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1 Introduction

Theory of operator algebras is a vast discipline with a strong
impact to many other branches of modern mathematics such as
noncommutative geometry, quantum probability, theory of oper-
ator spaces, etc. Moreover, operator algebras provide the natural
mathematical framework for classical as well as quantum physics
[28]. In particular, they are used in an axiomatic formulation
of quantum field theory [15]. This makes the theory of opera-
tor algebras interesting not only for mathematicians but also for
theoretical physicists.

The aim of this work is the study of quantum structures by
means of operator algebras. More specifically, in this vast field,
our attention is focused on the well known Bell inequalities and a
certain partial order on operator algebras called the star order.

Bell inequalities, first studied by Bell [6], provide an upper
bound on the strength of correlations between measurements per-
formed on physical systems. They play an important role in foun-
dations of quantum physics especially in the discussion on the local
hidden-variables theories. From the mathematical point of view,
Bell inequalities describe correlations of noncommutative random
variables which, in the C*-algebraic approach, are modeled by
self-adjoint elements in a C*-algebra. Some results concerning
Bell inequalities in the settings of operator algebras can be found,
for example, in [10, 21, 29, 30].

Recently, Bell inequalities have been intensely studied espe-
cially in a context of quantum information theory [23]. The reason
for this lies in a relation between a violation of Bell inequalities
and entanglement [32]. The entanglement is one of the key in-
gredients of quantum information theory and so Bell inequalities
have found significant applications in many areas of this theory
such as quantum cryptography [2, 1], communication complexity
[9], quantum game theory [20, 27], estimates of a bound for the
dimension of the underlying Hilbert space [7, 8, 31], etc. All these
aspects motivate effort to understand the structure of Bell inequal-
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ities and their violation. The deep results in this field have been
recently obtained by applying the powerful techniques of operator
space theory [19, 18, 24, 25].

The next goal of this thesis is the investigation of the star or-
der introduced by Drazin [13]. This partial order has been stud-
ied mainly on matrix algebras where a number of interesting facts
were obtained [4, 5, 16, 17, 22]. Recently, it has also been consid-
ered on the set of all bounded operators on a Hilbert space [3, 11].
This has not only brought new infinite dimensional results but it
has also put older facts on the star order for matrices into a new
perspective.

The star order is related to the well known Gudder order [14].
It turns out that the Gudder order, which can be interpreted
as a logical order on bounded quantum observables, is in fact a
restriction of the star order to the self-adjoint part of the set of
all bounded operators on a Hilbert space. This observation gives,
for example, the solution of preserver problem [12] and infimum
and supremum problem [14, 26] for the star order on bounded
self-adjoint operators.

2 Aims of the doctoral thesis

The first goal of this work is the study of the (CHSH version of)
Bell inequality and its quantum form known as Cirel’son inequal-
ity. This is motivated by the results of Summers and Werner [29].
The main parts of this research can be formulated as follows.

• Generalize the Cirel’son inequality to (real and complex)
linear spaces endowed with a pseudo inner product.

• Examine the structure of maximal violators of the Bell in-
equality in the context of *-algebras and Jordan algebras.

The second goal is the investigation of the star order on certain
*-algebras. This can be regarded as a continuation of the research
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line given by the papers [3, 12, 14]. Our main effort is devoted to
the following points.

• Analyze the star order on partial isometries.

• Investigate the infimum and supremum problem for the star
order on *-algebras of all continuous complex-valued func-
tions on a Hausdorff topological space.

• Explore (nonlinear) maps preserving the star order in both
directions on von Neumann algebras.

3 Bell inequalities

In this section, we summarize our main contributions concerning
Bell inequalities.

3.1 Bell inequalities and linear spaces

Let us recall some concepts and fix the notation. In the sequel,
the symbol F denotes either the real field R or the complex field
C. Let X be a linear space over F. By a pseudo inner product on
X we mean a sesquilinear form Q : X ×X → F such that, for all
x, y ∈ X,

(i) Q(x, y) = Q(y, x),

(ii) Q(x, x) ≥ 0.

A pseudo inner product Q : X × X → F induces a pseudonorm
‖·‖Q given by ‖x‖Q =

√

Q(x, x), x ∈ X. The set of all elements
x ∈ X with ‖x‖Q = 0 will be denoted by NQ.

