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The disturbing emergence of multidrug-resistant strains of Mycobacterium tuberculosis (Mtb) has been
driving the scientific community to urgently search for new and efficient antitubercular drugs. Despite
the various drugs currently under evaluation, isoniazid is still the key and most effective component in
all multi-therapeutic regimens recommended by the WHO. This paper describes the QSAR-oriented
design, synthesis and in vitro antitubercular activity of several potent isoniazid derivatives (iso-
nicotinoyl hydrazones and isonicotinoyl hydrazides) against H37Rv and two resistant Mtb strains. QSAR
studies entailed RFs and ASNNs classification models, as well as MLR models. Strict validation procedures
were used to guarantee the models’ robustness and predictive ability. Lipophilicity was shown not to be
relevant to explain the activity of these derivatives, whereas shorter NeN distances and lengthy sub-
stituents lead to more active compounds. Compounds 1, 2, 4, 5 and 6, showed measured activities against
H37Rv higher than INH (i.e., MIC � 0.28 mM), while compound 9 exhibited a six fold decrease in MIC
against the katG (S315T) mutated strain, by comparison with INH (i.e., 6.9 vs. 43.8 mM). All compounds
were ineffective against H37RvINH (DkatG), a strain with a full deletion of the katG gene, thus
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corroborating the importance of KatG in the activation of INH-based compounds. The most potent
compounds were also shown not to be cytotoxic up to a concentration 500 times higher than MIC.

� 2014 Elsevier Masson SAS. All rights reserved.
1. Introduction

With nearly one-third of the global population infected with the
Mycobacterium tuberculosis bacilli (Mtb), tuberculosis (TB) is still a
major cause of mortality and morbidity. The World Health Orga-
nization (WHO) estimated for 2012 8.6 million new cases and 1.3
million deaths due to TB, of which 320.000 among HIV-positive [1].
It was also reported that about 3.6% of the new patients and 20% of
the previously treated ones had multidrug-resistant TB (MDR-TB),
which is caused by Mtb strains resistant to the most effective first-
line drugs, isoniazid (INH) and rifampicin (RIF). Furthermore, as by
September 2013, 92 countries had reported at least one case of
extensively drug-resistant TB (XDR-TB), a form of TB resistant to
INH and RIF, as well as to any fluoroquinolone and to any of the
second-line injectable drugs (amikacin, kanamycin or capreomy-
cin). Recent WHO updates claim that approximately 9.6% of all
MDR-TB cases are XDR-TB [2]. To make the scenario even more
serious, a new designation, “totally drug-resistant” tuberculosis
(TDR-TB), although not yet recognized by the WHO, has been used
in the literature to describe an allegedly new (or deadlier) form of
TB, resistant to all first- and second-line drugs [3e5]. These resis-
tant strains are emerging as a major public health problem,
threatening the success of the DOTS program (Directly-Observed
Treatment Short-course), the WHO program launched in 1994 for
monitoring TB detection, treatment and drug supply [6,7].

Besides the need to make the treatment of drug-sensitive TB
shorter, simpler, safer and more accessible, also treatment of MDR-
and XDR-TB must be greatly improved to become more efficient,
less toxic, better tolerated and less expensive, as well as compatible
with antiretroviral therapies due to the increasing number of pa-
tients co-infected with HIV/AIDS [8e11]. Current drugs against TB
are mostly inadequate to address this fight against tuberculosis.

After decades of stagnation in research for new antitubercular
drugs, a new interest from pharmaceutical companies and con-
sortia, a more consistent support from governmental institutions
and some effective funding from international non-governmental
organizations, have led to the appearance of several classes of
molecules which trigger different biological pathways such as cell
wall synthesis, nucleic acid synthesis, protein synthesis or mem-
brane energy production and which are now under various stages
of clinical trials [11e13].

Despite the accelerated approval granted by FDA to bedaquiline,
the first drug to seek a specific indication for (adult) MDR-TB in the
USA and also the first drug with a newmechanism of action (MOA)
for treating TB in over 40 years [14e16], the fact remains that
isoniazid is still the most effective drug against wild typeMtb and is
therefore the treatment of choice for TB.

The clinical usefulness of isoniazid (isonicotinic acid hydrazide)
was discovered in the 1950’s when its specific high activity against
Mtbwas first noticed, higher than any other compound used at the
time [17,18]. INH is indeed particularly active against Mtb with a
minimum inhibitory concentration (MIC) of 0.05 mg/mL [18].

It is thought that INH enters Mtb through passive diffusion
through the cell-wall and that it is active only against dividing bac-
teria [19,20]. Thefirst study regarding themechanismof actionof INH
was published in 1970 by Winder and Collins [21], connecting INH
withmycolic acidbiosynthesis. In order for INH tobe effective against
Mtb it needs to be activated by the multifunctional catalaseeperox-
idase enzyme KatG into a range of activated species, such as an
isonicotinoyl radical, that can acylate numerous compounds [22,23].
The generally accepted mechanism of action of INH postulates that
the isonicotinoyl radical binds to the nicotinamide adenine dinucle-
otide (NADþ) and the resulting adduct inhibits the enoyl-ACP
reductase InhA, a NADH-dependent enoyl-acyl carrier protein
(enoyl-ACP) reductaseof the fattyacid synthase type II system(FASII).
This inhibition causes accumulation of long-chain fatty acids, inhi-
bition ofmycolic acid biosynthesis and, ultimately, cell death [18,24].

The main mechanism of resistance to isoniazid resides in the
presence of mutations in its activator, KatG, product of the katG
gene [25], whereas mutations in the inhA gene represent the sec-
ond most common cause of resistance. Altogether, mutations in
these two genes are responsible for approximately 75% of all cases
of Mtb resistance to isoniazid in the clinical setting [26]. Resistance
to INH has also been associated with mutations in several other
genes (e.g., ndh, kasA and oxyReahpC intergenic region) [18], but
their direct association with resistance is still not clear. It has also
been demonstrated very recently that drug efflux contributes
likewise to the overall resistance, particularly in the case of ac-
quired isoniazid resistance [27,28], much in the sameway as active-
efflux plays a role in the failure of cancer chemotherapy [29].

As mentioned before, isoniazid remains a key component in all
multiple drug treatment regimens recommended by the WHO
albeit resistant isolates are rapidly generated during monotherapy
or inappropriate treatment [30]. Similarly to some other candidates
in the pipeline that were chemically tailored from drugs to which
Mtb was already resistant, departing from isoniazid might also
bring new insights into the development of new antitubercular
agents. Hence, improvement of INH by introducing chemical
modifications in its core structure in order to enhance the biological
response against Mtb and/or circumvent resistance phenomena
continues to be an interesting scientific challenge.

To face this challenge, in vitro, in vivo or in silico methods are
being used in early stages of drug development to avoid possible
failures, especially those related with drug metabolism, pharma-
cokinetic profiles and toxicity issues [31,32]. In particular, quanti-
tative structureeactivity relationships (QSAR), is an in silico
methodology extensively used in Medicinal Chemistry to find re-
lationships between molecular properties of chemical compounds
and measured biological activities [32e34].

With the purpose of establishing robust and predictive MLR-
and NN-based QSAR models to assist us in the design of new active
compounds, we have developed a systematic analysis of a large
data set of potentially antitubercular agents [35e37]. In this work
we describe the details of the QSAR-oriented design, synthesis and
in vitro antibacterial activity evaluation of 13 compounds derived
from the INH core structure (Fig.1) whichwere assessed against the
wt Mtb H37Rv strain and twomutated strains, one carrying solely a
katG S315T mutation (the most frequent mutation related with INH
resistance), and the other resulting from a full deletion of the katG
gene (DkatG) [28].

2. Methods

2.1. Data sets

Different blocks of data, based on two independent approaches,
were used to build anti-tubercular activity models in order to
design novel potentially active isoniazid derivatives, namely i e



Fig. 1. Structures of compounds synthesized in this work. 1Compounds 11, 12 and 13 have been synthesized for comparative purposes.
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“RFs and ASNNs data sets”, used to develop classification models
that were integrated into a consensus model to predict the pro-
pensity of a compound to be active [36,38]. These classification
models were applied to a “virtual data set” of compounds assem-
bled using the INH molecule as a common scaffold; ii e “MLRs data
sets”, used to develop regression models for the design of another
set of potentially active compounds. Additionally, these MLR
models were also used for a quantitative evaluation of some
selected compounds proposed as active by the classification
models.

2.1.1. RFs and ASNNs data sets
Four different data sets were used to establish classification

models with Associative Neural Networks (ASNNs) and Random
Forests (RFs) methods. All compounds were divided into two
classes, according to their MIC values, i.e., their minimum inhibitory
concentrations: active (MIC � 5 mM) and inactive (MIC > 5 mM).

Data set i consisted of 173 hydrazide derivatives with known
MIC values retrieved from the literature, 136 compounds tested
against the BCG Mtb strain [39] and 37 against the H37Rv [40e43].
Data set ii consisted of 372 INH derivatives obtained from two
sources: 259 compounds from the NIAID and GVK databases [44],
evaluated against H37Rv, and 113 retrieved from several other
sources [39e43,45e47], of which 53 were tested against BCG and
60 against H37Rv. Data set iii corresponded to the 113 INH de-
rivatives subset of data set iiwhereas data set iv corresponded to the
remaining 259 INH derivatives. An additional external evaluation
set composed of 45 INH derivatives tested against the H37RV strain,
data set v, was also selected from the literature [48e50]. All com-
pounds were stored in SMILES and MDL SDF formats.

RFs and ASNNs data sets are given in Table S1 in Supporting
Information.

2.1.2. Virtual data set
A set of 430 drug-like molecules was generated with an in-

house developed program starting from 10 skeletons comprising
derivatives of two INH families, isonicotinoyl hydrazides and iso-
nicotinoyl hydrazones, and 43 common substitution patterns (see
Table S2, in Supporting Information). This set was then screened by
the developed classification models.

