

 structure_comboBox.Items.Add("Cuttlefish_Chromatophore");

 structure_comboBox.Items.Add("Dichrotic_Filter");

 structure_comboBox.Items.Add("Dielectric_EAP");

 structure_comboBox.Items.Add("Dielectric_Mirror");

 structure_comboBox.Items.Add("Electric_Valve");

 structure_comboBox.Items.Add("ER_Fluid");

 structure_comboBox.Items.Add("FeatherStar-ArmLigaments");

 structure_comboBox.Items.Add("Firefly_LE-Organ");

 structure_comboBox.Items.Add("Flower_Bending");

 structure_comboBox.Items.Add("Flower_Opening-Closing");

 structure_comboBox.Items.Add("Gas_Lighting");

 structure_comboBox.Items.Add("Glow_Worm");

 structure_comboBox.Items.Add("Human_Muscle-

Isometric_Contraction");

 structure_comboBox.Items.Add("Ionic_EAP");

 structure_comboBox.Items.Add("Light_Emitting_Diode");

 structure_comboBox.Items.Add("Liquid_Crystal_Display");

 structure_comboBox.Items.Add("MR_Fluid");

300

 structure_comboBox.Items.Add("NIPAM_Polymer");

 structure_comboBox.Items.Add("Peacock_Feather");

 structure_comboBox.Items.Add("Photonic_Ink");

 structure_comboBox.Items.Add("Piezoelectric_Stack");

 structure_comboBox.Items.Add("Piston");

 structure_comboBox.Items.Add("Pollen_Tube_Growth");

 structure_comboBox.Items.Add("Rhododendron_Leave_Curling");

 structure_comboBox.Items.Add("Root_Growth");

 structure_comboBox.Items.Add("Rotary_Actuators");

 structure_comboBox.Items.Add("SeaCucumberDermis");

 structure_comboBox.Items.Add("SeaUrchin-ToothandSpineLigaments");

 structure_comboBox.Items.Add("Shape_Memory_Alloy");

 structure_comboBox.Items.Add("Shape_Memory_Polymer");

 structure_comboBox.Items.Add("Shear-Thickening_Fluid");

 structure_comboBox.Items.Add("Starfish-Spine");

 structure_comboBox.Items.Add("Stem_Growth");

 structure_comboBox.Items.Add("Tie_Rod_Cylinders");

 structure_comboBox.Items.Add("Vacuum_Generators");

 structure_comboBox.Items.Add("Zebrafish_Chromatophore");

 strategy_comboBox.Items.Add("No Strategy Selected");

 strategy_comboBox.Items.Add("Actuation");

 strategy_comboBox.Items.Add(" Chemically_Induced_Actuation");

 strategy_comboBox.Items.Add(" Electrically_Induced_Actuation");

 strategy_comboBox.Items.Add(" Hydraulic_Actuation");

 strategy_comboBox.Items.Add(" Pneumatic_Actuation");

 strategy_comboBox.Items.Add("Color_Modulation");

 strategy_comboBox.Items.Add(" Color_Change");

 strategy_comboBox.Items.Add(" Multi-

Layered_Thin_Film_Interface");

301

 strategy_comboBox.Items.Add("

Temperature_Induced_Volume_Change");

 strategy_comboBox.Items.Add(" Variable_Diffraction");

 strategy_comboBox.Items.Add(" Color_Creation");

 strategy_comboBox.Items.Add(" Structural_Color");

 strategy_comboBox.Items.Add(" Color_Filtration");

 strategy_comboBox.Items.Add("Luminescence");

 strategy_comboBox.Items.Add(" Artificial_Light_Generation");

 strategy_comboBox.Items.Add(" Electroluminescence");

 strategy_comboBox.Items.Add(" Thermoluminescence");

 strategy_comboBox.Items.Add(" Natural_Light_Generation");

 strategy_comboBox.Items.Add(" Bioluminescence");

 strategy_comboBox.Items.Add("Piezoelectric_Effect");

 strategy_comboBox.Items.Add(" Piezoelectric_Electricity_Generation");

 strategy_comboBox.Items.Add(" Piezoelectric_Force_Generation");

 strategy_comboBox.Items.Add("Shape_Modulation");

 strategy_comboBox.Items.Add(" Nastic_Movement");

 strategy_comboBox.Items.Add(" Chemonasty");

 strategy_comboBox.Items.Add(" Hydronasty");

 strategy_comboBox.Items.Add(" Photonasty");

 strategy_comboBox.Items.Add(" Temp-

Induced_Shape_Memorization");

 strategy_comboBox.Items.Add(" Tropic_Movement");

 strategy_comboBox.Items.Add(" Chemotropism");

 strategy_comboBox.Items.Add(" Gravitropism");

 strategy_comboBox.Items.Add(" Hydrotropism");

 strategy_comboBox.Items.Add(" Thermotropism");

 strategy_comboBox.Items.Add("Stiffness_Change");

 strategy_comboBox.Items.Add(" Crossbridge-Effect_SlidingFilament");

 strategy_comboBox.Items.Add(" Electrorheological_Effect");

302

 strategy_comboBox.Items.Add(" Hydro_clustering");

 strategy_comboBox.Items.Add(" Magnetorheological_Effect");

 strategy_comboBox.Items.Add(" MutableConnectivity");

 strategy_comboBox.Items.Add(" MutConn-BrittleStarLigaments");

 strategy_comboBox.Items.Add(" MutConn-

FeatherStarArmLigaments");

 strategy_comboBox.Items.Add(" MutConn-SeaCucumberDermis");

 strategy_comboBox.Items.Add(" MutConn-

SeaUrchinToothSpineLigaments");

 strategy_comboBox.Items.Add(" MutConn-StarfishSpine");

 input_comboBox.SelectedIndex = 0;

 output_comboBox.SelectedIndex = 0;

 action_comboBox.SelectedIndex = 0;

 attribute_comboBox.SelectedIndex = 0;

 structure_comboBox.SelectedIndex = 0;

 strategy_comboBox.SelectedIndex = 0;

 uri = kb.getURI();

 results_rtBox.Text = "The uri for the reasoner is: " + uri + "\n\n";

 results_rtBox.Text += kb.loadRepository() + "\n";

 results_rtBox.Text += "Repository has been loaded. Ready for query." +

"\n";

 results_webBrowser.Navigate(Environment.CurrentDirectory +

"/Files/default.html");

 }

 #endregion

303

 #region Button Clicking Methods

 private void searchForStrategy_button_Click(object sender, EventArgs e)

 {

 formatVariables();

 searchForStrategy query = new searchForStrategy(uri, reasonerAddress,

input, output, action, attribute, structure, domain);

 results_rtBox.AppendText("\nThe XML query for the strategy search is

shown here:\n\n" + query.getQueryString() + "\n");

 results_rtBox.AppendText("\nThe reasoner results are shown here:\n\n" +

query.getResultsString());

 results_webBrowser.Navigate(Environment.CurrentDirectory +

"/Files/Results.xml");

 }

 private void searchForStructure_button_Click(object sender, EventArgs e)

 {

 formatVariables();

 searchForStructure query = new searchForStructure(uri, reasonerAddress,

strategy);

 results_rtBox.AppendText("\nThe XML query for the structure search is

shown here:\n\n" + query.getQueryString() + "\n");

 results_rtBox.AppendText("\nThe reasoner results are shown here:\n\n" +

query.getResultsString());

304

 results_webBrowser.Navigate(Environment.CurrentDirectory +

"/Files/Results.xml");

 }

 private void resetSearchForStrategy_button_Click(object sender, EventArgs

e)

 {

 resetSearchForStrategy();

 }

 private void resetSearchForStructure_button_Click(object sender, EventArgs

e)

 {

 resetSearchForStructure();

 }

 #endregion

 #region Other Methods

 private void formatVariables()

 {

 input = input_comboBox.Text;

 input = input.Replace(" ", "");

 output = output_comboBox.Text;

 output = output.Replace(" ", "");

 action = action_comboBox.Text;

 action = action.Replace(" ", "");

305

 attribute = attribute_comboBox.Text;

 attribute = attribute.Replace(" ", "");

 structure = structure_comboBox.Text;

 structure = structure.Replace(" ", "");

 strategy = strategy_comboBox.Text;

 strategy = strategy.Replace(" ", "");

 if (engineering_radioButton.Checked)

 {

 domain = "Engineering_Domain";

 }

 else if (biological_radioButton.Checked)

 {

 domain = "Biological_Domain";

 }

 else

 {

 domain = "Domain";

 }

 }

 private void resetSearchForStrategy()

 {

 input_comboBox.SelectedIndex = 0;

 output_comboBox.SelectedIndex = 0;

 action_comboBox.SelectedIndex = 0;

 attribute_comboBox.SelectedIndex = 0;

306

 structure_comboBox.SelectedIndex = 0;

 both_radioButton.Checked = false;

 biological_radioButton.Checked = false;

 engineering_radioButton.Checked = false;

 results_webBrowser.Navigate(Environment.CurrentDirectory +

"/Files/default.html");

 }

 private void resetSearchForStructure()

 {

 strategy_comboBox.SelectedIndex = 0;

 results_webBrowser.Navigate(Environment.CurrentDirectory +

"/Files/default.html");

 }

 #endregion

 #region Tool Strip Button Clicking Methods

 private void close_toolStripMenuItem_Click(object sender, EventArgs e)

 {

 Application.Exit();

 }

 private void saveResults_ToolStripMenuItem_Click(object sender,

EventArgs e)

 {

 Stream myStream;

 SaveFileDialog saveFileDialog = new SaveFileDialog();

307

 saveFileDialog.Filter = "Text Files (*.txt)|*.txt|All Files (*.*)|*.*";

 saveFileDialog.FilterIndex = 1;

 saveFileDialog.RestoreDirectory = true;

 if (saveFileDialog.ShowDialog() == DialogResult.OK)

 {

 if ((myStream = saveFileDialog.OpenFile()) != null)

 {

 XmlDocument xDoc = new XmlDocument();

 xDoc.Load(Environment.CurrentDirectory + "/Files/Results.xml");

 XmlNamespaceManager nsMgr = new

XmlNamespaceManager(xDoc.NameTable);

 nsMgr.AddNamespace("ns", "http://dl.kr.org/dig/2003/02/lang");

 XmlNodeList xmlNodeList =

xDoc.SelectNodes("Results/ns:responses/ns:conceptSet/ns:synonyms/ns:catom/@name",

nsMgr);

 StreamWriter sWriter = new StreamWriter(myStream);

 sWriter.WriteLine("Results");

 sWriter.WriteLine();

 sWriter.WriteLine("Number of Results: " + xmlNodeList.Count);

 sWriter.WriteLine();

 sWriter.WriteLine("Number" + "\t" + "Name");

 for (int i = 0; i < xmlNodeList.Count; i++)

 {

 sWriter.WriteLine(i + 1 + ". " + "\t" +

xmlNodeList[i].InnerText.ToString());

308

 }

 sWriter.WriteLine();

 sWriter.WriteLine("File Saved - " + DateTime.Now);

 sWriter.Close();

 myStream.Close();

 }

 }

 }

 private void launchResults_ToolStripMenuItem_Click(object sender,

EventArgs e)

 {

 System.Diagnostics.Process.Start(Environment.CurrentDirectory +

"/Files/Results.xml");

 }

 private void clearLog_ToolStripMenuItem_Click(object sender, EventArgs

e)

 {

 results_rtBox.Clear();

