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Abstract 

Cell immortalization has been considered for a long time as a classic hallmark of cancer cells. 

Besides telomerase reactivation, such immortalization could be due to telomere maintenance 

through the “alternative mechanism of telomere lengthening” (ALT) but the mechanisms 

underlying both forms of reactivation remained elusive. Mutations in the coding region of 

telomerase gene are very rare in the cancer setting, despite being associated with some 

degenerative diseases. Recently, mutations in telomerase (TERT) gene promoter were found in 

sporadic and familial melanoma and subsequently in several cancer models, notably in 

gliomas, thyroid cancer and bladder cancer. The importance of these findings has been 

reinforced by the association of TERT mutations in some cancer types with tumour 

aggressiveness and patient survival. In the first part of this review, we summarize the data on 

the biology of telomeres and telomerase, available methodological approaches and non-

neoplastic diseases associated with telomere dysfunction. In the second part, we review the 

information on telomerase expression and genetic alterations in the most relevant types of 

cancer (skin, thyroid, bladder and central nervous system) on record, and discuss the value of 

telomerase as a new biomarker with impact on the prognosis and survival of the patients and 

as a putative therapeutic target. 
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Telomeres and telomerase in germinative and somatic tissues 

Normal somatic cells are not immortal and dispose of a predetermined limited number of 

divisions, a phenomenon known as the Hayflick limit. In 1961, Leonard Hayflick demonstrated 

that in cell cultures, a population of normal human fetal cells could divide around 40 to 60 

times before entering into senescence [44]. At the time, the limited replication potential of 

somatic cells was not fully understood. Years later, the pioneering research of Nobel Prize 

winners Elizabeth Blackburn, Jack Szostak and Carolyn Greider identified a refined mechanism 

by which telomeres are shortened at each round of cell division creating a replication limit [9, 

36, 116]. Currently, it is well established that telomeres are nucleoprotein complexes at the 

ends of eukaryotic chromosomes consisting of several repeats of the DNA sequence TTAGGG. 

The main function of telomeres is to preserve chromosome integrity and genome stability by 

preventing the chromosome end from degradation [41, 85]. At each cell division, the telomeric 

DNA is diminished and telomeres become progressively shorter. Eventually, this loss leads to a 
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stop in cell division that forces cell senescence or cell death. This telomere-based mechanism 

has been proposed to serve as the “clock” that controls the number of times each cell can 

divide [41, 85]. In order to achieve immortalization, cells need to overcome the 

aforementioned barrier. There are two major pathways cells use for maintain telomere 

lengthening; they either reactivate telomerase, a ribonucleoprotein polymerase, which 

elongates telomeres by adding hexameric 5′-TTAGGG-3′ tandem repeats to the chromosomal 

ends at the ends, or take advantage of a non-telomerase-dependent (alternative) mechanism, 

known as ALT [21, 59]. Reactivation of telomerase is present in up to 90 % of human cancers, 

and it allows proliferative cancer cells to maintain telomere length [65]. The remaining 10 to 

15 % of human cancers do not have detectable telomerase activity, and a subset of such cases 

maintain telomere length relying on the ALT mechanism [21]. Heaphy and colleagues 

performed a comprehensive survey on ALT phenotype in 6,110 primary tumours from 94 

different cancer subtypes and observed the presence of ALT in 3.7 % of all tumour specimens 

but its absence in all benign neoplasms and normal tissues [46]. In this study, the ALT 

phenotype was identified for the first time in medulloblastoma, oligodendroglioma, 

schwannoma and glioblastoma [46]. Later on, Heaphy and colleagues demonstrated that ATRX 

or DAXX mutations are closely associated with the development of ALT in pancreatic endocrine 

tumours whereas ATRX mutations lead to ALT phenotype in cancers of the central nervous 

system [45]. 

Benign neoplasms and normal somatic cells apparently lack telomerase activity but a high level 

of telomerase activity can be detected in germ cells and in stem cells of selfrenewing tissues 

[41]. Some putative stem cells, such as the main cells of thyroid solid cell nests, also express 

telomerase, as we have previously reported [95, 101]. Most cells that need that to escape 

telomere shortening rely on the reactivation of telomerase. The telomerase complex 

comprises several components, the most important being the telomerase RNA component 

(TERC), the telomerase reverse transcriptase catalytic subunit (TERT) and dyskerin (DKC1 gene) 

[22, 83, 87]. It was shown in telomerase-negative cells, such as differentiated epithelial cells or 

human fibroblasts [33], that TERT is the only component necessary to restore the activity of 

the telomerase complex. The TERT gene is located on chromosome 5 and includes 16 exons 

that span a 35-kb region. The core promoter of telomerase includes 330 base pairs upstream 

of the start site, is located in a GC-rich region and contains transcript sites/consensus for 

transcription elements, indicating a high level of regulation by multiple factors [23] at 

transcriptional and/or post-transcriptional level [22]. 