2.1.3. MLR data sets
For building the MLR models, biological data were retrieved

from literature for 45 compounds tested against the BCG strain [39],
and 37 compounds tested against the H37Rv strain [40e43], in a
total of 82 isoniazid derivatives. Although data refer to two
different strains, no systematic deviation among the various sets of
MIC values that could be attributed to data inconsistency was ever
noticed in the setting up of the models either in this work or in our
previous investigations involving INH derivatives [35e37].

Additionally, a set of 13 compounds from the Novartis TB public
access database, with MIC values measured against the H37Rv
strain, were used to make a further external validation of the
established models [51].

2.2. Molecular descriptors

2.2.1. Molecular descriptors for RFs and ASNNs models
A set of 3224 theoretical molecular descriptors divided in 22

types was calculated using the DRAGON program [52] for all
mentioned RFs and ASNNs data sets. Constant and near-constant
descriptors were deleted.

A set of 1270 descriptors, for the abovementioned data sets, was
also calculated with the ADRIANA.Code program [53]. For this
purpose, the 3D structures were generated with the embedded
CORINA program.

The type of descriptors used in each case is presented in Table S1
of Supporting Information.

2.2.2. Molecular descriptors for MLR models
Twenty-eight molecular descriptors were calculated for each of

the 82 isoniazid derived compounds: 5 Abraham’s descriptors
calculated with the Absolv program [54e56], and 8 energetic, 9
geometrical, 3 structural (Verloop’s parameters), and 2 electronic
parameters calculated with the Molecular Modeling Pro Plus
(MMPþ) software [57]. Additionally, ClogP, taken as a measure of
lipophilicity, was calculated using ChemDraw Ultra, 11.0.1 [58]. For
descriptors dependent on 3D structures, the geometry of each
compound was previously optimized using the MM2 method, a
molecular mechanics method incorporated in the software. Partial
charges were calculated using the Del Re method and dipole mo-
ments by a combination of PEOE and Huckel/4 methods also
included in the referenced software. Molecular structures were
drawn with ChemDraw Ultra, and saved as SMILES strings and are
available as Supporting Information in Table S3. Descriptor values
for all 82 compounds, as well as the corresponding MIC values from
literature, are also given as Supporting Information in Table S4.

2.3. Classification and regression techniques

2.3.1. Random Forests
A Random Forest [59], RF, is an ensemble of unpruned classifi-

cation trees which is created using bootstrap samples of the
training set and random subsets of descriptors to define the best
split at each node. The final prediction for an object from a RF is
obtained by majority voting of the individual trees. The
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bootstrapping technique is used to internally assess the model’s
performance from the prediction errors for the objects left out in
the bootstrap procedure (out-of-bag estimation, OOB). RF can also
be used for descriptor selection. The RF algorithm estimates the
importance of a descriptor by determining how much the predic-
tion error increases when data for that descriptor is permuted
keeping all others unchanged. RFs were grown with R program v.
2.10.0 and 2.11.0 [60] using the Random Forest library. Forest size
and number of descriptors selected at each split were optimized,
being the number of trees set to 1000 and the number of de-
scriptors tried at each split set to 30.

2.3.2. Associative neural networks
Associative neural networks (ASNNs) [61] integrate an

ensemble of feed-forward neural networks (FFNNs) with a memory
of experimental data. The ensemble consists of independently
trained FFNNs, which contribute to a single prediction. The final
prediction for an object from an ASNN is obtained from (a) the
outputs produced by the ensemble of individual NNs and (b) the
most similar cases in the memory (here, the training set). Further
details on the application of this technique can be found in
Supporting Information, Section 1.

2.3.3. Multiple linear regressions
In the context of this work, a multiple linear regression (MLR)

methodology was used to establish a mathematical relationship
between the biological activity of the target compounds (Y) and a
set of molecular descriptors (Xi) that numerically encode the fea-
tures of the compounds’ chemical structure and which can be
expressed in general terms as follows:

Y ¼ a0 þ
XN
i¼1

aiXi þ z (1)

where z stands for the regression residuals and a0 and ai are the
regression coefficients obtained by minimizing the sum of the
squared residuals. The order of magnitude of the regression co-
efficients reflects the degree of influence of the molecular de-
scriptors, whereas their sign can be interpreted in terms of positive
or negative contributions to the activity. A correct use of a MLR-
QSAR approach presupposes that the descriptors are not inter-
correlated to avoid redundancy in descriptor information [62] and
that the number of compounds for model building is at least four
times the number of descriptors used, to avoid overfitting and
therefore chance correlations [62,63]. The success of a MLR-QSAR
approach in the development of interpretative and predictive
model equations requires representative, homogeneous and good
quality data, a well-defined domain of applicability [64e66], and
strict validation procedures [63,67,68].

2.4. Selection of descriptors for ASNNs and RF models

The selection of descriptors to develop RF and ASNN classifica-
tion models was performed in two steps: (a) using the ranking of
descriptors established by RFs and (b) using pruning methods
implemented in the ASNN program. A pre-selection of the 300 to
400 most important descriptors obtained from RF models was
performed and used in the next step where the ASNN pruning
methods were applied. Details on the ASNNs pruning methods are
given in Supporting Information, Section 2.

The influence of the number of selected descriptors on the ASNN
model quality was checked on the basis of the leave-one-out (LOO)
results for the training sets (please refer to Supporting Information,
Section 1). Pre-selecting less than 300e400 descriptors by RF
decreased the ASNNmodels predictive ability. With the final sets of
descriptors selected by ASNNs pruning methods for each one of the
data sets, ASNNs and RFs were used to obtain the final models.
2.5. Validation procedures

2.5.1. Validation of RFs and ASNN models
Both ASNNs and RFmodels were first internally validated on the

basis of the training set by their intrinsic validation procedures,
namely out-of-bag (OOB) and leave-one-out method, respectively
(see Section 2.3). Furthermore, models were submitted to an
external validation using an independent test set (data set v).

The traditional way of summarizing “lack of fit” in QSAR models
is to use the rootmean squared error (RMSE) and themean absolute
error (MAE) between predicted and experimental activities. For
ASNNs, the RMSE is calculated by the expression

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

Pk
j¼1

�
Yij � Oij

�2
N � k

s
(2)

where Yij and Oij are the predicted and measured activity j for
molecule i, respectively, N is the number of compounds, and k is the
number of output neurons.

To assess the classification ability and to separately monitor the
classification performance of the two classes (active and non-
active), sensitivity (Sn), specificity (Sp), and overall accuracy (Ac)
were calculated as follows:

Sn ¼ TP=ðTPþ FNÞ (3)

Sp ¼ TN=ðTNþ FPÞ (4)

Ac ¼ ðTPþ TNÞ=ðTPþ FNþ TNþ FPÞ (5)

where TP, FP, TN and FN are true positives, false positives, true
negatives and false negatives, respectively. In general, the overall
accuracy, Ac, is always used to measure the predictive power of
classification models, as the number of active and inactive com-
pounds is approximately the same in all data sets.
2.5.2. Validation procedures used on MLR models
For MLR validation purposes, data was split into a training set

and an independent test set with similar variability both in the
dependent variable, i.e., the biological activity, and in the chemical/
structural multidimensional space covered by the descriptors.
Training/test set splitting took also into consideration the fact that
test set compounds must exhibit structural similarity with their
training set counterparts to hamper predictions by extrapolation
which are more likely to be unreliable [62,66]. The training set was
used to derive the models, whereas the test set (and, for that
matter, also the Novartis external data set) was used to evaluate the
models’ predictive ability.

The best MLR models were found by a forward stepwise pro-
cedure starting with equations containing a single descriptor and
adding up terms, one at a time. All combinations of the 28 molec-
ular descriptors were tested and descriptors were retained or dis-
regarded in each step according to rigorous statistical criteria (see
below).

Also, the intercorrelation among descriptors used in each
regression was always checked (for descriptors to be considered
non-redundant, r2 between any two descriptors should be smaller
than 0.5 and R2 for a given descriptor against a linear combination
of all others, should be lower than 0.8) [69].
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Additionally, models were examined for anomalous observa-
tions, the so-called outliers. These allegedly suspicious values were
fully assessed using two criteria: the conventional criterion of
jYcalc � Yexpj > 2 SD, where SD stands for the standard deviation of
the fit, and a more refined measure, the Cook’s distance [70,71].

The goodness-of-fit of the best models was also evaluated by
checking their linearity through residual analysis and normal
probability plots. The models’ robustness (evaluated with training
set compounds) was assessed by traditional statistical criteria,
namely, the determination coefficient, R2, the standard deviation of
the fit, SD, the F statistics, and the significance level (SL) of each
adjusted parameter (parameters were kept in the regressions only
if SL > 95%).

Internal validation was further gauged by the leave-many-out
(LMO) cross validation correlation coefficient, Q2, given by:

Q2 ¼ 1�
Ptraining

i¼1

�
Yi � bY i

�2
Ptraining

i¼1

�
Yi � Yi

�2 (6)

where Yi; bY i and Y i are the measured, predicted and averaged
(over the whole data set) values of the dependent variable,
respectively. A Q2

LMO (average) > 0.6 is usually taken as a good
measure of the robustness of the model [35,63,72]. Root mean
squared errors (RMSE) were also calculated.

The predictive power of the MLR models was evaluated through
several demanding and complementary external validation criteria,
using precautionary threshold values, i.e., values significantly
higher than those normally applied in current QSAR studies [73e
76]. The “measures” of predictive ability calculated in this work
were the external Q2

ext(F1) statistics [62,74], the r2m metrics (and
also the corresponding Dr2m) [73,76,77] and the concordance cor-
relation coefficient, CCC [74,75]. Details of thesemetrics are given in
Supporting Information, Section 3. Additionally, scatter plots of
predicted vs. experimental data were also obtained, as recent
studies have recommended the visual inspection of these plots as
important complementary indicators of model predictivity [75].

