Návrh pohonu sklepního výtahu

The Project of Basement Elevator

Bakalářská práce

Studijní program: B2342 TEORETICKÝ ZÁKLAD STROJNÍHO INŽENÝRSTVÍ
Studijní obor: 2301R000 Studijní program je bezoborový

Radek Pěnička

Praha 2016
Prohlášení

V Praze 27.06.2016

..........................

Radek Pěnička
Poděkování

Anotační list

Jméno autora: Radek Pěnička

Název BP: Návrh pohonu sklepního výtahu
Anglický název: The Project of Basement Elevator

Rok: 2016
Studijní program: B2342 Teoretický základ strojního inženýrství
Obor studia: 2301ROOO Studijní program je bezoborový
Ústav: Ústav konstruování a částí strojů
Konzultant: Ing. Jaroslav Křička, Ph.D.

Bibliografické údaje: počet stran 68
počet obrázků 32
počet tabulek 16
počet příloh 8

Klíčová slova: sklepní výtah, pohon, hnací řetěz, převodovka, výtahová vodítka
Keywords: basement elevator, drive, drive chain, gearbox, elevator guides

Anotace:
Cílem této bakalářské práce je navrhnout pohon sklepního výtahu pro dopravu zboží ze suterénu do úrovně terénu. Výtah bude instalován uvnitř budovy (průjezdu). Pro získání přehledu je třeba provést rešerši v oblasti sklepních výtahů.

Abstract:
The aim of this bachelor’s thesis is to design a basement elevator to transport goods from the basement to the ground level. The elevator will be installed inside the building (passage). Part of the thesis is focused on research in the basement elevators.
Obsah

<table>
<thead>
<tr>
<th>Obsah</th>
<th>Stránka</th>
</tr>
</thead>
<tbody>
<tr>
<td>Úvod</td>
<td>7</td>
</tr>
<tr>
<td>1. Základní informace</td>
<td>8</td>
</tr>
<tr>
<td>1.1 Charakteristika výtahů</td>
<td>8</td>
</tr>
<tr>
<td>1.2 Rozdělení výtahů</td>
<td>8</td>
</tr>
<tr>
<td>1.2.1 Rozdělení podle druhu pohonu</td>
<td>8</td>
</tr>
<tr>
<td>1.2.2 Rozdělení podle druhu přepravy</td>
<td>10</td>
</tr>
<tr>
<td>1.2.3 Rozdělení podle použitého nosného orgánu</td>
<td>10</td>
</tr>
<tr>
<td>1.3 Vodítka a vedení klece</td>
<td>11</td>
</tr>
<tr>
<td>1.3.1 Vodítka</td>
<td>11</td>
</tr>
<tr>
<td>1.3.2 Valivé vedení</td>
<td>12</td>
</tr>
<tr>
<td>2. Sklepní (stolový) výtah</td>
<td>13</td>
</tr>
<tr>
<td>2.1 Druhy sklepních (stolových) výtahů</td>
<td>13</td>
</tr>
<tr>
<td>2.2 Nosné orgány sklepního (stolového) výtahu</td>
<td>15</td>
</tr>
<tr>
<td>3. Sestava pohonu sklepního (stolového) výtahu</td>
<td>16</td>
</tr>
<tr>
<td>3.1 Rám</td>
<td>16</td>
</tr>
<tr>
<td>3.2 Elektromotor</td>
<td>16</td>
</tr>
<tr>
<td>3.2.1 Výpočet kroutících momentů, otáček a výkonů</td>
<td>17</td>
</tr>
<tr>
<td>3.3 Spojka</td>
<td>18</td>
</tr>
<tr>
<td>3.4 Řetěz</td>
<td>19</td>
</tr>
<tr>
<td>4. Čelní dvoustupňová převodovka</td>
<td>20</td>
</tr>
<tr>
<td>4.1 Zvolené parametry čelní dvoustupňové převodovky</td>
<td>20</td>
</tr>
<tr>
<td>4.1.1 Modul a počet zubů čelní dvoustupňové převodovky</td>
<td>20</td>
</tr>
<tr>
<td>4.1.2 Parametry řetězových kol:</td>
<td>21</td>
</tr>
<tr>
<td>4.1.3 Řešení silových poměrů v celé převodovce:</td>
<td>22</td>
</tr>
<tr>
<td>4.2 Kontrolní výpočty</td>
<td>33</td>
</tr>
<tr>
<td>4.2.1 Kontrola ozubení</td>
<td>33</td>
</tr>
<tr>
<td>4.2.2 Kontrola řetězového převodu</td>
<td>35</td>
</tr>
<tr>
<td>4.2.3 Kontrola kuličkových ložisek</td>
<td>36</td>
</tr>
<tr>
<td>4.2.4 Kontrola statické bezpečnosti hřídelů</td>
<td>39</td>
</tr>
<tr>
<td>4.2.5 Kontrola per</td>
<td>43</td>
</tr>
</tbody>
</table>
4.2.6 Kontrola průhybu výstupního hřídele .. 44
4.2.7 Dynamická bezpečnost výstupního hřídele... 46

5. Šneková převodovka ... 50
5.1 Zvolené parametry šnekové převodovky ... 50
 5.1.1 Volba počtu zubů šneku a šnekového kola .. 50
 5.1.2 Volba materiálu šneku a šnekového kola ... 50
 5.1.3 Modul ozubení a rozměry šneku a šnekového kola: 51
 5.1.4 Krouticí momenty na vstupním a výstupním hřídeli......................... 52
 5.1.5 Silové poměry na šnekovém soukolí .. 52
5.2 Kontrolní výpočty ... 53
 5.2.1 Pevnostní výpočet ozubení šnekového soukolí 53
 5.2.2 Kontrola ložisek šneku a šnekového kola ... 54
 5.2.3 Kontrola per .. 56
 5.2.4 Kontrola uchycení věnce .. 57
 5.2.5 Kontrola statické bezpečnosti .. 58

6. Závěr ... 63
Seznam obrázků ... 64
Seznam tabulek ... 65
Seznam příloh ... 66
Seznam použitých zkratek a symbolů ... 67
Použitá literatura ... 68
Úvod

Cílem této bakalářské práce je navrhnout sklepní (stolový) nákladní výtah pro dopravu zboží ze suterénu do úrovně terénu (chodníku), a to uvnitř budovy, konkrétně v průjezdu. Bude vypracován koncepční návrh konstrukce sklepního výtahu a vytvořena celková dispoziční sestava. Detailně bude vyřešen pohon a části pohonu výtahu, navržen elektromotor, převodovka, spojky, sestava pohonu. Návrh pohonu sklepního výtahu bude doplněn kontrolními výpočty.

Základní technické parametry navrhovaného sklepního výtahu

- nosnost: \(G = 2 \, 000 \, \text{kg} \)
- nominální (jmenovitá) rychlost: \(v_z = 0,2 \, \text{m/s} \)
1. Základní informace

1.1 Charakteristika výtahů

Výtah je strojní zařízení, které slouží k vertikální, popř. i šikmé, dopravě osob a břemen mezi dvěma nebo více místy různých výškových úrovní. Osoby nebo břemen spočívají při dopravě na plošině, která je nosnou částí kabiny nebo klece. Klec je vedena pevnými vodítky, která jsou zakotvena v šachtě výtahu a která umožňují přímočarý posuv klece nahoru a dolů, příp. ve směru odkloněném od svislého směru o úhel max. 15°. Klec je zavěšena na jednom nebo více nosných orgánech (lanech či kloubových řetězech), které ji spojují s výtahovým strojem, tj. motorickým zdvihacím ústrojím výtahu sloužícím ke zvedání a spouštění klece. [1] [2] [3]

Práce výtahu jako zdvihacího zařízení je buď přerušovaná, nebo nepřetržitá. Většinou je však přerušovaná, tj. nastupování a vystupování osob, resp. nakládání a vykládání břemen, probíhá při stojící kabině nebo kleci. Pokud se jedná o výtahy s nepřetržitým pracovním cyklem, jedná se o výtahy osobní oběžné, tzv. páternostery, kdy se nástup a výstup osob děje za jízdy výtahu při plynulém pohybu výtahu. [1] [3]

1.2 Rozdělení výtahů

Výtahy lze dělit podle různých kritérií, především se nabízí dělení podle druhu pohonu, na kterém závisí koncepce zařízení a konstrukce jeho komponentů, také lze výtahy dělit podle druhu přepravy či podle použitého nosného orgánu.

1.2.1 Rozdělení podle druhu pohonu

- elektrické výtahy (s trakčním nebo třecím pohonem, bubnovým pohonem, řetězovým pohonem)
- hydraulické výtahy (s přímým, nepřímým pístem)
- pneumatické výtahy

1.2.1.1 Elektrické výtahy s trakčním pohonem

Trakční neboli třecí pohon je pohon určený pro pohon lanových výtahů s protizávažím. Přenos hnací obvodové síly z hnacího lanového kotouče na lana je uskutečněn výhradně třením. Trakční pohon může být převodový (asynchronní) nebo
Návrh pohonu sklepního výtahu

1.2.1.2 Elektrické výtahy s bubnovým pohonem

Výhodou bubnového pohonu je maximální možné využití prostoru výtahové šachty pro kabinu. Na buben, kterým je osazen výtahový stroj, jsou navíjena nosná lana a není tak potřeba použít vyvažovací zařízení, která jinak zmenšují prostor ve výtahové šachtě. Nosná lana je na buben navijena výhradně jen v jedné vrstvě.

Nevýhodou tohoto pohonu je však omezení zdvihu výtahu. Velikost bubnu s ohledem na skutečnost, že nosná lana mohou být na buben navijena pouze v jedné vrstvě, roste úměrně se zdvihem, tj. není výhodné tento typ pohonu využívat při velkých zdvihových výškách. [2][3]

1.2.1.3 Elektrické výtahy s řetězovým pohonem

Řetězový pohon je uskutečněn záběrem zubů hnací kladky s čepy řetězu. Počet zubů hnacího řetězu by měl být co největší, aby dynamická síla v řetězu, rezultující ze změny okamžité rychlosti řetězu při přechodu přes řetězku, byla co nejmenší, a aby co největší počet zubů byl v záběru. Tento požadavek nelze vždy zcela splnit, neboť s rostoucím počtem zubů rychle vzrůstá průměr řetězky a převod. Počet zubů hnacího řetězu by však v žádném případě neměl klesnout pod minimální hodnotu 7. Řetězový pohon je využíván např. u oběžných osobních výtahů, tzv. páternosterů, sloužících k dopravě osob převážně v administrativních budovách s vysokou hustotou pohybu osob. [2][3]

1.2.1.4 Hydraulické výtahy

Hydraulické výtahy jsou vhodné do budov s nižším počtem podlaží (cca s dvěma až šesti stanicemi) a s výškou zdvihu cca do 20 m, resp. 25 m. U hydraulických výtahů s přímým druhem pohonu působí píst bezprostředně na rám
výtahu, s nepřímým druhem pohonu pístů působí na rám výtahu pomocí lan a kladky. Přímo poháněné hydraulické výtahy jsou převážně instalovány do menších zdvihacích výšek, než je tomu u hydraulických výtahů s nepřímým pohonem. [2]

1.2.2 Rozdělení podle druhu přepravy
- osobní výtahy
 - výtahy určené pro dopravu osob nebo osob a nákladů
 - výtahy určené pro dopravu osob s omezenou schopností pohybu a orientace
- nákladní výtahy
 - s povolenou přepravou osob
 - se zakázanou přepravou osob

1.2.2.1 Osobní výtahy
Jsou určeny pro dopravu osob a jejich zavazadel, jsou používány především ve vícepatrových budovách, také slouží k dopravě osob a zavazadel do podzemních staveb (např. metra). Speciálním typem osobního výtahu, resp. výtahem řazeným obecně mezi zdvihací zařízení, je oběžný výtah skládající se z řetězu kabin, tzv. páternoster. [3][6]

1.2.2.2 Nákladní výtahy
Jsou určeny pro svislou přepravu nákladů a případný doprovod. Bývají větší než osobní výtahy a jsou konstruovány pro těžší náklady. Používají se však i malé nákladní výtahy do hmotnosti 100 kg, a to nejčastěji v jídelnách a restauracích. Mezi nákladní výtahy se také řadí sklepní (stolové) výtahy pro dopravu zboží ze suterénu (sklepa) do úrovně terénu (chodníku), tj. výtahy obsluhující 1 až dvě patra.[3][6]

1.2.3 Rozdělení podle použitého nosného orgánu
- lanové výtahy
- řetězové výtahy

1.2.3.1 Lanové výtahy
K zavěšení klece výtahu a vyvažovacího závaží výtahu slouží ocelová lana. Používají se šestipramenná ocelová lana. Výtahová lana nesmějí být nastavována.
V případě výtahů osobních nebo nákladních se doprovodem osob musí být klec výtahu zavěšena nejméně na dvou lanech. Výtahy s nosným lanem či lany se používají pro větší dopravní zdvih a rychlost.