 

Methods to evaluate telomeres length and telomerase activity 

As mentioned above, telomere length is maintained and higher levels of telomerase activity 

can be detected in cancer cells than in normal somatic cells. The interest in the detection of 

telomerase activity and/or in telomere length measurement has been increasing since it can 

represent a powerful tool for the diagnosis of telomerase-related diseases as well as for the 

understanding of cancer etiopathogenesis and, hopefully, for improving cancer treatment. In 

order to evaluate the two aforementioned features, several methods and approaches to 

measure telomere length, telomerase messenger RNA (mRNA) expression and telomerase 

enzymatic activity have been developed [113]. Herein, we merely provide a summary of the 

methods available; for a more detailed review, the reader is referred to references [46] and 

[115]. The traditional telomere restriction fragment (TRF) analysis measures the average 

length of all telomeres present in a cell population and is the most used technique for 



evaluating telomere length [4]. Based on Southern blotting, TRF involves the use of restriction 

enzymes to digest genomic DNA and a hybridization step with a telomeric probe [60]. 

Additional techniques available include: STELA (single telomere elongation length analysis), a 

very accurate method that can only be used on a sample with a limited number of cells; 

quantitative PCR, less time consuming but less accurate [7]; Q-FISH (quantitative fluorescent in 

situ hybridization) which allows specific measurement of chromosome ends with high 

resolution [20]; and, finally, Flow FISH, a very accurate method that evaluates cells in 

suspension [5]. The detection of telomerase is mainly based on assays that evaluate 

telomerase enzymatic activity [64, 129]. Refinement of these techniques led to a sensitive 

technique, the telomeric repeat amplification protocol (TRAP). TRAP assay includes the 

preparation of a protein extract by cell lysis and the addition of a labelled oligonucleotide 

substrate along with dNTPs, followed by PCR. In the first step of the reaction, if telomerase is 

active in the extract, it adds a number of telomeric repeats onto the 3′ end of a labelled 

substrate oligonucleotide; in the second step, the extended products are amplified by PCR 

using primers, which generates a ladder of products with 6-base increments starting at 50 

nucleotides: 50, 56, 62, 68, etc. [59]. TRAP is the most used technique to evaluate telomerase 

activity due to its high sensitivity but it also has some limitations: it is very time consuming and 

can generate false-negative results if the PCR step fails [64]. Recent improvements in the TRAP 

technique avoid the use of radioactive nucleotides [115]; other efforts have been made to 

refine the protocol in an attempt to still improve its sensitivity and to increase its reliability 

[113, 129]. 

 

Telomerase in degenerative diseases 

Three human diseases—dyskeratosis congenita (DC), aplastic anaemia (AA) and idiopathic 

pulmonary fibrosis (IPF)—are associated to mutations in genes that code for the telomerase 

components, either TERC or TERT, as well for the following telomerase-associated proteins: 

DKC1, telomerase Cajal body protein 1, TCAB1 (WRP53 gene), NOLA2 protein (NHP2 gene) and 

NOP10 protein (NOLA3 gene) [79]. Additionally, one of the six proteins that compose the 

shelterin complex— TERF1-interacting nuclear factor 2 (TIN2 gene)—has also been associated 

with autosomal-dominant DC, Hoyeraal Hreidarsson syndrome, Revesz syndrome and AA. 

Furthermore, some alterations affect proteins which do not have a direct impact on 

telomerase but concern the telomere such the telomere maintenance complex component 1 

protein (CTC1 gene) that is associated to Coats plus syndrome, which is a form of 

cerebroretinal microangiopathy with calcifications and cysts. Finally, mutations of the 

regulator of telomere elongation helicase 1 (RTEL1 gene) have been identified in patients with 

severe autosomal recessive DC [35] (Table 1). DC is a rare inherited disorder characterized by a 

typical triad of clinical manifestations: skin hyperpigmentation, oral leukoplakia and nail 

dystrophy [26]. The majority of cases (>80 %) occur in children and are diagnosed usually 

about the age of ten when the children start presenting bone marrow failure together with the 

previously described clinical triad. Other symptoms that include indicators of premature 

