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Abstract

We consider the decentralized provision of a global public good with local external-
ities in a spatially explicit model. Communities decide on the location of a facility that
bene�ts everyone but exhibits costs to the host and its neighbors. They share the costs
through transfers. We examine the cooperative game associated with this so-called
NIMBY (�Not In My Back-Yard") problem. We derive and discuss conditions for core
solutions to exist. These conditions are driven by the temptation to exclude groups
of neighbors at any potential location. We illustrate the results in di�erent spatial
settings. In particular, we construct a hypothetical example on a real administrative
unit in which the core is shown to be empty. These results clarify how property rights
can a�ect cooperation and shed further light on a limitation of the Coase theorem.
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1 Introduction

The production of activities that are harmful to society is the source of a famous controversy
between Arthur Pigou and Ronald Coase. In such a context, Pigou recommended that the
producers pay the harmful damages in�icted on third parties. Using the example of the
sparks from railway engines that set �re to woods surrounding the tracks, Pigou (1920)
argued that the railways should be forced to compensate those whose woods are burnt. In
the same example, Coase (1960) challenged the Pigouvian solution. He argued that the
parties involved could resolve the problem themselves in the absence of transaction costs,
provided the property rights on harmful externalities (or liability rules) were assigned to
one of them. Such Coasean bargaining would lead to e�ciency, regardless of the allocation
of property rights. This is known as the �Coase Theorem�.

The Coase theorem was subsequently invalidated in cooperative settings involving more
than two players. A famous instance is a version of the Shapley and Shubik garbage game

(1969), in which three neighbors decide on where to dump their garbage. For instance, let
the disutility of having waste in one's backyard be -1 for one bag of garbage and -2 both for
2 and 3 bags of garbage. When utility is transferable, the e�cient outcome is for the three
agents to cooperate and to locate the garbage in the backyard of one of them. The total
disutility so achieved is -2. Coasean bargaining predicts that, in the absence of transaction
costs, they will exchange garbage and money to reach such a socially optimal outcome. Yet,
if a player has the right to dispose of garbage as she or he likes, every group of two players
will prefer to dump their garbage into the third player's garden without compensating her
or him. In the previous example, one can easily check that whatever way they share the
total cost, there will always be a couple of players willing to withdraw and coordinate their
dumping on the third player: this game has an empty �core�.1 More generally, Starrett
(1973) pointed out that economies with nonconvexities can have an empty core. Aivazian
and Callen (1981) make a similar argument: they provide an example with a polluting
facility for which the core in the cooperative game representing Coasean bargaining with
a speci�c liability rule is empty.2 Although the above examples do show that the Coase
theorem cannot always be demonstrated, they do not tell us in which circumstances the
Coase theorem is likely to hold. This paper �lls that gap. Using quite a general model of
production activities with negative externalities, we investigate what the driving economic
parameters are that determine whether the core is empty.

To do so, we deal with a spatial model with externalities. It represents the problem of
providing a locally undesirable but globally desirable facility. In Pigou's story on sparks
from railway engines, all citizens connected to the railways bene�t from it, but those who
own wood along the track might su�er from the externality cost. This is the well-known
Not In My Backyard (NIMBY) problem. Examples include waste treatment plants, nuclear
or coal power utilities, windmills, airports, prisons or, more recently, shale gas wells.3

Such facilities are acknowledged to be socially bene�cial in the sense of the Hicks-Kaldor

1The total disutility that such a two-player coalition can guarantee to itself is at least -1: both members
drop their garbage on the third player but may still get his or her garbage. Additionally, the disutility of
the third agent, is -2, hence the total disutility is -3: social e�ciency is not achieved. Hence, players may
not be able to reach an e�cient outcome.

2The argument is reproduced by Stearns (1993) with voting instead of bargaining as a collective decision
process. In his example, a Condorcet cycle arises in a situation where three communities have to collectively
decide where to site a nuclear waste repository.

3Some of these projects feature non-excludability of the bene�ts at the origin of free-riding behaviors;
others not. We will emphasize here the garbage game dimension of such problems, which is common to
all.
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criterion: the social bene�ts more than o�set the social costs. Yet their provision meets
strong opposition from neighboring citizens who su�er from negative externalities such as
air or water pollution, noise, or amenity losses.4 This is why the localization of the facility
is a sensitive issue. Some form of compensation should be o�ered to make it acceptable to
the neighboring victims of externality costs. In this paper we examine the decentralized
provision of a locally undesirable facility.

The NIMBY problem is �rst studied in its general form. Several communities plan to
build a facility. The bene�ts from using the facility are excludable and non-rival. The
costs are incurred by the host and its neighbors. The communities both agree on location
and transfers: they decide on who is going to host the facility and how much the host and
its neighbors must be compensated. Coalitions of communities block the agreement if they
are better-o� building and sharing their own facility (or not building at all). The outside
option of coalitions de�nes a cooperative game associated with the NIMBY problem. In-
terestingly, the cooperative game exhibits speci�c properties. It is a cooperative game with
externalities in the sense that the welfare that a group of communities can enjoy depends
on the cooperative behavior of communities outside the group as well as the localization of
the facility they build on their own. Yet externalities in the associated cooperative game
can be negative or positive: a group of communities can bene�t or su�er from the cooper-
ation of others. Nevertheless, the best that can happen for a coalition of communities is
that the other communities are not cooperating. We �rst de�ne the value function of our
cooperative game accordingly: a group of communities do not expect that the others will
build their own facility when they oppose an agreement. We thus give maximal incentives
for coalitions to deviate and block an agreement. Under some assumptions, we show that
only two forces constrain the core: individual rationality and the exclusion of individual
communities and communities in the neighborhood of any potential host of the facility. In-
dividual rationality makes sure that all communities bene�t from the facility. The motive
for exclusion is similar to that in Shapley and Shubik's garbage game: communities are
tempted to exclude those who su�er from the negative externality, to avoid compensating
them. Thus we restrict considerably the set of inequalities de�ning the core.

We next propose an index for testing if the core is empty or not. This corresponds to the
least-core value of an associated cooperative game. The core is non-empty if and only if
such an index is lower than one. We discuss some comparative static properties of the
least-core index. We show that the core is less likely to be empty when externality costs
increase everywhere except for the optimal location of the facility. Intuitively, this means
that the more harmful the project is when located elsewhere than at the optimal location,
the easier it is for the communities to reach an agreement. We also show that the problem
is exacerbated when the number of communities increases in the linear case. However,
the e�ect of the number of communities is ambiguous in general. Next, we generalize our
results for other notions of the core. We �nally provide illustrations on di�erent spatial
structures, �rst in the linear case and on simple graphs. Lastly, we compute the index
for a French administrative unit to illustrate its potential relevance for real-world NIMBY
problems.

4Richman and Boerner (2006) de�ne a NIMBY as follows �a socially desirable land use that broadly
distributes bene�ts, yet is di�cult or impossible to implement because of local opposition�.
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Related literature

Most of the theoretical papers in economics on the NIMBY problem rely on a mechanism
design approach. A central planner designs a mechanism such as an auction to locate
the undesirable facility optimally and to share its cost (O'Sullivan, 1993, Minehart and
Neeman, 2002, Perez-Castrillo and Wettstein, 2002, Laurent-Lucchetti and Leroux, 2011).
The central planner can impose the mechanism on the communities but does not know
their cost. The implemented solution does not guarantee that some communities could not
do better by providing the facility by themselves. In contrast, we assume that the cost of
hosting the facility is common knowledge and adopt a cooperative approach. Decisions are
decentralized to communities that collectively negotiate and can make binding agreements
about localization and compensations.

In a cooperative framework, Laurent-Lucchetti and Leroux (2010), Sakai (2012) and De-
hez (2013) have analyzed core solutions of cooperative games associated with NIMBY
problems.5 They all implicitly rely on the assumption that externalities are concentrated
within a jurisdiction. In practice, pollution (e.g. air or water pollution, risk of radioactive
contamination) spreads out quite widely compared to the size of the communities (e.g.
municipalities, countries). To the best of our knowledge, our paper is the �rst to explicitly
introduce spatial externalities in a cooperative framework representing the NIMBY prob-
lem. It emphasizes the di�culties that arise when the costs are spread over more than a
single community.

Our paper is related to the literature on public good provision which emphasizes the free-
riding problem: users can bene�t from public goods without contributing to their cost (see
e.g. Bergstrom and al., 1986). Free-riding arises when people cannot be excluded from
consuming the good. We avoid free-riding by assuming that communities can be excluded
from accessing the facility at no cost. However, the potential exclusion of the neighbors of
any potential host can still compromise cooperation. Both the NIMBY and public good
provision cooperative games are games with externalities. This raises interesting conceptual
issues for the de�nition of the core and the representation of the game in partition form
(see e.g. Ray and Vohra, 2001). Such issues are discussed in Section 4.

Spatial dimensions have been introduced for the provision of public and excludable fa-
cilities. In Goemans and Skutella (2004), consumers have heterogeneous costs of being
connected to the facility and di�er on the bene�t they enjoy using the facility, depending
on its location. They provide conditions for the core to be non-empty. In Le Breton and
Weber (2003), both the users and the facility are located along a line. The bene�t of using
the facility is proportional to the distance between the user and the facility called �trans-
portation" cost. In this model, preferences are single-peaked, in the sense that the closer
the facility, the better for the user. This hypothesis plays a crucial role for the existence of
core allocations. In contrast, preferences can be single-dipped in the linear representation
of our model. Hence, the motive for blocking a global agreement is di�erent: coalitions
would like to avoid compensating the neighbors of the community hosting the facility. As
a consequence, non-emptiness of the core is no longer guaranteed.6

5Lejano and Davos (2001) also consider coalition formation in the NIMBY problem. In a numerical
example, they argue that a compensation scheme that leaves the host indi�erent may fail to be a core
allocation.

