Calcium signaling and the novel anti-proliferative effect of the UTP-sensitive P2Y₁₁ receptor in rat cardiac myofibroblasts

Mariana Certal^a, Adriana Vinhas^a, Ana Rita Pinheiro^{a,b}, Fátima Ferreirinha^a, Aurora Raquel Barros-Barbosa^a, Isabel Silva^a, Maria Adelina Costa^{a,c}, Paulo Correia-de-Sá^a

^aLaboratório de Farmacologia e Neurobiologia, Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP), Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS-UP), Porto, Portugal

^bÁrea Técnico-Científica de Fisioterapia, Escola Superior de Tecnologia da Saúde do Instituto Politécnico do Porto (ESTSP-IPP), Vila Nova de Gaia, Portugal

^cDepartamento de Química, ICBAS-UP, Porto, Portugal

ABSTRACT

During myocardial ischemia and reperfusion both purines and pyrimidines are released into the extracellular milieu, thus creating a signaling wave that propagates to neighboring cells via membranebound P2purinoceptors activation. Cardiac fibroblasts (CF) are important players in heart remodeling, electrophysiological changes and hemodynamic alterations following myocardial infarction. Here, we investigated the role UTP on calcium signaling and proliferation of CF cultured from ventricles of adult rats. Co-expression of discoidin domain receptor 2 and α -smooth muscle actin indicate that cultured CF are activated myofibroblasts. Intracellular calcium ([Ca²⁺]_i) signals were monitored in cells loaded with Fluo-4 NW. CF proliferation was evaluated by the MTT assay. UTP and the selective P2Y₄ agonist, MRS4062, caused a fast desensitizing $[Ca^{2+}]_i$ rise originated from thapsigargin-sensitive internal stores, which partially declined to a plateau providing the existence of Ca^{2+} in the extracellular fluid. The biphasic [Ca²⁺]_i response to UTP was attenuated respectively by P2Y₄ blockers, like reactive blue-2 and suramin, and by the P2Y₁₁ antagonist, NF340. UTP and the P2Y₂ receptor agonist MRS2768 increased, whereas the selective P2Y₁₁ agonist NF546 decreased, CF growth; MRS4062 was ineffective. Blockage of the P2Y₁₁ receptor or its coupling to adenylate cyclase boosted UTP-induced CF proliferation. Confocal microscopy and Western blot analysis confirmed the presence of P2Y₂, P2Y₄ and P2Y₁₁ receptors. Data indicate that besides P2Y₄ and P2Y₂ receptors which are responsible for UTP-induced $[Ca^{2+}]_i$ transients and growth of CF, respectively, synchronous activation of the previously unrecognized P2Y₁₁ receptor may represent an important target for anti-fibrotic intervention in cardiac remodeling.

KEYWORDS: Cardiac fibroblasts; Myofibroblast; UTP; P2Y₂ receptor; P2Y₄ receptor; P2Y₁₁ receptor; Intracellular calcium; Fibroblast cell growth; ATP release; CX43-containing hemichannels; Adenylate cyclase; Cyclic AMP; EPAC