 }

 #endregion

 #region Find Parents Buttons

 private void inputParent_button_Click(object sender, EventArgs e)

 {

 formatVariables();

309

 findParents query = new findParents(uri, reasonerAddress, input);

 results_rtBox.AppendText("\nThe query formed to find the input parent is

shown here:\n\n" + query.getQueryString() + "\n");

 results_rtBox.AppendText("\nThe results from the parent search are

shown here:\n\n" + query.getResultsString());

 string comboName = query.getParentName();

 if (comboName != "None")

 {

 int comboLoc = input_comboBox.FindString(comboName);

 while (comboLoc == -1)

 {

 comboName = " " + comboName;

 comboLoc = input_comboBox.FindString(comboName);

 }

 input_comboBox.SelectedIndex = comboLoc;

 }

 else

 {

 input_comboBox.SelectedIndex = 0;

 }

 }

 private void outputParent_button_Click(object sender, EventArgs e)

 {

 formatVariables();

 findParents query = new findParents(uri, reasonerAddress, output);

310

 results_rtBox.AppendText("\nThe query formed to find the output parent

is shown here:\n\n" + query.getQueryString() + "\n");

 results_rtBox.AppendText("\nThe results from the parent search are

shown here:\n\n" + query.getResultsString());

 string comboName = query.getParentName();

 if (comboName != "None")

 {

 int comboLoc = output_comboBox.FindString(comboName);

 while (comboLoc == -1)

 {

 comboName = " " + comboName;

 comboLoc = output_comboBox.FindString(comboName);

 }

 output_comboBox.SelectedIndex = comboLoc;

 }

 else

 {

 output_comboBox.SelectedIndex = 0;

 }

 }

 private void actionParent_button_Click(object sender, EventArgs e)

 {

 formatVariables();

 findParents query = new findParents(uri, reasonerAddress, action);

311

 results_rtBox.AppendText("\nThe query formed to find the action parent

is shown here:\n\n" + query.getQueryString() + "\n");

 results_rtBox.AppendText("\nThe results from the parent search are

shown here:\n\n" + query.getResultsString());

 string comboName = query.getParentName();

 if (comboName != "None")

 {

 int comboLoc = action_comboBox.FindString(comboName);

 while (comboLoc == -1)

 {

 comboName = " " + comboName;

 comboLoc = action_comboBox.FindString(comboName);

 }

 action_comboBox.SelectedIndex = comboLoc;

 }

 else

 {

 action_comboBox.SelectedIndex = 0;

 }

 }

 private void attributeParent_button_Click(object sender, EventArgs e)

 {

 formatVariables();

 findParents query = new findParents(uri, reasonerAddress, attribute);

 results_rtBox.AppendText("\nThe query formed to find the attribute

parent is shown here:\n\n" + query.getQueryString() + "\n");

312

 results_rtBox.AppendText("\nThe results from the parent search are

shown here:\n\n" + query.getResultsString());

 string comboName = query.getParentName();

 if (comboName != "None")

 {

 int comboLoc = attribute_comboBox.FindString(comboName);

 while (comboLoc == -1)

 {

 comboName = " " + comboName;

 comboLoc = attribute_comboBox.FindString(comboName);

 }

 attribute_comboBox.SelectedIndex = comboLoc;

 }

 else

 {

 attribute_comboBox.SelectedIndex = 0;

 }

 }

 private void structureParent_button_Click(object sender, EventArgs e)

 {

 formatVariables();

 findParents query = new findParents(uri, reasonerAddress, structure);

 results_rtBox.AppendText("\nThe query formed to find the structure

parent is shown here:\n\n" + query.getQueryString() + "\n");

 results_rtBox.AppendText("\nThe results from the parent search are

shown here:\n\n" + query.getResultsString());

313

 string comboName = query.getParentName();

 if (comboName != "None")

 {

 int comboLoc = structure_comboBox.FindString(comboName);

 while (comboLoc == -1)

 {

 comboName = " " + comboName;

 comboLoc = structure_comboBox.FindString(comboName);

 }

 structure_comboBox.SelectedIndex = comboLoc;

 }

 else

 {

 structure_comboBox.SelectedIndex = 0;

 }

 }

 #endregion

 }

}

314

InitializeKnowledgeBase Class

using System;

using System.Collections.Generic;

using System.Text;

using System.IO;

using System.Reflection;

using System.Xml;

using System.Xml.XPath;

namespace RepositoryGUI

{

 class InitializeKnowledgeBase

 {

 #region Variables

 private Network nw;

 private string uri;

 private string reasonerAddress;

 private string repositoryFile;

 #endregion

 #region Constructor

 public InitializeKnowledgeBase(string ra)

 {

 nw = new Network();

 uri = "";

 reasonerAddress = ra;

315

 repositoryFile = "";

 }

 #endregion

 #region Accessors

 public string getURI()

 {

 return uri;

 }

 public string getRepository()

 {

 return repositoryFile;

 }

 #endregion

 #region Other Methods

 public void newKB()

 {

 string newKBStr = "<newKB

xmlns=\"http://dl.kr.org/dig/2003/02/lang\"/>";

 string xStr = nw.InvokeReasoner(reasonerAddress, newKBStr);

 XmlDocument xDoc = new XmlDocument();

 xDoc.LoadXml(xStr);

316

 XmlNamespaceManager nsMgr = new

XmlNamespaceManager(xDoc.NameTable);

 nsMgr.AddNamespace("ns", "http://dl.kr.org/dig/2003/02/lang");

 XmlNode xNode;

 xNode = xDoc.SelectSingleNode("/ns:response/ns:kb/@uri", nsMgr);

 uri = xNode.Value.ToString();

 }

 public string loadRepository()

 {

 XmlDocument xDoc = new XmlDocument();

 xDoc.Load(Environment.CurrentDirectory + "/Files/Repository.xml");

 XmlNamespaceManager nsMgr = new

XmlNamespaceManager(xDoc.NameTable);

 nsMgr.AddNamespace("ns", "http://dl.kr.org/dig/2003/02/lang");

 nsMgr.AddNamespace("xsi", "http://www.w3.org/2001/XMLSchema-

instance");

 XmlElement tellElem = xDoc.CreateElement("", "tells",

"http://dl.kr.org/dig/2003/02/lang");

 XmlAttribute tellURIAttr = xDoc.CreateAttribute("uri");

 tellURIAttr.Value = uri;

 tellElem.Attributes.Append(tellURIAttr);

 XmlAttribute tellXSIAttr = xDoc.CreateAttribute("xsi",

"schemaLocation", "http://www.w3.org/2001/XMLSchema-instance");

317

 tellXSIAttr.Value = "http://dl.kr.org/dig/2003/02/lang";

 tellElem.Attributes.Append(tellXSIAttr);

 XmlNodeList xNodeList = xDoc.SelectNodes("/ns:Start/*", nsMgr);

 for (int i = 0; i < xNodeList.Count; i++)

 {

 tellElem.AppendChild(xNodeList[i]);

 }

 repositoryFile = tellElem.OuterXml.ToString();

 return nw.InvokeReasoner(reasonerAddress, repositoryFile);

 }

 #endregion

 }

}

318

Network Class

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Net;

using System.IO;

namespace RepositoryGUI

{

 class Network

 {

 #region Variables

 private HttpWebRequest request;

 private HttpWebResponse response;

 #endregion

 #region Invoke Reasoner Method

 public string InvokeReasoner(string url, string msg)

 {

 try

 {

 request = (HttpWebRequest)WebRequest.Create(url);

 request.Method = "post";

319

 ASCIIEncoding encoding = new ASCIIEncoding();

 byte[] byte1 = encoding.GetBytes(msg);

 // Set the content type of the data being posted.

 request.ContentType = "text/xml";

 // Set the content length of the string being posted.

 request.ContentLength = byte1.Length;

 request.Pipelined = true;

 request.KeepAlive = true;

 Stream newStream = request.GetRequestStream();

 newStream.Write(byte1, 0, byte1.Length);

 response = (HttpWebResponse)request.GetResponse();

 //response.ContentType = "text/xml";

 Stream receiveStream = response.GetResponseStream();

 StreamReader readStream = new StreamReader(receiveStream,

Encoding.UTF8);

 string retStr = "";

 retStr = readStream.ReadToEnd();

 readStream.Close();

 receiveStream.Close();

 newStream.Close();

 response.Close();

 return retStr;

 }

320

 catch (Exception ex)

 {

 return ex.Message;

 }

 }

 #endregion

 }

}

321

searchForStrategy Class

using System;

using System.Collections.Generic;

using System.Text;

using System.IO;

using System.Reflection;

using System.Xml;

using System.Xml.XPath;

namespace RepositoryGUI

{

 class searchForStrategy

 {

 #region Variables

 private string uri;

 private string reasonerAddress;

 private string input;

 private string output;

 private string action;

 private string attribute;

 private string structure;

 private string domain;

 private XmlDocument xDoc;

 Network nw;

 private string queryXML;

 private string reasonerResults;

 #endregion

322

 #region Constructor

 public searchForStrategy(string u, string ra, string i, string o, string ac, string

at, string st, string d)

 {

 uri = u;

 reasonerAddress = ra;

 input = i;

 output = o;

 action = ac;

 attribute = at;

 structure = st;

 domain = d;

 xDoc = new XmlDocument();

 nw = new Network();

 queryXML = "";

 reasonerResults = "";

 formatVariables();

 createQuery();

 findStrategy();

 formatResults();

 }

 #endregion

 #region Search Methods

 private void createQuery()

323

 {

 XmlElement askElem = xDoc.CreateElement("", "asks", "");

 XmlAttribute askNSAttr = xDoc.CreateAttribute("xmlns");

 askNSAttr.Value = "http://dl.kr.org/dig/2003/02/lang";

 askElem.Attributes.Append(askNSAttr);

 XmlAttribute askURIAttr = xDoc.CreateAttribute("uri");

 askURIAttr.Value = uri;

 askElem.Attributes.Append(askURIAttr);

 XmlAttribute askXSIAttr = xDoc.CreateAttribute("xsi",

"schemaLocation", "http://www.w3.org/2001/XMLSchema-instance");

 askXSIAttr.Value = "http://dl.kr.org/dig/2003/02/lang";

 askElem.Attributes.Append(askXSIAttr);

 XmlElement descElem = xDoc.CreateElement("", "descendants", "");

 XmlAttribute descAttr = xDoc.CreateAttribute("id");

 descAttr.Value = "q1";

 descElem.Attributes.Append(descAttr);

 XmlElement andElem = xDoc.CreateElement("", "and", "");

 askElem.AppendChild(descElem);

 descElem.AppendChild(andElem);

 andElem.AppendChild(createFlowNode(input, output));

 andElem.AppendChild(createBehaviorNode(action, attribute));

 andElem.AppendChild(createStructureNode(structure));

324

 andElem.AppendChild(createDomainNode(domain));

 queryXML = askElem.OuterXml.ToString();

 }

 private void findStrategy()

 {

 reasonerResults = nw.InvokeReasoner(reasonerAddress, queryXML);

 }

 private void formatVariables()

 {

 if (input == "NoInputSelected")

 {

 input = "Flows";

 }

 if (output == "NoOutputSelected")

 {

 output = "Flows";

 }

 if (action == "NoActionSelected")

 {

 action = "Actions";

 }

 if (attribute == "NoAttributeSelected")

 {

 attribute = "Attributes";

 }

 if (structure == "NoStructureSelected")

 {

325

 structure = "Structure";

