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Abstract

In this paper we examine a collective decision problem, where the set of heterogeneous
individuals is partitioned into several groups, each choosing its own policy (e.g., location
of a public project) from the given policy space. The model is that of \horizontal product
di�erentiation" where individuals display distinct preferences over the policy space. We
�rst consider the notion of \eÆcient" partition that minimizes the total policy-related
costs and aggregate personalized costs. (The latter are incurred when an individual
belongs to a group that does not choose her most preferred, ideal, policy.) We then
examine \sustainable" partitions, in which the policy-related costs can be distributed in
a way that no subgroup (belonging to the partition or not) has an incentive to break away
from the rest and to set its own policy. Our main result is that, with a unidimensional
policy space and single-peaked personalized costs, every eÆcient partition is sustainable.
We further describe some important features of eÆciency by characterizing the eÆcient
distribution (and number) of policies chosen from the policy space when their cost is
small. It turns out that eÆciency is achieved when the distribution of policies follows
the square root of the density of individuals' ideal choices.
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1 Introduction

Consider a group of heterogeneous agents that display di�erent preferences over the given

set of feasible policies I. The agents can act as a united group and choose only one policy from

the set I, or alternatively, they may partition themselves into several groups, each making

its own selection from I. Since each policy carries monetary cost, increasing returns to scale

of large groups generate advantages for the \grand coalition" of all agents that reduces a per

capita contribution towards the monetary cost of implementing that policy. On the other

hand, the heterogeneity of preferences within a large group may create a situation where some

agents face a policy far away from their most preferred choice. In this case these agents face

high \personalized costs," that grow with the \distance" between the chosen policy and their

ideal choice. It could be possible, therefore, that a subgroup of dissatis�ed agents would

consider a break-up from the rest of the group, and selection of a di�erent policy that better

�ts the preferences of its members and reduces their personalized costs. Thus, low costs of the

policy implementation could make a multi-group con�guration more eÆcient than the grand

coalition, the formation of which is unlikely in many cases. It is important to stress again that

this phenomena is due to \horizontal product di�erentiation" that, in our model, amounts to

heterogeneity of agents' preferences over the policy. In contrast, a multi-group con�guration

would not arise in the traditional public good problem without congestion e�ects, where

public goods are \vertically di�erentiated", and all agents exhibit identical preferences based

on either quantity or quality attributes of public goods.

The aforementioned conict between increasing returns to scale and heterogeneity of

agents' preferences arises in many di�erent contexts. For example, a large political party,

as compared to a small one, may provide a higher level of material, political or career bene-

�ts for its members. However, the political platforms chosen by the large party could create

a dissent among substantial number of party members who would prefer a di�erent policy

choice, and may even prompt some of them to leave the party. In an economy where the local

public goods are produced by means of either proportional or poll tax, a large jurisdiction
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may lessen the agents' tax burden. However the choice of public policy or amount of public

goods produced within the jurisdiction could be undesirable for some of its residents. Indeed,

a substantial investment in public schools may be undesirable for childless families or agents.

Another important example of conict between the size of the group and the population het-

erogeneity arises in the context of the country formation when a region of a country may

contemplate a secession if the gap between monetary, ethnic, cultural or religious policies of

the central government and the regional expectations and aspirations becomes too large.

In order to formally examine the outcomes of the decision-making process, whether the

grand coalition or a multi-group con�guration, we �rst address the issue of their \eÆciency".

Every partition of agents and choice of the corresponding policies generates two cost compo-

nents: the total monetary cost of chosen policies and the aggregate personalized costs. Note

that the �rst cost component rises with the number of selected policies, whereas the second

component decreases with the number of policies. When the preferences of the agents are

quasi-linear with respect to some numeraire, i.e., if utility is transferable across agents, a

collective decision is Pareto eÆcient if it minimizes the total cost generated by the decision.

The description of the collective decision problem is still incomplete since it provides no

mechanism of sharing the policy costs among agents choosing the same policy. (Indeed, a

government must know how to tax its citizens to �nance implementation of public policies. A

jurisdiction must as well decide on the tax burden of its residents for �nancing a new public

project, etc.) In other words, when the eÆcient partition of agents has formed and a set of

policies has been chosen, the allocation of the cost among the agents should be determined.

For an arbitrarily chosen cost allocation, however, there may exist a group C of agents that can

reject the proposed collective arrangement by choosing a policy and a device for �nancing it

such that everybody in C would be better o� compared to the current arrangement. Our main

purpose is to examine those collective decisions and corresponding cost allocations that are

\sustainable" in the sense that no group can reject a proposed arrangement. The sustainability

requirement serves as the group-participation constraint, which is of particular importance in

absence of a strong central authority capable of enforcing a collective arrangement against the
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wishes of some agents.

The sustainability notion employed here is quite strong. We allow for every group of agents

to pose a threat to proposed arrangement. When the partition of agents and their policies

are determined, the arrangement should be immune against the threats from \inside", i.e., no

group choosing the same policy can suggest an alternative policy choice that will make every

member of the group better o�. The immunity should also be from \outside" threats, i.e.,

no group that consists of agents originally choosing di�erent policies can make its members

better o� by uniting. Both the \inside" and the \outside" threats can be made by groups

that are not in any way related to the original partition. Thus, the sustainability requirement

imposes very stringent constraints on the selection of the �nancing device. It is not surprising,

therefore, that one has to impose some restrictions in order to guarantee the existence of

sustainable allocations. We demonstrate that the unidimensionality of set of policies and

single-peakedness of personalized agents' costs over the policy space not only guarantee the

existence of a sustainable partition, but also yields the equivalence of eÆcient and sustainable

partitions. That is, every eÆcient partition is also sustainable!

On the formal level, our model uses the notion of public project (Mas-Colell (1980)). It

appears in many di�erent settings and can accommodate virtually any interpretation, as

long as the bene�t derived by an agent from the project is not a�ected by the size and the

composition of the group of other agents who are assigned to the same project, i.e., the public

project is pure in the traditional sense. In particular, the problem of choosing public policies

that we discussed earlier can be restated using the new terminology (i.e., I is now the set of

feasible public projects, from which groups of agents have to make choices), without any loss

of generality.

The description of a public project may involve many characteristics including notably

its location. If projects are public facilities (hospitals, swimming-pools, libraries, etc.) and

location is the parameter of horizontal di�erentiation, then the personalized costs to which we

referred above are simply the transportation costs to projects' locations1. The cost of every

1The transportation costs leads to private costly access as de�ned by Cremer and La�ont (2000) but they
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project depends on the number of agents assigned to it (users) and is assumed to consist of the

project-independent �xed cost and the variable cost that increases with the number of users.

As we indicated above, we impose two major assumptions: as in the traditional Hotelling

model, the parameter of horizontal di�erentiation of the policy space is unidimensional, and

the personalized (transportation) costs are single-peaked in the policy space. In all other

aspects our model is very general and we allow for arbitrary populations of agents ranging

from atomic sets to atomless probability distributions to general distributions. As was said,

our main result yields the equivalence of the sets of eÆcient and sustainable partitions.

We also examine the number of projects determined by eÆcient partitions within any given

subset of the policy space. By identifying every agent with her most preferred project, we

establish the simple relationship between the population density on any given subset J of the

policy space and the eÆcient number of projects assigned to J and prove that the asymptotic

density of eÆciently located projects is proportional to the square root of the population

density. The square root stresses the equalizing e�ect of eÆciently distributed public projects

on the agents: subsets J with a low population density typically get more than their \fair

share" of public projects on the expense of areas with high population density. In particular,

it may happen that a subset with a smaller population will receive a larger number of projects

than a subset with a larger population.

The paper is organized as follows. After the review of related literature, we present the

model and state our main result on equivalence of eÆciency and sustainability. In Section 3

we examine the number of projects supported by eÆcient partitions. In addition, we establish

the link between the population density and the number of projects in an eÆcient partition

within any given subset of the policy space. In Section 4 we prove our main result. Proofs of

other results are relegated to the Appendix.

Related Literature

This paper lies at the crossroads of many di�erent �elds: combinatorial optimization, co-

assume that the private access cost of a customer does not depend upon the public project to which she is
assigned.
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operative games with a continuum of players, theoretical public �nance and political economy,

and will describe the relationship of our work with these di�erent topics.

The analysis of cost minimization in uncapacitated facility location problems, akin to

those arising in the context of horizontally di�erentiated public projects, even though the

facility location problems face exogenously given (and �nite) number of choices rather than

endogenous set of locations. It has become a major topic of research in operations research

and combinatorial optimization. After noticing that facility location problem can be expressed

as a linear-integer problem (Balinski (1965)), the emphasis has been on the search of eÆcient

algorithms to compute the solution to this problem, or, at least, its approximation. This

literature is surveyed in Cornuejols, Nemhauser and Wolsey (1990) and is still a subject of

very active research.

