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1 Introduction

Suppose one is interested in modeling the relationship between the demand function of a

certain good, the price of this good, and other variables like salary, education, ... Regressing

the demand function on the price and the other variables via a nonparametric separable

model will lead to skewed and possibly heteroscedastic errors, since the demand function is by

definition positive. A possible way out is therefore to suitably transform the demand variable

via some monotone transformation before applying nonparametric regression techniques.

Another common issue in this context, is that some explanatory variables, e.g. the price

of the good of interest, might be endogenous (due to measurement errors or important

variables that are not included in the model). The objective of this paper is to develop

a sound statistical theory for regression problems, in which one is confronted at the same

time to an unknown transformation of the response and a problem of endogeneity in the

explanatory variables.

Transformation models lie at the heart of many problems in structural econometrics.

They take the general form:

Λ(Y ) = φ(X, Z) + ε, (1.1)

where Y is a scalar dependent variable, (X, Z) is a vector of observed explanatory variables

and ε is an unobserved random variable. The sub-sector X can be endogenous, that is

correlated with U , whereas Z contains only exogenous variables. In a general setting, the

functions Λ and φ can be either parametric or nonparametric.

Important applications of transformation models are given by duration models, with the

classical mixed proportional hazards model (see Heckman and Singer 1984, Nielsen et al.

1992), and various applications in labor economics (see for example Keifer 1988) or indus-

trial organization (see the recent illustration in the two-sided market context by Sokullu

2011). Another class of applications is given by the hedonic model with the paper by Eke-

land, Heckman and Nesheim (2004) or Heckman, Matzkin and Nesheim (2005). Moreover,

as stressed in Linton, Sperlich and Van Keilegom (2008), transformations have also been

used to aid interpretability, to stabilize the variance of the error, to obtain errors that look

more or less like normal errors, as well as to improve statistical performance. Often one

prefers working with a parametric transformation, since they are easier to interpret than

nonparametric ones. Well known examples of families of parametric transformations include

the family of power transformations proposed by Box and Cox (1964), and the Bickel and

Doksum (1981) class of transformations.

From a theoretical point of view, various papers have studied model (1.1) under different

sets of assumptions. Horowitz (1996) considers a parametric function φ with fully exogenous
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explanatory variables whereas in the same context Linton, Sperlich and Van Keilegom (2008)

impose a parametric form for Λ. In a still fully exogenous setting but with nonparametric

forms for Λ and φ, we refer to Horowitz (2001), Jacho-Chavez, Lewbel and Linton (2008) or

Ekeland, Heckman and Nesheim (2004) with an application to hedonic models.

More recently, papers have also studied the case where some explanatory variables X

are endogenous. The issue of endogeneity is very crucial in econometrics and statistics and

can arise as a result of e.g. omitted variables, autoregression with autocorrelated errors, or

sample selection errors. In the specific setting of transformation models defined by equation

(1.1), recent papers handling endogeneity are Florens and Sokullu (2011), Feve and Florens

(2010) and Chiappori, Komunjer and Kristensen (2010). The first two papers consider a

semiparametric form for the function φ and identify and estimate the model using an instru-

ment W and imposing very few technical assumptions (like conditional mean independence)

in the line of ill-posed inverse problems theory (see Carrasco, Florens and Renault 2007

for an overview of inverse problem theory in econometrics). Chiappori, Komunjer and Kris-

tensen (2010) consider a fully nonparametric setting and, with a little stronger assumption of

conditional independence between ε and one coordinate of X, are able to identify the model

and recover a parametric rate of convergence for the estimated transformation operator.

Our work stands in the line of Linton, Sperlich and Van Keilegom (2008) with a para-

metric transformation operator and a nonparametric function φ, and in addition some

endogenous variables X. We prove identification of the structure (Λ, φ, Fε) using a con-

trol function approach, as in Imbens and Newey (2009). Indeed, as stressed in Matzkin

(2003), transformation models can be viewed as particular cases of nonseparable models

with Y = Λ−1 (φ(X, Z) + ε) and results for nonseparable models with endogeneity can apply

here. As in Linton, Sperlich and Van Keilegom (2008), we use a profile likelihood technique

to estimate the parametric transformation, and with an additive structure for the function

φ, prove the asymptotic normality with
√

n rate of convergence. Some simulations in the

end confirm the validity of our method.

The paper is organized as follows. In the next section we discuss the conditions under

which our model is identified. Section 3 is devoted to the estimation part and the asymptotic

results are stated in Section 4. The finite sample study is presented in Section 5, whereas

some general conclusions are given in Section 6. Finally, the proofs are collected in the

Appendix.
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2 The model

2.1 Definitions and notations

Consider the following semiparametric transformation model:

Λθ(Y ) = φ(X, Z) + ε, (2.2)

where {Λθ : θ ∈ Θ} is a parametric family of strictly increasing functions, and the function

φ(·, ·) is of unknown form. The response Y is a real valued continuously distributed random

scalar and the vector of regressors (X, Z) consists of real valued continuously distributed

variables, X takes values in Rdx , and Z in Rdz , with dx ≥ 1 and dz ≥ 0. We assume

moreover that X is endogenous and correlated with the error term ε, while Z represents a

vector of exogenous random variables. Our objective is to identify the structure (Λθ, φ, Fε),

estimate θ and φ given a sample of observations and do inference on these estimators.

The approach we adopt to identify model (2.2) is based on a control function. The control

function methodology has been studied in particular in Newey, Powell and Vella (1999),

Blundell and Powell (2003), or Imbens and Newey (2009). As Imbens and Newey (2009)

recall for the general setting of nonseparable models, a control variable is any observable or

estimable variable V satisfying the following condition:

(A.1) (X,Z) and ε are independent conditional on V

Since our model (2.2) is a particular case of a nonseparable model (as pointed out by

Matzkin 2003) we also impose Assumption (A.1) for our control function V .

Different candidates can be proposed as control variable V . In the line of Newey, Powell

and Vella (1999), or Blundell and Powell (2003), V can be defined as the residual of a

separable equation in a triangular nonparametric model:

X = ψ(Z,W ) + V, (2.3)

where W is a vector of instrumental variables taking values in Rdw such that E(V |Z, W ) = 0.