6Note that Barberà et al. (2012) and Manjunath (2013) have examined single-dipped preferences for
the location of an indivisible bad. They deal with non-transferable utility (no money involved) whereas we
assume transferable utility: players can transfer part of their welfare through side-payments. Their focus
is on the localization of the public bad with strategy-proof rules. In contrast, we abstract for information
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The rest of the paper is organized as follows. Section 2 introduces the general NIMBY
cooperative game with excludable bene�ts. Section 3 presents the main result. In Section 4
we discuss the robustness of this result when externalities are considered in the de�nition
of the cooperative game. Finally, Section 5 provides illustrations of the main result on
explicit spatial structures.

2 The NIMBY cooperative game

A set N = {1, ..., n} (n > 1) of communities or agents (land owners, municipalities,
cities, regions, countries, etc.) might decide to launch a facility such as a waste treatment
plant, a utility (nuclear or coal power plant) or a polluting factory. Each community
i ∈ N enjoys an individual bene�t bi ≥ 0 from using the facility. Bene�ts are non-rival
and non-cumulative: once a community has access to a facility, it does not enjoy any
additional bene�t from accessing a second one. Yet the communities that launch a facility
can exclude the others from using it. A facility is therefore a club good: a non-rival
and excludable good. A facility generates local nuisances to the host and its immediate
neighbors (pollution, risk of accident or contamination, etc.). This is summarized by the
matrix of externality costs C = (cij)(i,j)∈N2 where cij ≥ 0 denotes the costs incurred
by community j by a facility located at i. We call cii the host cost for every i ∈ N
and cij the externality cost for any i 6= j. Community j is a neighbor of community i
if and only if cij > 0. The matrix C provides a spatial representation of the problem.
Let us denote by N̄ (i) = {j ∈ N |cij > 0} the neighborhood of i including i, and by
◦
N (i) = {j ∈ N\{i}|cij > 0} the strict neighborhood of i. A NIMBY problem σ is de�ned
as a triplet σ = (N, b,C).

Example. Uniform linear NIMBY problems

Throughout the article, we will consider a particular illustrative NIMBY problem: the
uniform linear case. A NIMBY is linear if it can be represented by a line in which a link
between communities represents externality costs cij . In a line, each community has a
neighbor, except the ones at the two ends. If we order communities according to their
location from 1 to n, it means that the externality costs are cjj+1 > 0 for j = 1 to n−1. A
uniform NIMBY problem is characterized by uniform bene�ts and costs. The bene�t per
community is denoted by b so that b = be where e = (1, ..., 1). The host cost is c and the
externality cost is δc for the neighbors of the host, where δ is a positive parameter re�ecting
the share of the host's cost that spreads to the neighboring communities.7 Uniform linear
NIMBY problems are fully characterized by parameters (n, b, c, δ).

problems so that the public bad can easily be e�ciently located. In our setting, localization impacts the
value that a deviating coalition can achieve. It thus determines the distribution of the welfare through
side-payments.

7We insist on the interpretation of δ as the share of a neighbor's pollution cost as compared to the
host's total cost. Formally, the latter is the sum of a technical cost ct (construction, management, etc.)
and a pollution cost cp. If α denotes the multiplicative change in the pollution cost for the immediate
neighbors, the additional cost for each of them is αcp. We then get δ = α

cp
ct+cp

. So δ captures the decrease

of pollution costs with distance, as well as the share of pollution costs in the hosts's total costs.
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The cost matrix of a linear uniform NIMBY problem is:

C =



c δc 0 · · · · · · · · · 0

δc
. . .

. . .
. . .

...

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . . 0

...
. . .

. . .
. . . δc

0 · · · · · · · · · 0 δc c


The strict neighborhoods are

◦
N (1) = {2},

◦
N (i) = {i − 1, i + 1} for i = 2, ..., n − 1 and

◦
N (n) = {n − 1}. In the uniform linear setting, it is e�cient to build the facility at one
end of the line. The total welfare so achieved is nb− (1 + δ)c. Figure 1 provides a spatial
representation of a linear uniform problem when the facility is optimally located at one
end of the line.

1 2 3 n-1

c dc 0 0 0

n

Figure 1: Distribution of the costs at an optimal location in the uniform linear case.

We will use some further notations. For any set of communities S ⊆ N let b(S) =
∑

S bi
be the total bene�t enjoyed by S from running a facility. While the total bene�t does
not depend on the location of the facility in S, total costs do. Let us denote by c(S) the
lowest total cost that the members of S incur by building and running a facility. We have
c(S) = mini∈S

∑
j∈S cij . A facility should be built if the total bene�t exceeds the total

cost when located optimally. We assume that b(N) > c(N): it is e�cient to build at least
one facility in the grand coalition. Obviously, since a facility is non-rival and bene�ts are
non-cumulative, it is e�cient to build only one facility used by all communities in N . The
total bene�t from building a facility optimally located is thus b(N) − c(N). In addition,
we assume bi < cii for every i ∈ N : it is never e�cient for a community to launch a
facility alone. Therefore some minimal cooperation of two communities is needed to build
a facility. A coalition S ⊂ N is called a building coalition if b(S) ≥ c(S) and a non-

building coalition otherwise. We denote by h ∈ argmini∈N
∑

j∈N cij an optimal location
in N . There may be several optimal locations or hosts h for a given problem σ. Let H
denote the set of all optimal hosts H ≡ argmini∈N

∑
j∈N cij . Finally, we will denote by

◦
N = {S ⊆ N |∃i ∈ N,S ⊆

◦
N (i)} the set of the subsets of all strict neighborhoods and

N̄ =
◦
N ∪ {{i}|i ∈ N}.

The communities agree on a location of the facility h and a way to share the net bene�t
from using it. An allocation is a vector x = (xi)i=1,...,n where xi denotes community i's
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bene�t with: ∑
i∈N

xi = b(N)− c(N) = v(N).

An allocation of the total net bene�t v(N) is induced by budget-balanced transfers t =
(ti)i=1,...,n with

∑n
i=1 ti = 0. The host h enjoys a welfare of xh = bh−chh+th where th is the

compensation received from hosting the facility. Its neighbors j obtain xj = bj − chj + tj .
They are thus paid tj for the nuisances. Other communities i ∈ N\N̄ (h) get xi = bi + ti,
thereby paying −ti to �nance the compensations th +

∑
j∈
◦
N (h)

tj .

An allocation is in the core of the NIMBY problem σ if it is not blocked by any coalition.
We say a coalition S ⊂ N blocks a distribution of the welfare if its members can achieve
a higher welfare by themselves. We need to �gure out what a coalition S can achieve by
building and running its own facility. It depends on its own behavior and on the behavior of
the communities inN\S. Indeed, by agreeing to build a facility close to some members of S,
the communities outside S can exert a negative externality on S, hence reducing its value.
Technically, the cooperative game induced by the NIMBY problem exhibits externalities:
the worth or value of a coalition S depends on the behavior of outside communities. For
instance, if the communities outside S agree to build a facility, a member of S who adjoins
the facility might su�er from a negative externality and S would experience a welfare loss.
We assume that if a coalition S builds a facility, communities outside S do not build any.
Such an assumption is in line with the notion of γ-core whereby communities outside a
coalition S play their individual best reply strategies (Chander and Tulkens, 1997). Here,
since it is too costly for a single community to build its own facility, its best individual
strategy is not to build. Furthermore, it gives higher incentives for a coalition S to block
a global agreement since, when doing so, members of S do not anticipate any negative
externalities from neighboring facilities. We will discuss this assumption in Section 4.

Under such an assumption, the value or worth of coalition S ⊂ N is:

v(S) = max(0, b(S)− c(S))

A core allocation is thus de�ned as follows:

De�nition 1. An allocation x is in the core C if it satis�es
∑

i∈N xi = v(N) and the
following core lower bounds:

∀S ⊂ N,
∑
i∈S

xi ≥ v(S).

The core is de�ned by a large number of inequality constraints. Some are binding, others are
not. In the next section we show that the problem can be reduced under some assumptions.
We propose a simple formula for an index related to the non-emptiness of the core: the
least core value.

3 Existence of core allocations

We introduce several assumptions which aim at simplifying the problem. The �rst one is
related to the bene�t achieved by a coalition formed by excluding a single community or
members of a common neighborhood.

Assumption 1. ∀S ∈ N̄ , b(N\S) ≥ c(N\S)

7



Assumption 1 implies that coalitions formed by excluding some neighbors of the same
community would always build a facility. It holds for local externalities, i.e. when few
municipalities are negatively impacted in realtion to the number of bene�ciaries. In the
uniform linear case, it holds when excluding the neighbors of communities at the extremities
of the line (1 and n), or the two neighbors of a middle-community i (with 1 < i < n), would
not prevent the remaining communities from building a facility. The �rst requirement is
met when (n−1)b ≥ c while the second holds true when (n−2)b ≥ c.8 The last inequality
provides a condition on the parameters n, b and c such that Assumption 1 holds in the
uniform linear case.

Assumption 2. The optimal host is not unique: |H| > 1.

Assumption 2 might appear quite restrictive. Yet it holds in the linear case and can be
replaced by a di�erent one for the main result, as discussed in Appendix C.

Relying on the above assumptions, we can signi�cantly reduce the set of lower bounds
de�ning the core.