 }

 }

 #endregion

 #region Display Methods

 public void formatResults()

 {

 string fileLocation = "Files/Results.xml";

 XmlTextWriter textWriter = new XmlTextWriter(fileLocation, null);

 string pi1 = "version='1.0' encoding='UTF-8'";

 textWriter.WriteProcessingInstruction("xml", pi1);

 string pi2 = "type='text/xsl' href='formatStrategyResults.xsl'";

 textWriter.WriteProcessingInstruction("xml-stylesheet", pi2);

 XmlDocument doc = new XmlDocument();

 doc.LoadXml(reasonerResults);

 XmlElement xmlElem = doc.CreateElement("", "Results", "");

 XmlNodeList xmlNodeList = doc.SelectNodes("/*");

 for (int i = 0; i < xmlNodeList.Count; i++)

 {

 xmlElem.AppendChild(xmlNodeList[i]);

 }

326

 doc.LoadXml(xmlElem.OuterXml.ToString());

 doc.Save(textWriter);

 textWriter.Close();

 }

 #endregion

 #region Node-Creating Methods

 private XmlElement createFlowNode(string i, string o)

 {

 XmlElement fSomeElem = xDoc.CreateElement("", "some", "");

 XmlElement fRatomElem = xDoc.CreateElement("", "ratom", "");

 XmlAttribute fRatomAttr = xDoc.CreateAttribute("name");

 fRatomAttr.Value = "satisfiesFunction";

 fRatomElem.Attributes.Append(fRatomAttr);

 XmlElement andElem = xDoc.CreateElement("", "and", "");

 XmlElement iSomeElem = xDoc.CreateElement("", "some", "");

 XmlElement iRatomElem = xDoc.CreateElement("", "ratom", "");

 XmlAttribute iRatomAttr = xDoc.CreateAttribute("name");

 iRatomAttr.Value = "hasInput";

 iRatomElem.Attributes.Append(iRatomAttr);

327

 XmlElement iCatomElem = xDoc.CreateElement("", "catom", "");

 XmlAttribute iCatomAttr = xDoc.CreateAttribute("name");

 iCatomAttr.Value = i;

 iCatomElem.Attributes.Append(iCatomAttr);

 XmlElement oSomeElem = xDoc.CreateElement("", "some", "");

 XmlElement oRatomElem = xDoc.CreateElement("", "ratom", "");

 XmlAttribute oRatomAttr = xDoc.CreateAttribute("name");

 oRatomAttr.Value = "hasOutput";

 oRatomElem.Attributes.Append(oRatomAttr);

 XmlElement oCatomElem = xDoc.CreateElement("", "catom", "");

 XmlAttribute oCatomAttr = xDoc.CreateAttribute("name");

 oCatomAttr.Value = o;

 oCatomElem.Attributes.Append(oCatomAttr);

 fSomeElem.AppendChild(fRatomElem);

 fSomeElem.AppendChild(andElem);

 andElem.AppendChild(iSomeElem);

 iSomeElem.AppendChild(iRatomElem);

 iSomeElem.AppendChild(iCatomElem);

 andElem.AppendChild(oSomeElem);

 oSomeElem.AppendChild(oRatomElem);

 oSomeElem.AppendChild(oCatomElem);

 return fSomeElem;

328

 }

 private XmlElement createBehaviorNode(string ac, string at)

 {

 XmlElement bSomeElem = xDoc.CreateElement("", "some", "");

 XmlElement bRatomElem = xDoc.CreateElement("", "ratom", "");

 XmlAttribute bRatomAttr = xDoc.CreateAttribute("name");

 bRatomAttr.Value = "refinesBehavior";

 bRatomElem.Attributes.Append(bRatomAttr);

 XmlElement andElem = xDoc.CreateElement("", "and", "");

 XmlElement acSomeElem = xDoc.CreateElement("", "some", "");

 XmlElement acRatomElem = xDoc.CreateElement("", "ratom", "");

 XmlAttribute acRatomAttr = xDoc.CreateAttribute("name");

 acRatomAttr.Value = "hasAction";

 acRatomElem.Attributes.Append(acRatomAttr);

 XmlElement acCatomElem = xDoc.CreateElement("", "catom", "");

 XmlAttribute acCatomAttr = xDoc.CreateAttribute("name");

 acCatomAttr.Value = ac;

 acCatomElem.Attributes.Append(acCatomAttr);

 XmlElement atSomeElem = xDoc.CreateElement("", "some", "");

329

 XmlElement atRatomElem = xDoc.CreateElement("", "ratom", "");

 XmlAttribute atRatomAttr = xDoc.CreateAttribute("name");

 atRatomAttr.Value = "hasAttribute";

 atRatomElem.Attributes.Append(atRatomAttr);

 XmlElement atCatomElem = xDoc.CreateElement("", "catom", "");

 XmlAttribute atCatomAttr = xDoc.CreateAttribute("name");

 atCatomAttr.Value = at;

 atCatomElem.Attributes.Append(atCatomAttr);

 bSomeElem.AppendChild(bRatomElem);

 bSomeElem.AppendChild(andElem);

 andElem.AppendChild(acSomeElem);

 acSomeElem.AppendChild(acRatomElem);

 acSomeElem.AppendChild(acCatomElem);

 andElem.AppendChild(atSomeElem);

 atSomeElem.AppendChild(atRatomElem);

 atSomeElem.AppendChild(atCatomElem);

 return bSomeElem;

 }

 private XmlElement createStructureNode(string st)

 {

 XmlElement someElem = xDoc.CreateElement("", "some", "");

 XmlElement ratomElem = xDoc.CreateElement("", "ratom", "");

330

 XmlAttribute ratomAttr = xDoc.CreateAttribute("name");

 ratomAttr.Value = "hasStructure";

 ratomElem.Attributes.Append(ratomAttr);

 XmlElement catomElem = xDoc.CreateElement("", "catom", "");

 XmlAttribute catomAttr = xDoc.CreateAttribute("name");

 catomAttr.Value = st;

 catomElem.Attributes.Append(catomAttr);

 someElem.AppendChild(ratomElem);

 someElem.AppendChild(catomElem);

 return someElem;

 }

 private XmlElement createDomainNode(string d)

 {

 XmlElement someElem = xDoc.CreateElement("", "some", "");

 XmlElement ratomElem = xDoc.CreateElement("", "ratom", "");

 XmlAttribute ratomAttr = xDoc.CreateAttribute("name");

 ratomAttr.Value = "fromDomain";

 ratomElem.Attributes.Append(ratomAttr);

 XmlElement catomElem = xDoc.CreateElement("", "catom", "");

 XmlAttribute catomAttr = xDoc.CreateAttribute("name");

 catomAttr.Value = d;

331

 catomElem.Attributes.Append(catomAttr);

 someElem.AppendChild(ratomElem);

 someElem.AppendChild(catomElem);

 return someElem;

 }

 #endregion

 #region Accessors

 public string getQueryString()

 {

 return queryXML;

 }

 public string getResultsString()

 {

 return reasonerResults;

 }

 #endregion

 }

}

332

searchForStructure

using System;

using System.Collections.Generic;

using System.Text;

using System.IO;

using System.Reflection;

using System.Xml;

using System.Xml.XPath;

namespace RepositoryGUI

{

 class searchForStructure

 {

 #region Variables

 private string uri;

 private string reasonerAddress;

 private string strategy;

 private XmlDocument xDoc;

 Network nw;

 private string queryXML;

 private string reasonerResults;

 #endregion

 #region Constructor

 public searchForStructure(string u, string ra, string s)

 {

333

 uri = u;

 reasonerAddress = ra;

 strategy = s;

 xDoc = new XmlDocument();

 nw = new Network();

 queryXML = "";

 reasonerResults = "";

 formatVariables();

 createQuery();

 findStructure();

 formatResults();

 }

 #endregion

 #region Search Methods

 private void createQuery()

 {

 XmlElement askElem = xDoc.CreateElement("", "asks", "");

 XmlAttribute askNSAttr = xDoc.CreateAttribute("xmlns");

 askNSAttr.Value = "http://dl.kr.org/dig/2003/02/lang";

 askElem.Attributes.Append(askNSAttr);

 XmlAttribute askURIAttr = xDoc.CreateAttribute("uri");

 askURIAttr.Value = uri;

 askElem.Attributes.Append(askURIAttr);

334

 XmlAttribute askXSIAttr = xDoc.CreateAttribute("xsi",

"schemaLocation", "http://www.w3.org/2001/XMLSchema-instance");

 askXSIAttr.Value = "http://dl.kr.org/dig/2003/02/lang";

 askElem.Attributes.Append(askXSIAttr);

 XmlElement descElem = xDoc.CreateElement("", "descendants", "");

 XmlAttribute descAttr = xDoc.CreateAttribute("id");

 descAttr.Value = "q1";

 descElem.Attributes.Append(descAttr);

 XmlElement andElem = xDoc.CreateElement("", "and", "");

 askElem.AppendChild(descElem);

 descElem.AppendChild(andElem);

 andElem.AppendChild(createStrategyNode(strategy));

 queryXML = askElem.OuterXml.ToString();

 }

 private void findStructure()

 {

 reasonerResults = nw.InvokeReasoner(reasonerAddress, queryXML);

 }

 private void formatVariables()

 {

 if (strategy == "NoStrategySelected")

335

 {

 strategy = "SystemStrategy";

 }

 }

 #endregion

 #region Display Methods

 public void formatResults()

 {

 string fileLocation = "Files/Results.xml";

 XmlTextWriter textWriter = new XmlTextWriter(fileLocation, null);

 string pi1 = "version='1.0' encoding='UTF-8'";

 textWriter.WriteProcessingInstruction("xml", pi1);

 string pi2 = "type='text/xsl' href='formatStructureResults.xsl'";

 textWriter.WriteProcessingInstruction("xml-stylesheet", pi2);

 XmlDocument doc = new XmlDocument();

 doc.LoadXml(reasonerResults);

 XmlElement xmlElem = doc.CreateElement("", "Results", "");

 XmlNodeList xmlNodeList = doc.SelectNodes("/*");

 for (int i = 0; i < xmlNodeList.Count; i++)

 {

 xmlElem.AppendChild(xmlNodeList[i]);

 }

336

 doc.LoadXml(xmlElem.OuterXml.ToString());

 doc.Save(textWriter);

 textWriter.Close();

 }

 #endregion

 #region Node-Creating Methods

 private XmlElement createStrategyNode(string s)

 {

 XmlElement someElem = xDoc.CreateElement("", "some", "");

 XmlElement ratomElem = xDoc.CreateElement("", "ratom", "");

 XmlAttribute ratomAttr = xDoc.CreateAttribute("name");

 ratomAttr.Value = "hasStrategy";

 ratomElem.Attributes.Append(ratomAttr);

 XmlElement catomElem = xDoc.CreateElement("", "catom", "");

 XmlAttribute catomAttr = xDoc.CreateAttribute("name");

 catomAttr.Value = s;

 catomElem.Attributes.Append(catomAttr);

 someElem.AppendChild(ratomElem);

 someElem.AppendChild(catomElem);

337

 return someElem;

 }

 #endregion

 #region Accessors

 public string getQueryString()

 {

 return queryXML;

 }

 public string getResultsString()

 {

 return reasonerResults;

 }

 #endregion

 }

}

338

Program Class

using System;

using System.Collections.Generic;

using System.Linq;

using System.Windows.Forms;

namespace RepositoryGUI

{

 static class Program

 {

 /// <summary>

 /// The main entry point for the application.