A second option would be to consider a second nonseparable equation and a single en-

dogenous variable X defined by:

X = ψ(Z, W, η), (2.4)

where ψ is strictly monotone in η. Then V = FX|Z,W is a uniformly distributed variable

satisfying Assumption (A.1) under the following conditions: (i) (ε, η) and (Z, W ) are in-

dependent and (ii) η is a continuously distributed scalar with CDF that is strictly increasing

on the support of η and ψ(Z,W, t) is strictly monotone in t with probability 1. (see Imbens

and Newey 2009 for more details).
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At last a natural extension to equation (2.4) when X is multidimensional, consists in

considering the set of one dimensional independent equations:





X1 = ψ1(Z, W, V1)
...

Xdx = ψdx(Z, W, Vdx),

(2.5)

and V = (V1, ..., Vdx).

In the next subsection, identification of (2.2) will be studied under the general charac-

terization (A.1) without specifying any particular form for V . Next, for the estimation and

the asymptotic results, we will restrict ourselves to a control variable V defined using model

(2.4).

2.2 Identification

We now address the identification issue of the structure (Λθ, φ, Fε) from equation (2.2). In

this section, we just assume there exists a variable V satisfying Assumption (A.1), and V can

be defined by any of the three equations (2.3), (2.4) or (2.5). Moreover, our result will prove

identification for the full nonparametric structure (Λ, φ, Fε) and therefore, in this section, we

omit the index θ for the operator Λ.

Hereafter, we make the following additional assumptions:

(A.2) The support of V conditional on (X, Z) equals the support of V .

(A.3) Λ is a continuously differentiable and strictly increasing function defined on the support

RY of Y .

(A.4) Let RX,Z be the compact support of (X, Z). Then, for a.e. (x, z) ∈ RX,Z , the density

fε|X=x,Z=z exists, is strictly positive and continuously differentiable.

(A.5) The derivative of φ with respect to x1 (the first coordinate of x) exists and the set

{(x, z) ∈ RX,Z : ∂
∂x1

φ(x, z) 6= 0} has a nonempty interior.

(A.6) E(Λ(Y )) = 1, Λ(0) = 0, E(ε) = 0.

Assumption (A.2) is the support condition introduced in Imbens and Newey (2009) that,

combined with Assumption (A.1), allows to identify φ. Assumptions (A.3), (A.4) and (A.5)

give standard regularity conditions on the operator Λ, the function φ and the conditional
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density fY |X=x,Z=z. At last, assumption (A.6) gives some normalization conditions in order

to identify Λ. Our result is based on the standard equality:

FY |X,Z,V (y, x, z, v) = Pr[Λ(Y ) ≤ Λ(y)|X = x, Z = z, V = v]

= Pr[ε ≤ Λ(y)− φ(X, Z)|X = x, Z = z, V = v]

= Pr[ε ≤ Λ(y)− φ(x, z)|V = v],

where the first equality comes from the monotonicity assumption (A.3), and the third one

follows from Assumption (A.1). Then, under Assumption (A.2), we can integrate over the

marginal distribution of V and apply iterative expectation to obtain:

FY |X,Z(y, x, z) =

∫
FY |X,Z,V (y, x, z, v)FV (dv) = Fε(Λ(y)− φ(x, z)). (2.6)

Theorem 2.1. Under Assumptions (A.1)− (A.6), the structure (Λ, φ, Fε) is identified.

The proof is given in the Appendix.

Remark 2.1. 1. Note that Chiappori, Komunjer and Kristensen (2010) suggest a slightly

different independence assumption, instead of (A.1): ε is independent of X1 conditional

on (X−1, Z, V ) (where X = (X1, X−1)). Although an equivalent identification result

could be derived with their set of assumptions, the estimation of the parameter θ would

become more tricky since the distribution of ε would remain conditional on (X−1, Z).

2. Note also that Theorem 2.1 only gives sufficient conditions to identify the structure

(Λ, φ, Fε). In particular, Assumption (A.2) could be weakened using a separability as-

sumption as proposed in Newey, Powell and Vella (1999). Indeed, once Λ is identified

using Assumptions (A.1), (A.3)− (A.6), we get:

E (Λθ0(Y )|X = x, Z = z, V = v) = φ(x, z) + λ(v),

where λ(v) = E [ε|V = v]. Then, using Theorem 2.2 in Newey, Powell and Vella (1999)

and the normalization assumption (A.6), we conclude that if there is no functional

relationship between (X, Z) and V , then φ is identified.

3 Estimation

In order to facilitate the interpretation, we prefer to work with parametric transformations

of the response variable, i.e. Λ(·) ≡ Λθ(·) for some parametric family {Λθ(·) : θ ∈ Θ},
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where we suppose that Θ is compact. Denote by θ0 and φ0 the true unknown finite and

infinite dimensional parameters of model (2.2). We impose the following additive structure

on φ0(x, z):

φ0(x, z) = c + φx0(x) +
dz∑

α=1

φα
z0(zα),

with E[φx0(X)] = 0 and E[φα
z0(Zα)] = 0 for α = 1, . . . , dz. Combined with Assumption (A.1),

it implies that

m0(x, z, v) := E (Λθ0(Y )|X = x, Z = z, V = v)

= φ0(x, z) + λ(v)

= c + φx0(x) +
dz∑

α=1

φα
z0(zα) + λ(v), (3.7)

where λ(v) = E [ε|V = v]. Note that, under Assumption (A.6) we have:

E [λ(V )] = E [E (ε| V )] = Eε = 0.

and c = E[Λθ0(Y )] = 1. Moreover, from equation (2.6) we obtain:

fY |X,Z(y|x, z) =

∫
fY |X,Z,V (y|x, z, v)dFV (v) = fε (Λ0(y)− φ0(x, z)) . Λ′0(y), (3.8)

where fε, fY |X,Z and fY |X,Z,V are the probability density functions of ε and of Y given (X, Z)

and (X,Z, V ), respectively.

