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Abstract The goal of this study is the analysis of 

the dynamical properties of financial data series 

from worldwide stock market indexes during the 

period 2000–2009. We analyze, under a regional 

criterium, ten main indexes at a daily time horizon. 

The meth- ods and algorithms that have been 

explored for the description of dynamical 

phenomena become an ef- fective background in the 

analysis of economical data. We start by applying the 

classical concepts of signal analysis, fractional 

Fourier transform, and methods of fractional 

calculus. In a second phase we adopt the 

multidimensional scaling approach. Stock market in- 

dexes are examples of complex interacting systems 

for which a huge amount of data exists. Therefore, 

these indexes, viewed from a different perspectives, 

lead to new classification patterns. 
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1 Introduction 

 

The study of fractional systems has received 

consider- able attention due to the fact that many 

physical sys- tems are well characterized by 

fractional models. The importance of fractional 

order modeling is that it can be used to make a 

more accurate description and it can give a deeper 

insight into the processes underly- ing long range 

memory behavior [14, 21, 26]. It seems that there are 

many distinct analogies between the dy- namics of 

complex physical and economical or even social 

systems. The methods and algorithms that have 

been explored for description of physical 

phenomena become an effective background and 

inspiration for very productive methods used in the 

analysis of eco- nomical data [10, 24, 29, 31]. 

In this paper we study several national indexes at 

a daily time horizon at the closing and the 

continuously compounded return. 

Indexes are used to measure the performance 

of segments of the stock market. They are normally 

used to benchmark the performance of individual 

and stock portfolios. There are several possible 

classifications of stock market. 
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– A global stock market index includes companies 

without regard for where they are domiciled or 

traded (e.g., S&P Global 100). 

– A regional index represents the performance of 

the stock market of defined world regions (e.g., 

Eu- ronext 100). 

– A national index represents the performance of 

the stock market of a given country (e.g., DAX). 

Another is classification by investment strategy: 

– A value index contains stocks which appear to be 

underpriced by some form of fundamental 

analysis (e.g., trade at discount to book value or 

have low price-to-earnings ratios) (e.g., Russell 

1000 Value). 

– A growth index contains stocks that exhibit signs 

of above-average growth. (e.g., S&P 500 Pure 

Growth). 

Some also classify stock market indexes by the 

company capitalization. There is no official defini- 

tion of either categories or their exact cutoff, but a 

rule of thumb may look like: 

– Large-cap indexes include companies with a 

market capitalization value of more than $10 

billion (e.g., Russell Top 50). 

– Mid-cap indexes include companies with a market 

capitalization between $2 and $10 billion (e.g., S&P 

400 MidCaps). 

– Small-cap indexes include companies with a mar- 

ket capitalization below $2 billion (e.g., Dow Jones 

U.S. Small-Cap). 

There are also indexes that track the 

performance of specified sectors or group of sectors 

of the market. This can be done at varying scale 

levels, ranging from an industry level to a subsector 

level as for example: 

– Utilities (industry level) (e.g., Dow Jones Utilities). 

– Chemicals (supersector level) (e.g., PHLX Chemi- 

cals Sector). 

– Biotechnology (subsector level) (e.g., NASDAQ 

OMX Global Biotechnology Index). 

Indexes  can  also  be  classified  according  to  the 

method used to determine its price: 

– In a price-weighted index the price of each 

compo- nent stock is the only consideration when 

determin- ing the value of the index (e.g., Dow 

Jones Indus- trial Average). Thus, price movement 

of even a sin- gle security will heavily influence the 

value of the index, ignoring the relative size of the 

company. 



 

 

– A market-value weighted index factors the size 

of the company (e.g., Hang Seng). Thus, a 

relatively small shift in the price of a large 

company will heav- ily influence the value of the 

index. 

There is a variety of indexes classifications 

and types. Indexes can track almost anything—for 

in- stance, there is even an index published by the 

Linux Weekly News that tracks stocks of companies 

that sell products based on the Linux operating 

environment. 

This paper uses a regional classification and an- 

alyzes the next ten national indexes arranged by 

re- gions: 

– Americas region: 

– S&P 500—includes 500 large-cap common 

stocks actively traded in the United States. 

– DJI—The Dow Jones Industrial Average is an 

index that shows how 30 large, publicly-

owned companies based in the United States 

have traded during a standard trading session 

in the stock market. 