Although the operations research literature has primarily focused on the algorithmic as-

pects of cost minimization problems, some recent contributions address the issue of eÆcient

cost allocations. Existence of the core have received some attention and is the subject of

several contributions (Goemans and Skutella (2000), Grishukhin (1994), Kolen (1983), Kolen

and Tamir (1990), Tamir (1992), Trubin (1976)). The �rst result shows that the core of the

cost allocation game induced by a facility location problem is nonempty if and only if there

is no integrality gap, i.e., if the value of the linear-integer program is the same as the value of

the program where the integer constraints have been relaxed to linear constraints. Using this

result, Goemans and Skutella (2000) show that there is no integrality gap when transporta-

tion costs are single peaked over the unidimensional set of feasible locations, thus yielding the

nonempty core in this case. However, these contributions assume the �niteness of the sets of

agents and exogenously given facilities whereas we consider any type of distributions and an

endogenous choice of policies as we believe that many environments are better represented by

this framework.

The literature on cooperative games with a continuum of players has mostly focused on the

Shapley value, originally de�ned only for games with a �nite number of players (Aumann and

Shapley (1974)). There are few papers on the core of cooperative games with a continuum of
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players (Ichiishi and Weber (1978), Kannai (1969), Schmeidler (1967), Weber (1981), Wooders

(1983), Wooders and Zame (1984)). This literature, surveyed in Kannai (1992), has mostly

focused on the appropriate extension of the notion of balancedness for games with a continuum

of players. Here, we do not use balancedness and instead we exploit the speci�c nature of our

game and perform a limit argument. There is a more recent literature on the core of games

with a continuum of players (Einy, Moreno and Shitovitz (1999), Epstein and Marinnaci

(2001)), but the auxiliary games that we consider do not satisfy their conditions, and so the

proofs must take a di�erent route.

Finally, our paper relates to the literature on the formation of jurisdictions which is also

based on a trade-o� between the heterogeneity of citizens' preferences across and economies of

scale (Casella (1992), Cremer, De Kerchove and Thisse (1885), Greenberg and Weber (1986),

Guesnerie and Oddou (1981)(1987), J�ehiel and Scotchmer (2001), Konishi, Le Breton and

Weber (1998), Weber and Zamir (1985), Westho� (1977), Wooders (1978)). There is also a

more recent literature on the political economy of the process of country formation (Alesina

and Spolaore (1997), Alesina, Spolaore and Wacziarg (2000), Bolton, Spolaore and Roland

(1996), Wei (1991)) where the threat of secession and its impact of the equilibrium con�g-

uration is explicitly considered. In many of these papers the world population is described

through a continuous distribution but except for Haimanko, Le Breton and Weber (2001) and

Le Breton and Weber (1999), the role of transfers to deter secession threats is not very much

investigated. Haimanko, Le Breton and Weber (2001) demonstrate the necessity of transfers

for polarized distributions while Le Breton and Weber (2000) o�er a partial characterization

of the transfer mechanisms.

2 The Model

We consider a society that consists of agents with preferences over the set I of feasible

locations of public projects. The set I is assumed to be unidimensional and is given by the

interval [0; 1]. Every agent t has an ideal point in I and the preferences that are symmetric
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and single-picked, and we identify t with her ideal point in I. The distribution of ideal points

is given by a cumulative distribution function F; de�ned over the space I: It is important to

stress that we do not impose any restrictions on the distribution function and even allow for

\atoms", i.e., for positive masses of agents to be located at the same point of I: The only

property of F we need is its monotonicity on the interval [0; 1] : We denote by � the measure

on I induced by the distribution function F with the total mass �(I) equal to 1.

A subset of I which is a union of a �nite number of intervals will be called a community.

For notational and analytical simplicity, we will restrict our attentions to communities when

subsets of I will be involved.

The costs associated with any project p must be covered by the community C � I of its

users. The cost of the project, given by

G(p; C) = g(p) + ��(C); (1)

consists of two components: the positive �xed cost of setting and maintaining the project,

g(p), and the variable cost that depends on the number of project users, � ��(C), where � ia

nonnegative constant. We assume2 that the �xed cost of all projects is the same:

Fixed Cost Invariance: g(p) = g for all projects p 2 I.

This assumption implies that for a given group of users C, the project cost G(p; C) is

independent of a choice of the project p. Thus, we can simply use the notation G(C) instead

of G(p; C).

If an agent t resides in community C that uses project p 2 I, the disutility or \transporta-

tion" cost incurred by t, d(t; p), is determined by the distance between t and the location p of

the project. We only require that

Continuity and Monotonicity of Transportation Costs: The cost function d(t; p) = d(jt�
pj) is continuous and (strictly) increasing in the distance jt� pj, with d(0) = 0:

2Our main result remains intact even if this assumption is weakened, by assuming that g(p) is a continuous
and positive-valued function of p. Fixed cost invariance assumption will nevertheless be maintained, for the
sake of convenience and increased clarity of proofs.
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If only one project serves the entire population, it could be far away from signi�cant

fraction of agents whose ideal points are located close to one of the margins. Thus, in order

to examine eÆciency and sustainability of the set of chosen projects, it is natural to consider

a multi-project setting. Let P be a (nonempty) �nite ordered set (p1; : : : ; pK) of projects,

and � is an ordered partition of I into communities (C1; C2; : : : ; CK), where the community

Ck represents the set of users of the project pk. Every two di�erent communities Ck; Cl 2 �,

have an empty intersection, and the union of all communities in � covers the entire set I, i.e.,

each agent t 2 I belongs to one and only one community in �. For notational and analytic

simplicity, we restrict our examination only to communities that consist of a �nite number of

intervals.

Every pair (P; �), where the set of projects P and the partition � have the same number

of elements, will be referred to as project-user con�guration (or PUC). An important class of

PUC consists of pairs (P; �), where each community C 2 � is a convex set, or, simply, an

interval. In this case communities of users satisfy the connectedness property: for every three

users, t < t0 < t00, whenever t and t00 belong to the same community C, the user t0 must belong

to C as well. Such partitions � will be called \connected".

For every PUC (P; �), we shall denote by T (P; �) the aggregate (transportation and

project) cost incurred by PUC (P; �):

T (P; �) =
KX
k=1

[D(pk; Ck) +G(Ck)] ;

where for every k, the aggregate transportation cost of community Ck served by project pk,

D(pk; Ck), is given by

D(pk; Ck) =
Z
Ck

d(jt� pkj)d�(t):

For every community C we denote by D(C) the minimal transportation cost within C:

D(C) = inf
p2I

Z
C
d (jt� pj) d�(t):

We shall show that the set of projects p, at which this in�mum is attained, is nonempty. Every

such project p will be called C-optimal.
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We are now in a position to introduce the notion of eÆcient PUC:

De�nition: A PUC (P; �) is called eÆcient if it minimizes the aggregate cost over all PUC,

i.e., T (P; �) � T (P 0; �0) for any (P 0; �0). If (P; �) is an eÆcient PUC, P will be called

an eÆcient set of projects, and � will be called an eÆcient partition.

This de�nition immediately implies that in every eÆcient partition, every community

chooses its optimal project:

Remark 2.1: Let PUC (P; �), where P = (p1; : : : ; pK) is the set of projects, and � =

(C1; C2; : : : ; CK) is the set of corresponding communities, be eÆcient. Then for every

k = 1; : : : ;K, the project pk is Ck-optimal.

Our �rst result states that an eÆcient PUC always exists. Moreover, there exists an

eÆcient PUC (P; �) such that every C 2 � is an interval:

Proposition 2.2: There exist an eÆcient PUC. Moreover, there is an eÆcient PUC (P; �)
such that the partition � is connected.

The following proposition shows that in many cases the eÆcient set of projects uniquely (up

to inclusion or exclusion of boundary points) determines the corresponding eÆcient partition,

and thus the entire PUC. For this reason, the attention can be sometimes con�ned only to

eÆcient sets of projects (as will be done, for instance, in the next section).

Proposition 2.3: Let (P; �) be a an eÆcient PUC such that P = (p1; : : : ; pK) (K � 2)

with p1 < p2 < : : : < pK . If the distribution of ideal points possesses a continuous and

strictly positive density function, then the eÆcient partition � = (I1; : : : ; IK) is uniquely

determined (up to the boundary points of the communities in �) by

I1 = [0;
p1 + p2

2
); : : : ; Ik = [

pk�1 + pk
2

;
pk + pk+1

2
); : : : ; IK = [

pK�1 + pK
2

; 1]:
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This proposition demonstrates that the eÆcient partition is, in fact, the set of intervals

[0; b1); : : : ; [bk; bk+1); : : : ; [bK�1; 1], where every \cut-o�" user bk, k = 1; : : : ;K � 1; is equally

close to project pk�1 on her left and project pk on her right.

By Remark 2.1, every community that constitutes a part of an eÆcient partition always

selects its optimal project. This means that there is no other project that would reduce the

total costs of this community. However, it does not rule out a possibility that the eÆcient

con�guration would not be stable under a threat of rejection by a group of users that consists

of parts of di�erent communities in �. To address this issue, we must examine how the

project costs are allocated within a community of users. The charges that should be imposed

on project users in order to cover the project cost cannot be found in, or deduced from, the

description of a PUC, and any community C 2 � has to determine the monetary contribution

of each resident t towards the project cost G(C). To formalize the discussion, we introduce

the notion of a C-cost allocation, which allows for all lump sum transfers within C that satisfy

the budget constraint:

De�nition: A measurable function x de�ned on the set C is called a C-cost allocation ifZ
C
x (t) d� (t) = G (C) : (2)

If (P; �) is a PUC, where � = (C1; : : : ; CK), and xk is a Ck-cost allocation for k =

1; : : : ;K, the vector x = (x1; : : : ; xK) will be called a (P; �)-cost allocation.