1.2.3.2 Řetězové výtahy

K zavěšení klice výtahu a vyvažovacího závaží výtahu slouží kloubové řetězy. Výtahy s pohonem pomocí kloubového řetězu se využívají pro malé zdvihy a rychlosti. V případě sklepních (stolových) výtahů se jako nosný orgán používají tzv. Gallovy řetězy, které jsou složeny ze střídavě spojených vnějších a vnitřních článků tvořených vždy jedním čepem a příslušným počtem destiček. Gallovy řetězy je možno používat u výtahů s dopravní rychlostí maximálně do 0,3 – 0,5 m/s. Jejich výhodou je jejich značná ohebnost (mohou být použity i pro malý počet zubů hnací řetězové klady) a odolnost proti nárazům, nesnesou však zatížení v příčném směru, které by vedlo k namáhání tohoto hnacího řetězu ohybem. Nevýhodou Gallových řetězů je jejich velká hmotnost a prodlužování vlivem jejich opotřebení.

1.3 Vodítka a vedení klice

K vedení výtahové klice včetně vyvažovacích závaží slouží ocelová vodítka, která jsou kotvená ve výtahové šachtě.

1.3.1 Vodítka

Vodítka mají tři funkce:

- Vedení výtahové klice, resp. vyvažovacího závaží, při svislém pohybu ve výtahové šachtě a omezení pohybu ve vodorovném směru na minimum, tj. zabránit kývání výtahové klice při pohybu, resp. kývání vyvažovacího závaží.
- Zabránit naklonění výtahové klice (natočení ve svislé rovině) při excentrické poloze břemena.
- Umožnit zastavení klice zachycovači.

mohou být po celé délce vyztužena válcovanými profily, např. profilem U. Spojení vodítek je rozebíratelné a může být provedeno spojem tvarovým, který je zpravidla proveden stejným profilem jako má vodítko, nebo spojem plochým, který je tvořen stykovou deskou se vzájemnou centráží spojovaných částí vodítek. [4]

1.3.2 Valivé vedení

Valivým vedením, které je používáno zejména u výtahů s vyššími rychlostmi, se dosahuje dokonalého vedení klece na vodítkách při tichém chodu. Valivé vedení představuje podstatně menší odpor proti pohybu vlivem tření na vodítkách. Při valivém vedení nejsou vodítká mazána, což znamená zvýšení bezpečnosti provozu výtahu, neboť nedochází k akumulaci hořlavého mazacího media v dolní části šachty. Valivý vodič (schéma je uvedeno na obr. 1.) je tvořen třemi vodícími kladkami, které jsou uložené na valivých ložiskách. Jedna vodící kladka dosedá na vodící kolejnici čelně, zbývající dvě vodící kladky bočně. Vodící kladky jsou téměř vždy odpruženy a jsou tudíž v trvalém styku s vodítkem. Obruče vodicích kladek jsou z gumy nebo plastů (polyuretan) a tlumí vibrace a izolují zvukově klec od vodítek. [2][4]

![Obr. 1: Schéma valivého vodiče](image-url)
2. Sklepní (stolový) výtah

Sklepní (stolový či také chodníkový) nákladní výtah slouží k vertikální dopravě nákladů mezi dvěma či více stanicemi, z nichž jedna je v úrovni venkovního terénu – např. chodníku, a ostatní stanice v podzemním podlaží budov. Jedná se o nákladní výtahy se zakázanou dopravou osob. Práce sklepního (stolového) výtahu jako zdvihacího zařízení je přerušovaná, tj. nakládání a vykládání břemen probíhá při stojící kleci. Sklepní (stolový) výtahy se stavějí zpravidla pro nosnosti 350 kg, 500 kg a 1 000 kg, zdvihy v rozmezí 2,5 m až 8 m a velmi malé rychlosti (do 0,25 m/s). Vzhledem k tomu, že výtahová šachta ústí v úrovni venkovního terénu, zpravidla chodníku, musí mít sklepní (stolový) výtah víko nebo poklop, který bude možné bezpečně přecházet, či přejíždět. [3][5][6][7]

![Obr. 2.: Sklepní (stolový) výtah](image)

2.1 Druhy sklepních (stolových) výtahů

Podle způsobu výjezdu výtahu na úroveň venkovního terénu lze sklepní (stolové) výtahy rozdělit na dva druhy. Jednak sklepní (stolový) výtahy otevírající při výjezdu na úroveň terénu poklop zakrývající výtahovou šachtu obloukem vytvořeným na ocelové konstrukci tohoto výtahu (viz obr. 3.). V takovém případě výtah nemusí mít jako ostatní výtahy plný strop. Tento typ výtahu je vhodný pro menší zdvihy, pro větší zdvihy je však strop doporučován. Za druhý typ sklepního (stolového) výtahu
lze označit výtah s plným stropem, kdy při výjezdu tohoto výtahu na úroveň venkovního terénu vyjíždí celá klec výtahu s plným stropem. Strop výtahu v tomto případě slouží současně jako víko zakrývající výtahovou šachtu, po kterém se běžně přechází a přejezdí (viz obr. 4. a 5.). Tento druhý typ sklepního (stolového) výtahu je vhodný do průjezdů, kde se předpokládá i větší zatížení víka výtahu např. v důsledku pohybu automobilů průjezdem. [3][7]

obr. 3.: Sklepní (stolový) výtah - bez plného stropu

obr. 4.: Sklepní (stolový) výtah – s plným stropem
2.2 Nosné orgány sklepního (stolového) výtahu

3. Sestava pohonu sklepního (stolového) výtahu

Na obr. 7. je zobrazena sestava pohonu sklepního (stolového) výtahu s čelní dvoustupňovou převodovkou se šikmými zuby. Sestava se nachází na dně prohlubně výtahové šachty. Převodovka je na vstupním hřídeli spojena pomocí pružné spojky k elektromotoru. Motor spolu s převodovkou jsou přišroubovány ke svařovanému rámu.

Jako druhé řešení pohonu sklepního výtahu je použita šneková převodovka (viz obr. 8.), která je bez přídavných převodů.

3.1 Rám

Rám je svařen z válcovaných profilů U Din 1026. Materiál rámu je z materiálu 11 373.

3.2 Elektromotor

Elektromotor volím trojfázový asynchronní. Pro návrh tohoto elektromotoru si nejprve spočítám parametry, jako jsou otáčky a výkon.

Otáčky na bubnu:
\[n_b = \frac{60 \cdot v_b}{\pi \cdot D_b} = \frac{60 \cdot 0.2}{\pi \cdot 0.2} = 19.099 \text{ min}^{-1} \]

Celková účinnost převodu:

\[\eta_C = \eta_1 \cdot \eta_3 \cdot \eta_b \cdot \eta_f = 0.98 \cdot 0.98 \cdot 0.95 \cdot 0.94 = 0.858 \]

Předběžná hodnota výkonu motoru:

\[P_m^* = \frac{P_c}{\eta_c} = \frac{4}{0.858} = 4.66 \text{ kW} \]

Nejблиžší řada výkonů motorů je \(P_M = 5.5 \text{ kW} \). Volím Elektromotor SIEMENS 1LE1002-1CB0. [10]

tab. 1.: Hodnoty elektromotoru

<table>
<thead>
<tr>
<th>výkon (kW)</th>
<th>5,50</th>
</tr>
</thead>
<tbody>
<tr>
<td>otáčky (ot/min)</td>
<td>1 450</td>
</tr>
<tr>
<td>účinnost</td>
<td>IE1</td>
</tr>
<tr>
<td>počet pólů (pól)</td>
<td>4</td>
</tr>
<tr>
<td>kostra motoru</td>
<td>hliník</td>
</tr>
<tr>
<td>krytí</td>
<td>IP55</td>
</tr>
<tr>
<td>velikost motoru</td>
<td>132S</td>
</tr>
<tr>
<td>třída izolace</td>
<td>F/B</td>
</tr>
<tr>
<td>základní napětí (V)</td>
<td>690/400</td>
</tr>
<tr>
<td>jmenovitý vstupní proud (A)</td>
<td>11,2</td>
</tr>
<tr>
<td>krouticí moment (Nm)</td>
<td>36</td>
</tr>
<tr>
<td>hmotnost (kg)</td>
<td>38</td>
</tr>
<tr>
<td>ATEX certifikace</td>
<td>NE</td>
</tr>
<tr>
<td>druh zatížení</td>
<td>S1</td>
</tr>
<tr>
<td>ložiska DE/NDE</td>
<td>6208 2ZC3</td>
</tr>
</tbody>
</table>

3.2.1 Výpočet kroučicích momentů, otáček a výkonů:

Vstupní hřídel:

\[M_{k_1} = M_{k_m} = 36,221 \text{Nm} \]
\[n_1 = 1450 \text{s}^{-1} \]
\[P_1 = 5500 \text{W} \]

Předlohový hřídel:

\[M_{k_2} = 192,431 \text{Nm} \]
\[n_2 = 267,476 \text{s}^{-1} \]
\[P_2 = 5390 \text{W} \]
Výstupní hřídel:

\[M_{k_3} = 869,576 \text{Nm} \]
\[n_3 = 58,007 \text{s}^{-1} \]
\[P_3 = 5282,2 \text{W} \]

3.3 Spojka

Kroucí moment motoru:

\[M_{k_m} = \frac{P_m}{\omega} = \frac{P_m}{2 \cdot \pi \cdot n_m} = \frac{5500}{2 \cdot \pi \cdot \frac{1450}{60}} = 36,221 \text{Nm} \]

Výpočtový moment spojky:

\[k = 1,7 \ldots \text{součinitel pro spojku na vstupu} \]
\[M_{kv} = k \cdot M_{k_m} = 1,7 \cdot 36,221 = 61,577 \text{Nm} \]

Průměr hřídele elektromotoru: \(d_m = 38 \text{ mm} \)

Průměr vstupního hřídele převodovky: \(d_1 = 25 \text{ mm} \)

Zvolena pružná hřídelová spojka s brzdným bubnem ROTEX 42 BTAN. [11]

obr. 9.: Hřídelová spojka s brzdným s brzdným bubnem ROTEX 42 BTAN
charakteristické vlastnosti spojky:
max \(d = 42 \text{ mm} \)
max \(d_1 = 42 \text{ mm} \)
\(T_{\text{KN}} = 265 \text{ Nm} \)
\(T_{\text{Kmax}} = 530 \text{ Nm} \)
moment setrvačnosti: \(J = 0,043 \text{ kg.m}^2 \)

3.4 Řetěz
Volba válečkového řetězu se uskutečňuje na základě otáček malého kola a velikosti přenášeného výkonu na velké kolo.

Výkon na výstupním hřídeli se přepočítá na tzv. diagramový výkon podle vztahu:
\[
P_D = \frac{P_1}{\chi \cdot \varphi \cdot \mu} = \frac{5,282}{0,9 \cdot 1 \cdot 1} = 5,869 \text{ kW}
\]

Pro otáčky \(n_3 = 58,007 \text{ s}^{-1} \) a pro výkon \(P_D = 5,869 \text{ kW} \) je zvolen řetěz 20B dvouřadý ČSN 02 3311.

Parametry řetězu:
\(P = 31,75 \text{ mm} \)
\(b_{1\text{min}} = 19,56 \text{ mm} \)
\(b_{4\text{max}} = 43,2 \text{ mm} \)
\(d_1 = 19,05 \text{ h}10 \)
\(d_2 = 10,19 \text{ h}9 \)
síla pro přetržení: \(F_{\text{Pt}} = 178 \text{ kN} \)

plocha kloubu \(S = 590 \text{ mm}^2 \)
hmotnost 1m délky: \(m = 7,21 \text{ kg} \)
4. Čelní dvoustupňová převodovka

4.1 Zvolené parametry čelní dvoustupňové převodovky

4.1.1 Modul a počet zubů čelní dvoustupňové převodovky

Zvolené hodnoty:

Normálový modul soukolí 12: \(m_n = 2 \)

Počet zubů pastorku 1: \(z_1 = 19 \)

Počet zubů kola 1: \(z_2 = 103 \)

Normálový modul soukolí 34: \(m_n = 3,5 \)

Počet zubů pastorku 2: \(z_3 = 18 \)

Počet zubů kola 2: \(z_4 = 83 \)

4.1.1.1 Silové poměry v ozubení:

Soukolí 12:

\[
F_{r12} = \frac{2 \cdot Mk_1}{dw_1} = \frac{2 \cdot 36221}{38,934} = 1860,640N
\]

\[
F_{u12} = F_{r12} \cdot tg\beta_w = 1860,640 \cdot tg11,974^\circ = 394,597N
\]

\[
F_{r12} = F_{r12} \cdot \frac{tg\alpha_{mw}}{cos\beta_w} = 1860,640 \cdot \frac{tg20,332^\circ}{cos11,974^\circ} = 704,775N
\]

Soukolí 34:

\[
F_{r34} = \frac{2 \cdot Mk_2}{dw_3} = \frac{2 \cdot 192431}{64,158} = 5998,631N
\]

\[
F_{u34} = F_{r34} \cdot tg\beta_w = 5998,631 \cdot tg9,971^\circ = 1054,582N
\]

\[
F_{r34} = F_{r34} \cdot \frac{tg\alpha_{mw}}{cos\beta_w} = 5998,631 \cdot \frac{tg20,332^\circ}{cos11,974^\circ} = 2270,236N
\]
4.1.2 Parametry řetězových kol:
počet zubů na 1. řetězovém kole: \(z_1 = 23 \)
počet zubů na 2. řetězovém kole: \(z_2 = 69 \)
roztečný průměr 1. řetězového kola: \(d_{r1} = 233,170 \text{ mm} \)
roztečný průměr 2. řetězového kola: \(d_{r2} = 697,578 \text{ mm} \)
počet článků = 87
osová vzdálenost kol: \(a_M = 605,705 \text{ mm} \)

