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Self-similarity principle: the reduced description
of randomness

Raoul R. Nigmatullin, José Tenreiro Machado, Rui Menezes

Abstract:

A new general fitting method based on the Self-Similar (SS) organization of random sequences is pre- sented. The proposed
analytical function helps to fit the response of many complex systems when their recorded data form a self-similar curve. The
verified SS principle opens new possibilities for the fitting of economical, meteorological and other complex data when the
mathematical model is absent but the re- duced description in terms of some universal set of the fitting parameters is
necessary. This fitting function is verified on economical (price of a commodity versus time) and weather (the Earth’s mean
temperature surface data versus time) and for these nontrivial cases it becomes possible to receive a very good fit of initial
data set. The general conditions of application of this fitting method describing the response of many complex systems and the
forecast possibilities are discussed.
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1. Introduction and formulation of o _ _
tal relationships (laws) constitute the basis of any natu-

the prObIem ral science. That is why any researcher in the modern
world is trying to establish unknown regularities (rules)
existing in nature, between strongly-correlated variables.

The basic purpose of any scientific research is establish- Recently it has become more evident that with the increas-
ing new and strongly-correlated relationships existing be- ing complexity of organzation of the matter on different
tween two (or more) variables. In fact, all these fundamen- stages of its evolution, the fundamental and simple {from

the mathematical point of view) rules that can exist in
some complex systems are very difficult to observe and to
justify. In particular, this comment can be referred totally
to analysis of space-dynamic properties of different com-
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plex systems which require a holisfic approach for their
description. Different methods which are based on the
extraction of additional information from complex systems,
which have a different nature, are collected in a recent re-
view [1], amongst other papers [2-4] In many cases these
relationships are diffustve and covered by the influence
of other uncontrollable factors known in measurements as
an influence of a "noise”. These uncontrollable factors can
completely hide a relationship which otherwise exists and
therefore in many cases these factors play a destructive
role. Besides these basic relationships there are other
general rules that can characterize the degree of corre-
lation between self-similar (strongly-comelated) temporal
sequences. [he brightest example of such kind is the rela-
tionship found by H. E. Hurst [3]. He showed that in many
precesses, for some current observation peried, 1, the ra-
tio between the normalized range, R (1), and the standard
deviation, 5 (1), obeys to a simple power-law relationship:

Rr)
5(r)

—fer]!. D H <. {1

Here o denotes a constant and H defines the Hurst power-
law exponent. Many self-similar {fractal) series follow to
this relationship, irrespective to the complexity of the nat-
ural model, where this relationship has been definitely
recognized. This idea has been expanded upon in the
book [B]. From another side, the idea of selbsimilarity is
used to identify a "universal” function that describes a rel-
atively wide class of real random sequences [} being the
sequence of the ranged amplitudes ({SRA) determined in
[7]as the rank plot It is obtained from the initial sequence
when all amplitudes (g1 > gz > --- » yw|] are located in
descending order for detrended random sequences having
relatively large number of peints (Le. N > 1000, where
M defines the volume of the given sampling). For many
real cases (e.g. medical, economical, weather, and other
data series) that were analysed, the desired envelope of
detrended sequences is described by the function contain-
ing at least two-power law exponents

Rit)= o™ + o™ (2]

Here the current time, 7 [= 7, (j=1.2,--- ,N]]. is as-
sociated with the length of the discrete random sequence
having N discrete points.

The calculated fitting parameters
(@1 (F), az(f), wi (F), vz [F]) with respect to an influence
of some external factor (f) (under £ one can imply any

of this function

controllable factor, such as temperature, pressure, or oth-
erwise) can be analysed for calculation of the desired cal-
ibration curve, or for quantitative comparison these fitting

parameters with each other. Relationship (2) generalizes
the Hurst relationship (1} having one power-law expo-
nent and reflects also the self-similar behaviour of the
ordered amplitudes forming the randomness. 5o, one can
say that for many random sequences the rank plot re-
flects some general relationships of the second type. This
idea has been wsed to show that for strongly-correlated
systems having a memory, there is also a "universal” sta-
tistical distribution which is expressed in the form of the
beta-distribution function [8] The understanding of the
meaning of many distributions helps to find additional re-
lationships that can bond the values in some natural re-
lationship and understand them more deeply, especially
some peculiarities of complex systems where they are not
known [1] Consequently, the 55 principle as a basic idea
can open new possibilities in the behaviowr of different
complex systems and merits further research.

From another perspective, during three decades of inten-
swve research it became clear that our world is presumably
frocfol in a general sense, associated with its general-
izafions as multifractals and random fractals of different
kinds. These objects repeat themselves (randomly or reg-
ularly) on different scales, both in space and time filling
an intermediate range of scales between the length of an
elementary cluster and elementary physical volume asso-
ciated in mathematical physics with a point. Mevertheless,
nowadays it is mof sufficient to say that the object/system
studied has self-similar properties. It is necessany to find
the fractal dimension, to determine the limits of appli-
cability of the scaling properties and to prove the evi-
dencefabsence of log-periodic oscillations [%) that accom-
pany any scaling process in fime or space. This same
phenomena was discovered in random economical and fi-
nancial activities [see [10, 13-19], more references can
be found in the review [1] and in papers [2-4]). Nowa-
days research in this field simply supposes, or posfilafes,
the existence of scaling properties of the system studied.
Also, sometimes a researcher can adduce some unjustified
suppositions [6] in order to see a complex system as a
fractal. Mevertheless, if the researcher did not make this
initial supposition then he must find clear and justified
evidences that the system really has scaling/self-similar,
or fractal properties.

How to find the comvincing arquments for the sceptical
scholar if a scientist has only a set of numerical data char-
acterizing the response of a complex system and nothing
elze? This paper continues on the ideas discussed above,
and work will be presented towards the proof that based
on the justified {for many random sequences) 55 princi-
ple — it is possible that many sets of random data have
a self-similar structure, and thereby, the dmwverse prob-
lem becomes solvable for these sets. It implies to reveal



the desired fitting function that enables to fit many self-
similar and random functions satisfying the 55 principle.
The fitting parameters of this function can be used for com-
paring two or more random data series with each other.
Besides this important peculiarity, the emerging function
being continued to the future can be used for forecasting
{prediction) purposes if this 55 property is conserved also
on some seqment of time that describes a future event. We
suppose that this novel description of 2 random curve can
open new possibilities in a broader understanding of gen-
eral features that can be used to characterize behaviours
of different complex systems.

