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Abstract

We explore the estimation of origin-destination (OD), city-pair, air passengers, in order

to explicitly take into account spatial autocorrelation. To our knowledge, we are the �rst to

test the presence of spatial autocorrelation and apply spatial econometric OD �ow models to air

transport. Drawing on a world sample of 279 cities, over 2010�2012, we �nd signi�cant evidence
of spatial autocorrelation in air passenger �ows. Thus, contrary to common practice, we need

to incorporate the spatial structure present in the data, when estimating OD air passengers.

Importantly, failure to do it, may lead to ine¢ cient estimated coe¢ cients and prediction bias.

Keywords: Spatial autocorrelation, spatial econometric origin-destination �ow model, air

passenger �ows.
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1 Introduction

This paper investigates the estimation of origin-destination (OD) air passenger volume. Our interest

is to estimate air passenger tra¢ c from one city to another. Among the factors that make a city

attractive for passengers, the literature has mainly focused on the size of the city population and

its socioeconomic development, as measured, for example, by income per capita. However, much

less attention has been given to the spatial dependence among these factors.

Spatial dependence means the co-variation of factors within a geographic space. In our context,

this implies that the characteristics at proximal cities may impact air passenger �ows, between

two cities.1 Because spatial dependence violates the typical independence assumption made in

regression analysis, our aim is to study whether and how spatial dependence plays a role, when

estimating OD air passengers. Importantly, failure to properly account for spatial dependence,

when it exists, may lead to ine¢ cient estimated coe¢ cients and prediction bias, among others.

Our paper has three main motivations. The �rst one is empirical: Spatial interaction models

focus on OD �ow data. Among them, gravity models have been extensively used, with numerous

applications in trade, migration and air transportation.2 The main particularity of gravity models

is that they rely on a function of the distance between origin and destination (together with

characteristics of both origins and destinations), assuming that distance can e¤ectively eliminate

the spatial dependence potentially present in OD �ow data.

However, numerous investigations have challenged this assumption, both theoretically and em-

pirically.3 A proli�c strand of literature has emerged, proposing alternative ways to extend spatial

interaction models to account for spatial dependence. Among others, Lesage and Pace (2008)

propose to incorporate spatial autoregressive dependence (spatial lag), while Dubin (2003) works

with a spatially auto correlated error term (spatial error).4 Our motivation is to contribute to this

debate and assess whether these two forms of spatial structure play any role, when estimating OD

air passenger �ows.

Second, from an applied point of view, being able to estimate the number of air passengers

between two cities at a given point in time is of major importance both for aircraft manufacturers

and airlines. Aircraft manufacturers, such as Airbus, rely on this type of modeling to assess

the future demand for civil passenger and freighter aircraft, which in turn, steer them towards

innovation. Airlines also need these models to decide whether to open new routes, o¤er more

1See Lesage and Pace (2008) for a discussion.
2Bhadra and Kee (2008), Doganis (2004), Jorge-Calderon (1997) and Russon and Riley (1993) are examples of

the application of gravity models to air transport. See Grosche et al. (2007) for a literature review.
3Curry (1972) has been the �rst to argue that spatial autocorrelation e¤ects are confounded with distance decay

e¤ects during the estimation of gravity model parameters. In turn, using journey-to-work data, Gri¢ th and Jones in

1980 show that spatial autocorrelation matters. Tiefelsdorf in 2003 arrives to the same conclusion, using migration

�ow data.
4See also Dubin (2004) and Lesage and Pace (2004 and 2010).
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frequencies and/or increase aircraft capacity.

Finally, from a policy standpoint, better predicting OD air passengers can also be useful for

airport planners, government and non-government agencies and air transport and economic policy-

makers world-wide. As an illustration, since the 1979 Airline Act Deregulation in the US, there has

been a global trend towards liberalization of air travel in Europe, Asia and Latin America. There

is now a strong need to evaluate the impact of these regional measures on air tra¢ c. Properly

accounting for spatial interactions can help us better evaluate the e¤ect of these policies.

Drawing on a sample of 279 cities around the world over the period 2010� 2012, we �rst apply
the traditional gravity model to estimate air passenger �ows. Second, we test the presence of spatial

autocorrelation. Third, inspired by Dubin (2003) and Lesage and Pace (2008), we introduce two

spatial connectivity matrices, for origin and destination spatial dependence, and modify the gravity

model to account for spatial dependence, both in air passenger �ows and the disturbances.

To our knowledge, we are the �rst to test the presence of spatial autocorrelation and apply

spatial econometric models that account for spatial dependence to air transport.5 Another virtue

of our application is that the dataset is global, that is, the 279 cities belong to the �ve continents.

We estimate six spatial models, which allow for spatial autoregressive dependence or spatially

auto correlated error term. We then compare each of these six spatial models with the gravity model,

which assumes no spatial dependence. Based on Akaike informational criteria and likelihood ratio

tests, we conclude that any spatial model is better than the least-square one.

This result has two key implications. First, we need to incorporate the spatial patterns of

the geographical phenomena, when estimating OD air passengers. Second, despite the common

practice, least-square estimates and inferences that ignore this spatial dependence in air transport

seem not to be justi�ed.