4.1.2.1 Silové poměry u řetězového převodu:
\[
\sin \delta = \frac{d_{r2} - d_{r1}}{2 \cdot a_M}
\]
\[
\delta = 22,542^\circ
\]

Obvodová rychlost řetězu na kole 1 \(v_1 \) musí být menší než \(v_D \).
\[
v_1 = \frac{\pi \cdot d_{r1} \cdot n_3}{60} = \frac{\pi \cdot 0,23317 \cdot 58,006}{60} = 0,708 \text{m} \cdot \text{s}^{-1}
\]
\[
v_D = 7,3 \sqrt{\frac{z_1}{P}} = 7,3 \cdot \sqrt{\frac{23}{31,75}} = 6,213 \text{m} \cdot \text{s}^{-1}
\]
\(v_1 \) je menší než \(v_D \) a tudíž vyhovuje

Přenášená tečná síla v řetězu:
\[
F_{Tr} = \frac{2 \cdot M_{k3}}{d_{r1}} = \frac{2 \cdot 869,576}{233,170 \cdot 10^{-3}} = 7458,722 \text{m} \cdot \text{s}^{-1}
\]
Tahová složka odstředivé sily:
\[
F_{oc} = m \cdot v_1^2 = 7,21 \cdot 0,708^2 = 3,616 \text{N}
\]
Tahová síla od třhy řetězu:
\[
F_{gr} = K_h \cdot m \cdot g \cdot a_M = 6,25 \cdot 7,21 \cdot 9,81 \cdot 0,606 = 267,760 \text{N}
\]
Celková tažná síla:

\[F_{rt} = F_{Te} + F_{oc} + F_{gr} = 7458,722 + 3,616 + 267,760 = 7462,339N \]

Celková síla na uvolněné větvi řetězu:

\[F_{ru} = F_{oc} + F_{gr} = 3,616 + 267,760 = 271,376N \]

Výsledná síla zatěžující ložiska převodovky na výstupní hřídeli:

\[F_{Vr} = \sqrt{F_{rt}^2 + F_{ru}^2 + 2 \cdot F_{rt} \cdot F_{ru} \cdot \cos(\delta + \delta)} = 7656,360N \]

\[\sin \gamma = \frac{F_{rt} \cdot \sin \delta - F_{ru} \cdot \sin \delta}{F_{Vr}} \]

\[\gamma = 21,104^\circ \]

Složky výsledné síly:

\[F_{Vrx} = F_{Vr} \cdot \cos \gamma = 7142,845N \]

\[F_{Vry} = F_{Vr} \cdot \sin \gamma = 2756,741N \]

4.1.3 Řešení silových poměry v celé převodovce:

obr. 10.: Schéma uspořádání hřídelů a ložisek v převodovce
Vzdálenosti mezi ložisky a ozubenými koly:

tab. 2.: Vzdálenosti mezi ložisky a koly

<table>
<thead>
<tr>
<th>L</th>
<th>mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>49,5</td>
</tr>
<tr>
<td>L2</td>
<td>122,5</td>
</tr>
<tr>
<td>L3</td>
<td>53,5</td>
</tr>
<tr>
<td>L4</td>
<td>57</td>
</tr>
<tr>
<td>L5</td>
<td>69,5</td>
</tr>
<tr>
<td>L6</td>
<td>106,18</td>
</tr>
<tr>
<td>L7</td>
<td>113,5</td>
</tr>
<tr>
<td>L8</td>
<td>72,5</td>
</tr>
</tbody>
</table>

4.1.3.1 Vstupní hřídel:

1. směr otáčení (proti směru hodinových ručiček):

![Obr. 11.: Vstupní hřídel – otáčení proti směru hodinových ručiček](image)

Rovina x-z:

\[
\sum F_z : -A_z + \frac{d_{i1}}{2} + F_{R1} \cdot L_1 - B_x \cdot (L_1 + L_2) = 0
\]
\[
A_z = F_{A1} = 394,597 N
\]
\[
B_x = \frac{F_{A1} \cdot \frac{d_{i1}}{2} + F_{R1} \cdot L_1}{L_1 + L_2} = 247,489 N
\]
\[A_x = F_{R1} - B_x = 457,287 N \]

maximální ohybový moment pod pastorkem 1:

\[M_o = |B_x \cdot L_2| = 30,317 Nm \]

Rovina y-z:

\[\sum F_z : -A_z + F_{Al} = 0 \]
\[\sum F_y : A_y + B_y - F_{T1} = 0 \]
\[\sum M_A : F_{T1} \cdot L_1 - B_y \cdot (L_1 + L_2) = 0 \]

\[B_y = \frac{F_{T1} \cdot L_1}{L_1 + L_2} = 535,475 N \]
\[A_y = F_{T1} - B_y = 1325,165 N \]

maximální ohybový moment pod pastorkem 1:

\[M_o = |A_y \cdot L_1| = 65,596 Nm \]

Výsledná reakce v podpoře A:

\[F_{rA} = \sqrt{A_x^2 + A_y^2} = 1401,846 N \]
\[F_{aA} = 394,597 N \]

Výsledná reakce v podpoře B:

\[F_{rB} = \sqrt{B_x^2 + B_y^2} = 589,902 N \]
2. směr otáčení (po směru hodinových ručiček):

Rovina x-z:

\[
\sum F_z : A_z - F_{Al} = 0
\]
\[
\sum F_x : A_x + B_x - F_{R1} = 0
\]
\[
\sum M_x : -F_{Al} \cdot \frac{d_{el}}{2} + F_{R1} \cdot L_1 - B_x \cdot (L_1 + L_2) = 0
\]
\[
A_z = F_{Al} = 394,597 \text{N}
\]
\[
B_x = \frac{-F_{Al} \cdot \frac{d_{el}}{2} + F_{R1} \cdot L_1}{L_1 + L_2} = 158,167 \text{N}
\]
\[
A_x = F_{R1} - B_x = 546,609 \text{N}
\]

maximální ohybový moment pod pastorkem 1:

\[
M_o = |A_x \cdot L_1| = 27,057 \text{Nm}
\]

Rovina y-z:

\[
\sum F_z : A_z - F_{Al} = 0
\]
\[
\sum F_y : -A_y - B_y + F_{T1} = 0
\]
\[
\sum M_y : -F_{T1} \cdot L_1 + B_y \cdot (L_1 + L_2) = 0
\]
\[
B_y = \frac{F_{T1} \cdot L_1}{L_1 + L_2} = 535,475 \text{N}
\]
\[
A_y = F_{T1} - B_y = 1325,165 \text{N}
\]
maximální ohybový moment pod pastorkem 1:

\[M_o = |A_y \cdot L_1| = 65,596Nm \]

Výsledná reakce v podpoře A:

\[F_{rA} = \sqrt{A_x^2 + A_y^2} = 1433,472N \]

\[F_{nA} = 394,597N \]

Výsledná reakce v podpoře B:

\[F_{rB} = \sqrt{B_x^2 + B_y^2} = 558,346N \]

4.1.3.2 Předlohový hřídel:
1. směr otáčení (po směru hodinových ručiček):

\[\sum F_z : -C_z - F_{A2} + F_{A3} = 0 \]
\[\sum F_x : -C_x - D_x + F_{R2} - F_{R3} = 0 \]
\[\sum M_C : F_{A2} \cdot \frac{d_{w2}}{2} - F_{R2} \cdot L_3 + F_{R3} \cdot (L_3 + L_4) + F_{A3} \cdot \frac{d_{w3}}{2} + D_x \cdot (L_3 + L_4 + L_5) = 0 \]
\[C_z = -F_{A2} + F_{A3} = 659,985N \]

obr 13.: Předlohový hřídel - otáčení po směru hodinových ručiček

Rovina x-z:
maximální ohybový moment pod kolem 1:

\[M_o = \left| C_x \cdot L_3 - F_{A2} \cdot \frac{d_{u2}}{2} \right| = 39,608 Nm \]

maximální ohybový moment pod pastorkem 2:

\[M_o = \left| -D_x \cdot L_3 \right| = 111,443 Nm \]

Rovina y-z:

\[\sum F_z : -C_z - F_{A2} + F_{A3} = 0 \]
\[\sum F_y : -C_y - D_y + F_{T2} + F_{T3} = 0 \]
\[\sum M_C : -F_{T2} \cdot L_3 - F_{T3} \cdot (L_3 + L_4) + D_y \cdot (L_3 + L_4 + L_5) = 0 \]
\[D_y = \frac{F_{T2} \cdot L_3 + F_{T3} \cdot (L_3 + L_4)}{(L_3 + L_4 + L_5)} = 4235,516 N \]
\[C_y = -D_y + F_{T2} + F_{T3} = 3623,754 N \]

maximální ohybový moment pod kolem 1:

\[M_o = \left| C_y \cdot L_3 \right| = 193,8709 Nm \]

maximální ohybový moment pod pastorkem 2:

\[M_o = \left| D_y \cdot L_3 \right| = 294,368 Nm \]

Výsledná reakce v podpoře C:

\[F_{rC} = \sqrt{C_x^2 + C_y^2} = 3623,954 N \]
\[F_{ac} = 659,985 N \]
Výsledná reakce v podpoře D:

\[R_{xD} = \sqrt{D_x^2 + D_y^2} = 4528,884N \]

2. směr otáčení (proti směru hodinových ručiček):

obr. 14.: Předlohoval hřídel - otáčení proti směru hodinových ručiček

Rovina x-z:

\[\sum F_z : C_z + F_{A2} - F_{A3} = 0 \]
\[\sum F_x : -C_x - D_x + F_{R2} - F_{R3} = 0 \]
\[\sum M_z : -F_{R2} \cdot L_3 - F_{A2} \cdot \frac{d_{w2}}{2} - F_{A3} \cdot \frac{d_{w3}}{2} + F_{R3} \cdot (L_3 + L_4) + D_x \cdot (L_3 + L_4 + L_5) = 0 \]
\[C_z = F_{A3} - F_{A2} = 659,985N \]
\[D_x = \frac{F_{R2} \cdot L_3 + F_{A2} \cdot \frac{d_{w2}}{2} + F_{A3} \cdot \frac{d_{w3}}{2} - F_{R3} \cdot (L_3 + L_4)}{(L_3 + L_4 + L_5)} = -764,903N \]
\[C_x = -D_x + F_{R2} - F_{R3} = -800,558N \]

maximální ohybový moment pod kolem 1:

\[M_\phi = |C_x \cdot L_3| = 42,830Nm \]

maximální ohybový moment pod pastorkem 2:

\[M_\phi = |D_x \cdot L_3 + F_{A3} \cdot \frac{d_{w3}}{2}| = 86,991Nm \]
Rovina y-z:

\[\sum F_z : C_z + F_{A2} - F_{A3} = 0 \]
\[\sum F_y : C_y + D_y - F_{T2} - F_{T3} = 0 \]
\[\sum M_C : F_{T2} \cdot L_1 + F_{T3} \cdot (L_3 + L_4) - D_y \cdot (L_3 + L_4 + L_5) = 0 \]
\[D_y = \frac{F_{T2} \cdot L_1 + F_{T3} \cdot (L_3 + L_4)}{(L_3 + L_4 + L_5)} = 4235,516N \]
\[C_y = F_{T2} + F_{T3} - D_y = 3623,754N \]

maximální ohybový moment pod kolejem 1:

\[M_o = |C_y \cdot L_3| = 193,8709Nm \]

maximální ohybový moment pod pastorkem 2:

\[M_o = |D_y \cdot L_3| = 294,368Nm \]

Výsledná reakce v podpoře C:

\[F_{rc} = \sqrt{C_x^2 + C_y^2} = 3711,130N \]
\[F_{ac} = 659,985N \]

Výsledná reakce v podpoře D:

\[F_{rd} = \sqrt{D_x^2 + D_y^2} = 4304,030N \]
4.1.3.3 Výstupní hřídel:
1. směr otáčení (proti směru hodinových ručiček):

Rovina x-z:

\[\sum F_z : G_z - F_{A4} = 0 \]
\[\sum F_x : -E_x - G_x + F_{vrx} + F_{R4} = 0 \]
\[\sum M_G : F_{vrx} \cdot (L_6 + L_7 + L_8) - E_x \cdot (L_7 + L_8) + F_{R4} \cdot L_8 + F_{A4} \cdot \frac{dv_4}{2} = 0 \]

\[
G_z = F_{A4} = 1054,582N
\]
\[
E_x = \frac{F_{vrx} \cdot (L_6 + L_7 + L_8) + F_{R4} \cdot L_8 + F_{A4} \cdot \frac{dv_4}{2}}{(L_7 + L_8)} = 12943,996N
\]
\[
G_x = -E_x + F_{vrx} + F_{R4} = -3530,914N
\]

maximální ohybový moment pod ložiskem E:

\[M_o = |F_{vrx} \cdot L_6| = 758,427Nm \]

maximální ohybový moment pod kolem 2:

\[M_o = |G_x \cdot L_8| = 255,991Nm \]
Rovina y-z:

\[
\begin{align*}
\sum F_x : G_x - F_{A_x} &= 0 \\
\sum F_y : E_y + G_y + F_{vry} - F_{T4} &= 0 \\
\sum M_G : F_{vry} \cdot (L_6 + L_7 + L_8) + E_y \cdot (L_7 + L_8) - F_{T4} \cdot L_8 &= 0 \\
E_y &= -\frac{F_{vry} \cdot (L_6 + L_7 + L_8) + F_{T4} \cdot L_8}{(L_7 + L_8)} = -1992,279 N \\
G_y &= -E_y - F_{vry} + F_{T4} = 5234,168 N
\end{align*}
\]

maximální ohybový moment pod ložiskem E:

\[
M_o = |F_{vry} \cdot L_6| = 292,711 Nm
\]

maximální ohybový moment pod kolem 2:

\[
M_o = |G_y \cdot L_8| = 379,477 Nm
\]