Proposition 1. Under Assumptions 1 and 2, an allocation x is in the core C if and only
if

∑
i∈N

xi = v(N) (1)

∀i ∈ N,xi ≥ 0 (2)

∀i ∈ N,xi ≤ bi (3)

∀S ∈
◦
N ,
∑
i∈S

xi ≤ b(S)− (c(N)− c(N\S)). (4)

Proposition 1 clari�es what constrains core allocations. Condition (1) is the e�ciency con-
dition. Condition (2) captures individual rationality: as we assume any single community
anticipates no external cost from its withdrawing, it should be guaranteed 0 in core allo-
cations. In regard to this lower bound on individual allocations, Condition (3) imposes a
higher bound on individual allocations: the rationality of the coalitions of size n-1 ensures
that no agent can be subsidized in the grand coalition. From Assumption 2, this require-
ment also holds for the host. Finally, Condition (4) re�ects the possible exclusion of the
host's neighbors: by excluding some neighbors of a potential host, a coalition disregards
part of the externality costs of the facility. Note that, eventhough it is not taken into
account by the remaining coalition, the excluded communities could still su�er from the
externality costs. Due to such possibility of costless exclusion, the welfare of the host's
neighbors is bounded upward. The point is that the upper bounds should not only hold
for the actual host 's neighbors, but also for all potential host 's neighbors. Therefore, a
coalition S of neighbors of a same community should contribute to the project at least
to the extent of the cost saved by excluding them, that is, c(N) − c(N\S). We need this

8In the �rst case, excluding a community at the extremity of the line allows a cost δc to be saved so that
the total cost incurred by the coalition which excludes 1 or n is (1 + δ)c. Yet the coalition loses the bene�t
b from the excluded community so that the total bene�t is (n− 1)b. In the second case, by excluding two
communities that are neighbors of a middle-community i, the coalition can save the two externality costs
2δc by locating the facility at i, although they loose the bene�t of the two neighbors from using the facility
so that the total bene�t is (n− 2)b.
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condition to hold for every coalition of neighbors of a same community, that is for all

coalitions in
◦
N .

We note that these constraints can be stringent enough to undermine the existence of
core allocations: when exclusion is pro�table enough, the allocation of the full value of
the facility could be impossible in the grand coalition as such constraints would require
the collection of more than the total cost of the project. The understanding we get from
Proposition 1 leads us to a general statement about the existence of the core in NIMBY
games. The following condition will be imposed.

Assumption 3. ∀i ∈ N, bi ≥ maxj∈N\{i}cji

Assumption 3 states that the cost borne by a community when the facility is located at
one of its neighbor's never surpasses its own bene�t. In the uniform linear case, this means
that b ≥ δc: the externality cost is bounded by the bene�t of using the facility. In this
speci�c case, we note that b ≥ δc is a necessary condition for the core not to be empty as
we know that community 2 would have a maximum welfare of b − δc, which is negative
when the condition is not met. This assumption is made in order to focus on cases for
which individual rationality is not a source of emptiness of the core. We will see in Section
4 that it can be relaxed when considering more general notions of the core.

The following Proposition provides a simple test for non-emptiness of the core, involving
the additive least-core value I(C) of the game. Conceptually, the additive least-core value
(Maschler et al, 1979) quanti�es the necessary decrease in all core lower bounds for the
core to be non-empty.

Proposition 2. Under Assumptions 1 to 3, the core is non-empty if and only if I(C) ≤ 1
where

I(C) = max
χ

∑
S∈N̄

χS

(
1− c(N\S)

c(N)

)
|∀i ∈ N,

∑
S:i∈S

χS = 1, χS ≥ 0


The proof is provided in Appendix B. A similar result can be obtained with a di�erent
assumption than Assumption 2. This is stated and proved in Appendix C. The general
scheme of the proof is the following: starting from the result of Proposition 1, we show
that individual rationality constraints are never binding in a linear program related to
non-emptiness of the core using Assumption 3. The expression of the dual of the resulting
linear program then leads to Proposition 2.

Proposition 2 provides us with an index which only depends on the cost structure. The
index I(C) considers the savings induced by the exclusions of single agents and subsets of
strict neighborhoods. It consists in the computation of the extent of the savings induced by
such exclusion on all balanced collections of subsets of neighbors.9 This is a combinatorial
problem which is di�cult to solve in general. Yet the computational complexity of I(C) is
greatly reduced as compared to the general problem of the existence of the core: it restricts
the set of constraints to consider from 2n to less than 2maxi∈N |N̄ (i)|. As we will see in the
following example and in Section 5, it can be computed for speci�c spatial structures.

This index also has a natural interpretation. If I(C) does not exceed 1, there exists at
least one localization of the facility and an allocation of the net bene�t that is immune to

9A collection B of coalitions is said to be balanced if and only if there exist strictly positive weights
χB = (χBS)S∈B such that, for any i ∈ N,

∑
S∈N :i∈S χ

B
S = 1.
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blocking: the provision of the facility can be decentralized in the economy. If I(C) exceeds
1, no such allocation exists. In either case, the index has a quantitative interpretation: it
quanti�es the maximal decrease in the costs cii at all locations i ∈ N that the problem
can sustain. An index of 0.8 indicates that at most 20% of the total cost in N could be
withdrawn to the cost at any location and the core would remain non-empty. An index of
1.2 indicates that at least 20% of the total cost in N should be added to the cost at any
location for the core to be non-empty.10

The index I(C) allows us to perform comparative statics in the general case of NIMBY
games.

Proposition 3. The least core index I(C) weakly increases when C decreases while the
minimal cost in the grand coalition is unchanged.

The proof of Proposition 3 is developed in Appendix E. It may appear surprising at �rst
sight: when costs decrease everywhere but at the host, the core shrinks. The reason is
that a decrease in the costs which leaves the costs at the host unchanged, increases the
pro�tability of the deviation for all coalitions. As a result, I(C) weakly increases: the
core is more likely to be empty. An illustration will be provided in Section 5.1 for the
case of graphs. In the linear case, the number of communities n also causes the least-
core value I(C) to increase. However, this result does not generalize to all problems. A
counterexample will be provided in Section 5.1.

Example. A �rst illustration of Proposition 2 can be provided in the uniform linear case.
In such problems, an explicit computation of I(C) (detailed in Appendix D) leads to a
higher bound on the parameter δ which depends only on the parameter n, as stated in the
following corollary.11

Corollary 1. Under Assumptions 1 and 3, the core of the uniform linear NIMBY problem
(n, b, c, δ) is non-empty if and only if

δ ≤ δ̄(n) =


2

n−2 if n = 4k, k ∈ N
2

n−1 if n = 4k + 1, k ∈ N
2
n if n = 4k + 2, k ∈ N

2
n−1 if n = 4k + 3, k ∈ N

Hence, for any number of communities there exists a critical level of δ above which the
core is empty or, for any δ there exists a critical number of communities above which the
core is empty.

4 A cooperative game with externalities

The results of the previous section stand for a notion of the core which relies on a coalition's
anticipation that outside members will not build any project. In some cases, it may

10Other meaningful quantities could be built in this context. A recent proposal, the cost of stability
(Bachrach et al, 2009), quanti�es by how much the cost associated with all coalitions except the grand

coalition N should be increased at least so that the core in non-empty. The interpretation of such a value
would be appealing in this setting as it would capture the minimal transaction cost associated with the
formation of a blocking coalition S - or equivalently the minimal subsidy to the grand coalition - required
to stabilize the grand coalition. However, as it does not have an explicit form in this context, we choose
to focus on the additive least core value. We thank Michel Le Breton for pointing out this work.

11Note that Assumption 2 is always satis�ed in the uniform linear case.
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be unrealistic to assume such behaviors. For instance, a single community or a small
coalition would more likely expect outside members to cooperate on building and sharing a
facility. In this section, we examine alternative and plausible expectations on the behavior
of outsiders that a coalition might form. In doing so, we generalize the result to other
notions of the core.

As discussed above, the cooperative game induced by the NIMBY problem is a cooperative
game with externalities: the value of any coalition S depends on the cooperative behavior of
communities outside S and their related facility-building decisions. We now formalize the
problem in partition form (Thrall and Lucas, 1963). Let P(N) be the set of all partitions
of N . The cooperative behavior of communities is summarized by an element P of P(N)
where each element S of P is a coalition. The members of S jointly decide on whether
to build a facility and on its location. Let us denote S's building decision by its location
choice l ∈ S ∪ {0} where l = 0 if no facility is built. In a partition P = {S1, ..., Sm},
each coalition of communities Si ∈ P picks one of its best location decisions li. A rational
location vector in partition P is a vector l = (l1, ..., lm) where each decision li minimizes
the cost of the facility (the cost of hosting the facility and the externality costs within Si).
Let us denote by L(P) the set of rational location decision vectors in the partition P.12
They can be multiple due to potential indi�erence. For instance, in the linear homogeneous
NIMBY problem with n = 5 communities and 2b < c ≤ 3b, the partition {{1, 2}, {3, 4, 5}}
might implement two di�erent location vectors (0, 3) and (0, 5). They are both rational.
Yet (0, 5) is preferred to (0, 3) by coalition {1, 2} since in the �rst case one of its members,
namely community 2, will incur the negative externality cost δc.

In a standard approach, the value function of a game with externalities depends on the
coalition S and the partition in which the coalition is embedded. In the NIMBY game,
it also depends on the rational location vector. Hence, we de�ne the value in partition
function form v as a function that assigns to every coalition S, partition P of N , and
rational location vector l ∈ L(P), a real number v(S,P, l). It is the welfare achieved by
coalition S embedded in the partition P with the rational location vector l on P. The value
is then de�ned for any potential con�guration in terms of partition and rational location
decisions. Yet some of those con�gurations might still appear irrelevant because they
are unlikely. We exclude those con�gurations by introducing the notion of restrictions. A
restriction R is a mapping which assigns to each coalition S a doublet R(S) ∈ P(N)×L(P).
Such a function can be interpreted as the expectations of a deviating coalition regarding
the behavior of outside members. The value of S under a restriction R is denoted vR(S) =
v(S,R(S)). Expectations are taken as given here but they could be endogenized following
the literature on dynamic coalition formation (see e.g. Chwe, 1995; Bloch, 1996; Ray and
Vohra, 1997; Yi, 1997).