The paper closest to ours is Lesage and Pace (2008). They propose a way to incorporate spatial

autoregressive dependence to the traditional gravity model. We extend their model, by allowing

for a spatially autocorrelated error term. We apply their technical results to air transport and

conclude that spatial dependence matters when estimating air passenger �ows.

The paper proceeds as follows. Section two introduces the traditional gravity model we consider

here and the modi�cation to account for spatial dependence, both in air passenger �ows and the

disturbances. Section three presents the data set. Section four shows the estimate results, �rst

assuming independent observations and then allowing for spatial dependence. Section �ve discusses

one application of this type of modeling to air transport. Concluding remarks are in section six.

Additional estimate results and robustness checks are relegated to the Appendix.

5By calibrating a gravity model for 100 American cities in 1970, Fotheringham (1981) shows evidence of the

relationship between distance decay parameters and the size and con�guration of origins and destinations. Boros et.

al in 1993 test the presence of spatial autocorrelation, using data on daily �ights for nine main airlines operating in

US domestic market in 1992.
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2 Spatial interaction model for (OD, city pair) air passenger �ows

Section 2 starts by introducing the notation needed to model (OD, city-pair) air passenger �ows.

Second, it presents one type of spatial interaction model, the square gravity model, assuming

independent observations. Third, following Dubin (2003) and Lesage and Pace (2008), it introduces

two spatial connectivity matrices for origin and destination spatial dependence and modi�es the

spatial interaction model to account for spatial dependence, both in air passenger �ows and the

disturbances.

2.1 Air passenger �ows

At any time period t, let Yt be an n � n matrix of air passenger �ows, where the n columns
represent cities of origin (o) 1 to n and the n rows correspond to destination cities (d) 1 to n :

Yt =

0BBBBB@
o1 ! d1 o2 ! d1 ::: on ! d1

o1 ! d2 o2 ! d2 ::: :::

on ! dn�1

on ! dn

1CCCCCA (1)

As in Lesage and Pace (2008), we can create an N�1 vector of air passenger �ows, with N = n2,

from the �ow matrix (1) in two ways: an origin-centric ordering or a destination-centric ordering.

Denote yt the N � 1 air passenger �ow vector. An origin-centric ordering requires yot = vec(Yt),
whereas a destination-centric ordering needs ydt = vec(Y

0
t).

Without loss of generality, hereafter, we focus on the origin-centric ordering, hence yt = yot ,

with the �rst n rows of yt corresponding to air passengers from origin 1 to all the n destination

cities at period t, while the last n rows of yt referring to air passengers from city of origin n to all

the n destination cities, also at t. For brevity, hereafter, we omit the subindex t.

2.2 Gravity model with independent observations

The square (n2 = N) gravity model we study here relates average air passenger �ows to the origin

and destination city characteristics. Also, it models interdependence among observations using

distance.

De�ne X as the n � k matrix of explanatory variables, containing k characteristics of the n
cities. Given the N � 1 vector of air passenger �ows, y, we need to repeat X n times to create an

N �k matrix, that we label Xd, which contains the characteristics of the destination cities. Hence,
Xd = in 
X, with in an n� 1 unit vector and 
 the Kronecker product. Similarly, we de�ne the
N � k matrix of origin characteristics as Xo = X
 in:6

6Xo repeats the characteristics of the origin city 1, n times to form the �rst n rows of Xo; the characteristics of
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Let G be an n � n matrix of distances between origins and destinations and g � vec(G) is a
N � 1 vector of these distances from each city of origin to each destination city.

The least square regression of the N gravity model becomes,

y = �iN + �dXd + �oXo + 
g + u; (2)

with �iN an N�1 constant parameter vector, �d and �o the k�1 parameter vectors and 
 the scalar
distance parameter. Finally, we assume for the moment the N � 1 error vector as u � N(0; �2IN ).

2.3 Spatial dependence

The previously de�ned gravity model assumes independence among observations. However, this

assumption may be inadequate in many applications (see Gri¢ th (2007) for a discussion). More-

over, the failure to consider spatial dependence may lead to ine¢ cient estimated coe¢ cients and

prediction bias, among others.

In order to account for spatial dependence, we start by introducing the neighbourhood weight

matrix, W.7 The m-nearest neighbour weight matrix W represents a n � n non-negative, sparse
matrix, with element wij > 0 if city i is one of the m-nearest neighbours to city j and

P
j wij = 1.

Intuitively, wij measures the intensity of neighbourhood between cities i and j. By convention,

wii = 0.8

As in Lesage and Pace (2008), we can de�ne the N � N row-standardized, destination-based

spatial weight matrixWd, asWd = In 
W or,

Wd =

0BBBBB@
W 0n ::: 0n

0n W :::
...

...
. . . 0n

0n ::: 0n W

1CCCCCA , (3)

with In the n�n identity matrix and On an n�n matrix of zeros. This way, the spatial lag N � 1
vectorWdy contains the spatial average of air passenger �ows from all neighboring destinations to

each origin. It then introduces destination-based spatial dependence in the gravity model.