Výsledná reakce v podpoře G:

\[
F_{rG} = \sqrt{G_x^2 + G_y^2} = 6313,785 N
\]

\[
F_{aG} = 1054,582 N
\]

Výsledná reakce v podpoře E:

\[
F_{rE} = \sqrt{E_x^2 + E_y^2} = 13096,419 N
\]
2. směr otáčení (po směru hodinových ručiček):

![Diagram](image)

obr. 16: Výstupní hřídel - otáčení po směru hodinových ručiček

Rovina x-z:

\[
\sum F_z : -G_z + F_{A4} = 0
\]

\[
\sum F_x : -E_x - G_x + F_{vrx} + F_{R4} = 0
\]

\[
\sum M_G : F_{vrx} \cdot (L_6 + L_7 + L_8) - E_x \cdot (L_7 + L_8) + F_{R4} \cdot L_8 - F_{A4} \cdot \frac{d_{v4}}{2} = 0
\]

\[G_z = F_{A4} = 1054,582N\]

\[E_x = \frac{F_{vrx} \cdot (L_6 + L_7 + L_8) + F_{R4} \cdot L_8 - F_{A4} \cdot \frac{d_{v4}}{2}}{(L_7 + L_8)} = 11266,634N\]

\[G_x = -E_x + F_{vrx} + F_{R4} = -1853,553N\]

maximální ohybový moment pod ložiskem E:

\[M_o = |F_{vrx} \cdot L_6| = 758,427Nm\]

maximální ohybový moment pod kolem 2:

\[M_o = |G_x \cdot L_8 - F_{A4} \cdot \frac{d_{v4}}{2}| = 290,377Nm\]
Rovina y-z:

\[
\sum F_x : -G_x + F_{A4} = 0 \\
\sum F_y : -E_y - G_y - F_{vy} + F_{T4} = 0 \\
\sum M_G : -F_{vy} \cdot (L_\alpha + L_\gamma + L_\delta) - E_y \cdot (L_\gamma + L_\delta) + F_{T4} \cdot L_\delta = 0 \\
E_y = \frac{-F_{vy} \cdot (L_\alpha + L_\gamma + L_\delta) + F_{T4} \cdot L_\delta}{(L_\gamma + L_\delta)} = -1992,279N \\
G_y = -E_y - F_{vy} + F_{T4} = 5234,169N
\]

maximální ohybový moment pod ložiskem E:

\[
M_o = |F_{vy} \cdot L_\delta| = 292,711Nm
\]

maximální ohybový moment pod kolem 2:

\[
M_o = |G_y \cdot L_\delta| = 379,477Nm
\]

Výsledná reakce v podpoře G:

\[
F_{rg} = \sqrt{G_x^2 + G_y^2} = 5552,673N \\
F_{ag} = 1054,582N
\]

Výsledná reakce v podpoře E:

\[
F_{re} = \sqrt{E_x^2 + E_y^2} = 11441,425N
\]

4.2 Kontrolní výpočty

4.2.1 Kontrola ozubení

Materiál kol volím 12020.

Kontrola ozubení je provedena dle [8].

Pro soukolí 12 (pastorek 1 a kolo 1) platí:

\[\text{tab. 3.: Kontrola ozubení pro soukolí 12 (pastorek 1 a kolo1)}\]

<table>
<thead>
<tr>
<th>Kontrola ozubení dle ISO 6336</th>
<th>jednotky mm, Nmm, °, kW, Mpa, m/s⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>(z_1)</td>
<td>Roz. pastorek1 pastorek1 kolo1 kolo1</td>
</tr>
<tr>
<td>19</td>
<td>d 38.84894 210.6022 (\sigma_{\text{lim}}) 500 500</td>
</tr>
<tr>
<td>(z_2)</td>
<td>(d_{\alpha}) 43.39784 214.5978 (\sigma_{\text{lim}}) 1210 1210</td>
</tr>
</tbody>
</table>

Návrh pohonu sklepního výtahu
Návrh pohonu sklepního výtahu

<table>
<thead>
<tr>
<th>Příčka</th>
<th>Roz.</th>
<th>jednotky</th>
<th>mm</th>
<th>Nmm</th>
<th>°</th>
<th>kW</th>
<th>Mpa</th>
<th>m.s⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>z₃</td>
<td>18</td>
<td>pastorek2</td>
<td>63,97188</td>
<td>294,9814</td>
<td>500</td>
<td>500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z₄</td>
<td>83</td>
<td>pastorek2</td>
<td>72,01857</td>
<td>301,9704</td>
<td>1210</td>
<td>1210</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mₙ</td>
<td>3,5</td>
<td>pastorek2</td>
<td>56,27963</td>
<td>286,2134</td>
<td>2,599485</td>
<td>2,214172</td>
<td></td>
<td></td>
</tr>
<tr>
<td>x₃</td>
<td>0,151108</td>
<td>kol02</td>
<td>60,00488</td>
<td>276,6892</td>
<td>1,616751</td>
<td>1,777546</td>
<td></td>
<td></td>
</tr>
<tr>
<td>x₄</td>
<td>0</td>
<td>kol02</td>
<td>64,15842</td>
<td>295,8416</td>
<td>0,708472</td>
<td>0,708472</td>
<td></td>
<td></td>
</tr>
<tr>
<td>αₙ</td>
<td>20</td>
<td>kol02</td>
<td>4,023346</td>
<td>3,494468</td>
<td>0,916667</td>
<td>0,916667</td>
<td></td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>10</td>
<td>kol02</td>
<td>3,846123</td>
<td>4,375</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>aₙ</td>
<td>180</td>
<td>kol02</td>
<td>7,869468</td>
<td>7,869468</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b₃</td>
<td>74</td>
<td>kol02</td>
<td>5,882778</td>
<td>5,497787</td>
<td>2,434321</td>
<td>2,434321</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b₄</td>
<td>70</td>
<td>kol02</td>
<td>5,97353</td>
<td>5,582599</td>
<td>189,8</td>
<td>189,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>5,39</td>
<td>kol02</td>
<td>5,112796</td>
<td>5,497787</td>
<td>0,792475</td>
<td>0,792475</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n₁</td>
<td>267,4757</td>
<td>kol02</td>
<td>5,191669</td>
<td>5,582599</td>
<td>0,992375</td>
<td>0,992375</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mₖ₁</td>
<td>192431,3</td>
<td>kol02</td>
<td>20,72961</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v</td>
<td>0,895926</td>
<td>kol02</td>
<td>7,869468</td>
<td>7,869468</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>u</td>
<td>4,611111</td>
<td>kol02</td>
<td>5,0346</td>
<td>5,092592</td>
<td>2,124238</td>
<td>2,124238</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pro druhé soukolí 34 (pastorek 2 a kolo 2) platí:

tab. 4.: Kontrola ozubení pro druhé soukolí 34 (pastorek 2 a kolo 2)
Minimální hodnota součinitele bezpečnosti proti vzniku únavového lomu v patě zubu je požadována $S_{\text{Fmin}} = 1,4$. Minimální hodnota součinitele bezpečnosti proti vzniku únavového poškození boků zubů je požadována $S_{\text{Hmin}} = 1,1$. Pro pastorky i pro kola jsou vypočítané součinitelé bezpečnosti vyšší a tudíž vyhovující.

4.2.2 Kontrola řetězového převodu

Celková tahová síla v řetězu nesmí být větší než minimální síla pro přetření řetězu.

celková tahová síla v řetězu: $F_r = 7\,462,339 \, N$,

minimální síla k přetření: $F_{Pt} = 178\,000 \, N$.

$$F_r \leq F_{Pt}$$

Dále se řetěz kontrolouje z hlediska maximálního tlaku v kloubech.

Směrný tlak v řetězu: $p = 27,9 \, MPa$

součinitel tření: $\lambda = 0,73$

$$Tlak \ v \ kloubu \ řetězu: \quad p_p = \frac{F_{\text{th}}}{S} = \frac{7462,339}{0,00059} = 12,648 \, MPa$$

Dovolený tlak: $p_D = p \cdot \lambda = 27,9 \cdot 0,73 = 20,367 \, MPa$

$$p_p \leq p_D$$

Kontroly řetězového převodu v obou případech vyhovují.
4.2.3 Kontrola kuličkových ložisek

Pro přehlednost jsou do následující tabulky z obou směrů otáčení hřídelů vybrány větší hodnoty působících sil.

tab. 5.: Kontrola ložisek

<table>
<thead>
<tr>
<th>Ložisko</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fr [N]</td>
<td>1433,472</td>
<td>589,902</td>
<td>3711,130</td>
<td>4528,884</td>
<td>13096,419</td>
<td>6313,785</td>
</tr>
<tr>
<td>Fa [N]</td>
<td>394,597</td>
<td>0</td>
<td>659,985</td>
<td>0</td>
<td>0</td>
<td>1054,582</td>
</tr>
</tbody>
</table>

Navržená kuličková ložiska se kontrolují na základní dynamickou bezpečnost C.

\[
C = F \cdot \sqrt{\frac{L_h \cdot 60 \cdot n}{10^5}} [N]
\]

Pro kuličková ložiska je součinitel styku roven \(p = 3 \). Minimální trvanlivost ložiska je požadována \(L_{\text{min}} = 25000 \) hod.

Ložiska byla počítána dle hodnot z katalogu ZKL. [12]

4.2.3.1 Vstupní hřídel

\(n_1 = 1450 \text{s}^{-1} \)

Volím jednořadé kuličkové ložisko 6305.

tab. 6.: Kuličkové ložisko 6305

<table>
<thead>
<tr>
<th>Označení ČSN 02 4630</th>
<th>d [mm]</th>
<th>D [mm]</th>
<th>B [mm]</th>
<th>(C_o) [N]</th>
<th>(C_{\text{TAB}}) [N]</th>
</tr>
</thead>
<tbody>
<tr>
<td>6305</td>
<td>25</td>
<td>62</td>
<td>17</td>
<td>10 806</td>
<td>21 123</td>
</tr>
</tbody>
</table>

Ložisko v místě A:

\[
\frac{F_a}{C_o} = \frac{394,597}{10806} = 0,037
\]

součinitel: \(e = 0,24 \)

\[
\frac{F_a}{F_r} = \frac{394,597}{1433,472} = 0,275
\]

\[
\frac{F_a}{F_r} \geq e \quad \rightarrow \quad \text{součinitelé: } X = 0,56
\]
\[Y = 1,8 \]

\[F = X \cdot F_r + Y \cdot F_a = 0,56 \cdot 1433,472 + 1,8 \cdot 394,597 = 1513,019 N \]

\[C = F \cdot \frac{L_n \cdot 60 \cdot n}{10^6} = 1513,019 \cdot \frac{25000 \cdot 60 \cdot 1450}{10^6} = 19603,375 N \]

\[C \leq C_{TAB} \]

Ložisko v místě B:

\[F = X \cdot F_r + Y \cdot F_a = F_r = 589,902 N \]

\[C = F \cdot \frac{L_n \cdot 60 \cdot n}{10^6} = 589,902 \cdot \frac{25000 \cdot 60 \cdot 1450}{10^6} = 7643,039 N \]

\[C \leq C_{TAB} \]

4.2.3.2 Předlohový hřídel

\[n_2 = 267,476 s^{-1} \]

Volím jednořadé kuličkové ložisko 6407.

tab. 7.: Kuličkové ložisko 6407

<table>
<thead>
<tr>
<th>Označení ČSN 02 4630</th>
<th>d [mm]</th>
<th>D [mm]</th>
<th>B [mm]</th>
<th>C₀ [N]</th>
<th>C_{TAB} [N]</th>
</tr>
</thead>
<tbody>
<tr>
<td>6407</td>
<td>35</td>
<td>100</td>
<td>25</td>
<td>31 000</td>
<td>55 200</td>
</tr>
</tbody>
</table>

Ložisko v místě C:

\[\frac{F_a}{C_o} = \frac{659,985}{31000} = 0,021 \]

součinitel: \[e = 0,22 \]

\[\frac{F_a}{F_r} = \frac{659,985}{3711,130} = 0,178 \]

\[\frac{F_a}{F_r} \leq e \quad \rightarrow \quad \text{součinitelé:} \quad X = 1 \]

\[Y = 0 \]
\[F = X \cdot F_r + Y \cdot F_a = F_r = 3711,130N \]

\[C = F \cdot \frac{L_h \cdot 60 \cdot n}{10^6} = 3711,130 \cdot \frac{25000 \cdot 60 \cdot 267,476}{10^6} = 27371,467N \]

\[C \leq C_{TAB} \]

Ložisko v místě D:

\[F = X \cdot F_r + Y \cdot F_a = F_r = 4528,884N \]

\[C = F \cdot \frac{L_h \cdot 60 \cdot n}{10^6} = 4528,884 \cdot \frac{25000 \cdot 60 \cdot 267,476}{10^6} = 33402,814N \]

\[C \leq C_{TAB} \]

4.2.3.3 Výstupní hřídel

\(n_3 = 58,007 \, \text{s}^{-1} \)

Volím jednořadé kuličkové ložisko 6312.