 /// </summary>

 [STAThread]

 static void Main()

 {

 Application.EnableVisualStyles();

 Application.SetCompatibleTextRenderingDefault(false);

 Application.Run(new GUI());

 }

 }

}

339

APPENDIX B – BIOLOGICAL AND ENGINEERING STRATEGIES

In Appendix B, the description logic descriptions of the biological and

engineering strategies used to populate the Strategy Repository in Section 5.5 are

displayed.

Strategy DL Description

Crossbridge-

Effect_SlidingFilament
∃satisfiesFunction.[∃hasInput.Affinity ⊓

∃hasOutput.Force] ⊓

∃refinesBehavior.[∃hasAction.Increment ⊓

∃hasAttribute.Stiffness] ⊓ ∃hasStructure.Human_Musle-

IsomContraction ⊓ ∃fromDomain.Biological_Domain

Electrorheological_Effect ∃satisfiesFunction.[∃hasInput.Current ⊓

∃hasOutput.Force] ⊓

∃refinesBehavior.[∃hasAction.Increment ⊓

∃hasAttribute.Stiffness] ⊓ ∃hasStructure.ER_Fluid ⊓

∃fromDomain.Engineering_Domain

Hydro_clustering ∃satisfiesFunction.[∃hasInput.Force ⊓ ∃hasOutput.Force]

⊓ ∃refinesBehavior.[∃hasAction.Increment ⊓

∃hasAttribute.Stiffness] ⊓ ∃hasStructure.Shear-

Thickening_Fluid ⊓ ∃fromDomain.Engineering_Domain

Magnetorheological_Effect ∃satisfiesFunction.[∃hasInput.MagneticFluxRate ⊓

∃hasOutput.Force] ⊓

∃refinesBehavior.[∃hasAction.Increment ⊓

∃hasAttribute.Stiffness] ⊓ ∃hasStructure.MR_Fluid ⊓

∃fromDomain.Engineering_Domain

MutConn-BrittleStarLigaments ∃satisfiesFunction.[∃hasInput.Affinity ⊓

∃hasOutput.Force] ⊓

340

∃refinesBehavior.[∃hasAction.Increment ⊓

∃hasAttribute.Stiffness] ⊓ ∃hasStructure. BrittleStar-

InvertebralLigaments ⊓ ∃fromDomain.Biological_Domain

MutConn-

FeatherStarArmLigaments
∃satisfiesFunction.[∃hasInput.Affinity ⊓ ∃hasOutput.Force]

⊓ ∃refinesBehavior.[∃hasAction.Increment ⊓

∃hasAttribute.Stiffness] ⊓ ∃hasStructure.

FeatherStarArmLigaments ⊓

∃fromDomain.Biological_Domain

MutConn-SeaCucumberDermis ∃satisfiesFunction.[∃hasInput.Affinity ⊓

∃hasOutput.Force] ⊓

∃refinesBehavior.[∃hasAction.Increment ⊓

∃hasAttribute.Stiffness] ⊓

∃hasStructure.SeaCucumberDermis ⊓

∃fromDomain.Biological_Domain

MutConn-SeaUrchinTooth ∃satisfiesFunction.[∃hasInput.Affinity ⊓

∃hasOutput.Force] ⊓

∃refinesBehavior.[∃hasAction.Increment ⊓

∃hasAttribute.Stiffness] ⊓ ∃hasStructure.

SeaUrchinToothSpineLigaments ⊓

∃fromDomain.Biological_Domain

MutConn-StarfishSpine ∃satisfiesFunction.[∃hasInput.Affinity ⊓

∃hasOutput.Force] ⊓

∃refinesBehavior.[∃hasAction.Increment ⊓

∃hasAttribute.Stiffness] ⊓ ∃hasStructure. StarfishSpine ⊓

∃fromDomain.Biological_Domain

Chemically_Induced_Actuation ∃ satisfiesFunction ((∃ hasInput Chemical) ⊓ (∃

341

hasOutput Force)) ⊓∃ refinesBehavior ((∃ hasAction

Convert) ⊓ (∃ hasAttribute Force-Extrinsic-Mechanical)) ⊓

∃ hasStructure Human_Muscle-Isometric_Contraction ⊓ ∃

fromDomain Engineering_Domain

Electrically_Induced_Actuation ∃ satisfiesFunction ((∃ hasInput Electrical) ⊓ (∃

hasOutput Force)) ⊓∃ refinesBehavior ((∃ hasAction

Convert) ⊓ (∃ hasAttribute Force-Extrinsic-Mechanical)) ⊓

∃ hasStructure Ionic_EAP ⊓ ∃ hasStructure

Dielectric_EAP ⊓ ∃ hasStructure Electric_Valve ⊓ ∃

fromDomain Engineering_Domain

Hydraulic_Actuation ∃ satisfiesFunction ((∃ hasInput Liquid_Material) ⊓ (∃

hasOutput Force)) ⊓∃ refinesBehavior ((∃ hasAction

Convert) ⊓ (∃ hasAttribute Force-Extrinsic-Mechanical)) ⊓

∃ hasStructure Piston ⊓ ∃ fromDomain

Engineering_Domain

Pneumatic_Actuation ∃ satisfiesFunction ((∃ hasInput Gas_Material) ⊓ (∃

hasOutput Force)) ⊓∃ refinesBehavior ((∃ hasAction

Convert) ⊓ (∃ hasAttribute Force-Extrinsic-Mechanical)) ⊓

∃ hasStructure Rotary_Actuators ⊓ ∃ hasStructure

Tie_Rod_Cylinders ⊓ ∃ hasStructure Vacuum_Generators

⊓ ∃ fromDomain Engineering_Domain

Multi-

Layered_Thin_Film_Interface

∃ satisfiesFunction ((∃ hasInput Mechanical) ⊓ (∃

hasOutput Visual)) ⊓ ∃ refinesBehavior ((∃ hasAction

Change) ⊓ (∃ hasAttribute Color)) ⊓∃ hasStructure

Zebrafish_Chromatophore ⊓ ∃ hasStructure

Cuttlefish_Chromatophore ⊓ ∃ fromDomain

Biological_Domain

342

Temperature_Induced_Volume

_Change

∃ satisfiesFunction ((∃ hasInput Temperature) ⊓ (∃

hasOutput Visual)) ⊓ ∃ refinesBehavior ((∃ hasAction

Change) ⊓ (∃ hasAttribute Color))⊓ ∃ hasStructure

NIPAM_Polymer⊓ ∃ fromDomain Biological_Domain

Variable_Diffraction ∃ satisfiesFunction ((∃ hasInput Electrical) ⊓ (∃

hasOutput Visual)) ⊓ ∃ refinesBehavior ((∃ hasAction

Change) ⊓ (∃ hasAttribute Color))⊓ ∃ hasStructure

Photonic_Ink ⊓∃ fromDomain Biological_Domain

Structural_Color ∃ satisfiesFunction ((∃ hasInput Intensity_Optical) ⊓ (∃

hasOutput Visual)) ⊓ ∃ refinesBehavior ((∃ hasAction

Convert) ⊓ (∃ hasAttribute Color)) ⊓ ∃ hasStructure

Peacock_Feather ⊓ ∃ hasStructure African_Reed_Frog ⊓∃

hasStructure Butterfly_Wing ⊓ ∃ fromDomain

Biological_Domain

Color_Filtration ∃ satisfiesFunction ((∃ hasInput Intensity_Optical) ⊓ (∃

hasOutput Intensity_Optical)) ⊓ ∃ refinesBehavior ((∃

hasAction Change) ⊓ (∃ hasAttribute Color)) ⊓ ∃

hasStructure Dielectric_Mirror ⊓ ∃ hasStructure

Dichrotic_Filter ⊓ ∃ fromDomain Engineering_Domain

Electroluminescence ∃ satisfiesFunction ((∃ hasInput Electrical) ⊓ (∃

hasOutput Intensity_Optical)) ⊓ ∃ refinesBehavior ((∃

hasAction Convert) ⊓ (∃ hasAttribute Luminosity)) ⊓ ∃

hasStructure Light_Emitting_Diode ⊓ ∃ hasStructure

Liquid_Crystal_Display ⊓ ∃ fromDomain

Engineering_Domain

Thermoluminescence ∃ satisfiesFunction ((∃ hasInput Temperature) ⊓ (∃

hasOutput Intensity_Optical)) ⊓ ∃ refinesBehavior ((∃

343

hasAction Convert) ⊓ (∃ hasAttribute Luminosity)) ⊓ ∃

hasStructure Gas_Lighting ⊓ ∃ fromDomain

Engineering_Domain

Bioluminescence ∃ satisfiesFunction ((∃ hasInput Chemical) ⊓ (∃

hasOutput Intensity_Optical)) ⊓ ∃ refinesBehavior ((∃

hasAction Convert) ⊓ (∃ hasAttribute Luminosity)) ⊓ ∃

hasStructure Firefly_LE-Organ ⊓ ∃ hasStructure

Glow_Worm ⊓ ∃ fromDomain Biological_Domain

Piezoelectric_Electricity_Gener

ation

∃ satisfiesFunction ((∃ hasInput Force) ⊓ (∃ hasOutput

Electrical)) ⊓ ∃ refinesBehavior ((∃ hasAction Convert) ⊓

(∃ hasAttribute Electrical_Energy)) ⊓ ∃ hasStructure

Piezoelectric_Stack ⊓ ∃ fromDomain Engineering_Domain

Piezoelectric_Force_Generation ∃ satisfiesFunction ((∃ hasInput Electrical) ⊓ (∃

hasOutput Force)) ⊓ ∃ refinesBehavior ((∃ hasAction

Convert) ⊓ (∃ hasAttribute Force-Extrinsic-Mechanical)) ⊓

∃ hasStructure Piezoelectric_Stack ⊓ ∃ fromDomain

Engineering_Domain

Chemonasty ∃ satisfiesFunction ((∃ hasInput Chemical) ⊓ (∃

hasOutput Mechanical)) ⊓ ∃ refinesBehavior ((∃

hasAction Change) ⊓ (∃ hasAttribute Shape-Physical)) ⊓

∃ fromDomain Biological_Domain

Hydronasty ∃ satisfiesFunction ((∃ hasInput Liquid_Material) ⊓ (∃

hasOutput Mechanical)) ⊓ ∃ refinesBehavior ((∃

hasAction Change) ⊓ (∃ hasAttribute Shape-Physical)) ⊓

∃ fromDomain Biological_Domain

Photonasty ∃ satisfiesFunction ((∃ hasInput Intensity_Optical) ⊓ (∃

hasOutput Mechanical)) ⊓ ∃ refinesBehavior ((∃

344

hasAction Change) ⊓ (∃ hasAttribute Shape-Physical)) ⊓

∃ hasStructure Flower_Opening-Closing ⊓ ∃

fromDomain Biological_Domain

Temp-

Induced_Shape_Memorization

∃ satisfiesFunction ((∃ hasInput Temperature) ⊓ (∃

hasOutput Mechanical)) ⊓ ∃ refinesBehavior ((∃

hasAction Change) ⊓ (∃ hasAttribute Shape-Physical)) ⊓

∃ hasStructure Shape_Memory_Polymer ⊓ ∃ hasStructure

Shape_Memory_Alloy ⊓ ∃ fromDomain

Enginering_Domain

Chemotropism ∃ satisfiesFunction ((∃ hasInput Chemical) ⊓ (∃

hasOutput Mechanical)) ⊓ ∃ refinesBehavior ((∃

hasAction Change) ⊓ (∃ hasAttribute Shape-Physical)) ⊓

∃ hasStructure Pollen_Tube_Growth ⊓ ∃ fromDomain

Biological_Domain

Gravitropism ∃ satisfiesFunction ((∃ hasInput Force) ⊓ (∃ hasOutput

Mechanical)) ⊓ ∃ refinesBehavior ((∃ hasAction Change)

⊓ (∃ hasAttribute Shape-Physical)) ⊓ ∃ hasStructure

Stem_Growth ⊓ ∃ hasStructure Root_Growth ⊓ ∃

fromDomain Biological_Domain

Hydrotropism ∃ satisfiesFunction ((∃ hasInput Liquid_Material) ⊓ (∃

hasOutput Mechanical)) ⊓ ∃ refinesBehavior ((∃

hasAction Change) ⊓ (∃ hasAttribute Shape-Physical)) ⊓

∃ hasStructure Flower_Bending ⊓ ∃ fromDomain

Biological_Domain

Thermotropism ∃ satisfiesFunction ((∃ hasInput Temperature) ⊓ (∃

hasOutput Mechanical)) ⊓ ∃ refinesBehavior ((∃

hasAction Change) ⊓ (∃ hasAttribute Shape-Physical)) ⊓

345

∃ hasStructure Rhododendron_Leave_Curling ⊓ ∃

fromDomain Biological_Domain

346

APPENDIX C – COGNITIVE STUDY DOCUMENTS

In Appendix C, the documents from the cognitive studies in Section 7.1 are

presented.