Similarly, we introduce the origin-based spatial dependence by forming theN�N row-standardized,

origin-based spatial weight matrixWo; asWo =W
In. The spatial lag of the dependent variable
Woy measures the connectivity relationship between all neighboring origins and each destination.

the origin city 2, n times to form the next n rows of Xo and so on.
7There is no consensus about how to best de�ne the neighbourhood weight matrix and several alternative forms

have been used in the literature. Overall, they depend in some way on the distance between the origin and destination.

See Dubin (2003) for a discussion.
8Section 4 describes how we de�ne the m-nearest neighbours.
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Adding the spatial weight matricesWo andWd to (2), we de�ne the following family of spatial

autocorrelation models, which allow for spatial dependence, both in the air passenger �ow vector

y and the disturbance u,

y = �oWoy + �dWdy + �iN + �dXd + �oXo + 
g + u

u = �oWou+ �dWdu+ ";
(4)

with " � N(0; �2"IN ). As discussed in Anselin (1988), the members of the family of spatial auto-
correlation models can be derived from formulation (4). Setting �o = �d = 0 results in a LAG

or "lagged autoregressive model", where the spatial dependence is modeled as occurring in the

air passenger �ow vector y. Woy then captures the origin-based spatial dependence, while Wdy

re�ects the destination-based spatial dependence.9

In turn, the case where �o = �d = 0 yields a SEM or "Spatial Error model", where the

disturbances follow a spatial autoregressive process.10 Finally, a model where all �o, �d, �o and

�d parameters are non zero implies a SAC or "Spatial Autocorrelation model", which allows for

spatial autoregressive dependence both in air transport �ows and the disturbances.11

By taking di¤erent assumptions on the strength of dependence parameters �o, �d, �o and �d

and for simplicity�s sake, we study seven special models of (4), as follows.

� Model 1: Assumption �o = �d = �o = �d = 0 yields the gravity model with independent

observations of section 2:2.

� Model 2: Assumption �d = �o = �d = 0 implies spatial dependence in the air passenger �ow
vector y and a single weight matrixWo, re�ecting origin-based spatial dependence.

� Model 3: Assumption �o = �o = �d = 0 results in another LAG model, with a single weight
matrixWd, which captures autoregressive spatial dependence at destination.

9Focusing on this type of spatial dependence, Lesage and Pace (2008) consider a more general model:

y = �oWo + �dWd + �wWw + �iN + �dXd + �oXo + 
g + ";

withWw =Wo �Wd = IN � �oWo � �dWd + �d�oWd �Wo.

The spatial weight matrix Ww re�ects an average of �ows from neighbours to the origin to neighbours to the

destination.
10Focusing on spatial autocorrelation models which contain spatial errors, Dubin (2003)�s model writes as follows,

Y = X� + u;

u = �Wu+ ";

withW a spatial weight matrix.
11However, as stated by Dubin (2004), spatial autocorrelation models, with both a spatial lag and spatial error,

are seldom used in practice, since it is very di¢ cult to estimate them. See her Footnote 1.
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� Model 4: Assumption �o = �d and �o = �d = 0 also results in a LAG model, with a

di¤erent single weight matrix, which we denote Wg, with Wg � 1
2 (Wo +Wd), re�ecting a

cumulative, non separable origin and destination spatial dependence e¤ect.

� Model 5: Assumption �o = �d = �d = 0 allows for spatial autocorrelation in the errors,

with a single weight matrix Wo. �o then measures the intensity of the origin-based spatial

autocorrelation of the disturbances.

� Model 6: Assumption �o = �d = �o = 0 di¤ers from model 5 in the weight matrixWd and

the fact that �d measures the intensity of the destination-based spatial autocorrelation of the

errors.

� Model 7: Assumption �o = �d and �o = �d = 0 results in the weight matrixWg; the spatially

auto correlated disturbances imply a cumulative, non separable origin and destination spatial

dependence.

We rely on maximum-likelihood estimation procedures for the previous models, based on the

technical results shown in Lesage and Pace (2008).

3 The data

Section 3 presents the dataset we use to apply spatial interaction models to air transport.

First, to measure OD air passenger �ows, we rely on Sabre Airline Solutions�proprietary data

intelligence solution, Global Demand Data (GDD), which provides air travel itineraries between

airports all over the world, since 2002.12 Speci�cally, we consider annual, OD, city to city air

passengers, over the period 2010�2012. The resulting dataset contains both economy and business
passengers.13

Second, we use four explanatory variables, two of which are only available for a subset of 279

cities. The four explanatory variables are annual average air fares, gross domestic product (GDP),

population per city and great-circle (GC) distance, per city-pair.

