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ON THE VALUE OF OPTIMAL STOPPING GAMES

BY ERIK EKSTRÖM AND STEPHANE VILLENEUVE1

University of Manchester and University of Toulouse

We show, under weaker assumptions than in the previous literature, that
a perpetual optimal stopping game always has a value. We also show that
there exists an optimal stopping time for the seller, but not necessarily for
the buyer. Moreover, conditions are provided under which the existence of an
optimal stopping time for the buyer is guaranteed. The results are illustrated
explicitly in two examples.

1. Introduction. In this paper we study a perpetual optimal stopping game
between two players, the “buyer” and the “seller.” Both players choose a stopping
time each, say τ and γ , and at the time τ ∧ γ := min{τ, γ }, the seller pays the
amount

Y1(τ )1{τ≤γ } + Y2(γ )1{τ>γ }(1.1)

to the buyer. Here Y1 and Y2 are two stochastic processes satisfying 0 ≤ Y1(t) ≤
Y2(t) for all t almost surely. Clearly, the seller wants to minimize the amount
in (1.1) and the buyer wants to maximize this amount.

We consider discounted optimal stopping games defined in terms of two con-
tinuous contract functions g1 and g2 satisfying 0 ≤ g1 ≤ g2 and a one-dimensional
diffusion process X(t). More precisely, given a constant discounting rate β > 0,
let

Y1(t) = e−βtg1(X(t))

and

Y2(t) = e−βtg2(X(t)).

Define the mapping Rx from the set of pairs (τ, γ ) of stopping times to the set
[0,∞] by

Rx(τ, γ ) := Exe
−βτ∧γ (

g1(X(τ))1{τ≤γ } + g2(X(γ ))1{τ>γ }
)
.(1.2)

Thus, Rx(τ, γ ) is the expected discounted pay-off when the players use the stop-
ping times τ and γ as stopping strategies. Here the index x indicates that the
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diffusion X is started at x at time 0. In (1.2), and in similar situations below, we
use the convention that

f (X(σ)) = 0 on {σ = ∞},
where f is a function and σ is a random time. Next define the lower value V and
the upper value V as

V (x) := sup
τ

inf
γ

Rx(τ, γ )

and

V (x) := inf
γ

sup
τ

Rx(τ, γ ),

respectively, where the supremums and the infimums are taken over random times
τ and γ that are stopping times. It is clear that

g1(x) ≤ V (x) ≤ V (x) ≤ g2(x)

(the first and the last inequality follow from choosing τ = 0 or γ = 0 in the defin-
itions of V and V , resp.). If, in addition, the inequality

V (x) ≥ V (x)

holds, that is, if V (x) = V (x), then the stochastic game is said to have a value. In
such cases, we denote the common value V (x) = V (x) by V (x). If there exist two
stopping times τ ′ and γ ′ such that

Rx(τ, γ
′) ≤ Rx(τ

′, γ ′) ≤ Rx(τ
′, γ )(1.3)

for all stopping times τ and γ , then the pair (τ ′, γ ′) is referred to as a saddle
point for the stochastic game. It is clear that if there exists a saddle point for the
stochastic game, then the game also has a value.

It is well known, compare [2, 3, 10, 11, 13] and [15], that under the integrability
condition

Ex

(
sup

0≤t<∞
e−βtg2(X(t))

)
< ∞(1.4)

and the condition

lim
t→∞ e−βtg2(X(t)) = 0,

the stochastic game has a value V . Moreover, the two stopping times

τ ∗ := inf{t :V (X(t)) = g1(X(t))}(1.5)

and

γ ∗ := inf{t :V (X(t)) = g2(X(t))}(1.6)
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together form a saddle point for the game. Below we prove the existence of a value
under no integrability conditions at all. To do this, we use the connection between
excessive functions and concave functions; compare [6] and [7]. More specifically,
using concave functions, we produce a candidate V ∗ for the value function, and
then we prove that V ≥ V ∗ ≥ V . Thus, there exists a value of the game, and this
value is given by the candidate function V ∗. One should note that we prove the
existence of a value for perpetual optimal stopping games, that is, when there is
no upper bound on the stopping times τ and γ . It remains an open question if all
optimal stopping games with a finite time horizon have values.

One easily finds examples of stochastic differential games where the pair
(τ ∗, γ ∗) of stopping times defined by (1.5) and (1.6) is not a saddle point; com-
pare, for instance, the examples in Section 5.1. We prove below, however, that γ ∗
is always optimal for the seller. More precisely, we deal with the following con-
cepts closely related to the notion of a saddle point: a stopping time τ ′ is optimal
for the buyer if

Rx(τ
′, γ ) ≥ V (x)

for all stopping times γ , and a stopping time γ ′ is optimal for the seller if

Rx(τ, γ
′) ≤ V (x)

for all stopping times τ . Note that

τ ′ is optimal for the buyer and γ ′ is optimal for the seller

⇐⇒ (τ ′, γ ′) is a saddle point.

Also note that if τ ′ is optimal for the buyer, then

V (x) ≤ inf
γ

Rx(τ
′, γ ) ≤ V (x) ≤ V (x),

so the game has a value V (x) which is given by

V (x) = inf
γ

Rx(τ
′, γ ).

Similarly, if γ ′ is optimal for the seller, then the existence of a value V (x) follows,
and

V (x) = sup
τ

Rx(τ, γ
′).