Biological analogy

Echinoderms (ie. Sea cucumbers) possess the ability to control the tensile properties

(stiffness) of their skin by regulating the stress transfer between collagen fibril bundles.

Interactions between these fibril bundles are regulated by special cells controlled by the sea

cucumber’s neural system. In its low stiffness state, the individual collagen fibril bundles are

allowed to slide past one another. When signaled by the neural system, the special cells release a

binding agent, called stiparin, which causes the individual fiber bundles to become linked. This

causes the high-stiffness state of the skin.

The skin tissue can be modeled as a flexible composite of discontinuous fibrils within a

viscous liquid medium. The force transferred through the solution to the fibrils depends on the

size and orientation of the fibrils. Once activated, these fibrils become linked into a network of

larger, continuous fibers (Figure 1). This increased size leads to an increased contribution on

their part to the stiffness of the skin.

Figure 1.  Model of the Echinoderm skin 

Figure C. 1 Biological Design Example for Study 1 [129]

347

Electrorheological (ER) fluids

Electrorheological (ER) fluids are fluids that experience increased yield stress in the presence of

electric fields. ER fluids consist of extremely small non-conducting particles suspended in an electrically

insulating carrier fluid medium. In the absence of an electric field, ER fluids behave as typical fluids

(Figure 1a). When an electric field is applied, these particles bind and the fluid immediately ‘solidifies’

with a yield point determined by the electric field strength (Fluid 1b).

Figure 1. (a) ER fluid with zero electric field applied (b) ER fluid solidifies when electric field is

applied

One application of this technology is in the US Army's planned Future Force Warrior project. In

this project, the Army plans to create bullet-resistant armor using the ER fluid, whereby the stiffness of the

armor can be actively-controlled.

Figure C. 2 Human-Engineered Design Example for Study 1 [194]

348

Nastic shape change

Many plants exhibit shape change and structural movement by way of nastic movement. In

response to external stimuli, nastic movements are rapid, reversible responses caused by a change in the

internal pressure due to movement of water within the cells. In different species, external stimuli for nastic

movement in plants include light, chemical, water, temperature, and touch.

Figure 1. Venus Fly trap, which closes to trap insects when touched

Due to internal pressure control, nastic plants can change from one shape to another based on an

external stimulus.

Figure C. 3 Variable-Stiffness Biological Design Example for Study 2 [195]

349

Human muscle in Isometric contraction

The stiffness of human muscle can be controlled under isometric (fixed-length) contraction. The

basic unit of the muscle, the sarcomere, is composed of actin and myosin filaments. Stiffness change is

caused by the chemical activation of crossbridges on the myosin myofilament, which bond to the actin

myofilaments. The stiffness is directly proportional to the number of cross-bridges activated between the

actin and myosin filaments.

Figure 1. Sarcomere showing bridged and unbridged myosin and actin myofilaments

Stiffness of the muscle is controlled by the association (binding) of otherwise independent actin

and myosin myofilaments in the sarcomere.

Figure C. 4 Shape-Changing Biological Design Example for Study 2 [196]

350

Electrorheological (ER) fluids

Electrorheological (ER) fluids are fluids that experience increased yield stress in the presence of

electric fields. ER fluids consist of extremely small non-conducting particles suspended in an electrically

insulating carrier fluid medium. In the absence of an electric field, ER fluids behave as typical fluids

(Figure 1a). When an electric field is applied, these particles bind and the fluid immediately ‘solidifies’

with a yield point determined by the electric field strength (Fluid 1b).

Figure 1. (a) ER fluid with zero electric field applied (b) ER fluid solidifies when electric field is

applied

Stiffness in the ER fluid is changed by controlling the association (binding) between otherwise

independent non-conducting particles.

Figure C. 5 Variable-Stiffness Human-Engineered Design Example for Study 2 [194]

351

Shape memory polymers

Shape memory polymers are polymers that can reversibly change shape via an external stimulus.

SMPs are 2 –part block copolymers containing (1) a ‘switching‘ coil segment and (2) a rigid rod segment.

Under external stimuli (ie. thermal, electric/magnetic field, light, or pH), the switching segment softens and

allows the polymer to change to another predetermined shape.

Figure 1. Shape Memory Polymer

Due to the shape memory effect, SMPs can change from one shape to another based on an external

stimulus.

Figure C. 6 Shape-Changing Human-Engineered Design Example for Study 2[197]

352

 REFERENCES

[1] N. Dylla (1991). Thinking Methods and Procedures in Mechanical Design.

Dissertation, Mechanical Design, Technical University of Munich.

[2] K. Schild, C. Herstatt and C. Luthje (2004). "How to Use Analogies for

Breakthrough Innovations." Technical University of Hamburg, Hamburg,

Germany.

[3] J. F. V. Vincent and D. L. Mann (2002). "Systematic Technology Transfer from

Biology to Engineering. "Philosophical Transactions of the Royal Society of

London A, 360, 159-73.

[4] M. K. Perttula (2006). Idea Generation in Engineering Design: Application of

Memory Search Perspective and Some Experimental Studies. Doctoral

Dissertation, Department of Mechanical Engineering, Helsinki University of

Toronto.

[5] G. Pahl and W. Beitz (1996). Engineering Design: A Systematic Approach (2

ed.). London: Springer-Verlag.

[6] J. A. Busby and P. A. Lloyd (1999). "Influences on Solution Search Processes in

Design Organisations. "Research in Engineering Design, 11, 158-71.

[7] H. A. Simon (1976). Administrative Behavior. New York, N.Y.: The Free Press.

[8] H. A. Simon (1983). Reason in Human Affairs. Stanford, CA: Stanford University

Press.

[9] H. A. Simon (1996). The Sciences of the Artificial (3rd ed.). Cambridge, MA:

MIT Press.

[10] S. Vogel (1998). Cats' Paws and Catapults: Mechanical Worlds of Nature and

People. New York: W.W. Norton & Co.

[11] Y. Bar-Cohen (2006). Biomimetics: Biologically Inspired Technologies. Boca

Raton: CRC Press.

353

[12] J. F. V. Vincent (2002). "Stealing Ideas from Nature." In S. Pellegrino (Ed.

Deployable Structures (pp. 51-8). Italy: Springer Wein New York.

[13] J. F. V. Vincent, O. A. Bogatyreva, N. R. Bogatyrev, A. Bowyer and A.-K. Pahl

(2006). "Biomimetics: Its Practice and Theory. "Journal of the Royal Society

Interface, 3, 471-82.

[14] O. H. Schmitt (1969). "Some Interesting and Useful Biomimetic Transforms."

Thired International Biophysics Congress, Boston, MA, August 29 - September 3,

1969.297.

[15] J. Benyus. "Case Studies." (2008). August 7, 2008

<http://www.biomimicryinstitute.org>.

[16] S. R. Bhatta and A. K. Goel (1996). "From Design Experiences to Generic

Mechanisms : Model-Based Learning in Analogical Design. "Artificial

Intelligence for Engineering Design, Analysis and Manufacturing, 10(2).

[17] S. R. Bhatta and A. K. Goel (1997). "A Functional Theory of Design Patterns.

"International Joint Conference on Artificial intelligence, 15(1), 294-300.

[18] A. K. Goel, S. R. Bhatta and E. Stroulia (1997). "Kritik: An Early Case-Based

Design System." In M. L. Maher and P. Pu (Eds.), Issues and Applications of

Case-Based Reasoning in Design (pp. 87-132). Mahwah, NJ: Lawrence Erlbaum

Associate.

[19] P. W. Yaner and A. K. Goel (2006). "From Form to Function: From Sbf to

Dssbf." In J. S. Gero (Ed. Design Computing and Cognition '06 (pp. 423-41).

Springer Netherlands.

[20] S. Vattam, M. Helms and A. K. Goel (2007). "Biologically-Inspired Innovation in

Engineering Design: A Cognitive Study." Design Intelligence Laboratory, School

of Interactive Computing, Georgia Institute of Technology, Atlanta, GA.

[21] http://database.portal.modwest.com/. Accessed

[22] I. Chiu and L. H. Shu (2004). "Natural Language Analysis for Biomimetic

Design." 2004 DETC Design Theory and Methodology, Salt Lake City, Utah.

ASME, Paper No.DETC2004-57250

354

[23] I. Chiu and L. H. Shu (2005). "Bridging Cross-Domain Terminology for

Biomimetic Design." 2005 IDETC Design Theory and Methodology, Long Beach,

CA. ASME, Paper No.DETC2005-84908

[24] A. Chakrabarti, P. Sarkar, B. Leelavathamma and B. S. Nataraju (2005). "A

Functional Representation for Aiding Biomimetic and Artificial Inspiration of

New Ideas. "Artificial Intelligence for Engineering Design, Analysis and

Manufacturing, 19, 113-32.

[25] J. Benyus and D. Baumeister. "The Design Spiral." (2007).

<www.biomimicryinstitute.org>.

[26] H. A. Bruck, A. L. Gershon, I. Golden, S. K. Gupta, L. S. G. Jr., E. B. Magrab

and B. W. Spranklin (2006). "New Educational Tools and Curriculum

Enhancements for Motivating Engineering Students to Design and Realize Bio-

Inspired Products." In W. I. o. T. C. A. Brebbia (Ed. Design and Nature Iii:

Comparing Design in Nature with Science and Engineering. WIT Press.

[27] Wordnet (2008). Available from: http://wordnet.princeton.edu/

[28] G. Altshuller (1984). Creativity as an Exact Science. New York, NY: Gordon &

Breach.

[29] V. Vakili, I. Chiu, L. H. Shu, D. A. McAdams and R. B. Stone (2007). "Including

Functional Models of Biological Phenomena as Design Stimuli." ASME 2007

International Design Engineering Technical Conferences and Computers and

Information in Engineering Conference, Las Vegas, NV, September 4-7 (ASME,

Ed.). ASME, Paper No.DETC2007-35776

[30] Z. Li, V. Raskin and K. Ramani (2008). "Developing Engineering Ontology for

Information Retrieval. "Journal of Computing and Information Science in

Engineering, 8(1), 011003-1-13.