It is natural, and important, to ask whether a given eÆcient allocation (P; �) is sustainable
in the face of possible rejections by groups of users. That is, whether there exists a (P; �)-cost
allocation x such that no set of users C can defy the arrangement dictated by x, select its own

project, and come up with a cost sharing scheme that reduces the total cost incurred by every

member of C. The existence of non-sustainable eÆcient PUC would signi�cantly undermine

the eÆciency appeal, and, if all eÆcient PUC turn out to be non-sustainable, it would provide

a cause for further concern about robustness of our eÆciency concept. Fortunately, and

surprisingly, sustainability and eÆciency turn out to be equivalent concepts. The following

de�nition, which formalizes the notion of sustainability, is followed by our main result.
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De�nition: Consider a PUC (P; �) with P = (p1;: : : ; pK); � = (C1;: : : ; CK); and a (P; �)-
cost allocation

x = (x1(t); : : : ; xK(t)). We say that community C can reject the PUC

(P; �), given x, if there is a C-cost allocation x and p 2 I such that for every k =

1; : : : ;K, the total costs incurred by agent t 2 C \ Ck will be smaller at C than that

assigned by (P; �), i.e.,

xk(t) + d(jt� pkj) > x(t) + d(jt� pj):

That is, no community can make all its members better o� by rejecting the collective

proposal (represented by (P; �) and x) and acting independently. If no community can

reject (P; �) ; this PUC is called sustainable.

The main result of this paper is

Main Result: A PUC is eÆcient if and only if it is sustainable.

The result establishes sustainability of eÆcient PUC under the unanimity requirement for

the members of the breakaway community. This requirement is natural, under the assumption

that all agents who break away do so voluntarily. Also note that since the rejection rule that

we adopted is rather strong (a rejection by C requires no full or even partial approval of its

complement in I), the theorem also implies sustainability of eÆcient PUC under less stringent

rules of rejection.

EÆciency of a sustainable PUC (P; �) is the easy direction of Main Result. Indeed,

no community C can choose a project and a cost allocation in such a way that the total

costs incurred by community C would be lower than those allocated to C by the sustainable

allocation. Otherwise, C would reject the proposed allocation. Thus, no selection of projects

and a subsequent partition of I into users communities can lower the total costs incurred by

I, which implies the eÆciency of (P; �).
The proof of the opposite direction of the theorem that ensures the sustainability of every

eÆcient partition is much more involved. First, for every population measure � we associate

12



our problem with the cooperative game V �, that assigns the value V �(C) for every community

C. We then consider the core of this game, which is the set of measures � on I, such that for

all communities C � (C) � V � (C) with equality for the set I, i.e., � (I) � V � (I).

By using the link between our game and a facility location problem (Goemans and Skutella

(2000)) with a �nite set of agents and exogenously given locations, we �rst demonstrate that

in the case when the set of agents is a �nite \atomic" set, i.e., the measure � has a �nite

support, the core of the game V � is nonempty. We further develop quite extensive machinery

in order to apply the approximation arguments and to extend the nonemptiness of the core

V � to the class of general measures �. Finally, we pick a measure � from the (nonempty)

core of the game V � and slightly perturb � in order to obtain a measure � that satis�es two

desirable properties: it belongs to the core of V � and is absolutely continuous with respect

to �. Then, by applying the Radon-Nykodim Theorem, we explicitly assign a cost share to

every agent in such away that guarantee sustainability of the given eÆcient PUC.

Proposition 2.2 and Main Result imply the existence of a connected sustainable partition.

We would like to point out that our problem does not belong to the class of \consecutive

games" (Greenberg andWeber (1986), Demange (1994)), where �nancing devices are restricted

in such a way that only consecutive (or connected) coalitions may pose a threat of rejection.

In our framework it would simply imply that if an arrangement is rejected by some community

C, there is an interval J that would also reject this arrangement. Since here we do not a priori

restrict the set of possible �nancing devices, we cannot ignore a possible threat of rejection by

disconnected groups of agents. Thus, we cannot use the general combinatorial arguments used

to prove the nonemptiness of the core in consecutive games (Greenberg and Weber (1986) and

Le Breton, Owen and Weber (1992)).

3 Quantitative Aspects of EÆciency

The results of the previous section state that an eÆcient PUC always exists, and that

every eÆcient PUC can be supported by a suitable cost allocation scheme. It is natural to
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take the next step and to inquire more precisely into the structure of eÆcient PUC. In this

section we examine the number of projects that can be supported by an eÆcient PUC and

the distribution of projects over the interval I. More speci�cally, we derive the relationship

between the mass and density of agents on a subset C of I with the number of projects

assigned to C by an eÆcient con�guration.

In order to deal with these issues, we assume throughout this section that

Assumption A: The distribution F possesses a strictly positive and continuous density func-

tion f .

Furthermore, we adopt an asymptotic framework and consider a society where the number

of projects in the eÆcient set is large. All the parameters of the model, except the �xed cost

component g, will be kept unchanged, so we can focus on the impact of the �xed costs by

examining the situation where the value of g tends to zero. Resorting to asymptotic analysis

helps to avoid the need to explicitly describe the eÆcient PUC, which is an unreasonably

diÆcult task for a general distribution function.3

The results obtained in this framework are quite sharp. For every interval J � I we will be

able to assess the number of projects from the eÆcient set located in J , and the precision of

our assessment will rise with the enlargement of the eÆcient set which is achieved by reduction

of the project costs. Furthermore, the formula that we develop exhibits a tight and simple

link between the limiting distribution of projects in the eÆcient set and the distribution of

population, thus allowing simple comparisons of the numbers of projects eÆciently allocated

to di�erent intervals.

Formally, consider a subinterval J of I. For every positive level of �xed costs g, choose

an eÆcient PUC (Pg; �g) and denote by KJ(g) the number of projects in Pg located in J .

The �rst result of this section describes the asymptotic behavior of KJ(g) as g falls to zero,

revealing the limiting distribution of the projects from the eÆcient set over I (and does not

depend on a particular chosen family of eÆcient PUC f(Pg; �g)gg>0) :

3In a special case where the distribution of agents' preferences is uniform, an eÆcient PUC has been
examined in Alesina and Spolaore (1997).
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Proposition 3.1: Suppose that the distance function d has the right hand derivative at zero,

d0(0). Then for every interval J � I;

lim
g!0

Kg (J)
p
g =

q
d0(0)

2

Z
J

q
f (t)dt: (3)

Note that that within the class of distributions we consider, the uniform distribution would

generate the maximal number of projects to be chosen by an eÆcient PUC.

It is also worth to pointing out that since the asymptotic \density" of eÆciently located

projects is proportional to the square root of the population density, areas with low population

density typically get more than their \fair share" of public projects on the expense of areas

with high population density. In particular, it may happen that an interval with a smaller

population will have a larger number of projects than an interval with a larger population.

Indeed
R
J1
f (t) dt <

R
J2
f (t) dt (i.e., � (J1) < � (J2)) could be perfectly consistent with the

reverse inequality
R
J1

q
f (t)dt >

R
J2

q
f (t)dt:

One important side of eÆciency is that, in the limit, it has a strong equalizing e�ect on

everyones' transportation costs. More precisely, regardless of the population density, in the

limit the average transportation cost incurred by agents connected to the same project is

approximately the same for any eÆciently located project:

Proposition 3.2: Suppose again that the function d has a right hand derivative at zero.

Let J � I be an arbitrary interval and denote by Dg (J) the total transportation cost

incurred by an eÆcient PUC (Pg; �g) on agents in J . Put tg (J) � Dg(J)
Kg(J)

(the average

aggregate transportation cost per project in J): Then limg!0
tg(J)
g

= 1.

To illustrate the results presented in this section, consider the following example where

the density function of agents' ideal points is given by4:

f(t) =

(
1
2

if t 2 L � [0; 1
2
);

3
2

if t 2 R � [1
2
; 1]:

4This density function is discontinuous at the point 1

2
. However, the example can be easily modi�ed to

satisfy Assumption A.
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Assume also that the distance function d is linear.

It is easy to see that if J is a subinterval of either L or R; then a J-optimal project is

simply the midpoint of J: Propositions 3.1 and 2.3 (or Lemma B.1 from the Appendix) now

imply that if the value of �xed cost g is suÆciently low, then the eÆcient set consists of l(g)

equidistant projects on the interval L and r(g) equidistant projects on the interval R, and

that r(g)
l(g)

� p
3. Furthermore, by Proposition 3.2, in the limit the agents in both intervals, L

and R; incur the same average transportation cost.