Consider a randomly drawn i.i.d. sample (Xi, Yi, Zi,Wi), i = 1, ..., n from the random

vector (X, Y, Z, W ). Then, the log-likelihood function is given by:

n∑
i=1

{
log[fε (Λ0(Yi)− φ0(Xi, Zi))] + log[Λ′0(Yi)]

}
. (3.9)

The idea is now to estimate θ be replacing all unknown quantities in the above log-likelihood

by nonparametric estimators (depending on the unknown θ), and to maximize the so-

obtained expression with respect to θ, following the same profile likelihood ideas as in Linton,

Sperlich and Van Keilegom (2008). First of all, we need to estimate nonparametrically the

control variable V . In what follows, we focus on the nonseparable model defined in equation

(2.4) to characterize the control variable V = FX|Z,W and its nonparametric estimator:

V̂i = F̂X|Z,W (Xi|Zi,Wi)

=

∑n
j=1 1(Xj ≤ Xi)K(

Zi−Zj

h
)K(

Wi−Wj

h
)

∑n
j=1 K(

Zi−Zj

h
)K(

Wi−Wj

h
)

,
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where K is a d-dimensional product kernel of the form K(u1, . . . , ud) =
∏d

j=1 k1(uj), with

d = dz or dw, k1 is a univariate kernel function, and h is a bandwidth converging to zero

when n tends to infinity. For simplifying the presentation, we work with the same bandwidth

for all variables.1

The next step is to estimate the function φθ(x, z) for a fixed, arbitrary value of θ using

marginal integration techniques (see e.g. Newey 1994, Linton and Nielsen 1995). See also

Mammen, Rothe and Schienle (2010), who do inference for a marginal integration estimator

in an additive model without transformation of the response, but with estimated covariates.

The difference with their paper is that we need to deal with the uniformity in θ and that

we need to be more precise regarding the behavior of the remainder term (see the proofs

in the Appendix for more details). Note at last that the function φθ(x, z) could have been

estimated using smooth backfitting techniques (see Mammen, Linton and Nielsen 1999). We

briefly comment on this at the end of section 4.

To do so, we first estimate the function mθ(x, z, v) = E[Λθ(Y )|X = x, Z = z, V = v] by

using a nonparametric kernel estimator based on (Xi, Zi, V̂i, Yi) (i = 1, . . . , n):

m̂θ(x, z, v) = Ê
[
Λθ(Y )|X = x, Z = z, V̂ = v

]

=

∑n
i=1 Λθ(Yi)k1(

x−Xi

h
)K( z−Zi

h
)k1(

v−V̂i

h
)

∑n
i=1 k1(

x−Xi

h
)K( z−Zi

h
)k1(

v−V̂i

h
)

.

Then, let φxθ(x) = E(mθ(x, Z, V ))− cθ and φα
zθ(zα) = E(mθ(X, zα, Z(−α), V ))− cθ, where

Z = (Zα, Z(−α)) and cθ = E[Λθ(Y )], and define

φ̂xθ(x) =
1

n

n∑
i=1

m̂θ(x, Zi, V̂i)− ĉθ

φ̂α
zθ(zα) =

1

n

n∑
i=1

m̂θ(Xi, zα, Z(−α)i, V̂i)− ĉθ (α = 1, . . . , dz),

where ĉθ = n−1
∑n

i=1 Λθ(Yi). The nonparametric estimator of φadd
θ (x, z) := cθ + φxθ(x) +

1When instead of working under model (2.4) we impose the separable model (2.3), then the error Vi can

be estimated by

V̂i = Xi − ψ̂(Zi,Wi).

where ψ̂ is e.g. the Nadaraya-Watson estimator

ψ̂(z, w) =

∑n
j=1 XjK( z−Zj

h )K(w−Wj

h )
∑n

j=1 K( z−Zj

h )K(w−Wj

h )
.
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∑dz

α=1 φα
zθ(zα) is now given by:

φ̂add
θ (x, z) = ĉθ + φ̂xθ(x) +

dz∑
α=1

φ̂α
zθ(zα). (3.10)

Note that for φθ(x, z) = E[mθ(x, z, V )] we have in general that φadd
θ (x, z) 6= φθ(x, z) except

if θ = θ0, since the additive structure of mθ(x, z, v) only holds for θ = θ0.

Using the estimator of φadd
θ (x, z) we can now estimate the error density fε(θ) of the variable

ε(θ) = Λθ(Y )− φadd
θ (X,Z) for a fixed value of θ:

f̂ε(θ)(e) =
1

ng

n∑
i=1

k2

(
e− ε̂i(θ)

g

)
(3.11)

where ε̂i(θ) = Λθ(Yi)−φ̂add
θ (Xi, Zi), k2 is a univariate kernel, and g is a bandwidth parameter.

Finally, we are in position to estimate the transformation parameter θ, by plugging-in

all unknown quantities in the log-likelihood given in (3.9):

θ̂ = arg max
θ

n∑
i=1

{
log[f̂ε(θ)(Λθ(Yi)− φ̂add

θ (Xi, Zi))] + log[(Λ′θ(Yi))]
}

. (3.12)

Once θ is estimated we can re-estimate the regression function φ0(x, y), this time using

θ̂ instead of an arbitrary value of θ. This gives

φ̂(x, z) = φ̂add
θ̂

(x, z)

for any x and z.

4 Asymptotic results

Some additional notations need to be introduced. The joint density of (X, Z, V ) is denoted

by fX,Z,V and its support by RX,Z,V . Similar notations are used for the joint density and the

support of any other random vector. Let φ̇θ(x, z) = ∂
∂θ

φθ(x, z) and similarly for the partial

derivative with respect to θ of any other function. For any θ let Fε(θ)(y) = Pr(ε(θ) ≤ y),

where ε(θ) = Λθ(Y )− φadd
θ (X, Z). We use the notation ‖ · ‖ to denote the Euclidean norm,

and for any ` ≥ 1 we let ∂
∂e`

denote the derivative with respect to the `th argument.