ageing, such as pulmonary diseases, dental abnormalities and alopecia, are present in 15–25 % 

of the cases [79]. Within the DC spectrum, there is the Hoyeraal Hreidarsson syndrome, a 

multisystemic disorder characterized by mental retardation, microcephaly, intrauterine growth 

retardation, cerebellar hypoplasia, immunodeficiency and AA [51]. The Revesz syndrome that 

is characterized by bilateral exudative retinopathy, bone-marrow hypoplasia, nail dystrophy, 

fine hair, cerebellar hypoplasia and growth retardation is also present in the DC disease 



spectrum [108]. DC is a genetically heterogeneous disease; to date, there are nine genes 

associated with DC and all of them contribute to telomere maintenance/protection or 

telomerase function, thus explaining the excessively short telomeres of DC patients. The group 

of DC genes encompasses the core telomerase component TERT and TERC and the telomerase 

complex proteins coded by DKC1, WRAP53, NOP10 and NHP2 genes. Other genes include the 

shelterin complex TIN2 gene, CTC1 and RTEL1 genes [35] (Table 1). AA is a rare and severe 

bone marrow disorder characterized by hypocelullar bone marrow and low blood cell counts 

[109]. Similarly to DC, the cases of AA arise from scarcity of haematopoietic progenitor and 

stem cells [17]. Since patients have shorter telomeres than matched controls, telomerase 

components constitute an attractive target for genetic screening. Mutations have been 

detected in the coding sequence of telomerase core components TERT and TERC (Table 1). 

Occasionally, AA can develop slowly and appear as an atypical form of DC due to bone marrow 

failure over time [31]. IPF is a rapidly progressive disorder with an autosomal dominant pattern 

of inheritance and different degrees of penetrance. The symptoms that characterize the 

disease are chronic cough and shortness of breath due to fibrotic lesions and scarring of the 

lungs [40]. IPF can co-exist in patients with AA and DC [35]. Like in the aforementioned 

disorders, IPF patients also have shorter telomeres than age-matched controls [17]. TERT and 

TERC telomerase component mutations have been found in familial forms of IPF [107]. The 

human diseases associated with telomerase or telomere dysfunction encompass mainly the 

above-referred three disorders (and some related syndromes) but there are other rare 

diseases reported in the literature [35]. Most of them are haematological disorders, such as 

myelodysplatic syndrome and paroxysmal nocturnal haemoglobinuria [35]. In cases of 

myelodysplastic syndrome, mutations are considered an extremely rare event and were 

described in TERC coding region and its promoter [17]. The same mutation, which ablates a 

transcription factor binding site in the TERC promoter, has also been detected in a case of 

paroxysmal nocturnal haemoglobinuria [17]. Additional information regarding mutations in 

degenerative disorders is summarized in Table 1, and further information can be retrieved on 

the telomerase disease database (http://telomerase.asu.edu/). 

 



 

 

Telomerase promoter mutations and cancer 

It has been known for 20 years that high levels of telomerase activity can be detected in cancer 

cells [59]; this contrasts with the fact that mutations affecting the telomerase coding region 

appear to be very uncommon in cancer [4]. A rare example of neoplasia presenting mutations 

in the coding region of telomerase is acute myeloid leukaemia in which few TERT mutations have 

been identified [17]. However, it should be taken into account that this form of leukaemia can 

arise from AA and myelodysplatic syndromes in which TERT mutations have been detected [17]. 

Published simultaneously in the beginning of 2013, two different studies reported mutations in 

the promoter of the telomerase gene in melanoma [50, 53]. We and others reported the 

presence of recurrent somatic mutations in the telomerase promoter in cancers of the central 

nervous system (43–51 %), bladder (59–66 %), hepatocellular carcinoma (59 %), thyroid 

(follicular cell-derived tumours) (10 %), skin (melanoma, 29– 73 %) and tumours originated from 

tissues with relatively low rates of self-renewal [58, 75, 88, 121]. Additionally, other studies 

reported the association of telomerase promoter mutations to other types of tumours, including 

atypical fibroxantoma (93 %), pleomorphic dermal sarcoma (76 %) [39], bladder cancer (65 %) 



[1, 54], basal cell carcinoma (78 %), squamous cell carcinoma of the skin (50 %) [110] and clear 

cell carcinoma of the ovary [124]. In Tables 2 and 3, we summarize the frequency of TERT 

promoter mutations in human cancers with a high percentage of mutations and in human 

cancers with absent or low frequency of TERT promoter mutations, respectively. The in vitro 

biological assessment of the functional consequence of these mutations, studied by promoter 

luciferase assay, revealed that their presence results in a two to fourfold increase in telomerase 

expression [50, 53]. Since previously published studies reported high levels of TERT expression 

in the set of tumours with TERT promoter mutations [70, 78, 111], it is likely that such alterations 

may represent one of the missing links between telomerase gene regulation/ reactivation. 