– NYA—The NYSE Composite is a stock market 

index covering all common stock listed on the 

New York Stock Exchange. 

– European region: 

– DAX—measures the performance of the 30 

larg- est German companies in terms of order 

book volume and market capitalization. 

– CAC 40—represents a measure of the 40 most 

significant values among the 100 highest 

market caps on the Paris Bourse. 

– Asian/Pacific region: 

– Nikkei 225—index that represents the Tokyo 

Stock Exchange and it is the most widely 

quoted average of Japanese equities. 

– SSEC—is an index of all stocks that are traded 

at the Shanghai Stock Exchange. 

– HSI—is a freefloat-adjusted market capitaliza- 

tion-weighted stock market index in Hong 

Kong. 

– KS11—is the index of all common stocks 

traded on the Stock Market index of South 

Korea. 

– African region: 

– CCSI—Egypt’s Stock Exchange, formerly known 

as Cairo and Alexandria Stock Exchange (CASE), 

comprises two exchanges, Cairo and 

Alexandria, both of which are governed by the 

same board of directors and share the same 

trad- ing, clearing and settlement systems. 



 

 

⎪ 

In this study, our particular interest consists in 

the application of classical tools of signal analysis, 

frac- tional Fourier transform (FrFT) and Fractional 

Calcu- lus to reveal the stock indexes proprieties. The 

remain- der of this paper is as follows. In Sect. 2, we 

present briefly the fundamental concepts underlying 

the FrFT and the Multidimensional Scaling (MDS). In 

Sect. 3 we discuss the dynamical analysis and we 

present the results of the application of FrFT and 

MDS to the stock signals. Finally, in Sect. 4, we draw 

the main conclusions, and we address perspectives 

toward fu- ture developments. 

 

 
2 Fundamental concepts 

 
In this section we present a review of fundamental 

con- cepts involved in the experiments. 

 

2.1 Fractional Fourier transform and power 

law approximation 

 

The FrFT is a generalization of the ordinary Fourier 

transform with an order parameter a. 

Mathematically, the ath order fractional Fourier 

transform (FT) FrFTa is the ath power of the ordinary 

FT operation. 

With the development of the FrFT and related 

con- cepts, we see that the ordinary frequency 

domain    is 

as 1929 [2]. Later on it was used in quantum 

mechan- ics and signal processing [9, 25], but it 

was mainly the optical interpretation and the 

applications in optics that gave a burst of 

publications since the nineties that culminated in the 

book of Ozaktas et al. [11]. 

In [11] are presented several definitions of the FrFT. 

All of them were suggested to be used in different 

con- texts like the voice, images or signal processing 

and work well with the FC models, but there is no 

known direct connection between these definitions 

and the FC. The answer to the question what 

definition to use depends mainly on the problem we 

are dealing with. There is not one best definition of 

the FrFT, and one should rather try to take the 

suitable one while model- ing a process or 

considering a mathematical problem [13, 15, 30]. 

The FT of a function can be considered as a linear 

differential operator acting on that function, while 

the FrFT generalizes this differential operator by 

letting it depend on a continuous parameter a. 

Mathematically, the ath order FrFT is the ath power 

of FT operator. 

Several FrFT definitions are found in the litera- 

ture, which converge to the original definition. 

Among them the most commonly used the ath order 

fractional Fourier transform of a function s(t) is a 

linear opera- tion defined by 

merely a special case of a continuum of 

fractional Fourier domains, which are intimately 

related to time- 

   

frequency (or space-frequency) representations. 

Every property and application of the ordinary FT 

becomes a special case of the FrFT. In all areas 

where FTs and frequency-domain concepts are 

used, there exists the potential for generalization 

and improvement by using the FrFT. 

The FrFT has been found to play an important 
role in the study of optical systems known as Fourier   op- 

where α indicates the rotation angle in the time- 

frequency plane, u is the frequency domain, Kα (u, 

t) is the kernel function shown in the equation: 

 ⎪⎪   

 

tics, with applications in optical information 
process- 

⎨
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ing, allowing a reformulation of this area in a much 

more general way. It has also generalized the notion 

of the frequency domain and extended our 

understanding of the time-frequency plane, two 

central concepts in signal analysis and signal 

processing. FrFT is expected to have an impact in the 

form of deeper understanding or new applications in 

every area in which the FT plays a significant role, and 

to take its place among the stan- dard mathematical 

tools of physics and engineering. 