It is important to note that no such equalization would have been possible were the projects

locations to match the population density and not its square root. If the projects were indeed

allocated on the basis of density, the interval R would receive three times more projects then

the interval L. Since the aggregate cost of transportation to a project incurred by its users

community is proportional to the square of the size of the community, it is easy to verify

that the average transportation costs to a project in L would be three times higher than to a

project in R.

4 Proof of Main Result

First, we need some notation and de�nitions. Let X be a Borel subset of R with the

topology induced from R. Denote by M (X) the set of (positive) Borel measures and by

M (X) the subset of probability measures on X. We start with the de�nitions of a game and

its core utilized in this section.

De�nition: A game is a real valued set function de�ned for all (nonempty) communities in

I: Given a game u; the core of u is de�ned as the set of all measures � 2 M (I) such

that � (C) � v (C) for all communities C; and � (I) = v (I) :

Let a positive constant g and a strictly increasing function d : [0; 1] ! <+ be given. For

every community C and measure � 2M (I) denote:

v (�; C) = g +D(C);
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where, as in Section 2,

D(C) = inf
p2I

Z
C
d (jt� pj) d�(t): (4)

The nonempty set of \optimal" p, i.e. those at which the minimum in (5) is attained, will be

denoted by OP (�; C).

For all � 2M (I) de�ne the game V � as follows:

V � (C) =

(
v (�; C) ; if C 6= I;

inf
P
v (�; Cj) ; if C = I;

(5)

where the in�mum is taken over all partitions (C1; : : : ; CK) of I into communities.

We are now in position to state Propositions 4.1 and 4.2, the proofs of which are presented

in the Appendix. Assuming the validity of these propositions, we then prove our Main Result.

Proposition 4.1: For any � 2M (I), the game V � has a nonempty core.

The following result provides us with an absolutely continuous measure in the core. To

recall, a measure � is absolutely continuos with respect to measure �, or �-absolutely contin-

uous, if �(C) = 0 whenever �(C) = 0.

Proposition 4.2: For any � 2 M (I), the core of the game V � contains a measure which is

absolutely continuous with respect to �.

The Radon-Nikodym Theorem (Halmos (1988), Theorem B) implies that for any measure

�, which is �- absolutely continuous, there is a �-integrable function �, called the Radon-

Nikodym derivative of �, such that for every C

� (C) =
Z
C
� (t) d� (t) :

We shall call � a core allocation of the game V � if the corresponding measure � belongs to the

core of V �. In other words, � is a core allocation of V � if and only if it is a Radon-Nikodym

\derivative" with respect to � of some measure in the core of V �. Proposition 4.2 yields:

Corollary 4.3: For any � 2M (I) the set of core allocations of V � is nonempty.
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Proof of Main Result: We will show �rst that any eÆcient PUC is sustainable. Let

(P; �) be an eÆcient PUC with P = (p1; : : : ; pK) and � = (C1; : : : ; CK) : EÆciency immedi-

ately implies the inequality
K0X
k=1

v (�; C 0
k) �

KX
k=1

v (�; Ck) ;

for any partition �0 = (C 0
1; C

0
2; : : : ; C

0
K0) of I. By (??), this yields

V � (I) =
KX
k=1

v (�; Ck) :

Let � be a core allocation of the game V �, the existence of which is guaranteed by Corollary

4.3. For every k = 1; : : : ;K and t 2 Ck de�ne

xk (t) = � (t)� d
����t� pk

����+ �:

We show �rst that, for each k = 1; : : : ;K; xk is a Ck-cost allocation. It suÆces to demonstrate

that Z
Ck

� (t) � (t) = g +
Z
Ck

d
����t� pk

���� d� (t) ( = v (�; Ck) ) (6)

since this clearly implies the budget constraint (??) on xk. To this end, consider the measure

given by � (T ) =
R
T �(t)d� (t) : Since � is a core allocation, the measure � is in the core of V �.

Therefore � (Ck) � v (�; Ck) for any k, and since

KX
k=1

� (Cj) = � (I) = V �(I) =
KX
k=1

v (�; Ck) ;

it follows that � (Ck) = v (�; Ck) for all k. Thus (??) is satis�ed, and so xk is an Ck-cost

allocation.

We claim next that no community C can reject (P; �) given
�
x1(t); : : : ; xK(t)

�
: Indeed,

suppose, in negation, that there is a community C and a C-cost allocation x such that for

every k = 1; : : : ;K and t 2 C \ Ck

xk(t) + d(jt� pkj) > x(t) + d(jt� pj): (7)

By (??), Z
C
x (t) d� (t) = G (C) � g > 0;
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and so �(C) > 0: Thus, by taking an integral with respect to � of both sides of (??), we get

KX
k=1

Z
C\Ck

h
xk(t) + d(jt� pkj)

i
d� (t) >

KX
k=1

Z
C\Ck

[x(t) + d(jt� pj)] d� (t) : (8)

The left-hand side of (??) is equal to

KX
k=1

Z
C\Ck

(�(t) + �) d� (t) =
Z
C
�(t)d� (t) + ��(S);

and the right hand side of (??) is equal to

KX
k=1

Z
C\Ck

x(t)d� (t) +
KX
k=1

Z
C\Ck

d(jt� pj)d� (t) =

(by using (??))

= G(C) +
Z
C
d(jt� pj)d� (t) � ��(C) + V � (C) :

Thus (??) implies that

�(C) =
Z
C
�(t)d� (t) > V � (C) ;

contradicting the assumption that the measure � is in the core of V �). This establishes the

sustainability of (P; �).
It remains to show that every sustainable PUC (P; �) = ((p1; : : : ; pK) ; (C1; : : : ; CK)) is

eÆcient. Let x1; x2; : : : ; xK be Ck-cost allocations such that no community can reject (P; �)
given

�
x1(t); : : : ; xK(t)

�
: To establish eÆciency of (P; �) ; consider a PUC (P 0; �0) with P 0 =

(p01; : : : ; p
0
K0) and �0 = (C 0

1; : : : ; C
0
K0). Note that for every k0

D(C 0
k0
; p0k0) +G

�
C 0
k0

�
�

KX
k=1

Z
C0

k0
\Ck

h
xk (t) + d(jt� pkj)

i
d� (t) : (9)

Indeed, if this were not the case, there would be a positive Æ such that a measurable function

y; given on C 0
k0
by

y (t) = xk (t) + d(jt� pkj)� d(jt� p0k0 j)� Æ

for each k and t 2 C 0
k0
\ Ck; is a C

0
k0
-cost allocation. Thus

y (t) + d(jt� p0k0j) < xk (t) + d(jt� pkj)
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for each k and t 2 C 0
k0
\ Ck; which means that the community C 0

k0
can reject (P; �) (via the

C 0
k0
-cost allocation y), contrary to the assumption of sustainability of (P; �) :
Inequality (9) and the budget constraint (??) imply that

T (P 0; �0) =
K0X
k0=1

(D(C 0
k0
; p0k0) +G

�
C 0
k0

�
) �

K0X
k0=1

KX
k=1

Z
C0

k0
\Ck

h
xk (t) + d(jt� pkj)

i
d� (t)

=
KX
k=1

Z
Ck

h
xk (t) + d(jt� pkj)

i
d� (t) =

KX
k=1

(D(Ck; pk) +G (Ck)) = T (P; �):

This establishes the eÆciency of (P; �). 2

5 Appendix

Our Appendix consists of two parts. In Part A we prove the auxiliary results, stated in

Sections 2 and 4, that have been used in the proof of Main Result. In Part B we prove the

propositions stated in Section 3.

5.1 Part A

We endow the setM (X) of positive Borel measures with the weak topology of measures,

in which a sequence f�ng1n=1 � M (X) converges to �0 2 M (X) if and only if for every

continuous function f on X

lim
n!1

Z
X
f (t) d�n (t) =

Z
X
f (t) d�0 (t) :

For every subset A of I we denote its topological boundary (relative in I) by @A and for

any measure � 2 M (I), the \truncated" measure �A is determined for every T � I by

�A (T ) = � (A \ T ). Finally, in what follows let � 2 M (I) be the probability measure

corresponding to the distribution function F .

To prove the results, we need several lemmas:

Lemma A.1: The following three conditions on f�ng1n=0 �M (I) are equivalent:

(i) f�ng1n=1 converges weakly to �0;

(ii) limn!1 �n ([0; t]) = �0 ([0; t]) for every t such that either �0 (ftg) = 0 or t = 1;
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(iii) limn!1 �n (C) = �0 (C) for every C � I with �0 (@C) = 0

Proof: Consider the set X = I [ f2g. Given a sequence f�ng1n=0 satisfying either of the

above conditions, let a = supn �n (I) : We can assume that a > 0; since otherwise the claim is

trivial. For every n de�ne Qn 2M(X) by

Qn (C) =

(
1
a
[�n (C \ I) + a� �n (I)] ; if 2 2 C;

1
a
�n (C) otherwise.

Probability measures fQng1n=0 can be extended to the entire real line R in an obvious fashion.