We now de�ne the core based on restriction functions. A coalition S in a partition P blocks
a global agreement x under restriction R if it can achieve a higher welfare under such a
restriction. An allocation belongs to the R-core of the cooperative game associated with
the NIMBY problem, denoted CR, if it is not blocked by any coalition of N . Formally:

12Two comments are called for here. First, our restricting the attention to the set of rational decisions
is in contrast with the standard approach of the α-core and β-core which respectively consider what a
coalition can achieve regardless of the behavior of outside members or when having the possibility to
adjust to others actions. Consistently with a remark by La�ont (1977) in the context of the garbage game,
the α-core would never be empty in our context. Second, in our case, location decisions are independent.
Yet, in the case of non-excludable facilities, strategic interactions would arise among coalitions for the
provision of facilities.
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De�nition 2. Let R be a restriction. An agreement x is in the R-core CR if it satis�es∑
i∈N xi = v(N) and the following core lower bounds:

∀S ⊂ N,
∑
i∈S

xi ≥ vR(S)

As an illustration, we propose to discuss two speci�c restrictions relying on polar assump-
tions on the behavior of outside members.

We call the �rst restriction Collapse In Outside Cooperation (CIOC). When deviating from
a global agreement by blocking an allocation, a coalition S expects that the remaining
communities will not cooperate to build facilities. It is formally de�ned by: ∀S ⊂ N ,
R(S) = ({S, {i}i∈N\S}, l). Note that since communities outside S are singletons and that
we assume that no community would build on its own, they never build. The location
decision vector l boils down either to no-building at all, or to a single facility located inside
S. If S builds a facility, there might be multiple optimal localizations of the facility in
S. Yet, all these localizations lead to a single value vc(S) = b(S) − c(S). We then have
vc(S) = max(0, b(S)− c(S)). This is the notion of the core that we have examined in the
previous sections. It corresponds to the notion of the γ-core introduced in the context of
public good games (see e.g. Chander and Tulkens, 1997).

The second restriction we consider corresponds to the delta assumption of full cooperation
and its associated notion, the δ-core. We call this second restriction Rational Hostile

Outside Cooperation (RHOC). It is formally de�ned by ∀S ⊂ N,R(S) = ({S,N\S}, l).
The expectations of a coalition S when considering blocking an allocation is that all the
other players will cooperate and (potentially) build a facility. Moreover, coalition S expects
that if the coalition N\S is indi�erent between di�erent locations, it will locate it at the
worst place from S's point of view. Formally, the RHOC value function for a coalition S
is de�ned as vr(S) = minl∈L({S,N\S})v(S, {S,N\S}, l).

We �rst investigate the cooperative externalities in the NIMBY problem. A cooperative
game exhibits positive (resp. negative) externalities if coalitions bene�t (resp. su�er) from
the cooperative behavior of players outside (De Clippel and Serrano, 2008). It turns out
that externalities in the cooperative game induced by the NIMBY problem can be either
positive or negative. The following proposition links the value functions of the game in
partition form, the CIOC and the RHOC restrictions.

Proposition 4. For any S ⊂ N , P 3 S and l ∈ L(P),

(i) vc(S) ≥ v(S,P, l)

(ii) We might have vr(S) > v(S,P, l) or vr(S) < v(S,P, l) depending on P

(iii) We might have v(S,P, l) > v(S,P ′, l) or v(S,P, l) < v(S,P ′, l) when P ′ is a
�ner partition of N including S.

First, the CIOC value is the highest possible value that a coalition can obtain by deviating
from the global agreement. This is because a coalition can only be bothered by nuisances
generated by the facilities built by outsiders. So the best that can happen for a coalition
is that the outsiders do not build any facility which holds under CIOC.

Second, the RHOC value can be lower or higher than the value with other partitions. This
can be shown by example in the 5-player uniform linear NIMBY problem. For 2b ≥ c the
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lowest value for coalition S = {2} would be achieved with P = {{2}; {1, 4}; {3, 5}} and
location decisions (0, 1, 3) because S would undergo the externalities linked to 2 facilities
instead of a single one in the case P = {{2}; {1, 4, 3, 5}}. This remark emphasizes the fact
that full cooperation of outsiders is not the worst that can happen to a coalition.

Third, a coalition does not necessarily bene�t from the merger of other coalitions. For
instance, S could experience a negative externality when two former non-building coalitions
merge and build next to it. This would be the case in the homogeneous linear case with
5 communities when c ≤ 4b < 2c and P = {{2}; {1, 4}; {3, 5}}. The merger to P =
{{2}; {1, 4, 3, 5}} would induce the construction of a facility at 1 and make the worth of
{2} decrease.

As a consequence of Proposition 4, we know that for any restrictionR, Cc ⊆ CR. The CIOC-
core is the most restrictive notion of a core as it amounts to considering that coalitions do
not take into account the negative externality that outside members could exert on them.
Hence, the emptiness of the CIOC-core does not imply the emptiness of any restricted
core. This leads us to question the generality of Proposition 2, and more especially to
doubt whether the necessary character of the identi�ed condition would extend to any
restricted core. We actually show that this condition carries forward to any restriction,
provided we additionally assume that neighborhoods are small enough so that they never
build when excluded. This is the sense of Assumption 4.

Assumption 4. ∀S ∈ N̄ , b(S) < c(S)

Assumption 4 su�ces for any coalition of neighbors of a same community not to build
a facility on their own.13 It holds when the number of direct neighbors is limited as
compared to the minimal number of communities for which building a facility is e�cient.
For instance, it does hold in the uniform linear case when a minimum of three communities
is needed to build a facility, because each community has at most two neighbors. Formally,
it requires that 2b < c, so that no neighborhood of a community would build on its own.14

Assumption 3 will also be needed. Yet, it can be weakened to the following assumption.

Assumption 5. ∀S ∈ N̄ , b(S) ≥
∑

i∈S maxj∈N\{i} cji + vR(S)

Unfortunately, Assumption 5 has no direct interpretation. Yet, along with Assumptions 1,
2 and 4, it generalizes Proposition 2 to any notion of a restricted core.

Proposition 5. Under Assumptions 1, 2, 4 and 5, for any restriction R, the R-core is
non-empty if and only if I(C) ≤ 1.

Under Assumption 2, we can show that core allocations are constrained by two classes of
coalition. First, large coalitions consisting in the exclusion of neighborhoods still have an
incentive to exclude. They are building coalitions from Assumption 1 and their value does
not depend on the behavior of outside members, as Assumption 4 guarantees that no subset
of a neighborhood would build a project. Second, the rationality of non-building coalitions
can no longer be restricted to individual rationality. However, Assumption 5 is su�cient

13Along with Assumption 1, it emphasizes a crucial feature for our results to hold: the size asymmetry
between neighborhoods and their complementary should be su�cient to induce di�erent building decisions.
For this reason, our results apply to local pollution at the scale of N .

14If two communities neighboring a community i with 1 < i < n share a facility, they incur the hosting
cost but no externality cost for a bene�t of 2b.
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for these constraints to be non-binding in a linear program related to the emptiness of
the core. Hence, the results discussed earlier are robust to alternative speci�cations of the
behavior of outside members.

Before moving to the illustrative examples, we brie�y discuss the case of non-excludable
bene�ts. It includes for instance NIMBY problems such as shale gas wells or nuclear waste
repositories. When bene�ts are non-excludable, free-riding compromises the existence of
core allocations in addition to exclusion: coalitions of communities are tempted to block
a global agreement because they can bene�t from the facility without paying its cost.
However, deviating coalitions may be tempered by two forces. First, large coalitions would
not rationally expect remaining communities to build a project by themselves. Hence,
free-riding would a�ect the core lower bounds only for small coalitions. Second, a small
deviating coalition may expect the project to be located at its borders when withdrawing
from the grand coalition as its interests would no longer be taken into account. At �rst
sight, it would mitigate free-riding incentives. Free-riding never occurs under the CIOC
hypothesis as it requires that any deviating coalition anticipate that outside members
would not build a project. The RHOC core provides us with an interesting insight on this
problem as it presupposes cooperation among remaining communities and the associated
credible threat. Therefore, we focus on the RHOC-core. We focus on the linear case when
bene�ts are non-excludable.

Example. Let us consider the uniform linear case with n ≥ 6. Under Assumptions 1
and 4, the RHOC-core of a uniform linear NIMBY problem with at least six communities
and non-excludable bene�ts is empty. Indeed, for any RHOC-core allocation x, the core
lower bound of the coalition N\{2} (respectively N\{n− 1}) requires x2 ≤ b2 − δc (resp.
xn−1 ≤ bn−1 − δc). On the other hand, we know that the coalition N\{2, n − 1} is a
building coalition due to Assumption 4. Hence the coalition {2, n − 1} can free-ride and
its core lower bound is written x1 + xn−1 ≥ b1 + bn−1 − δc. The latter condition is not
compatible with the other two conditions identi�ed. Hence the RHOC-core is empty.

We conclude this part by insisting that the emptiness of the core in the non-excludable
case is likely to stem from the interplay between free-riding incentives and the garbage-
game dimension of the problem. The latter dimension puts a higher bound on the welfare
of the neighborhoods. When bene�ts are excludable, these small coalitions will often not
get more in a core allocation than what they would achieve if they withdrew, even if they
have to bear the threat imposed by the remaining communities. Therefore, even if credible
threats exist, they would often fail to stabilize the grand coalition. In the following section
we redirect the focus to the CIOC-core C in explicit spatial structures with excludable
bene�ts.