FrFT in the form of fractional powers of the Fourier 

operator appears in the mathematical literature as 

early 

⎪ 
The ath order transform is sometimes referred to 

as the αth order transform, a practice which will 

occa- sionally be found convenient when no 

confusion can arise. 

The FrFT has the following special cases: 
 

FrFT2n   s(u)   = s(u) (3) 
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FrFT2nπ + π 

FrFT2nπ − π 

 
 

2    s(u)  = FT s(u)
  

(4) 

FrFT2nπ ±π   s(u)  = s(−u)  (5) 

2    s(u)  = FT s(−u)
 

(6) 

The time domain is the FrFT domain with α = 2nπ , 
while the frequency domain is the FrFT domain with 

α = 2nπ + π . Since the FrFT is periodic, with period 
2π , α can be limited in the interval [−π, π ] [25]. 

Were proposed several algorithms for the  discrete 

an array of numbers and it shows the essential infor- 

mation in the data, smoothing out noise. However, it 

has its limitations and normally the analysis is limited 

to two or three dimensions. Four or more 

dimensions render MDS virtually useless as a 

method of  mak- ing complex data more accessible 

to the human mind. The degree of correspondence 

between the distances among points implied by 

MDS map and the input ma- trix is measured by a 

stress function. The general form / Y'
(f (xi,j )−di,j )2 

implementation of the FrFT [17, 22, 25].    Neverthe- of  these  functions 
is 

Y'
(di,j  )2 . In this equa- 

less, since calculation speed is not the main issue in 

the study, the authors decided to program directly 

the continuous version defined by (1)–(2). 

 
2.2 Multidimensional scaling representation 

of complex data 

 
MDS is an approach to multivariate analysis   aimed 

at producing a spatial or geometrical representation 

of complex data. It has its origins in psychometrics, 

where it was proposed to help understand 

people’s judgments about the similarity between 

elements   of a set of objects [3]. However, it has 

become a gen- eral data-analysis technique used in 

a wide variety of fields such as marketing, sociology, 

physics, political science, biology and biomedical [6, 

7, 20, 27] and re- 

cently in wireless network sensors [16, 19, 28]. 

MDS is a generic term that includes many differ- 

ent specific types. These types can be classified ac- 

cording to whether the similarities data are 

qualitative (called nonmetric MDS) or quantitative 

(metric MDS). The number of similarity matrices and 

the nature of the MDS model can also classify 

MDS types. This classification yields classical MDS 

(one matrix, un- weighted model), replicated MDS 

(several matrices, unweighted model), and weighted 

MDS (several ma- trices, weighted model) [5, 12]. 

MDS represents measurements of similarity 

among pairs of objects as distances between points 

of a low- dimensional multidimensional space. 

Given a matrix of perceived similarities between 

various items, it plots the items on a map such 

that those which are perceived to be similar are 

placed near one another; contrarily, those perceived 

as very different are placed far away from each other. 

Therefore, MDS provides a simple visual 

representation of a complex set of re- lationships 

which can be analyzed at a glance—the graphical 

display is much easier to understand     than 



 

 

tion di,j refers to the Euclidean distance, across all 

di- mensions, between points i and j on the map, 

f (xi,j ) is some function of the input data. When 

the MDS map perfectly reproduces the input 

data, f (xi,j ) − di,j is calculated for all i and j , so 

stress is zero. Thus, the smaller the stress, the 

better the representation. When looking at a 

map that has non-zero stress, one 

must keep in mind that the distances among items 

are imperfect, distorted, representations of the 

relation- ships given by your data. From a 

mathematical stand- point, non-zero stress values 

occur for only one rea- son: insufficient 

dimensionality. That is, for any given dataset, it may 

be impossible to perfectly represent the input data 

in two or other small number of dimensions. 

On the other hand, any dataset can be perfectly 
repre- sented using n − 1 dimensions, where n is the 
number of items scaled. As the number of 
dimensions used 

goes up, the stress must either comes down or 

stays the same. Of course, it is not necessary that 

an MDS map have zero stress in order to be useful. 

A certain amount of distortion is tolerable [18]. 