The predictive capacity of each model was further evaluated by
computing various measures of fit between predicted and experi-
mental values, namely, the average error (AE), the absolute average
error (AAE) and the already referred RMSE which should all be as
low as possible. Finally, models had still to comply with the
following criteria:

R2 > 0:6;
R2 � R20

R2
< 0:1; 0:85 < m < 1:15

where R2 and R20 have the same meaning as before, and m is the
slope of the regression between predicted and experimental values
[63,67].

A Y-randomization was also performed to eliminate the possi-
bility of chance correlation in the best MLR models. A randomiza-
tion experiment was carried out by randomly shuffling the Y-
column values (log (1/MIC)) twenty five times while keeping the
descriptor matrix unchanged. Each randomized model was subse-
quently used to make predictions for the test set, being the corre-
sponding R2 and RMSE calculated each time. Both an increase in
RMSE and a substantial decrease in R2 vis-à-vis the non-randomized
model support the robustness and statistical reliability of the
original model. To help judging if the difference between the
original R2 and the average R2 for the randomized models, R2r , was
significant, a further statistical parameter, the so-called Todeschini
cR2p parameter, was also computed [78]:

cR2p ¼ R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
R2 � R2r

�r
(7)
QSAR models that present cR2p values higher that 0.5 are
considered robust and reliable and not merely a result of chance
correlation.

A further important aspect to take into consideration in this type
of analysis is the applicability domain (AD) of the obtained QSAR
models, which is essential to guarantee that they make reliable
predictions [62,64,65,79]. To assess the AD in the developed MLR
models, two independent filtering methods were considered: i e
the range of individual descriptors, and ii e the leverage approach.
In the first case, the descriptors’ range for training set compounds
was calculated and the minimum and maximum values of the de-
scriptors were used to define their interval of validity. Test set (and
designed) compounds descriptors were then compared with the
corresponding average values in the training set to ensure that
predictions were performed for compounds whose molecular de-
scriptors fell within the established limits. In the second case, the
leverage value, h, of each compound was determined as described
elsewhere [64,79,80], thus providing a measure of the distance of
the compound from the centroid of the training set. A “warning
leverage”, h*, is generally fixed at 3p/N, where N is the number of
compounds in the training set and p the number of model variables
plus one [64,79,80]. This method allows a graphical assessment of
the standardized residuals, SR, as a function of the leverage values
(Williams plot) thus permitting a “better” visualization of the AD
and the detection of influential compounds, i.e., compounds
structurally distant from training set compounds (h > h*) and of
response outliers (SR > �3 SD units) [79,80]. In this type of plot the
AD corresponds to the squared area defined by the range�3 SR and
the threshold leverage value h* [64,65,80].

3. Results and discussion

3.1. Chemistry

Synthesis of all compounds was successfully achieved using
general organic synthetic pathways and their chemical structure
(please refer to Fig. 1) was elucidated by extensive spectroscopic
analysis (1H and 13C NMR, COSY, DEPT, HMQC, HMBC, NOESY and
MS).

Isonicotinoyl hydrazones 1, 2, 5e8 were prepared by function-
alization of INH at N-2 using standard methods. Typically, treat-
ment of INH with the appropriate ketone or aldehyde in ethanol at
room temperature led to the corresponding Schiff base, which was
generally isolated as a crystalline solid after column chromatog-
raphy. For compounds 1 and 2 a 1:0.5 INH/aldehyde ratio assured
the reaction of just one of the aldehyde functions. Compounds 3
and 4were obtained by reduction of the parent compounds 1 and 2
with NaBH4 in ethanol, and further recrystallization.

The stereochemistry of the double bond in hydrazones 1e4 and
7e8 was assigned as synperiplanar E, based on 1H NMR experi-
ments. It is well known that acylhydrazones may exist as E/Z geo-
metric isomers about the C]N double bonds and as synperiplanar/
antiperiplanar amide conformers (Fig. 2). However, it is reported in
literature that hydrazones derived from aldehydes and substituted
hydrazides are present in solution mainly in the E form [81e83]. GC
and HPLC analysis of our compounds confirmed that, in all cases,
only one isomer was present. NOESY experiments were conducted
in DMSO-d6, and revealed a well-defined cross peak between the
CONH proton and the iminic proton, only possible in the E geom-
etry of the double bond. Another cross-peak between the CONH
proton and the H-2/H-6 protons disclosed a synperiplanar COeNH
conformation. The existence of an equilibrium in solution of the
major synperiplanar and the minor antiperiplanar COeNH confor-
mation was also observed. 1H NMR experiments at several tem-
peratures (20, 40, 70 and 90 �C) were run in order to confirm that



Fig. 2. Stereoisomers of isonicotinoyl hydrazones and NOESY correlation in the E
synperiplanar isomer.
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the double signs with very small intensity observed in the spec-
trum, were actually due to theminor antiperiplanar conformer. The
coalescence of the signals was complete at 90 �C, being reversible
when temperature was returned to 20 �C, thus confirming that the
conversion of the two conformers is the only process of isomeri-
zation. The presence of conformers can be obtained only by 1H NMR
experiments since the interconversion is too fast to be detected by
HPLC [81].

The configuration of C]N double bond in the Schiff bases was
confirmed by X-ray diffraction crystallography. As an example,
the ORTEP diagram of compound 7 is presented in Fig. 3 showing
that the asymmetric unit consists of one Schiff base molecule and
two water molecules. The structure of the compound reveals
quasi co-planarity of the whole molecular skeleton, with a
dihedral angle of 2.34� between the benzene and the pyridine
rings. The E configuration of the C(7)]N(3) double bond, is evi-
denced by the C(6)-N(2)-N(3)-C(7) torsion angle of �178.54(10).
The O(1) atom and the hydrazone N(3) atom are cis with respect
to C(6)-N(2) which confirms the amide synperiplanar
arrangement.

In the crystal structure, the water molecules link the molecules
into a three-dimensional network by the intermolecular H(2N)$$$
O(1W) and O(2)$$$H(4W) hydrogen bonds (Fig. 3).
Fig. 3. ORTEP view of compound 7, determined at 150K, with atom-labeling scheme and the
C(6)-N(2)-N(3) ¼ 118.22(10); C(7)-N(3)-N(2) ¼ 114.85(10); N(3)-C(7)-C(8) ¼ 121.68(11); N(3)
N(2)-N(3)-C(7): �178.54(10); N(2)-N(3)-C(7)-C(8) ¼ �179.57(10); N(3)-N(2)-C(6)-C(3) ¼
C(15)-O(3)-C(14)-C(11) ¼ 179.15(11).
Isonicotinoyl hydrazides 9, 10 and 11 were synthesized using
standard literaturemethods; compound 13was obtained according
to a specific procedure reported in the literature [84]. Compound 12
was obtained by treatment of the corresponding hydrazone
(compound 6) with NaBH3CN, followed by repeated column chro-
matography, in order to separate the two diastereoisomers formed
in the reduction.

To the best of our knowledge, compounds 1, 3, 4, 6e8, 10 and 12
are herein reported for the first time. Compounds 5 [85] and 13
[84], although already reported in the literature were spectro-
scopically characterized for the first time in this work. Compound 9
[86e88] has also been previously synthesized but, along with
compound 13, has no reported MIC values. Likewise, compound 2
[89], used as a precursor of compound 4, was described and char-
acterized by others, but as far as we know has never been tested
against Mtb. Compound 11 has a reported MIC value against the
BCG [39] strain of 15 mg/mL. Finally, compound 5 has MIC values
reported against Mtb H37Rv strain (0.05 mg/mL) and against a INH
resistant strain (>0.75 mg/mL) [85].

3.2. Information retrieved from QSAR models

3.2.1. RFs and neural networks models

3.2.1.1. ASNN results. In the first stage, ASNN models were devel-
oped using the total set of descriptors. The initial number of de-
scriptors was then submitted to an additional reduction procedure
in which descriptors with constant values were removed. Then the
importance of the descriptors for the anti-TB activity was evaluated
by Random Forests and ASNN gradual pruning methods (see
Supporting Information, Section 2). New models were developed
with the final selection of descriptors. Results are summarized in
Table 1. The total accuracy Ac for the training sets ranged from 87.2
to 96.5%. The 45 compounds in the external test set vwere predicted
with an accuracy of 66.6e77.8%.

3.2.1.2. RF results. The results of this method for all data sets were
statistically similar to the ASNN results. However, the predictive
ability for the test sets was in some cases (models RF1 and RF3)
slightly higher than that for ASNNs models (Table 1). The observed
Sn and Sp values indicate that the models are balanced.

To visualize the regions of the chemical space covered by the
different training sets and the overlap of these regions with the
compounds of the virtual set, a principal component analysis was
performed. The top 2 principal components were calculated using
rmal ellipsoids drawn at 50% probability level. Selected bond and torsion angles (deg):
-C(7)-H(7) ¼ 120.8(8); O(1)-C(6)-N(2) ¼ 123.42(10); O(1)-C(6)-C(3) ¼ 120.70(10); C(6)-
178.06(9); C(10)-C(11)-C(14)-O(2) ¼ 173.93(12); C(10)-C(11)-C(14)-O(3) ¼ �6.13(17);



Table 1
Comparison of classification models built with different RFs and ASNNs.

Model Sets N Number of
descriptors

Method

RFs ASNNs

Sn Sp Correct (Ac,%)a Sn Sp Correct (Ac%)a RMSE

1 Training i 173 16 0.88 0.85 149 (86.1) 0.88 0.91 155 (89.6) 0.29
Test v 45 0.90 0.71 38 (84.4) 0.81 0.45 30 (66.6) 0.47

2 Training ii 372 24 0.84 0.87 316 (84.9) 0.90 0.89 333 (89.0) 0.30
Test v 45 0.78 1.0 36 (80.0) 0.78 0.80 35 (77.8) 0.44

3 Training iii 113 8 0.90 0.93 103 (91.2) 0.97 0.96 109 (96.5) 0.2
Test v 45 0.80 1.0 37 (82.2) 0.78 0.56 33 (73.3) 0.48

4 Training iv 259 24 0.79 0.82 208 (80.3) 0.86 0.89 226 (87.2) 0.32
Test v 45 0.78 0.80 35 (77.8) 0.78 0.80 35 (77.8) 0.43

a Ac e accuracy in %.