5 Illustrations on explicit spatial structures

5.1 Uniform NIMBY problems on graphs

The linear example developed previously put the emphasis on the e�ect of the number
of individuals on the core. We propose here a natural extension of the linear case which
allows us to investigate the e�ect of the spatial structure on the core. For a given NIMBY
problem (N, b,C), we restrict our attention to NIMBY problems on graphs. As in the
linear case, the cost of building the project at i is the same for all. However, it entails
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an identical additional cost δc on each of i's neighbors. Hence, the matrix of costs can be
written C = cIn + δcG where In is the identity matrix and G is the adjacency matrix of
a simple graph (with values 0 on the diagonal). A NIMBY problem on a graph is fully
characterized by parameters (N, b, c, δ,G).

Example. Figure 2 below represents the graph associated with the following cost matrix
for n = 6:

C =



c δc δc 0 0 0
δc c δc 0 0 0
δc δc c δc 0 0
0 0 δc c δc δc
0 0 0 δc c δc
0 0 0 δc δc c


On this graph, a facility built at 1 would yield an external cost δc at 2 and 3. The minimal
cost in the grand coalition is c(N) = c+ 2δc. The e�cient locations are 1, 2, 5 and 6.

1

2
3 4

5

6

Figure 2: A graph with 6 communities

As in the linear case, the condition for non-emptiness can be stated as an upper bound on
the parameter δ.

Corollary 2. Under Assumptions 1, 2 and 3, the core of a NIMBY problem on a graph
(N, b, c, δ,G) is non-empty if and only if δ ≤ δ̄(G) where δ̄(G) > 0.

The proof and an explicit expression for the critical value δ̄(G) are provided in AppendixG,
which is directly related to I(C): for a given δ, the more I(C), the less δ̄(G) . The
expression of the critical value δ̄(G) involves the value of a linear program that can be
computed for speci�c examples.

Figure 3 provides an example of the ambiguous e�ect of the number of communities.
Indeed, from the linear graph A with 5 communities, the addition of a community on the
extremity of the line to form graph B implies a decrease in δ̄(G). For a given δ, this is
associated with a decrease in I(C). However, the further addition of a community to form
graph C implies an increase in δ̄(G).

15



Graph G n d(G) 

A 5 1/2 

B 6 1/3 

C 7 1/2 

Figure 3: Critical value of δ for di�erent graphs with di�erent number of communities.
These values are obtained from the explicit computation of δ̄(G) according to the expres-
sion derived in Appendix G. The code used is provided in Appendix H.1.

Figure 4 presents the critical value δ̄(G) associated with di�erent graphs, all involving
6 communities. Proposition 3 is illustrated on graphs A to F and L to P: we observe
that, when a link is added while keeping the minimum degree constant, requirements
on δ can only be relaxed. In particular, the lax condition obtained for the complete
graph S can easily be extended to all complete graphs. This further emphasizes that
our argument mainly stands for local pollutions. Yet, in this case, since neighborhoods
and their complements are no longer asymmetric, Assumptions 1 and 4 cannot be met
at the same time. Finally, this assessment shows that the spatial structure is in itself an
important source of variability for the set of core agreements. We propose to carry further
the exercise on a real administrative unit.

5.2 A tentative assessment on real geographies

We now brie�y discuss how the least-core value could be estimated in real problems. The
exercise is illustrative: we introduce a hypothetical problem in a real administrative geo-
graphical division.

More precisely, let's consider a hypothetical negotiation among municipalities for locating
and funding a facility in the French département of Haute-Garonne. This project would
yield a potentially heterogeneous bene�t to each municipality. As Proposition 2 empha-
sizes, we do not need precise knowledge of the bene�ts, provided that Assumptions 1 and 3
are met. However, Assumption 2 does not hold in this environment. Hence, we rely on the
modi�cation of Proposition 2 established in Appendix C. It allows us to drop this assump-
tion at the cost of a di�erent, more realistic one and a slight modi�cation of the expression
of I(C). What matters most is the structure of costs. Assume that a facility could only
be located at the centroid of each municipality15. Assume additionally that, wherever it

15This exercise emphasizes a limitation in our model: in order to compute the cost matrixC, a hypothesis
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Graph G d(N) d(G) 

A 1 1/3 

B 1 1/2 

C 2 1/4 

D 2 1/3 

E 2 1/2 

F 2 1 

H 1 1 

I 1 1/2 

J 1 1 

K 1 1 

Graph G d(N) d(G) 

L 2 1/4 

M 2 1/4 

0 2 1/3 

P 2 1/2 

Q 3 1/3 

R 3 1/2 

T 3 1 

U 4 1/2 

V 5 1 

Figure 4: Critical value of δ for di�erent graphs with 6 communities where d(N) is the
minimal degree of the graph. These values are obtained from the explicit computation of
δ̄(G) according to the expression derived in Appendix G. The code used is provided in
Appendix H.1.
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is built, a facility yields a uniform pollution cost within a �xed radius from the site. For
instance, Figure 5 shows, in red, an impacted area of 3 km around a facility located at
the centroid of a given municipality i. Given our assumption of uniformity within the im-
pacted area, the total pollution cost is directly proportional to the red area. Moreover, as
Proposition 2 emphasizes, we do not need to specify absolute values to compute the index:
only relative values matter. Hence, cii can be normalized to the area of the intersection of
the red plain circle and i's territory, and cij , to the area of the intersection between the
red plain circle and j's territory. The matrix C is obtained by computing all such areas.
Neighborhood sets and the optimal location are derived from the matrix C.

Figure 5: Municipalities composing Haute-Garonne. The red area corresponds to the
impacted area when located at an arbitrary municipality for a radius of 3 km. The yellow
area corresponds to the impacted area at the optimal location for the same radius.

We compute the least-core value I(C) for di�erent radii. The code used to perform this
computation is provided in Appendix H.2. It yields the following results.

Radius (in km) 1 2 3

I(C) 4.46 34.2 50.2

We note that the least-core value is always higher than 1, so the core is empty in all these
cases. This illustrative exercise can be improved by including a better estimate of the
costs of such a facility. The main di�culty here being the use of plausible values for the
perceived pollution costs. Any step in this direction would rely on a good understanding
of the monetary as well as the non-monetary costs of such facilities. The resulting index
would in particular be sensitive to the cost at the optimal site, which, in this illustration,
was to be at some indentation of the boundary.

has to be made on where the facility would be located within a given municipality regardless of the coalition
it belongs to. In our assessment, we chose the centroids. In a more general framework, we could expect
coalitions to have some �exibility in the location choice. By increasing the value of all coalitions, such
�exibility would strengthen requirements for non-emptiness. It would yield complications but, in our view,
few more insights.
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Conclusion

In this paper, we analyzed the cooperative provision of economic activities that are globally
bene�cial but locally harmful in an explicit spatial model. Examples include facilities such
as land�lls, waste treatment plants or polluting utilities, which require that people living
in the neighborhood be compensated. When communities can be excluded from using
the facilities, free-riding is not a problem like in standard localized public-good provision
problems. In our framework, the exclusion of the neighboring communities is the main
obstacle to cooperation. It sets upper bounds on compensations, which together with the
participation constraints, determine whether a global cooperative solution exists. That is,
if the core of the cooperative game is non-empty. A least-core index is computed to test
the existence of a core solution. Its de�nition is robust to several assumptions on the value
function in this cooperative game with externalities. It can be estimated in practice.

As mentioned in the introduction, our investigation of the NIMBY problem using coopera-
tive game theory formalizes bargaining à la Coase in economies with externalities. If, when
the core is empty, the parties involved fail to implement the project, the �Coase theorem�
does not hold. In the bargaining process, property rights have been assigned to the pol-
luters because a facility could be built without the consent of the neighboring communities.
Under other assignments of property rights, the core might be non-empty. In particular,
it is easy to show that the core is never empty under the polluter-pays principle: if the
communities building the facility are forced to compensate all neighboring communities
for the damages, a global and e�cient agreement can always be reached. Therefore, in
contradiction with another interpretation of Coase's thought, the assignment of property
rights could matter for reaching e�ciency, even in the absence of transaction costs.
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Appendix

A Proof of Proposition 1

Let x be an allocation which meets the conditions stated in Proposition 1, that is, the e�-
ciency condition (1), individual rationality conditions (2), and the following lower bounds

for every S ∈ Y = {N\S|S ∈
◦
N} ∪ {N\{i}|i ∈ N},∑

i∈S
xi ≥ v(S) (5)

We �rst show that it satis�es the core lower bounds (5) for any arbitrary coalition. Let
T ⊆ N .

� If T is a non-building coalition, we have v(T ) = 0. ∀i ∈ T , x meets the individual
rationality constraint xi ≥ 0. The sum of these constaints yields Condition (5) for
T .

� If T is a building coalition, we have v(T ) = b(T ) − c(T ). Let us consider j∗ ∈
argminj∈T

∑
i∈T cij an optimal site in T and S∗ =

◦
N (j∗) ∩ (N\T ), the set of strict

neighbors of j∗ that are not in T and T̄ = N\S∗. Since T̄ = N\S∗ ∈ Y,∑
i∈T̄

xi ≥ b(T̄ )− c(T̄ )

Besides, c(T̄ ) ≤ c(T ) so: ∑
i∈T̄

xi ≥ b(T̄ )− c(T ) (6)

For every i ∈ N , N\{i} ∈ Y hence
∑

j∈N\{i} xj ≥ v(N\{i}). This inequality can
be rewritten, using the e�ciency condition (1), as xi ≤ v(N) − v(N\{i}). We have
∀i ∈ N\H, v(N) − v(N\{i}) ≤ bi and Assumption 2 additionally implies ∀h ∈
H, v(N) − v(N\{h}) ≤ bh. Thus, ∀i ∈ N,−xi ≥ −bi. From the summation of
the latter inequalities for all agents in T̄\T to inequality (6), we obtain

∑
i∈T xi ≥

b(T )− c(T ) = v(T ). Hence condition (5) holds for T .