Using Cauchy-Schwarz inequality, we generalize the Cirel’son
inequality [10] to real and complex linear spaces endowed with a
pseudo inner product.
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Theorem 3.1. Let X be a linear space over F equipped with a
pseudo inner product Q. Then

1

2
sup |Q(a1, b1 + b2) +Q(a2, b1 − b2)| ≤

√
2, (1)

where the supremum is taken over elements ai, bi ∈ X (i = 1, 2)
such that ‖ai‖Q , ‖bi‖Q ≤ 1.

An analysis of (1) turns out that if there are elements ai, bi ∈ X

(i = 1, 2) in which the bound
√
2 is attained, then they have to

satisfy surprising conditions. We mention here only the case of
complex linear spaces (the real case is similar).

Theorem 3.2. Suppose that X is a complex linear space endowed
with a pseudo inner product Q. Let ai, bi (i = 1, 2) be elements of
X with pseudonorms ‖ai‖Q , ‖bi‖Q ≤ 1. If

1

2
|Q(a1, b1 + b2) +Q(a2, b1 − b2)| =

√
2,

then the following holds:

(i) ‖ai‖Q = ‖bi‖Q = 1.

(ii) ReQ(b1, b2) = 0.

(iii) ReQ(a1, a2) = 0.

(iv) There is a complex unit γ and elements n1, n2 ∈ NQ such
that

a1 =
γ√
2
(b1 + b2) + n1,

a2 =
γ√
2
(b1 − b2) + n2.
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3.2 Maximal violation in *-algebras

Let A and B be *-subalgebras of a unital *-algebra C and let ϕ be
a state on C. We say that the Bell inequality is maximally violated
in the state ϕ if there are self-adjoint elements ai ∈ A and bi ∈ B
(i = 1, 2) with a2i , b

2
i ≤ 1 such that

1

2
|ϕ(a1(b1 + b2) + a2(b1 − b2))| =

√
2.

The elements a1, a2, b1, b2 are called maximal violators of the Bell
inequality in the state ϕ.

Since every state ϕ on a unital *-algebra C induces a pseudo
inner product Qϕ on C given by Qϕ(a, b) = ϕ(b∗a) for all a, b ∈ C,
we can apply Theorem 3.2 to describe the structure of maximal
violators.

Theorem 3.3. Let A and B be *-subalgebras of a unital *-algebra
C. Let ϕ be a faithful state on C. Suppose that ai ∈ A and bi ∈ B
(i = 1, 2) are maximal violators of the Bell inequality in the state
ϕ. Then

(i) a2i = b2i = 1,

(ii) a1a2 + a2a1 = b1b2 + b2b1 = 0.

Moreover, there is α ∈ {−1, 1} such that

a1 =
α√
2
(b1 + b2),

a2 =
α√
2
(b1 − b2).

The previous theorem says that maximal violators of the Bell
inequality in a faithful state form realizations of Pauli spin ma-
trices. Recall that self-adjoint elements a1 and a2 of a unital
*-algebra are called a realization of Pauli spin matrices if a21 =
a22 = 1 and a1a2 + a2a1 = 0. Moreover, Theorem 3.3 implies
that A∩B contains a unital *-subalgebra *-isomorphic to M2(C).
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This means that the maximal violation in some faithful state is
not compatible with mutual commutativity of subalgebras A and
B.

Let (A,B) be a pair of *-subalgebras of a unital *-algebra C.
A state ϕ on C is said to be weakly uncoupled across (A,B) if, for
all a ∈ A and b, c ∈ B, we have

ϕ (abc) = ϕ (bac) .

Let us remark that if the algebras A and B commute then any
state on C is weakly uncoupled. Therefore, the following theorem
generalizes the result of Summers and Werner [29].

Theorem 3.4. Let A and B be *-subalgebras of a unital *-algebra
C containing the unit of C. Let ϕ be a weakly uncoupled state on
C across (A,B). If ai ∈ A and bi ∈ B (i = 1, 2) are maximal
violators of the Bell inequality in the state ϕ, then

(i) ϕ(a2i c) = ϕ(c),

(ii) ϕ(b2i c) = ϕ(c),

(iii) ϕ((a1a2 + a2a1)a) = ϕ((b1b2 + b2b1)b) = 0

for all a ∈ A, b ∈ B, and c ∈ C. Moreover, ϕ restricts to a
tracial state on the unital *-subalgebras generated by {1, a1, a2}
and {1, b1, b2}, respectively.

If ϕ in the previous theorem restricts to a faithful state on
*-subalgebras A and B, we obtain that the maximal violators are
again realizations of Pauli spin matrices.