F. Martins et al. / European Journal of Medicinal Chemistry 81 (2014) 119e138 125
the Weka 3.7.3 software [90] with the full set of 3059 initial de-
scriptors, common to all data sets, for the training sets i, iii, iv
(training set ii consists in training set iii and iv), the test set and
the virtual set. The algorithm to calculate principal components
does not take into account any information concerning the ac-
tivity of the compounds. The visualization of the chemical space
based on the projection of the 2 top principal components is also
another approach to the applicability domain of the models. In
this case it shows that the test set is in the chemical space of the
different training sets, and most of the compounds of the virtual
set are also in the same chemical space of the training sets (Fig. 4).
The virtual set is concentrated in the center of the chemical space,
a region with high density of compounds particularly from
training set iv. An additional representation is included as Sup-
porting Information (Fig. S1) with active and inactive compounds
of training and test sets labeled differently. This representation
shows that the region in the chemical space with higher density
of active compounds is near the center of the chemical space.
Moreover, this region also shows a high density of compounds of
the virtual set.

3.2.2. MLR models
Table 2 shows the results for the best found MLRmodels. The 82

initial compounds were divided in two sets: a training set of 62
compounds and a test set of 20 compounds (wa 75%:25% splitting,
well within recommended limits). A close inspection of the training
set matrix immediately pinpointed four outliers: compounds 10, 21,
23 and 39 in Table S3. In fact, these compounds show very highMIC
values (between 149.32 and 600 mg/mL) i.e., a very low activity
when compared with the remaining 58 compounds which show an
average MIC value of 8.35 mg/mL, and were, hence, promptly
removed. Models were built with this new training set and 24 new
outliers were sequentially detected according to the two criteria
mentioned in Section 2.5 (the identified outliers were compounds
1, 2, 9, 11e12, 14, 15, 18, 24, 30e31, 33, 35e36, 40, 51, 62e67, 70 and
79 in Table S3, i.e., 9 hydrazones and 19 hydrazides). These outliers
were also eliminated, one-by-one, from the training set, and the
models refitted after each removal until we reached the final
models for a training set comprising 34 compounds.

The figures of merit for all six models, shown in Table 2, fulfill
the statistical criteria set above for both internal and external
validation, in particular in the case of the two best models, models
A3 and B3, which conform to the most demanding thresholds and
are able to predict log (1/MIC) for this set of compounds with an
average SD of 0.47 log units.

To remove any possibility of attributing the quality of the sta-
tistics of these models to a chance correlation between the
response variable and the descriptors, a Y-randomization was
performed as described in Section 2.5 and results are presented in
Table 3. As can be observed, there is a significant decrease in the
quality of the randomized models when compared to the original
non-randomized ones, and therefore there seems to be no chance
correlation, as corroborated by the value of cR2p , quite above the 0.5
threshold value.

A close analysis of Table 2 shows that the biological behavior of
the studied INH derivatives against Mtb does not depend on their
physicochemical, energetic or electronic characteristics. De-
scriptors falling in these categories were found not to be important
to model log (1/MIC) values. Also, the lipophilicity characteristics
measured by ClogP, do not appear as relevant to explain the anti-
tubercular activity of these derivatives. A similar result had already
been reported by us in a previous study [35] involving the more
general class of hydrazide derivatives.

Conversely, steric and geometrical features emerge as very
effective in this modeling process. In fact, models A and B both
include the steric Verloop’s parameters L, B1, and B5, where L is a
measure of the substituent’s length, B1 is essentially a measure
of the size of the first atom in the substituent (largely a steric
effect) and B5 is an attempt to define the effective volume of the
whole substituent [91,92]. Concurrently, model A involves an
extra geometrical parameter, d3, which refers to the interatomic
distance between the two exocyclic nitrogen atoms, whereas
model B contains an additional parameter, dk, which corre-
sponds to the 2D distance between the pyridinic nitrogen and
the terminal nitrogen of the hydrazide functionality (see Fig. 5)
[39].

Both models A and B in their complete form, i.e., models A3
and B3, explain virtually the same variability in the response
variable (80.1% and 79.3%, respectively) since d3 and dk are highly
correlated, although no significant collinearity was observed be-
tween any pair of parameters in the same equation (r2 was always
below 0.59) or between one parameter against all others (R2 was
always lower than 0.68), as can be seen by the intercorrelation
matrices (Table 4). However, the predictive power of model A3 is
slightly superior to that of model B3, as suggested by the set of
measures used to assess the quality of the predictions for the
same test set (Table 2). CCC for model B3 is also marginally below
the suggested threshold value of 0.85. The scatter plot for model
A3 represented in Fig. 6 shows that there are no systematic de-
viations from the ideal line (represented as a dashed line in the
figure); in other words, there are no local, scale or local plus scale
shifts in the data. This type of plot allows an easy visual inspec-
tion of the quality of the model, thus precluding the possibility of
having good statistical validation criteria but a “bad” predictive
model [75]. Additionally, as already mentioned, we have tested
the predictive power of our models towards a totally external data



Fig. 4. Representation of the two-top principal components for all training sets used to develop the RF/ASNN classification models, the test set and the virtual set. Training set i
consists of 173 compounds (61 actives and 112 inactives), training set iii consists of 113 compounds (68 actives and 45 inactives), training set iv consists of 259 compounds (130
actives and 129 inactives), and test set consists of 45 compounds (32 actives and 13 inactives). The virtual set consists of 430 compounds. Compounds are labeled according to the
data set.
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set of compounds collected from the Novartis database. These
compounds were selected using the INH core structure as a first
filter, a similarity level of 40% and a MIC threshold value of less
than 400 mg/mL. A sub-set of 13 compounds from those returned
from the database was chosen so that the variability of both the
dependent and independent variables fell into the same range as
that of compounds in the training and test sets of the best models.
Model A3 did not perform as well as model B3 and so in Table 2
we present the results retrieved only from model B3 for the
Novartis data set. As can be seen from the metrics displayed and
also from Fig. 7, model B3 shows a good predictive ability for the
Novartis data set which is a further important criterion to assess
its quality.
The six MLR models displayed in Table 2 also perform well in
terms of applicability domain. In fact, training and test set com-
pounds of all models fall within �3 SR, signaling the absence of any
outlier (see Table S5, in Supporting Information). Moreover, there
are also no significant influential compounds in the training sets
since when h> h* (models A1, A2 and B2) the distance to h* is quite
small [64,79]. Fig. 8 shows as an example the Williams plot for
model A3 (see also Table S5). Three compounds from the test set
(compounds 7, 13 and 49) have leverage values slightly higher than
the cut-off value, h*, being somewhat deviated from the structural
centroid of the training set thus falling slightly outside the model
AD. However, their residuals are close to zero and so they are
accurately predicted by the model. Data points such as these are



Table 2
Best found MLR models.a

Sets a0 � s(a0)b

(SL)c
a1 � s(a1)

(SL)
a2 � s(a2)

(SL)
a3 � s(a3)

(SL)
a4 � s(a4)

(SL)
Nd SDe R2 f Fg R20

h AEi AAEj RMSEk Q2 l r2m
m Dr2m

n CCCo Models

log(1/MIC) [ a0 + a1 d3 + a2 B1 + a3 B5 + a4 L Model A
Training 11.562 � 2.183

(> 99.99 %)
�10.163 � 1.504

(> 99.99 %)
0.553 � 0.235
(97.5 %)

e e 34 0.562 0.732 42 e e e e 0.719 e e e Model A1

Test e e e e e 20 0.363 0.833 90 0.757 �0.181 0.377 0.461 0.810 0.638 0.069 0.883

Training 15.008 � 2.853
(> 99.99 %)

�12.686 � 2.023
(> 99.99 %)

0.686 � 0.238
(99.3 %)

�0.065 � 0.036
(91.7 %)

e 34 0.543 0.758 31 e e e e 0.758 e e e Model A2

Test e e e e e 20 0.529 0.682 39 0.680 0.068 0.431 0.566 0.669 0.629 0.044 0.822

Training 12.683 � 2.795
(> 99.99 %)

�11.235 � 1.956
(> 99.99 %)

0.686 � 0.221
(99.6 %)

�0.098 � 0.036
(98.9 %)

0.111 � 0.044
(98.1 %)

34 0.501 0.801 29 e e e e 0.801 e e e Model A3

Test e e e e e 20 0.472 0.741 52 0.738 0.040 0.413 0.504 0.739 0.696 0.006 0.857

log(1/MIC) [ a0 + a1 dk + a2 B1 + a3 B5 + a4 L Model B
Training 48.906 � 10.271

(> 99.99 %)
�8.065 � 1.626

(> 99.99 %)
e e 0.094 � 0.047

(94.2 %)
34 0.598 0.697 36 e e e e 0.697 e e e Model B1

Test e e e e e 20 0.443 0.680 38 0.642 �0.003 0.454 0.556 0.682 0.602 0.112 0.799

Training 41.638 � 10.116
(99.97 %)

�7.040 � 1.585
(99.99 %)

0.542 � 0.234
(97.2 %)

e 0.078 � 0.045
(90.7 %)

34 0.560 0.743 29 e e e e 0.743 e e e Model B2

Test e e e e e 20 0.494 0.648 33 0.607 �0.028 0.500 0.583 0.650 0.573 0.112 0.790

Training 55.818 � 10.676
(> 99.99 %)

�9.321 � 1.684
(> 99.99 %)

0.720 � 0.224
(99.7 %)

�0.098 � 0.037
(98.7 %)

0.125 � 0.045
(99.1 %)

34 0.511 0.793 28 e e e e 0.793 e e e Model B3

Test e e e e e 20 0.468 0.717 46 0.714 0.066 0.437 0.526 0.715 0.668 0.016 0.837

NOVARTIS e e e e e 13 0.368 0.629 19 0.534 �0.168 0.349 0.395 0.681 0.475 0.080 0.745

a Values are presented with three decimal places to minimize round-off errors in subsequent calculations.
b Standard deviation of coefficient.
c Significance level of coefficient.
d Number of compounds.
e Standard deviation of fit.
f Determination coefficient.
g Fisher-Snedecor statistics.
h Determination coefficient of regression through the origin.
i Average error.
j Absolute average error.
k Root mean squared error.
l Cross validation correlation coefficient.

m Average value of Roy’s metrics.
n Absolute difference between r2m values.
o Concordance correlation coefficient.
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Table 3
Results of Y-randomizations for models A3 and B3 in Table 2.