We have shown that the core lower bounds can be restricted to coalitions in Y. From

Assumption 1, coalitions in {N\S|S ∈
◦
N} are all building coalitions so the constraints

associated with them are:
∑

i∈N\S xi ≥ b(N\S) − c(N\S). Combining them with the
e�ciency constraints yields conditions (4) in Proposition 1.

B Proof of Proposition 2

From Proposition 1, the core can be de�ned as:

{x ∈ Rn+|
∑
N

xi = v(N) and ∀S ∈ N̄ ,
∑
S

xi ≤ b(S)−(c(N)−c(N\S)) and ∀i ∈ N, xi ≥ 0}
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A necessary and su�cient condition for non-emptiness of this set involves the linear pro-
gram (LP1):

max
x
{
∑
i∈N

xi|∀S ∈ N̄ ,
∑
i∈S

xi ≤ b(S)− (c(N)− c(N\S)), ∀i ∈ N, xi ≥ 0} ≥ v(N)

Assumption 3 implies that the saving induced by the withdrawal of a community will never
overcome the loss of its bene�t so for any S ⊆ T ⊆ N, we have v(S) ≤ v(T ) ≤ v(N). In
particular, for every S ∈ N̄ , v(N\S) ≤ v(N) which implies b(S) − (c(N) − c(N\S)) ≥ 0.
Hence, this linear program is feasible when Assumption 3 is met (take, for all i ∈ N, xi = 0).
Besides, it is bounded (by

∑
N bi for instance) so it admits a �nite value.

We now show that the individual rationality constraints xi ≥ 0 are non-binding in (LP1).
We start to show that, for any optimal solution, no community pays more than maxj∈N\{i0} cji0
, the highest external cost it can bear.

Let x∗ be an optimal solution to (LP1) and i0 ∈ N . Assume that:

x∗i0 < bi0 + min
T∈N̄ :i0∈T

(c(N\T )− c((N\T ) ∪ {i0}))) (7)

We can then increase x∗i0 by some ε > 0 such that:

x∗i0 + ε < bi0 + min
T∈N̄ :i0∈T

(c(N\T )− c((N\T ) ∪ {i0}))) (8)

Such an increase improves the objective. We shall show that it also leads to a feasible
solution. Let S ∈ N̄ such that i0 ∈ S. Because S ∈ N̄ , S\{i0} also pertains to N̄ (except
for the case S = {i0}, in which the result is direct). By feasibility of x∗, we have:

∑
i∈S\{i0}

x∗i ≤ b(S\{i0})− (c(N)− c((N\S) ∪ {i0}))) (9)

Summing inequalities (8) and (9), we get:

∑
i∈S

x∗i + ε < b(S)− (c(N)− c((N\S) ∪ {i0}))) + min
T∈N̄ :i0∈T

(c(N\T )− c((N\T ) ∪ {i0})))

Since minT∈N̄ :i0∈T (c(N\T )− c((N\T ) ∪ {i0}))) ≤ c(N\S)− c((N\S) ∪ {i0})), we have:∑
i∈S

x∗i + ε < b(S)− (c(N)− c(N\S))

All the constraints involving xi0 are met. This contradicts the optimality of x∗. Hence,
inequality (7) cannot hold by contradiction. We have:

x∗i0 ≥ bi0 + min
T∈N̄ :i0∈T

(c(N\T )− c((N\T ) ∪ {i0}))) (10)

Besides, for any T ∈ N̄ such that i0 ∈ T ,
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c((N\T ) ∪ {i0}))− c(N\T ) = min
j∈(N\T )∪{i0}

∑
k∈(N\T )∪{i0}

cjk − min
j∈N\T

∑
k∈N\T

cjk

Denoting by j∗ an optimal host in N\S, we have:

c((N\T ) ∪ {i0}))− c(N\T ) ≤
∑

k∈(N\T )∪{i0}

cj∗k −
∑

k∈N\T

cj∗k = cj∗i0

Hence:
c((N\T ) ∪ {i0}))− c(N\T ) ≥ − max

j∈N\{i0}
cji0 (11)

From conditions (10) and (11), we get x∗i0 ≥ bi0−maxj∈N\{i0} cji0 and, from Assumption 3,
x∗i0 ≥ 0. Thus, individual rationality constraints can be discarded from (LP1) without
altering the value of the objective. This leads us to consider the linear program (LP2):

max
x
{
∑
i∈N

xi|∀S ∈ N̄ ,
∑
i∈S

xi ≤ b(S)− (c(N)− c(N\S))}

Again, this linear program is bounded and feasible. Therefore, it admits a �nite value and
so its dual (LP2∗):

min
x
{
∑
S∈N̄

χS(b(S)− (c(N)− c(N\S)))|∀i ∈ N,
∑
S:i∈S

χS = 1, χS ≥ 0}

Which can be further simpli�ed to:

min
x
{b(N)−

∑
S∈N̄

χS(c(N)− c(N\S))|∀i ∈ N,
∑
S:i∈S

χS = 1, χS ≥ 0}

A necessary and su�cient condition for non-emptiness of the core is that the value of
(LP2∗) is lower than v(N) = b(N)− c(N). This leads to the following condition:

max
χ
{
∑
S∈N̄

χS(1− c(N\S)

c(N)
)|∀i ∈ N,

∑
S:i∈S

χS = 1, χS ≥ 0} ≤ 1

C Discarding Assumption 2 in Proposition 2

If |H| > 1, the proof of Proposition 2 holds. Here we assume |H| = 1 and show that
a similar result to Proposition 2 can still be obtained. The di�erence lies in the fact
that the host can get more than bh in core allocations, which prevents an immediate
focus on neighborhoods. However, we show that, as soon as an additional assumption is
met, requiring that xh ≤ bh does not alter the least-core value. This allows a focus on
neighborhoods. The proof proceeds as the proof of Propositions 1 and 2: we �rst discard
redundant constraints and simplify non-binding constraints in a linear program related to
the emptiness of the core.

Let us denote by h the unique optimal host in N and let x be an allocation which meets
the e�ciency condition (1), individual rationality constraints (2) and the following core
lower bounds for every S ∈ Y ′ = E ∪ Eh ∪ {N\{i}|i ∈ N},∑

i∈S
xi ≥ v(S) (12)
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Where E = {N\S|S ∈
◦
N and c(N\S) ≤ c(N)} and Eh = {S ⊂ N |h 6∈ S}.

We �rst show that it satis�es the core lower bounds (12) for any arbitrary coalition. Let
T ⊆ N .

� If T is a non-building coalition, we have v(T ) = 0. ∀i ∈ T , x meets the individual
rationality constraint xi ≥ 0. The sum of these constraints yields Condition (12) for
T .

� If T is a building coalition, we have v(T ) = b(T ) − c(T ). Let us consider j∗ ∈
argminj∈T

∑
i∈T cij an optimal site in T and S∗ =

◦
N (j∗) ∩ (N\T ), the set of strict

neighbors of j∗ that are not in T . We de�ne T̄ = N\S∗. If c(N\S∗) ≤ c(N), then
T̄ ∈ E ⊂ Y ′. If c(N\S∗) > c(N), then it must be that h is not in N\S∗ hence
T̄ ∈ Eh ⊂ Y'. Therefore: ∑

i∈T̄

xi ≥ b(T̄ )− c(T̄ )

Besides, c(T̄ ) = minj∈T̄
∑

k∈T̄ cjk ≤
∑

k∈T̄ cj∗k =
∑

k∈T cj∗k = c(T ), where the
third equality comes from the fact that communities in T̄\T do not belong to the
neighborhood of j∗ by construction. Hence:∑

i∈T̄

xi ≥ b(T̄ )− c(T ) (13)

The rationality of coalitions N\{i} yields ∀i ∈ N\{h},−xi ≥ −bi. From the sum-
mation of the latter inequalities for all agents in T̄\T to inequality (13), we obtain∑

i∈T xi ≥ b(T )− c(T ) = v(T ). Hence condition (12) holds for T .

We have shown that the core lower bounds can be restricted to coalitions in Y'. Combining
them with the e�ciency constraints and de�ning Ē = {T |T ∈

◦
N and c(N\T ) ≤ c(N)} and

Ēh = {T |h ∈ T}, the respective complementary of E and Eh, the core is non-empty if and
only if:

max
x
{
∑
i∈N

xi|∀S ∈ Ē∪Ēh∪{i|i ∈ N},
∑
i∈S

xi ≤ b(S)−(c(N)−c(N\S)),∀i ∈ N, xi ≥ 0} ≥ v(N)

We now eliminate constraints in Ēh. Let us denote by (LP3) the former linear program.
Let us consider x∗ as an optimal solution to (LP3) and let us assume x∗h > bh so that we
can write x∗h = bh + ε, ε > 0. At this stage, an additional assumption is required:

Assumption 6. ∃S ∈
◦
N such that h 6∈ S and c(N\S) ≤ c(N)

This assumption implies that it is always possible to exclude some agents di�erent from
h and save on the cost of the project. We will show there always exists another optimal

solution, x′, such that x′h ≤ bh. From Assumption 6, there exists S ∈
◦
N such that h 6∈ S

and c(N\S) ≤ c(N). Let us consider S ∪ {h} ∈ Ēh; we have, by feasibility of x∗ in (LP3):

∑
i∈S

x∗i + x∗h ≤
∑
i∈S

bi + bh

Hence,
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∑
i∈S

x∗i ≤
∑
i∈S

bi − ε

Besides the rationality of coalitions N\{i} requires ∀i ∈ S, x∗i ≤ bi. Hence, there exists

(εi)i∈S ∈ R|S|+ such that,
∑

i∈S εi = ε and, for all i ∈ S, x∗i ≤ bi − εi. Let us de�ne x′ as
follows:

x′h = x∗h − ε = bh

x′j = x∗j + εi for all j ∈ S

x′i = x∗i for all i 6∈ S ∪ {h}

By construction this solution yields the same objective. We want to show it is feasible as
well. Let TS be such that TS ∩ S 6= ∅ and TS ∈ Ē ∪ Ēh ∪ {i|i ∈ N}, an arbitrary coalition
of Ē ∪ Ēh ∪ {i|i ∈ N} containing elements of S. Three cases arise:

� If TS ∈ {i|i ∈ N}, then the associated constraint xi ≤ bi is met by construction.