The outline of the paper is as follows. In Section 2 we specify the assumptions
on the diffusion X and we show that a stochastic game with an infinite time horizon
always has a value. This is done without the integrability condition (1.4); compare
Theorem 2.5. We also show that γ ∗ is an optimal stopping time for the seller.
The method used in the proof of Theorem 2.5 also gives a characterization of the
value function in terms of concave functions. As a straightforward consequence of
this characterization, the smooth-fit principle is deduced in Section 3. In Section 4



AAP imspdf v.2006/05/02 Prn:28/07/2006; 7:27 F:aap0183.tex; (Skai) p. 4

4 E. EKSTRÖM AND S. VILLENEUVE

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

we provide additional conditions under which τ ∗ is optimal for the buyer, that is,
(τ ∗, γ ∗) is a saddle point. Finally, in Section 5 we explicitly determine the value
of two different game options, both of which may be regarded game versions of
the American call option. In these examples, the integrability condition (1.4) is not
fulfilled, so they are not covered by the theory in previous literature.

2. The value of a stochastic differential game. Let X be a stochastic process
with dynamics

dX(t) = µ(X(t)) dt + σ(X(t)) dW(t),(2.1)

where µ and σ are given functions and W is a standard Brownian motion. We
assume that the two end-points of the state space of X are 0 and ∞, and we as-
sume for simplicity that both these end-points are natural. We also assume that the
functions µ(·) and σ(·) are continuous and that σ(x) > 0 for all x ∈ (0,∞). It
follows that the equation (2.1) has a (weak) solution which is unique in the sense
of probability law; see Chapter 5.5 in [12]. Moreover, X is a regular diffusion, that
is, for all x, y ∈ (0,∞), we have that y is reached in finite time with a positive
probability if the diffusion is started from x.

The second-order ordinary differential equation

Lu(x) := σ 2(x)

2
uxx + µ(x)ux − βu = 0(2.2)

has two linearly independent solutions ψ,ϕ : (0,∞) → R which are uniquely de-
termined (up to multiplication with positive constants) by requiring one of them
to be positive and strictly increasing and the other one to be positive and strictly
decreasing; compare [5]. We let ψ be the increasing solution and ϕ the decreas-
ing solution. Since 0 and ∞ are assumed to be natural boundaries of X, we have
ψ(0+) = 0 = ϕ(∞). We also let F : (0,∞) → (0,∞) be the strictly increasing
positive function defined by

F(x) := ψ(x)

ϕ(x)
.

Recall that a function u : (0,∞) → R is said to be F -concave in an interval J ⊂
(0,∞) if

u(x) ≥ u(l)
F (r) − F(x)

F (r) − F(l)
+ u(r)

F (x) − F(l)

F (r) − F(l)

for all l, x, r ∈ J with l < x < r . Equivalently, the function u(F−1(·)) is concave.
F -convexity of a function is defined similarly.

Below we use the following two theorems relating concave and convex func-
tions to the value functions of optimal stopping problems. The first one is Propo-
sition 4.2 in [6]. The proof of the second one follows along the lines of the proofs
of Propositions 3.2 and 4.2 in [6] and is therefore omitted.



AAP imspdf v.2006/05/02 Prn:28/07/2006; 7:27 F:aap0183.tex; (Skai) p. 5

ON THE VALUE OF OPTIMAL STOPPING GAMES 5

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

THEOREM 2.1. Let l, r be such that 0 < l < r < ∞, let g : [l, r] → [0,∞) be
measurable and bounded, and let

U(x) := sup
τ≤τl,r

Exe
−βτ g(X(τ)),

where

τl,r := inf{t :X(t) /∈ (l, r)}.
Then U is the smallest majorant of g such that U/ϕ is F -concave on [l, r].

THEOREM 2.2. Let l, r be such that 0 < l < r < ∞, let g : [l, r] → [0,∞) be
measurable and bounded, and let

U(x) := inf
γ≤γl,r

Exe
−βγ g(X(γ )),

where

γl,r := inf{t :X(t) /∈ (l, r)}.
Then U is the largest minorant of g such that U/ϕ is F -convex on [l, r].

REMARK. Note that it is important in Theorem 2.2 that the stopping times γ

are to be chosen among stopping times not exceeding the first exit time γl,r of
X(t) from the interval (l, r). If, for example, the choice γ = ∞ would be included,
then U would be identically 0.

Below we find our candidate value function V ∗ in the set

F = {f : (0,∞) → [0,∞) :f is continuous, g1 ≤ f ≤ g2,

f/ϕ is F -concave in every interval in which f < g2}.
Note that F is nonempty since g2 ∈ F. We work below with the functions
Hi : (0,∞) → [0,∞), i = 1,2, defined by

Hi(y) := gi(F
−1(y))

ϕ(F−1(y))
(2.3)

and the set

H = {h : (0,∞) → [0,∞) :h is continuous, H1 ≤ h ≤ H2,

h is concave in every interval in which h < H2}.
Note that the functions in F are precisely the functions ϕ ·(h◦F) for some function
h ∈ H.
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LEMMA 2.3. Let {hn}∞n=1 be a sequence of functions in H. Then the function h

defined by

h(y) := inf
n

hn(y)

is an element of H.

PROOF. First we claim that the minimum of two functions in H is again in H.
To see this, assume that h1, h2 ∈ H and let h := h1 ∧ h2. Clearly, h is continuous
and satisfies H1 ≤ h ≤ H2. Let y ∈ (0,∞) satisfy h(y) < H2(y). Consider the two
separate cases h1(y) = h2(y) and h1(y) = h2(y) < H(y). In the first case, there
exists an open interval containing y such that h = h1 or h = h2 in this interval
and, thus, h is concave in this interval. For the second case, there exists an open
interval containing y such that both h1 and h2 are concave. Since the minimum
of two concave functions is concave, h is also concave in this interval. It follows
that h is concave in every interval in which h < H2, which shows that h ∈ H.