 

Telomerase promoter mutations in skin cancers 

Telomerase activity has been reported in normal skin by some authors [43, 118, 119] while other 

authors suggest that in normal skin, it is a rare event [52, 91]. Its activation in the epidermis may 

be related with the need for cell proliferation and damage repair [11]. The shortening of 

telomeres, on the other hand, is believed to provide a barrier for epidermal cell proliferation 

(i.e. cancer) [11]. Telomerase activity has been reported in cutaneous melanomas, using the 

TRAP assay, with increasing values from normal skin to benign nevi and to dysplastic nevi and 

finally to melanoma [29]. An association between increased telomerase activity and worse 

prognostic features, namely, ulceration, vascular invasion, mitotic rate and Breslow thickness 

has been described in melanoma [18, 32, 81, 91, 100]. Furthermore, higher telomerase activity 

has also been associated with higher proliferation rate and early metastasis [100, 104]. The 

suppression of telomerase activity in melanoma cell lines induced cellular differentiation and 

reduced the metastatic ability [6, 30]. Longer telomere length has been linked with a higher 

number of nevi per patient and an increased risk for cutaneous melanoma development [2, 8, 

42, 86]. It was proposed that shorter telomere length in nevi limits proliferation and promotes 

senescence, protecting against malignant transformation [41, 86]. At variance with the 

aforementioned reports, Burke and colleagues suggested that telomere length can also be 

influenced by CDKN2A mutational status (a high-risk melanoma susceptibility gene), sun 

exposure and pigmentation phenotype and therefore cannot be considered a biomarker to 

predict melanoma risk per se [12]. Two seminal papers reported high frequency of TERT 

promoter mutations in familial and sporadic melanoma [50, 53]. In the study from Horn and 

colleagues, a melanomaprone family was investigated through linkage and NGS and a germ-line 

disease-segregating mutation was identified in the telomerase promoter [50]. Further 

confirmation was obtained from the same group in a series of cell lines derived from metastatic 

melanomas, respective metastases and matched primary melanomas that revealed a higher 

frequency of the mutations in the metastases (74, 85 and 33 %, respectively) [50]. Huang and 

colleagues took a different approach, data mining of whole genome sequencing data, publicly 

available. They detected the presence of promoter mutations in 89 % of melanoma cases [53]. 

The mutations clustered mostly, but not exclusively, in two hotspots that are located at −146 

and −124 bps distance upstream of the start site ATG [53]. The detected mutations were cytidine 

to thymidine transitions at a dipyrimidine motif indicating a putative ultraviolet lightinduced 

damage signature. These mutations generate a new binding consensus for ETS/TCFs 

transcription factors (CCGG AA) [50, 53]. Moreover, it was demonstrated in vitro by luciferase 

assay that the presence of these mutations lead to a two to fourfold increase of the TERT 

promoter activity [54]. TERT promoter mutations were not detected in nevi [121] but in 13 % of 

mucosal melanomas [27]. In primary cutaneous melanomas, TERT promoter mutations were 



found to be associated with BRAF V600E mutations, worse prognostic features and shorter 

disease free and overall survival [94, 121]. In ocular melanomas, TERT promoter mutations were 

described in 0 to 32 % of conjunctival melanomas [25, 121]. Mutations were not detected in 

uveal melanomas [121]. At variance with the aforementioned data, Dono and colleagues 

observed a case of uveal melanoma harbouring a TERT promoter mutation that co-existed with 

GNA11 and EIF1AX mutations [25]. 

 

 

 



 

 



 

 

TERT promoter mutations are frequent in non-melanoma skin cancer, ranging from 39 to 74 % 

in sporadic basal cell carcinomas (BCC) [37, 94, 110] and present in up to 50 % of cases of 

squamous cell carcinoma (SCC) [3 7, 110].Telomerase activity has been detected in BCC using 

TRAP assay both in tumour and tumour-free margins, varying between 20 and 100 %, with less 

activity in the latter [29]. In the tumour-free margins, telomerase activity was found to be more 

prevalent in sun-exposed skin [105, 119]. In SCC, the data are scarce: Ueda and colleagues found 

telomerase activity in 100 % of the cases of a small series (n=8) [119]. Few studies have examined 

the association between telomere length and skin cancer [2]. Some studies found no significant 

association between telomere length in peripheral blood leukocytes (PBL) and risk of non-

melanoma skin cancer, either in BCC (two independent sets) [68] or in SCC [42, 68]. In contrast, 

other authors found that longer telomeres in PBL are protective for BCC [2, 86] and SCC [2]. 