Let:

(i') fQng1n=1 converges weakly to Q0;

(ii') limn!1Qn ((�1; t]) = Q0 ((�1; t]) for every t with Q0 (ftg) = 0;

(iii') limn!1Qn (C) = Q0 (C) for every C � R with Q0

�e@C� = 0,

where e@C denotes the boundary of C in R.

Note that the pairs of conditions, (i) and (i'), (ii) and (ii'), (iii) and (iii') are equivalent.

Since the equivalence of conditions (i'), (ii'), and (iii') follows from Theorem 28.5 of Billingsley

(1995), it follows that (i), (ii) and (iii) are equivalent as well.2

Note that the equivalence of (i) and (iii) in Lemma A.1, yields the following useful remark:

Remark A.2: Given a �nite or countable A � I; and f�ng1n=0 �M (I) ; �A
n converges weakly

to �A
0 if and only if limn!1 �A

n (ftg) = �A
0 (ftg) for every t 2 A:

We also utilize:

Lemma A.3: Any sequence f�ng1n=1 �M (I) with supn �n (I) <1 has a weakly converging

subsequence.

Proof: By Theorem 29.3 of Billingsley (1995), any sequence of measures in M (I) has a

weakly convergent subsequence. The proof follows by using the method applied in the proof

of Lemma A.1.2
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We now introduce convergence of sets and, in particular, convergence of sequences of inter-

vals. We shall say that a sequence of intervals fIng1n=1 converges to interval I0 if fInnI0g1n=1

and fI0nIng1n=1 are monotone sequences of sets (i.e., In+1nI0 � InnI0 and I0nIn+1 � I0nIn for

every n), and
T1
n=1 InnI0 =

T1
n=1 I0nIn = ;: To exemplify this mode of convergence, denote

by an and bn the left and right endpoints of In, and suppose that the sequences fang1n=1 and

fbng1n=1 are monotone with limn!1 an = a0 and limn!1 bn = b0: In the case where none of

these sequences becomes constant starting from some n, fIng1n=1 converges to I0 if

I0 = [a; b] and fang1n=1 is increasing, fbng1n=1 is decreasing; or

I0 = (a; b) and fang1n=1 is decreasing, fbng1n=1 is increasing; or

I0 = [a; b) and both fang1n=1 and fbng1n=1 are increasing; or

I0 = (a; b] and both fang1n=1 and fbng1n=1 are decreasing.

In the case where (say) fang1n=1 becomes constant starting from some n and fbng1n=1 is de-

creasing, fIng1n=1 can converge to either (a; b] or [a; b]: The convergence is to (a; b] if fIng1n=1

exclude a (i.e., intervals In are open from the left) starting from some n; and to [a; b] if fIng1n=1

include a starting from some n.

We also say that a sequence of communities fCng1n=1 converges to a community C0 if each

Cn is a union of the same number of disjoint intervals In1 ; : : : ; I
n
K , and, possibly after reordering

the intervals, each fInj g1n=1 converges to I
0
j :

Lemma A.4: Suppose that a sequence fCng1n=1 of communities converges to C0; and a se-

quence f�ng1n=1 � M (I) converges weakly to � 2 M (I) in a way that f�A
ng1n=1 also

converges weakly to �A; where A denotes the set of atoms of � (that is, A = ft 2 I j
� (ftg) > 0g). Then f�Cn

n g1n=1 converges weakly to �C0 :

Proof: It can be assumed without loss of generality that every Cn; n = 0; 1; : : : ; is an

interval. Indeed, since �Cn
n =

P
j �

In
j
n for intervals Inj whose union is Cn; it suÆces to show

convergence of all summands. Furthermore, it suÆces to check, by equivalence of (i) and (ii)

in Lemma A.1, that for every interval T = [0; t]

lim
n!1

�n (T \ Cn) = � (T \ C0) : (10)
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It follows from our assumptions on f�ng1n=1 that �InA
n = �n � �A

n converges weakly to

�InA = �� �A: By non-atomicity of �InA and (iii) in Lemma A.1

lim
n!1

�InA
n (T \ C0) = �InA (T \ C0) : (11)

Also, for any n0

0 � lim sup
n!1

�InA
n ([(CnnC0) [ (C0nCn)] \ T ) � (12)

� lim sup
n!1

�InA
n ((CnnC0) [ (C0nCn)) � lim sup

n!1
�InA
n ((Cn0nC0) [ (C0nCn0)) =

= �InA ((Cn0nC0) [ (C0nCn0)) ; (13)

where the last equality again follows from (iii) in Lemma A.1. Since the measure �InA is

countably additive,

lim
n0!1

�InA ((Cn0nC0) [ (C0nCn0)) = 0;

and so from (??) - (??)

lim
n!1

�InA
n ([(CnnC0) [ (C0nCn)] \ T ) = 0:

This fact and (??) yield

lim
n!1

�InA
n (T \ Cn) = �InA (T \ C0) : (14)

From Remark A.2 it follows easily that

lim
n!1

�A
n (T \ Cn) = �A (T \ C0) :

This, coupled with (??), yields (??). 2

Lemma A.5: Suppose that a sequence fCng1n=1 of communities converges to C; and a se-

quence f�ng1n=1 � M (I) converges weakly to � 2 M (I) in a way that f�A
ng1n=1 also

converges weakly to �A; where A denotes the set of atoms of � (that is, A = ft 2 I j
� (ftg) > 0g). Then

lim
n!1

v (�n; Cn) = v (�; C) : (15)
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Proof: For every n pick some p (�n; Cn) 2 OP (�n; Cn) ; and p (�; C) 2 OP (�; C) : We

show �rst that

lim sup
n!1

v (�n; Cn) � v (�; C) : (16)

Indeed, by de�nition of p (�n; Cn) ;

Z
Cn

d (jt� p (�n; Cn)j) d�n(t) �
Z
Cn

d (jt� p (�; C)j) d�n(t):

However, from Lemma A.4,

lim
n!1

Z
Cn

d (jt� p (�; C)j) d�n(t) =
Z
C
d (jt� p (�; C)j) d�(t);

and so (??) holds. We show next that

lim inf
n!1

v (�n; Cn) � v (�; C) : (17)

Otherwise, we could �nd fnkg1k=1; a subsequence of integers such that

lim inf
k!1

v (�nk ; Cnk) < v (�; C) ;

and yet limk!1 p (�nk ; Cnk) = p: From Lemma A.4,

lim
k!1

Z
Cnk

d (jt� pj) d�nk(t) =
Z
C
d (jt� pj) d�(t): (18)

Since limk!1 p (�nk ; Cnk) = p; the functions d (jt� p (�nk ; Cnk)j) converge in the supremum

norm to the function d (jt� pj) ; and so form (??)

lim
k!1

Z
Cnk

d (jt� p (�nk ; Cnk)j) d�nk(t) =
Z
C
d (jt� pj) d�(t): (19)

By de�nition of p (�; C) ;

Z
C
d (jt� pj) d�(t) �

Z
C
d (jt� p (�; C)j) d�(t);

and so, from (??),

lim
k!1

v (�nk ; Cnk) � v (�; C) ;
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a contradiction, showing that (??) holds. Thus,

lim sup
n!1

v (�n; Cn) � v (�; C) � lim inf
n!1

v (�n; Cn) ;

which implies (??).2

Lemma A.6: There exists a connected partition (I1; : : : ; IK) of the set I such that

V � (I) = inf
KX
j=1

v (�; Ij) :

That is, the in�mum in (5) is actually attained for some connected partition of I.

Proof: Denote

V �
con (I) = inf

X
v (�; Ij) ;

where the in�mum is taken over all �nite partitions (I1; : : : ; IK) of I into disjoint intervals.

We shall demonstrate �rst that this in�mum is attained for some connected partition of I.

Indeed, there is a sequence
n
(In1 ; : : : ; I

n
K(n))

o1
n=1

of partitions of I into disjoint intervals such

that

lim
n!1

K(n)X
j=1

v
�
�; Inj

�
= V �

con (I) :

Note that K (n) is actually bounded across all n; since g > 0: From compactness of I and the

fact that any sequence of numbers has a monotone subsequence it follows that a subsequence

fnkg1k=1 of integers can be found such that K (nk) � K and finf Inkj g1k=1 and fsup Inkj g1k=1 are

converging monotone sequences. Thus, each Inkj converges to Ij, which is either an interval or

the empty set; note that the nonempty intervals Ij form a partition of I: From Lemma A.5 it

follows that limk!1 v
�
�; Inkj

�
= v (�; Ij) provided Ij is nonempty, which implies that

V �
con (I) � lim inf

k!1

KX
j=1

v
�
�; Inkj

�
� X

Ij 6=;

v (�; Ij) � V �
con (I) ;

and so X
Ij 6=;

v (�; Ij) = V �
con (I) :
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It remains to show that V � (I) = V �
con (I). Take a �nite set of projects p1; : : : ; pK 2 I and

consider a partition � of I into disjoint communities C1; : : : ; CK : Denote by I1; : : : ; In all the

intervals whose unions constitute the communities in �. Let �0 be the set of Ij with � (Ij) = 0:

Now we perform the following procedure. First, if for some k and l pk = pl; unite Ck and Cl:

Second, if Ij � Ck but Z
Ij

d (jt� pkj) >
Z
Ij

d (jt� plj) ;

remove the interval Ij from Ck and attach it to Cl; and continue the process as long as it is

possible. Since the number of intervals is �nite, the process will be terminated after a �nite

number of changes. Denote by T1; : : : ; TK the resulting communities, after removal of �0;

some of them might be empty. Note that the convex hull of each Tj is disjoint from any other

community Tl: Intervals from �0 can now be added to all Tj in the way that will make them

convex, but still mutually disjoint. Thus, there are disjoint intervals T 01; : : : ; T
0
K (some of them

may be empty) that partition I in such a way that

KX
j=1

Z
T 0
j

d (jt� pjj) d� (t) �
KX
j=1

Z
Cj

d (jt� pjj) d� (t) :

Now, given a partition (C1; : : : ; CK) of I and pk 2 OP (�; Ck) for every k = 1; : : : ;K; the

above argument shows that there is a connected partition (I1; : : : ; IK0) of I such that

K0X
j=1

v (�; Ij) �
K0X
j=1

"Z
Ij

d (jt� pjj) d� (t) + g

#
�

KX
j=1

"Z
Cj

d (jt� pjj) d� (t) + g

#
=

KX
j=1

v (�; Cj) ;

and so

V �
con (I) � inf

X
v (�; Cj) :

Since the opposite inequality is obvious, the proposition is established.2

Lemma A.7: If the measures f�ng1n=1 and � are as in Lemma A.5, then

lim
n!1

V �n (I) = V � (I) : (20)
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Proof: We show �rst that

lim sup
n!1

V �n (I) � V � (I) : (21)

Indeed, by Lemma A.6, there is a partition (I1; : : : ; IK) of I into disjoint intervals such that

V � (I) =
KX
i=1

v (�; Ij) :

By de�nition of V �n(I);

V �n(I) �
KX
i=1

v (�n; Ij) ;

and hence by Lemma A.5

lim sup
n!1

V �n (I) � lim
n!1

KX
i=1

v (�n; Ij) =
KX
i=1

v (�; Ij) = V � (I) :

Therefore (21) is established.

Now we show that

lim inf
n!1

V �n (I) � V � (I) :

Suppose that, on the contrary,

lim inf
n!1

V �n (I) < V � (I) ; (22)

and that

V �n (I) =
K(n)X
i=1

v
�
�n; I

n
j

�
for every n and some interval partitions (In1 ; : : : ; I

n
K(n)) of I: As in the proof of Lemma A.6 we

can �nd a subsequence fnkg1k=1 of integers such that K (nk) � K, each Inkj converges to Ij

which is either an interval or an empty set, and the nonempty intervals Ij form a partition of

I. From Lemma A.5 it follows that limk!1 v
�
�nk ; I

nk
j

�
= v (�; Ij) provided Ij is nonempty,

which implies that

lim inf
k!1

V �nk (I) = lim inf
k!1

KX
i=1

v
�
�nk ; I

nk
j

�
� X

Ij 6=;

v (�; Ij) � V � (I) :

This contradicts (22). Thus,

lim sup
n!1

V �n (I) � V � (I) � lim inf
n!1

V �n (I) ;
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and so (20) holds.2

The following is a corollary of Lemmas A.5 and A.7.

Corollary A.8: For f�ng1n=1 and � as in Lemma A.5, we have limn!1 V �n (C) = V � (C)

for every community C.

We now prove the assertion of Proposition 4.1 in the case where the cumulative distribution

F has a �nite support:

Lemma A.9: If S � I is a �nite set and � 2 M (I) is supported on S (that is, �S = �),

then the game V � possesses a nonempty core.

Proof: For any subset T of S pick a point pT 2 OP (�; T ) ; and consider the set F

consisting of the chosen points. For t 2 S and p 2 F denote cpt = � (ftg) � d (jt� pj) : For any
T � S de�ne

u (T ) = min

0@gX
p2F

yp +
X

p2F;t2T

cptzpt

1A ;

where the minimum is taken over all zpt and yp subject to

X
p2F

zpt = 1 for all t 2 T; (23)

yp � zpt � 0 for all p 2 F; t 2 T; (24)

yp; zpt 2 f0; 1g for all p 2 F; t 2 T:

The game u (de�ned on subsets of S) represents a minimum cost solution to a facility

location problem, described as follows. F is thought of as the set of possible facility locations

and T � S as a set of customers using these facilities. The cost of transportation to facility

p incurred by customer t is given by cpt; and the cost of opening any facility p is given by

g: The variable yp is 1 if facility p is open, and 0 otherwise; the variable zpt is 1 if customer

t is connected to facility p and 0 otherwise. Constraints (??) ensure that every customer is

connected to exactly one facility. A customer can only be connected to facility that is open,
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by constraints (??). By Theorem 4.2 of Goemans and Skutella (2000), the �nite game u has

a nonempty core, i.e., there is � 2 M (S) such that � (T ) � u (T ) for every T � S, with

� (S) = u (S) :

The game u can be extended for any community C; by u (C) = u (C \ S) ; and the same

applies to the measure �; it is clear that extended � is in the core of the extended u: It is easy

to check that for any community C � I

u (C) = u (C \ S) � V � (C \ S) = V � (C)

and that u (I) = u (S) = V � (S) = V � (I) : Thus, the measure � is also in the core of the

game V �: 2

Now we turn to our propositions.

Proof of Proposition 2.2: Let � = (I1; : : : ; IK) be a connected partition of I in which the

in�mum in the de�nition of V (�; I) (see (??)) is attained; such a partition exists by Lemma

A.6. Also let pk be the Ik-optimal project for every k; and put P = (p1; : : : ; pK): From de�-

nitions of V and T; T (P; �) = V � (I) + �; and T (P 0; �0) � V � (I) + � for every other PUC

(P 0; �0) : This shows that � is, indeed, an eÆcient connected partition.2

Proof of Proposition 4.1: Given � 2 M (I) ; consider the set of its atoms, A. Since A

is at most countable, there is an increasing sequence fAng1n=1 of �nite sets such that An � A

and
S1
n=1An = A: For any n; consider the measure �0n, supported on the set

n
1
n
; 2
n
; : : : ; 1

o
;

and de�ned there by

�0n

��
i

n

��
= �InA

��
i� 1

n
;
i

n

��
:

Also consider a measure �00n de�ned by �
00
n =

�(A)
�(An)

�An if A is nonempty, and �00n = 0 otherwise.

Denote �n = �0n+�
00
n: Thus each measure �n is supported on the �nite set Sn =

n
1
n
; 2
n
; : : : ; 1

o
[

An: By checking (ii) of Lemma A.1 and using Remark A.2, it is easy to see that �n converges

to �; and �A
n converges to �A; in the weak topology.
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By Lemma A.9, for each n we can �nd a measure �n in the core of V �n: The measures

f�ng1n=1 have a uniformly bounded total mass, since

lim
n!1

�n (I) = lim
n!1

V �n (I) = V � (I) :

The second equality is due to Lemma A.7, and thus, by Lemma A.3, the sequence has a weakly

convergent subsequence, which for notational simplicity is assumed to be the sequence itself.

Denote the limiting measure inM (I) by �: The rest of the proof is dedicated to showing that

� is in the core of the game V �:

We know that �n (C) � V �n (C) for every community C; with V �n (I) = �(I): By Lemma

A.1

lim
n!1

�n (C) = � (C) (25)

for all communities C with � (@C) = 0; since the relative boundary of I in itself is an empty

set, (??) holds in particular for C = I: By Corollary A.8, limn!1 V �n (C) = V � (C). This

shows that

� (C) � V � (C) (26)

for all communities C with � (@C) = 0; equality holds instead of inequality if C = I.

Now let us take a community C 6= I with � (@C) > 0 and disjoint intervals I1; : : : ; IK such

that C =
SK
j=1 Ij. Observe that for any interval I 0 � I

@I 0 =

8>>><>>>:
finf I 0; sup I 0g ; if 0; 1 =2 I 0;

fsup I 0g if 0 2 I 0 and 1 =2 I 0;
finf I 0g if 1 2 I 0 and 0 =2 I 0;
; if I 0 = I:

:

Thus, if I";Æ
1;Æ2

j = [inf Ij + " � Æ1; sup Ij + " � Æ2] \ I with Æ1; Æ2 2 f�1; 1g ; then for almost

every " �
�
@I";Æ

1;Æ2

j

�
= 0: Therefore (??) holds for C";Æ1;Æ2 = I

";Æ1
1
;Æ2
1

1 [ : : : [ I
";Æ1

K
;Æ2
K

K for almost

every " and every choice of Æ1; Æ2 2 f�1; 1gk ; since @C";Æ1;Æ2 � SK
j=1 @I

";Æ1
j
;Æ2
j

j : It follows that

there is a sequence f"ng1n=1 converging to zero such that (??) holds for every C"n;Æ
1;Æ2 ; clearly

fC"n;Æ
1;Æ2g1n=1 converges to C =

SK
j=1 Ij for a suitable choice of Æ

1; Æ2 2 f�1; 1gk. By countable
additivity of �, Lemma A.5, and the fact that C 6= I;

� (C) = lim
n!1

�
�
C"n;Æ

1;Æ2
�
� lim

n!1
V �

�
C"n;Æ

1;Æ2
�
= lim

n!1
v
�
�; C"n;Æ

1;Æ2
�
= v (�; C) = V � (C) :
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Therefore (??) is satis�ed for any community C. As we have mentioned, (??) holds as equality

for C = I, which completes the proof of the proposition.2

Proof of Proposition 4.2: According to Proposition 4.1, there is a measure � in the

core of V �. By Theorem C in Halmos (1988), there is a Borel set T � I such that � (T ) = 0

and the measure �InT is absolutely continuous with respect to the measure �: Now de�ne a

measure � 2 M (I) by � = �InT + � (T ) � �: It is clear that � is absolutely continuous with

respect to �; and we will show that � is also in the core of V �.