Let sθ = (φadd
θ , φ̇add

θ , fε(θ), f
′
ε(θ), ḟε(θ)) and s0 = sθ0 , and define

M(θ, sθ, X, Z, Y ) =
1

fε(θ)(ε(θ))

[
f ′ε(θ)(ε(θ))

{
Λ̇θ(Y )− φ̇add

θ (X,Z)
}

+ ḟε(θ)(ε(θ))
]

+
Λ̇′θ(Y )

Λ′θ(Y )
.
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Then n−1
∑n

i=1 M(θ, sθ, Xi, Zi, Yi) is the derivative of the log-likelihood with respect to θ.

Moreover, let G(θ, sθ) = E{M(θ, sθ, X, Z, Y )},

S = Var
{

M(θ0, s0, X, Z, Y )
}

and Γ =
∂

∂θ
G(θ, sθ)

∣∣∣
θ=θ0

.

The following regularity conditions are required:

(C.1) For j = 1, 2, kj is a symmetric kernel of order qj ≥ 4, i.e.
∫

umkj(u) du = 0 for

m = 1, . . . , qj − 1 and
∫

uqjkj(u) du 6= 0. Moreover, kj has compact support and is

twice continuously differentiable, and q1 satisfies q1 > dz/2 + 2 and q1 > (dz + dw)/2.

(C.2) nhdz+2 →∞, nhdz+dw →∞, nh2q1 → 0, ng6(log g−1)−2 →∞ and ng2q2 → 0, where q1

and q2 are defined in condition (C.1).

(C.3) The density fX,Z,V exists and is bounded away from zero and infinity. Moreover, fX,Z,V

is Lipschitz continuous and has a compact support RX,Z,V .

(C.4) mθ(x, z, v), ṁθ(x, z, v) and ∂mθ

∂v
(x, z, v) exist and are q1 times continuously differentiable

with respect to the components of x, z and v on RX,Z,V ×Θ. In addition, all derivatives

up to order q1 are bounded, uniformly in (x, z, v, θ) in RX,Z,V ×Θ.

(C.5) fZW (z, w) and FX|ZW (x|z, w) exist and are q1 times continuously differentiable with

respect to the components of z and w on RZ,W . In addition, all derivatives up to order

q1 are bounded, uniformly in (x, z, w) ∈ RX,Z,W , and fZW (z, w) is bounded away from

zero, uniformly in z and w.

(C.6) Λθ(y) is three times continuously differentiable with respect to y and θ, and there exists

a δ > 0 such that

E
[

sup
‖θ′−θ‖≤δ

∣∣∣ ∂k+l

∂yk∂θl
Λθ′(Y )

∣∣∣
]

< ∞

for all θ in Θ and all 0 ≤ k + l ≤ 3.

(C.7) Fε(θ)(y) is three times continuously differentiable with respect to y and θ, and

sup
θ,y

∣∣∣ ∂k+l

∂yk∂θl
Fε(θ)(y)

∣∣∣ < ∞

for all 0 ≤ k + l ≤ 2.

(C.8) For all η > 0, there exists ε(η) > 0 such that

inf
‖θ−θ0‖>η

‖G(θ, sθ)‖ ≥ ε(η) > 0.

Moreover, the matrix Γ is of full rank.
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The following lemma gives an i.i.d. representation of the estimator φ̂add
θ (x, z), uniformly

in θ, x and z, and will be a key ingredient for obtaining the asymptotic limit of our estimator

θ̂.

Lemma 4.1. Assume (A.1)-(A.6) and (C.1)–(C.5). Then,

φ̂add
θ (x, z)− φadd

θ (x, z)

= n−1

n∑
i=1

(
k1h(x−Xi)

[
Λθ(Yi)−mθ(Xi, Zi, Vi)

]
f−1

X|Z(x|Zi)

+
dz∑

α=1

k1h(zα − Zαi)
[
Λθ(Yi)−mθ(Xi, Zi, Vi)

]
f−1

Zα|X,Z(−α)
(zα|Xi, Z(−α)i)

+E
[{ ∂mθ

∂edz+2

(x, Zi, V ) +
dz∑

α=1

∂mθ

∂edz+2

(F−1
X|ZW (V |Zi,Wi), zα, Z(−α)i, V )

}

×{I(Vi ≤ V )− V }
∣∣∣Zi, Vi,Wi

]

+
[
mθ(x, Zi, Vi) +

dz∑
α=1

mθ(Xi, zα, Z(−α)i, Vi)− dzΛθ(Yi)− φadd
θ (x, z)

])

+oP (n−1/2),

uniformly in (x, z) ∈ RX,Z and θ ∈ Θ.

We are now ready to state the main result of this paper.

Theorem 4.1. Assume (A.1)-(A.6) and (C.1)–(C.8). Then,

n1/2(θ̂ − θ0)
d→ N(0, Ω),

where

Ω = Γ−1S(ΓT )−1.

The following corollary is a by-product of the main result:

Corollary 4.1. Assume (A.1)-(A.6) and (C.1)–(C.8). Then, for any (x, z) ∈ RX,Z,

(nh)1/2
(
φ̂(x, z)− φ0(x, z)

)
d→ N(0, Σ),

where

Σ =

∫
k2

1(u)du fX(x)V ar
{[

Λθ0(Y )−mθ0(X, Z, V )
]
f−1

X|Z(x|Z)
∣∣∣X = x

}

+

∫
k2

1(u)du

dz∑
α=1

fZα(zα)V ar
{[

Λθ0(Y )−mθ0(X, Z, V )
]
f−1

Zα|X,Z(−α)
(zα|X, Z(−α))

∣∣∣Zα = zα

}
.
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Remark 4.1

1. Note that the asymptotic variance of θ̂ in Theorem 4.1 equals the variance of the

estimator of θ0 that is based on the true unknown values of the nuisance functions

φadd
0 , φ̇add

0 , fε(θ0), f
′
ε(θ0) and ḟε(θ0). The estimation of these unknown functions does not

show up in the asymptotic variance, which is a very nice feature of our method ! Hence,

the problem of estimating θ0 is asymptotically a parametric problem.