<table>
<thead>
<tr>
<th>Označení ČSN 02 4630</th>
<th>d [mm]</th>
<th>D [mm]</th>
<th>B [mm]</th>
<th>(C_o) [N]</th>
<th>(C_{TAB}) [N]</th>
</tr>
</thead>
<tbody>
<tr>
<td>6312</td>
<td>60</td>
<td>130</td>
<td>31</td>
<td>52 100</td>
<td>81 500</td>
</tr>
</tbody>
</table>

Ložisko v místě E:

\[F = X \cdot F_r + Y \cdot F_a = F_r = 13096,419N \]

\[C = F \cdot \frac{L_h \cdot 60 \cdot n}{10^6} = 13096,419 \cdot \frac{25000 \cdot 60 \cdot 58,007}{10^6} = 58033,119N \]

\[C \leq C_{TAB} \]

Ložisko v místě G:

\[\frac{F_a}{C_o} = \frac{1054,582}{52100} = 0,020 \]

součinitel: \(e = 0,22 \)
\[
\frac{F_a}{F_r} = \frac{1054,582}{6313,784} = 0,167
\]

\[
\frac{F_a}{F_r} \leq e \quad \rightarrow \quad \text{součinitelé: } X = 1 \quad Y = 0
\]

\[
F = X \cdot F_r + Y \cdot F_a = F_r = 6313,785 N
\]

\[
C = F \cdot \sqrt{\frac{L_0 \cdot 60 \cdot n}{10^6}} = 6313,785 \cdot \sqrt{\frac{25000 \cdot 60 \cdot 58,007}{10^6}} = 27977,771 N
\]

\[
C \leq C_{TAB}
\]

Na všech třech hřídelích jsem zvolil ložiska kuličková. Ložiska na dané hřídeli jsem volil stejného typu. Výběr ložisek byl proveden z katalogu ZKL.

4.2.4 Kontrola statické bezpečnosti hřídelů

Statická kontrola hřídelů je prováděna pod ozubenými koly a případně ložisky. Porovnává se výsledné redukované napětí \(\sigma_{ored} \) s dovoleným napětím v ohybu \(\tau_{Do} = 80 \text{ MPa} \).

Podle [9] platí pro material 12 020 mez kluzu \(\text{Re}_{min} = 235 \text{ MPa} \) pro 11 700 je \(\text{Re}_{min} = 345 \text{ MPa} \).

Ohybové momenty do roviny XY a roviny YZ jsem zvolil pro daný směr otáčení, pro který výsledný maximální ohybový moment vyjde větší.

4.2.4.1 Vstupní hřídel

\(M_{k1} = 36,221 \text{ Nm} \)

Pod pastorkem 1:

\[
W_{opt} = \frac{\pi \cdot d_{f1}^3}{32} = \frac{\pi \cdot 0,034402^3}{32} = 3,997 \cdot 10^{-6} m^3
\]

Ohybový moment v rovině XZ je roven \(M_{oxz} = 30,317 \text{ Nm} \)
Ohybový moment v rovině YZ je roven $M_{oyz} = 65,596\ \text{Nm}$

$$M_{opl} = \sqrt{M_{oxz}^2 + M_{oyz}^2} = \sqrt{30,317^2 + 65,596^2} = 72,263\ \text{Nm}$$

$$M_{oredp} = \sqrt{M_{opl}^2 + \left(\frac{\alpha}{2} \cdot M_k\right)^2} = \sqrt{72,263^2 + \left(\frac{2}{2} \cdot 36,221\right)^2} = 80,833\ \text{Nm}$$

$$\sigma_{oredp} = \frac{M_{oredp}}{W_{opl}} = \frac{80,833}{3,997 \cdot 10^{-6}} = 20,222\ \text{MPa}$$

$$k = \frac{R_s}{\sigma_{oredp}} = \frac{235}{20,222} = 11,621$$

4.2.4.2 Předlohový hřídel

$M_{k2} = 192,431\ \text{Nm}$

Pod kolem 1:

Pro výpočet W_k je použita kružnice o průměru $d=37,467\ \text{mm}$, která je veepsaná mezi kružnicí hřídele a dvě díry pro pera.

$$W_{ok1} = \frac{\pi \cdot d^3}{32} - 2 \cdot \frac{b \cdot t \cdot (d - t)^2}{2 \cdot d} = \frac{\pi \cdot 0,044^3}{32} - 2 \cdot \frac{0,012 \cdot 0,0049 \cdot (0,044 - 0,0049)^2}{2 \cdot 0,044}$$

$$W_{ok1} = 6,320 \cdot 10^{-6}\ \text{m}^3$$

Ohybový moment v rovině XZ je roven $M_{oxz} = 42,830\ \text{Nm}$

Ohybový moment v rovině YZ je roven $M_{oyz} = 193,871\ \text{Nm}$

$$M_{ok1} = \sqrt{M_{oxz}^2 + M_{oyz}^2} = \sqrt{42,830^2 + 193,871^2} = 198,545\ \text{Nm}$$

$$W_{kk1} = \frac{\pi \cdot d^3}{16} = \frac{\pi \cdot 0,037467^3}{16} = 1,033 \cdot 10^{-5}\ \text{m}^3$$

$$\sigma_{ok1} = \frac{M_{ok1}}{W_{ok1}} = \frac{198,545}{6,320 \cdot 10^{-6}} = 31,416\ \text{MPa}$$

$$\tau_{kk1} = \frac{M_{k2}}{W_{kk1}} = \frac{192,431}{1,033 \cdot 10^{-5}} = 18,634\ \text{MPa}$$
\[
\sigma_{oredk} = \sqrt{\sigma_{11}^2 + (\alpha \cdot \sigma_{k})^2} = \sqrt{31,416^2 + (2 \cdot 18,634)^2} = 48,742 \text{ MPa}
\]

\[
k = \frac{R_k}{\sigma_{oredk}} = \frac{235}{48,742} = 4,821
\]

Pod pastorkem 2:

\[
W_{op2} = \frac{\pi \cdot d_{f3}^3}{32} = \frac{\pi \cdot 0,056280^3}{32} = 1,750 \cdot 10^{-5} m^3
\]

Ohybový moment v rovině XZ je roven \(M_{oxz} = 111,443 \text{ Nm}\)

Ohybový moment v rovině YZ je roven \(M_{oyz} = 294,368 \text{ Nm}\)

\[
M_{op2} = \sqrt{M_{oxz}^2 + M_{oyz}^2} = \sqrt{111,443^2 + 294,368^2} = 314,757 \text{Nm}
\]

\[
M_{oredp2} = \sqrt{\left(\frac{M_{op2}}{2} \cdot M_{k3}\right)^2} = \sqrt{314,757^2 + \left(\frac{2}{2} \cdot 192,431\right)^2} = 368,920 \text{Nm}
\]

\[
\sigma_{oredp2} = \frac{M_{oredp2}}{W_{op2}} = \frac{368,920}{1,750 \cdot 10^{-5}} = 21,080 \text{MPa}
\]

\[
k = \frac{R_k}{\sigma_{oredp2}} = \frac{235}{21,080} = 11,148
\]

4.2.4.3 Výstupní hřídel

\(M_{k3} = 869,576 \text{ Nm}\)

Pod ložiskem E:

\[
W_{oE} = \frac{\pi \cdot d_{s3}^3}{32} = \frac{\pi \cdot 0,06^3}{32} = 2,121 \cdot 10^{-5} m^3
\]

Ohybový moment v rovině XZ je roven \(M_{oxz} = 758,427 \text{ Nm}\)

Ohybový moment v rovině YZ je roven \(M_{oyz} = 292,711 \text{ Nm}\)

\[
M_{oE} = \sqrt{M_{oxz}^2 + M_{oyz}^2} = \sqrt{758,427^2 + 292,711^2} = 812,952 \text{Nm}
\]
\[M_{oredE} = \sqrt{M_{oE}^2 + \left(\frac{\alpha}{2} \cdot M_{k}^3\right)^2} = \sqrt{812,952^2 + \left(\frac{2}{2} \cdot 869,576\right)^2} = 1190,401Nm \]

\[\sigma_{oredE} = \frac{M_{oredE}}{W_{oE}} = \frac{1190,401}{2,121 \cdot 10^{-5}} = 56,136MPa \]

\[k = \frac{R_c}{\sigma_{oredE}} = \frac{345}{56,136} = 6,146 \]

Pod kolem 2:

Pro výpočet Wk je použita kružnice o průměru \(d = 60,133 \) mm, která je vepsaná mezi kružnicí hřídele a dvě díry pro pera.

\[W_{ok2} = \frac{\pi \cdot d^3}{32} - 2 \cdot \frac{b \cdot t \cdot (d - t)^2}{2 \cdot d} = \frac{\pi \cdot 0,07^3}{32} - 2 \cdot \frac{0,02 \cdot 0,0074 \cdot (0,07 - 0,0074)^2}{2 \cdot 0,07} \]

\[W_{ok2} = 2,539 \cdot 10^{-5} m^3 \]

Ohybový moment v rovině XZ je roven \(M_{oxz} = 290,377 \) Nm

Ohybový moment v rovině YZ je roven \(M_{oyz} = 379,477 \) Nm

\[M_{ok2} = \sqrt{M_{oxz}^2 + M_{oyz}^2} = \sqrt{290,377^2 + 379,477^2} = 477,830Nm \]

\[W_{kk2} = \frac{\pi \cdot d^3}{16} = \frac{\pi \cdot 0,060133^3}{16} = 4,269 \cdot 10^{-5} m^3 \]

\[\sigma_{ok2} = \frac{M_{ok2}}{W_{ok2}} = \frac{477,830}{2,539 \cdot 10^{-5}} = 18,821MPa \]

\[\tau_{kk2} = \frac{M_{k3}}{W_{kk2}} = \frac{869,576}{4,269 \cdot 10^{-5}} = 20,368MPa \]

\[\sigma_{oredk2} = \sqrt{\sigma_{ek2}^2 + (\alpha \cdot \tau_{kk2})^2} = \sqrt{18,821^2 + (2 \cdot 20,368)^2} = 44,873MPa \]

\[k = \frac{R_c}{\sigma_{oredk2}} = \frac{345}{44,873} = 7,688 \]

Statické bezpečnosti vyhovují.
4.2.5 Kontrola per

Pera se kontrolují na otlacení a na střih. Vychází se z pevnostních podmínek

\[p = \frac{4 \cdot Mk}{d_H \cdot h \cdot l_a} \leq p_D \quad \text{a} \quad \tau = \frac{2 \cdot Mk}{d_H \cdot b \cdot l_a} \leq \tau_D. \]

Za předpokladu klidného zatížení a těsného uložení pera předpokládejme \(p_D = 110 \text{ MPa} \) a \(\tau_D = 60 \text{ MPa} \).

a) pero na hřídeli od motoru:

K průměru hřídele \(d_H = 38 \text{ mm} \) je dle normy ČSN 02 2562 zvoleno pero šířky \(b = 10 \text{ mm} \), výšky \(h = 8 \text{ mm} \) a délky \(l = 70 \text{ mm} \).

\[l_a = l - b = 70 - 10 = 60\text{mm} \]

\[p = \frac{4 \cdot 36,221}{0,038 \cdot 0,008 \cdot 0,060} = 7,943\text{MPa} \]

\[\tau = \frac{2 \cdot 36,221}{0,038 \cdot 0,010 \cdot 0,060} = 3,177\text{MPa} \]

b) pero na vstupním hřídeli:

K průměru hřídele \(d_H = 25 \text{ mm} \) je dle normy ČSN 02 2562 zvoleno pero šířky \(b = 8 \text{ mm} \), výšky \(h = 7 \text{ mm} \) a délky \(l = 25 \text{ mm} \).

\[l_a = l - b = 25 - 8 = 17\text{mm} \]

\[p = \frac{4 \cdot 36,221}{0,025 \cdot 0,007 \cdot 0,017} = 48,701\text{MPa} \]

\[\tau = \frac{2 \cdot 36,221}{0,025 \cdot 0,008 \cdot 0,017} = 21,307\text{MPa} \]

c) pero pod kolem 1 na předlohovém hřídeli:

K průměru hřídele \(d_H = 44 \text{ mm} \) jsou dle normy ČSN 02 2562 zvolena dvě pera šířky \(b = 12 \text{ mm} \), výšky \(h = 8 \text{ mm} \) a délky \(l = 32 \text{ mm} \) pootočená o 120°.

\[l_a = l - b = 32 - 12 = 20\text{mm} \]
\[p = \frac{4 \cdot 192,431}{0,044 \cdot 0,008 \cdot 2 \cdot 0,020} = 54,668 MPa \]

\[\tau = \frac{2 \cdot 192,431}{0,044 \cdot 0,012 \cdot 2 \cdot 0,020} = 18,223 MPa \]

d) pero pod kolem 2 na výstupním hřídeli:

K průměru hřídele \(d_H = 70 \) mm jsou dle normy ČSN 02 2562 zvolena dvě pera šířky \(b = 20 \) mm, výšky \(h = 12 \) mm a délky \(l = 56 \) mm pootočená o 120°.

\[l_a = l - b = 56 - 20 = 36 mm \]

\[p = \frac{4 \cdot 869,576}{0,070 \cdot 0,012 \cdot 2 \cdot 0,036} = 57,512 MPa \]

\[\tau = \frac{2 \cdot 869,576}{0,070 \cdot 0,020 \cdot 2 \cdot 0,036} = 17,253 MPa \]

e) pero pod řetězovým kolem1 na výstupním hřídeli:

K průměru hřídele \(d_H = 58 \) mm jsou dle normy ČSN 02 2562 zvolena dvě pera šířky \(b = 16 \) mm, výšky \(h = 10 \) mm a délky \(l = 45 \) mm pootočená o 120°.

\[l_a = l - b = 45 - 16 = 29 mm \]

\[p = \frac{4 \cdot 869,576}{0,058 \cdot 0,010 \cdot 2 \cdot 0,029} = 103,398 MPa \]

\[\tau = \frac{2 \cdot 869,576}{0,058 \cdot 0,016 \cdot 2 \cdot 0,029} = 32,311 MPa \]

Zvolená pera vyhovují z hlediska kontrol na otlacení i na střih, a tudíž je možné je použít.

