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ABSTRACT 

Objective: To study the influence of prolonged wearing of unstable shoes on standing postural 

control in prolonged standing workers. 

Methods: The participants were divided into two groups: one wore unstable shoes while the 

other wore conventional shoes for 8 weeks. Stabilometry parameters related to centre of pressure 

(CoP), rambling (RM) and trembling (TR) as well as the total agonist/antagonist muscle activity, 

antagonist co-activation and reciprocal activation were evaluated during upright standing, before 

and after the 8 week period. In both moments, the subjects were evaluated wearing the unstable 

shoes and in barefoot. 

Results: The unstable shoe condition presented increased CoP displacement related 

variables and decreased co-activation command compared to barefoot before and after the 

intervention. The prolonged wearing of unstable shoes led to: (1) reduction of medial-lateral CoP 

root mean square and area; (2) decreased anteroposterior RM displacement; (3) increased 

anteroposterior RM mean velocity and mediolateral RM displacement; (4) decreased 

anteroposterior TR RMS; and (5) increased thigh antagonist co-activation in the unstable shoe 

condition.  

Conclusion: The unstable shoe condition is associated to a higher destabilizing effect that 

leads to a selection of more efficient and accurate postural commands compared to barefoot. 

Prolonged wearing of unstable shoes provides increased effectiveness and performance of the 

postural control system, while wearing of unstable shoes in upright standing, that are reflected by 

changes in CoP related variables and by a reorganization of postural control commands.  

 

Keywords: Stabilometry; Antagonist co-activation; Reciprocal activation; Postural control 

performance; Unstable support; Prolonged standing workers. 
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1. INTRODUCTION 

The support surface type has a relevant impact over postural control in humans (Dietz et al., 

1980; Gantchev & Dimitrova, 1996; Gavrilenko et al., 1995; Ivanenko et al., 1999). When standing 

on an unstable support, the new postural requirements lead to postural control reorganisation 

through increased central drive (Gavrilenko, et al., 1995; Ivanenko, et al., 1999) associated with 

augmented gamamotoneuron activity leading to higher sensitivity of the muscle spindles (Dietz, et 

al., 1980; Gorassini et al., 1993; Prochazka, 2010; Ribot-Ciscar et al., 2000), changes in synergies 

between antagonist and agonist muscles (Dietz, et al., 1980) and increased anticipatory postural 

control adjustments (Aruin et al., 1998; Gantchev & Dimitrova, 1996; Nardone & Schieppati, 1988; 

Nouillot et al., 1992). Based on this, it can be argued that, depending on the degree, the instability 

provided by the unstable support condition would have positive effects over the postural control. 

Despite this possibility, the effect of unstable support conditions has been explored mainly at the 

immediate level or in balance training exercises. Considering the adaptation of the central nervous 

system (CNS) in response to changing task and environment demands (Shumway-Cook & 

Woolacott, 2007), further investigation is required regarding the long-term influence of changes in 

afferent information during daily activities that could be beneficial to postural control. Recently, 

manufacturers have introduced new shoe designs to feature unstable conditions (Masai Barefoot 

Technology, MBT, USA (Figure 1)) during daily activities to induce a neuromuscular training stimuli 

to improve postural control (Hu & Woollacott, 1994), and generate structural and functional 

adaptations in the neuromuscular system (Hakkinen et al., 1996). However, divergence exists as to 

the benefits from wearing this kind of shoes on postural control. Previous research has 

demonstrated that wearing this kind of unstable shoes regularly leads to changes in muscle activity 

level, mainly at the ankle joint, during upright standing (Sousa et al., 2012) and to decreased centre 

of pressure (CoP) excursion in young subjects (Landry et al., 2010); although no changes have been 

observed in the mean velocity of the CoP in mid-aged women (Ramstrand et al., 2010), neither in 

the CoP excursion in one-leg stance in young subjects (Turbanski et al., 2011). This divergence 
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could result from the few parameters analysed, as a larger set of measures is required to detect 

differences in postural control (Pavol, 2005). 

Upright stance is associated with a process of continuous small body deviations countered by 

corrective torques, generating a pattern known as spontaneous body sway. Involving a complex 

sensorimotor control system, upright postural control can be evaluated based on measurements of 

the body segment displacement, muscle activity and displacement and motion patterns of the centre 

of mass (CoM) and CoP (Balasubramaniam & Wing, 2002). 