2. Instead of using the marginal integration method to estimate φ0(x, z), we could as

well use other estimation procedures, like e.g. the smooth backfitting method (see e.g.

Mammen, Linton and Nielsen, 1999, and Mammen and Park, 2005). For the smooth

backfitting, the asymptotic distribution of θ̂ will be the same as for the marginal

integration method, except that φadd
θ (x, z) is now given by the components depending

on x and z of the function madd
θ (x, z, v) defined as:

madd
θ (x, z, v) = argminm∈Madd

∫ [
mθ(x, z, v)−m(x, z, v)

]2

dFX,Z,V (x, z, v),

where

Madd =
{

m : m(x, z, v) = mx(x)+
dz∑

α=1

mzα(zα)+mv(v) for some mx,mz1 , . . . , mzdz
,mv

}
.

We expect that the estimator θ̂ is semiparametrically efficient in this case.

3. Theorem 4.1 is an extension of the work of Linton, Sperlich and Van Keilegom (2008),

who showed the asymptotic normality of θ̂ when all explanatory variables are exoge-

nous. The variance of their estimator looks very similar to ours (see their Theorem

4.1), except that the definition of φadd
θ (x, z) (denoted by mθ(x) in their paper) is intrin-

sically different, since they are in the exogenous case. Note that even for θ = θ0, the

function φ0(x, z) is different in the two cases (namely in the exogenous case it equals

E[Λ0(Y )|X = x, Z = z], whereas in the endogenous case it is not). However, apart

from this difference in interpretation of these two functions, the variances are exactly

the same. In particular, note that the estimation of the control variable V vanishes

asymptotically, i.e. the estimator θ̂ behaves asymptotically as if the variables V1, . . . .Vn

would be observed !

4. Although the asymptotic variance of θ̂ has a simple structure and does not depend on

the estimators of the nuisance functions, nor on the estimation of the control variable

V , its estimation in practice might be cumbersome, since it involves the estimation of

11



the density fε(θ0) and of its derivatives f ′ε(θ0) and ḟε(θ0). A bootstrap procedure might

therefore be a useful alternative. We refer to Chen, Linton and Van Keilegom (2003),

who propose a bootstrap procedure for general semiparametric estimation problems.

They justify the use of the ordinary bootstrap under certain high-level conditions,

which need to be verified for our particular model. We refer to their paper for more

details.

5. Note that the asymptotic distribution of φ̂(x, z) in Corollary 4.1 is the same as that of

φ̂0(x, z), i.e. the asymptotic distribution is as if the parameters θ0 were known.

5 Finite sample study

We consider the following data generating process:

Λθ(Y ) = b0X
2 + b1 + ε,

where Λθ is the Box-Cox transformation, that is Λθ(y) = yθ−1
θ

(θ 6= 0) and Λθ(y) = log(y)

(θ = 0). ε is drawn from N(0, σ2
e) but restricted to [−b1; +∞[. In this setting, we omit the

exogenous variable Z. The variable X is generated from the following generating process:

X = a0W + a1W
2 + a2ε + a3 + U,

where W, ε and U are mutually independent, W is drawn from N(0, σ2
w) and U from N(0, σ2

u).

The regressor X is then correlated with the error term ε and the instrumental variable W is

correlated with X but not with ε in order to correct for this endogeneity issue. We present

here the results for the following model where b0 = 0.3, b1 = 20, a0 = −2, a1 = −3, a2 = 2,

σ2
w = σ2

e = 2 and σ2
u = 0.2. The parameter θ0 is set equal to 2 and 3. Note that Λθ(Y ) is by

construction always positive in our simulation.

We estimated θ by a grid search on [0.1, 5] with a step length of 0.1. We use the gaussian

kernel and apply the cross-validation method to select the bandwidth parameters. The

Monte-Carlo study has been performed with B = 500 replications for two different sample

sizes n = 200 and n = 300. We provide each time the mean and standard deviation of θ̂ and

the mean squared error (mse hereafter).

The results are summarized in Table 1 and show that the method works well for reasonable

sample sizes. In particular, we note that as the sample size increases, both the bias and the

variance decrease.
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n 200 300

θ0 mean(θ̂) sd(θ̂) mse(θ̂) mean(θ̂) sd(θ̂) mse(θ̂)

2 2.16 0.41 0.19 1.90 0.25 0.07

3 3.21 0.52 0.31 2.85 0.31 0.11

Table 1: Simulation results for different sample sizes with bandwidth chosen by cross-

validation.

6 Conclusion

In this work we have studied a semiparametric transformation model with a parametric

transformation operator Λθ, a nonparametric regression function φ and some endogenous

explanatory variables. Using a control function approach, we prove identification of the

structure (Λ, φ, Fε). As in Linton, Sperlich and Van Keilegom (2008), we use profile likelihood

techniques to estimate the parametric transformation, and by imposing an additive structure

on the function φ, we prove the asymptotic normality of the proposed estimator with
√

n

rate of convergence. Some simulations confirm the validity of our method.

7 Appendix: Proofs

Proof of Theorem 2.1. To prove identification of the structure (Λ, φ, Fε), we proceed in

two steps: we first establish identification of Λ and then prove that φ and Fε are identified.

1. Identification of Λ. This first step follows from the proof of Chiappori, Komunjer

and Kristensen (2010). Under the regularity assumptions (A.3) and (A.4), we can

differentiate equation (2.6) with respect to y and x (or x1, the first coordinate of x) to

obtain:

∂

∂y
FY |X,Z(y, x, z) = fε(Λ(y)− φ(x, z)).Λ′(y)

∂

∂x1

FY |X,Z(y, x, z) = −fε (Λ(y)− φ (x, z)) .
∂

∂x1

φ(x, z).