4.2.6 Kontrola průhybu výstupního hřídele

Maximální dovolený průhyb hřídele mezi kuličkovými ložisky je dán vztahem

\[y_{D, \text{max}} = \frac{l}{3000} \]

kde \(l \) je vzdálenost mezi ložisky. Vzdálenost mezi ložiskem E a G je 186 mm.
\(y_{D_{\text{max}}} = \frac{l}{3000} = \frac{186}{3000} = 0,062\text{mm} = 62\mu\text{m} \)

Maximální dovolený průhyb pod čelními ozubenými koly je dán vztahem \(y_{DK} = \frac{m}{100} \),

kde \(m \) je modul kola. Modul ozubeného kola na výstupním hřídeli je 3,5.

\[y_{DK} = \frac{3,5}{100} = 0,035\text{mm} = 35\mu\text{m} \]

Do programu Autodesk Inventor byly pro výstupní hřídel otáčející se po směru hodinových ručiček zadány tyto vstupní hodnoty obr. 17. a obr. 18.

<table>
<thead>
<tr>
<th>Index</th>
<th>Umlatění</th>
<th>Radiální zařížení</th>
<th>Ohybový moment</th>
<th>Spojebně zařížení</th>
<th>Avidátní zařížení</th>
<th>Kroutící moment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25,32 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-869,576 N m</td>
</tr>
<tr>
<td>2</td>
<td>25,32 mm</td>
<td>2756,741 N</td>
<td>2756,741 N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>25,32 mm</td>
<td>-7142,845 N</td>
<td>7142,845 N</td>
<td>270,00 deg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>245 mm</td>
<td>-996,621 N</td>
<td>996,621 N</td>
<td>100,00 deg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>245 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-869,576 N m</td>
</tr>
<tr>
<td>6</td>
<td>245 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>245 mm</td>
<td>-2270,236 N</td>
<td>2270,236 N</td>
<td>270,00 deg</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

obr. 17.: Vstupní hodnoty sil a momentů výstupního hřídele

<table>
<thead>
<tr>
<th>Index</th>
<th>Typ</th>
<th>Umlatění</th>
<th>Reakční síla</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Volný</td>
<td>131,5 mm</td>
<td>2057,411 N, -11266,632 N, 11452,844 N, 280,35 deg</td>
</tr>
<tr>
<td>2</td>
<td>Pevná</td>
<td>317,5 mm</td>
<td>5213,545 N, 1853,551 N, 5533,236 N, 160,43 deg</td>
</tr>
</tbody>
</table>

obr. 18.: Vstupní hodnoty podpor výstupního hřídele

Výstupní hodnoty jsou uvedeny na obr. 19. a obr. 20.
výstup do roviny x-z:

![Graph of deflection in x-z plane](image1.png)

obr. 19.: Průhyb do roviny x-z

výstup do roviny y-z:

![Graph of deflection in y-z plane](image2.png)

obr. 20.: Průhyb do roviny y-z

Z obr. 19. a obr. 20. je poznat, že skutečné hodnoty maximálních průhybů na této hřídeli jsou menší než dovolené.

4.2.7 Dynamická bezpečnost výstupního hřídele

Materiál 11700

Mez pevnosti pro tah: \(\sigma_p = 850 MPa \)

Mez kluzu pro tah: \(\sigma_K = 390 MPa \)

Mez kluzu pro smyk: \(\tau_K = 234 MPa \)

Mez únavy pro střídavý ohyb: \(\sigma_c = 169 MPa \)
Kontrola bezpečnosti v místě 1

zde se nachází osazení:

\[D = 70 \text{ mm} \]
\[d = 60 \text{ mm} \]
\[r = 1,5 \text{ mm} \]
\[t = \frac{(D-d)}{2} = 5 \text{ mm} \]
\[M_k = 869,576 \text{ Nm} \]
\[M_o = 752 \text{ Nm} \]

Z tabulek určím součinitel tvaru, vrubové citlivosti, součinitel velikosti a jakosti povrchu:

\[\alpha_o = 2,4 \]
\[\eta_c = 0,5 \]
\[\beta_o = 1 + (\alpha_o - 1) \cdot \eta_c = 1,7 \]
\[\varepsilon_{Vo} = 1 \]
\[\eta_p = 0,85 \]

\[\sigma_{Co(-1)}^* = \sigma_{Co(-1)} \cdot \varepsilon_{Vo} \cdot \eta_p \cdot \beta_o = 84,5 \text{ MPa} \]

\[\sigma_{ao} = \sigma_o = 35,462 \text{ MPa} \]

\[\tau_m = 20,503 \text{ MPa} \]
\[k_\sigma = \frac{\sigma_{\text{vz}}(1)}{\sigma_{\text{vz},0}} = \frac{\sigma_{\text{vz}}(1)}{\sigma_0} = 2,383 \]

\[k_\tau = \frac{\bar{\tau}}{\tau_n} = 11,413 \]

\[k_d = \frac{k_\sigma \cdot k_\tau}{\sqrt{k_\sigma^2 + k_\tau^2}} = 2,333 \]

Kontrola bezpečnosti v místě 2:

zde se nachází drážka pro pero:

\[D = 70 \text{ mm} \]

\[t = 7,4 \text{ mm} \]

\[D - t = 62,6 \text{ mm} \]

\[b = 20 \text{ mm} \]

\[h = 12 \text{ mm} \]

\[M_k = 869,576 \text{ Nm} \]

\[M_0 = 477,830 \text{ Nm} \]

Z tabulek určím součinitel vrubu, velikosti a jakosti povrchu:

\[\beta_O = 2,07 \]

\[\varepsilon_{Vo} = 1 \]

\[\eta_p = 0,63 \]

\[\sigma_{\text{vz}}^{+} = \sigma_{\text{vz}}(1) \cdot \frac{\varepsilon_{Vo} \cdot \eta_p}{\beta_o} = 51,435 \text{ MPa} \]

\[\sigma_{ao} = \sigma_0 = 19,840 \text{ MPa} \]

\[\tau_m = 18,053 \text{ MPa} \]

\[k_\sigma = \frac{\sigma_{\text{vz}}(1)}{\sigma_{\text{vz},0}} = \frac{\sigma_{\text{vz}}(1)}{\sigma_0} = 2,592 \]
\[k_r = \frac{\alpha}{\tau_m} = 12.962 \]

\[k_d = \frac{k_{\sigma} \cdot k_{\tau}}{\sqrt{k_{\sigma}^2 + k_{\tau}^2}} = 2.542 \]

Obě kontroly vyšly větší než 1.
5. Šneková převodovka

5.1 Zvolené parametry šnekové převodovky

5.1.1 Volba počtu zubů šneku a šnekového kola

Zvolené hodnoty:

Převodové číslo se určí jako poměru vstupních otáček elektromotoru a otáček na výstupu převodovky:

\[
\frac{u_{12}}{n_b} = \frac{n_m}{19,099} = 75,92
\]

úhel profilu: \(\alpha_n = 20^\circ \)

počet zubů (chodů) šneku: \(z_1 = 1 \)

počet zubů šnekového kola: \(z_2 = 73 \).

převodové číslo šnekového soukolí bude:

\[
\frac{u_{12}}{z_1} = \frac{73}{1} = 73
\]

5.1.2 Volba materiálu šneku a šnekového kola

Materiál šneku je z volen:

ocel 12 050 - mez kluzu Re = 305 MPa

Materiál věnce šnekového kola je zvolen:

cínový bronz CuSn10P1
mez pevnosti: \(\sigma_p = 250 \) MPa
mez kluzu: \(\sigma_k = 150 \) MPa
mez únavy: \(\sigma_c = 180 \) MPa
mez únavy při souměrném zatížení: \(\sigma_c(0) = 120 \) MPa
5.1.3 Modul ozubení a rozměry šneku a šnekového kola:
V následující tabulce tab. 9. jsou vypočítané rozměry šnekového soukolí.

tab. 9.: Rozměry šnekového soukolí

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volba modulu:</td>
<td>m_n [mm] = 10,00</td>
</tr>
<tr>
<td>Volba součinitele průměru šneku:</td>
<td>q = 8,00</td>
</tr>
<tr>
<td>Ozubení šneku:</td>
<td>obecné</td>
</tr>
<tr>
<td>Roztečný průměr šneku:</td>
<td>d_1 [mm] = 80,00</td>
</tr>
<tr>
<td>Hlavový průměr šneku:</td>
<td>d_h [mm] = 100,00</td>
</tr>
<tr>
<td>Patní průměr šneku:</td>
<td>d_t [mm] = 55,00</td>
</tr>
<tr>
<td>Přibližný vstupní průměr hř. šneku:</td>
<td>d_in [mm] = 19,5</td>
</tr>
<tr>
<td>Skutečný úhel stoupání šroubového válců:</td>
<td>γ ° = 7,18</td>
</tr>
<tr>
<td>Roztečný průměr šnekového kola:</td>
<td>d_2 [mm] = 735,77</td>
</tr>
<tr>
<td>Součinitel poměrně šířky šnekového kola:</td>
<td>ψ_d = 0,94</td>
</tr>
<tr>
<td>Šířka věnce šnekového kola:</td>
<td>b_2 [mm] = 75,00</td>
</tr>
<tr>
<td>Zvolená valivá osová vzdálenost:</td>
<td>a_w12 [mm] = 400,00</td>
</tr>
<tr>
<td>Jednotkové rad. posunutí nástr.:</td>
<td>x = -0,789</td>
</tr>
<tr>
<td>Průměr šroubového válců šneku:</td>
<td>d_w [mm] = 64,23</td>
</tr>
<tr>
<td>Průměr šroubového válců šnekového kola:</td>
<td>d_w2 [mm] = 735,77</td>
</tr>
<tr>
<td>Průměr hlavové kružnice šnekového kola:</td>
<td>d_a [mm] = 740,00</td>
</tr>
<tr>
<td>Průměr patní kružnice šnekového kola:</td>
<td>d_o [mm] = 695,00</td>
</tr>
<tr>
<td>Jednotkové hlavové převyšení:</td>
<td>v* = 0,75</td>
</tr>
<tr>
<td>Průměr hlavového válců šnekového kola:</td>
<td>d_aM2 [mm] = 755</td>
</tr>
<tr>
<td>Průměr výstupu hř. šneku:</td>
<td>d_f [mm] = 73,9</td>
</tr>
<tr>
<td>Valivý úhel:</td>
<td>γ_w ° = 8,90</td>
</tr>
<tr>
<td>Kluzná rychlost šneku:</td>
<td>v_k [ms⁻¹] = 4,94</td>
</tr>
<tr>
<td>Třecí úhel:</td>
<td>ϕ_r ° = 2,24</td>
</tr>
<tr>
<td>Účinnost šnekového soukolí:</td>
<td>η_2 = 0,76</td>
</tr>
<tr>
<td>Účinnost uložení šneku:</td>
<td>η_Ls = 0,990</td>
</tr>
<tr>
<td>Účinnost uložení šnekového kola:</td>
<td>η_LK = 0,995</td>
</tr>
<tr>
<td>Účinnost šnekového převodovky:</td>
<td>η_12 = 0,748</td>
</tr>
<tr>
<td>Kroutící moment na výstupním hřídeli:</td>
<td>M_{kII} [Nm] = 1977,89</td>
</tr>
<tr>
<td>Výkon na výstupním hřídeli:</td>
<td>P_{2vyp} [kW] = 4,11</td>
</tr>
<tr>
<td>Požadovaný výkon na výstupním hřídeli:</td>
<td>P_2 [kW] = 4,00</td>
</tr>
</tbody>
</table>