[31] E. J. Chikofsky and J. H. C. II (1990). "Reverse Engineering and Design

Recovery: A Taxonomy. "IEEE Software, 13-7.

[32] L. Chittaro and A. N. Kumar (1998). "Reasoning About Function and Its

Applications. "Artificial Intelligence in Engineering, 12, 331-6.

355

[33] B. Buckley (2000). "Interactive Multimedia and Model-Based Learning in

Biology. "International Journal of Science Education, 22(9), 895-935.

[34] Y.-M. Deng, S. B. Tor and G. A. Britton (2000). "Abstracting and Exploring

Functional Design Information for Conceptual Mechanical Product Design.

"Engineering with Computers, 16, 36-52.

[35] J. J. Shah, N. Vargas-Hernandez and S. M. Smith (2002). "Metrics for Measuring

Ideation Effectiveness. "Design Studies, 24, 111-34.

[36] C. C. Seepersad, K. Pedersen, J. Emblemsvag, R. R. Bailey, J. K. Allen and F.

Mistree (2005). "The Validation Square: How Does One Verify and Validate a

Design Method?" In W. Chen, K. Lewis and L. Schmidt (Eds.), Decision-Based

Design: Making Effective Decisions in Product and Systems Design. NY: ASME

Press.

[37] C. B. Williams (2003). Platform Design for Customizable Products and

Processes with Non-Uniform Demand, Mechanical Engineering, Georgia Institute

of Technology.

[38] M. Messer (2008). A Systematic Approach for Integrated Product, Materials, and

Design-Process Design. PhD Dissertation, GWW School of Mechanical

Engineering, Georgia Institute of Technology.

[39] H. Casakin and G. Goldschmidt (1999). "Expertise and the Use of Visual

Analogy: Implications for Design Education. "Design Studies, 20, 153-75.

[40] T. W. Mak and L. H. Shu (2004). "Use of Biological Phenomena in Design by

Analogy." ASME 2004 Design Engineering Technical Conference, Salt Lake

City, UT, September 28-October 2, 2004 (ASME, Ed.). ASME, Paper No.

DETC2004-57303.

[41] B. T. Christensen and C. D. Schunn (2007). "The Relationship of Analogical

Distance to Analogical Function and Pre-Inventive Structure: The Case of

Engineering Design. "Memory & Cognition, 35(1), 29-38.

[42] J. Gregan-Paxton and D. R. John (1997). "Consumer Learning by Analogy: A

Model of Internal Knowledge Transfer. "Journal of Consumer Research, 24(3),

266-84.

356

[43] D. W. Dahl and P. Moreau (2002). "The Influence and Value of Analogical

Thinking During New Product Ideation. "Journal of Marketing Research,

XXXIX, 47-60.

[44] D. Gentner and A. B. Markman (1997). "Structure Mapping in Analogy and

Similarity. "American Psychologist, 52(1), 45-56.

[45] P. N. Johnson-Laird (Ed. (1989). Analogy and the Exercise of Creativity. New

York, NY: Cambridge University Press.

[46] T. B. Ward (1998). "Analogical Distance and Purpose in Creative Thought:

Mental Leaps Versus Mental Hops." In K. Holyoak, D. Gentner and B. Kokinov

(Eds.), Advances in Analogy Research: Integration of Theory and Data from the

Cognitive, Computational, and Neural Sciences (pp. 221-30). Sofia: New

Bulgarian University.

[47] O. Benami and Y. Jin (2002). "Creative Stimulation in Conceptual Design." 2002

DETC Design Theory and Methodology, Montreal, Canada (ASME, Ed.). ASME,

Paper No.DETC2002/DTM-34023

[48] T. B. Ward (1993). "Structured Imagination: The Role of Category Structure in

Exemplar Generation. "Cognitive Psychology, 27(1), 1-40.

[49] R. A. Finke, T. B. Ward and S. M. Smith (1992). Creative Cognition: Theory,

Research, and Applications. Cambridge: A Bradford Book.

[50] A. B. Markman (1999). Knowledge Representation. Lawrence Erlbaum

Associates.

[51] M. D. Williams, J. D. Hollan and A. L. Stevens (1983). "Human Reasoning About

a Simple Physical System." In D. Gentner and A. L. Stevens (Eds.), Mental

Models. L. Erlbaum Associates.

[52] M. J. Van Wie (2002). Designing Product Architecture: A Systematic Method.

PhD Disssertation, School of Mechanical Engineering, The University of Texas at

Austin.

[53] B. Y. White and J. R. Frederiksen (1990). "Causal Model Progressions as a

Simple Physical System. "Artificial Intelligence, 42(1), 99-157.

357

[54] S. M. Kannapan and K. M. Marshek (1991). "Design Synthetic Reasoning.

"Mechanism and Machine Theory, 26(7), 711-39.

[55] J. Winsor and K. MacCullum` (1994). "A Review of Functionality Modeling in

Design. "The Knowledge Engineering Review, 9(2), 163-99.

[56] Y.-M. Deng (2002). "Function and Behavior Representation in Conceptual

Mechanical Design. "Artificial Intelligence for Engineering Design, Analysis and

Manufacturing, 16, 343-62.

[57] F. T. Brown (2007). Engineering System Dynamics: A Unified Graph-Centered

Approach. Boca Raton: CRC Press.

[58] R. Zurawski (2005). "Petri Net Models, Functional Abstractions, and Reduction

Techniques: Applications to the Design of Automated Manufacturing Systems.

"IEEE Transactions of Industrial Electronics, 52(2), 595-609.

[59] T. Murata (1989). "Petri Nets: Properties, Analysis and Applications.

"Proceedings of the IEEE 77(4), 541-80.

[60] T. Koga and K. Aoyama (2004). "Product Behavior and Topological Structure

Design System by Step-by-Step Decomposition." ASME 2004 Design

Engineering Technical Conferences and Computers and Information in

Engineering Conference, Salt Lake City, Utah, September 28-October 2, 2004.

ASME, Paper No.DETC2004-57513

[61] E. Chang, X. Li and L. C. Schmidt (2001). "The Need for a Form, Function, and

Behavior-Based Representation System." Designer Assistance Tool Laboratory,

University of Maryland. <http://www.enme.umd.edu/DATLab>.

[62] Y. Umeda, T. Tomiyama and H. Yoshikawa (Eds.). (1990). Function, Behavior,

and Structure. Berlin: Springer-Verlag.

[63] Y. Umeda, T. Tomiyama and H. Yoshikawa (1995). "Fbs Modeling: Modeling

Scheme of Function for Conceptual Design." 9th International Workshop on

Qualitative Reasoning, Amsterdam, NL, May 11-19, 2005. Paper No.

[64] Y. Umeda and T. Tomiyama (1997). "Functional Reasoning in Design. "IEEE

Expert, 12(2), 42-8.

358

[65] B. Chandrasekaran, A. K. Goel and Y. Iwasaki (1993). "Functional

Representation as Design Rationale. "IEEE Computer, 26(1), 48-56.

[66] B. Chandrasekaran and J. R. Josephson (2000). "Function in Device

Representation. "Engineering with Computers, 16, 162-77.

[67] J. S. Gero (1990). "Design Prototypes: A Knowledge Representation Schema for

Design " AI Magazine, 11(4), 26-36.

[68] L. Qian and J. S. Gero (1996). "Function-Behavior-Structure Paths and Their Role

in Analogy-Based Design. "Artificial Intelligence in Engineering, 10, 289-312.

[69] J. S. Gero and U. Kannengiesser (2006). "A Function-Behaviour-Structure

Ontology of Processes." In J. S. Gero (Ed. Design Computing and Cognition '06

(pp. 407-22). Springer.

[70] S. Szykman, R. D. Sriram, C. Bochenek, J. W. Racz and J. Senfaute (2000).

"Design Repositories: Engineering Design's New Knowledge Base." National

Institute of Science and Technology (NIST), Gaithersburg, MD.

[71] A. Aamodt and E. Plaza (1994). "Case-Based Reasoning: Foundational Issues,

Methodological Variations, and System Approaches "AI Communications, 7(1),

39-59.

[72] F. Marir and I. Watson (1994). "Case-Based Reasoning: A Categorized

Bibliography. "The Knowledge Engineering Review, 9(4), 382-419.

[73] I. Watson and F. Marir (1994). "Case-Based Reasoning: A Review. "The

Knowledge Engineering Review, 9(4), 355-81.

[74] R. L. d. Mantaras and E. Plaza (1997). "Case-Based Reasoning: An Overview.

"AI Communications, 10, 21-9.

[75] S. Yim (2007). A Retrieval Method (Dfm Framework) for Automated Retrieval of

Design for Additive Manufacturing Problems. PhD Dissertation, GWW School of

Mechanical Engineering, Georgia Institute of Technology.

[76] J. J. Shah and P. K. Wright (2000). "Developing Theoretical Foundations of

Dfm." International Design Engineering Technical Conferences and Computers

and Information in Engineering Conferences, Baltimore, MD. ASME

359

[77] J. Kim, P. Will, S. R. Ling and B. Neches (2003). "Knowledge-Rich Catalog

Services for Engineering Desing. "Artificial Intelligence for Engineering Design,

Analysis and Manufacturing, 17(4), 349-66.

[78] Z. Li, M. Liu and K. Ramani (2004). "Reveiw of Product Information Retreival:

Representation and Indexing." ASME 2004 Design Engineering Technical

Conferences and Computers and Information in Engineering Conference, Salt

Lake City, UT, September 28-October 2 (ASME, Ed.). Paper No.DETC2004-

57749

[79] Z. Li, D. C. Anderson and K. Ramani (2005). "Ontology-Based Design

Knowledge Modeling for Product Retrieval." International Conference on

Engineering Design, Melbourne, August 15-18. Paper No.ICED05/462.1

[80] S. Ahmed, S. Kim and K. M. Wallace (2007). "A Methodology for Creating

Ontologies for Engineering Design. "Journal of Computing and Information

Science in Engineering, 7, 132-40.

[81] Z. Li and K. Ramani (2007). "Ontology-Based Design Information Extraction and

Retrieval. "Artificial Intelligence for Engineering Design, Analysis and

Manufacturing, 21, 137-54.

[82] N. F. Noy and D. L. McGuinness (2001). "Ontology Development 101: A Guide

to Creating Your First Ontology." Stanford Knowledge Systems Laboratory.

[83] Z. Li, M. Liu, D. C. Anderson and K. Ramani (2005). "Semantics-Based Design

Knowledge Annotation and Retrieval." ASME 2005 International Design

Engineering Technical Conferences & Computer and Information in Engineering

Conference, Long Beach, CA, September 24-28. ASME, Paper No.DETC2005-

85107

[84] J. B. Kopena, C. B. Cera and W. C. Regli (2005). "Conceptual Design Knowledge

Management and the Semantic Web." International Design Engineering

Technical Conferences and Computers and Information in Engineering

Conferences, Long Beach, CA, September 24-28 (ASME, Ed.). Paper

No.DETC2005-85310

360

[85] N. Udoyen (2006). Information Modeling for Intent-Based Retrieval of

Parametric Finite Element Analysis Models. PhD Dissertation, GWW School of

Mechanical Engineering, Georgia Institute of Technology.