Thus, we may, without loss of generality, assume that hn+1 ≤ hn for all n. Let
h(y) := infn hn(y) and define

U := {y :h(y) < H2(y)}.
Note that h, being the infimum of continuous functions, is upper semi-continuous,
so U is open. Choose two points l, r ∈ U with l < r and [l, r] ⊂ U . The interval
[l, r] is compact, and it is covered by the increasing family {Un}∞n=1 of open sets

Un := {y :hn(y) < H2(y)}.
Hence, there exists an integer N such that [l, r] ⊂ Un for all n ≥ N . For such n, hn

is concave on [l, r], and therefore, also h is concave on this interval. Consequently,
h is concave on each interval contained in U , and thus also continuous at all points
in U .

To show that h ∈ H, it remains to check that h is continuous also at all boundary
points of U . Let l ∈ U \ U , where U is the closure of U in (0,∞), and let {lk}∞k=1
be a sequence of points in U converging to l from the right (left-continuity is dealt
with similarly). Because h is upper semi-continuous, it is enough to prove that
h(l) ≤ h(l+).

Assume first that (l, l + ε0) ⊂ U for some ε0 > 0. We assume, to reach a contra-
diction, that there exists ε > 0 such that h(l) − ε > h(l+). Then there exists δ > 0
such that the straight line L connecting the points (l, h(l)− ε) and (l + δ,h(l + δ))

satisfies h(y) < L(y) < H2(y) for y ∈ (l, l + δ). Now, choose a y ∈ (l, l + δ).
Then there exists an n such that hn(y) < L(y). For this n, hn(l) ≤ L(l) since hn is
concave and hn(l + δ) ≥ L(l + δ). Consequently, h(l) ≤ hn(l) ≤ L(l) = h(l) − ε,
which is the required contradiction.
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On the other hand, if there does not exist an ε0 > 0 such that h < H2 in
(l, l + ε0), then the previous case can be applied to deduce right-continuity of h

at l. Indeed, for ε > 0, choose δ > 0 such that

|H2(y) − H2(l)| ≤ ε for y ∈ [l, l + δ].
Without loss of generality, we may assume that H2 = h at l + δ (since points with
H2 = h exist arbitrarily close to l). Now, for a point lk ∈ (l, l + δ), there exists a
maximal (possibly empty) surrounding interval in which h < H2. We know from
above that h is concave in the closure of this interval, and thus, h ≥ H2(l) − ε in
the interval. In particular, h(lk) ≥ H2(l) − ε. Since we also have h(lk) ≤ H2(lk) ≤
H2(l)+ ε, and since ε is arbitrary, it follows that h(lk) → H2(l) = h(l) as k → ∞.
Hence, h is continuous at l, and thus, we have shown that h ∈ H. �

LEMMA 2.4. There exists a smallest element V ∗ ∈ F. Moreover, the function
V ∗/ϕ is F -convex in every interval in which V ∗ > g1.

PROOF. Since the functions in F are precisely the functions ϕ(x)h(F (x)) for
some function h ∈ H, it suffices to show that there exists a smallest element in H

and that this smallest element is convex in every interval of strict majorization
of H1. In order to do this, define

W(y) := inf
h∈H

h(y).

Being the infimum of continuous functions, W is itself upper semi-continuous. Let
{yk}∞k=1 be a dense sequence of points in (0,∞), and for each k, let

{hk
n}∞n=1 ⊆ H

be a sequence of functions in H such that infn hk
n(yk) = W(yk). Next, define the

function W ∗ by

W ∗(y) = inf
k

inf
n

hk
n(y).

According to Lemma 2.3, W ∗ ∈ H. Moreover, the nonnegative function W ∗ − W

is lower semi-continuous and vanishes on a dense subset of (0,∞). It follows that
W ≡ W ∗, so W ∈ H, which finishes the first part of the proof.

To show the convexity on each interval in which W > H1, let I be such an
interval and fix y′ ∈ I . By continuity of H1, H2 and W , we can find δ > 0 so that

inf
y∈I δ

W(y) ≥ sup
y∈I δ

H1(y),

where I δ := [y′ − δ, y′ + δ]. Now assume, to reach a contradiction, that there exist
points y1, y2 ∈ I δ with y1 < y′ < y2 and

W(y′) > W(y1)
y2 − y′

y2 − y1
+ W(y2)

y′ − y1

y2 − y1
=: L(y′).(2.4)
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Since W is continuous, W(y) > L(y) for y in an open set containing y′. Let us
introduce

y′
1 = sup{y ∈ [y1, y

′] ,W(y) = L(y)}
and

y′
2 = inf{y ∈ [y′, y2] ,W(y) = L(y)}.

It is now straightforward to check that the function

h(y) :=
{

L(y), if y ∈ [y′
1, y

′
2],

W(y), if y /∈ (y′
1, y

′
2),

satisfies h ∈ H. However, h < W in y ∈ (y′
1, y

′
2) contradicts the minimality of W ,

and thus, (2.4) is not true. This means that W is convex at the point y′, so, by
continuity, W is convex on I , which finishes the second part of the proof. �

THEOREM 2.5. For any starting point x > 0, the perpetual optimal stopping
game has a value V (x) := V (x) = V (x). Moreover, V ≡ V ∗, where V ∗ is the
function appearing in Lemma 2.4, and the stopping time

γ ∗ := inf{t :V (X(t)) = g2(X(t))}
is an optimal stopping time for the seller.