From a biomechanical perspective, a number of parameters derived from the CoP migration 

have been often used to characterise postural control and to evaluate postural performance (Bennell 

& Goldie, 1994; Collins & De Luca, 1993; Kinzey et al., 1997; Maurer & Peterka, 2005). This is 

because the CoP migration represents the summed up effect of mechanical muscle properties and 

of a number of different neuromuscular components whose characteristics are strongly dependent 

on the main inputs that control postural stability (Baratto et al., 2002; Maurer & Peterka, 2005; 

Winter, 1995b). However, CoP measures only represent the control variable acting to compensate 

the CoM displacement (the controlled variable) (Morasso et al., 1999). The importance of CoM 

measurements in association with CoP measurements is because the difference between the two 

variables is proportional to the horizontal acceleration of the CoM representing the “error” signal in 

the balance control system (Winter, 1995b). According to Zatsiorsky and Duarte, 1999, the nature 

of postural sway is the result of a moving reference point (rambling, RM). This moving point is related 

to the supraspinal process and constitutes a reference about which the body oscillates (trembling, 

TR) through the action of spinal reflexes and changes in the intrinsic mechanical properties of 

muscles and joints (Zatsiorsky & Duarte, 1999). The decomposition technique of CoP time series 

proposed by authors to assess RM and TR has been demonstrated to provide a very good estimate 

for both components (Lafond et al., 2004). However, to the best of our knowledge, no previous study 

addressed the influence of wearing unstable shoes in CoP and CoM interrelation or in muscle 

synergies during quiet standing. Does wearing unstable shoes lead to a higher performance and 

effectiveness of upright standing postural control?  
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Considering the aforementioned, the main purpose of this study was to analyse the influence 

of long-term wearing of unstable shoes in upright standing postural control in prolonged standing 

workers. More explicitly, the purposes were to evaluate the effect of wearing unstable shoes on: 1) 

CoP displacement pattern, 2) CoP and CoM inter-relation through RM and TR components, 3) total 

agonist and antagonist muscle activity, and 4) agonist-antagonist muscle relation. Based on recent 

studies which have demonstrated that wearing unstable shoes improves the performance of postural 

control responses to external perturbations (Sousa et al., 2013a; Sousa et al., 2013b), it can be 

hypothesised that the long-term wearing of unstable shoes would lead to higher performance and 

effectiveness of upright standing postural control, reflected by decreased CoP displacement, area 

and velocity (Bennell & Goldie, 1994; Kinzey, et al., 1997; Norris et al., 2005) and dispersion (Prieto 

et al., 1996), respectively. Also, considering that the postural control system relies more strongly on 

co-activation commands at the beginning of learning (Feldman, 1980a; Flash, 1987; Serres & Milner, 

1991), when the internal models are poor, and on reciprocal activation commands as the learning 

proceeds (Imamizu et al., 2000; Osu et al., 2002), increased reciprocal activation and decreased 

antagonist co-activation after prolonged wearing of unstable shoes can be hypothesised. Finally, 

because these postural control adaptation strategies lead to reduced noise and increased accuracy 

(Lacquaniti et al., 1993), a decreased postural control system error, demonstrated through the CoM 

and CoP relation (Winter, 1995a) (RM and TR (Zatsiorsky & Duarte, 2000)) can also be expected. 

The design of the unstable footwear used in this study (MBT) is based on observations of the Masai 

tribe, who are not accustomed to wearing shoes. This design recreates natural uneven walking 

surfaces to reduce problems caused by today’s rigid soled shoes and hard ground. This assumption 

raises the question: are postural control variables while wearing unstable shoes similar to that 

obtained under barefoot conditions? Based on this, values obtained while wearing the unstable 

shoes were compared to reference values obtained in barefoot condition. Similar values of CoP 

related variables would be expected between barefoot and unstable shoe conditions, before and 

after prolonged use of the shoes, as no differences were previously demonstrated during 

compensatory postural adjustments in response to an external perturbation (Sousa et al., 2013a; 
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Sousa et al., 2013b). Also, the results obtained in these studies support the hypothesis of a 

decreased co-activation command in the unstable shoe condition compared to barefoot. 