Telomere length has also been evaluated by fluorescent in situ hybridization (FISH) showing that 

higher telomere length in BCC is significantly higher than in SCC [93]. 

 

Telomerase promoter mutations in thyroid carcinomas 

Thyroid tissue is a conditionally renewing tissue that proliferates rarely in adult life. In line with 

this, telomerase activity in normal thyroid samples is almost absent, being detected in less than 

7 % of cases [16, 114]. On the other hand, telomerase activity was consistently reported in a 

specific population of thyroid cells—the solid cell nests (SCNs) which are considered to represent 

embryonic remnants of the ultimobranchial body [95, 101]. Thyroid carcinomas apparently 

display less frequent telomerase activation than most human carcinomas. A wide range of 

frequencies have been reported [16]; in average, it seems that two thirds of thyroid carcinomas 

display telomerase activation that is more frequent in the undifferentiated (anaplastic) than in 

differentiated carcinomas [16]. When the results obtained by several authors are combined, 

telomerase activity occurs in 48 % of papillary thyroid carcinomas (PTC) and 71 % of follicular 

thyroid carcinomas (FTC). A TERT copy number gain was described in familial PTC [14], but this 

finding was not confirmed in another series [55]. A recent study by Capezzone and colleagues 

reported telomerase activity in most sporadic and familial malignant thyroid tumours as well as 

in some adenomas [15]. Telomerase activity was not observed in hyperplastic nodules or in 

normal thyroid tissue from patients with sporadic PTC [15]. In summary, the aforementioned 

findings suggest that telomerase activity may be associated with a more aggressive clinical 

behaviour of thyroid tumours. Recently, somatic mutations in the promoter region of TERT were 



reported in thyroid tumours [66, 74, 75, 121]. In a large series of 469 follicular cell-derived 

thyroid carcinomas (FCDTC), TERT promoter mutations were found in 7.5 % of PTC, 17.1 % of 

FTC, 29.0 % of poorly differentiated thyroid carcinomas (PDTC) and 33.0 % of anaplastic thyroid 

carcinomas (ATC) [80]. This stepwise increase in the frequency of TERT promoter mutations from 

well to poorly differentiated and undifferentiated carcinomas was also reported in other studies 

[66, 74] (Table 2). TERT promoter mutations were not detected in normal thyroid tissue, benign 

lesions or medullary thyroid carcinoma (MTC). Moreover, very few tumours with oncocytic 

features harbouring TERT promoter mutations have been reported, and no mutations were 

detected in a small series of papillary thyroid microcarcinoma nor in tumours from individuals 

exposed to the Chernobyl accident [58, 77, 121]. The majority (about 80 %) of mutated cases 

presented the −124G>A mutation. In PTC, TERT promoter mutations were significantly more 

frequent in BRAF-mutated tumours than in BRAF wild-type tumours [74, 75, 80, 121]. The TERT 

promoter mutations were associated with increased mRNA expression, and this increase was 

particularly pronounced in tumours harbouring both BRAF and TERT promoter mutations [121]. 

Two studies analysed the relationship between TERT promoter mutations, clinico-pathological 

features and outcome. TERT promoter mutations were significantly associated with older age at 

diagnosis [74, 80], larger tumour size and higher stage [80]. TERT promoter mutations were also 

found to be an independent predictor of distant metastases and disease persistence at the end 

of follow-up in differentiated thyroid carcinomas (DTC) [80]. Patients with TERT promoter-

mutated tumours were submitted to more radioiodine treatments with higher doses as well as 

to other treatment modalities including surgery, external beam irradiation and/or treatment 

with tyrosine-kinase inhibitors [80]. TERT promoter mutations were significantly associated with 

disease-specific mortality in the whole FCDTC group; this association held true if the subgroups 

of patients with DTC, PTC or FTC were independently considered [80]. In DTC, the prognostic 

value of TERT promoter mutations for disease-specific mortality was independent of age and 

gender [80]. Altogether, the aforementioned findings indicate that TERT promoter mutations 

are a major indicator of poor outcome in DTC. The two studies on record on MTC [59, 123] did 

not reveal TERT promoter mutations in this subtype of thyroid carcinoma. 