Let A = {(x, z) ∈ RX,Z : ∂
∂x1

FY |X,Z(y, x, z) 6= 0 for every y ∈ RY }. Under As-

sumptions (A.4) and (A.5), the set A has a nonempty interior. Then, for any point

(x, z) ∈ RX,Z and for every y ∈ RY , we have:

− Λ′(y)
∂

∂x1
φ(x, z)

= s(y, x, z),
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where s(y, x, z) =
∂

∂y
FY |X,Z(y,x,z)

∂
∂x1

FY |X,Z(y,x,z)
. Note that s(y, x, z) is non zero and keeps a constant

sign for all y ∈ RY . Integrating from 0 to y and under Assumption (A.6) we get:

Λ(y) =
∂

∂x1

φ(x, z).S(y, x, z),

where S(y, x, z) =
∫ y

0
s(t, x, z)dt. Again, S(y, x, z) is nonzero and keeps a constant

sign for all y ∈ RY . Hence, E[S(Y, x, z)] 6= 0. Using again Assumption (A.6) we get:

∂

∂x1

φ(x, z) =
1

E[S(Y, x, z)]
,

and finally obtain that:

Λ(y) =
S(y, x, z)

E[S(Y, x, z)]
.

Hence, Λ is identified.

2. Identification of φ and Fε. The identification of φ is a direct consequence of As-

sumptions (A.1) and (A.2) following Imbens and Newey (2009). Identification of Fε

eventually follows from equation (2.6). This finishes the proof. ¤

Proof of Lemma 4.1. Consider the following operator:

A(u, v)(x, z) =
1

n

n∑
i=1

u(x, Zi, v(Xi, Zi,Wi)) +
dz∑

α=1

[
1

n

n∑
i=1

u(Xi, zα, Z(−α)i, v(Xi, Zi,Wi))

]

−dz
1

n

n∑
i=1

Λθ(Yi)− φadd
θ (x, z).

defined on the Hilbert space of square integrable and twice continuously differentiable func-

tions associated with the L2-norm ‖ · ‖L2 . A is continuously differentiable with respect to

the L2-norm and we can compute its Fréchet derivative dA(u, v)[h1, h2] of A in the direction

[h1, h2]:

dA(u, v)[h1, h2](x, z)

=
1

n

n∑
i=1

h1(x, Zi, v(Xi, Zi,Wi)) +
dz∑

α=1

[
1

n

n∑
i=1

h1(Xi, zα, Z(−α)i, v(Xi, Zi,Wi))

]

+
1

n

n∑
i=1

∂ u

∂edz+2

(x, Zi, v(Xi, Zi,Wi)).h2(Xi, Zi,Wi)

+
dz∑

α=1

[
1

n

n∑
i=1

∂ u

∂edz+2

(Xi, zα, Z(−α)i, v(Xi, Zi,Wi)).h2(Xi, Zi,Wi)

]
.

14



Moreover, since A is twice continuously differentiable,

A(u + h1, v + h2) = A(u, v) + dA(u, v)[h1, h2] + OP

(
max(‖h1‖2

L2
, ‖h2‖2

L2
)
)
.

Then, computed for (u, v) = (mθ, FX|Z,W ) and (h1, h2) = (m̂θ − mθ, F̂X|Z,W − FX|Z,W ) we

obtain:

φ̂θ(x, z)− φθ(x, z)

= A(u + h1, v + h2)(x, z)

= A(u, v)(x, z) + dA(u, v)[h1, h2](x, z) + OP

(
max(‖h1‖2

L2
, ‖h2‖2

L2
)
)

=
1

n

n∑
i=1

[
mθ(x, Zi, Vi) +

dz∑
α=1

mθ(Xi, zα, Z(−α)i, Vi)− dzΛθ(Yi)− φadd
θ (x, z)

]

+
1

n

n∑
i=1

(m̂θ −mθ) (x, Zi, FX|Z,W (Xi|Zi,Wi))

+
dz∑

α=1

[
1

n

n∑
i=1

(m̂θ −mθ) (Xi, zα, Z(−α)i, FX|Z,W (Xi|Zi,Wi))

]

+
1

n

n∑
i=1

∂ mθ

∂edz+2

(x, Zi, FX|Z,W (Xi|Zi,Wi)).
(
F̂X|Z,W − FX|Z,W

)
(Xi|Zi,Wi)

+
dz∑

α=1

[
1

n

n∑
i=1

∂ mθ

∂edz+2

(Xi, zα, Z(−α)i, FX|Z,W (Xi|Zi,Wi)).
(
F̂X|Z,W − FX|Z,W

)
(Xi|Zi,Wi)

]

+OP

(
max(‖m̂θ −mθ‖2

L2
, ‖F̂X|Z,W − FX|Z,W‖2

L2
)
)

= R1 + R2 + R3 + R4 + R5 + R6.

We will prove below that R6 = oP (n−1/2), R2 and R3 have (nh)−1/2-rate of convergence,

whereas R1, R4 and R5 converge at n−1/2-rate. We start with R2. Write

(m̂θ −mθ)(x, Zi, Vi) = (m̂θ − m̃θ)(x, Zi, Vi) + (m̃θ −mθ)(x, Zi, Vi),

where

m̃θ(x, z, v) =

∑n
i=1 Λθ(Yi)k1h(x−Xi)Kh(z − Zi)k1h(v − Vi)∑n

i=1 k1h(x−Xi)Kh(z − Zi)k1h(v − Vi)
,

i.e. with respect to m̂θ(x, z, v) we have replaced the V̂i’s by the true (but unknown) Vi’s. The

term n−1
∑n

i=1(m̃θ−mθ)(x, Zi, Vi) can be worked out similarly as in e.g. Linton and Nielsen

(1995), since this is the ordinary marginal integration estimator. Hence, this term equals

n−1

n∑
i=1

[
Λθ(Yi)−mθ(Xi, Zi, Vi)

]
k1h(x−Xi)f

−1
X|Z(x|Zi) + oP (n−1/2).
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Now consider

(m̂θ − m̃θ)(x, Zi, Vi) =

∑n
j=1 N̂ij∑n
j=1 D̂ij

−
∑n

j=1 Ñij∑n
j=1 D̃ij

,

where N̂ij = Λθ(Yj)k1h(x−Xj)Kh(Zi−Zj)k1h(Vi−V̂j), D̂ij = k1h(x−Xj)Kh(Zi−Zj)k1h(Vi−
V̂j), and similarly for Ñij and D̃ij. In analogy with these notations, we define Ni =