2. METHODS 

2.1 Subjects 

The study included healthy female participants whose professional occupation requires 

prolonged standing positions (hairdressers) that were divided into two groups: 1) the experimental 

group included 14 individuals (age = 34.6 ± 7.7 years, height = 1.59 ± 0.06 m, weight = 65.3 ± 9.6 

kg; mean ± SD), and 2) the control group included 16 individuals (age = 34.9 ± 8.0 years, height = 

1.62 ± 0.06 m, weight = 61.1 ± 6.3 Kg; mean ± SD). Possible candidates with recent osteoarticular 

and musculotendinous injury or surgery of lower extremities, background and signs of neurological 

dysfunction or under medication that could affect motor performance and balance were excluded, 

as well as individuals who had used unstable footwear (specifically, Masai Barefoot Technology) 

prior to the study. 

The study was conducted according to the involved Institutions’ ethical norms and conformed 

to the Declaration of Helsinki, being informed consent obtained from all participants. 

2.2 Instrumentation 

The electromyographic (EMG) activity of the gastrocnemius medialis (GM), tibialis anterior 

(TA), rectus femoris (RF) and biceps femoris (BF) muscles was monitored using the MP 150 

Workstation model from Biopac Systems, Inc. (USA), bipolar steel surface electrodes, spaced 20 

mm apart, and a ground electrode (Biopac Systems, Inc.). The EMG signal was collected at 1000 

Hz, pre-amplified at the electrode site and then fed into a differential amplifier with adjustable gain 

setting (12-500 Hz; Common Mode Rejection Ratio (CMRR): 95 dB at 50 Hz and input impedance 

of 100 MΩ). The gain range used was equal to 1000. The electrodes were placed at the centre of 

the muscle belly of GM, TA, RF and BF (Table 1) after the skin was shaved, cleaned with alcohol 

and scrubbed to reduce impedance to at least 5000 Ω, measured through an Electrode Impedance 
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Checker (Noraxon USA, Inc.). Stabilometry parameters in the horizontal plane and along the 

anteroposterior orthogonal axes (Winter et al., 1998) were obtained using a force plate, model 

FP4060-10 from Bertec Corporation (USA), connected to a Bertec AM 6300 amplifier, with default 

gains and a 1000 Hz sampling rate. The amplifier was connected to a Biopac 16 bit analogical-digital 

converter. 

2.3 Procedures 

2.3.1 Data collection 

In the experimental group, the EMG and stabilometric data were acquired at: (1) prior to using 

the unstable shoes and (2) after wearing them for a period of 8 weeks. The subjects in the control 

group were also assessed at two moments separated by 8 weeks were they were tested barefoot 

and on the unstable footwear. However, in the 8-week period the control group used their own 

regular footwear (1.5 cm heel). In both groups and in all assessments, the variables evaluated were 

monitored under two randomised conditions: (1) upright barefoot standing and (2) upright standing 

wearing the unstable shoes (Figure 1). The EMG measurements were performed on the dominant 

limb, determined by asking participants to kick a ball (all participants were right leg dominant). Before 

the data acquisition, all subjects underwent an instruction session by a qualified instructor who 

explained how to use the unstable shoe, followed by approximately 10 minutes of walking, until the 

instructor felt they walked properly and were comfortable using the shoes (Nigg et al., 2006). 

The data acquisition was initiated 3 seconds after starting the testing procedure and was done 

in a total of 3 trials (Pinsault & Vuillerme, 2009; Ruhe et al., 2010). All individuals were asked to 

stand as still as possible (Zok et al., 2008), with the support base aligned at shoulder width, keeping 

their arms by their sides and to focus on a target 2 meters away and at eye level during 30 seconds 

(Le Clair & Riach, 1996). Rest periods of 60 seconds were provided between trials, during which 

the subjects sat down while maintaining the foot position (Kitabayashi et al., 2003). 
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After the upright standing measurements and a warm-up consisting of 3 submaximal isometric 

contractions (Lehman & McGill, 1999), the EMG maximal isometric contraction (MIC) was acquired 

for signal normalisation. For the TA and GM, the ankle was placed in neutral position, and for the 

BF and RF, the knee was at 90º. All participants were asked to perform 3 trials of MIC for 

dorsiflexion, plantar flexion, knee flexion and knee extension, respectively, under resistance during 

5 seconds, with a 60 seconds rest between trials (Brown & Weir, 2001). The signals collected within 

the first and last seconds were discarded. 

Following an initial evaluation, a pair of the unstable shoes was given to each subject in the 

experimental group, being the subjects instructed to wear them as much as possible at least 8 hours 

a day, 5 days a week (working hours), for 8 weeks, to obtain training effects (Nigg, et al., 2006; 

Ramstrand et al., 2008; Ramstrand, et al., 2010; Romkes et al., 2006). All participants from the 

experimental group received a guide on how to use the shoes, and the participants in the control 

group were told to continue their normal activities and not begin any new exercise regime. The 

responsible for each company group guaranteed the adherence of the participants. 