Sabre GDD provides information on air fares. Global Metromonitor 2012 provides information

on GDP, population, employment and GDP per capita for 279 large metropolitan economies in the

world, as measured by the size of their economies in 2010.14 We consider real GDP at purchasing

power parity (PPP) and population for these metro areas, over the period 2010� 2012.
12GDD aggregates information from world distribution systems, like Sabre, Amadeus and Galileo and performs

adjustments to estimate total demand.
13We aggregate air passengers by city. Thus, we do not distinguish between cities with multiple airports.
14Global Metromonitor 2012 provides this information for 300 metro-areas. However, 21 of them have not been

considered, due to one of the following reasons: lack of air tra¢ c or because they were areas between two cities. See

http://www.brookings.edu/research/reports/2012/11/30-global-metro-monitor for details.
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Importantly, the availability of data on GDP and population constrains the number of OD air

passenger �ows to consider to 2792 = 77841 city-pairs.

Figure 1 and Table 1 show the representativeness per region of the 279 cities considered here.

Table 1: The 279 cities considered

Region Number of cities Icon in the map

Asia/Paci�c 85 4
Europe 78 �
North America 81 

CIS 3 �
Africa 7 3

Middle East 5 N
Latin America 20 �

Figure 1: Geographical representativeness of the 279 cities

Table 2 presents the descriptive statistics of the variables under study, in 2012:
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Table 2: Descriptive statistics, 2012

Air passengers Population Nominal GDP GC distance Annual average

(thousands) (mill $, PPP) (km) air fares ($)

Mean 15526 4565 135192 7698 754

Median 106 2745 83639 8173 620

Std Dev 89714 5248 164134 4444 886

N 77841 77841 77841 77841 77841

4 Model estimations

Relying on the data presented in section 3, section 4 estimates the family of seven models introduced

in section 2:3. Section 4 has three parts. The �rst part estimates model 1, assuming independent

observations, that is, �o = �d = �o = �d = 0 in equation (4). The second part tests the absence of

spatial dependence in air passenger �ows. Finally, by creating the two spatial connectivity matrices

for origin and destination spatial dependence, Wo and Wd respectively, the third part estimates

the remaining six models.

The air passenger �ow matrix (1), one for each time period, contains annual air passengers from

each of the n cities of origin to each of the n destination cities, over the period 2010�2012.15We then
transform each air passenger �ow matrix, using log(vec(Y)) = log(y), to produce a cross-sectional

vector, representing the logged air passenger �ows.

4.1 Model 1, assuming independent observations

We consider four alternative speci�cations of model 1 (�o = �d = �o = �d = 0 ). In speci�cation

(1:a), the two explanatory variables are real GDP, at PPP, and population. After eliminating all

zero-�ows and due to appropriate transformations of the matrix X of explanatory variables, we

obtain the N � 2 matrices Xo and Xd, containing the GDP and the population of the origin and
destination cities, respectively. Also, we create the N � 1 vector log(g) � log(vec(G)), containing
the distances from each city of origin to each destination city.

Speci�cation (1:b) adds to (1:a) 12 indicator variables, one for each origin and destination region.

Xo and Xd then become N�14 matrices. In turn, speci�cation (1:c) adds (logged) average air fares
to (1:b). Finally, instead of eliminating the zero passenger �ows as in (1:a) to (1:c), speci�cation

(1:d) modi�es the dependent variable, using log(1 + y), and then introduces an indicator variable,

which takes the value of 1 if the passenger �ow is 1.

Since the presence of zero air passenger �ows is one of the typical problems that arise in applied

practice, we brie�y discuss it here. Several approaches exist to deal with this issue: Zero �ow

15The number of n origin and destination cities varies from year to year.
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elimination (provided the number of these �ows is not too large); modi�cation of the dependent

variable, using log(1 + y) to accommodate the log transformation, and Poisson regressions.

As mentioned, we follow the �rst and second approach, that is, speci�cations (1:a) to (1:c)

eliminate the zero air passenger �ows, while speci�cation (1:d) modi�es the dependent variable,

using log(1 + y) and introduces the indicator variable for the zero counts. The reasons for this

choice follow.

First, the number of zero counts, representing 22% of total �ows in 2012,16 does not invalidate

the use of least-squares regressions. Second, introducing the indicator variable for zero �ows (after

the log(1+y) transformation) allows us to measure whether the non-availability of a �ight between

two cities (that is, the case of a zero �ow) may a¤ect the estimate results. Third, Poisson regression

is mostly used when there is a large proportion of zero �ows. By large, Fisher and Lesage (2010)

mean greater than 50% to 70% of total �ows. We are far from these percents.

Another di¢ culty that arises when estimating �ow data is the treatment of intra-regional �ows

and inter-regional �ows.17 Since intra-regional �ows tend to be considerably larger than inter-

regional �ows, two common practices exist to deal with them. First, set the �ows in the main

diagonal to zero18. Second, as Lesage and Pace (2008) propose, create separate models for each

type of �ow. The latter is to avoid that large intra-regional �ows excessively in�uence the coe¢ cient

estimates of the origin and destination explanatory variables.

In contrast, we do not need to choose between these procedures, because, by de�nition, �ows

in the main diagonal of the air passenger �ow matrix (1), representing air passengers within cities,

are zero.

Table 3 presents the results of the four speci�cations of model 1, for 2012. The model estimations

for 2010 and 2011 are in the appendix.