Z posledních dvou řádků v tab. 9. je patrné, že vybraný elektromotor s výkonem 5,5kW, je dostatečný, jelikož \(P_{2vyp} \geq P_2 \).
5.1.4 Krouticí momenty na vstupním a výstupním hřídeli

Vstupní hřídel:

\[M_{k1} = 9550 \cdot \frac{P}{n_1} = 9550 \cdot \frac{5500}{1450} = 36227,137 Nmm = 36,227 Nm \]

Výstupní hřídel:

\[M_{k2} = M_{k2} \cdot u_{12} \cdot \eta_{12} = 36,224 \cdot 73 \cdot 0,748 = 1977,892 Nm \]

5.1.5 Silové poměry na šnekovém soukolí

Velikosti sil na šneku:

<table>
<thead>
<tr>
<th>tab. 10.: Velikost sil na šneku</th>
</tr>
</thead>
<tbody>
<tr>
<td>tečná:</td>
</tr>
<tr>
<td>radiální:</td>
</tr>
<tr>
<td>axiální:</td>
</tr>
<tr>
<td>Volená vzdálenost rad. ložisek:</td>
</tr>
<tr>
<td>Reakce v rovině tečných sil:</td>
</tr>
<tr>
<td>Reakce v rovině rad. a ax. sil:</td>
</tr>
<tr>
<td>Výsledná radiální reakce:</td>
</tr>
<tr>
<td>Axiální zatížení ložiska:</td>
</tr>
</tbody>
</table>

Velikosti sil na šnekovém kole:

<table>
<thead>
<tr>
<th>tab. 11.: Velikost sil na šnekovém kole</th>
</tr>
</thead>
<tbody>
<tr>
<td>tečná:</td>
</tr>
<tr>
<td>radiální:</td>
</tr>
<tr>
<td>axiální:</td>
</tr>
<tr>
<td>Volená vzdálenost ložisek:</td>
</tr>
<tr>
<td>Reakce v rovině tečných sil:</td>
</tr>
<tr>
<td>Reakce v rovině rad. a ax. sil:</td>
</tr>
<tr>
<td>Výsledná radiální reakce:</td>
</tr>
<tr>
<td>Axiální zatížení ložiska:</td>
</tr>
</tbody>
</table>
5.2 Kontrolní výpočty

5.2.1 Pevnostní výpočet ozubení šnekového soukolí

Kontrola dotykového napětí:

tab. 12.: Kontrola dotykového napětí

<table>
<thead>
<tr>
<th>Součinitel materiálů:</th>
<th>(Z_M[\text{MPa}^{1/2}] = 210)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Součinitel tvru zubů:</td>
<td>(Z_H = 1.743)</td>
</tr>
<tr>
<td>Součinitel tvrnání záběru:</td>
<td>(\varepsilon_a = 1.65)</td>
</tr>
<tr>
<td>Součinitel rozdělení zatížení:</td>
<td>(K_{HF} = 0.81)</td>
</tr>
<tr>
<td>Součinitel koncentrace zat.:</td>
<td>(K_{HF} = 1.00)</td>
</tr>
<tr>
<td>Součinitel vnitřních dyn. sil:</td>
<td>(K_V = 1.10)</td>
</tr>
<tr>
<td>Součinitel vnějších dyn. sil:</td>
<td>(K_I = 1.15)</td>
</tr>
<tr>
<td>Součinitel zatížení na dotyk:</td>
<td>(K_{H} = 1.02)</td>
</tr>
<tr>
<td>Dotykové napětí:</td>
<td>(\sigma_H[\text{MPa}] = 115.49)</td>
</tr>
<tr>
<td>Počet provozních cyklů:</td>
<td>(N[10^7\text{ cyklu} =] = 2.98)</td>
</tr>
<tr>
<td>Ekvivalentní počet prov. cyklů:</td>
<td>(N_{eq}[10^7\text{ cyklu}] = 2.86)</td>
</tr>
<tr>
<td>Dovolené dotykové napětí:</td>
<td>(\sigma_{H dov}[\text{MPa}] = 235.98)</td>
</tr>
<tr>
<td>Součinitel bezpečnosti:</td>
<td>(s_H = 2.04)</td>
</tr>
</tbody>
</table>

Minimální hodnota součinitele bezpečnosti \(S_{Hmin} = 1.1 \) až 1.2. Vypočítaná hodnota součinitele bezpečnosti je vyšší, a tudíž vyhovující.

Kontrola zubů šnekového kola na ohyb:

tab. 13.: Kontrola zubů šnekového kola na ohyb

Součinitel zatížení při namáhání na ohyb:	\(K_C = 1.022 \)
Náhradní počet zubů šnekového kola:	\(z_V = 75 \)
Součinitel tvru zubu:	\(Y_C = 1.37 \)
Součinitel sklonu zubu:	\(Y_I = 0.95 \)
Ohybové napětí:	\(\sigma_F[\text{MPa}] = 9.52 \)
Součinitel:	\(k_0 = 1.70 \)
Dovolené ohybové napětí:	\(\sigma_{F dov}[\text{MPa}] = 89.80 \)
Součinitel bezpečnosti:	\(s_C = 9.43 \)

Minimální hodnota součinitele bezpečnosti \(S_{Fmin} = 1.5 \) až 2.0. Vypočítaná hodnota součinitele bezpečnosti je vyšší a tudíž vyhovující.
5.2.2 Kontrola ložisek šneku a šnekového kola

5.2.2.1 Šnek

tab. 14.: Šnek

<table>
<thead>
<tr>
<th>n [min⁻¹]</th>
<th>Fₐ [N]</th>
<th>Fₐₙ [N]</th>
<th>Lₙ [h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1450</td>
<td>1778,9</td>
<td>6798,1</td>
<td>25 000</td>
</tr>
</tbody>
</table>

Volím radiální jednořadé kuličkové ložisko 6208 a axiální kuličkové ložisko obousměrné 52409.

tab. 15.: Jednořadé kuličkové ložisko 6208

Označení ČSN 02 4630 | d [mm] | D [mm] | B [mm] | C₀ [N] | C_TAB [N]
6208 | 40 | 80 | 18 | 20 800 | 35 800

\[F = X \cdot Fₐ + Y \cdot Fₐₙ = Fₐ = 1778,9N \]

\[C = F \cdot \sqrt{\frac{Lₙ \cdot 60 \cdot n}{10^6}} = 1778,9 \cdot \sqrt{\frac{25000 \cdot 60 \cdot 1450}{10^6}} = 23048,5N \]

\[C \leq C_{TAB} \]

Spočtená dynamická únosnost vyšla nižší než únosnost tabulková, ložisko můžu použít.

tab. 16.: Axiální kuličkové ložisko obousměrné 52409

Ozn. ČSN 02 4730 | dₑ [mm] | D [mm] | dₙ [mm] | D₁ [mm] | H [mm] | B[mm] | C₀ [N] | C [N]
52409 | 35 | 100 | 100 | 47 | 72 | 17 | 243 000 | 141 700

\[F = X \cdot Fₐ + Y \cdot Fₐₙ = Fₐₙ = 6798,1N \]

\[C = F \cdot \sqrt{\frac{Lₙ \cdot 60 \cdot n}{10^6}} = 6798,1 \cdot \sqrt{\frac{25000 \cdot 60 \cdot 1450}{10^6}} = 88079,7N \]

\[C \leq C_{TAB} \]

Spočtená dynamická únosnost vyšla nižší než únosnost tabulková, ložisko můžu použít.
5.2.2.2 Šnekové kolo

tab. 17.: Šnekové kolo

<table>
<thead>
<tr>
<th>n [min⁻¹]</th>
<th>F_A [N]</th>
<th>F_Aax [N]</th>
<th>L_h [h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>19,86</td>
<td>4202,4</td>
<td>892,1</td>
<td>25 000</td>
</tr>
</tbody>
</table>

Volím jednořadé kuličkové ložisko 6016.

tab. 18.: Jednořadé kuličkové ložisko 6016

<table>
<thead>
<tr>
<th>Označení ČSN 02 4630</th>
<th>d [mm]</th>
<th>D [mm]</th>
<th>B [mm]</th>
<th>C_o [N]</th>
<th>C_TAB [N]</th>
</tr>
</thead>
<tbody>
<tr>
<td>6016</td>
<td>80</td>
<td>125</td>
<td>22</td>
<td>39 800</td>
<td>47 500</td>
</tr>
</tbody>
</table>

\[F = X \cdot F_A + Y \cdot F_{Aax} = F_A = 4202,4N \]

\[C = F \cdot \sqrt{\frac{L_h \cdot 60 \cdot n}{10^6}} = 4202,4 \cdot \sqrt{\frac{25000 \cdot 60 \cdot 19,86}{10^6}} = 13027,8N \]

\[C \leq C_{TAB} \]

\[\frac{F_{Aax}}{C_o} = \frac{892,1}{39 800} = 0,022 \]

součinitel: \(e = 0,22 \)

\[\frac{F_{Aax}}{F_A} = \frac{892,1}{4202,4} = 0,212 \]

\[\frac{F_{Aax}}{F_A} \leq e \quad \rightarrow \quad \text{součinitelé: } X = 1 \]

\[Y = 0 \]

\[F = X \cdot F_A + Y \cdot F_{Aax} = F_A = 4202,4N \]

\[C = F \cdot \sqrt{\frac{L_h \cdot 60 \cdot n}{10^6}} = 4202,4 \cdot \sqrt{\frac{25000 \cdot 60 \cdot 19,86}{10^6}} = 13027,8N \]

\[C \leq C_{TAB} \]

Spočtená dynamická únosnost vyšla nižší než únosnost tabulková, ložisko můžu použít.
5.2.3 Kontrola per

a) pero na vstupním hřídeli (pod spojkou):

K průměru hřídele $d_h = 35$ mm je dle normy ČSN 02 2562 zvoleno pero šířky $b = 10$ mm, výšky $h = 8$ mm a délky $l = 30$ mm.

$l_o = l - b = 30 - 10 = 20 \text{mm}$

$$p = \frac{4 \cdot 36,224}{0,035 \cdot 0,008 \cdot 0,020} = 25,874 \text{MPa}$$

$$\tau = \frac{2 \cdot 36,224}{0,038 \cdot 0,0010 \cdot 0,020} = 10,350 \text{MPa}$$

b) pero pod šnekovým kolem na výstupním hřídeli:

K průměru hřídele $d_h = 90$ mm je dle normy ČSN 02 2562 zvoleno pero šířky $b = 25$ mm, výšky $h = 14$ mm a délky $l = 90$ mm.

$l_o = l - b = 90 - 25 = 65 \text{mm}$

$$p = \frac{4 \cdot 1977,892}{0,090 \cdot 0,014 \cdot 0,065} = 96,600 \text{MPa}$$

$$\tau = \frac{2 \cdot 1977,892}{0,090 \cdot 0,025 \cdot 0,065} = 27,048 \text{MPa}$$

c) pero na výstupním hřídeli (pod spojkou):

K průměru hřídele $d_h = 74$ mm je dle normy ČSN 02 2562 zvoleno pero šířky $b = 20$ mm, výšky $h = 12$ mm a délky $l = 120$ mm.

$l_o = l - b = 120 - 20 = 100 \text{mm}$

$$p = \frac{4 \cdot 1977,892}{0,074 \cdot 0,012 \cdot 0,100} = 89,094 \text{MPa}$$

$$\tau = \frac{2 \cdot 1977,892}{0,074 \cdot 0,020 \cdot 0,100} = 26,728 \text{MPa}$$
Zvolená pera vyhovují z hlediska kontrol na otlačení i na střih, a tudíž je možné je použít.

5.2.4 Kontrola uchycení věnce

Obr. 22.: Detail licového šroubu (číslo výkresu: PM2-2016-00-S)

a) Kontrola na otlačení:

Zvolený typ šroubu: Šroub M20x60 ČSN 02 1111
Zvolený počet šroubů: $n = 10$ ks
Kroutilý moment: $M_{k2} = 1977,892$ Nm
Průměr umístění šroubů: $d_s = 500$ mm
Délka styku: $L = 10,5$ mm

P_D na otlačení:
$P_D = 120$MPa

Výpočtový počet šroubů:
$n_v = \frac{n}{3} = \frac{10}{3} = 3,333$ks

Průměr dříku šroubu: $d_2 = 21$ mm
Plocha otlačovaná (průmět):
$S = d_2 \cdot L \cdot n_v = 0,021 \cdot 0,0105 \cdot 3,333 = 7,349 \cdot 10^{-4} mm^2$

Síla otlačující šrouby:
$F = \frac{M_k}{\frac{d_s}{2}} = \frac{1977,892}{0,5} = 7911,568N$

Tlak ve spoji:
$p = \frac{F}{S} = \frac{7911,568}{7,349 \cdot 10^{-4}} = 10,765$MPa

$p < P_D$
Tlak v navrhovaném spoji je menší než tlak dovolený a tudíž spojení vyhovuje.

b) Kontrola na střih:

Dovolené napětí ve smyku: $\tau_D = 50$MPa pro daný materiál šroubu
Výpočtový počet šroubů:
\[n_v = \frac{n}{3} = \frac{10}{3} = 3,333 \text{ks} \]

Plocha dříků šroubu:
\[S = \frac{\pi \cdot d_f^2}{4} \cdot n_v = \frac{\pi \cdot 0,021^2}{4} \cdot 3,333 = 1,154 \cdot 10^{-3} \text{mm}^2 \]

Síla střihající šrouby:
\[F = \frac{M_k}{d_1} = \frac{1977,892}{0,5} = 7911,568 \text{N} \]

Napětí ve smyku:
\[\tau = \frac{F}{S} = \frac{7911,568}{1,154 \cdot 10^{-3}} = 6,856 \text{MPa} \]

\[\tau < \tau_D \]

Napětí ve smyku v dříku šroubu je menší než napětí dovolené a tudíž spojení

c) při použití nelícovaných šroubů musí platit
\[M_t \geq M_{k2} \]

\[M_t = F \cdot f \cdot \frac{d_f}{2} \cdot n = \frac{\pi \cdot d_3}{4} \cdot \sigma_{dev} \cdot f \cdot \frac{d_f}{2} \cdot n = \frac{\pi \cdot 10,16^2}{4} \cdot 250 \cdot 0,15 \cdot 0,5 \cdot 10 = 7600,612 \text{Nm} \]

Vypočítaný moment vyhovuje podmínce.