2.3.2 Data processing 

i) Electromyography 

The raw EMG signal was band-pass filtered (20-450 Hz) and the root mean square (RMS) was 

calculated. The EMG of each muscle was normalised to the corresponding value obtained during 

MIC (EGMnorm). Reciprocal activation and antagonist co-activation were calculated for joint level 

(i.e., for muscles that span one joint) and muscle group level (group of muscles that span multiple 

joints). For the joint level, the muscles acting on the ankle (TA/GM pair) and on the knee (RF/(GM 

+ BF) pair) were considered. For the muscle group level, the sum of the EMGnorm of all the dorsal 

(GM and BF) and all the ventral (TA and RF) postural muscles was adopted. 

The antagonist co-activation at joint level and at muscle group level were calculated using the 

following equations (Kellis et al., 2003): 
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a) Antagonist co-activation at the joint level: 

Antagonist co-activationTA/GM pair=
𝐸𝑀𝐺𝑛𝑜𝑟𝑚𝑇𝐴

𝐸𝑀𝐺𝑛𝑜𝑟𝑚𝐺𝑀+𝐸𝑀𝐺𝑛𝑜𝑟𝑚𝑇𝐴
× 100,     (1) 

Antagonist co-activationRF/(BF+GM) pair=
𝐸𝑀𝐺𝑛𝑜𝑟𝑚𝑅𝐹

𝐸𝑀𝐺𝑛𝑜𝑟𝑚(𝐵𝐹+𝐺𝑀)+𝐸𝑀𝐺𝑛𝑜𝑟𝑚𝑅𝐹
× 100.    (2) 

b) Antagonist co-activation at the muscle group level: 

Antagonist co-activationventral/dorsal pair=
𝐸𝑀𝐺𝑛𝑜𝑟𝑚(𝑇𝐴+𝑅𝐹)

𝐸𝑀𝐺𝑛𝑜𝑟𝑚(𝐺𝑀+𝐵𝐹)+𝐸𝑀𝐺𝑛𝑜𝑟𝑚(𝑇𝐴+𝑅𝐹)
× 100.    (3) 

This approach provides an estimate of the relative activation of the pair of muscles, as well as the 

magnitude of the co-activation. 

The reciprocal activation at joint and muscle group levels was calculated using the following 

equations (Slijper & Latash, 2004): 

a) Reciprocal activation at the joint level: 

𝑅𝑒𝑐𝑖𝑝𝑟𝑜𝑐𝑎𝑙 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝑇𝐴/𝐺𝑀 𝑝𝑎𝑖𝑟 = 𝐸𝑀𝐺𝑛𝑜𝑟𝑚𝐺𝑀 − 𝐸𝑀𝐺𝑛𝑜𝑟𝑚𝑇𝐴 
,     (4) 

𝑅𝑒𝑐𝑖𝑝𝑟𝑜𝑐𝑎𝑙 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝑅𝐹/(𝐵𝐹+𝐺𝑀) 𝑝𝑎𝑖𝑟 = 𝐸𝑀𝐺𝑛𝑜𝑟𝑚(𝐵𝐹+𝐺𝑀) − 𝐸𝑀𝐺𝑛𝑜𝑟𝑚𝑅𝐹  
.    (5) 

b) Reciprocal activation at the muscle group level: 

𝑅𝑒𝑐𝑖𝑝𝑟𝑜𝑐𝑎𝑙 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝑣𝑒𝑛𝑡𝑟𝑎𝑙/𝑑𝑜𝑟𝑠𝑎𝑙 𝑝𝑎𝑖𝑟 = 𝐸𝑀𝐺𝑛𝑜𝑟𝑚(𝐺𝑀+𝐵𝐹) − 𝐸𝑀𝐺𝑛𝑜𝑟𝑚(𝑇𝐴+𝑅𝐹) 
.   (6) 

ii) Stabilometry 

A fourth-order, zero phase-lag, low-pass Butterworth filter with a cut-off frequency of 10 Hz 

(Ruhe, et al., 2010) was applied to all the CoP displacement time series. The peak-to-peak 

amplitude (P-P), mean velocity (MV), which was defined as the total CoP displacement divided by 

the total period, and dispersion time series estimated by RMS were calculated. A 95% confidence 

ellipse for each trial was estimated to enclose approximately 95% of the CoP motion points in the 

2D domain. These parameters were selected as they were demonstrated to be sensitive to postural 

performance and efficiency (Rocchi et al., 2004). 