Models R2 R2r
cR2p

A3 0.741 0.147 0.663
B3 0.717 0.125 0.651

Table 4
Intercorrelation matrices.

1. Between any two descriptors

Descriptors d3 dk B1 B5 L

d3 e 0.220 0.593 0.458
dk 0.204 0.578 0.422
B1 0.287 0.156
B5 0.493

2. Between one descriptor and a linear combination of all others

Model A3 (d3, B1, B5, L)

Descriptors B1, B5, L B5, L, d3 L, d3, B1 d3, B1, B5

d3 0.634
B1 0.295
B5 0.682
L 0.538

Model B3 (dk, B1, B5, L)
Descriptors B1, B5, L B5, L, dk L, dk, B1 dk, B1, B5

dk 0.607
B1 0.292
B5 0.684
L 0.525

F. Martins et al. / European Journal of Medicinal Chemistry 81 (2014) 119e138128
sometimes called “good high leverage points or “good influential
points” [66].

Looking at the descriptors for the two best models, A3 and B3,
one can see that higher values of interatomic distances (d3 and
dK) lead to a decrease in the activity and the same effect is
observed when the volume of the substituent, measured by B5,
increases. On the contrary, the molecular specificities encoded by
B1 and L enhance the activity of these INH derivatives against
Mtb.

The observation that the chain length of the substituent pro-
motes the activity of these compounds is indeed remarkable.
Actually, the favorable effect on the activity of INH derivatives
caused by an increase in the chain length of the substituent has
already been reported in the literature [41]. The authors suggested
that the effect was due to an enhanced ability of the larger com-
pounds to penetrate the cell membrane. However, as already
referred in our previous studies [35], and again in this work, the
lipophilicity character of the INH derivatives, as measured by
ClogP, is not found to be critical to explain the biological behavior
of these compounds against Mtb. In fact, for the 82 INH derivatives
that constitute the object of our study, the findings did not reveal
any significant correlation between ClogP and the biological ac-
tivity expressed in terms of log (1/MIC). It should also be noted
that the intercorrelation between ClogP and L is very low (0.248).
These observations might thus imply at least one of two hypoth-
eses: (i) the penetration process through the cell membrane is
indeed not determinant for the antitubercular activity of these
compounds; or (ii) the measure of lipophilicity by an isotropic
lipophilicity parameter such as the n-octanolewater partition co-
efficient is not an adequate model to mimic these specific druge
membrane interactions [35]. It is known that there are potential
antitubercular compounds with either strong or weak lipophilic/
hydrophilic characteristics [88] and the importance of the lip-
ophilicity/hydrophilicity balance on the activity of antitubercular
agents has been recognized by various authors [44,93e95]. How-
ever, the relationship between lipophilicity and activity is not al-
ways evident, making it difficult to define a unique and consensual
optimal range for the lipophilicity of a good antitubercular drug
candidate.
Fig. 5. Representation of the geometrical descriptors considered for isoniazid
derivatives.
3.3. QSAR-oriented design and compound selection

The obtained classification models from RFs and ASNNs
methods were used to automatically screen a data set of 430
virtual compounds, potentially active against Mtb, and with
distinct substitution patterns e see Table S2. These compounds
belong to two broad INH derived families, the isonicotinoyl hy-
drazide family and the isonicotinoyl hydrazone family, and were
classified as active/inactive by the eight classification models. A
first ranking of these compounds was achieved taking into ac-
count their average probability to be active, determined by the
probability measure of the RFs. After this initial ranking, two
additional pruning operations were performed: i) virtual com-
pounds classified as inactives by a given classification model were
deleted; and ii), virtual compounds with an average probability of
being active lower than 0.8 were also deleted. As a consequence,
the final number of virtual compounds suggested for synthesis
was reduced to 118 (see Section 2.1 on Data sets). A further
refinement of the virtual screening using the web interface OSIRIS
Fig. 6. Log(1/MIC)pred vs. log(1/MIC)exp according to model A3.



Fig. 7. Log(1/MIC)pred vs. log(1/MIC)exp according to model B3, with predicted values
for the synthesized (D) and the Novartis (,) compounds.
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[96], allowed an evaluation of these compounds in terms of pre-
dicted drug relevant properties such as toxicity (mutagenicity,
tumorigenicity, irritation and reproductive effectiveness), drug-
likeness, drug score, ClogP, solubility and synthetic accessibility.
Based on this information, a subset of 44 compounds was pro-
posed for synthesis. From these, 13 were chosen to be synthesized
due their synthetic feasibility, but were first also evaluated in
terms of their predicted activity by the MLR models referred to in
Section 3.2.2 (estimated MIC values had to be �5 mM for a com-
pound to proceed for synthesis).

From the best found MLR models, 17 compounds with suit-
able molecular characteristics were evaluated, including the 13
proposed by the classification models. Compounds were
designed so that they would lead to high activity values as
predicted by the majority of the models, i.e., so that their de-
scriptors B1 and L were higher than the average values in the
training set, and B5 and d3 (or dk) were lower than those values.
This balance was, however, difficult to attain and therefore we
Fig. 8. Williams plot for model A3.
also had to take into consideration the relative weights of the
descriptors to explain the antitubercular activity. Table 5 pre-
sents the descriptors values computed for the 17 compounds, as
well as maximum and minimum values for training and test set
descriptors and mean values for training set descriptors. Values
in bold correspond to descriptors that fulfill the specified req-
uisites (see 3.2.2). Based on the 6 MLR models presented in
Table 2, MIC values (expressed in mM) were subsequently esti-
mated for each of these compounds and results are shown in
Table 6. Using the same activity threshold as above, 15 INH de-
rivatives with MIC �5 mM, as predicted by at least four MLR
models, which concomitantly passed the referred OSIRIS filters,
were selected as potential antitubercular agents (in bold in
Table 6). From these, 10 compounds (including 6 suggested by
the consensus approach) were chosen to be synthesized due to
their greater synthetic workability, namely compounds 1e10, in
bold and underlined in Table 6.

However, before progressing with the synthesis, we verified the
compliance of the designed compounds with the applicability
domain of the derived models by introducing them in the Williams
plot represented in Fig. 8 for model A3. All the synthesized com-
pounds lie well within �3 SD and the great majority of them are
structurally close to training set compounds as their leverage values
are lower than the warning leverage value, being therefore within
the AD of the models. Obvious exceptions are compounds 5 and 9
which, despite being reliably predicted (low standardized re-
siduals), only display h < h* for two of the models (see Table S5),
and hence are farther from the training set structural centroid. Yet,
this procedure reinforced the decision to go on with the synthesis,
since compounds 5 and 9 fall into the category of “good high
leverage points” according to [66] (see Section 3.2.2). The Williams
plot for model B3 is presented in Fig. S2 as Supporting Information.
Similar trends are observed for all the represented sets, being one of
the Novartis compounds structurally more distant from the model
centroid than all the others, even if it is the most-well predicted
compound from the set.

Although compounds 12 and 13, shown in Tables 5 and 6, have
only been synthesized for comparative purposes, it is easily seen
from Fig. 8 (and Fig. S2 in SI) and Table S5 that they have h >> h*,
and are therefore structurally remote from the model centroid,
besides having relatively high SD, close to the lower limit of the AD.
This observation is consistent with their behavior in terms of de-
scriptors’ range and MIC values (see Tables 5 and 6).

From the 10 selected compounds only two belong to the iso-
nicotinoyl hydrazide family (compounds 9 and 10) the remaining
being isonicotinoyl hydrazones. In terms of the considered molec-
ular descriptors (Table 5), these two compounds differ from all
others especially in the interatomic distance, d3, and in the length
of the substituent, L.

On the other hand, these 10 compounds have very distinct lip-
ophilicity characteristics, with experimental logPo/w ranging from
0.220 (compound 5) to 3.700 (compound 8) [88,97]. This large
spectrum of lipophilicity values in compounds with high predicted
activity corroborates the aforementioned statement that lip-
ophilicity is not per se a good criterion to judge the suitability of a
new compound as an antitubercular agent.

In order to further extend the variability of logP, we have also
synthesized compound 13, a high hydrophilic compound just as
INH (logPo/w (INH) ¼ �0.851 [88]) even if its descriptors do not
follow, in general, the tendency expected to promote activity
(please refer to Table 5), as can be confirmed by the high estimated
MIC values in Table 6. Furthermore, to be able to compare the effect
upon the activity of having a hydrazone or the corresponding hy-
drazide analogue, we have likewise synthesized compound 12, the
reduced counterpart of compound 6. Again, estimated MIC values



Table 5
Descriptors and logP values for compounds evaluated by the MLR models.