16The proportion of zero counts represents 23% of total �ows, both in 2010 and 2011.
17 Intra-regional �ows are �ows within the region, which are in the main diagonal of the �ow matrix; inter-regional

�ows are �ows between regions.
18See Tiefelsdorf (2003) and Fischer and Lesage (2010).
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Table 3: Model estimations with independent observations, 2012

Variable (1:a) (1:b) (1:c) (1:d)

Constant �10:386��� �12:399��� �11:845��� �7:403���

log(GDP o) 1:448��� 1:083��� 1:207��� 1:072���

log(POP o) �0:231��� 0:351��� 0:215��� 0:078���

log(GDP d) 1:464��� 1:088��� 1:214��� 1:076���

log(POP d) �0:256��� 0:337��� 0:197��� 0:061���

log(vec(G)) �1:530��� �1:465��� �0:756��� �0:283���

IOAsia Pacific �0:601��� �0:737��� �0:656���

IOEurope 0:562��� 0:203��� �0:005
IONorthAmerica 0:823��� 0:514��� 0:258���

IOCIS 0:009 �0:294�� �0:400���

IOAfrica 0:853��� 0:701��� 0:432���

IOMiddle East 0:395��� 0:412��� 0:283���

IDAsia=Pacific �0:630��� �0:776��� �0:690���

IDEurope 0:511��� 0:163��� �0:029
IDNorth America 0:827��� 0:524��� 0:263���

IDCIS �0:045 �0:343��� �0:446���

IDAfrica 0:808��� 0:663��� 0:403���

IDMiddle East 0:358��� 0:375��� 0:249���

log(Fare) �1:039��� �1:477���

1{Zero Flow} �14:889���

Observations 60188 60188 60188 77841

Adjusted R2 0:411 0:454 0:475 0:696

AIC 277597 273071 270641 332488

P-value F-Stat < 0:001 < 0:001 < 0:001 < 0:001

Note. Level of signi�cancy : * 10% , ** 5 % , *** 1%.

With four exceptions, the variable estimates in table 3 are signi�cant at the usual con�dence

levels. Distance and air fares are always signi�cant and negative, whereas GDP and population,

both at the origin and destination, are positive, with two exceptions in speci�cation (1:a). Based

on the adjusted R2, we opt for speci�cation (1:d).19

A characteristic of the previously estimated models is that changes in the value of an explanatory

variable associated with a city will potentially impact air passenger �ows to other cities. As an

19Fisher and Lesage (2010) note that using log(1 + y) may potentially lead to downward bias in the coe¢ cient

estimates. Nevertheless, we do not �nd any evidence of this downward bias. Also, we prefer speci�cation (1:d),

because it allows us to compare easily the traditional gravity model with models that account for spatial dependence

(section 4:3).
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example, a ceteris paribus 1% decrease in the explanatory variable GDP in city i implies that city

i will be viewed di¤erently, both as an origin and a destination. Given matrices Xd and Xo, the

�1% of GDP of city i will result in changes of 2n observations of the explanatory variable matrices.

Continuing with the example, an estimated 1:072 coe¢ cient for GDP at origin in speci�cation

(1:d) means that due to the 1% downside in city i economy, residents of city i will be less propense

to travel by air, because of the wealth e¤ect. The city will then exert less push, leading to an

expected 1:072% decrease in air tra¢ c from this city. Also, city i will exert less pull, resulting in a

predicted 1:076% drop in air tra¢ c to this city.

Interestingly, indicator variables for regions, at the origin and destination, are signi�cant, with

2 exceptions. This suggests that overall, spatial heterogeneity across regions is relevant.20 Finally,

the estimated coe¢ cient for the indicator variable 1{Zero Flow} downscales the e¤ect that zero �ows

have on OD air passengers.

4.2 Testing the absence of spatial autocorrelation

We start by specifying the neighbourhood weight matrix,W. We then test the absence of spatial

autocorrelation for the OD, city pair, air passenger �ows and the residuals of model (1:d) estimation,

using a Moran test.

To compute W, we rely on the method of the m nearest neighbours, in terms of great circle

distance, with m = 3.21

4.2.1 Moran�s test for the OD air passenger �ow

Since the distribution of the OD air passenger �ows is non Gaussian, we use the non-free sampling

(randomization) version of the Moran Test, with 1000 permutations.22

Figure 2 shows the density plots of the permutation outcomes, for the neighbour matrixesWo

(top) andWd (bottom).

20Spatial heterogeneity refers to the variation of OD air passengers across regions. It implies that parameters vary

by location.
21After trying other values for m, we choose m = 3, since it avoids having abnormal neighbours, from a geographic

point of view. See the appendix for the geographic representation of the neighbourhood matrix.
22For a �xed neighbourhood matrixWd orWo, the non-free sampling version of the Moran Test consists of randomly

drawing T permutations (here T = 1000) of the cross sectional air passenger vector y, computing the Moran index I

for each permutation and the Imin; Imax. It then compares the observed Moran�s I with the interval [Imin; Imax]. We

reject Ho if Moran�s I does not belong to this interval.
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Figure 2: Moran test for air passenger �ows (non-free sampling version)

Note. Density plots of the permutation outcomes, for the neighbour matrixes Wo (top) and Wd (bottom).