The RM and TR displacement components were obtained according to the method proposed in 

(Zatsiorsky & Duarte, 1999). In brief, the RM component expresses the movement of a moving 

reference point (an attractor point), with respect to which the balance of the body is maintained 
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instantly. To obtain this component, the particular moments when the horizontal forces (shear forces 

measured by the force plate) changed its signs were selected, and the instants when the horizontal 

forces were equal to zero were estimated by linear interpolation. The CoP positions at these instants 

(instant equilibrium points, IEP) were determined. To obtain an estimate of the RM trajectory, the 

IEP discrete positions were interpolated by cubic spline functions with gravity line. The difference 

between the RM and CoP trajectories was defined as the TR component. The TR component 

reflects the oscillation of the body around the reference point. From the RM and TR time series, the 

RMS, area, MV and P-P variation were calculated. The data analysis was performed using the 

Matlab software (MathWorks, USA). 

2.4 Statistics 

The statistical analysis was processed using Statistic Package Social Science (SPSS) from 

IBM Company (USA). The sample was characterised by descriptive statistics. To evaluate if wearing 

unstable shoes lead to higher performance and effectiveness of standing postural control, the main 

effect and interactions between the effects of the condition (unstable shoe vs barefoot), the 

intervention period and the group (experimental vs control), in total agonist and antagonist muscle 

activity, antagonist co-activation and reciprocal activation values and stabilometric data, were 

analysed according to the repeated-measures ANOVA. Also, the magnitude of the intervention 

effects was assessed through the Cohen's d for the electromyographic and stabilometric data (Cook, 

2008). To verify if postural control variables while wearing unstable shoes are similar to that obtained 

under barefoot conditions, the main effect of the condition (unstable shoe vs barefoot) was analysed 

according the repeated-measures ANOVA 

3. RESULTS 

To investigate the effect of wearing the unstable shoes on the postural control, the values of 

stabilometry and of agonist and antagonist relation in the experimental group were compared 

against the reference values obtained in: 1) the control group; 2) the barefoot condition of the 
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experimental group; and 3) the first evaluation of the experimental group in the unstable shoe 

condition.  

No differences between the experimental and control groups were found at the first time point, 

before the intervention of the experimental group, in the CoP related variables in barefoot (p>0.194) 

and in unstable shoe conditions (p>0.117). Also, no differences were observed in the postural 

commands in barefoot (p>0.172) and unstable shoe conditions (p>0.118). 

3.1 Does wearing unstable shoes lead to a higher performance and effectiveness of upright 

standing postural control? 

CoP displacement variables 

A significant interaction between the effects of the condition (unstable shoe vs barefoot), the 

training period and the group (experimental vs control) was observed in the CoP area 

(F(1,27)=8.296, p=0.01) and in the medial-lateral CoP RMS (F(1,27)=4.376, p=0.046), Figure 2. The 

experimental group presented higher decrease of the CoP area and decrease medial-lateral CoP 

RMS after wearing the unstable shoes for 8 weeks in the unstable shoe condition (Tables 2-3 and 

Figure 3). The control group presented an increase of the medial-lateral CoP RMS in the second 

evaluation. No significant main effects and 2-way interactions were observed for the CoP variables. 

A large strength in the intervention effect was obtained for the reduction of the medial-lateral CoP 

RMS (Cohen’s d=0.98) in the unstable shoe condition after 8 weeks of wearing the unstable shoes. 

RM related variables 

A significant interaction between the effects of condition (unstable shoe vs barefoot), the 

training period and the group (experimental vs control) was observed for the anteroposterior RM P-

P (F(1,27)=8.414, p=0.007) and MV (F(1,27)=4.641, p=0.040), Figure 2. The experimental group 

presented decreased anteroposterior RM P-P and increased anteroposterior RM MV while wearing 

the unstable shoes after the training period, when compared to the first evaluation, the barefoot 

condition and the control group (Table 2 and Figure 3). A large strength in the intervention effect 
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was obtained in reducing the anteroposterior RM P-P (Cohen’s d=0.9) in the experimental group in 

the unstable shoe condition. A significant main effect of the group (F(1,27)=17.547, p<0.001) and 

the training period (F(1,27)=21.799, p<0.001) was also observed in the medial-lateral RM P-P. After 

training, the experimental group presented increased medial-lateral RM P-P when compared to the 

first evaluation, while the control group presented decreased of medial-lateral RM P-P in the second 

evaluation compared to the first (Table 3 and Figure 3). No statistically significant 2-way interactions 

were observed for the RM variables. 