Consider a community C 6= I: The measurability of C [T implies that there is a sequence

of communities, fCng1n=1 � I; such that

lim
n!1

� ([Cnn (C [ T )] [ [(C [ T ) nCn]) = 0 (27)

and

lim
n!1

� ([Cnn (C [ T )] [ [(C [ T ) nCn]) = 0 (28)

(e.g., use Theorem D in Halmos (1988) for the measure �+ �). From (??) and the fact that

� (T ) = 0 it follows that

lim
n!1

� ([CnnC] [ [CnCn]) = 0:

This implies that for any interval [0; t]

lim
n!1

� (Cn \ [0; t]) = � (C \ [0; t]) ;

and therefore f�Cng1n=1 converges weakly to �C , by Lemma A.1. Thus, as in the proof of

Lemma A.5, it follows that

lim
n!1

v (�; Cn) = v (�; C) : (29)

And, from (??),

lim
n!1

� (Cn) = � (C [ T ) : (30)

Since � is in the core of V �, we have � (Cn) � v (�; Cn) for any n. Using (??) and (??),

we obtain � (C [ T ) � v (�; C).
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Therefore � (C) = � (C [ T ) � � (C [ T ) � v (�; C) = V � (C), and thus � satis�es core

equalities for all communities di�erent from I: However, � (I) = � (I) = V � (I), and so � is

in the core of the game V �: 2

5.2 Part B

Before proceeding with the proofs of results in Section 3, it would be useful to introduce

the minimal aggregate transportation cost of the set I when it is partitioned into a given

number of communities. As in Lemma A.6, one can show that this minimum exists and is

attained at a connected partition. Thus, for any positive integer K; let

DK = min
KX
k=1

D(IKk ); (31)

where the minimum is taken over all partitions �K =
�
IK1 ; : : : ; I

K
K

�
of I into K intervals.

We now provide a partial characterization of eÆcient PUC:

Lemma B.1: Suppose that the distribution F possesses a strictly positive density function

f . Let (P; �) be a PUC such that � = (I1; : : : ; IK) (K � 2) is connected and naturally

ordered (that is, for every k < n; if tk 2 Ik and tn 2 In then tk < tn:) and every pk is

Ik-optimal. Suppose that the minimum in (??) is attained at � and the function f is

continuous in the neighborhood of the end points of all intervals Ik. If, bk = sup Ik�1 =

inf Ik; then bk � pk�1 = pk � bk.

Proof: Denote a = inf Ik�1; b = bk; and c = sup Ik: The following functions on [a; c] ;

g (y) = min
p2[a;y]

Z
[a;y]

d (jt� pj) f (t) dt ( = min
p2[a;c]

Z
[a;y]

d (jt� pj) f (t) dt)

and

h (y) = min
p2[y;c]

Z
[y;c]

d (jt� pj) f (t) dt ( = min
p2[a;c]

Z
[y;c]

d (jt� pj) f (t) dt),

are continuously di�erentiable in the neighborhood of b and, by the envelope theorem,

g0 (b) = d (b� pk�1) f (b) ; h
0 (b) = �d (pk � b) f (b) :

32



By the choice of (I1; : : : ; IK) ; g (y) + h (y) attains its maximum over [a; c] at the point b; and

thus

d (b� pk�1) f (b) = g0 (b) = �h0 (b) = d (pk � b) f (b) :

Since f is positive, the above equality yields b� pk�1 = pk � b: 2

The next result provides an asymptotic estimate of aggregate transportation costs incurred

by large partitions, and may be of independent interest.

Lemma B.2: Suppose that the distribution F possesses a strictly positive and continuous

density function f; and that d is di�erentiable at zero. Then

lim
K!1

K �DK =
d0(0)

4

�Z 1

0

q
f (t)dt

�2

: (32)

Proof: We will �rst establish (??) under assumption that there is an integer n such that f

is a strictly positive function on I, equal to a constant fm on each interval of the form [m
n
; m+1

n
),

and that d is a linear function. We do not assume at this stage that f is a density function.

Without loss of generality the slope of d; d0(0), is positive, since otherwise the equality (??)

is trivial.

Let �K =
�
IK1 ; : : : ; I

K
K

�
be a partition of I at which the minimum in (??) is attained. Note,

using Lemma B.1 and the fact that an IKk -optimal project is the midpoint of IKk ; that any

two intervals IKk have the same length if their closures belong to the interior of some [m
n
; m+1

n
).

Denote by �m the set of intervals IKk that \fall" into [m
n
; m+1

n
) in the above sense, let aKm be

the cardinality of �m:

We claim next that the maximal length of an interval in �K is bounded by c
K

for a

constant c: Indeed, if not, then there is c (K) ! 1 such that the maximal length is c(K)
K

on

a subsequence of K: Thus there is h > 0 such that every element of �K in some [m
n
; m+1

n
) has

the length hc(K)
K

on this subsequence. Therefore

DK =
KX
k=1

D
�
IKk
�
� min f

KX
k=1

d0(0)

�
l(
�
IKk
��
)2

4
�

1
n
� 2 c(K)

K
c(K)
K

d0(0)
min f

4
K

 
hc (K)

K

!2

;
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where l(�) stands for the length of the interval. This is bounded from below by Hc(K)
K

for some

constant H > 0 and all large enough K: The following inequality, however, contradicts the

existence of this lower bound:

DK �
K�1X
k=1

D

 
[
k � 1

K
;
k

K
)

!
+D

�
[
K � 1

K
; 1]
�
�

KX
k=1

d0(0)max f

K2
=
d0(0)max f

K
. (33)

We conclude from the previous paragraph that

lim inf
K!1

aKm
K

> 0; lim
K!1

nX
m=1

aKm
K

= 1; (34)

and that for every m there is a sequence f"mKg1K=1 converging to zero, such that the total

length of all IKk 2 �m exceeds 1
n
� "mK : Since for I

K
k 2 �m

D
�
IKk
�
= d0(0)fm

�
l(IKk

�
)2

4
� d0(0)fm

4

 
1
n
� "mK

aKm + 2

!2

;

we have

DK =
KX
k=1

D
�
IKk
�
�

nX
m=1

d0(0)fma
K
m

4

 
1
n
� "mK

aKm + 2

!2

; (35)

and so

K �DK �
nX

m=1

Kd0(0)fma
K
m

4

 
1
n
� "mK

aKm + 2

!2

: (36)

Since the function g (�1; : : : ; �n) =
Pn

m=1
d0(0)fm
4n2�m

attains its minimum on the unit simplex

(where
Pn

m=1 �m = 1) at (�0
1 ; : : : ; �

0
n) =

� p
f1Pn

m=1

p
fm
; : : : ;

p
fnPn

m=1

p
fm

�
; it follows from (??) and

(??) that

lim inf
K!1

K�DK � lim inf
K!1

nX
m=1

Kd0(0)fma
K
m

4

 
1
n
� "mK

aKm + 2

!2

= lim inf
K!1

nX
m=1

d0(0)fm

4n2 a
K
m

K

� d0(0)

4

nX
m=1

fm
n2�0

m

=
d0(0)

4

nX
m=1

p
fm

�Pn
m=1

p
fm
�

n2
=
d0(0)

4

 
nX

m=1

p
fm
n

!2

=
d0(0)

4

�Z 1

0

q
f (t)dt

�2

: (37)

Thus

lim inf
K!1

K �DK � d0(0)

4

�Z 1

0

q
f (t)dt

�2

: (38)

Now consider a sequence of integers faKmg1K=1 for each m; such that limK!1
aKm
K

= �0
m, and

there are partitions f�Kg1K=1 of I in which each [
m
n
; m+1

n
) is partitioned into aKm equal intervals

I
K

k . Since

DK =
KX
k=1

D
�
IKk
�
�

KX
k=1

D
�
I
K

k

�
=

nX
m=1

d0(0)fm
4n2aKm

;
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and

lim
K!1

nX
m=1

Kd0(0)fm
4n2aKm

= lim
K!1

nX
m=1

d0(0)fm

4n2 a
K
m

K

=
nX

m=1

d0(0)fm
4n2�0

m

=
d0(0)

4

nX
m=1

p
fm

�Pn
m=1

p
fm
�

n2
=
d0(0)

4

�Z 1

0

q
f (t)dt

�2

;

it follows that

lim sup
K!1

K �DK � d0(0)

4

�Z 1

0

q
f (t)dt

�2

:

Using this and (??) we �nally obtain

lim
K!1

K �DK =
d0(0)

4

�Z 1

0

q
f (t)dt

�2

: (39)

Next, we consider a distribution with a strictly positive and continuous density function

f; while maintaining the assumption that d is linear. By the continuity of f , for each n there

is a positive function h+n which is constant on every interval of the form [m
n
; m+1

n
); and

0 < h�n (t) = h+n (t)� " (n) < f (t) < h+n (t)

for some " (n) converging to 0: For any interval J let D (J) be de�ned with respect to h+n

and h�n (and denoted by Dh+n (J) and Dh�n (J)), and similarly for Dh+n
K and Dh�n

K . Since clearly

Dh�n (J) � D (J) � Dh+n (J) for every interval J; it follows that

K �Dh�n
K � K �DK � K �Dh+n

K : (40)

By applying (??) for K �Dh�n
K ; K �Dh+n

K ; and letting n!1; we obtain (??).