PROOF. Let V ∗ be the function in Lemma 2.4, and choose x ∈ (0,∞). To
prove the existence of a value, we will show that

V (x) ≤ V ∗(x) ≤ V (x).(2.5)

To prove the first inequality, assume that the maximal interval containing x in
which V ∗ < g2 is (l, r) for some points l < r [if V ∗(x) = g2(x), then the first
inequality obviously holds since V ≤ g2]. Assume also, for the moment, that 0 < l

and r < ∞. It follows that V ∗(l) = g2(l) and V ∗(r) = g2(r). Inserting γ = γl,r in
the definition of V yields

V (x) ≤ sup
τ

Exe
−βτ∧γl,r

(
g1(X(τ))1{τ≤γl,r } + g2(X(γl,r ))1{τ>γl,r }

)

≤ sup
τ≤γl,r

Exe
−βτ g∗(X(τ))(2.6)

=: U∗(x),

where the function g∗ is defined by

g∗(x) =
{

g1(x), if x ∈ (l, r),
g2(x), if x ∈ {l, r}.

(2.7)
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Note that V ∗ majorizes g∗ and that V ∗/ϕ is F -concave on (l, r). According to
Theorem 2.1, U∗ is the smallest such function, so U∗(x) ≤ V ∗(x). Consequently,

V (x) ≤ V ∗(x).(2.8)

Now, if we instead have 0 = l and/or r = ∞, then the above reasoning again ap-
plies if we plug in γr := inf{t :X(t) ≥ r}, γl := inf{t :X(t) ≤ l} or γ = ∞ in the
definition of V and use Propositions 5.3 or 5.11 in [6] instead of Theorem 2.1.

To show the second inequality in (2.5), we argue similarly. Choose an x and let
(l, r) be a maximal interval containing x in which V ∗ > g1. As above, let us first
assume that

0 < l and r < ∞.(2.9)

Inserting τ = τl,r in the definition of V gives

V (x) ≥ inf
γ

Exe
−βτl,r∧γ (

g1(X(τl,r ))1{τl,r≤γ } + g2(X(γ ))1{τl,r>γ }
)

= inf
γ≤τl,r

Exe
−βγ g∗(X(γ )),

where the function g∗ is given by

g∗(x) =
{

g2(x), if x ∈ (l, r),
g1(x), if x ∈ {l, r}.

Thus, since V ∗/ϕ is F -convex in (l, r) (see Lemma 2.4), it follows from Theo-
rem 2.2 that V (x) ≥ V ∗(x). Thus, we have shown the second inequality in (2.5)
under the assumption (2.9).

Now, if (2.9) is not the case, then the second inequality in (2.5) requires some
slightly more involved analysis. For example, assume that

0 < l and r = ∞.(2.10)

To prove V (x) ≥ V ∗(x), in this case we do not plug in τl := inf{t :X(t) ≤ l} in the
definition of V , but we rather use the stopping times τl,N = inf{t :X(t) /∈ (l,N)}
for different N ≥ l (compare the remark following the current proof ). Thus, for
any N ≥ x, choosing τ = τl,N in the definition of V gives

V (x) ≥ inf
γ

Rx(τl,N , γ ) = inf
γ≤τl,N

Exe
−βγ g∗(X(γ )) =: VN(x),(2.11)

where

g∗(x) =
{

g2(x), if x ∈ (l,N),
g1(x), if x = {l,N}.

From Theorem 2.2, it follows that VN is majorized by g∗, that VN/ϕ is F -convex
on [l,N ], and that VN is the largest function with these properties. It is clear from
(2.8) and (2.11) that

sup
N≥x

VN(x) ≤ V (x) ≤ V ∗(x).
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We show below that we in fact have

sup
N≥x

VN(x) = V ∗(x).(2.12)

Note that (2.12) implies that

V (x) = V ∗(x)

and therefore also the existence of a value. To prove (2.12), we will work in the
coordinates y defined by y = F(x).

Let Hi , i = 1,2, be defined by Hi = gi

ϕ
◦ F−1. Then

WN ′ := VN

ϕ
◦ F−1 : [l′,N ′] → R

is the largest convex function majorized by the function

H(y) :=
{

H2(y), if y ∈ (l′,N ′),
H1(y), if y ∈ {l′,N ′},(2.13)

where l′ := F(l) and N ′ := F(N). Let W := V ∗
ϕ

◦ F−1 (thus, W is the function
defined in the proof of Lemma 2.4). The conditions 0 < l and r = ∞ translate to
l′ > 0, W(l′) = H1(l

′) and W(y) > H1(y) for all y > l′. Next, for y > l′, define

Ŵ (y) := sup
N ′≥y

WN ′(y).

We need to show that Ŵ ≥ W . To do this, note that since W > H1 in the inter-
val [l′,∞), we know from Lemma 2.4 that W is convex in this interval. Choose
y0 > l′, let

k := lim
ε↘0

W(y0 + ε) − W(y0)

ε

be the right derivative of W at y0, and let L(y) = k(y −y0)+W(y0) be the steepest
tangential of W at y0. Note that L(y) ≤ W(y) ≤ H2(y). Now we consider two
cases.

First, assuming the existence of a point N ′ > y0 such that L(N ′) = H1(N
′), the

function

h(y) =
{

W(y), if y ∈ [l′, y0],
L(y), if y ∈ [y0,N

′]
is convex and dominated by H2 in (l′,N ′) and by H1 at the points l′ and N ′.
Therefore, h ≤ WN ′ by Theorem 2.2, so

Ŵ (y0) ≥ W(y0).