� If TS ∈ Ēh, we have, where the �rst inequality comes from the fact that
∑

i∈TS∩S εi−
ε ≤ 0 and the second is the feasibility of x∗ in (LP4):∑

i∈TS

x′i ≤
∑
i∈TS

x∗i ≤ b(TS)− (c(N)− c(N\TS))

� If TS ∈ Ē , TS ∪ {h} ∈ Ēh and by feasibility of x∗ in (LP4):∑
i∈TS

x∗i + x∗h ≤ b(TS) + bh − (c(N)− c(N\(TS ∪ {h})))

Simplifying bh and because
∑

i∈TS∩S εi ≤ ε,∑
i∈TS

x′i ≤
∑
i∈TS

x∗i + ε ≤ b(TS)− (c(N)− c(N\(TS ∪ {h})))

Because c(N\TS) ≤ c(N), the optimal location in N\TS cannot be h. Hence, the with-
drawal of h can only lead to a decrease in cost, so that c(N\(TS ∪ {h})) ≤ c(N\TS).

Finally, we have, for any constraint TS involving elements of S:

∑
i∈TS

x′i ≤ b(TS)− (c(N)− c(N\TS))

This establishes that x′ is feasible. Hence it is an optimal solution as well. Finally, we
can require that xh ≤ bh without altering the value of the linear program. This de�nes the
linear program (LP4):

max
x
{
∑
i∈N

xi|∀S ∈ Ē ∪ Ēh,
∑
i∈S

xi ≤ b(S)− (c(N)− c(N\S)),∀i ∈ N, xi ≤ bi and xi ≥ 0}

It is straightforward to show that, following the introduction of the additional constraint
xh ≤ bh, all constraints in Ēh are redundant in (LP4). Hence (LP4) can be rewritten:
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max
x
{
∑
i∈N

xi|∀S ∈ Ē ,
∑
i∈S

xi ≤ b(S)− (c(N)− c(N\S)), xh ≤ bh,∀i ∈ N, xi ≥ 0}

And, adding some redundant constraints to simplify the notations:

I(C) = max
x
{
∑
i∈N

xi|∀S ∈ N̄ ,
∑
i∈S

xi ≤ b(S)− (c(N)− c(N\S)), ∀i ∈ N, xi ≤ bi and xi ≥ 0}

We eventually get an expression similar to the one introduced in Proposition 2: As-
sumption 2 can be replaced by Assumption 6 provided we impose the additional condition
xh ≤ bh in the former linear program. Hence, an expression of I(C) can be obtained by
de�ning the function c′ such that c′(N\{h}) = 0 and, for all S ⊂ N di�erent from N\{h},
c′(S) = c(S). Then:

I(C) = max
χ
{
∑
S∈N̄

χS(1− c′(N\S)

c′(N)
)|∀i ∈ N,

∑
S:i∈S

χS = 1, χS ≥ 0}

D Proof of Corollary 1

In the linear case, Assumption 2 holds, and we explicitly compute the value of I(C). In
this section we will use the notion of balanced collections. A collection B of subsets of N is
said to be balanced if and only if there exist strictly positive weights χB = (χBS)S∈B such
that, for any i ∈ N,

∑
S∈N̄ :i∈S χ

B
S = 1. Denoting by B(N̄ ) the set of balanced collections

over N composed of elements of N̄ only, we can write:

I(C) =
1

c(N)
max
B∈B(N )

{∑
S∈B

χBS(c(N)− c(N\S))

}

For any S ∈ N , we have the corresponding values:

c(N)− c(N\S) =


δc if S ∈ {2, n− 1}
δc if S ∈ {j ∪ j + 2|j ∈ [1, n− 2]}
0 otherwise

N̄ is a set of coalitions of no more than two players. Hence, for any balanced collection B of
elements of N̄ , there exists a partition of N into pairwise disjoint sets N1, ..., Nl, l = 0...L
where each Nl with l > 0 is a coalition of at least three communities such that B consists
of full cycles on each Nl and a partition of N0 (Balinski, 1970, as stated in Le Breton and
Weber, 1995: 316). Because no cycle can be formed out of elements of N̄ in the linear
case, all balanced coalitions over N̄ are partitions. In summary, we are interested in �nding
partitions P of N , composed with elements of N̄ which maximize

∑
S∈P(c(N)− c(N\S)).

We now explain how to �nd such optimal partitions.

First, for any partition involving coalitions in which 2 or n − 1 belongs to a two-agent
coalition, we weakly improve on the objective by splitting such coalitions into singletons.
Hence, we can restrict our attention to coalitions in which such communities appear as
singletons. The construction of an optimal partition then consists in maximizing the
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number of coalitions of the form {j ∪ j + 2|j ∈ [1, n− 2]}. In the case n ∈ {4, 5, 6, 7}, such
optimal partitions are trivial as soon as communities 2 and n − 1 appear as singletons.
Figure 6 presents optimal partitions and the corresponding value of

∑
S∈P(c(N)−c(N\S)).

Case Optimal partition Value 

n=4 2dc 

n=5 3dc 

n=6 4dc 

n=7 4dc 

1 2 3 4 

1 2 3 4 5 

1 2 3 4 5 6 

1 2 3 4 5 6 7 

Figure 6: Initial patterns. The reasoning adopted for �nding the optimal partitions consists
in considering all possible cases. We detail the case n=7. First, we know that there is
always an optimal partition containing {2} and {6} as singletons. The value associated
with each is δc. The value associated with any other single individual is 0 whereas the
value associated with any pair of N̄ is δc. An optimal partition thus contains as many pairs
of N̄ as possible. This is achieved with the partition P = {{1, 3}, {2}, {4}, {6}, {5, 7}}.

For any n > 7, we know that n can be decomposed as n = 4k + i, k ∈ N and i ∈ 0, 1, 2, 3.
According to this decomposition, an optimal partition can be found by combining the
initial patterns above and the iterative pattern presented in Figure 7 which maximizes the
value that can be obtained by adding 4 communities to the initial pattern.
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Figure 7: Iterative pattern

We eventually �nd the following optimal partitions:

� If n = 4k, k ∈ N, P = {{1}, {2}, {n− 1}, {n}} ∪k−1
j=1 {{4j − 1, 4j + 1}, {4j, 4j + 2}}

� If n = 4k+1, k ∈ N, P = {{1, 3}, {2}, {n−1}, {n}}∪k−1
j=1 {{4j, 4j+2}, {4j+1, 4j+3}}

� If n = 4k + 2, k ∈ N, P = {{1, 3}, {2}, {n− 1}, {n− 2, n}} ∪k−1
j=1 {{4j, 4j + 2}, {4j +

1, 4j + 3}}

� If n = 4k + 3, k ∈ N, P = {{1, 3}, {2}, {4}, {n − 1}, {n − 2, n}} ∪k−1
j=1 {{4j + 1, 4j +

3}, {4j + 2, 4j + 4}}

And the associated values are:

I(C) =


n
2

δ
1+δ if n = 4k, k ∈ N

n+1
2

δ
1+δ if n = 4k + 1, k ∈ N

n+2
2

δ
1+δ if n = 4k + 2, k ∈ N

n+1
2

δ
1+δ if n = 4k + 3, k ∈ N

The condition on δ expressed in Corollary 1 directly follows from the comparison of I(C)
with 1.

E Proof of Proposition 3

Let σ = (N, b,C = (cij)(i,j)∈N2) and σ+ = (N, b,C+ = (c+
ij)(i,j)∈N2) be two NIMBY

problems meeting Assumptions 1 and 2. Let us respectively de�ne c and v (respectively
c+ and v+) the cost and the value function in the problem σ (resp. σ+). We assume

1. c(N) = c+(N);

2. ∀(i, j) ∈ N2, cij ≤ c+
ij . We will note C ≤ C+.

Let (LP3∗) and (LP3∗+) be the linear programs de�ning respectively I(C) and I(C+)
and let χ∗ be an optimal solution to (LP3∗). χ∗ is feasible in (LP3∗+). Besides, because

C ≤ C+ and c(N) = c+(N), we have ∀S ∈ N , (1 − c(N\S)
c(N) ) ≥ (1 − c(N\S)

c(N) ), so the value

of the linear program (LP3∗+) taken at χ∗ is not lower than I(C). Therefore, its optimal
value I(C+) cannot be lower than I(C).
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F Proof of Proposition 5

Let R be a restriction and vR its associated characteristic function. We want to show that
under Assumptions 1, 2, 4 and 5, the R-core is non-empty if and only if I(C) ≥ 1. We
extend the proof of Propositions 1 and 2.