3.3 Maximal violations in Jordan algebras

Let A and B be Jordan subalgebras of a unital Jordan algebra
C and let ϕ be a state on C. We say that the Bell inequality is
maximally violated in the state ϕ if there are elements ai ∈ A and
bi ∈ B (i = 1, 2) with a2i , b

2
i ≤ 1 such that

1

2
|ϕ(a1 ◦ (b1 + b2) + a2 ◦ (b1 − b2))| =

√
2.
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The elements a1, a2, b1, b2 are called maximal violators of the Bell
inequality in the state ϕ.

Recall that two elements a, b in a Jordan algebra A are called
orthogonal if a ◦ b = 0. An element s of a unital Jordan algebra is
called a symmetry, if s2 = 1.

Theorem 3.5. Let A and B be Jordan subalgebras of a unital
Jordan algebra C. Let ϕ be a faithful state on C. Suppose that
ai ∈ A and bi ∈ B (i = 1, 2) are maximal violators of the Bell
inequality in the state ϕ. Then a1, a2 and b1, b2 are orthogonal
symmetries. Moreover, there is α ∈ {−1, 1} such that

a1 =
α√
2
(b1 + b2) ,

a2 =
α√
2
(b1 − b2) .

In order to get an analogue of Theorem 3.4 we introduce the
following notion. Let A and B be Jordan subalgebras of a unital
Jordan algebra C. We say that a state ϕ on C is uncorrelated
across A and B if

ϕ(a ◦ (b ◦ c)) = ϕ(b ◦ (a ◦ c)) ,

for all a ∈ A, b ∈ B and c ∈ A ∪ B.

Theorem 3.6. Let A and B be Jordan subalgebras of a unital
Jordan algebra C. Let ϕ be a state on C uncorrelated across A
and B. Suppose that ai ∈ A and bi ∈ B (i = 1, 2) are maximal
violators of the Bell inequality in the state ϕ. Then, for all a ∈ A,
b ∈ B, and c ∈ C,

(i) ϕ(a2i ◦ c) = ϕ(c),

(ii) ϕ(b2i ◦ c) = ϕ(c),

(iii) ϕ((a1 ◦ a2) ◦ a) = ϕ((b1 ◦ b2) ◦ b) = 0,

(iv) ϕ(ai) = ϕ(bi) = 0.
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A spin system in a unital Jordan algebra A is a collection P
of at least two symmetries different from ±1 such that s ◦ t =
0 whenever s, t ∈ P and s 6= t. If ϕ in the previous theorem
restricts to a faithful state on *-subalgebras A and B, we obtain
that {a1, a2} and {b1, b2} are spin systems.

4 Star order

In this section, we recapitulate the main results of our research
dealing with the star order on proper *-algebras.

A *-algebra A is said to be proper if a∗a = 0 implies a = 0
for any a ∈ A. Important examples of proper *-algebras are a
C*-algebra and a *-algebra C(X) of all continuous complex-valued
functions on a Hausdorff topological space X.

The star order was introduced by Drazin [13] in a general con-
text of so-called proper *-semigroups. Since a proper *-algebra A
carries the multiplicative structure of a proper *-semigroup, we
can define, following Drazin, a partial order on A as follows. Let
A be a proper *-algebra. We say that a ∈ A is less than or equal
to b ∈ A in the star order, written a � b, if

a∗a = a∗b and aa∗ = ba∗.

We write a ≺ b if a � b and a 6= b.

4.1 Star order and partial isometries

LetA be a *-algebra. An element a ∈ A is called a partial isometry
if aa∗a = a. Two projections e and f inA are said to be equivalent,
written e ∼ f , if there is a partial isometry u ∈ A such that
u∗u = e and uu∗ = f .

Theorem 4.1. Let A be a unital proper *-algebra. Suppose that
fi ∈ A (i = 1, 2) are projections. Then the following conditions
are equivalent:

(i) f2 ∼ f1 ≺ f2.



4 STAR ORDER 10

(ii) There are partial isometries ui ∈ A (i = 1, 2) such that
u1 ≺ u2, u1u

∗

1 = u∗2u2 = f1, and u2u
∗

2 = f2.

The preceding result enables us to characterize infiniteness of
C*-algebras in Murray-von Neumann comparison theory. Let us
recall that an element u of a unital C*-algebra is called coisometry
if uu∗ = 1.

Corollary 4.2. A unital C*-algebra C is infinite if and only if
there are a partial isometry u1 ∈ C and a coisometry u2 ∈ C such
that u1 ≺ u2 and u1u

∗

1 = u∗2u2.