Second, assume that there is no point N ′ > y0 such that L(N ′) = H1(N
′). Note

that the function

h(y) =
{

W(y), if y ∈ (0, y0],
L(y), if y ∈ [y0,∞),
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is an element of the set H. Since W is the smallest function in this set, it fol-
lows that we must have W(y) = L(y) for all y ≥ y0. Moreover, for each ε > 0,
there exists a point of intersection (to the right of y0) between the line Lε(y) :=
(k − ε)(y − y0) + W(y0) and H1 (otherwise a function in H can be constructed
which is strictly smaller than W in some interval). Now, let z < W(y0), and con-
sider the straight lines through (y0, z) that are below W in the interval [l′, y0].
Let k′ be the slope of the largest such straight line (i.e., k′ is the smallest pos-
sible slope), denote this line by L′, and let y′ ∈ [l′, y0) be the largest value for
which W = L′. Since W is convex in [l′,∞), we have that k′ < k, and thus, the
straight line through (y0,W(y0)) with slope k′ and the function H1 have a point
(N ′,H1(N

′)) of intersection for some N ′ > y0. Let L′′ be the straight line between
the points (y0, z) and (N ′,H1(N

′)). Then the function which equals W in [l′, y′],
L′ in [y′, y0] and L′′ in [y0,N

′] is convex and smaller than the function H defined
as in (2.13). Consequently, the corresponding function WN ′ satisfies WN ′(y0) ≥ z.
Since z < W(y0) is arbitrary, it follows that Ŵ (y0) ≥ W(y0).

Thus, we have shown under the assumption (2.10) that (2.12) holds, implying
the second inequality in (2.5). By symmetry, the above argument also applies in the
case when l = 0 and r < ∞. The remaining case, that is, when l = 0 and r = ∞,
can be handled with similar methods (we omit the details).

Finally, since we have shown that the first inequality in (2.6) actually is an equal-
ity, it follows that γ ∗ is optimal for the seller. �

REMARK. Note that the function W in the proof of Lemma 2.4 is the smallest
function in the set

H = {h : (0,∞) → [0,∞) :h is continuous, H1 ≤ h ≤ H2,

h is concave in every interval in which h < H2},
whereas, in general, it is not the largest function in the set

{h : (0,∞) → [0,∞) :h is continuous, H1 ≤ h ≤ H2,

h is convex in every interval in which h > H1}
(although W is a member also of this set). This asymmetry of the function W (and
the corresponding one for the function V ∗) may be regarded as the underlying
reason for the asymmetry in the proof of the first and the second inequality in (2.5).

REMARK. Let us introduce the perpetual American option value V∞ associ-
ated with the payoff g1, that is,

V∞(x) := sup
τ

Exe
−βτ g1(X(τ)).(2.14)

Obviously, V ≤ V∞. An immediate consequence of Theorem 2.5 is that the impli-
cation

V∞(x0) ≥ g2(x0) for some x0 ∈ (0,∞) �⇒ {x :V (x) = g2(x)} = ∅
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holds. Indeed, assume that V∞(x0) ≥ g2(x0) for some x0 and that V (x) < g2(x)

for all x ∈ (0,∞). Then γ ∗ = ∞, so V ≡ V∞ by Theorem 2.5. It follows that
V (x0) ≥ g2(x0), which is a contradiction.

3. The smooth-fit principle. In the following proposition, let H1 and H2 be
the functions defined in (2.3) and let W be the smallest element in the set H. More-
over, let d−

dy
and d+

dy
denote the left and the right differential operators, respectively,

that is,

d−

dy
h(y0) := lim

ε↘0

h(y0) − h(y0 − ε)

−ε

and

d+

dy
h(y0) := lim

ε↘0

h(y0 + ε) − h(y0)

ε
.

PROPOSITION 3.1. Assume that y1 ∈ (0,∞) is such that H1(y1) = W(y1) <

H2(y1). Also assume that the left and right derivatives d−
dy

H1 and d+
dy

H1 exist at y1.
Then

d−

dy
H1(y1) ≥ d−

dy
W(y1) ≥ d+

dy
W(y1) ≥ d+

dy
H1(y1).(3.1)

Similarly, if y2 ∈ (0,∞) is such that H2(y2) = W(y2) and d−
dy

H2 and d+
dy

H2 exist
at y2, then

d−

dy
H1(y2) ≤ d−

dy
W(y2) ≤ d+

dy
W(y2) ≤ d+

dy
H1(y2).(3.2)

PROOF. Since W(y1) = H1(y1), the first and the third inequality in (3.1) fol-
low from V ≥ H1. Since W(y1) < H2(y1), we know that W is concave in a neigh-
borhood of y1. From this, the second inequality follows.

The inequalities in (3.2) follow similarly. �

REMARK. Note that for the middle inequalities in (3.1) and (3.2) to hold, it is
essential that W(y1) < H2(y1) and H1(y2) < W(y2), respectively. Indeed, (3.1) is,
for example, not true at the point y1 = K1 if

H1(y) = (y ∧ K3 − K2)
+

and

H2(y) = (y − K1)
+

for some constants K3 > K2 > K1 > 0.
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After a change of coordinates, Proposition 3.1 translates to the following
smooth-fit principle. Note that, in line with the above results, no integrability con-
ditions are assumed.

COROLLARY 3.2 (Smooth-fit principle). Let x0 ∈ (0,∞) and assume that
V (x0) = gi(x0), where either i = 1 or i = 2. Assume also that g1(x0) < g2(x0)

and that gi is differentiable at x0. Then also V is differentiable at x0 and

d

dx
V (x0) = d

dx
gi(x0).

4. Existence of a saddle point. According to Theorem 2.5, γ ∗ is an optimal
stopping time for the seller. It turns out, however, that

τ ∗ := inf{t :V (X(t)) = g1(X(t))}
in general need not be optimal for the buyer; compare the examples in Section 5.
A necessary condition for (τ ∗, γ ∗) to be a saddle point is that

P(τ ∗ < ∞) > 0,

or, equivalently, that the set

E1 := {x ∈ (0,∞) :V (x) = g1(x)}
is nonempty. Indeed, Rx(∞,∞) = 0, and thus, τ ∗ = ∞ cannot be optimal for the
buyer (at least not if g1 ≡ 0). Below we give an analytical criterion in terms of the
differential operator

L := σ 2

2

∂2

∂x2 + µ
∂

∂x
− β,

ensuring that the set E1 is empty. To this end, we restrict the class of payoff func-
tions by requiring some additional regularity conditions.