Because both Moran indexes are far above their intervals [Imin; Imax], we reject the null of

absence of spatial autocorrelation.

4.2.2 Moran�s test for the residuals of the gravity model (1:d)

Table 4 shows the results of the free-sampling version of the Moran test for the residuals of speci-

�cation (1:d).

Table 4: Moran test for the residuals of the gravity model (1:d) (free-sampling version)

Variable Moran�s I statistic P � value

Test withWo 144:39 < 0:001

Test withWd 146:53 < 0:001
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As before, we reject the null of absence of spatial autocorrelation. We conclude that least square

estimates and inferences that ignore the spatial dependence present in our data are not justi�ed. In

the next section, we estimate spatial interaction models that allow for spatial dependence (models

2 to 7, as de�ned in section 2:3).

4.3 Models 2 to 7, with spatial dependence

Taking di¤erent assumptions on the strength of the dependence parameters, �o, �d, �o and �d

table 5 presents the estimation results. As stated in section 2:3, models 2 to 4 allow for spatial

dependence in the air passenger �ow vector y, while models 5 to 7 allow for spatial autocorrelation

in the disturbances. All models have a single weight matrix.
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Table 5: Model estimations with spatial dependence, 2012

Variable Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

Constant �10:748��� �10:706��� �13:466��� �13:961��� �13:983��� �27:258���

log (GDP o) 1:324��� 0:714��� 0:978��� 1:381��� 1:129��� 1:541���

log (POP o) 0:042��� �0:051��� �0:072��� �0:008 0:175��� 0:020

log (GDP d) 0:723��� 1:324��� 0:979��� 1:125��� 1:377��� 1:527���

log (POP d) �0:066��� 0:031�� �0:081��� 0:165��� �0:015 0:022���

log (vec(G)) �0:050��� �0:046��� 0:146��� �0:198��� �0:192��� 0:334���

IOAsia Pacific �0:401��� �0:332��� �0:128��� �0:598��� �0:700��� �0:158���

IOEurope 0:270��� �0:112��� 0:149��� 0:430��� 0:290��� 1:699���

IONorthAmerica 0:166��� 0:013 �0:049� 0:470��� 0:493��� 1:199���

IOCIS �0:636��� �0:396��� �0:613��� �0:395��� �0:141 0:284���

IOAfrica 0:698��� 0:324��� 0:577��� 0:290��� 0:454��� 1:212���

IOMiddle East �0:097� 0:114�� �0:218��� 0:262��� 0:426��� 0:620���

IDAsia=Pacific �0:373��� �0:438��� �0:170��� �0:719��� �0:613��� �0:164
IDEurope �0:132��� 0:247��� 0:127��� 0:272��� 0:421��� 1:682���

IDNorth America 0:011 0:163��� �0:587�� 0:509��� 0:492��� 1:228���

IDCIS �0:427��� �0:684��� �0:646��� �0:184��� �0:430��� 0:247

IDAfrica 0:303��� 0:673��� 0:556��� 0:420��� 0:259��� 1:173���

IDMiddle East 0:087 �0:122�� �0:236��� 0:407��� 0:236��� 0:614���

log (Fare) �1:195��� �1:199��� �0:966��� �1:301��� �1:308��� �0:947���

1{Flow Nul} �12:145��� �12:156��� �9:893��� �12:865��� �12:910��� �9:763���

�o 0:358���

�d 0:360���

�w 0:655���

�o 0:516���

�d 0:520���

�w 0:877���

Adjusted R2 0:755 0:755 0:804 0:760 0:761 0:812

AIC 315850 315561 298340 314000 313520 295030

P-value F-Stat < 0:001 < 0:001 < 0:001 < 0:001 < 0:001 < 0:001

Notes. Level of signi�cancy : * 10% , ** 5 % , *** 1%.

Observations, models 2 to 7: 77841.

Table 5 shows that population, GDP (both at the origin and destination), annual average air

fares and great-circle distance continue to be signi�cant, at usual con�dence levels. However, a

direct comparison of the values of the coe¢ cients from the least-square estimates and the spatial
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models 2 to 4 is not valid (see Lesage and Pace (2008) and Lesage and Thomas-Agnan (2014))23

If we �rst focus on models 2 to 4, the estimates for �o = 0:358 and �d = 0:360 indicate

spatial dependence of almost equal importance, between neighbours to the origin and neighbours

to the destination. It then provides evidence in favour of a cumulative, non separable origin and

destination spatial dependence e¤ect, as captured in model 4.

We obtain the same conclusion if instead, we focus on models 5 to 7, that is, there is evidence

of a cumulative, non separable origin and destination spatial dependence e¤ect in the disturbances.

Importantly, table 5 shows high levels of spatial dependence, regardless of the spatial model con-

sidered.