Compounds Sub-family/Substituenta Descriptorsb logPo/wc (exp)

d3 B5 B1 L dk

1 3B/22 1.2323 5.5377 1.7000 7.7103 6.1382 1.326
2 3C/22 1.2324 7.2014 1.7000 6.6826 6.1377 1.317
3 3B/41 1.2322 5.5363 1.7000 8.2845 6.1385 0.902
4 3C/41 1.2323 6.9931 1.7000 6.7337 6.1382 0.731
5 e 1.2310 3.3452 2.2160 5.4760 6.1295 0.220
6 e 1.2306 6.9692 2.0599 9.0432 6.1338 1.965d

7 3C/17 1.2322 8.9992 1.7000 7.0870 6.1393 1.317
8 3C/37 1.2319 10.5646 1.7000 6.7968 6.1360 3.700
9 e 1.3396 8.7060 1.7644 12.9649 6.1374 3.459
10 e 1.3432 6.0991 2.0294 9.6395 6.1717 2.090d

12e e 1.3810 9.2267 2.0798 4.9223 6.3135 2.833
13e e 1.3797 1.1700 1.1700 2.4158 6.2876 �0.541

ClogPf

14 3C/34 1.2316 11.1639 1.7000 7.3171 6.1315 1.211
15 3B/12 1.2319 6.9213 1.7000 6.2980 6.1350 2.117
16 3B/24 1.2317 7.9273 1.7000 6.2874 6.1328 0.570
17 3A/22 1.2319 5.5622 1.7000 6.9309 6.1347 0.042
18 3B/17 1.2316 5.5405 1.7000 9.1565 6.1353 1.587
19 2A/1 1.3802 6.1009 1.7193 4.7461 6.3175 0.469
20 2C/1 1.3806 6.7924 1.7132 5.0700 6.3184 0.519

Mean value in training set e 1.2917 6.6176 1.8558 6.0279 6.2008 e

Maximum value in training set e 1.3815 17.7653 3.3884 12.4097 6.3148 e

Minimum value in training set e 1.2297 1.1700 1.1700 2.1850 6.1259 e

Maximum value in test set e 1.3814 11.9496 2.4492 8.7913 6.3089 e

Minimum value in test set e 1.2296 1.1700 1.1700 2.1870 6.1272 e

a Please refer to Table S2 for structures.
b Values in bold correspond to descriptors whose values promote activity when compared with mean values in training set, according to models in Table 2.
c Experimental octanol/water partition coefficient (logPo/w) determined by the shake-flask method in refs. [88] and [97].
d logPo/w experimentally determined in this work by the shake-flask method.
e Compounds 12 and 13 have been synthesized for comparative purposes.
f Estimated logPo/w values determined by means of ClogP through ChemDraw, ref. [58].
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for compound 12 are much higher than the established threshold
value of 5 mM, although its logPo/w value lies within the limits of
lipophilicity defined by the other compounds.

3.4. Biological activity

The synthesized compounds were tested in vitro against three
Mtb strains: the H37Rv ATCC27294T strain, aMtb clinical strainwith
Table 6
MIC values (in mM) predicted by models A1 to B3.

Compoundsa,b Model A1 Model A2 Model A3c Model B1 Model B2 Model B3c

1 1.0494 0.6627 0.4845 0.7509 1.1229 0.5626
2 1.0502 0.8516 0.9188 0.9293 1.3409 1.0899
3 1.0457 0.6597 0.4167 0.6670 1.0175 0.4796
4 1.0496 0.8248 0.8645 0.9266 1.3381 1.0345
5 0.5271 0.2030 0.2230 1.0339 0.7654 0.2307
6 0.6372 0.4424 0.2582 0.5187 0.5248 0.2646
7 1.0453 1.1089 1.2386 0.8772 1.2794 1.5040
8 1.0389 1.3918 1.8884 0.8774 1.2766 2.1645
9 11.9046 22.1251 3.7643 0.2380 0.3973 0.2225
10 9.2605 10.8655 3.4943 0.9175 0.9096 0.4364
12d 20.9857 48.7145 58.4770 35.5198 19.7877 66.1828
13d 64.8971 58.9162 72.8658 37.6827 63.4557 57.6342

14 1.0308 1.5081 1.8776 0.7219 1.0814 1.9369
15 1.0397 0.8064 0.9408 0.9603 1.3753 1.0790
16 1.0352 0.9328 1.1790 0.9239 1.3296 1.2946
17 1.0398 0.6576 0.5884 0.8329 1.2212 0.6575
18 1.0319 0.6493 0.3290 0.5203 0.8253 0.3481
19 32.6245 52.6503 52.2265 39.7614 34.1821 68.2964
20 33.1831 59.6566 57.3596 37.6674 32.9455 74.7712

a In bold compounds predicted as active (MIC � 5 mM) by at least 4 MLR models.
b In bold and underlined compounds selected for synthesis.
c Best MLR models.
d Compounds 12 and 13 have been synthesized for comparative purposes.
a katG S315T mutation and the INH resistant strain H37Rv
ATCC27294T (H37RvINH) with a full deletion in the katG gene, as
referred in Section 5.2.

Results are shown in Table 7 where INH, the reference com-
pound, is introduced for comparative purposes.
3.4.1. Activities against the wt strain
The ten designed compounds show experimental MIC values

(expressed in mM units) against the wild type strain of Mtb very
close to values predicted by all MLR models which give predictions
for these compounds < 5 mM (column 3, Table 7) e i.e., by a
consensus prediction [36,38] e and by the two best MLR models,
models A3 and B3 (column 5, Table 7). Themean average deviations
(AE) are, respectively, 0.25 and 0.36. Within experimental uncer-
tainty, compounds are more active than predicted in all cases, with
the exception of compound 10.

A very relevant result is that five out of the 10 compounds
(compounds 1, 2, 4, 5 and 6) for which the majority of descriptors
clearly contribute to enhance the activity (see Table 5), show a
measured activity against H37Rv higher than that of INH, measured
with the same protocol, BACTEC 960, in the same laboratory (please
refer to Section 5.2) - Fig. 9. These findings clearly refute the ar-
guments of some authors who claim that INH analogous backbones
never achieve the (in vitro) efficiency of INH of which theywould be
nothing else than mere precursors, thus postulating that INH is not
a lead compound [94]. If the action of these derivatives would be to
simply produce, completely and readily, INH, as referred [94], a
higher activity than INH would never be observed.

Compared to the previous compounds, compound 3, rather
unexpectedly based solely on its descriptor values, is approximately
twice less active than INH. Additionally, compounds 7 to 9 have a
very unfavorable B5 (taken as the effective volume of the whole



Table 7
Predicted and experimental MIC values (mM) against wild-type Mtb and experimental MIC (mM) values against mutant Mtb.

Compounds MIC/mM MIC/mM

H37Rv Clinical mutation katG (S315T) H37RvINH (DkatG)

Exp. Pred.a AEb Pred.c AEb Exp. Exp.

INHd 0.29 e e e e 43.8 >72.9
1 0.28 0.77 0.49 0.52 0.24 >39.5 >39.5
2 0.24 1.03 0.79 1.00 0.76 >39.5 >39.5
3 0.47 0.71 0.24 0.45 �0.02 39.2 >39.2
4 0.27 1.01 0.74 0.95 0.68 39.2 >39.2
5 0.20 0.50 0.30 0.23 0.03 39.4 >49.2
6 0.27 0.44 0.17 0.26 �0.01 34.1 >34.1
7 1.06 1.18 0.12 1.37 0.31 21.2 n.d.e

8 0.95 1.44 0.49 2.03 1.08 18.9 n.d.
9 0.38 1.16 0.78 1.99 1.61 6.9 >34.3
10 3.04 1.44 �1.60 1.97 �1.07 >38.0 n.d.
11 44.65 e e e e >55.8 >55.8.
12 0.44 e e e e >33.9 >33.9
13 0.42 e e e e 47.9 n.d.

a Mean value of at least four MLR models.
b Average error (pred.�exp.).
c Mean value of two best MLR models.
d Reference compound.
e Not determined.
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substituent) which seems to cancel out the positive effects of the
other descriptors. Compound 10, on the other hand, has a
consensus predicted activity of 1.44 mM but is the less active
compound of this set. These observations cannot be rationalized in
terms of simple electronic effects, which in any case did not appear
as relevant descriptors in any of the best models. The behavior of
these compounds is most probably related with the steric charac-
teristics of the R substituents and their ability or incapability to
promote the formation of the isonicotinoyl radical postulated to be
formed in the generally accepted mechanism of action of INH
[18,24,98,99]. In fact, it is reported in the literature that access to
the heme active site of KatG poses steric constraints and therefore
any factor influencing the stereochemistry of these compounds
should be relevant [100,101]. Some authors [102] suggest that the
formation of the INH analogues adducts with NADþ requires acyl
radicals sufficiently long-lived, and that, for aromatic hydrazides,
the nature of substituents should play an important role in the
stabilization of radical intermediates involved in the overall process
of INH activation.
Fig. 9. Predicted and experimental MIC values for the 10 selected compounds against
H37Rv (MIC values given by an average prediction based on the two best MLR models).
A comparison between the hydrazone compound 6 and the
corresponding hydrazide compound 12, shows that the hydrazone
is more active than its analogue (0.27 mM vs. 0.44 mM), as already
perceived by some authors [39] and contested by others [94], based
on the assumption that MIC measurements in the two situations
were not standardized, which is clearly not the case here. The
higher activity of hydrazones is possibly due to a higher efficacy in
the formation, in loco, of the prodrug INH, as a result of hydrazone
hydrolysis, and the subsequent production of the acyl radical, as a
result of INH activation by KatG.

The biological behavior of the isonicotinoyl hydrazide com-
pounds 12 and 13, is very similar, with reasonably low experi-
mental MIC values (0.44 and 0.42 mM, respectively) in spite of their
(not surprisingly) high estimated MIC values (41.61 and 59.24 mM,
respectively). These compounds show, however, very different
lipophilic characteristics as given by their logPoct/w (Table 5), which,
again, further supports the inference that there is no clear rela-
tionship between lipophilicity and in vitro activity.

To summarize, the information in Tables 5 and 6 shows that Ne
N distances (d3 and dk) and the length of the substituent (L) are the
properties with the most impact in the activity of these com-
pounds. Shorter distances and lengthy substituents appear to favor
the activity by allegedly facilitating the production of the iso-
nicotinoyl radical.

3.4.2. Activities against resistant strains
Given the results obtained for the Mtb wt strain, we carried out

the testing of these compounds against INH mono-resistant strains
whose mechanism of resistance is related only to the diminished
effectiveness of KatG. Values in Table 7 reveal that seven of the
synthesized compounds are more effective than INH against the
mutated S315T resistant strain, i.e., compounds 3e9, with com-
pounds 7e9 showing a significant decrease in MIC e Table 7 and
Fig. 10. Among these seven INH derivatives, six are isonicotinoyl
hydrazones, being compound 9 the only isonicotinoyl hydrazide.
However, it is precisely this compound that presents the most
significant difference in activity showing a six fold increase in ac-
tivity by comparison with INH.