Having these concepts in mind the paper is organized as
follows. Section 2 describes a general algorithm that can
be used as the solution of the inverse 55 problem. The
consideration of more complex hypotheses is given in the
Mathematical Appendix 5. Sections 3 and 4 are associ-
ated with real analysis of data. In order to dissipate the
doubts of a potential reader we retrieved the admissible
and reliable data from reliable Internet resources. Finally,
Section 5 formulates the basic results of this paper and
outlines the directions that can serve as an "embryo” of
further research.

2. General description of the algo-

rithm

It is known that with any one dimensional process [5] hav-
ing the 55 property should satisfy to the following scaling
equation:

S(z&) = M S(z) + =0, 3)

where 5(z) defines a physical value that depends on the
argument z which, in general, can accept real or complex
value and can be associated with any current variable as
fime, frequency, coordinate or other. In general, it can
accept real or complex value. The parameters £ and 4,
denote the scaling factors. The constant sy represents a
possible shift. The solution of the functional equation (3]
can be written as:

_ InfA) _ 5D

5(z)= A +z"Prilnz), v= e Ag = —

{4

Here and below the notation Pr{ln z) defines an unknown
log-periodic function having a period In{g), which can be
presented approximately by the finite segment of the in-
finite series

3 lnz : Inz
Fr{lnzb:;ﬂg+§ [chus ( lﬂkm) +As; sin ( 2mk m)] ,
Pr{lnz £ In &) = Pr(lnz). (5)

The problem can be formulated as follows. It is neces-
sary to justify the self-similar structure of the random data
characterizing the behaviour of the complex system under
analysis. Then it is necessary to develop a procedure for
the fitting of the data to the function 5(z), to find the de-
sired fitting parameters, A1, £, sn, and to restore the func-
tional equation (3} for 5(z) figuring in (4). Usuvally, the
staling equation (3] is supposed to be known o prteri and,
in this case, the solution (4] is restored easily. However, if
we have only some data and any additional information is
absent then restoration of the scaling equation (3} poses
a problem. That is the reason why this problem can be
formulated as imverse problem that proves and describes
the self-similar properties of random signals starting from
the analysis of the initial data points. To the authors best
knowledge, adequate algorithms for solving inverse prob-
lems associated with description [or fitfing) of self-similar
random functions were not proposed in the current scien-
tific literature and does not feature in the recent review
[1. In this paper we want to demonstrate how to de-
velop a simple and reliable algorithm that helps to solve
the inverse problem, providing a reliable fit of the random
function under consideration and in the form of the scaling
equation of the type (3).

2.1. Reduction an interval to three
incident points

Let us choose some interval [xg, x;_,| containing a set of
k data points {{xp, ga) .. .., (%_1, gi_1)}. One can reduce
this informatien into three inadent points if the first point
is associated with the mean value of the amplitudes and
the other two points are associated to their maximal and
minimal values, correspondingly This selection represents
the simplest reduction of the given set of k random points
to three characteristic points p; = mean{ya,..., e}
pr = max {yo,. .., yi-1}, p1 = minfyo,....gea}. It is
supposed that for any finite set of k data points these
three incident points exist. In general, these chosen sets
can contain different number of points. For the case of
wnequal intervals the number of selected points should be
chosen based on some criterion that has a specific char-
acteristic depending on the data under analysis. Fig-
ures 1-4 demonstrate the result of this specific reduc-
tion when adopting equal length intervals. In order to
limit the number of demonstration charts in this paper,
available economical data was chosen as a demonstration
data set. The data is taken, as an example, from the site
http:/fwww.indexmundi.com/commodities/ where the ran-
dom distributions of monthly prices on different commodi-
ties are presented. The variations of prices on gold (Au),
playing a role of important strategic material, is used as



an example. Analysis of this data is described in detail in
Section 3.

In practice, for each given sequence the compression of
data containing large number of points to a set of data
containing less number of points needs a special proce-
dure but in general one can recommend the following re-
quirements:

R1. Any external factor (time, frequency, coordinate, or
other] measured in general in number of the mea-
sured points should be reduced to a minimal number
of 100-150 points in order to provide the value of
the relatve emor of less than 10% (see expression

{200).

R2. For economical and other data asseciated with human
activity it is natural to choose the comentional in-
tervals as years, half-years, months, weeks, days,
efc.

R3. The scaling factor, £, should lie in acceptable limits in
order to keep the calculated value of the power-law
parameter v [associated with fractal dimensions)
within the interval 0 = v = 3{4).

It is noted that these general criteria are gppmximafe and
it is expected that more definite criteria can be formu-
lated. In this paper for the available data analyzed, these
requirements were taken into account.

2.2. Criterion of selection of the initial hypoth-

esis

Analysis of solution (4] prompts to put forward the follow-
ing initial hypothesis:

Hy(f) = Ag + A1 + Acyy oy (1) + Asyy sy (1),
yoi(f) = 7 cos (wy Int), ys(f)= " sinfw, Inf) (6]

Here and below the same notation is kept for 4 linear
unknown amplitudes; A, A, Ac,, and As,. The three
unknown nonlinear parameters, @y, @3, and wy, in (6] can
be found by the eigencoordinates (ECs) method [11, 12]
The ECs method helps to transform the curve (G) ini-
tially containing nonlinear fitting parameters into a set
of straight lines, and to reduce the problem of calculation
of the desired fitting parameters in the frame of the linear
least square method [LLSM). The basic linear relation-
ship (BLR) (associated with the first row of expression (%)
below) obtained after three-fold integration of the differ
ential equation (7) can be written as:

d

D7 Ho(t)+51 D Ho(f) + b2DHy(t) + baHo(f) = K, D = t—.

dt
7}

Where the parameters [&p,p =1,2 ]} are closely asso-
ciated with the roots of the cubic equation:

P+ b’ 4 bar + b1 =
(r—om)-[r—a—iwn)-[r—m +iw) =0 (&)

Performing a triple integration of equation (7), which helps
to keep the initial erer in the same limit as in the func-
tion Hi(f]), allows finding the constants, b, 7 1, of the cubic
equation (&) by a linear procedure using, for this purpose,
a stable procedure as the LLSM. The basic linear rela-
tionship (BLR) obtained after three-fold integration of the

differential equation (7] can be written as:

]
¥it)= 3 GXalt). (9)

5=

Here the functions forming the desired BLR are deter-
mined by the following relationships

Y(t) = Halt)— [},

Xil) =fH[;[u]d—L:"_|:,,_}l C, = —b,
X[t =f|:ln:|'—lnubH|;[u]d—;—|:...}, C;=—hy,

Xalt) =f|:ln:—lnub1Hn|:u]du—u—|:...}. Ci=—b,

s=4,5.6
Xslt) = Ln’-‘{:]__ [} Co=
C.(K, D Hy|tg), D" Ha|ty), DHg|to)). {10)