[86] S. Yim, J. Wilson and D. Rosen (2008). "Development of an Ontology for Bio-

Inspired Design Using Description Logics." International Conference on Product

Lifecycle Management, Seoul, Korea.

[87] F. Azuaje, W. Dubitzky, N. Black and K. Adamson (2000). "Retrieval Strategies

for Case-Based Reasoning: A Categorized Bibliography. "The Knowledge

Engineering Review, 15, 371-9.

[88] F. Baader, D. Calvanese, D. McGuinness, D. Nardi and P. F. Patel-Schneider

(2002). "The Description Logic Handbook.

[89] J. Z. Pan (2004). Description Logics: Reasoning Support for the Semantic Web,

School of Computer Science,, University of Manchester.

[90] D. Ullman (2003). The Mechanical Design Process (3rd ed.). McGraw-Hill.

[91] D. W. McShea (2001). "The Hierarchical Structure of Organisms: A Scale and

Documentation of a Trend in the Maximum. "Paleobiology, 27(2), 405-23.

[92] G. A. J. M. Jagers op Akkerhuis (2008). "Analysing Hierarchy in the

Organization of Biological and Physical Systems. "Biological Reviews, 83(1), 1-

12.

[93] Human Muscle.

<http://www.cliffsnotes.com/WileyCDA/CliffsReviewTopic/topicArticleId-

8741,articleId-8717.html>. Accessed May 7, 2008

[94] D. W. McShea (2000). "Functional Complexity in Organisms: Parts as Proxies.

"Biology and Philosophy, 15, 641-68.

[95] S. A. Kauffman (1993). The Origins of Order: Self-Organization and Selection in

Evolution. New york: Oxford University Press, Inc.

[96] J. W. Valentine (2006). On the Origin of Phyla. University of Chicago Press.

[97] X. F. Zha and H. Du (2001). "Mechanical Systems and Assemblies Modeling

Using Knowledge-Insensitive Petri Nets Formalisms. "Artificial Intelligence for

Engineering Design, Analysis and Manufacturing, 15, 145-71.

361

[98] J. G. Miller (1978). Living Systems. New York: McGraw-Hill, Inc.

[99] D. W. McShea and E. P. Venit (2001). "What Is a Part?" In G. P. Wagner (Ed.

The Character Concept in Evolutionary Biology (pp. 259-84). San Diego:

Academic Press.

[100] G. P. Wagner and L. Altenberg` (1996). "Complex Adaptations and the Evolution

of Evolvability. "Evolution, 50(3), 967-76.

[101] B. Chandrasekaran and J. R. Josephson (1996). "Representing Function as

Effedt." Fifth International Workshop on Advances in Functional Modeling of

Complex Technical Systems, Paris, France, July 1997 (M. Modarres, Ed.). The

Center for Technology Risk Studies, University of Maryland.3-16.

[102] M. Scaife and Y. Rogers (1996). "External Cognition: How Do Graphical

Representations Work? "International Journal of Human-Computur Studies, 45,

185-213.

[103] T. N. Madhusudan, K. Sycara and D. Navin-Chandra (1995). "Device

Representation for Behavioral Synthesis of Mechatronic Devices." Carnegie

Mellon University. <http//:citeseer.ist.psu.edu/46706.html>.

[104] R. Zurawski and M. Zhou (1994). "Petri Nets and Industrial Applications: A

Tutorial. "IEEE Transactions of Industrial Electronics, 41(6), 567-83.

[105] J. D. Summers and J. J. Shah (2004). "Representation in Engineering Design: A

Framework for Classification." ASME Design Engineering Technical Conferences

and Computers and Information in Engineering Conference, Salt Lake City, Utah,

USA, September 28-October 2, 2004. ASME, Paper No.DETC2004-57514

[106] J. H. Larkin and H. A. Simon (1987). "Why a Diagram Is (Sometimes) Worth Ten

Thousand Words. "Cognitive Science, 11, 65-99.

[107] C. Gurr, J. Lee and K. Stenning (1998). "Theories of Diagrammatic Reasoning:

Distinguishing Component Problems. "Minds and Machines, 8(533-557), 1998.

[108] M. K. Kaiser, D. R. Proffitt, S. M. Whelan and H. Hecht (1992). "Influence of

Animation on Dynamical Judgments. "Journal of Experimental Psychology:

Human Perception and Performance, 18(3), 669-89.

362

[109] S. Jones and M. Scaife (2000). "Animated Diagrams: An Investigation into the

Cognitive Effects of Using Animation to Illustrate Dynamic Processes." In M.

Anderson and P. Cheng (Eds.), Theory & Applications of Diagrams. Lecture

Notes in Artificial Intelligence, No. 1889 (Vol. 231-244). Berlin: Springer-Verlag.

[110] K. Stenning and J. Oberlander (1995). "A Cognitive Theory of Graphical and

Linguistic Reasoning: Logic and Implementation. "Cognitive Science, 19, 97-140.

[111] M. Peleg, D. Rubin and R. B. Altman (2005). "Using Petri Net Tools to Study

Properties and Dynamics of Biological Systems. "Journal of the American

Medical Informatics Association, 12(2), 181-99.

[112] M. Peleg, I. Yeh and R. B. Altman (2002). "Modeling Biological Processes Using

Workflow and Petri Net Models. "Bioinformatics, 18, 825-37.

[113] M. Chen and R. Hofestaedt (2003). "Quantitative Petri Net Model of Gene

Regulated Metabolic Networks in the Cell. "Silico Biology, 3(3), 347-65.

[114] H. Matsuno, Y. Tanaka, H. Aoshima, A. Doi, M. Matsui and S. Miyano (2003).

"Biopathways Representation and Simulation on Hybrid Functional Petri Net.

"Silico Biology, 3(3), 389-404.

[115] K. Voss, M. Heiner and I. Koch (2003). "Steady State Analysis of Metabolic

Pathways Using Petri Nets. "Silico Biology, 3(3), 367-87.

[116] I. Zevedei-Oancea and S. Schuster (2003). "Topological Analysis of Metabolic

Networks Based on Petri Net Theory. "Silico Biology 3, 323-45.

[117] I. Koch, B. H. Junker and M. Heiner (2005). "Application of Petri Net Theory for

Modelling and Validation of the Sucrose Breakdown Pathway in the Potato Tuber

"Bioinformatics, 21(7), 1219-26.

[118] J. L. Peterson (1977). "Petri Nets. "Computing Surveys, 9(3), 223-52.

[119] K.-H. Lee and J. Favrel (1985). "Hierarchical Reduction Method for Analysis and

Decomposition of Petri Nets. "IEEE transactions on Systems, Man, and

Cybernetics, 15(2), 272-80.

[120] B. Farwer and K. Misra (2003). "Modelling with Hierarchical Object Petri Nets.

"Fundamenta Informaticae, 55(2), 129-47.

363

[121] L. Zerguini (2004). "A Novel Hierarchical Method for Decomposition and Design

of Workflow Models. "Transactions of the Society for Design and Process

Science, 8(2), 65-74.

[122] B. Farwer and M. Varea (2006). "Separation of Control and Data Flow in High-

Level Petri Nets: Transforming Dual Flow Nets in Object Petri Nets.

"Fundamenta Informaticae, 72, 123-37.

[123] K. Van Hee, I. A. Lomazova, O. Oanea, A. Serebrenik, N. Sidorova and M.

Voorhoeve (2006). "Nested Nets for Adaptive Systems." 27th International

Conference on Applications and Theory of Petri Nets June 26-30.241-60.

[124] M. G. Rekoff Jr. (1985). "On Reverse Engineering." IEEE Trans. Systems, Man,

and Cybernetics, March-April 1985.244-52.

[125] G. P. Wagner (1995). "Adaptation and the Modular Design of Organisms." In F.

Morán, A. Morán, J. J. Merelo and P. Chacón (Eds.), Advances in Artificial Life

(pp. 317-28). Berlin: Springer Verlag.

[126] T. Motokawa (1984). "Viscoelasticity of Holothurian Body Wall. "Journal of

Experimental Biology, 109, 63-75.

[127] J. A. Trotter and T. J. Koob (1995). "Evidence That Calcium-Dependent Cellular

Processes Are Involved in the Stiffening Response of Holothurian Dermis and

That Dermal Cells Contain Organic Stiffening Factor. "The Journal of

Experimental Biology, 198, 1951-61.

[128] F. A. Thurmond and J. A. Trotter (1996). "Morphology and Biomechanics of the

Microfibrillar Network of Sea Cucumber Dermis. "The Journal of Experimental

Biology, 199, 1817-28.

[129] G. K. Szulgit and R. E. Shadwick (2000). "Dynamic Mechanical Characterization

of a Mutable Collagenous Tissue: Response of Sea Cucumber Dermis to Cell

Lysis and Dermal Extracts. "The Journal of Experimental Biology, 203, 1539-50.

[130] J. A. Trotter, J. Tipper, G. Lyons-Levy, K. Chino, A. H. Heuer, Z. Liu, M.

Mrksich, C. Hodneland, W. S. Dillmore, T. J. Koobs-Edmunds, K. Kadler and D.

Holmes (2000). "Towards a Fibrous Composite with Dynamically Controlled

364

Stiffness: Lessons from Echinoderms. "Biochemical Society Transactions, 28,

357-62.

[131] T. Motokawa and A. Tsuchi (2003). "Dynamic Mechanical Properties of Body-

Wall Dermis in Various Mechanical States and Their Implications for the

Behavior of Sea Cucumbers. "Biological Bulletin, 205, 261-75.

[132] A. Summers (2003). "Catch and Release." Natural History, 112(9)

[133] N. Takemae and T. Motokawa (2005). "Mechanical Properties of the Isolate

Catch Apparatus of the Sea Urchin Spine Joint: Muscle Fibers Do Not Contribute

to Passive Stiffness Changes. "Biological Bulletin, 208, 29-35.

[134] D. Moffett, S. Moffett and C. Schauf (1993). Human Physiology: Foundations

and Frontiers. Dubuque, Iowa: WCB Publishers.

[135] W. J. Germann and C. L. Stanfield (2002). Principles of Human Physiology. San

Francisco: Benjamin Cummings.

[136] V. Vakili and L. H. Shu (2001). "Towards Biomimetic Concept Generation."

2001 DETC Design Theory and Methodology, Pittsburgh, PA, September 9-12.

ASME

[137] S. Ahmed and K. M. Wallace (2004). "Identifying and Supporting the

Knowldedge Needs of Novice Designers within the Aerospace Industry. "Journal

of Engineering Design, 15(5), 475-92.

[138] F. Baader, D. Calvanese, D. McGuinness, D. Nardi and P. F. Patel-Schneider

(2002). The Description Logic Handbook. Cambridge University Press.

[139] G. M. Mocko (2006). A Knowledge Framework for Integrating Multiple

Perspectives in Decision-Centric Design, School of Mechanical Engineering,

Georgia Institute of Technology.

[140] M. C. Daconta, L. J. Obrst and K. T. Smith (2003). The Semantic Web.

Indianapolis, Indiana: Wiley.

[141] S. Powers (2003). Practical Rdf. Sebastopol, CA: O'Reilly & Associates.

[142] Web Ontology Language (Owl). http://www.w3.org/2004/OWL/. Accessed

365

[143] S. Bechhofer (2003). "The Dig Description Logic Interface: Dig/1.1." University

of Manchester, Manchester, U.K. <www.sts.tu-

harburg.de/~r.f.moeller/racer/interface1.1.pdf>.