HYPOTHESIS 4.1. Let D = {a1, . . . , an}, where n ∈ N and ai are positive real
numbers with a1 < a2 < · · · < an. Suppose that g1 is a continuous function on
(0,∞) such that g′

1 and g′′
1 exist and are continuous on (0,∞) \ D and that the

limits

g′
1(ai±) := lim

x→ai±
g′

1(x), g′′
1 (ai±) := lim

x→ai±
g′′

1 (x)

exist and are finite.

PROPOSITION 4.2. Assume that the function g1 satisfies Hypothesis 4.1 and
that g2 > g1 on some open interval I ⊂ (0,∞). If Lg1 is a nonzero nonnegative
measure on I, then V (x) > g1(x) for every x ∈ I. Thus, if I = (0,∞), then the set
E1 is empty, and consequently, τ ∗ is not optimal for the buyer (provided g1 ≡ 0).

Similarly, if Lg2 is a nonzero nonpositive measure on I, then V (x) < g2(x) for
all x ∈ I.



AAP imspdf v.2006/05/02 Prn:28/07/2006; 7:27 F:aap0183.tex; (Skai) p. 14

14 E. EKSTRÖM AND S. VILLENEUVE

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

REMARK. That Lg1 is a nonnegative measure on I means that Lg1(x) ≥ 0
for all x ∈ I \ D and g′

1(a−) ≤ g′
1(a+) for all a ∈ I ∩ D. That Lg1 is a nonzero

nonnegative measure on I means that at least one of these inequalities is strict.

PROOF OF PROPOSITION 4.2. Fix x ∈ I and choose l, r ∈ I with l < x < r

so that Lg1 is a nonzero nonnegative measure on (l, r) ⊂ I. According to Theo-
rem 2.5, V (x) = supτ Rx(τ, γ

∗) and thus,

V (x) ≥ Rx(τl,r , γ
∗) ≥ Ex

(
e−β(τl,r∧γ ∗)g1

(
X(τl,r ∧ γ ∗)

))
.(4.1)

Note that if Px(γ
∗ < τl,r ) > 0, then the second inequality in (4.1) is strict. Be-

cause g1 satisfies Hypothesis 4.1, the Itô–Tanaka formula (see Theorem 3.7.1, page
218 in [12]) gives

Ex

(
e−β(τl,r∧γ ∗)g1

(
X(τl,r ∧ γ ∗)

))

= g1(x) + Ex

(∫ τl,r∧γ ∗

0
e−βsLg1(X(s)) ds

)

+ ∑
ai∈(l,r)

(
g′

1(ai+) − g′
1(ai−)

)
Ex

(∫ τl,r∧γ ∗

0
e−βs dLi(s)

)
,

where Li is the local time of X at ai . Now, since Lg1 is nonnegative on (l, r), we
find that

Ex

(
e−β(τl,r∧γ ∗)g1

(
X(τl,r ∧ γ ∗)

)) ≥ g1(x).

Moreover, if γ ∗ ≥ τl,r a.s., then this inequality is strict. Indeed, since Lg1 is a
nonzero nonnegative measure on (l, r), we have that either Lg1(y) > 0 for some
y ∈ (l, r), where g1 is differentiable (implying that the middle term is strictly pos-
itive), or g′

1(ai+) > g′
1(ai−) for some ai ∈ (l, r) (implying that the last term is

strictly positive). Thus, in view of (4.1), we have V (x) > g1(x), which finishes the
proof of the first part of the proposition.

As for the second claim, by Proposition 4.4 in [6] [note that it is also valid for
contracts, functions of the type (2.7)], we may replace (4.1) with

V (x) ≤ sup
τ

Rx(τ, γl,r ) = Rx(τ̂ , γl,r )

for some stopping time τ̂ . The proof now follows as above. �

Below we provide conditions under which τ ∗ is optimal for the buyer. Following
[1] and [6], the conditions are expressed in terms of the two quantities

l0 := lim sup
x→0

g1(x)

ϕ(x)
and l∞ := lim sup

x→∞
g1(x)

ψ(x)
.
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PROPOSITION 4.3. Assume that both l0 and l∞ are finite. Also assume that
the nonnegative local martingales e−βtϕ(X(t)) and e−βtψ(X(t)) satisfy

Ex

(
sup

0≤s≤t

e−βsϕ(X(s))

)
< ∞ and Ex

(
sup

0≤s≤t

e−βsψ(X(s))

)
< ∞(4.2)

for all times t . Then the process e−βt∧τ∗
V (X(t ∧ τ ∗)) is a sub-martingale.

PROOF. We know from Theorem 2.5 that V/ϕ is F -convex in all intervals
where V > g1. Arguing as in the proof of Proposition 5.1 in [6], it can therefore
be shown that Z(t) := e−βt∧τ∗

V (X(t ∧ τ ∗)) is a sub-martingale, provided

Ex

(
sup

0≤s≤t

Z(s)

)
< ∞

(this is needed for the use of Fatou’s lemma). From the results in [6] (compare
Propositions 5.4 and 5.12 of that paper) we know that

lim sup
x→0

V (x)

ϕ(x)
= l0 and lim sup

x→∞
V (x)

ψ(x)
= l∞.