The pair of brackets in the last expressions (10), {---) =
N1 E:‘ﬂ (---), defines the arithmetic mean of the neigh-
bouring expression located on the left which should be
subtracted from it. A definitive form for the constants
C,=0C [K.D:*H;. ita), D% Hy (tg), OHp [:I';]]]r depending on
the initial values of the derivafives in the initial point
3. is not essential for the calculation of the desired O,
[i=1,23) and can be omitted. If the inifial hypothesis
() is supposed to be correct, then it can be expected that
the exponents op and @y should have at least the same sign
and cannot be strongly deviated from each other. In the
opposite case it is necessary to consider another hypoth-
esis. The test calculations realized on model data show
that the hypothesis in (6) does not provide the desired ac-
curacy with respect to the value of the relative error (see



expression (23} below). This means that in cases when
the value of the relative error remains large, the initial
hypothesis should be replaced by an alternative hypothe-
sis which has an increased level of complexity when com-
pared with the initial expression {6). In order to have the
justified criterien that shows the conditions of replacement
of (&) by another hypothesis it is necessary to consider a
more complicated initial expression:

. 2
Holf) = Ao + A 1™ 4+ Byt + Y [Acpyep|t) + Aspysp(i])
p=1

gfpl:ﬂ = exp [Ep ln[:r]}cnrs [MP ln:r] . yspl::r]
= exp (g Inft)) sin (wy Int ), p = 1,2

(1)
This hypothesis contains 6 nonlinear  parameters
(o, By, @y 7, wy 7). At first sight one has the impression
that the linear procedure applied in the form of the LLSM
to Hy(t) is mof applicable for this complex case. However,
this idea is not true and rewriting expression (11] in the
form:

Flo{t) = ho(t) + y2(t). ha(f)
=A|TED+AE|HE|[T]+AS|HS|[T].
ysaf) = Ag + By + Acay ot} + Asaysy (1), (12)
yep(f) = exp (ap In{t)) cos (wy In 1), ysp(f)
= exp [ap In(t)) sin (wy Int) , p=1,2.,

one can apply the ECs method for the function gz (f) (haw-
ing the same structure as the previous function Ho(f)) and
consider the nonlinear parameters (o, @y, oy} as known.
The initial (inoculating) values are obtained from expres-
sions in (10). Taking into account the invariance of the ex-
pressions relatively procedure of the m-fold integration fa:

In [exp{ax) cosbx)) =

K, oo, b) exp {ox) cos(bx) + K3 .(a, b) exp (ox) sin(bx),
In (exp {ox) sin{bx)) =

i, b) exp (ox) cos{bx) + Oq o, b) exp (ox) sin[nlflu}]{3

leads again to the BLR which is similar to the expression
(9), but with six functions X(f) (s =1,2,.._, ) inifially
figuring in the BLR in (9], it is necessary fo add three
additional functions:

X{t) =12 — (.} G,
Xg(t) = 12 cosfw Inft})— (...}, C. (14)
Xg(t) = 1% sinfw, Inft)) — (...}, Cs.

The modification of the BLR in (9) along with the addi-
tional expressions in (14) helps to find the desired values
of three important constants, G (i = 1, 2, 3) (the values of
other constants; Oy, Cs, ..., Cg, Co; are not essential and

can be omitted), and thereby it is possible to calculate the
necessary nonlinear parameters; B, o7, wy; in the frame of
the LLSM. As it has been mentioned above in expressions
(6), (11} and {12) the same notations for the linear fit-
ting parameters are used, but in fact they are different.
These linear parameters are not essential for formulating
the desired criterion and therefore the usage of the same
notation seems natural. Mow we formulate the criterion
for the applicability of the initial hypathesis (11).

Let the following three ratios be defined:

_ max (o, @)

- max (B, @1) _man iy, )
" min{ag, &)’ e

min [Bq, o)’ = hin [
15)
The initial hypothesis {11} is applicable if the following

conditions are satisfied:

m

1< . rp2 < 145, 1< r, < 1.45. {16)

The upper limit {1.43) of this inequality is chosen from the
following condition. Being rounded off the integer value
it should give again the unit value. I condition (16) is
violated, then it is necessary to substitute [11) and to
consider alternative hypotheses. Alternative hypotheses
are considered in the Mathematical Appendix 5.

2.3. The optimization procedure

The third step is related to optimization of the power-law
exponent, &, and ineculating frequency that are located in
the intervals:

min{ag, Bo, @1, 0z) = Gun < @ < mas{oy, By, o1, 02} = G,
minfw, w3 = wmn < W < max{uw, w?) = W

{17
If some nonlinear fitting parameter is located in the given
limits [ppum, Proy] then one can introduce the function:

plv) =t + e,
§ = PrmPry o PagVeePretay (18)
T am—¥mka T Vo —¥ein

{ne can find the optimal value, ¥apt: by minimizing the
fitting function:

Hit, vl = Ag + A expiv|v)Int) + Ac - gyt v)+
+As - ys(t,v)

yeit, v) = exp(wiv)In ) - cos{w{v) Inz), (19)
y=(t, v) = exp{wiv)In 1) - sinjw(v)int),
viv] = fgv + &g, wiv) = Hv + ey

with respect to the value of the minimal relative error:

Stdev(yit)— H (t,v))
meanfg(f)

- 100%
{20)

min l:nl:n'n.wi.":_|l'|"',,_.ill| = (



3. Economical data (description of

Where y(f) defines the initial signal. After realization of . . . .
the distribution of prices on gold)

this optimization procedure one can obtain the optimal
values of the nonlinear fitting parameters (v} = fovgy +
eg, ()= tivppr +24.

2.4. The final fit of the initial function

The final hypothesis that satisfies the functional equation
{3) should be presented in the form

Hilt) = Ag + At +r£| ey er(t) + Aspysift]],

yee(f) = exp{{v}Int) - cos l?rh'ﬁ .
yse () = exp{{v}Int)-sin [2xk Tt | .

21)
Here the parameters; 4g, A, and the set A, Asg [k =
1.2,..., K} denote the final set of the fitting parameters
and are calculated in the frame of the LLSM. Other pa-
rameters that enter into expression (21) and the scaling
equation (3} are determined as:

Ind= 2, b ==p((v)-Ind). (k> 0,
so=Ag- (144,
Ind =L, A& =—exp(iv)-Ind), (4 «0),

2ak — w2k —1).