First, we eliminate redundant constraints in the system de�ning the core. We distinguish
between building and non-building coalitions. NB = {T ⊂ N |b(T ) < c(T )} is the set of
non-building coalitions. Replicating the proof of Proposition 1, the constraints for building
coalitions can be restricted to {N\S|S ∈ N̄}. However, the constraints for non-building
coalitions cannot be reduced to individual rationality: an allocation x is in the R-core CR
if and only if

∑
i∈N

xi = v(N) (14)

∀S ∈ NB,
∑
i∈S

xi ≥ vR(S) (15)

∀i ∈ N,xi ≥ bi (16)

∀S ∈
◦
N ,
∑
i∈S

xi ≤ b(S)− (c(N)− c(N\S)) (17)

where the constraints (15) contain the individual rationality constraints. We consider the
linear program (LP5):

max
x
{
∑
i∈N

xi|∀S ∈ N̄ ,
∑
i∈S

xi ≤ b(S)− (c(N)− c(N\S)) and ∀S ∈ NB,
∑
i∈S

xi ≥ vR(S)}

The R-core CR is non-empty if and only if (LP4) is feasible and reaches a value higher
than v(N). We �rst note that such a program would always be feasible under Assumption 5
(e.g. x such that ∀i ∈ N, xi = bi − maxj∈N\{i} cji is feasible). Second, as in the proof
of Proposition 2, we can show that the constraints on the right are never binding under
Assumption 5.

Let x∗ be an optimal solution to the above linear program and i0 ∈ N . Assume:

x∗i0 < bi0 + min
T∈N̄ :i0∈T

(c(N\T )− c((N\T ) ∪ {i0}))) (18)

Then we can increase x∗i0 by some ε > 0 such that:

x∗i0 + ε < bi0 + min
T∈N̄ :i0∈T

(c(N\T )− c((N\T ) ∪ {i0}))) (19)

Such an increase improves on the objective. We shall show that it also leads to a feasible
solution.

Let S ∈ N̄ with at least two communities, such that i0 ∈ S. Because S ∈ N̄ , S\{i0} also
pertains to N̄ . By feasibility of x∗, we have:
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∑
i∈S\{i0}

x∗i ≤ b(S\{i0})− (c(N)− c((N\S) ∪ {i0}))) (20)

Summing inequalities (19) and (20), we get:

∑
i∈S

x∗i + ε < b(S)− (c(N)− c((N\S) ∪ {i0}))) + min
T∈N̄ :i0∈T

(c(N\T )− c((N\T ) ∪ {i0})))

Therefore, ∑
i∈S

x∗i + ε < b(S)− (c(N)− c(N\S))

In this case, we additionally have to show that constraints in NB are met, which is straight-
forward. All the constraints involving xi0 are met. This contradicts the optimality of x∗.
Hence, inequality (18) cannot hold by contradiction. We have:

x∗i0 ≥ bi0 + min
T∈N̄ :i0∈T

(c(N\T )− c((N\T ) ∪ {i0})))

Besides, as established in the proof of Proposition 2:

∀S ∈ N̄ : i0 ∈ S, c(N\S)− c((N\S) ∪ {i0})) ≥ − max
j∈N\{i0}

cji0

so x∗i0 ≥ bi0 − maxj∈N\{i0} cji0 and ∀S ∈ {T ⊂ N |b(T ) < c(T )},
∑

i∈T xi ≥ b(T ) −∑
i∈T maxj∈N\{i} cji. Hence, using Assumption 5,

∑
i∈T xi ≥ vR(T ).

All constraints for coalitions in NB can then be removed from the program without chang-
ing the value of the objective. This leads us back to the linear program (LP2) and the
proof of Proposition 2 applies.

G Proof of Corollary 2

The cost of the project on a graph depends on the minimal degree of this graph. For any
S ⊆ N , we denote by d(S) the minimal degree of the graph induced by S on G. Rewriting
the condition I(C) ≥ 1, we get the following condition on δ:

δ ≤ δ̄(G) =
1

maxχ{
∑

S∈N̄ χS(d(N)− d(N\S))|∀i ∈ N,
∑

S:i∈S χS = 1, χS ≥ 0} − d(N)

We want to show δ̄(G) > 0. Let h ∈ H be an optimal host in N and j ∈
◦
N (h)16.

Consider the following partition: {
◦
N (h), Sj , N\(

◦
N (h) ∪ Sj)}, where Sj =

◦
N (j)\

◦
N (h) is

the strict neighborhood j from which we withdraw members of
◦
N (h) . A feasible solution

χ′ associated with this partition is de�ned as follows:

16We assume here that |
◦
N (h)| > 0. If it is not, the core is always non-empty (δ̄(G) = +∞).
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� χ′◦
N (h)

= 1;

� χ′Sj
= 1;

� χ′
N\(

◦
N (h)∪Sj)

= 1;

� χ′S = 0 for all other coalitions

We compute the value of this linear program at this feasible solution. First, we know

that |
◦
N (h)| = d(N). Hence community j has at most d(N) − 1 neighbors in

◦
N (h).

The withdrawal of its neighbors in Sj therefore leads to a graph with a degree of at
least d(N) − 1. Hence, d(N) − 1 ≥ d(N\Sh), which implies that d(N) − d(N\Sh) ≥ 1.

Second, we have d(N\
◦
N (h)) = 0; hence, d(N) − d(N\

◦
N (h)) = d(N). Finally, as we

have h ∈ Sj by construction, the minimal degree of
◦
N (h) ∪ Sh is at most d(N); hence

d(N)− d(
◦
N (h) ∪ Sh) ≥ 0. The value associated with the feasible solution χ′ is d(N) + 1,

hence the optimal value of the linear program de�ning δ̄(G) can only be higher than it.
Therefore, δ̄(G) > 0.

H Code (software R)

H.1 NIMBY problems of graphs

#######################################################

# Finding the critical value of delta on a graph #

#######################################################

rm(list=ls())

library(linprog)

#This function returns the critical value deltac

#Input: Adjacency matrix

#Output: deltac

deltac<-function(M){

n<-dim(M)[1]

A<-NULL

b<-NULL

for(i in 1:dim(M)[1]){

neighbors<-which(M[i,]>0,arr.ind=TRUE)

di<-length(neighbors)

for(k in 0:(min(rowSums(M))-1)){

ExcludableCoalitions<-matrix(neighbors[combn(1:di,di-k)],ncol=choose(di,di-k))

for(l in 1:choose(di,di-k)){

constraint<-rep(0,dim(M)[1])

constraint[ExcludableCoalitions[,l]]<-1

A<-rbind(A,constraint)

b<-cbind(b,min(rowSums(M))-k)

}}}

rownames(A)<-NULL

A<-rbind(A,diag(1,n))
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b<-c(t(b),rep(0,n))

chi<-solveLP(b,rep(1,2*n),rbind(t(A),t(A)),maximum = TRUE,

const.dir = c(rep("<=",n),rep(">=",n)),lpSolve=FALSE,solve.dual = FALSE)$solution

1/(chi%*%b-min(rowSums(M)))

}

#Case A of Figure 4

MA<-matrix(c(

0,1,0,0,0,0,

1,0,1,0,0,0,

0,1,0,1,0,0,

0,0,1,0,1,0,

0,0,0,1,0,1,

0,0,0,0,1,0), nrow = 6, ncol = 6)

deltac(MA)

H.2 NIMBY problem on a French administrative unit

The GIS data used is the GEOFLA® Communes database. It is publicly available at
http://professionnels.ign.fr/geo�a.

######################################

# Computation of I(C) #

######################################

rm(list=ls())

memory.size(8000)

require("rgdal")

require("rgeos")

require("spdep")

require("linprog")

# Importation of the GIS data

mun <- readOGR(dsn="COMMUNES", layer="COMMUNE")

numdep<-"31"

dref<-1000

mundep<-mun[as.character(mun@data$CODE_DEPT)==numdep,]

dep<-gUnaryUnion(mundep)

centroids<-SpatialPoints(cbind(mundep@data$X_CENTROID*100,mundep@data$Y_CENTROID*100)

,mundep@proj4string)

impactArea<-gBuffer(centroids,width=dref,byid=TRUE,id=rep(" ",length(centroids)))

#Derivation of the matrix C

M<-rep(0,length(mundep))%*%t(rep(0,length(mundep)))

colnames(M)<-(mundep@data[,1]-1)

for(i in 1:length(mundep)){

neighbors<-gArea(gIntersection(impactArea[i],mundep,byid=TRUE),byid=TRUE)

M[i,as.character(as.numeric(names(neighbors)))]<-as.numeric(neighbors)

}

cN<-min(rowSums(M))
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#Computation of I(C)

storage.mode(M) <- "integer"

A<-rep(0L,800000)%*%t(rep(0L,dim(M)[1]))

b<-rep(0L,800000)

compteur<-1

for(i in 1:dim(M)[1]){

neighbors<-which(M[i,]>0, arr.ind=TRUE)

neighbors<-neighbors[neighbors!=i]

di<-length(neighbors)

ci<-sum(M[i,])

if(di>0){

for(k in 1:di){

ExcludedAgents<-matrix(neighbors[combn(1:di,k)],,ncol=choose(di,k))

for(l in 1:dim(ExcludedAgents)[2]){

if(ci-sum(M[i,ExcludedAgents[,l]])<=cN){

A[compteur,ExcludedAgents[,l]]<-1

b[compteur]<-cN-ci+sum(M[i,ExcludedAgents[,l]])

compteur<-compteur+1 } } } } }

A<-A[1:compteur-1,]

b<-b[1:compteur-1]

A<-rbind(A,diag(1,dim(M)[1]))

b<-c(b,rep(0,dim(M)[1]))

I(C)<-solveLP(b,rep(1,dim(M)[1]),t(A),maximum = TRUE,const.dir = rep("=",dim(M)[1])

,maxiter=300000,lpSolve=TRUE,solve.dual = FALSE,verbose=1)$opt/cN
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