E(Λθ(Y )|x, Zi, Vi)fXZV (x, Zi, Vi) and Di = fXZV (x, Zi, Vi). Next, write

n−1

n∑
i=1

(m̂θ − m̃θ)(x, Zi, Vi)

= n−1

n∑
i=1

n∑
j=1

(N̂ij − Ñij)
1∑n

j=1 D̂ij

+ n−1

n∑
i=1

n∑
j=1

Ñij

( 1∑n
j=1 D̂ij

− 1∑n
j=1 D̃ij

)

=
[
n−2

n∑
i=1

n∑
j=1

(N̂ij − Ñij)
1

Di

− n−2

n∑
i=1

n∑
j=1

(D̂ij − D̃ij)
Ni

D2
i

]
(1 + oP (1))

=
[
n−2

n∑
i=1

D−1
i

n∑
j=1

{
N ′

ij −D′
ij

Ni

Di

}
(Vj − V̂j)

]
(1 + oP (1))

= −
[
n−3

n∑
i=1

D−1
i

n∑
j=1

{
N ′

ij −D′
ij

Ni

Di

} n∑

k=1

Sjk

]
(1 + oP (1)), (7.13)

where N ′
ij = Λθ(Yj)k1h(x − Xj)Kh(Zi − Zj)h

−1k′1h(Vi − Vj), D′
ij = k1h(x − Xj)Kh(Zi −

Zj)h
−1k′1h(Vi − Vj), and

V̂j − Vj

=

∑n
k=1

[
I(Xk ≤ Xj)− FX|ZW (Xj|Zj,Wj)

]
Kh(Zj − Zk)Kh(Wj −Wk)∑n

k=1 Kh(Zj − Zk)Kh(Wj −Wk)

=
n−1

∑n
k=1

[
I(Xk ≤ Xj)− FX|ZW (Xj|Zj,Wj)

]
Kh(Zj − Zk)Kh(Wj −Wk)

fZW (Zj,Wj)

+OP ((nhdz+dw)−1) + O(h2q1)

:=
(
n−1

n∑

k=1

Sjk

)
(1 + oP (1)).

Note that (7.13) is a V -statistic of order three (ignoring the factor 1 + oP (1)), with kernel

depending on n. Write the V -statistic as

Vn = n−3

n∑
i=1

n∑
j=1

n∑

k=1

pn(Ti, Tj, Tk),

where Ti = (Xi, Zi,Wi, Yi) and

pn(Ti, Tj, Tk) = −D−1
i

{
N ′

ij −D′
ij

Ni

Di

}
Sjk.
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Since a V -statistic can be written as a U -statistic plus negligible terms, we can apply the

generalization of the Hoefding decomposition of a U -statistic to the case where the kernel

depends on n (see e.g. Lemma 3.1 in Powell, Stock and Stoker (1989)), which leads to

Vn = n−1

n∑
i=1

E[pn(Ti, T, T ′)|Ti] + n−1

n∑
j=1

E[pn(T, Tj, T
′)|Tj]

+n−1

n∑

k=1

E[pn(T, T ′, Tk)|Tk]− 2E[pn(T ′, T ′, T ′′)] + oP (n−1/2),

where T, T ′, T ′′, Tj (j = 1, . . . , n) are i.i.d. Now, it can be easily seen that E(Sjk|Tj) =

OP (hq1) uniformly in j and that E(N ′
ij − D′

ij
Ni

Di
|Ti) = OP (hq1) uniformly in i. Hence, it

follows that

E[pn(Ti, T, T ′)|Ti] = OP (h2q1) = oP (n−1/2),

since nh4q1 → 0,

E[pn(T, Tj, T
′)|Tj] = OP (hq1(nhdz+4)−1/2 + h2q1) = oP (n−1/2)

provided q1 > dz/2 + 2, and

E[pn(T, T ′, Tk)|Tk] = OP (hq1(nhdz+dw)−1/2 + h2q1) = oP (n−1/2)

since q1 > (dz + dw)/2. Hence, we also have that E[pn(T, T ′, T ′′)] = o(n−1/2). This shows

that Vn = oP (n−1/2), and so R2 equals

R2 = n−1

n∑
i=1

[
Λθ(Yi)−mθ(Xi, Zi, Vi)

]
k1h(x−Xi)f

−1
X|Z(x|Zi) + oP (n−1/2).

In a similar way we can show that

R3 = n−1

n∑
i=1

dz∑
α=1

[
Λθ(Yi)−mθ(Xi, Zi, Vi)

]
k1h(zα − Zαi)f

−1
Zα|X,Z(−α)

(zα|Xi, Z(−α)i)

+oP (n−1/2).
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Next, consider R4. Using again the Hoefding decomposition for U -statistics with kernel

depending on n (but this time for U -statistics of order 2), we obtain:

R4 = n−1

n∑
i=1

∂mθ

∂edz+2

(x, Zi, Vi)(V̂i − Vi)

= n−2

n∑
i=1

n∑

k=1

∂mθ

∂edz+2

(x, Zi, Vi)Sik + oP (n−1/2)

= n−1

n∑
i=1

E
[ ∂mθ

∂edz+2

(x, Zi, Vi)f
−1
ZW (Zi, Wi)

{
I(X ≤ Xi)− FX|ZW (Xi|Zi, Wi)

}

×Kh(Zi − Z)Kh(Wi −W )
∣∣∣Ti

]

+n−1

n∑

k=1

E
[ ∂mθ

∂edz+2

(x, Z, V )f−1
ZW (Z, W )

{
I(Xk ≤ X)− FX|ZW (X|Z, W )

}

×Kh(Z − Zk)Kh(W −Wk)
∣∣∣Tk

]
− E

[ ∂mθ

∂edz+2

(x, Z1, V1)S12

]
+ oP (n−1/2)

= n−1

n∑

k=1

E
[ ∂mθ

∂edz+2

(
x, Zk, FX|ZW (X|Zk,Wk)

){
I(Xk ≤ X)− FX|ZW (X|Zk,Wk)

}∣∣∣Tk

]

+oP (n−1/2)

= n−1

n∑

k=1

E
[ ∂mθ

∂edz+2

(x, Zk, V ){I(Vk ≤ V )− V }
∣∣∣Tk

]
+ oP (n−1/2).

provided nh2q1 → 0. Similarly, R5 can be decomposed in a sum of i.i.d. terms plus a term of

smaller order. Finally, R6 = OP ((nhdz/2+1)−1) + OP ((nh(dz+dw)/2)−1) + O(h2q1) = oP (n−1/2).