(22)

The second row of this expression is written for the case
when the single root, 4;, is megofive. For this case the
log-periodic function in (21) becomes anti-periodic and it
is necessary to make a replacement in {21} in accordance
with requirement gwven by the third row in [22).

It should be stressed here that the final criterion after the
usage of initial criterion {18) is related to the quality of
the final fitting with respect to the number of modes K
used for this purpose.

Stdeviy(t)— Hi (LK)} |

100%
mean|y(t)|

23
This parameter should satisfy to the following require-
ment, 2K + 4 < N, where N denotes the total number of
the measured points figuring in the initial function g(f,)
i=12.... M). In the opposite case where the number
of unknown modes, K, exceeds the number of data points
N (2K + 4 = N), the fitting procedure becomes wseless.
Before starting to analyse real data it is necessary to

min{RelErr); = (

point out that in order to make the temporal variable di-
mensionless it is natural to normalize it to the value of the
initial interval. In this case this value will coincide with
the wnit.

In order to demonstrate the effectiveness of the fitting func-
tions found for four cases (see Mathematical Appendix
5) describing the properties of self-similar curves, real
data available on the internet was chosen. This data
is freely available for the reader to repeat the calcula-
tions described in this paper. Here it is necessary to
stress the following point: Example data was chosen for
a given period of time and the extension of other inter-
vals was not considered. As it follows from the method
suggested; the intervals do not influence on the limits
of the temporal interval {covering global draw-ups and
draw-downs). It works properly and can be applicable
for a wide class of time series. The content of this pa-
per does not allow consideration of other examples and
an analysis on the limits of this algorithm merits fur-
ther research. The monthly distribution of prices on
gold [Au), as impertant strategic material, is presented
as the first example. The data is taken from the site
http:{fwww.indexmundi.com/commodities!, where the ran-
dom behaviour of monthly prices on different commodi-
ties is presented. The given data contains 360 measured
points (starting from 09/1983 and finishing on 09/2012)
and covers a thirty years period. The plots presented by
the Figures 1-4 demonstrate the variation of the price
(that is given in kilo-US dollars) of gold for one Troy
Ounce. As it follows from analysis of these figures the
realization of the procedure described in Subsection 2.1
leaves these curves similar to each other. One can notice
also that the compression of the initial interval in 12 times
[see Figures 1 and 4 for comparison increases the corridor
of uncertainty between maximal (prices wp) and minimal
[prices down) prices. After verification of the 55 principle
it becomes possible to realize the initial fit.

The fitting of the hypothesis Ho(t) from (6) is realized with
the help of the ECs method (expressions (9) and (10) in
this case] which helps to apply the LLSM for the cal-
culation of unknown non-linear parameters. This fit is
shown in Figure 5 by a solid green line. The verifica-
tion of criterion (15) and realization of the fit with more
complicated hypothesis, Fy{t), from expression [11) |it is
shown on Figure 3 by solid red line} shows that the in-
fluence of the corrections figuring in (11) are negligible
and the behaviour of the fitting curve is determined pre-
sumably by the hypothesis, Hy(f]), from (6). This shows
that, for the final fitting, one can use the simplest case 1
and the optimization and final hypotheses are determined
by expressions (19) and (21). Using the optimal values
of the power-law exponent (v} = 3.07938 and frequency
{w) = 1.89072 it becomes possible to obtain the final fit
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Figure 1. Initial data that show the distribution of prices of gold (for realize the re- duction of twelve months points to three
one Troy Ounce in kiloUSD). These data are taken from points character- izing a year. We note that the interval of
the site http://www.indexmundi.com/commodities/. deviation of prices from its mean value (a specific
measure of uncertainty) is increased with narrowing of
the initial interval. We com- pressed 12 months to one
year (i.e., the degree of com- pression is 12).
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[ solid green line. During the calculation of the final fit the

154 .e"':‘ natural requirement that the maximal number of unknown
Af parameters is taken into account, including the number of

ol F unknown amplitudes denoting the behaviour of the log-
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In the result of application of procedure described in the
Subsection 2.1 (reduction to three incident points) one can
take the self-similar curve showing the quarter distribution
of prices. The degree of compression is equalled 3.
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number aof points A. The maximal number of the fitting
parameters for this case is determined by the condition,
[2K +4). The value of K = 50 was chosen in order to sat-
isfy the inequality 104 < N = 360. For the realization of
the fit of the compressed curves (corresponding to a quar-
ter year, half year, and one year) we take into account the
following observation. The fitting curves from expressions
(11} and (21} are invariant relative to the scaling transfor-
mation, f — wi. At this transformation the correspending
curves remain invariant and only the linear parameters, Ap,
A, together with the amplitudes of log-periodic functions
are changed. In particular the amplitudes are fransformed
as:

Hitu) =
K
Ao+ At LY G (uy e(f) + ASefu yse(1))
k=1

Aek[w) = A" [sin (B () A5k + cos (Fe(w)) Ack].
A& v) = Aywr'"[cos (B (v)) As; — sin (F(w)) Acg].
In

nZf

ln &

cos (B (v)) = cos |:[I:zk + (o — 2} =) wil

sim (B fu)) = sin [l:Exk + (o — 2)m)

Figure 3. The property of self-similarity of the initial curve is con-
served if one takes the half-year period intervals. The de-
gree of compression is 6 (in comparison with the Figure 1).

a=2 4 >0 a=1 4 <0. (24
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Figure 5. Here we show the realization of the stage 2 described in
Subsection 2.2. The initial fit was realized with the help of
the ECs method and initial hypothepig(tfrom (6) and
hypothesis H,{igm expression (11) are shown by green
and red solid lines, respectively. As one can notice from
this plot the influence of more complicated hypothesis is
not essential and so it is sufficient to use the initial hypoth-
esis Ho(t) corresponding to the case 1.
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Figure 6. Here we show the optimal fit (the solid blue line) that is
realized with the help of the function (18). It minimizes the
value of the relative error (9.291%) and helps to obtain the
optimal values of the power-law exponent p,; = 3:07938
and pyj = 1:89072- The final fit (solid green line) is real-
ized with the help of the function (20). All fitting parameters
are collected in Table 1.