TR related variables 

A significant interaction between the effects of condition (unstable shoe vs barefoot), the 

training period and the group (experimental vs control) was observed for the anterior-posterior TR 

RMS component (F(1,27)=8.069, p=0.001). A significant main effect was observed for the training 

period (F(1,27)=4.309, p=0.048) (Figure 2). The experimental group presented decreased 

anteroposterior TR RMS after training when compared to the first evaluation, while the control group 

presented increase values for this variable (Table 2). Also, the experimental group presented an 

increase of anterior-posterior TR RMS from the first to the second evaluation in the barefoot 

condition (Figure 2). 

Postural commands 

A significant interaction between the effects of condition (unstable shoe vs barefoot), the 

training period and the group (experimental vs control) was observed for the thigh antagonist co-

activation (F(1,27)=6.414, p=0.012) (Figure 2). No significant main effects and 2-way interactions 

were observed. A large strength in the intervention effect was obtained through increased thigh 

antagonist co-activation (Cohen’s d=0.8) in the experimental group. The experimental group 

presented increased thigh antagonist co-activation while wearing the unstable shoes after the 

training period, when compared to the first evaluation, the barefoot condition and the control group 

(Table 4 and Figure 3). 
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3.2 Are postural control variables while wearing unstable shoes similar to that obtained under 

barefoot conditions? 

CoP displacement related variables 

There was a significant main effect of the unstable shoe condition vs barefoot condition on the 

anteroposterior CoP MV (F(1,27)=6.684, p=0.015), anteroposterior (F(1,27)=37.694, p<0.001) and 

medial-lateral (F(1,27)=83.820, p<0.001) CoP RMS and area (F(1,27)=40.175, p<0.001). Generally, 

higher values were obtained while wearing the unstable shoes when compared to the ones obtained 

in the barefoot condition in first and second evaluations (Tables 2-3 and Figure 3).  

RM related variables 

A significant main effect of the unstable shoe condition vs barefoot condition was observed in 

the RM P-P and RMS in anteroposterior (F(1,27)=5.073, p=0.033), (F(1,27)=21.667, p<0.001, 

respectively) and medial-lateral (F(1,27)=137.664, p<0.001), (F(1,27)=11.084, p=0.003, 

respectively) directions, and in the RM area (F(1,27)=102.5334, p<0.001). Generally, lower values 

of anteroposterior RM P-P and RMS were obtained in the unstable shoe condition when compared 

to the barefoot condition, while higher values of medial-lateral RM P-P, RM RMS and RM area were 

obtained in the unstable shoe condition when compared to the barefoot condition, in both 

evaluations (Tables 2-3 and Figure 3).  

TR related variables 

A significant main effect on the TR component was observed for the condition (barefoot vs 

unstable shoe), for the anteroposterior TR RMS (F(1,27)=18.704, p<0.001), medial-lateral TR RMS 

(F(1,27)=6.804, p=0.015) and TR area (F(1,27)=37.721, p<0.001). Both groups presented 

increased TR RMS and area in the unstable shoe condition compared to the barefoot condition in 

both evaluations (Tables 2-3 and Figure 3). 

Postural commands 
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A significant main effect of condition (barefoot vs unstable shoe) was observed in the thigh co-

activation (F(1,28)=21.038, p<0.001) and reciprocal activation (F(1,28)=18.23, p<0.001), in leg co-

activation (F(1,28)=8.131, p=0.008) and reciprocal activation (F(1,28)=22.292, p<0.001), and in 

global antagonist co-activation (F(1,28)=12.940, p=0.001) and total agonist activity (F(1,28)=25.711, 

p<0.001). Decreased antagonist co-activation and increased reciprocal activation and total agonist 

activity were observed in the unstable shoe condition when compared to the barefoot condition in 

both evaluations (Table 4 and Figure 3).  