This finishes the proof. ¤

Proof of Theorem 4.1. The proof is based on Theorem 4.1 in Linton, Sperlich and

Van Keilegom (2008). In the latter paper the authors prove the asymptotic normality of θ̂

when no endogeneity is present. A crucial assumption of their Theorem 4.1 is assumption

A.8 given in the Appendix of their paper, which gives the properties that the estimator

φ̂add
θ (x, z) (denoted by m̂θ(x) in their paper) needs to satisfy. In can be easily seen that

the proof of their Theorem 4.1 remains valid in our case, provided we can show that our

estimator φ̂add
θ (x, z) satisfies their assumption A.8. The remaining assumptions A.1–A.7 are

in fact given by our conditions (C.1)–(C.4) and (C.6)–(C.8). In what follows, we check this

assumption in detail.

First, note that the i.i.d. representation for φ̂add
0 (x, z)− φadd

0 (x, z) is given in Lemma 4.1.

In a similar way,
˙̂
φadd

0 (x, z)− φ̇add
0 (x, z) can also be decomposed in a sum of i.i.d. terms plus

negligible terms of order oP (n−1/2). Next, define M = C1
1(RX) +

∑dz

α=1 C1
1(RZα), where

Cb
a(R) (0 < a < ∞, 0 < b ≤ 1, R ⊂ IRk for some k) is the set of all continuous functions
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f : R → IR for which

sup
y
|f(y)|+ sup

y,y′

|f(y)− f(y′)|
‖y − y′‖b

≤ a.

We equip the space M with the L2-norm ‖ · ‖L2 . It can be easily seen that P (φ̂add
θ ,

˙̂
φadd

θ ∈
M) → 1. Moreover, the covering number N(λ,M, ‖ · ‖L2) satisfies log N(λ,M, ‖ · ‖L2) ≤
Kλ−1, and hence ∫ ∞

0

√
log N(λ,M, ‖ · ‖L2) dλ < ∞

(see Corollary 2.7.2 in Van der Vaart and Wellner, 1996). Next, using Lemma 4.1 it is easy

to show that supθ∈Θ ‖φ̂add
θ − φadd

θ ‖L2 = OP ((nh(dz+1)/2)−1/2) = oP (n−1/4), since nhdz+1 →∞
(the uniformity in θ can be shown using standard arguments based on partitioning the

compact set Θ in small subsets, and the rate of the L2-distance can be proved following e.g.

the method of proof in Härdle and Mammen, 1993). In a similar way we can show that

supθ∈Θ ‖ ˙̂
φadd

θ − φ̇add
θ ‖L2 = oP (n−1/4). Finally, we need to prove that

sup
x,z

∣∣∣ ˙̂
φadd

θ (x, z)− φ̇add
θ (x, z)− ˙̂

φadd
θ0

(x, z) + φ̇add
θ0

(x, z)
∣∣∣ = oP (1)‖θ − θ0‖+ OP (n−1/2)

for all θ such that ‖θ− θ0‖ = o(1). For this, note that (again using the extension of Lemma

4.1 to
˙̂
φadd

θ (x, z)− φ̇add
θ (x, z)) it suffices to control (for all i)

∥∥∥Λ̇θ(Yi)− ṁθ(Xi, Zi, Vi)− Λ̇θ0(Yi) + ṁθ0(Xi, Zi, Vi)
∥∥∥,

and this is bounded by

∥∥∥Λ̈θ0(Yi)− m̈θ0(Xi, Zi, Vi)
∥∥∥‖θ − θ0‖(1 + oP (1)) = oP (1)‖θ − θ0‖,

which is of the required order. This finishes the proof of assumption A.8 in Linton, Sperlich

and Van Keilegom (2008), and hence the result follows. ¤

Proof of Corollary 4.1. Write

φ̂(x, z)− φ0(x, z) =
[
φ̂add

θ̂
(x, z)− φ̂add

θ0
(x, z)

]
+

[
φ̂add

θ0
(x, z)− φadd

θ0
(x, z)

]
. (7.14)

The first term on the right hand side equals (
˙̂
φadd

θ (x, z)|θ=ξ)
T (θ̂ − θ0) for some ξ on the line

segment between θ̂ and θ0. From the proof of Theorem 4.1 it follows that

sup
θ∈Θ

‖ ˙̂
φadd

θ (x, z)‖ ≤ sup
θ∈Θ

‖ ˙̂
φadd

θ (x, z)− φ̇add
θ (x, z)‖+ sup

θ∈Θ
‖φ̇add

θ (x, z)‖ = OP (1),
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and hence the first term of (7.14) is OP (n−1/2) = oP ((nh)−1/2) by Theorem 4.1. For the

second term of (7.14) we apply Lemma 4.1, which yields that

φ̂add
θ0

(x, z)− φadd
θ0

(x, z)

= n−1

n∑
i=1

k1h(x−Xi)
[
Λθ0(Yi)−mθ0(Xi, Zi, Vi)

]
f−1

X|Z(x|Zi)

+n−1

n∑
i=1

dz∑
α=1

k1h(zα − Zαi)
[
Λθ0(Yi)−mθ0(Xi, Zi, Vi)

]
f−1

Zα|X,Z(−α)
(zα|Xi, Z(−α)i)

+oP ((nh)−1/2).

The result now follows from e.g. Lindeberg’s central limit theorem, together with standard

variance calculations. ¤
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