This observation facilitates the calculation of the unknown
scaling parameter, £, figuring in the functional equation
(3). For the restoration of its actual value it is supposed
that it is restored from the data having maximal values
of the data points (in our case from the initial data haw-
ing 360 points). Chwing to this invariance, one can reduce
the uncertainty in the calculation of In(d) and carry-over
a possible error in calculation of £ to the unknown val-
ues of amplitudes. One can realize the fitting procedure
described in Section 2 and fit the rest curves describing
the distribution of prices for the guarter, half-year, and
one year periods. They are shown in Table 1, accord-
ingly. For all calculated amplitudes the natural require-
ment, 2K + 4 = N, is taken into account. Starfing from

number of modes with K = 50 (N = 360), with a limited
value up to K = 5 (N = 60) for the final price distribution.
Fraom this analysis ane can make an important conclusion
that the detailed description of a random self-similar curve
(in the limits of high accuracy: (3-3 %) of the relative error)
requires proper specification of the leg-periodic function
figuring in expression (21). From a general point of view
any reliable fitting of a random curve with high accuracy
[especially economic data) has a temptation to continue
these data to the nearest future for its possible predicfion.
Predictions could be made by using the found optimal fit
curve to the known data and to extend the range of its
outputs beyond the measurements. This fitting function is
“recognized” for the seqgment of a temporal interval that is
supposed to be known. This type of prediction is possible
if we simply continue tendencies collected in the past for
the future temporal interval. Maturally, the boundaries of
the sequential future interval are limited by future events
that can change the tendencies “stretched out™ from the
known past to the future. The self-similarity principle
based on the “recognized” fitting function (21} helps to
continue this function into the nearest future. The results
of continuation on five future points for initial, half-year
and year distribution prices are presented in Figures 13
and 14. Definitely, this type of prediction can be defined
as “technical forecast’, nevertheless, the usage of this pos-
sibility that is given by curve (21), as an additional source
of information, is important from our point of view. Analyz-
ing the red curves depicted on Figure 13 ane can notice a
specific bend located on the right-hand side of these fit-
ting curves. This bend can explain the sharp dip of prices
on gold in the near future. In Figure 14 this bend is mb-
seqf but the tendency to have a sharp decreasing of prices
on gold in the nearest 5 years is conserved.

4. The mean temperature data

Another interesting set of data tightly associated with
the self-similarity principle is related with increas-
ing of the mean temperature measured for both hemi-
spheres of the Earth (the so-called global warming
phenomenon).  This data was taken from the site
http:// data giss nasa.gov/gistemp/. The curves depicted in
Figures 15 and 16 include 130 years of mean tempera-
ture registrations covering the period between 1851-2011.
Being compressed three times, it can be seen that these
curves are sel-similar. Motice Figures 16 and 17 where
this compression (each three years are averaged up fo one
point) is shown. In comparison with the first example we
do not want to compress them further because the number
of data points (130) in comparison with the first case (360)



Table 1. The table of addibonal and scaling parameters thal describe the economical data.

Mumber of file {w) In{&) Ay Ay 50 RelErr(%) K2

Price {1 manth, 360} 307038 332317 78144 17B581E-6 -11DESS 313845 S50
Price Mn ﬂ-} year, 1200 310139 331473 299707 7OBO04E-4 125641 368348 25
Price Up {§ year, 120) 310130 331473 209707 000101 130256 463005 25
Price Daown :-} year, 1207 316822 328065 33601 127203E-4 -137387 340283 25
Price Mn (4 year, 60) 314601 320796 320618 -35193E-4 -13B458 311844 15
Price Up :-lr year, 60) J1GEZZ 328065 33601 -GEVESZE-4 155050 4.63207 15
Price Din (5 year, 60} 330031 320872 530263 -2B0714E-4 -MBE34 292961 15
Price Mn {1 year, 30) 31263 327314 368787 -OB0242E-4 AT427T7 487T6E 5
Price Up {1 year, 30} 352356 316205 689865 -101470E-4 -233602 418153 5
Price Dmi (1 year, 30) 332356 3162057 0689863 1.01479E-4 -233603 416133 3

Comments to Table 1. The fitting parameters collected in Table 1 reflect the basic parameters

of the final fitting function (20) and the parameters that figure in the scaling equation (2], along
with its solutlon (3). Stricily speaking 1t 15 necessamny o take the mean values of the columns
2 34, and 6, bat they were kept as they are in order to see the varlatlons of these values
with respect to the compression procedure. The last column shows the number of modes that

can restore the unknown log-periodic function with accuraoy glven tn column 7.
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Figure 7. Besides the parameters that ressone the structure of the
scaling equation (2) we show hare the distribution of the
emplitudes Acy, As; that define the unknown log-perdodic
furction in expression (20). In onder to decresse the num-
bear of the fitting parameters and In the same time to keap
the scceptable accurecy for the fnal fing function In the
Interval (3-5%) we choose the value of the final mode (&)

from the condition (2K + 4 = 104 < N = 360

is much smaller. Based on this data one can formulate an-
other problem: to recognize the adequate hypothesis and
then to fit it to the initial curve with high accuracy. In
comparison with the first case the temperature fluctua-
fions are rather high and s0 a possible forecast will be
realized with the help of the fitting curve obtained after
the eptimization procedure {Subsection 2.3). The initial fit
realized with hypothesis (6) and [11) leads to the follow-
ing ratios: fpn = 4.54313, rpz = 1.53165, r, = 222370,
Figure 15 demanstrates that the influence of the second
iteration (hypothesis Hi(t)) is essential for this case and
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Figure 8. The final fn of the distbution of the quartar prices. The
corresponding parameters are collectad In Table 1. Cther
two curves (shown on Figure 2) ane very closs to each
ather end so thedr it ks niot shown.

so the simple hypothesis connected with the case 1 is
rejected. In accordance with definitions of these values
in {15) and condition of applicability of (A11) one can
conclude that the hypothesis comresponding to case 4 is
preferable. The application of an alternative hypothesis
corresponding to case 1 demonstrates its inconsistency
and gives the high values of the fitting error at the opti-
mal selection of the value of K and so it is also rejected.
Figure 19 shows the optimal fit {black solid line) realized
with the help of the fitting function (A12) [where only the
values of the power-law exponents are optimized) and the
final fit (magenta solid line) realized with the help of the
function (413} for distribution of mean temperature mea-
sured in the northern hemisphere (MH). The calculated
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In comparison with Figure 7 we decrease in two times the

number of corresponding amplitudes in order to keep the
value of the relative error in the same limits (3-5%) and
satisfy to the requirement (2K + 4 =54 <N = 120).
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The final fit of the distribution of the half-year prices.
The corresponding parameters are collected in Table 1.
Other two curves (shown on Figure 2) (the upper and
down distribution of prices) are given also. The distribu-
tion of the amplitudes for the fitting curve corresponding
to mean price is given in the small frame above. Other
two distributions of amplitudes for upper and down fitting
curves are similar and they are notshown.
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Figure 11. The final fit of the distribution of the year prices. The cor-

responding parameters are collected in Table 1. The dis-
tributions of amplitudes are shown below. For this com-
pressed curve only 5 amplitudes are necessary.
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In comparison with Figures 7 and 9 we keep the number
of modes equaled K =5. This number is sufficient for
keeping the value of the relative error in the limits (3-5%)
and for satisfaction of the requirement (2K +4 =14 <
N =60).
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What is happened if we continue the fitting functions
calculated for 1 month and half-year (given in the small
frame) for the 5 points up? It is interesting to note that
these curves demonstrate the essential decreasing of
prices on gold in the nearest future.