We now compare the spatial models in table 5 with the gravity model, speci�cation (1:d). Table

6 displays the likelihood ratio (LR) tests of model (1:d), versus each spatial model, models 2 to

7.24 Also, it displays the Akaike criteria for the seven model estimates.

Table 6: Log likelihood of the gravity model (1:d) and spatial models (models 2 to 7)

Model LR test versus Critical value AIC

model (1:d) � = 0:05

1:d 332488

2 16642 3:84 315850

3 16939 3:84 315561

4 34142 3:84 298340

5 18490 3:84 314000

6 18968 3:84 313520

7 37457 3:84 295030

As re�ected in table 6, when comparing any of the models that account for spatial dependence

(models 2 to 7) with the least-square estimate (model 1:d), we conclude that any spatial model

is better than model (1:d), since they all have smaller AIC than model (1:d). Also, each LR test

rejects model (1:d), in favor of the spatial model. This is still true if instead, we conduct a Lagrange

Multiplier test.

Moreover, model 7, which re�ects a cumulative, non-separable, origin and destination spatial

dependence e¤ect in the disturbances, seems to dominate all other models, as it has the smallest

AIC. However, a de�nite statement regarding the choice of the model exceeds the scope of this

paper. The reasons follow.

23This is because evaluating the impact of explanatory variables in spatial autoregressive model requires the method-

ology introduced in Lesage and Thomas-Agnan (2014).
24For the LR tests, we calculate the statistic 2(LU �LR), where LU is the likelihood function of the spatial model

and LR the likelihood function of model (1:d). This statistic is asymptotically distributed as a {2 random variable,

with degrees of freedom equal to the number of restricted parameters.
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As discussed in Dubin (2003), there is little theoretical justi�cation for the choice between

spatial models and very often researchers choose the model that predicts the best. Since in this

paper we focus on the estimation of the parameters of the OD air passenger model, we can not

choose between models, based on their predictive ability.

More generally, the aim of this paper has been to assess whether spatial autocorrelation matters,

when estimating OD air passengers. We �nd signi�cant evidence of spatial dependence in air

passenger �ows, both at origin, at destination and at origin and destination. Thus, contrary to

common practice, least-square estimates and inferences that ignore spatial dependence seem not to

be justi�ed.

5 Practice and Policy

This paper takes a step towards improving our understanding of modeling OD air passengers, by

explicitly taking into account spatial autocorrelation. This is crucial, because being able to estimate

the number of air passengers between two cities at a given point in time is of major importance,

both for aircraft manufacturers and airlines.

Aircraft manufacturers, such as Airbus, rely on this type of modelling to assess the future

demand for civil passenger and freighter aircraft, which in turn, steer them towards innovation.

Airlines also need these forecasts to decide whether to open new routes, o¤er more frequencies

and/or increase aircraft capacity.

As an illustration, this section describes how this type of modeling helps Airbus to assess the

future demand for civil passenger and freighter aircraft, in the context of the Global Market Forecast

(GMF) methodology.

The GMF consists of three main steps: the tra¢ c forecast giving the overall shape of the ex-

pected tra¢ c evolution over the next 20 years; the network forecast, identifying the future evolution

of the airlines�networks and �nally, the demand forecast, estimating the number of aircraft which

will be required to accommodate the expected tra¢ c growth.

Modeling OD air passengers is part of the second previously stated step. More speci�cally,

the network forecast step relies on an in-house network-planning model25 to determine how many

passengers will �y over the next 20 years, which itineraries they are likely to choose and when and

where airlines will respond to the expected passenger evolution, by opening or removing routes.

Airbus�network-planning model starts by breaking down the tra¢ c forecast between country

pairs, down to the estimation of OD, city-pair air passengers. Second, for each airline, it constructs

the itineraries (routes), that is, a �ight or sequence of �ights used to travel between any two cities.26

25A network-planning model is a collection of sub-models, to be described. See Garrow (2010) for a detailed

description.
26As it is typical in this type of applications, itineraries are limited to non-stop, single and double connections.
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Importantly, itineraries do not only include existing routes, but also future route candidates.27

Third, a market share model allows predicting the percentage of travellers that are likely to

select each itinerary, existing or new, at each city-pair and at each point in time (year). The market

share model Airbus uses is a �Quality of service index�(QSI) model.28 In order to determine the

share of each itinerary on the OD city-pair, the QSI model considers attributes like �ight frequency,

type of connection and circuitry, as quality of services.

Finally, the demand of each itinerary is determined by multiplying the percentage of travellers

expected to travel on each itinerary by the expected market size, that is, the number of OD, city-

pair air passengers. The importance of adequately estimating the number of air passengers between

any two cities becomes now clear, as it gives the size of the OD city pair. This, in turn, enables

Airbus to predict when and where airlines are likely to open or remove a route, and this way, how

the shape of the airlines network is likely to evolve through time.

6 Conclusion

In this paper, we take a step towards improving our understanding of modeling origin-destination,

city-pair, air passengers, by explicitly taking into account spatial autocorrelation. One empirical

question motivates us, that is, whether the characteristics at proximal cities impact air passenger

�ows, between two cities.

The literature has extensively used gravity models to estimate air passenger �ows. However,

the main particularity of these models is that they assume spatial independence between origin-

destination pairs. More speci�cally, they suppose that the distance between the origin and the

destination can e¤ectively eliminate the spatial structure, potentially present in origin-destination

�ow data.

