Sunflower Power: Phytoextraction in Action

Liam Beal
Worcester Polytechnic Institute

Colette Pellegrini
Worcester Polytechnic Institute

Ashley White
Worcester Polytechnic Institute

Chelsea White
Worcester Polytechnic Institute

Follow this and additional works at: http://digitalcommons.wpi.edu/gps-posters

Recommended Citation

http://digitalcommons.wpi.edu/gps-posters/216
Problem
Heavy metal is polluting soil in the Pearl River Delta, South China
• Food is still grown
• Significant health risks

Causes
Rapid development of agriculture, industrial, and traffic practices

Solution: Sustainable Phytoremediation
Using sunflowers to remove heavy metal from soil

- Sunflower seeds donated to farmers in PRD
- Farmers plant sunflower seeds alongside their existing crops
- Sunflowers pull nutrients from soil through their roots
- Plant waste is sold to recycling companies as biofuels
- Sunflowers harvested after about 100 days

Conclusions/Recommendations
• Goal: concentrations of the heavy metals decrease by 50% after 10 years
• Expand use of phytoextraction crops, such as the sunflower, to other affected locations

Costs
- Takes 5-10 years
- Labor cost ↑
- Seed transportation
- Sunflower seeds: ≤ $30 per acre

Benefits
- Yield ↑
- Sunflowers can be recycled as biofuel
- ALL polluting metals are remediated
- Aesthetically pleasing
- Economically feasible
- Productivity ↑

Soil Testing
- Cost:
 • Inexpensive: $12-$100
 • Cost of test covered by selling sunflowers for biofuel
- Test:
 • Soil tested for heavy metals biannually at professional labs
- Results:
 • Compile data to evaluate solution

Results
- Compile data to evaluate solution

Conclusions/Recommendations
- Goal: concentrations of the heavy metals decrease by 50% after 10 years
- Expand use of phytoextraction crops, such as the sunflower, to other affected locations

• 12% of worldwide soil is polluted

Acknowledgments
Our team would like to thank WPI Professor José Argüello, WPI Professor Robert Dempski, and Research Librarian Laura Hanlan

References

Contaminated Vegetables Consumed in PRD
- Vegetables Consumed in Hong Kong: Grown in PRD: 33%
- Contaminated Farmland/Vegetable Fields in PRD: 40%

Heavy Metals: Concentrations in PRD

<table>
<thead>
<tr>
<th>Heavy Metal</th>
<th>Current Concentration (mg/kg)*</th>
<th>Non-Polluted Concentration (mg/kg)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmium</td>
<td>1.4 to 1.8</td>
<td>< 0.3</td>
</tr>
<tr>
<td>Copper</td>
<td>11.0 to 41.0</td>
<td>< 25</td>
</tr>
<tr>
<td>Lead</td>
<td>23.0 to 83.0</td>
<td>< 25</td>
</tr>
<tr>
<td>Zinc</td>
<td>36.0 to 149.0</td>
<td>< 40</td>
</tr>
<tr>
<td>Mercury</td>
<td>0.29 ± 0.26</td>
<td>< 0.42</td>
</tr>
<tr>
<td>Chromium</td>
<td>46.7 ± 27.7</td>
<td>< 25</td>
</tr>
<tr>
<td>Arsenic</td>
<td>20.0 ± 20.8</td>
<td>< 20</td>
</tr>
</tbody>
</table>

*Taken from (Hu, 2013), (Chang, 2013), (Bai, 2011)