It has been reported in the literature that katG (S315T) confers
resistance to INH through subtle changes in the INH binding site
[103], but without losing its ability to bind INH [98,104]. Moreover,



Fig. 10. Experimental MIC values for the 10 selected compounds against mutated katG
(S315T). MIC values for compounds 1, 2 and 10 represent the lower limit obtained.

Table 8
Cytotoxicity (IC50) and selectivity index (SI) for the synthesized compounds.a

Compound IC50 (Vero cells) SI
IC50/MIC

mg/mL mM

INHb >27.43 >200 >686
1 >50.65 >200 >724
2 >50.65 >200 >844
3 >51.05 >200 >425
4 >51.05 >200 >729
5 >38.62 >190 >965
6 >58.67 >200 >733
7 n.d. n.d. n.d.
8 n.d. n.d. n.d.
9 >58.28 >75 >530
10 n.d. n.d. n.d.
11 n.d. n.d. n.d.
12 >59.08 >200 >454
13 >33.43 >200 >478

a Evaluation for cytotoxicity in VERO cells at concentrations up to 500 times the
MIC for Mtb H37Rv. The activity/cytotoxicity criterion is an SI > 10.

b Reference compound.
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it has been described that the addition of a methyl group in the
mutated katG actually constricts the accessibility to the heme active
site by closing down the dimensions of the narrowest part of the
access channel from6�A in thewt katG to 4.7�A in the S315Tmutated
katG [100e102]. This steric effect is taken as interfering with the
interaction between katG and INH, leading some authors to suggest
that INH binding within the heme pocket is most probably a pre-
requisite for INH activation [101]. Furthermore, these steric ef-
fects on INH binding allegedly have an impact upon INH oxidation,
thus decreasing the conversion of INH to a biologically active form
[105,106]. However, the effect of any perturbation on INH binding
upon drug activation needs to be further analyzed [102].

Preliminary docking studies of INH with both wt and mutated
KatG carried out by us have shown that the S315T mutation subtly
narrows the accessibility channel to the catalytic centre of KatG but
the in silico binding constants of INH to both strains turned out to
be similar within the method uncertainty. Although the exact
binding site of INH to the CP-KatG wt enzyme (and for that matter,
also to the KatG (S315T)) is still controversial [102] and needs
further investigation, recent studies [100,103,107] indicate that it
might be close to the KatG heme pocket, at about 12 �A from the
heme iron for both enzymes. Therefore, any factor affecting the
stereochemistry of a compound might be important to rationalize
its activity, especially in the mutated strain.

These evidences make the performance of compound 9 in the
mutated strain even more peculiar because its molecular structure,
with a long alkyl chain, does anticipate large steric constrictions. To
have a measure of the importance of the alkyl group upon the
antitubercular activity, we have synthesized the acetyl analogue,
compound 11 (N’-acetylisonicotinohydrazide), which showed a
very low activity both in the wt strain and in the mutated strain.
Hence, the C10 chain of compound 9 seems indeed crucial to
enhance its mycobacterial activity. Some authors have also re-
ported improved activities for other long chain hydrazides but
there seems to be no consistency between the length of the chain
and the corresponding MIC value [41,87,108]. Regarding the effec-
tiveness of compound 9, our hypothesis is that the active site in the
mutated strain might be located in a more peripheral area of the
KatG enzyme and/or that the compoundeenzyme interaction may
be more efficient.

Since we do not expect that a substitution of a serine by a
threonine at amino acid residue 315 shall introduce very significant
modifications in the active site of KatG, molecular dynamics studies
to model the behavior of both compounds, i.e., INH and compound
9, vis-à-vis the wild type and the mutated strain, as well experi-
mental determinations of binding constants in these four situations
are underway and will hopefully give us further insights into the
real molecular picture of these drugetarget interactions.

Results presented in this work seem to suggest that redesign of
the INHmolecule in order to improve drug bindingmay indeed be a
feasible approach to overcome resistance in katG (S315T), the most
frequent and important cause of INH resistance worldwide [109]. In
support of this hypothesis is the total ineffectiveness of the new
INH derivatives against the H37RvINH (DkatG) that suffered a full
deletion of the katG gene after prolonged exposure to INH (Table 7)
which confirms the importance of the activation role of KatG upon
INH and its derivatives.

New INH derivatives redesigned to take advantage of the
diminished but still effective activation of INH by the mutated katG,
would thus allow the maintenance in the therapeutic regimen of
one of the two most active and effective anti-TB drug known so far,
i.e., isoniazid [28,110].

3.5. Cytotoxicity assays

In parallel with the antitubercular activity evaluation, all com-
pounds with MIC values against the H37Rv strain <0.5 mM were
screened towards African green monkey kidney cells (VERO cells)
using theMTTassay, in order to determine their in vitro cytotoxicity
(IC50) and to establish the selectivity index (SI). Results showed that
these compounds were non-toxic to the host cells in the concen-
tration range studied (1 MICe500 MIC, with MIC in mg/mL) e

Table 8. Isoniazid was also analyzed and had a IC50 value >200. The
SI was determined as the ratio of the measured IC50 to the
measured IC99 (H37Rv Mtb MIC value) and was in all cases > 400
(for INH, SI> 500). SI is commonly used to estimate the therapeutic
window of a drug and to identify drug candidates for further
studies. According to literature [49,111,112] candidates for new
drugs must have a SI � 10, with MIC values lower than 6.25 mg/mL
and a low cytotoxicity, as is indeed the case for all tested com-
pounds (compounds 1e6 and 9).

4. Conclusions

The use of a rational design approach based on well-validated
classification and regression QSAR models has allowed a success-
ful synthesis of several potent antitubercular isoniazid derivatives.
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Compounds 1, 2, 4, 5 and 6 showed an activity against H37Rv
higher (MIC � 0.28 mM) than the one exhibited by the reference
compound, INH (MIC ¼ 0.29 mM). It is postulated that the behavior
of these compounds is probably dependent on stereochemical as-
pects associated with the nature of the substituents and on their
ability to promote the formation (and stabilization) of the iso-
nicotinoyl radical in the overall process of activation by KatG. As
suggested in our previous works, lipophilicity was again not iden-
tified as an important factor to describe the activity of these com-
pounds, which was now further confirmed by the absence of
correlation between measured logPo/w and MIC values.

On the other hand, compounds 3 to 9 showed to be more
effective than INH against a Mtb clinical strain carrying only a katG
S315T mutation. In particular, compound 9, with an alkyl chain in
C10, showed a six fold increase in activity against this resistant
strain. This finding seems to question the recently proposed rela-
tionship between the increased resistance of katG (S315T) to INH
and a putative larger steric constraint in the access channel to the
heme active site in the mutated strain. Experimental and in silico
studies to evaluate the interaction of compound 9 with the bio-
logical target in both strains are now being carried out and will be
reported in due course.

Finally, the ineffectiveness of all the new INH derivatives against
the INH high-level resistant strain H37RvINH (DkatG) with a full
deletion of the katG gene, indubitably attests the crucial role of
KatG in the activation process of these compounds.

In summary, our results clearly demonstrate that using a
properly validated QSAR methodology it is possible to design more
active compounds departing from the INH core structure and
overcome the decreased susceptibility of the katG mutated strains
towards INH.

5. Experimental section

5.1. Chemistry

5.1.1. General
All solvents and reagents were obtained from commercial sup-

pliers and were used without further purification. The reactions
were monitored by thin layer chromatography performed on silica
gel 60 F254 aluminum sheets and visualized with UV light
(254 nm). Flash column chromatographies were performed on
silica-gel 60, 40e63 mm. Melting points were taken in open capil-
lary tubes using an apparatus Stuart� SMP 30 or in a Reichert
Thermovar Microscope and are uncorrected. IR spectra were ob-
tained using a Mattson Satellite FTIR and only the diagnostic ab-
sorption bands were reported, in cm�1. 1H NMR (400 MHz) and 13C
NMR spectra (100.6 MHz) were recorded on a Bruker AMX spec-
trometer; chemical shifts were expressed as d values and refer-
enced to the residual solvent peak (DMSO-d6, dH ¼ 2.50); coupling
constants were reported in units of Hertz (Hz). HRMS were
recorded in a mass spectrometer Apex Ultra FTICReMS. The purity
of all compounds (�98%) was assessed by GCeMS analysis
using a ThermoQuest 8000 series chromatograph coupled
with a MS Trio 1000-Fisions [DB-1 coated capillary column
(5 m � 0.53 mm � 2.65 mm) using N2 as carrier gas; the GC oven
was programmed at 120 �C (2min), heated to 200 �C at 10 �Cmin�1,
held 2min at 200 �C, further heated to 280 �C at 20 �C min�1 and
held at final temperature for 30 min] or a Surveyor Plus HPLC
system (Thermo Finnigan) equipped with a Surveyor Autosampler
Plus with a 100 mL loop, a quaternary pump Surveyor LC Pump Plus,
and a diode-array detector Surveyor PDA Plus Merck [column
Lichrospher�100 RP-18 column(250 � 4 mm, particle size 5 mm),
gradient elution (40% acetonitrile to 100% 0.1% TFA over 20 min and
return to the initial conditions within 13 min)].
5.1.2. General procedure for the synthesis of hydrazones 1 and 2
Isoniazid (1 equiv.) was added in portions over a period of three