To challenge this assumption, we build on Dubin (2003) and Lesage and Pace (2008) and modify

the traditional gravity model, to account for spatial dependence, both in air passenger �ows and

the disturbances.

We estimate six spatial models, which allow for spatial autoregressive dependence (spatial lag)

or spatially auto correlated error term (spatial error). Based on likelihood ratio tests and infor-

mational criteria, we conclude that any of the spatial models considered here is better than the

traditional gravity model. This implies that, contrary to common practice, least-square estimates

and inferences that ignore spatial dependence seem not to be justi�ed.

27The identi�cation of new route candidates considers airlines� current network and the potential size of new

markets.
28As de�ned by Garrow (2010), QSI models relate an itinerary�s passenger share to its �quality�(and the quality of

all other itineraries in the city or airport pair). Quality is de�ned as a function of various itinerary service attributes

and their corresponding preference weights. See Garrow (2010) for details.
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Interestingly, we �nd that the model which re�ects a cumulative, origin and destination spatial

dependence e¤ect in the disturbances seems to be the most appropriate, based on the same afore-

mentioned criteria. It is important to stress though, that we reach this conclusion, by focusing on

the explanatory aspects and not on the predictive ones.

If instead, the focus were on prediction, we would need appropriate prediction formulae for

spatial �ow models (see Goulard, et.al (2013) for the case of prediction on spatial autoregressive

models). This constitutes a future venue of research, that is, to compare the spatial model estimates

considered here, based on their predictive ability. It will be the topic of forthcoming research.
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7 Appendix

Table 7: Model estimations with independent observations, 2010

Variable (1:a) (1:b) (1:c) (1:d)

Constant �11:832��� �13:168��� �12:279��� �7:147���

log(GDP o) 1:540��� 1:192��� 1:385��� 1:178���

log(POP o) �0:293��� 0:236��� 0:026 �0:036�

log(GDP d) 1:535��� 1:169��� 1:361��� 1:156���

log(POP d) �0:283��� 0:267�� 0:055� �0:013
log(vec(G)) �1:488��� �1:435��� �0:415��� �0:192���

IOAsia Pacific �0:634��� �0:639��� �0:525���

IOEurope 0:045��� 0:052 �0:041
IONorthAmerica 0:048��� 0:281��� 0:130���

IOCIS �0:146 �0:309��� �0:307���

IOAfrica 0:810��� 0:800��� 0:547���

IOMiddle East 0:228�� 0:459��� 0:332���

IDAsia=Pacific �0:604��� �0:623��� �0:515���

IDEurope 0:420��� 0:103� 0:001

IDNorth America 0:766��� 0:375��� 0:203���

IDCIS �0:123 �0:300��� �0:310���

IDAfrica 0:885��� 0:891��� 0:611���

IDMiddle East 0:255�� 0:463��� 0:330���

log(Fare) �1:613��� �1:791���

1{Flow Nul} �16:47���

Observations 59738 59738 59738 77841

Adjusted R2 0:4152 0:4506 0:5018 0:7128

AIC 275340:5 271615:7 265770:5 327343:2

P-value F-Stat < 0:001 < 0:001 < 0:001 < 0:001

Note. Level of signi�cancy : * 10% , ** 5 % , *** 1%.

21



Table 8: Model estimations with independent observations, 2011

Variable (1:a) (1:b) (1:c) (1:d)

Constant �11:464��� �12:798��� �11:909��� �7:171���

log(GDP o) 1:502��� 1:131��� 1:291��� 1:130���

log(POP o) �0:256��� 0:299��� 0:124��� 0:012

log(GDP d) 1:514��� 1:122��� 1:277��� 1:121���

log(POP d) �0:274��� 0:306�� 0:133��� 0:015

log(vec(G)) �1:489��� �1:436��� �0:632��� �0:248���

IOAsia Pacific �0:576��� �0:755��� �0:667���

IOEurope 0:467��� 0:074 �0:087�

IONorthAmerica 0:786��� 0:379��� 0:141���

IOCIS �0:026 �0:364��� �0:435���

IOAfrica 0:836��� 0:676��� 0:396���

IOMiddle East 0:367��� 0:372��� 0:234���

IDAsia=Pacific �0:590��� �0:783��� �0:684���

IDEurope 0:473��� 0:090� �0:068�

IDNorth America 0:823��� 0:416��� 0:169���

IDCIS �0:038 �0:365��� �0:426���

IDAfrica 0:817��� 0:672��� 0:408���

IDMiddle East 0:347��� 0:349��� 0:216���

log(Fare) �1:232��� �1:583���

1{Flow Nul} �15:459���

Observations 59899 59899 59899 77841

Adjusted R2 0:4138 0:451 0:4821 0:7026

AIC 275909 272024:4 268493 330690:9

P-value F-Stat < 0:001 < 0:001 < 0:001 < 0:001

Note. Level of signi�cancy : * 10% , ** 5 % , *** 1%.
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Figure 4: Histogram of residuals of model (1:c) estimation, 2012

Figure 5: Geographic representation of the neighbourhood matrix, W
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