@ annual prices
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It is instructive to see that the distribution of the annual
prices also has a tendency to decrease these prices on
the nearest 5 years. For the first two curves depicted
on the previous figure one can explain the “decreasing”
tendency by existence of a specific bend that is clearly
seen on the right-hand of these curves. But the natural
bend for the curve depicted here is clearly absent but
nevertheless the tendency to decreasing of the prices
for the nearest 5 years isconserved.



values of the fitting parameters are collected in Table 2.
The distributions of the amplitudes that define the couple
of log-periedic functions are gwen in Figure 20. We con-
sider that these distributions (specifying the amplitude-
frequency response (AFR])) can serve as a key point of
the whole random process studied. In the frame of the
same hypothesis (case 4) one can fit the data describing
the distribution of mean temperature in the southern hemi-
sphere (5H). The final fit is shown in Figures 21 and 22,
which both show strong agreement between the sample
data and the fitted curve. For this, the highest value of K
was used from the condition, 4K +4 = N = 43 all fitting
parameters for these cases are collected in Table Z. In
order to save place for discussion we decided not to show
the fit of the compressed functions [shown above om Fig-
wres 16 and 17). The final fit looks similar as it is given
on Figures 19 and 21 realized for the initial temperature
distributions. The fitting parameters associated with this
precedure are kept in Table 2 also. After realization of this
procedure one can say that the restored scaling equation,
describing the distribution of mean temperature in both
Earth’s hemispheres, coincides with expression (A13). All
parameters of this equation are gwen in Table 2. It is
natural to pose the following question: what is the basic
role of this fitting function (found from the 5% principle)
if the concrete model is absent? We see the basic role of
this fitting function [besides the restoration of the fitting
parameters of the proper self-similar process) lies in its
self-similar organization and in the possibility of “tech-
nical forecasting”. Based on the information about the
accurate behaviour of this function in the given segment
of time one can tny to continue this function into the period
of fime that can be associated with a future event. In the
case of mean temperature distribution data one can no-
tice that they are very “noisy” ({the initial value of relative
error achieves 45-50%) and so for forecasting purposes
one can wuse the optimal fitting function that accurately
describes the trend of this distribution. Figures 73 and
24 demonstrate the results of this “technical forecast™ for
optimal trends obtained for distributions of mean temper-
ature for NH and 5H, correspondingly. It is interesting
to note that we observe two opposite tendencies. In the
MH the forecast predicts a tendency to global moling in
the next 10 years, while there is a global warming trend
forecasted for the SH. These tendencies are conserved for
the compressed curves also and they give the same fore-
cast for the next 27 years. This forecast is preliminary,
nevertheless, it is obtained from the accurate fitting of the
curves that cover a rather long period of temperature ob-
servations. From this point of view a simple mechanical
continuation of a random curve into the future should be
corrected [or justified] by corrections of experts working
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Distribution of the average annual temperature over

Figure 15. The distribution of mean temperature (measured in )
for both Earth’s Hemispheres. The data cover 130 year
period of registration of mean temperature.
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Figure 16. If one can realize the reduction to three incident points
then we obtain the curve similar to the curve depicted
on the previous figure. This reduction is realized for the
mean temperature belonging to the North hemisphere
(NH). The temperatures Tup and Tdn show the limits of
deviation of the central curve from its mean position.

professionally in this field.

Comments to Tables 2 and 3: The fitting parameters col-
lected in these Tables reflect the basic parameters of the
final fitting function [A413) and the parameters figuring in
the scaling equation (A15) and its solution (A14). The gh
column in Table 2 shows the number of modes that can
restore the unknown log-periodic function with accuracy
given in column 7. We should note here that increasing
the number of modes up to the limiting value 4K +4 E N
sharply increases the accuracy (see column 7 in Table 2)
and makes the fitting function practically exact.

5. The basic results and discussion
of further possibilities

The two examples illustrated in this paper show that the
presented method provides very good fits for datasets with



Table 2. The table of additional and scaling parameters that describe the mean temperature data T (° C) (the 1st part).

Number of fle ~ hvy7

In(¢)

Ay

Ao RelErr(%) K/2

T mn (NH) 130 1.76572 0.32278 4.59067E-4 -0.37172 -4.34845

5.26015 31

T mn (NH) (43) 124181 032278 000726 -0.39043 -4.34845 153648E-6 5
T up (NH) (43) 1.39462 032278 0.02812 -0.33276 -4.34845 1.82013E-6 5
Tdn (NH) (43) 07179 032278 007095 -0.57355 -4.34845 3.10656E-7 5
T mn (SH) 130 073562 051028 00161 -048081 -5402 326819 3 1
T mn (SH) (43) 054818 051028 0.07595 -0.12483 -5402 267959E-12 5
T up (SH) (43) 043572 051028 0.09562 005575 -5402 168926E-12 5
T dn (SH) (43) 0.58567 0.51028 0.12695 -1.20849 -5.402 2.63292E-12 5

Table 3. The table of additional and scaling parameters that describe the mean temperature data T (° C) (the 2nd part).

Number of fle hvoi A, b, b, by So
T mn (NH) 130 7.47739 3.36388E-4 -2915.23 -13669.9 -125878 -10.0722
T mn (NH) (43) 5.8845 -0.02704 -461.835 -1205.18 -6103.54 -11.2439
T up (NH) (43) 6.34909 -0.21924 -62.4825 -112.623 -368.852 -19.0733
T dn (NH) (43) 429161 -0.02515 -93.6704 -144.359 -418.556 -16.0342
T mn (SH) 130 0.11018 0.01649 2.04037 -2.61815 -7.20148 -19.4399
T mn (SH) (43) -0.19663 0.00769 1.66488 -1.78249 -2.94034 -6.04195
T up (SH) (43) -0.38072 0.01732 159147 -1.6495 -1.8612 211418
T dn (SH) (43) -0.13527 0.00487 1.62114 -1.66886 -3.25222 -72.5342
—e— mean T in C°(SH) * NH_meanT(C")| w™454513,
A= upsT- 10 |[——Hy® 153165
o 06 —v—downT ° ——H,(1) r =2.22379 -
3 ant £ -
g 5 pary
%% 044 M""‘:: é 05
igg, 02 W 4“,’,;:?'. El &
5 Pl N ad £3
118 «;‘ngﬁ 2 o]
i Rl e (et 5%
5 E 02 ‘:“::?:‘ ! Lol %
g g 0] 'W vv’, ')" é 0.5
£ (') ‘b 2‘0 3'0 4'0 5'0 g -10 6 1‘0 2l0 3‘0 4'0 5‘0 5'0 7'0 BIO 9'0 |60 ‘40 150 ‘éD 150