Thus, there exist constants C and D with

V (x) ≤ Cϕ(x) + Dψ(x)

for all x ∈ (0,∞). From the assumption (4.2), it therefore follows that
sup0≤s≤t Z(s) is integrable, which finishes the proof. �

REMARK. Without the assumption (4.2), Proposition 4.3 would not be true.
Also note that to show that the process e−βt∧γ ∗

V (X(t ∧γ ∗)) is a super-martingale,
neither the finiteness of l0 and l∞ nor the condition (4.2) is needed.

The following two results may be viewed as the game versions of Proposi-
tion 5.13 and 5.14 in [6].

THEOREM 4.4. Assume (4.2) and that

l0 = l∞ = 0.(4.3)

Then (τ ∗, γ ∗) is a saddle point.

PROOF. From Proposition 4.3, it follows that

V (x) ≤ Ex

(
e−β(t∧τ∗∧γ )V

(
X(t ∧ τ ∗ ∧ γ )

))
≤ Ex

(
e−βτ∗

V (X(τ ∗))1{τ∗≤t∧γ } + e−βγ V (X(γ ))1{γ<t∧τ∗}
)

+ Ex

(
e−βtV (X(t))1{t≤τ∗∧γ }

)
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for any stopping time γ . We first prove that the last term converges to zero when t

tends to +∞. To do this, recall that the assumption (4.3) implies

lim
x→0

V (x)

ϕ(x)
= lim

x→∞
V (x)

ψ(x)
= 0.

Thus, given a constant δ > 0, there exists a constant M such that V (x) ≤ δϕ(x) +
δψ(x) + M for all x. Using the fact that e−βtϕ(X(t)) and e−βtψ(X(t)) are non-
negative local martingales, and hence supermartingales, we find

Ex

(
e−βtV (X(t))1{t≤τ∗∧γ }

) ≤ Me−βt + δExe
−βtϕ(X(t)) + δExe

−βtψ(X(t))

≤ Me−βt + δϕ(x) + δψ(x).

Since δ can be chosen arbitrarily, we conclude the first step. Next, the monotone
convergence theorem yields

V (x) ≤ lim
t→∞Ex

(
e−βτ∗

V (X(τ ∗))1{τ∗≤t∧γ } + e−βγ V (X(γ ))1{γ<t∧τ∗}
)

≤ lim
t→∞Ex

(
e−βτ∗

g1(X(τ ∗))1{τ∗≤t∧γ } + e−βγ g2(X(γ ))1{γ<t∧τ∗}
)

= Ex

(
e−βτ∗

g1(X(τ ∗))1{τ∗≤γ } + e−βγ g2(X(γ ))1{γ<τ∗}
)

= Rx(τ
∗, γ ),

that is, τ ∗ is optimal for the buyer. This finishes the proof. �

THEOREM 4.5. Assume (4.2) and that l0 and l∞ are both finite. Then, the pair
(τ ∗, γ ∗) is a saddle point for arbitrary starting point if and only if




there is no l > 0 such that
g1(x) < V (x) for all x ≤ l

if l0 > 0


 and




there is no r > 0 such that
g1(x) < V (x) for all x ≥ r

if l∞ > 0


 .

PROOF. If l0 = l∞ = 0, then the result follows from Theorem 4.4. Therefore,
we assume that l∞ > 0 (the case l0 > 0 can be treated similarly).

To prove the sufficiency of the condition, fix a starting point x ∈ (0,∞). If
V (x) = g1(x), then τ ∗ = 0 is clearly optimal for the buyer, and thus, we are fin-
ished. If V (x) > g1(x), let I := (a, b) ⊂ (0,∞) be a maximal interval containing
x such that V > g1 in I . Note that

τ ∗ = inf{t :X(t) /∈ I },
and that b < ∞ by assumption. Moreover, given δ > 0, there exists a constant
M such that V ≤ M + δϕ in I . Indeed, if a > 0, then V is bounded in I , and if
a = 0, then l0 = 0 by assumption. Thus, proceeding analogously as in the proof of
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Theorem 4.4, we obtain

V (x) ≤ lim
t→∞Ex

(
e−β(t∧τ∗∧γ )V

(
X(t ∧ τ ∗ ∧ γ )

))

≤ lim
t→∞Ex

(
e−βτ∗

V (X(τ ∗))1{τ∗≤t∧γ } + e−βγ V (X(γ ))1{γ<t∧τ∗}
)

+ δϕ(x) + lim
t→∞Me−βt

≤ Rx(τ
∗, γ ) + δϕ(x)

for a stopping time γ . Since δ is arbitrary, this shows that τ ∗ is optimal for the
buyer.

Conversely, assume that (τ ∗, γ ∗) is a saddle point for each starting point x and
that V (x) > g1(x) for x ≥ r . Then, for x ≥ r , the stopping time τ ∗ ≥ τr a.s. The
definition of a saddle point and the optional sampling theorem applied to the non-
negative supermartingale e−βtV∞(Xt), where V∞ is the perpetual American op-
tion value as defined in (2.14), give

V (x) = Rx(τ
∗, γ ∗)

≤ Rx(τ
∗,∞)Ex

(
e−βτ∗

g1(X(τ ∗))
)

≤ Ex

(
e−βτ∗

V∞(X(τ ∗))
)

≤ Ex

(
e−βτr V∞(X(τr))

)

= ϕ(x)

ϕ(r)
V∞(r),

where we in the last used equation (2.6) in [6]. Proposition 5.4 in [6] then implies
that

l∞ = lim sup
x→∞

V (x)

ψ(x)
≤ V∞(r)

ϕ(r)
lim

x→∞
ϕ(x)