4.2 Infimum and supremum problem

We consider the infimum and supremum problem for the star or-
der on a proper *-algebra C(X) of all continuous complex-valued
functions on a Hausdorff topological space X. Using topological
arguments, we obtain the following results.

Theorem 4.3. Let (fα)α∈Λ be a family of elements of C(X).
The infimum

∧

α∈Λ
fα exists whenever X is locally connected or

extremely disconnected.

Theorem 4.4. Let X be a locally connected or an extremely dis-
connected Hausdorff topological space. Suppose that (fα)α∈Λ is a
family of elements of C(X). Then the following conditions are
equivalent:

(i) There exists
∨

α∈Λ
fα.

(ii) There is h ∈ C(X) such that fα � h for any α ∈ Λ.

Let A be an abelian C*-algebra whose spectrum is locally con-
nected or extremely disconnected. Applying the previous results,
we get that the infimum of every subset of A exists. Moreover,
the supremum of a subset M of A exists if and only if M has an
upper bound.
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4.3 Preservers of the star order

Let A and B be C*-algebras. LetM and N be subsets of A and B,
respectively. We say that ϕ :M → N is a star order isomorphism
if ϕ is a bijection such that

a � b⇔ ϕ(a) � ϕ(b)

for all a, b ∈ M . In the sequel, we shall denote An and Asa

the set of all normal elements of A and the set of all self-adjoint
elements of A, respectively. Recall that a bijection ϕ : A → B
is called Jordan *-isomorphism if, for all a ∈ A and b ∈ Asa,
ϕ(a∗) = ϕ(a)∗ and ϕ(b2) = ϕ(b)2.

Our effort is to investigate continuous star order isomorphisms
between various subsets of von Neumann algebras. This is moti-
vated by the result of Dolinar and Molnár [12] in which continuous
star order isomorphisms of self-adjoint part of Type In factors,
where n ≥ 3, were described.

Theorem 4.5. Let A be a von Neumann algebra without Type
I2 direct summand and let B be a von Neumann algebra. Let
ϕ : An → Bn be a continuous star order isomorphism. Suppose
that there is an invertible central element c ∈ B and a function
f : C → C such that

ϕ(λ1) = f(λ) c

for all λ ∈ C. Then f is a continuous bijection with f(0) = 0 and
there is a unique Jordan *-isomorphism ψ : A → B such that

ϕ(a) = ψ(f(a))c

for all a ∈ An.

The following corollary describing certain continuous star or-
der isomorphisms between abelian von Neumann algebras is an
immediate consequence of the preceding theorem.

Corollary 4.6. Let A and B be abelian von Neumann algebras.
Let ϕ : A → B be a continuous star order isomorphism. Suppose
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that there is an invertible element c ∈ B and a function f : C → C

such that
ϕ(λ1) = f(λ) c

for all λ ∈ C. Then f is a continuous bijection with f(0) = 0 and
there is a unique *-isomorphism ψ : A → B such that

ϕ(a) = ψ(f(a))c

for all a ∈ A.

The next theorem is a version of Theorem 4.5 for star order
isomorphisms between self-adjoint parts of a von Neumann alge-
bras.

Theorem 4.7. Let A be a von Neumann algebra without Type
I2 direct summand and let B be a von Neumann algebra. Let
ϕ : Asa → Bsa be a continuous star order isomorphism. Suppose
that there is an invertible central self-adjoint element c ∈ B and a
function f : R → R such that

ϕ(λ1) = f(λ)c

for all λ ∈ R. Then f is a continuous bijection with f(0) = 0 and
there is a unique Jordan *-isomorphism ψ : A → B such that

ϕ(a) = ψ(f(a))c

for all a ∈ Asa.

Corollary 4.8. Let A be a von Neumann algebra without Type
I2 direct summand and let B be a von Neumann algebra. Let
ϕ : Asa → Bsa be a continuous star order isomorphism. If

ϕ(λ1) = λ1

for all λ ∈ R, then ϕ is the restriction of a Jordan *-isomorphism
ψ : A → B to Asa.

The following result is another version of Theorem 4.5.
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Theorem 4.9. Let A be a von Neumann algebra without Type
I2 direct summand and let B be a von Neumann algebra. Let
ϕ : A → B be a continuous star order isomorphism. Suppose
that there is an invertible central element c ∈ B and a function
f : C → C such that

ϕ(λ1) = f(λ)c

for all λ ∈ C. Then ϕ(An) ⊆ Bn, f is an injective function with
f(0) = 0, and there is a unique Jordan *-isomorphism ψ : A → B
such that

ϕ(a) = ψ(f(a))c

for all a ∈ An.