Finally, we show that (??) holds even if d is not linear. The di�erentiability of d at zero

implies that for any " > 0 there is an l > 0 such that for all intervals J with l(J) � l

D"� (J) � D (J) � D"+ (J) ;

where D"� (J) is de�ned with respect to the transportation cost function given by d"�(x) =

max f(d0(0)� ")x; 0g ; and D"+ (J) is de�ned with respect to d"+(x) = (d0(0) + ")x: But

the maximal length of an interval in �K converges to zero as K ! 1, since otherwise
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lim infK!1DK > 0; which is impossible (by taking the partition of I into K equal inter-

vals, the aggregate transportation cost can be made vanishingly small, as in (??)). Therefore

K �D"�
K � K �DK � K �D"+

K (41)

for all large enough K (D"�
K and D"+

K are de�ned as in (??), given the de�nitions of D"�(J);

D"+ (J)). The equality (??) for K �DK is now obtained by applying it for K �D"�
K and K �D"+

K ;

and letting "! 0. 2

Proof of Proposition 3.1: The proof will be carried out in two parts. In Part I (??)

will be established for Kg(I) (� Kg): In Part II we will prove (??) for any interval J:

Part I. First, note that Kg !1 as g ! 0: Indeed, if Kg !1 there is a sequence fgng1n=1

that converges to zero and such that Kgn � K: It follows that for �gn =
�
Ign1 ; : : : ; IgnKgn

�

lim inf
n!1

K(gn)X
k=1

D(Ignk ) > 0;

and so

lim inf
n!1

K(gn)X
k=1

(D(Ignk ) +G(Ignk )) > 0: (42)

However, we can consider a sequence f(m (n)g1n=1 of integers such that limn!1 gnm (n) = 0

and limn!1m (n) =1; and partitions �0n =
�
I 01; : : : ; I

0
m(n)

�
=
�
[0; 1

m(n)
); [ 1

m(n)
; 2
m(n)

); : : : ; [m(n)�1
m(n)

; 1]
�
:

Clearly limn!1
Pm(n)

k=1 (D(I 0k) +G(I 0k)) = 0; and so, from the de�nition of f�g(n)g1n=1 as optimal

partitions,

lim inf
n!1

K(gn)X
k=1

(D(Ignk ) +G(Ignk )) � lim
n!1

m(n)X
k=1

(D(I 0k) +G(I 0k)) = 0;

contradicting (??).

Let " 2 (0; 1) : From the de�nition of Kg;

DKg
+Kgg + � � D[(1+")Kg] + [(1 + ")Kg] g + �

(where [n] stands for the integer part of n), and so "Kgg � DKg
�D[(1+")Kg ]. Therefore,q

"K2
gg �

s
Kg �DKg

� Kg

[(1 + ")Kg]

�
[(1 + ")Kg] �D[(1+")Kg ]

�
:
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Since limg!0Kg =1; by Lemma B.2,

lim inf
g!0

Kg

p
g � 1

2

q
d0(0)p
1 + "

Z 1

0

q
f (t)dt:

But " 2 (0; 1) was arbitrary, and so

lim inf
g!0

Kg

p
g �

q
d0(0)

2

Z 1

0

q
f (t)dt:

Similarly, using the inequality

DKg
+Kgg + � � D[(1�")Kg] + [(1� ")Kg] g + �

it can be shown that

lim sup
g!1

Kg

p
g �

q
d0(0)

2

Z 1

0

q
f (t)dt;

which �nally yields

lim
g!1

Kg

p
g =

q
d0(0)

2

Z 1

0

q
f (t)dt:

Part II. For any g consider the minimal interval Jg which contains the given J and is

composed of intervals in �g: Since Kg (Jg)� 2 � Kg (J) � Kg (Jg) ; it suÆces to show that

lim
g!0

Kg (Jg)
p
g =

q
d0(0)

2

Z
J

q
f (t)dt: (43)

From the eÆciency of �g it follows that �g jJg (i.e., the set of intervals in �g which belong to
Jg) is an eÆcient partition of Jg: That is, a Jg-PUC

�
Pg \ Jg; �g jJg

�
minimizes the aggregate

(transportation and project) cost incurred by Jg: Also, the intervals Jg clearly \shrink" to J;

since the maximal length of an interval in �g converges to zero as g ! 0. Thus, (??) can be

proved by using essentially the same arguments as in Lemma B.2 to deduce from it the claim

of Part I.

To avoid a redundant repetition, we will not give a formal proof of (??). Instead, we will

only indicate its main steps. We note �rst, as in Part I, that limg!0Kg (Jg) = 1. Then, we

establish an analog of Lemma B.2, that for any function K (g) with positive integer values

and limg!0K(g) =1; and any sequence of intervals J (g) which \shrinks" to J;

lim
g!0

K (g) �DK(g) (J (g)) =
d0(0)

4

�Z
J

q
f (t)dt

�2

: (44)
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(Here, DK (J) is de�ned as the minimum of
PK

k=1D(IKk ); taken over all partitions �K =�
IK1 ; : : : ; I

K
K

�
of J into K intervals.)

First, we show that (??) holds for a density function f which is equal to a constant fm on

each interval of the form [m
n
; m+1

n
); and a linear d. That is,

lim
g!0

K (g) �Dfg
K(g) (J (g)) =

d0(0)

4

�Z
J

q
f (t)dt

�2

; (45)

where D
fg
K(g) (J (g)) is de�ned with respect to the \density"5 function fg (the value of fg on

the ith element of the partition of J (g) into n equal intervals equals to the value of f on the

ith element of the partition of J into n equal intervals; fg coincides with f outside J (g)):

The proof of (??) is very similar to the proof of the �rst part of Lemma B.2. At the next

stage, we consider the general density function f and approximate it from above and below

by sequences (h+n )n and (h�n )n ; as in the proof of Lemma B.2. Since, for small enough g; (h+n )g

and (h�n )g also approximate f from above and below,

K (g) �D(h�n )
g

K(g) (J (g)) � K (g) �DK(g) (J (g)) � �D(h+n )
g

K(g) (J (g)) : (46)

Therefore, by applying (??) to K (g) � D(h�n )
g

K(g) (J (g)) and K (g) � D(h+n )
g

K(g) (J (g)) and letting

n ! 1; we obtain (??). The validity of (??) in the case of general d follows as in the

proof of Lemma B.2. Finally, (??) is deduced from (??) (where we take J (g) = Jg and

K (g) = Kg (Jg)) just as in Part I.2

Proof of Proposition 3.2: As in the previous proof, denote by Jg the minimal in-

terval which contains the given J and is composed of intervals in �g: We will show that

limg!0
Dg(Jg)
Kg(Jg)

� 1
g
= 1: This will suÆce to establish the proposition, since similar methods imply

that limg!0
Dg(J�g )
Kg(J�g )

� 1
g
= 1 (where J�g is the maximal interval contained in J , composed of

intervals in �g), Dg

�
J�g
�
� Dg (J) � Dg (Jg) ; and limg!0

Kg(J�g )
Kg(Jg)

= 1:

Note that Dg (Jg) = DKg(Jg) (Jg). Thus, it remains to show that limg!0

D
Kg(Jg)(Jg)

Kg(Jg)
� 1
g
= 1:

5The quotation marks indicate that, aside from being positive, fg is not required to satisfy
R
I
fg (t) dt = 1:
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Using (??) and (??), however, it follows that

lim
g!0

DKg(Jg) (Jg)

Kg (Jg)
� 1
g
= lim

g!0

Kg (Jg) �DKg(Jg) (Jg)

g �Kg (Jg)
2

=
limg!0Kg (Jg) �DKg(Jg) (Jg)�

limg!0
p
g �Kg (Jg)

�2 =

d0(0)
4

�R
J

q
f (t)dt

�2
�p

d0(0)

2

R
J

q
f (t)dt

�2 = 1:

2

Proof of Proposition 2.3: It is a simple corollary of Lemma B.1.2
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