There are three important aspects to keep in 

mind when analyzing a MDS map: (i) The axes are, in 

them- selves, meaningless; (ii) the orientation of 

the picture is arbitrary; and (iii) the substantive 

dimensions or at- tributes under analysis do not 

need to correspond in number or direction to the 

mathematical dimensions (axes) which define the 

vector space (i.e., the MDS map). In relation to this 

last point, in fact the number of dimensions used to 

generate similarities may be much larger than the 

number of mathematical dimensions needed to 

reproduce the observed pattern. This is be- cause 

the mathematical dimensions are necessarily or- 

thogonal (perpendicular), and therefore maximally 

ef- ficient. In contrast, the human dimensions, 

while cog- nitively distinct, may be highly 

intercorrelated and, therefore, contain some 

redundant information. 
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k = k 

3 Dynamics of stock market indexes 

 
In this section we study numerically ten national 

stock market indexes for the period from 1 January 

2000 to 31 December 2009. 

The data consist of daily closing price xk (t ), were 
 1 ≤ k ≤ 10 identify the national stock market indexes, 

and the continuously compounded return ln
r xk (t ) l

 
xk(t −1) 

with data provided by the Yahoo Finance web site 
[1]. 

For each signal index data we analyze the fractional 

behavior  from  the  viewpoint  of  FrFT  with  orders 

0.001 ≤ a ≤ 1.0 (α = a π ) and MDS. 

3.1 Analysis of national stock market indexes from a 

continuously compounded return standpoint 

 
In this section we calculate the daily continuously 

compounded rate of return on a stock for one day   

as 
r (t )     ln

r xk (t )   l, where x (t ) is the close price of 
xk(t −1) 

the day t  and xk (t − 1) is the close price of the    day 
t − 1, for the index labeled k, and ln represents the 
natural logarithm function. 

fore, each new data value adds the same amount 

of new information. 

This kind of signals is not the most suitable for re- 

vealing the dynamical relationships and therefore, it 

was decided to adopt the daily closing price xk (t ). 

 
3.2 Analysis of national stock market indexes from a 

daily closing price standpoint 

 
Figure 2 depicts the time evolution, of daily closing 

price of the S&P500 index versus time with the well- 

know noisy and “chaotic-like” characteristics. 

 
3.2.1 Fourier analysis 

 
For each signal index xk (t ) is calculated the corre- 

sponding FrFT and a power trendline approximation. 

In order to examine the behavior of the signal 

spec- trum, a power law trendline is superimposed 

to the FrFT signal, that is, we approximate the 

modulus of the FrFT amplitude through the power 

law (PL): 

Figure 1 depicts the evolution of daily continuously 

 

compounded return value r9(t ) of the S&P500 index 

versus time. The spectrum resulting of the 

application of the linear transformation is 

approximately constant over a broad frequency 

band. 

This is an analogy with a ergodic, or stochastic sta- 

tionary signal, like the white noise. In this case there 

is no memory of and no correlation with past data; 

there- 

 

  

where F is the fractional Fourier operator, xk (t ) rep- 

resents the value of 1 ≤ k ≤ 10 index, t is time, u is 

the frequency, pk a positive constant that depends 

on the signal amplitude and qk is the trendline slope 

[23]. 

 
Fig. 1 The temporal 
evolution of the daily 
continuously compounded 
rate of return, r9(t ), for the 

S&P500 index, from 
January 2000 to 
December 2009 



 

 

 
 

Fig. 2 The temporal 
evolution of the daily 
closing value, r9(t ), for the 

S&P500 index, from 
January 2000 to 
December 2009 

 
 
 
 
 
 
 
 
 
 
 
 

     

 
    

 

 
 

 

 

  

 

              
 

  

 

Fig. 3  |FrFT{x9(t )}| for the daily closing value of the S&P500 signal index for orders a = 0.5 (left) and a = 1.0 (right) 

 
 

According to the values of qk the signals can exhibit 

either an integer or fractional order behavior. 

Figures 3 and 4 show the amplitude of the FrFT and 
the power trendline of the S&P500 index, 

respectively for a = {0.5, 1.0}. For each of the ten 
signals a power 
trendline is calculated. Table 1 depicts the 
correspond- 
ing slope values, qk , for all orders calculated and in 

Table  2 are the slope values for all ten indexes    
with 
a = {0.5, 1.0}. We verify that, in all the cases, we get 
a fractional spectrum in between the white (q = 0.0) 

and the Brownian (q = 2.0) noises, most near the so- 
called pink noise  (q = 1.0)  representing a  consider- 

 

 
 

         

 
 

 

 
 

         

 
 

 

 
 

         

 
 

 

 
 

         

 
 

 

 
 

         

 
 

 

 

 
    

 
 

 
    

 
 

 
     

 
    

 
 

 
         

 
 

 
         

 
 

 
      

 
 

 
  

 
 

 
 

 
        

 
 

          

          

          

          

          

          

          

          

          

          

 



 

 

 

able volatility but, still, with clear dynamical propri- 

eties. 