1 < 3years to 1 year <43

Figure 17. These plots demonstrate the reduction to three points for

the mean temperature belonging to South Hemisphere
(SH). As before the temperatures the curves Tup and
Tdn demonstrate the limits of deviation of the central
curve from its mean position.

different characteristics: () monthly gold prices and (i)
average annual temperature on Earth sudface. Both series
are nonstationary and display a power-law trend while
also having a randem frend that changes over time. In the
former, there are no substantial overall up-down monthly
ascillations, which are present in the latter dataset. This
second dataset is characterized by up-down annual de-
viations (volatility) and has visually a linear time trend

1(1881) < years <131(2011)

Figure 18. This plot demonstrates the selection of the proper hy-
pothesis. The influence of the fitting function (from
(11)) is essential in comparison with the function
(from (6)). The values of the ratios given above on this
figure and expression (A11) help to choose the proper
hypothesis corresponding to case4.

for oscillations of the mean temperature for the SH (but
again expressed by a posynomial function containing real
and complex-conjugated power-law exponents), at least
in comparison with the gold price fime series. In general,
time series trends reflecting the low-frequency escillations
in fime can be classified as deterministic or stochastic
frandom), but in both cases the time series is said to be
nonstationary. In the former case, stationarity can be in-



The optimal and final fits of the NH
mean temperature

°
o
1

°
o
!

+ NH_Tmean(C%

—— Optimal fit
Final fit
»°
oo
Jr e
0'/%
* W%
3 %= o ¢
o0 > 4
00 /0
135N 5
o
s 2eF % % )l
* o L 2
. ‘0}:.’_/." o $ T
’0 @’
o ™o
geq % 4%

-10 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140
1 < years < 131

Figure 19. The optimal (solid black line) and the final fit that are ob-

Distribution of amplitudes for log-periodic functions

the NH mean

tained in the frame of hypotheses (A12) and (A13). The
values of the fitting parameters are collected in Table 2.

1<k=<30

Figure 20. Distributions of amplitudes of two-log periodic functions
that enter to expression (A13). They describe the dis-
tribution of T(°C) in the NH. Namely, these specific
amplitude-frequency responses (AFRs) describing the
behavior of initial random functions depicted on Fig-
ure 15 determine the ground of the whole random pro-
cess studied.

Distribution of mean tempearture
in South Hemisphere and its fit
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Figure 21. The optimal (solid cyan line) and the final fit (solid blue

line) that describe the distribution of mean temperature
in SH. This high quality fit is realized again with the help
of hypotheses (A12) and (A13). The values of thefitting
parameters are collected in Table2.
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Figure 22. Distributions of amplitudes of two-log periodic functions

0.5+

0.5 -

Mean temperature (NH) and its prediction

that enter to expression (A13). These distributions (serv-
ing as the specific AFRs) describe the distribution of
T (° C)in SH (see previous figure).
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Distribution of mean temperature for NH and its fore-
cast for the nearest 10 years. In accordance with this
“prediction” we should expect the tendency to general
cooling. The same tendency is observed for the com-
pressed curve (placed in the small frame above) if we
continue this curve on the nearest 27 years.
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Figure 24. Distribution of mean temperature for SH and its forecast

for the nearest 10 years. In contrast with the previous
“prediction” we should expect the tendency to general
warming. The same tendency is observed for the com-
pressed curve (placed in the small frame above) if we
continue this curve on the nearest 27 years.



duced by modeling explicitly the time series as a contin-
vous function of time (linear, quadratic, etc.). In the latter
case, stationarity is only obtained by differencing the orig-
inal time series. It reminds the case of the random walk
where the first difference of a nonstationary fime series is
white noise.

In most cases, a nonstationary time series contains both
deterministic and stochastic trends[13-16] In order to de-
termine whether stochastic trends are present, most statis-
fical tests use a linear time trend [or, at most, a quadratic
one) to capture any existing deterministic frend. The re-
maining is assumed to be part of the stochastic time trend
isee, inter olio [17, 18]). These tests, known as unit root
tests, are designed to capture only real roots. The simplic-
ity of these tests in dealing with the deterministic trends
can pose several problems because the researcher may
wrongly assign to the stochastic (random) component of
the time series a part that has, in reality, a deterministic
behaviour. This can be easily seen from our examples. In
the case of the gold price series, if a linear deterministic
trend is used to test for a unit root, it seems likely that
part of the “remaining” stochastic (random) trend incor
porates deterministic information that we do not treat as
such. The result is: wrong conclusion about the weight of
the stochastic component in explaining the behavior of the
variable and imprecise forecasts obtained out of this wrong
model. Similarly, for the annual temperature dataset, the
researcher may wrongly assign to the stochastic compo-
nent the observed oscillations that can be, otherwise, cap-
tured by a properly medeled deterministic function. I this
is the case, the spurious regression problem posed by [19]
might be analyzed in a totally different context, since con-
trol of the stochastic component of time series would be
much less problematic.

Analysis of these results based on the fitting functions
found from 55 principle allows us to put forward the fol-
lowing idea. For the fitting of different dataset having
initially a random behavior we had before only one type
of the fitting functions. They followed from the justified
model and help to reduce N initial data points to a few
stationary parameters that describe the general features
of the time series under analysis. In the case of success
the researchers can identify these strongly-correlated re-
lationships as {mws of nature. Any other transformations
realized with initial sequence (like the Fourier, numer
ous wavelet and other transforms) can be considered as
a convenient presentation of the initial data in order to
receive an additional source of information. The 55 prin-
ciple gives a researcher another possibility to fit the suffi-
ciently large initial data points. The fitting functions that
follow from this principle occupy an intermediate position
between the laws (that contain minimal number of the

fitting parameters Fap) and transformations, where the
number of data points & close to number of parameters
that present of the initial data set in another presentation
(frequency, number of moments and etc). As it has been
shown in this paper the following inequality is used:

Pow < 214K +4(7) < N (25)

where P, is the minimal number of the fitting parameters
comesponding to the recognized true hypothesis {model),
parameter K denotes a number of log-periodic modes fig-
uring in the recognized (identified) hypothesis. The num-
bers that are outside of the parenthesis correspond to the
hypothesis 1 (expression (21)} and 2 [expression [AZ]),
while the numbers inside correspond to hypotheses 3 (A7)
and 4 ([A1Z)). Recently this specific reduction for the
case of decomposition of a random function to the Prony's
spectrum was proven [20, 21] This proof introduced a
method to differentiate an initial randomness and separate
some sfofionary nonlinear fitting parameters together with
their linear amplitudes from the rest of random parame-
ters (K} that describe the contribution of log- periodic am-
plitudes in expressions mentioned above [(21), [A2), (A7)
and (A1Z]). One can conclude that the mathematical for-
mulation of any general principle (that is considered as
a source of additional information) contains some form of
fitting function. These fitting functiens could play their
important role in analysis of different random sequences,
when the strongly-correlated relationships [defined wsu-
ally as natural laws) are remained wiknown. For exam-
ple, the linear principle of the strongly-correlated vari-
ables [LPCV) formulated in paper [22] allows to find new
solutions of the Prony's problem [20, 21] and realize the
decomposition [tegether with simultaneous reduction) of
a random function having a multi-periodic structure. Mew
laws formulated in [20, 21] for the strongly-correlated sys-
tems helped to realize this nontrivial decompasition.

It is in the intention for there to be a continuation and
expansion on the work presented in this paper, namely in
other alternative hypotheses associated with 55 principle
that can help to solve the problems of diagnostics, con-
trol of randomness, and fluctuation metrology, which are
tightly associated with the behavior of complex systems
on different levels of their organization. The recent exam-
ple of consideration of the feedback control for complex
systems based on the Prony's spectroscopy is considered

in paper [Z3]

Appendix A Mathematical Appendix

In this section we describe in brief other hypotheses that
can be served as alternative variants to replace the sim-



plest, defined by {19). It should be stated that the initial
hypothesis (11) for all cases considered below and the ba-
sic steps described in the second section are conserved.
The optimization hypotheses and the functions used for
the final fitting are changed. Only the conditions of ap-
plicability, optimization and final hypothesis are shown
for each case, correspondingly.

A.1. Case 2: two
complex-conjugated
roots

The condition of applicability:
1< g rg < 145, 7, = 245, r, # 1 [AT)

Optimization hypothesis:

2
Hit,v) = Ap + Aut*P +,:-E| [Acpyepit, ¥} + Aspysa(f, v]],
yeplt, v} = exp(viv) -Inf) cos (uwpy Int],
ysp(t, v} = exp(w|v] - Int] sin (w, nt) .
(AZ)
Final hypothesis (2K + 2 < N, where N is the number of
the points in initial sequence)

K
Hi(f) = Ap + Ayt 4 Z:Acygcy[r:l + Aseyse(t]].
k=1
yep(f) = exp({v} - Int)cos [Qﬁk + ) lhl:—i_ ,
ysi(f) = exp({v} - Int)sin |:[2?rk + ) ll:_z' . (A3)

The parameters Ind and @ figuring in (A2) are found from
equations:

wInd =27 +¢, wplnd =dm + ¢,
Ing = 2o &= 2x (L),

il — Ta—1

(Ad)

The deficient parameters of the scaling equation:

5(t&%) = @1 5(¢ &) + ouS(t) + s, ,
|A] = exp({wilnd), a1 = 2|4| - cosgh, oo = —|4|",
sp=Ap- (1 — a1 — ao).

(A5)
A.2. Case 3: two real roots
The condition of applicability:
oz = 145, 1<, < 245 [Ab)

Optimization hypothesis:

Hit,v) = Ao + At 5 Agp)
1
+ZI:Acpycprr.vﬁ+Aspysp[=.vn.
yeplt, v) = E:FI'['I.I'P{\-'] -In t) cos {w v) In £},
ysplt, v] = explwpl¥) - In 1) sin (e (v) Int). A7)
Final hypothesis (&, 42 > 0 and 4K +7 < N, where N

is the number of the points in initial sequence)

K
Hi(t) = A + At + Y [Aclyellie) + asfys{ (0]
k=1

K
+ A g E [Arf] yef (1) + :"-Sflerf]{T]]
k=1
gcf:'t:r] = exp((vp} - Int) cos [ﬂE?rk:l :—;] ,
ys£(t) = expl{vp) - In 1] sin [{Z?r k) ll:—; : (A8)

The parameter Ind figuring in (A is found from equa-
tions:

Ing =2 Ifr, = 2then 4y <0, Ind =~

yel" =E'xP[l:1-f1}l"'T]c'='5[[?"{2k_ 1]1|9_r!]]' (A9)

ysi = exp((w)Int)sin |7 - (2k — 1) e -

The deficient parameters of the scaling equation:

5(tE%) = a1 5(¢d) + au5(t) + =0,
[A12] = exp [{(wviz)In &), @1 = A + 4z, o0 =—hidz,

sp=HAg-(1—ay—ag).
(A10)

A.3. Case 4: two complex-conjugated roots
and one real root

The condition of applicabilify:
ren, 2 = 145 n, > 245 (A1)
Optimization hypothesis:

Hit,v) =40+ APl A
1

+3_[Acpycalt,v) +Aspysa(t.v)]
p=1

yeplt, v) = exp(vp{v] - Inf) cos {mpln r] .
yspif, v) = exp(vp(v) - Inf} sin (uwp Int) . (A12)



Final hypothesis (4K +7 < N where N is the number of
the points in initial sequence)

E
Hi) = Ao + At + 3 [Ac"ye"le) + 4s{gs{ i)
K
+Ap 1 5 J:E| [Acijcl,l:ll::r] + Asijsj,::'l:ﬂ].

yel"(t) = exp((vi) - In ) cos [ {2k + ¢) 2]
ys{(t) = expl(w) - nt)sin 2k +9) ],
yef(1) = expl(v2) - In ) cos [ (2 + (o — 2)) £ ].
ys'(1) = expl{v) - Int]sin [ (2K + o — 20) 24,
(A13)
The parameters In &, g and the roots are found from equa-
tions:

In§=2, ¢=—x(2-2)

|4 = exp(lnd -(w}), ke =exp(In&-[wa}),  [AM4]
Az = [—1]“|Az|, o=12 1

The deficient parameters of the scaling equation:

S(t8%) = a25(t &%) + a1 5(tE) + auS(t) + =0,

01 = 2|4| - cos b+ Az,

ay = —2|A|- Ay cos & — |47, (A15)
an =’ A

sp=Hg-(1— oz — oy — @)
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