5.2.5 Kontrola statické bezpečnosti

Pomocí programu Autodesk Inventor byly vypočítány pro danou hřídel maximální momenty v jednotlivých rovinách.

5.2.5.1 Vstupní hřídel

\[M_{k1} = 36,224 \text{ Nm} \]

Pod šnekem:

\[W_{o5} = \frac{\pi \cdot d_f^3}{32} = \frac{\pi \cdot 0,055^3}{32} = 1,63 \cdot 10^{-5} \text{m}^3 \]

<table>
<thead>
<tr>
<th>Index</th>
<th>Umiření</th>
<th>Radní zařízení</th>
<th>Ohybový moment</th>
<th>Spojitá zařízení</th>
<th>Axijní zařízení</th>
<th>Kroužící moment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Y</td>
<td>X</td>
<td>Velikost</td>
<td>Směr</td>
<td>Y</td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>20 mm</td>
<td></td>
<td></td>
<td></td>
<td>36,224 N m</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>442,5 mm</td>
<td>1128,600 N</td>
<td>1128,600 N</td>
<td>90,00 deg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>442,5 mm</td>
<td>3506,290 N</td>
<td>2566,260 N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>442,5 mm</td>
<td>3506,290 N</td>
<td>2566,260 N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>442,5 mm</td>
<td>186,949 N</td>
<td>186,949 N</td>
<td>150,00 deg</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

obr. 23.: Vstupní hodnoty sil a momentů
Výstupní hodnoty jsou na obr. 26. a obr. 27.

výstup do roviny x-z:

Ohybový moment v rovině x-z je roven $M_{oxz} = 141,846$ Nm

výstup do roviny y-z:
Ohybový moment v rovině y-z je roven $M_{yz} = 413,004 \text{ Nm}$

\[
M_{oS} = \sqrt{M_{ox}^2 + M_{oy}^2} = \sqrt{141,846^2 + 413,004^2} = 436,684 \text{ Nm}
\]

\[
\alpha = 2
\]

\[
M_{oredS} = \sqrt{M_{oS}^2 + \left(\frac{\alpha}{2} \cdot M_{x1}\right)^2} = \sqrt{436,684^2 + \left(\frac{2}{2} \cdot 36,224\right)^2} = 438,184 \text{ Nm}
\]

\[
\sigma_{oredS} = \frac{M_{oredS}}{W_{oS}} = \frac{438,184}{1,63 \cdot 10^{-5}} = 26,827 \text{ MPa}
\]

\[
k = \frac{R_e}{\sigma_{oredS}} = \frac{305}{26,827} = 11,369
\]

5.2.5.2 Výstupní hřídel

$M_{k2} = 1977,892 \text{ Nm}$

Pod šnekovým kolem:

\[
W_{oSK} = \frac{\pi \cdot d^3}{32} - \frac{b \cdot t \cdot (d-t)^2}{2 \cdot d} = \frac{\pi \cdot 0,090^3}{32} - \frac{0,025 \cdot 0,0087 \cdot (0,090 - 0,0087)^2}{2 \cdot 0,090} = 6,36 \cdot 10^{-5} m^3
\]
Návrh pohonu sklepního výtahu

obr. 28.: Vstupní hodnoty sil a momentů

<table>
<thead>
<tr>
<th>Index</th>
<th>Umístění</th>
<th>Radilní zatěžení</th>
<th>Ohybový moment</th>
<th>Spojité zatěžení</th>
<th>Asilní zatěžení</th>
<th>Kroužek momentu</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Y X Velikost Směr</td>
<td>Y X Velikost Směr</td>
<td>Y X Velikost Směr</td>
<td>Velikost</td>
<td>Délka</td>
</tr>
<tr>
<td>1</td>
<td>95 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1977,892 N m</td>
</tr>
<tr>
<td>2</td>
<td>95 mm</td>
<td>-2506,200 N 270,00 deg</td>
<td>2506,200 N 270,00 deg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>95 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1977,892 N m</td>
</tr>
<tr>
<td>4</td>
<td>95 mm</td>
<td>-5376,400 N 180,00 deg</td>
<td>5376,400 N 180,00 deg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>291 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1977,892 N m</td>
</tr>
</tbody>
</table>

obr. 29.: Vstupní hodnoty podpor

<table>
<thead>
<tr>
<th>Index</th>
<th>Typ</th>
<th>Umístění</th>
<th>Reakční síla</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Y X Velikost Směr</td>
</tr>
<tr>
<td>1</td>
<td>Pevná</td>
<td>13 mm</td>
<td>-2707,305 N -1510,022 N 3096,947 N 209,15 deg</td>
</tr>
<tr>
<td>2</td>
<td>Volný</td>
<td>179 mm</td>
<td>-2522,177 N -996,178 N 2711,779 N 201,50 deg</td>
</tr>
</tbody>
</table>

obr. 30.: Výstupní hřídel

Výstupní hodnoty jsou na obr. 31. a obr. 32.

výstup do roviny x-z:

obr. 31.: Ohybový moment v rovině x-z

Ohybový moment v rovině x-z je roven $M_{ozx} = -123,822$ Nm
výstup do roviny y-z:

\[M_{oSK} = \sqrt{M_{oz}^2 + M_{oyz}^2} = \sqrt{(-123,822)^2 + (-224,159)^2} = 256,159 \text{Nm} \]

\[W_{kSK} = \frac{\pi \cdot d^3}{16} - \frac{b \cdot t \cdot (d-t)^2}{2 \cdot d} = \frac{\pi \cdot 0,090^3}{16} - \frac{0,025 \cdot 0,0087 \cdot (0,090 - 0,0087)^2}{2 \cdot 0,090} = 1,35 \cdot 10^{-4} \text{m}^3 \]

\[\sigma_o = \frac{M_{oSK}}{W_{kSK}} = \frac{256,159}{6,36 \cdot 10^{-5}} = 4,028 \text{MPa} \]

\[\tau_k = \frac{M_{k2}}{W_{kSK}} = \frac{1977,892}{1,35 \cdot 10^{-4}} = 14,635 \text{MPa} \]

\[\alpha = 2 \]

\[\sigma_{oredSK} = \sqrt{\sigma_o^2 + (\alpha \cdot \tau)^2} = \sqrt{4,028^2 + (2 \cdot 14,635)^2} = 29,545 \text{MPa} \]

\[k = \frac{R_c}{\sigma_{oredSK}} = \frac{235}{29,545} = 7,954 \]

Statické bezpečnosti vyhovují.
6. Závěr

Na začátku této bakalářské práce byla provedena charakteristika výtahů a jejich rozdělení dle různých kritérií. Dále byla provedena rešerše v oblasti sklepních výtahů. Byl vypracován koncepční návrh konstrukce sklepního výtahu a vytvořena celková dispoziční sestava. Pro sklepní výtah byl navržen rám, elektromotor, spojka, řetěz, převodovky (čelní a šneková).

U čelní dvoustupňové převodovky i u šnekové převodovky byly provedeny podrobné kontrolní výpočty. Tyto kontrolní výpočty byly provedeny dle norem ČSN. Provedené kontrolní výpočty ukázaly, že navržené ozubení, řetězový převod, ložiska, průměry hřídelů a pera vyhovují dovoleným podmínkám.

V prvé řadě byla navržena čelní dvoustupňová převodovka s přídavným převodem a poté šneková převodovka bez přídavného převodu. Nevýhodou šnekové převodovky je nižší účinnost a riziko přehřátí mechanismu. Výhodou šnekové převodovky je tiší chod a možnost dosažení velkých převodových poměrů.

Celá sestava pohonu byla modelována ve 3D programu Autodesk Inventor. Výstupní výtisky jsou připojeny na konec práce v podobě příloh.
Seznam obrázků

obr. 1.: Schéma valivého vodiče ... 12
obr. 2.: Sklepni (stolový) výtah ... 13
obr. 3.: Sklepni (stolový) výtah - bez plného stropu 14
obr. 4.: Sklepni (stolový) výtah – s plným stropem 14
obr. 5.: Sklepni (stolový) výtah - s plným stropem 15
obr. 6.: Dispozice sklepniho (stolového) výtahu 15
obr. 7.: Sestava pohonu - s čelní dvoustupňovou převodovkou 16
obr. 8.: Sestava pohonu - se šnekovou převodovkou 16
obr. 9.: Hřídelová spojka s brzdným s brzdným bubnem ROTEX 42 BTAN 18
obr. 10.: Schéma uspořádání hřídelů a ložisek v převodovce 22
obr. 11.: Vstupní hřídel – otáčení proti směru hodinových ručiček 23
obr. 12.: Vstupní hřídel – otáčení po směru hodinových ručiček 25
obr. 13.: Předlohový hřídel - otáčení po směru hodinových ručiček 26
obr. 14.: Předlohový hřídel - otáčení proti směru hodinových ručiček 28
obr. 15.: Výstupní hřídel – otáčení proti směru hodinových ručiček 30
obr. 16.: Výstupní hřídel - otáčení po směru hodinových ručiček 32
obr. 17.: Vstupní hodnoty sil a momentů výstupního hřídele 45
obr. 18.: Vstupní hodnoty podpor výstupního hřídele 45
obr. 19.: Průhyb do roviny x-z ... 46
obr. 20.: Průhyb do roviny y-z ... 46
obr. 21.: Výstupní hřídel ... 47
obr. 22.: Detail lícového šroubu (číslo výkresu: PM2-2016-00-S) 57
obr. 23.: Vstupní hodnoty sil a momentů .. 58
obr. 24.: Vstupní hodnoty podpor .. 59
obr. 25.: Hřídel se šnekem ... 59
obr. 26.: Ohybový moment v rovině x-z .. 59
obr. 27.: Ohybový moment v rovině y-z .. 60
obr. 28.: Vstupní hodnoty sil a momentů .. 61
obr. 29.: Vstupní hodnoty podpor .. 61
obr. 30.: Výstupní hřídel ... 61
obr. 31.: Ohybový moment v rovině x-z .. 61
obr. 32.: Ohybový moment v rovině y-z .. 62
Seznam tabulek

tab. 1.: Hodnoty elektromotoru ... 17
tab. 2.: Vzdálenosti mezi ložisky a koly ... 23
tab. 3.: Kontrola ozubení pro soukolí 12 (pastorek 1 a kolo1) 33
tab. 4.: Kontrola ozubení pro druhé soukolí 34 (pastorek 2 a kolo 2) 34
tab. 5.: Kontrola ložisek ... 36
tab. 6.: Kuličkové ložisko 6305 .. 36
tab. 7.: Kuličkové ložisko 6407 .. 37
tab. 8.: Jednořadé kuličkové ložisko 6312 ... 38
tab. 9.: Rozměry šnekového soukolí ... 51
tab. 10.: Velikost sil na šneku ... 52
tab. 11.: Velikost sil na šnekovém kole .. 52
tab. 12.: Kontrola dotykového napětí ... 53
tab. 13.: Kontrola zubů šnekového kola na ohyb 53
tab. 14.: Šnek ... 54
tab. 15.: Jednořadé kuličkové ložisko 6208 .. 54
tab. 16.: Axiální kuličkové ložisko obousměrné 52409 54
tab. 17.: Šnekové kolo .. 55
tab. 18.: Jednořadé kuličkové ložisko 6016 .. 55
Seznam příloh

Příloha 1 – PM1–2016–00–P – Sestava pohonu
Příloha 2 – PM1–2016–00–S – Sestava čelní převodovky
Příloha 3 – PM1–2016–01 – Ozubené kolo 1
Příloha 4 – PM1–2016–03 – Víčko 3
Příloha 5 – PM1–2016–04 – Výstupní hřídel
Příloha 6 – PM1–2016–05 – Rám
Příloha 7 – PM2–2016–00–S – Sestava šnekové převodovky
Příloha 8 – PM2–2016–01 – Hřídel se šnekem
Seznam použitých zkratek a symbolů

Vysvětlení použitých symbolů je provedeno přímo v textu bakalářské práce u jednotlivých výpočtů.
Použitá literatura