 
3.2.2 Multidimensional scaling 

 
In order to reveal possible relationships between 

the signals the MDS technique is used and 

several dis- tance criteria are tested. The Sammon 

criterion [4, 8], which tries to optimize a cost 

function that describes how well the pairwise 

distances in a dataset are pre- served, revealed 

good results and is adopted in this work. For this 

purpose we adopt two “distance   mea- 



 

 

 

 

 

 

Fig. 4  |FrFT{x9(t )}| and the power trendline for the daily closing value of the S&P500 signal index for orders a = 0.5 (left) and 

a = 1.0 (right) 

 
Table 1  Parameters 

 

{p9 , q9 } of the power law 
trendline of FrFT with 

Order a p9 q9 

0.001 ≤ a ≤ 1.0 for the 0.001 186.88 1.937 

S&P500 index 0.005 274.95 1.662 

 0.01 269.53 1.419 

 0.05 246.13 1.099 

 0.1 330.49 1.074 

 0.15 373.71 1.056 

 0.20 388.98 1.037 

 0.30 523.48 1.052 

 0.40 641.53 1.062 

 0.50 653.44 1.046 

 0.60 674.54 1.040 

 0.70 716.87 1.041 

 0.80 843.58 1.059 

 0.90 658.37 1.019 

 1.0 500.49 0.970 

 
 

sures” defined in the following 
equations: 

part of the FrFT for the indexes i and j with   order 

a = {0.5, 1.0}. 
 

 For each a value we calculate a 10 × 10 matrix M 
 based on dr (i, j), r = {1, 2} defined in (8) and (9). In 

  matrix M each cell represents the distance between 

a pair of indexes and is subjected to a MDS 

calculation with the following parameters: 
 
 

where qi and qj are slopes of the power law 
trendlines, 
i, j = 1,...,  10, u is the frequency domain, Rei , Imi , 

Rej and Imj are the values of real part and imaginary 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

– Metric multidimensional scaling 

– Uniform weighting 





 

 

Table 2  Parameters {pk , qk } of the power law trendline of FrFT for the ten indexes when a = {0.5, 1.0} 
 

k Index a = 0.5     

pk qk 

a = 1.0     

pk qk 

1 CAC 2317.3 1.033 2927.2 1.040 

2 CCSI 168.1 0.731 338.3 0.840 

3 DAX 3327.4 1.054 4575.5 1.072 

4 DJI 5453.3 1.042 4404.2 0.976 

5 HSI 11 292.5 1.063 9190.5 0.995 

6 KS11 907.7 1.077 746.5 1.010 

7 Nikkei 12 130.2 1.119 9187.4 1.034 

8 NYA 3631.5 1.045 2554.4 0.965 

9 SP500 653.4 1.046 500.5 0.970 

10 SSEC 1272.3 1.021 1508.1 1.015 

 
– Absolute scaling model 

– Stress method: Sammon 

– Dimension of the representation space: 3 

– Repetitions: 20 

– Iterations: 200 

– Convergence: 0.0001 

Figure 5 shows the 3D locus of index positioning 

in the perspective of expressions (8) and (9) for a   = 

{0.5, 1.0}. 
The measures d1 and d2 were tested against 

several 
FrFTs calculated for distinct values of a. The FrFT 

reveals considerable changes for variations of a 

near zero, while, on the other hand, changes 

slowly for the rest of values of a. The variations, 

either abrupt or smooth, are reflected by d1 and d2 

upon the MDS plots. Several tests did not produce 

any criteria for the optimal tuning of a and, 

therefore, this subject remains open. Bearing these 

facts in mind, for  demonstrating 

the extra degree of freedom provided by the FrFT it 
was adopted a = 0.5 in the subsequent MDS charts. 