ψ(x)
= 0,

which contradicts l∞ > 0. �

5. Two examples of game options. In this section we study two examples
motivated by applications in finance. In both examples we assume that µ(x) = βx,
where β is the discounting rate. Thus, the diffusion X solves

dX(t) = βX(t) dt + σ(X(t)) dW(t),

and V may be interpreted as the arbitrage free price of a game option written on
a nondividend paying stock; compare [14]. Note that the functions ψ and ϕ are
given (up to multiplication with a positive constant) by

ψ(x) = x

and

ϕ(x) = x

∫ ∞
x

1

u2 exp
{
−

∫ u

1

2βz

σ 2(z)
dz

}
du.(5.1)
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5.1. The game version of a call option. In this subsection we study the game
version of a call option, that is,

g1(x) = (x − K)+ and g2(x) = (x − K)+ + ε

for some positive constants K and ε. If ε ≥ K , then one can show that the game op-
tion reduces to an ordinary perpetual American call option. Therefore, we consider
the case with ε < K .

The functions Hi := (
gi

ϕ
) ◦ F−1, i = 1,2, are given by

H1(y) =
(
y − K

ϕ(F−1(y))

)+

and

H2(y) =
(
y − K

ϕ(F−1(y))

)+
+ ε

ϕ(F−1(y))
.

First we claim that the function

w(y) := 1

ϕ(F−1(y))

is concave. To see this, note that by letting y = F(x), we find that

w(y) = 1

ϕ(F−1(y))
= 1

ϕ(x)
= F(x)

x
= y

F−1(y)
,

where we have used F(x) = x/ϕ(x). Straightforward calculations yield that

w′′(y) − ϕ′′(x)

ϕ3(x)(F ′(x))2 .

Using (5.1), one can check that ϕ′′(x) ≥ 0, so it follows that w is concave. Since w

is concave, H1 is 0 on (0,F (K)) and convex in (F (K),∞), and H2 is concave in
(0,F (K)) and convex in (F (K),∞). This, together with the easily checked facts

lim
y→∞

H1(y)

y
= 1, H ′

2(y) < 1

and

H ′
2(F (K)+) = ε

K
+ (K − ε)F (K)

K2F ′(K)
>

ε

K
= H2(F (K))

F (K)
,

implies that the smallest function W in H is given by

W(y) =



εy

K
, if y ∈ (0,F (K)],

H2(y), if y ∈ (F (K),∞).
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In the usual coordinates this means that the value V of the game version of a call
option written on a no-dividend paying stock is

V (x) =



εx

K
, if x ∈ (0,K],

x − K + ε, if x ∈ (K,∞).

According to Theorem 2.5, an optimal stopping time for the seller is given by

γ ∗ := inf{t :X(t) ≥ K}.
Also note that the corresponding stopping time τ ∗ = ∞ is not optimal for the
buyer.

5.2. An example in which convexity is lost. In this subsection we consider an-
other possible generalization of the American call option. More precisely, let

g1(x) = (x − K)+ and g2(x) = C(x − K)+

for some constant C > 1. Moreover, assume for simplicity that the diffusion X is
a geometric Brownian motion, that is, that

dX(t) = βX(t) dt + σX(t) dW(t)

for some constant σ > 0. Then the functions ψ and ϕ are given by

ψ(x) = x and ϕ(x) = x−2β/σ 2
,

and the functions Hi , i = 1,2, are given by

H1(y) = (
y − Ky2β/(2β+σ 2))+ and H2(y) = C

(
y − Ky2β/(2β+σ 2))+.

We need to consider two different cases.

5.2.1. Case 1. First assume that C ≥ 1 + 2β/σ 2. Then it is straightforward to
check that W(y) = (y − K(2β+σ 2)/σ 2

)+, that is, the value V of the option is given
by

V (x) = ϕ(x)W(F(x)) = (
x − K(2β+σ 2)/σ 2

x−2β/σ 2)+
.

Moreover, Theorem 2.5 tells us that γ ∗ := inf{t :X(t) ≤ K} is an optimal stopping
time for the seller.

5.2.2. Case 2. Now assume that 1 < C < 1+2β/σ 2. Then one can check that

W(y) =
{

H2(y), if y ∈ (0, y′),
H2(y

′) + y − y′, if y ∈ [y′,∞),

where y′ is given by

y′ =
(

2βCK

(2β + σ 2)(C − 1)

)(2β+σ 2)/σ 2

.
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It follows that

V (x) =



C(x − K)+, if x ∈ (0, x′),

x − CKσ 2

2β + σ 2

(
x′

x

)2β/σ 2

, if x ∈ [x′,∞),

where

x′ = 2βCK

(2β + σ 2)(C − 1)
.

According to Theorem 2.5, γ ∗ := inf{t :X(t) ≤ x′} is optimal for the seller. As in
the previous example, however, τ ∗ = inf{t :X(t) ≤ K} is not optimal for the buyer.

REMARK. The above example shows, perhaps surprisingly, that game options
are not convexity preserving. More precisely, although both contract functions
g1 and g2 are convex, the value of the game option need not necessarily be con-
vex. This is in contrast to options of European and American style, both of which
are known to be convexity preserving; compare, for example, [4] or [9] and the
references therein.

REMARK. The method to determine the value of an optimal stopping game
used in this section is also used in [8]. In that paper the construction of the value
using concave functions is shown to be valid under the assumption of the existence
of a value and a saddle point of the form (τ ∗, γ ∗). In the present paper we start with
the construction of a natural candidate for the value function (without knowing
a priori that such a value function exists), and then we show that this function
indeed has to be the value of the game. This allows us to weaken the assumptions
under which a game is known to have a value. Also note that the integrability
condition (1.4) is satisfied in neither of the two examples provided in this section.

Acknowledgment. The authors thank an anonymous referee for very helpful
comments.
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