[144] B. Ganter and R. Wille (1999). Formal Concept Analysis: Mathematical

Foundations. New York: Springer.

[145] N. Udoyen (2006). Information Modeling for Intent-Based Retrieval of

Parametric Finite Element Analysis Models, GWW Woodruff school of

Mechanical Engineering, Georgia Institute of Technology.

[146] C. J. Van Rijsbergen (1979). Information Retrieval. London: Buttersworth.

[147] J. K. Stroble, R. B. Stone, D. A. McAdams, I. Chiu, L. H. Shu and S. E. Watkins

(2008). "Generating Biological Solutions to Engineering Problems Using an

Organized Search." ASME 2008 International Design Engineering Technical

Conferences & Computers and Information in Engineering Conference Brooklyn,

NY, August 3-6 (ASME, Ed.). ASME, Paper No.DETC2008/DTM-49368

[148] R. Moller, V. Haarslev and M. Wessel. "On the Scalability of Description Logic

Instance Retrieval." (2006). <http://www.sts.tu-

harburg.de/∼r.f.moeller/racer/HaMW05.pdf.>.

[149] D. G. Jannson and S. M. Smith (1991). "Design Fixation. "Design Studies, 12(1).

[150] A. T. Purcell, P. Williams, J. S. Gero and B. Colbron (1993). "Fixation Effects:

Do They Exist in Design Problem Solving? "Environment and Planning B:

Planning and Design, 20(3), 333-45.

[151] A. T. Purcell and S. J. Gero (1996). "Design and Other Types of Fixation.

"Design Studies, 17(4), 363-83.

[152] R. L. Marsh, J. D. Landau and J. L. Hicks (1996). "How Examples May (and May

Not) Constrain Creativity. "Memory & Cognition, 24(3), 669-80.

[153] R. L. Marsh, M. L. Bink and J. L. Hicks (1999). "Conceptual Priming in a

Generative Problem-Solving Task. "Memory & Cognition, 27(2), 355-63.

[154] P. B. Paulus and H.-C. Yang (2000). "Idea Generation in Groups: A Basis for

Creativity in Organizations. "Organizational Behavior and Human Decision

Processes, 82(1), 76-87.

366

[155] B. A. Nijstad, W. Stroebe and H. F. Lodewijkx (2002). "Cognitive Stimulation

and Interference in Groups: Exposure Effects in an Idea Generation Task.

"Journal of Experimental Social Psychology, 38(6), 535-44.

[156] K. L. Dugosh, P. B. Paulus, E. J. Roland and H.-C. Yang (2000). "Cognitive

Stimulation in Brainstorming. "Journal of Experimental Social Psychology, 79(5),

722-35.

[157] B. A. Nelson, J. O. Wilson, J. Yen and D. Rosen (2008).

[158] J. Aboudi (1999). "Effective Behavior and Dynamic Response Modeling of

Electro-Rheological and Magneto-Rheological Fluid Composites. "Smart

Materials and Structures, 8, 106-15.

[159] Y. K. Kang, J. Kim and S.-B. Choi (2001). "Passive and Active Damping

Characteristics of Smart Electro-Rheological Composite Beams. "Smart Materials

and Structures, 10, 724-9.

[160] K.-D. Cho, I. Lee and J.-H. Han (2005). "Dynamic Characteristics of Er Fluid-

Filled Composite Plate Using Multielectrode Configuration. "Journal of

Intelligent Material Systems and Structures, 16, 411-9.

[161] H. J. Choi, S. J. Park, S. T. Kim and M. S. Jhon (2005). "Electrorheological

Application of Polyaniline/Multi-Walled Carbon Nanotube Composites.

"Diamond & Related Materials, 14, 766-9.

[162] H. Pu and F. Jiang (2005). "Towards High Sedimentation Stability:

Magnetorheological Fluids Based on Cnt/Fe3o4 Nanocomposites.

"Nanotechnology, 16, 1486-9.

[163] R. Wirtz, T. Zhao and Y. Jiang (2004). "Thermal and Mechanical Characterics of

a Multi-Functional Thermal Energy Storage Structure." IEEE: 2004 International

Society Conference on Thermal Phenomena.549-56.

[164] K. Pielichowski and K. Flejtuch (2005). "Recent Developments in Polymeric

Phase Change Materials for Energy Storage: Poly(Ethylene Oxide)/Stearic Acid

Blends. "Polymers and Advanced Technologies, 16, 127-32.

367

[165] M. Abdulrahim and R. Lind (2006). "Using Avian Morphology to Enhance

Aircraft Maneuverability." AIAA Atmospheric Flight Mechanics Conference,

Keystone, CO, August 21-24. AIAA, Paper No.AIAA 2006-6643

[166] J. Bowman, M. B. Sanders and D. T. Weisshar (2002). "Evaluating the Impact of

Morphing Technologies on Aircraft Performance." 43rd

AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials

Conference, Denver, CO, April 22-25. AIAA, Paper No.AIAA 2002-1631

[167] U. M. L. Norberg (2002). "Structure, Form, and Function of Flight in Engineering

and the Living World. "Journal of Morphology, 252, 52-81.

[168] A. C. Carruthers, G. K. Taylor, S. M. Walker and A. L. R. Thomas (2007). "Use

and Function of a Leading Edge Flap on the Wings of Eagles." 45th AIAA

Aerospace Sciences Meeting and Exhibit, Reno, Nevada, January 8-11. AIAA,

Paper No.AIAA 2007-43

[169] A. M. Millbrooke (2006). Aviation History. Englewood, CO: Jeppensen

Sanderson.

[170] E. T. Raymond and C. C. Chenoweth (1993). Aircraft Flight Control Actuation

System Design. Warrendale, PA: Society of Automotive Engineers.

[171] J. John D. Anderson (1997). A History of Aerodynamics and Its Impact on Flying

Machines. Cambridge, UK: Cambridge University Press.

[172] Plane Wing by Piotr Jaworski Available from:

commons.wikimedia.org/wiki/Image:PlaneWing.png

[173] A. K. Jha and J. N. Kudva (2004). "Morphing Aircraft Concepts, Classifications,

and Challenges." Smart Structures and Materials 2004: industrial and

Commercial Applications of Smart Structures and Technologies, Bellingham, WA

(E. H. Anderson, Ed.). SPIE

[174] Flexsys, Inc. www.flxsys.com. Accessed February 2, 2008

[175] Cheffers Uk. http://www.cheffers.co.uk. Accessed April 6, 2008

[176] J. C. Jennette, R. H. Hepinstall, J. L. Olson, M. M. Schwartz and F. G. Silva

(2006). Hepinstall's Pathology of the Kidney (Sixth Edition) (Sixth ed.). Wolters

Kluwer Health.

368

[177] Davita, Inc. http://www.davita.com/dialysis. Accessed May 27, 2008

[178] P. D. L. G. Forni and M. D. P. J. Hilton (1997). "Continuous Hemofiltration in the

Treatment of Acute Renal Failure. "The New England Journal of Medicing,

336(18), 1303-9.

[179] Asahi-Kasei, Inc. http://www.asahi-

kasei.co.jp/medical/en/apheresis/therapies/crrt.html. Accessed May 27, 2008

[180] F. Maduell (2005). "Hemodiafiltration. "Hemodialysis International, 9, 47-55.

[181] R. A. Ward, B. Schmidt, J. Hullin, G. F. Hillerbrand and W. Samtleben (2000).

"A Comparison of on-Line Hemodiafiltration and High-Flux Hemodialysis: A

Prospective Clinical Study. "Journal of the American Society of Nephrology, 11,

2344-50.

[182] P. Ahrenholz, R. E. Winkler, W. Ramlow, M. Tiess and W. Muller (1997). "On-

Line Hemodiafiltration with Pre- and Postdilution: A Comparison of Efficacy.

"International Journal of Artificial Organs, 20(2), 81-90.

[183] P. B. Kerr, A. Argiles, J. L. Flavier, B. Canaud and C. M. Mion (1992).

"Comparison of Hemodialysis and Hemodiafiltration: A Long-Term Longitudinal

Study. "Kidney International, 41(4), 1035-40.

[184] W. Lornoy, Y. Becaus, J. M. Billiouw, L. Sierens and P. v. Malderen (1998).

"Remarkable Removal of Beta-2-Microglobin by on-Line Hemodiafiltration.

"american Journal of Nephrology, 18(2), 105-8.

[185] A. K. Cheung, M. V. Rocco, G. Yan, J. K. Leypoldt, N. W. Levin, T. Greene, L.

Agodoa, J. Bailey, G. J. Beck, W. Clark, A. S. Levey, D. B. Ornt, G. Schulman,

S. Schwab, B. Teehan, G. Eknoyan and H. S. Group (2006). "Serum {Beta}-2

Microglobulin Levels Predict Mortality in Dialysis Patients: Results of the Hemo

Study. " Journal of the American Society of Nephrology, 17, 546-55.

[186] J. J. B. Petrie, T. G. Ng and C. M. Hawley (2008). "Review Article: Is It Time to

Embrace Haemodiafiltration for Centre-Based Haemodialysis. "Nephrology, 13,

269-77.

[187] L. M. Dember and B. L. Jaber (2006). "Dialysis-Related Amyloidosis: Late

Finding or Hidden Epidemic? "Seminars in Dialysis(19), 105-9.

369

[188] B. Canaud, J. L. Bragg-Gresham, M. R. Marshall, S. Desmeules, B. W. Gillespie,

T. Depner, P. Klassen and F. K. Port (2006). "Mortality Risk for Patients

Receiving Hemodiafiltration Versus Hemodialysis: European Results from

Dopps. "Kidney International, 69(2087-2093).

[189] T. Jirka, S. Cesare, D. Benedetto, M. Perera Chang, P. Ponce, N. Richards, C.

Tetta, L. Vaslaky, B. Canaud, J. L. Bragg- Gresham, M. R. Marshall, S.

Desmeules, B. W. Gillespie, T. Depner, P. Klassen and F. K. Port (2006).

"Mortality Risk for Patients Receiving Hemodiafiltration Versus Haemodialysis.

"Kidney International, 70, 1524.

[190] K. Pedersen, J. Emblemsvag, J. K. Allen and F. Mistree (2000). "Validating

Design Methods and Reserch: The Validation Square." ASME Design Theory and

Methodology, Baltimore, MD (ASME, Ed.). ASME

[191] Stella: Systems Thinking for Education and Research.

http://www.iseesystems.com/softwares/Education/StellaSoftware.aspx. Accessed

September 30, 2008

[192] An Overview of Sysml, the Systems Modeling Language.

www.nohau.se/images/nec/A3-Graham-Bleakley-

NEC2006AnOverviewofSysMLGBI-Logix.pdf. Accessed September 30, 2008

[193] Qpme. http://sdq.ipd.uka.de/people/samuel_kounev/projects/QPME. Accessed

October 25, 2008

[194] Electrorheological Fluids.

http://www.juliantrubin.com/encyclopedia/electricity/magnetorheological_fluid.ht

ml. Accessed

[195] Venus Fly Trap. http://bottleworld.net/?m=200609. Accessed January 3, 2008

[196] Human Muscle. http://academic.wsc.edu/faculty/jatodd1/351/ch6outline.html.

Accessed January 3, 2008

[197] Shape Memory Polymers. http://everythang.wordpress.com/2006/10/23/self-

repairing-car-parts-the-fender-un-bender/. Accessed January 3, 2008