4. DISCUSSION 

The aim of the present study was to evaluate the effect of prolonged wearing of unstable shoes 

on postural control components. The results obtained confirm our hypothesis that prolonged wearing 

of unstable shoes increases postural control performance, demonstrated by a decrease of the most 

representative CoP displacement parameters (Collins & De Luca, 1993; Maurer & Peterka, 2005; 

Pavol, 2005; Rocchi, et al., 2004), and decreased postural control system error, demonstrated by 

the adaptation of the RM and TR components (Zatsiorsky & Duarte, 2000), more marked in the 

unstable shoe condition. However, our results failed in demonstrating a decreased co-activation 

command and increased reciprocal activation command as a training effect. Also, upright standing 

while wearing the unstable shoes is more demanding from a postural control perspective than 

standing barefoot, even after prolonged wearing of the shoes. This higher demand was reflected by 

increased CoP related variables while wearing unstable shoe compared to barefoot, but also by a 

selection of more challenging postural commands by the postural control system. 

Wearing of the unstable shoes led to a higher performance and effectiveness of upright 

standing postural control in the unstable shoe condition 

Unstable shoes have been reported as promoters of increased instability (Nigg, et al., 2006). 

However, training effects over postural control system resulting from prolonged wearing of unstable 

shoes have not been found (Ramstrand, et al., 2010; Turbanski, et al., 2011). Our results 

demonstrate a reduction of the CoP area and of the medial-lateral CoP RMS in unstable shoe 
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condition after prolonged wearing of the shoes, revealing increased efficiency and effectiveness of 

the postural control system (Bennell & Goldie, 1994; Murray et al., 1975; Prieto, et al., 1996; van 

Wegen et al., 2002).  

Training effects from wearing the unstable shoes were also evident in the RM parameter. The 

reduction of the P-P of RM trajectory in the anteroposterior direction reflects a higher efficiency of 

the postural control system (Bennell & Goldie, 1994; Kinzey, et al., 1997; Norris, et al., 2005; Prieto, 

et al., 1996) related to supraspinal processes that define an instantaneous point about which the 

body is stabilised (Zatsiorsky & Duarte, 1999, 2000). The increased MV of the RM component could 

be related to a reweighted combination of reciprocal activation and co-activation commands (Drew 

& Rossignol, 1987; Feldman, 1980a, 1980b; Feldman & Levin, 1995; Lacquaniti, 1992; Lacquaniti 

et al., 1991; Levin et al., 1992). Indeed, the results of this study reveal that prolonged wearing of the 

unstable shoes led to a large effect in the increase of thigh antagonist co-activation. A transfer of 

postural control synergy for the thigh has been demonstrated in compensatory responses after a 8 

weeks period of wearing unstable shoes (Sousa et al., 2014) and has been reported as more 

beneficial to optimise postural stability (Day et al., 1993; Horak et al., 1990; Kuo, 1993; Runge et 

al., 1999; Yang et al., 1990). This association is corroborated not only by the decrease of the most 

representative CoP displacement parameters and RM P-P, but also by decreased anterior-posterior 

TR RMS. Changes in the TR RMS indicate an increased effectiveness provided by an adaptation of 

spinal reflexes and changes in the intrinsic mechanical properties of muscles and joints (Zatsiorsky 

& Duarte, 1999). 

Standing with unstable shoes is more demanding in terms of postural control than standing 

barefoot 

The design of the unstable footwear used in this study (MBT) is based on observations of the 

Masai tribe, who are not accustomed to wearing shoes. This design recreates natural uneven 

surfaces to reduce problems caused by today’s rigid soled shoes and hard ground. In spite of the 

adaptations aforementioned after prolonged wearing of the unstable shoes, the total agonist activity 
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and CoP displacement related variables are still higher than in barefoot condition (Figure 2), 

suggesting that the destabilising effect of the unstable shoes remains even after the extended use 

of the shoes. Based on the evidence that unstable support surfaces lead to increased proprioceptive 

acuity provided by agonist muscles (Gandevia et al., 1992) as a result of a higher fusimotor drive 

(Gorassini, et al., 1993; Gurfinkel et al., 1992; Ribot-Ciscar et al., 2009), it can be argued that the 

permanence of a higher destabilizing effect promoted by the unstable shoes adopted are 

responsible for higher performance of the postural control system. Also, the results of the present 

study indicate that, in both pre- and post-training, wearing unstable shoes leads the postural control 

system to rely more on reciprocal activation than on co-activation to compensate for the decreased 

stability compared to barefoot. This has been demonstrated to be more efficient and accurate, but 

also more challenging for the postural control system (Aruin & Almeida, 1997; Friedli et al., 1984; 

Garland et al., 1997; Hogan, 1984; Hong et al., 1994; Latash et al., 1995; Massion et al., 1999), and 

it has been observed also in compensatory postural adjustments in response to an external 

perturbation (Sousa, et al., 2013a; Sousa, et al., 2014). These findings demonstrate that wearing 

unstable shoes is more demanding in terms of postural control than barefoot, but lead to a higher 

efficiency and accuracy in postural commands. This postural control advantage is also observed 

even after prolonged use of unstable shoes.  