Figure 6 depicts the stress as function of the 
di- 

mension of the representation space, revealing that 

in some cases, a high dimensional space would 

probably describe slightly better the “map” of the 10 

signal in- dexes. However, the three dimensional 

representations were adopted, as usual, because the 

graphical repre- sentation is easier to analyze while 

yielding a reason- able accuracy. Moreover, the 

resulting Shepard plots, represented in Fig. 7, show 

that a good distribution of 

points around the 45 degree line is obtained. In Figs. 6 
and 7 the chart shows the situation for a = 1.0, but 
with a = 0.5 we have similar shapes. 



 

 

Analyzing Fig. 5 we conclude that we can have 

dif- ferent grouping according with the distance 

measures and their parameters. When analyzing 

the shape cor- responding to d1 it is visible that 

the indexes under study are distributed over a 

“wave”, divided into the clusters: 

– for a = 0.5: {ssec, cac, dji, nya, SP500, dax, hsi, 
ks11}, {nikkei},{ ccsi} 

– for a = 1.0: {dax}, {cac, nikkei, ssec, ks11, hsi, dji, 
SP500, nya}, { ccsi} 

In fact, the same pattern can be seen in 

Table 2 when grouping the indexes by the values 

of the frac- tional slope qk . 

In  the  d2  charts  the  indexes  are  grouped  into 
a 
higher number of clusters, namely: 

– for a = 0.5: {hsi, nikkei}, {dji, nya}, {dax, cac}, 
{ssec, ccsi}, {SP500, ks11} 

– for a = 1.0: {hsi, nikkei}, {dji, nya, dax, cac}, 
{ssec}, { SP500, ks11}, {ccsi} 

We verify that, due to the different nature of the 

two “distance measures” in (8) and (9), we obtain 

different MDS shapes and groups. We should note 

again that when using MDS we should not take 

into considera- tion translation and rotation. MDS 

reveals essentially the clusters. 

From the point of view of the MDS 

representation, d1 seems “better” because leads 

easily to a good low- dimensional graphical 

representation, as proved by the Shepard and 

stress plots. We observe also that the d2 measure 

seems to separate the indexes into smaller 

clusters. Therefore, the adoption of each specific 

case 



 

 

 

 

 

 

 

 

 

Fig. 5 Three dimensional MDS plots for the ten indexes for the distances d1 (top) and d2 (bottom) and a = 0.5 (left) and a = 1.0 
(right) 

 
 
 

 

 

 

 

 

Fig. 6  Stress plot of MDS representation vs. number of dimension for the distances d1 (left) and d2 (right) with a = 1.0 

        

        

        

        

        

        

        

        

        

        

 



 

 

 

 

 

 

 

 

                    
 

  

 

Fig. 7   Shepard plot for MDS representation based on the distances d1 (left) and d2 (right) with a = 1.0 

 
 

is still a matter of decision of the stock market 

han- dler. 

In the authors’ opinion d1, using the fractional 

slope of the modulus of the FrFT, seems the more in- 

teresting when having in mind a dynamical analysis. 

In fact, d1 inherently includes (i) the emergence of 

the fractional order behavior characterized by the 

power law puq approximation, (ii) the robustness 

against the magnitude of the values under 

comparison that affect only the parameter p while q 

remains only for the dy- namics, and (iii) the noise 

filtering with the trendline slope calculation. 

In conclusion, the proposed method starts by 

ana- lyzing the dynamics through the FrFT. The 

informa- tion is then used by the MDS to reveal 

clusters and patterns. For that purpose are tested 

measures either with a intermediary stage of 

“filtering” by a power law approximation, or 

directly by comparing the real and imaginary 

components. While the usefulness of the FrFT over 

the FT  needs  still  further research, the adoption of 

fractional order trendlines reveals to be a good 

strategy, diminishing the volatility effects and 

easing the MDS in the job of clustering the in- 

dexes. 

 
 

4 Conclusions 
 

In this paper a dynamical analysis was conducted to 

investigate possible relationships between several na- 

tional stock market indexes. 

          

          

          

          

          

          

          

          

          

          

 

          

          

          

          

          

          

          

          

          

          

 



 

 

 

The proposed tools, namely Fourier transform 

and multidimensional scaling, proved to be 

assertive meth- ods to analyze stock market 

indexes; the first for cap- turing the dynamics and 

the second for revealing the clusters. In future this 

approach should be applied for other market 

characteristics like the P/E ratio (price- to-earnings 

ratio). In this perspective, the replicated MDS 

technique can be used to analyze the respective 

matrices of dissimilarity. 
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