 

Telomerase promoter mutations in bladder carcinomas 

The putative role of telomerase in bladder carcinoma (BC) has been a matter of interest in the 

last two decades. Using TRAP assay, telomerase activity has been evaluated in BC; telomerase 

activity was detected in the majority of the studied tumours in contrast to the absence of activity 

in the respective normal counterpart samples [70, 90]. In some series, telomerase activity was 

associated with lower grade and lower stage BC [84, 90]. Other studies pointed out that both 

telomerase activity [70] and telomerase expression [126] are associated with higher stage and 

higher grade [70, 90]. Preliminary evidence obtained in cell lines suggest that BC might have 

TERT promoter mutations [53]. These early results motivated us and others to search for similar 

events in bladder tumour samples. Similar to cell lines, the same TERT promoter mutations were 

detected frequently in BC, with a prevalence ranging from 47 to 85 % (Table 2) [1, 54, 61, 77, 99, 

121, 125]. These results rank TERT promoter mutations as one of the most frequent genomic 

events, possibly the most frequent, in BC [1, 54, 61, 77, 99, 121, 125]. TERT mutations were 

significantly more frequent among FGFR3 mutant tumours [1]. Wu and colleagues reported a 

significant co-occurrence of TERT promoter mutations and TP53/RB1 inactivating somatic 

mutations [125] indicating that both mutations may cooperatively contribute to the progression 

of BC [125]. Conflicting results have been reported on the association between TERT promoter 



mutations and clinical stage and/or grade of bladder tumours. Wu and colleagues found that 

TERT promoter mutations are more prevalent in muscle invasive (MI) than in non-muscle 

invasive (NMI) tumours and also more prevalent in BC patients with advanced tumour stages 

(T2–4) than in those with low stage tumours (Ta or T1) [125]. At variance with this, another 

report found no association between mutation status and stage or grade of BC [54]. Similar 

results were reported by Allory and colleagues who did not find any differences between NMI 

and MI BC in two independent sets of tumours [1]. Similarly to stage and grade, diverging results 

were obtained on the association between TERT promoter mutation and prognosis. One group 

reported that the survival rate of patients with TERT mutations was significantly lower than that 

of patients without mutations [125], whereas another group found no association between 

clinical outcome and mutation status [1]. An interesting observation was reported by 

Rachakonda and colleagues who proposed that a common polymorphism, rs2853669 within a 

pre-existing Ets2 binding site in the TERT promoter, acts as a modifier of the effect of the 

mutations on survival and tumour recurrence [99]. The patients with the mutation presented 

poorer survival in the absence than in the presence of the polymorphism. The mutation in the 

absence of the variant allele was highly associated with disease recurrence in patients with Tis, 

Ta and T1 tumours [99]. These results may help to explain some of the divergence reported in 

studies relating TERT promoter mutations and prognosis of patients with BC. As it was previously 

noticed, several observations support a model in which TERT somatic mutations are an early 

event in urothelial carcinogenesis, including their occurrence in a small fraction of subjects with 

precursor lesions, their presence in tumours of both papillary and invasive features and their 

low level of intraindividual heterogeneity when analysing multiple tumour regions [1, 58]. TERT 

promoter mutations may potentially be used as urinary biomarker; several studies have already 

performed preliminary evaluations of the feasibility, sensibility and specificity of such procedure 

[1, 54]. Prospective studies based upon series are necessary to further assess the clinical utility 

of the detection of TERT promoter mutations in urine. 

 

Telomerase promoter mutations in central nervous system tumours 

Central nervous system (CNS) often have TERT promoter mutations competing favourably in this 

aspect with most other types of human cancer [58, 121]. Among CNS tumours, gliomas are those 

displaying by far the highest frequency of TERT mutations which can also be detected at lower 

frequencies in medulloblastoma and meningioma [63]. Within gliomas, the percentage of cases 

with TERT promoter mutations differs according to the histopathological type of tumour. TERT 

promoter mutations are detected in the majority of cases of glioblastoma multiforme (GBM) 

[World Health Organization (WHO) Grade IV] which is the most frequent and aggressive form of 

glioma and in oligodendrogliomas (WHO Grade II and III), in contrast to astrocytoma (WHO 