As a simple consequence of the previous theorem, we obtain
the result concerning the automatic linearity of certain star order
isomorphisms between von Neumann algebras. This result is an
analogue of Corollary 4.8. Note that we do not assume that ϕ
preserves the self-adjoint elements.

Corollary 4.10. Let A be a von Neumann algebra without Type
I2 direct summand and let B be a von Neumann algebra. Let
ϕ : A → B be a continuous star order isomorphism such that

ϕ(λ1) = λ1

for all λ ∈ C. Suppose that

ϕ(a+ ib) = ϕ(a) + iϕ(b)

for all a, b ∈ Asa. Then ϕ is a Jordan *-isomorphism.

The preceding corollary provides a new characterization of Jor-
dan *-isomorphisms in which the condition of linearity seems to
be very relaxed.
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5 Conclusion

The Cirel’son inequality has been generalized to real and complex
linear spaces endowed with a pseudo inner product. Moreover, the
structure of maximal violators of the (CHSH version of) Bell in-
equality has been studied in the context of *-algebras and Jordan
algebras. It has been shown that maximal violators are closely
related to Pauli spin matrices.

The investigation of the star order on partial isometries has
led to a new characterization of infinite C*-algebras. Further-
more, the infimum and supremum problem for the star order on
an algebra C(X) has been investigated. We have shown that
every upper bounded subset of C(X) has the infimum and the
supremum whenever X is a locally connected or an extremely
disconnected Hausdorff topological space.

The star order isomorphisms have been examined. We have
completely described the structure of certain nonlinear continuous
star order isomorphisms from the normal part of a von Neumann
algebra without Type I2 direct summand onto the normal part
of another von Neumann algebra. We have also discussed several
modifications of this result. Some interesting corollaries of these
assertions have been mentioned.
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Resumé

Disertačńı práce se zabývá Bellovými nerovnostmi a částečným
uspořádáńım nazývaným *-uspořádáńı. Tyto dvě struktury jsou
zkoumány pomoćı teorie operátorových algeber.

Studium Bellových nerovnost́ı je zaměřeno na CHSH verzi
Bellovy nerovnosti a jej́ı kvantovou formu nazývanou Cirel’sonova
nerovnost. Cirel’sonova nerovnost je zobecněna do reálných a
komplexńıch lineárńıch prostor̊u s pseudo skalárńım součinem.
Výsledky obdržené na této abstraktńı úrovni jsou poté aplikovány
na studium maximálńıho narušeńı (CHSH verze) Bellovy nerovno-
sti formulované v matematickém rámci *-algeber. Je ukázáno,
že prvky maximálně narušuj́ıćı Bellovu nerovnost úzce souviśı s
Pauliho spinovými maticemi. Tyto výsledky jsou zobecněny do
neasociativńıho př́ıpadu Jordanových algeber.

Daľśı oblast́ı našeho zájmu je *-uspořádáńı. Toto uspořádáńı je
uvažováno na vhodných *-algebrách. Jako d̊usledek naš́ı analýzy
*-uspořádáńı na částečných isometríıch obdrž́ıme novou charakte-
rizaci nekonečných C*-algeber. Poté se věnujeme problému exis-
tence infima a suprema v př́ıpadě *-uspořádáńı na *-algebře C(X)
všech spojitých komplexńıch funkćı na Hausdorffově topologickém
prostoru X. Je dokázáno, že pokud topologický prostor X je
lokálně souvislý nebo extrémně nesouvislý, potom každá shora
omezená (vzhledem k *-uspořádáńı) podmnožina algebry C(X)
má infimum a supremum. Jako d̊usledek tak dostaneme např́ıklad
existenci infima a suprema libovolné shora omezené podmnožiny
abelovské von Neumannove algebry.

Nakonec je zkoumán problém spojitých (obecně nelinearńıch)
zobrazeńı zachovávaj́ıćıch *-uspořádáńı. Je popsána struktura jis-
tých spojitých bijektivńıch zobrazeńı mezi normálńımi částmi von
Neumannových algeber, která zachovávaj́ı *-uspořádáńı. Různé
varianty tohoto výsledku stejně jako jejich d̊usledky jsou disku-
továny.
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