Wearing unstable shoes can be a beneficial ergonomic intervention for prolonged standing 

workers 

It should be noted that the results presented were obtained from participants that work in 

prolonged standing positions. It has been demonstrated that subjects spending at least 50% of the 

working time in a standing position are in risk for developing neuromusculoskeletal impairments and 

venous insufficiency (Krijnen et al., 1998; Macfarlane et al., 1997; Tomei et al., 1999). The static 

contraction of lower back and legs results in diminished function of the calf muscle, muscle fatigue, 

discomfort and even low back pain (Krijnen, et al., 1998). Discomfort or subjective fatigue can be 

linked to psychological fatigue and has been recognised as a factor in the decline of alertness, 

mental concentration, and motivation (Simonson & Weiser, 1976). Commonly chosen ergonomic 
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intervention methods to reduce pain and discomfort associated with prolonged standing are the 

alteration of the flooring on which workers stand, and the use of in-soles in the footwear (King, 2002), 

as one of the strategies is to make the body sway naturally and imperceptibly. The results of the 

present study encourage the use of unstable shoes as a beneficial ergonomic intervention, since 

they demonstrate that the instability provided by wearing the shoes leads to a reorganisation of 

postural control that result in increased performance and effectiveness during upright standing. This 

reorganisation of upright standing postural control is accompanied by increased calf muscle activity, 

improving venous return (Sousa, et al., 2012). However, studies on the influence of wearing unstable 

shoes on subjective rating of fatigue and discomfort while standing are demanded to support our 

hypothesis. 

 

5. CONCLUSION 

Our results demonstrate that wearing unstable shoes is more demanding in terms of postural 

control than barefoot and consequently, could be used to reduce problems caused by today’s rigid 

soled shoes and hard ground. The prolonged exposure to this postural challenge led to higher 

effectiveness and performance of the postural control system, while wearing unstable shoes in 

upright standing, that are reflected by changes in CoP related variables and by a reorganization of 

postural control commands.  

This study is the first demonstrating comprehensively that wearing unstable shoes during 

prolonged standing work leads to positive effects over standing postural control. Therefore, the 

results are innovative and provide valuable information for the design of shoes that can diminish the 

negative effects of prolonged standing in the musculoskeletal system and contribute for better 

occupational health.  
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TABLE CAPTIONS 

Table 1: Anatomical references to electrode placement. (Electrode locations were confirmed by 

palpation of the muscular belly with the subject in the test position, being the electrodes placed on 

the most prominent area.) 

Table 2: Mean ± standard deviation values of stabilometry parameters obtained in the barefoot 

and in the unstable shoe conditions for the AP direction before (1) and after (2) 8 weeks of 

wearing unstable shoes (WUS) in the experimental group, and before (1) and after (2) the same 

period by the control group. 

Table 3: Mean ± standard deviation values of stabilometry parameters obtained in the barefoot 

and in the unstable shoe conditions for the ML direction and area before (1) and after (2) 8 weeks 

of wearing unstable shoes (WUS) in the experimental group, and before (1) and after (2) the same 

period by the control group. 

Table 4: Mean ± standard deviation values of total agonist and antagonist activity, antagonist co-

activation (C) and reciprocal activation (R) at thigh, leg and muscle group levels obtained in the 

barefoot and in the unstable shoe conditions before (1) and after (2) 8 weeks of wearing unstable 

shoes (WUS) in the experimental group, and before (1) and after (2) the same period by the 

control group.  
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FIGURE CAPTIONS 

Figure 1: Unstable shoe model used in this study: The MBT shoe has a rounded sole in the 

antero-posterior direction, thus providing an unstable base. 

Figure 2: Main effects of prolonged wearing unstable shoes on postural control variables. (Black 

symbols represent values obtained in unstable shoe condition while grey symbols represent 

values obtained in barefoot condition. Only the results related to interactions and main effects 

statistically significant are represented.) 

Figure 3: Effects of prolonged wearing of unstable shoes on upright standing CoP displacement 

related variables while wearing unstable shoes (A); differences obtained between measures 

performed in unstable shoe and barefoot conditions in both groups before and after the 8 weeks 

period (B). 

 