Grades I, II and III) and ependymoma (WHO Grades I, II and III), in which only a small percentage 

of the tumours harbour such mutations (Table 3) [63, 121]. Furthermore, the percentage of TERT 

promoter mutations in oligoastrocytomas, gliomas with a mixed origin, is intermediate between 

that of oligodendrogliomas and astrocytomas [58]. These findings fit with the reported data on 

telomerase activity in gliomas which is considerably higher in GBM (50– 89 %) and 

oligodendrogliomas (75–100 %), than in astrocytomas (0–45 %) [49, 67, 106]. The low frequency 

of TERT promoter mutations and telomerase activity in grades II and III astrocytomas can be 

explained by the high prevalence of ATRX mutations, one of the most frequent mutations in this 

type of glioma [56]. It is known that ATRX mutations trigger ALT in astrocytoma cells and it has 

been shown that this alternative mechanism is frequently activated in astrocytomas, allowing 



telomere maintenance without the need for telomerase reactivation [48]. In line with this, the 

frequency of TERT promoter mutations in secondary GBMs (that arise from the progression of 

lower grade astrocytomas) is considerably lower than in primary GBMs (that appear de novo) 

[89]. TERT promoter mutations are rare in paediatric tumours of the CNS [63]. In 

medulloblastomas that typically develop in children, TERT promoter mutations are mainly 

detected in tumours of the group of older patients and are associated with sonic hedgehog and 

WNT mutations [102]. Upregulation of TERT expression in paediatric brain tumours was 

associated with hypermethylation of the TERT promoter, rather than with TERT promoter 

mutations [19]. These findings are consistent with the fact that the cells, from which paediatric 

CNS tumours are thought to originate, still have activated telomerase which obviates the need 

for activation of TERT through promoter mutation. Although ATRX and TERT promoter 

mutations provide an explanation for the maintenance of telomere length in most gliomas, TERT 

upregulation was also reported to occur in a subset of gliomas without TERT promoter mutations 

or ATRX mutations through an as yet unidentified mechanism [58]. Finally, it is worth noting 

that, previous to the discovery of TERT promoter mutations in gliomas, some studies had 

reported an association between SNPs in the TERT gene and an increased risk of glioma 

development [112, 127]. 

 

Telomerase promoter mutations in other tumour types 

In Tables 2 and 3, we have summarized the data on record on the frequency of TERT promoter 

mutations in tumours from almost every site. For the sake of simplicity, we divided the tumours 

into those with a high frequency of mutations (>5 %, Table 2) and tumours with no mutations or 

with a very low frequency of TERT promoter mutations (described by Killela and colleagues, TERT 

promoter mutations can be relevant in tissues with relatively low rates of selfrenewal [58], an 

association that fits with the findings in follicular cell-derived thyroid cancer and gliomas. In 

these two settings (thyroid cancer and gliomas), TERT promoter mutations are associated with 

a guarded prognosis of the patients harbouring the tumours and probably represent late events 

of the oncogenic process. On the other hand, TERT promoter mutations can also result from 

environmental factors such as ultraviolet radiation and chemical carcinogens as suggested by 

their high frequency in melanoma, basal cell carcinoma and bladder and tongue carcinomas. In 

this second setting, TERT promoter mutations appear to be an early tumorigenic event and do 

not carry major prognostic value, with the exception of melanoma. Why clear cut differences 

exist in the frequency of TERT promoter mutations in tumours of the same system (e.g. 

hepatocellular carcinoma versus pancreatic carcinoma) remains to be clarified, although there 

is enough evidence to claim that the high or low prevalence of the mutations appears to be 

histotype- rather than site-associated. For instance, the high frequency in transitional carcinoma 

of the bladder and renal pelvis is in contrast to low frequency/absence in kidney carcinoma and 

the extremely low frequency/absence in adenocarcinomas of every organ of the gastrointestinal 

tract (Tables 2 and 3). 

 

Telomerase as a therapeutic target 

Several therapy strategies have been suggested to control TERT expression in tumours, mainly 

using small molecule inhibitors, gene therapy approaches and immunotherapy (reviewed in 

[82]). Inhibition of enzymatic activity with small synthetic molecules allows the disruption of the 

replicative capacity of cancer cells; in this way, it is though that normal somatic cells will not be 



affected due to the absence of TERT activity. In vitro studies showed that BIBR1532, a 

noncompetitive inhibitor of both TERT and TERC [92], leads to cellular senescence reducing 

proliferation and telomere length [24] and is cytotoxic in high doses [28]. Additionally, a marked 

reduction of the tumorigenic potential of tumour cells treated with BIBR1532 was observed in a 

mouse xenograft model [24], with no adverse side effects and uncomplicated oral 

administration of the drug. BIBR1532 is one of the most promising TERT specific-inhibitors to 

date. Other small synthetic molecules—G-quadruplex ligands, such as BRACO19, RHSP4 and 

telomestatin—are promising drugs that can be used for TERT targeting therapies [103]. 

However, clinical testing of some of these molecules has been hampered due to the toxic 

characteristics of the compounds [82]. Cancer cells with TERT activity can be directly targeted 

by introducing suicide genes or oncolytic viruses driven by the TERT or TERC promoters, or the 

inhibition of TERT or TERC activity targeting their RNAs. In the latter strategy, antisense 

oligonucleotides, small interfering RNAs and ribozymes can be applied for inhibition of TERT 

activity. GRN163L (also known as imetelstat) is the most studied antisense oligonucleotide that 

causes TERT inhibition and telomere shortening in cancer cell lines derived from different organs 

[13]. This compound leads to apoptosis of cells and to inhibition of tumour growth, and it is 

being used in clinical trials of several cancer types [13]. DNA vaccines (immunotherapy) have 

been used to generate protective immunity against tumours in several models [96]. The 

presence of TERT activity in many human cancers turns TERT a tumour-associated antigen 

suitable for cancer immunotherapy. Contrary to other target antigens, as carcinoembryonic 

antigen (CEA) and melanoma-associated antigen, TERT-based immunotherapy may be applied 

to a wide range of malignancies due to the highly frequent TERT-altered expression [122]. In 

vitro and in vivo studies showed tumour regression using TERT-based vaccination approaches 

(reviewed in [72]). Different peptides have been used to induce anti-TERT immune response [13] 

and vaccination using the I540–548 peptide showed anti-tumour responses in cancer [122]. 

Several preclinical studies using TERT peptides are being conducted (reviewed in [103]). GV-

1001, GRNVAC 1 and Vx-001 are the most promising vaccines available to date. 

 

Future perspectives 

The implication of telomerase in human diseases has been studied for a long time and firmly 

established in a few models of degenerative diseases. In cancer, telomerase dysfunction has 

been perceived as a potential mechanism for carcinogenesis although the underlying 

mechanisms remained elusive. The recent identification of telomerase promoter mutations in 

several types of neoplasia fostered the respective research, and in less than a year, numerous 

studies have been published reporting similar alterations in many cancer models (Tables 2 and 

3). In several relevant cancer types, telomerase promoter mutations seem to constitute a new 

biomarker for prognosis with potential applications in pre-surgical diagnosis and in the follow-

up of the patients. Low-grade bladder cancers represent a good example on how such finding 

can represent an added value from a clinical standpoint. Up to 70 % of lowgrade non-invasive 

bladder tumours recur, and long-term cystoscopic surveillance is the current standard of care. 

This procedure is expensive and time consuming and carries significant morbidity. The non-

invasive evaluation of telomerase promoter mutations in urine may provide diagnostic 

information, independent of routine cytology, and most importantly, may identify low-grade 

tumours, which are difficult to identify by cytological examination alone. Whenever dealing with 

a recurrence, a non-invasive diagnostic test that also serves as a surveillance method will 

probably represent an attractive alternative for patients, taking into consideration the 



limitations of the technique. A preliminary evaluation of the diagnostic usefulness of the 

detection of TERT promoter mutations was already performed in urine samples, and the results 

indicate that such detection may serve as a biomarker of early disease and recurrence [1, 54]. 

Moving to a trendier subject, it seems extremely interesting to evaluate whether or not TERT 

promoter mutations can be detected in tumour-circulating DNA from cell-free fragments in body 

fluids. In the affirmative case, this process may represent a major advance in the follow-up of 

cancer patients. Despite the large amount of information collected in these recent years, more 

questions than answers remain at present with regard to the role of telomerase involvement in 

carcinogenesis. A novel mechanism for telomerase re-activation and/ or re-expression was 

discovered; this mechanism, together with ALT, represents the two major pathways for 

telomere length maintenance. Besides them, other mechanisms may modulate telomerase 

expression, such as novel forms of transcriptional regulation or epigenetic alterations. We think 

it is the appropriate time to study large series with robust clinicopathological data and to search 

for correlations that may establish or rule out the prognostic value of TERT promoter mutations 

in the various types of human cancer. Last but not least, cell and molecular biology studies are 

mandatory to understand the role(s) of telomerase in cancer cells that appear to go beyond the 

increased replicative potential (immortalization) and have impact also in metastatic capacities. 
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