hours to a solution of the dialdehyde (1 equiv.) in absolute ethanol.
The mixturewas stirred at room temperature for 24 h, the resulting
precipitate was filtered off and the mother liquor concentrated to
afford a crude product which was further purified by flash chro-
matography and recrystallization.
5.1.2.1. N0-(E)-(3-methanoylbenzylidene)isonicotinohydrazide (com-
pound 1). White crystals (flash column chromatography with
EtOAc/MeOH 93:7 and recrystallization from ethanol/water 1:1),
yield: 41% (1.027 g), mp 210.1e211.5 �C. IR (KBr): y (cm�1) ¼ 3300
(NH amide), 3045e2854 (Ar CeH), 1676 (C]O amide and alde-
hyde),1550 (C]N imine). 1H NMR (DMSO-d6): d¼ 12.39 (s,1H, NH),
10.01 (s, 1H, CHO), 8.81 (AA0 part of a AA0XX0 system, 2H, J ¼ 4.6,
1.4 Hz; H-2, H-6), 8.56(s, 1H, CH]N), 8.29 (s, 1H, H-20), 8.07 (d, 1H,
J ¼ 7.8 Hz), 8.00 (d, 1H, J ¼ 7.6, H-40), 7.85 (XX0 part of a AA0XX0

system, 2H, J¼ 4.6, 1.5 Hz, H-3, H-5), 7.72 (t, 1H, J¼ 7.7 Hz, H-50). 13C
NMR (DMSO-d6): d ¼ 193.0 (CHO) 161.8 (NHCO), 150.3 (C-2, C-6),
147.6 (CHN),140.3 (C-4), 136.6 (C-30), 135.0 (C-10), 132.9 (C-60), 130.8
(C-40), 129.8 (C-50), 127.8 (C-20), 121.5(C-3, C-5). HRMS: m/z
254.09231 [MþH]þ(calcd. for C14H11N3 O2þH 254.09240).
5.1.2.2. N0-(E)-(4-methanoylbenzylidene)isonicotinohydrazide (com-
pound 2). White crystals, mp 222.1e223.3 �C [lit. 219e220 �C] [89].
HRMS: m/z 254.09214 [MþH]þ(calcd. for C14H11O2N3þH
254.09240).
5.1.3. General procedure for the synthesis of hydrazones 3 and 4
1equiv of NaBH4 was added, portion wise, to a solution of

compounds 1 or 2 dissolved in 96% ethanol. After stirring the re-
action mixture for 2 h at room temperature, water was added and
the resulting precipitate was filtered off to afford a crude product
which was further purified by recrystallization.
5.1.3.1. N0-(E)-3-(hydroxymethyl)benzylidene)isonicotinohydrazide
(compound 3). White crystals (recrystallization from water), yield:
43% (0.108 g), mp 230.4e232.3 �C. IR (KBr): y (cm�1) ¼ 3373 (OH),
3202 (NH amide), 3034e2897 (Ar CeH), 1671 (C]O amide), 1568
(C]N imine). 1H NMR (DMSO-d6): d ¼ 12.08 (s, 1H, NH), 8.80 (AA0

part of a AA0XX0 system), 2H, J¼ 5.6 Hz, H-2, H-6), 8.47 (s, 1H, CHN),
7.84 (XX0 part of a AA0XX0 system, 2H, J ¼ 5.8 Hz, H-3, H-5), 7.76 (s,
1H, H-20), 7.60 (d,1H, J¼ 7.1 Hz, H-60), 7.41 (m,1H, H-50), 4.56 (d, 2H,
J¼ 5.3 Hz CH2OH). 13C NMR (DMSO-d6): d¼ 161.6 (NHCO), 150.3 (C-
2, C-6), 149.1 (CHN), 143.3 (C-30), 140.4 (C-4), 133.8 (C-10), 128.6 (C-
40), 126.4 (C-50), 126.0 (C-60), 124.7 (C-20), 121.5 (C-3, C-5), 62.5
(CH2OH). HRESIMS: m/z 256.10806 [MþH]þ(calcd. for
C14H13N3O2 þ H 256.10805).
5.1.3.2. N0-(E)-4-(hydroxymethyl)benzylidene)isonicotinohydrazide
(compound 4). White crystals (recrystallization from EtOH/H2O
1:1), yield: 29% (0.119 g), mp 220.1e221.3 �C. IR (KBr): y

(cm�1) ¼ 3399 (OH), 3300 (NH amide), 3045e2854 (Ar CeH), 1667
(C]O amide), 1567 (C]N imine). 1H NMR (CD3OD): d ¼ 8.77 (AA0

part of a AA0XX0 system, 2H, J ¼ 4.6, 1.5 Hz, H-2, H-6), 8.38 (s, 1H,
CHN), 7.91 (XX0 part of a AA0XX0 system, 2H, J ¼ 4.4, 1.6 Hz, H-3, H-
5), 7.84 (AA0 part of a AA0XX0 system, 2H, J¼ 8.2 Hz, H-20, H-60), 7.46
(XX00 part of a AA0XX0 system, 2H, J ¼ 8.0, H-30, H-50), 4.67 (s, 2H,
CH2OH). 13C NMR (CD3OD): d ¼ 163.2 (NHCO), 150.3 (CHN), 149.7
(C-2, C-6), 144.6 (C-40), 141.1 (C-4), 132.8 (C-10), 127.7 (C-20, C-60),
126.8 (C-30, C-50), 121.8 (C-3, C-5), 63.3 (CH2OH). HRESIMS: m/z
256.10805 [MþH]þ(calcd. for C14H13N3O2 þ H 256.10805).



F. Martins et al. / European Journal of Medicinal Chemistry 81 (2014) 119e138134
5.1.4. General procedure for the synthesis of hydrazones 5e8
A solution of the aldehyde or ketone (1 equiv.) in absolute

ethanol was added dropwise to a solution of isoniazid (1 equiv.) in
water. The mixture was stirred at room temperature for 24 h and
the resulting solid collected and washed with cold water. Flash
column chromatography over silica-gel and/or recrystallization
afforded pure compounds.

5.1.4.1. N0-cyclopentylideneisonicotinohydrazide (compound 5).
White crystals (recrystallization from water), yield: 63% (1.877 g),
mp 182.3e183.2 �C. IR (KBr): y (cm�1) ¼ 3200 (NH amide), 3084e
3013 (Ar CeH), 2976e2816 (aliph. CeH), 1658, (C]O amide), 1645
(C]N imine). 1H NMR (DMSO-d6): d ¼ 10.58 (s, 1H, NH), 8.73 (AA0

part of a AA0XX0 system, 2H, J¼ 5.6 Hz, H-2, H-6), 7.72 (XX0 part of a
AA0XX0 system, 2H, J ¼ 5.6 Hz, H-3, H-5), 2.44 (t, 2H, J ¼ 6.8 Hz, H-
50), 2.41 (t, 2H, J ¼ 6.8 Hz, H-20), 1.72 (m, 4H, H-30, H-40). 13C NMR
(DMSO-d6): d ¼ 172.5 (C-10), 162.2 (NHCO), 150.5 (C-2; C-6), 141.7
(C-4), 122.2 (C-3; C-5), 33.6 (C-20), 29.4 (C-50), 24.8 (C-30*), 24.7 (C-
40*). HRESIMS: m/z 204.11308 [MþH]þ(calcd. for C11H13N3O þ H
204.11314).

5.1.4.2. N0-(4-phenylcyclohexylidene)isonicotinohydrazide (com-
pound 6). White crystals (recrystallization from ethanol/water 1:2),
yield: 74% (3.252 g), mp 178.3e180.3 �C (dec.). IR (KBr): y

(cm�1) ¼ 3443 (NH amide), 2935 (Ar CeH), 1665, (C]O amide),
1636 (C]N imine). 1H NMR (DMSO-d6): d ¼ 11.0 (s, 1H, NH), 8.74
(AA0 part of a AA0XX0 system, 2H, J¼ 4.6; 1.2 Hz, H-2, H-6), 7.76 (XX0

part of a AA0XX0 system, 2H, J ¼ 4.6, J ¼ 1.2 Hz, H-3, H-5), 7.29 (m,
4H, H-200, H-300, H-500, H-600), 7.19 (m, 1H, H-400), 3.04 (d, 1H,
J ¼ 13.7 Hz, H-6eq0), 2.89 (t, 1H, J ¼ 12.08 Hz, H-40), 2.56 (d, 1H,
J ¼ 13.6 Hz, H-2eq0), 2.46 (ddd, 1H, J ¼ 13.6, 13.6, 4.86 Hz, H-2ax0),
2.09 (ddd,1H, J¼ 13.7, 13.7, 5.24 Hz, H-6ax0), 1.96 (dt, 1H, J¼ 12.8 Hz,
H-5eq0), 1.71 (dddd,1H, J¼ 12.7,12.7, 4.24 Hz, H-3ax0), 1.61 (dddd,1H,
J ¼ 12.8, 12.8, 3.6 Hz, H-5ax0), 2.03 (m, 1H, H-3eq0). 13C NMR (DMSO-
d6): d ¼ 166.7 (C-10), 161.8 (NHCO), 150.1 (C-2; C-6), 145.7 (C-100),
141.1 (C-4), 128.4* (C-200, C-600), 126.7* (C-300, C-500), 126.1 (C-400),
121.7 (C-3; C-5), 42.4 (C-40), 34.8 (C-20), 33.9 (C-30), 33.0 (C-50), 27.3
(C-60). HRESIMS: m/z 294.15969 [MþH]þ(calcd. for C18H19N3O þ H
294.16009).

5.1.4.3. Methyl 4-[(E)-(isonicotinoylhydrazone)methyl] benzoate
(compound 7). White crystals (recrystallization from acetone),
yield: 59% (1.808 g), mp 216.2e217.1 �C. IR (KBr): y (cm�1) ¼ 3262
(NH amide), 3000e3126 (Ar CeH), 2956e23848 (aliph. CeH), 1716
(C]O ester), 1665 (C]O amide), 1604 (C]N imine). 1H NMR
(DMSO-d6): d¼ 12.26 (s, 1H, NH), 8.81 (AA0 part of a AA0XX0 system,
2H, J ¼ 4.4, 1.5 Hz, H-20, H-60), 8.52 (s, 1H, CHN), 8.05 (AA0 part of a
AA0BB0 system, 2H, J ¼ 8.3 Hz, H-2, H-6), 7.90 (BB00 part of a AA0BB0

system, 2H, J ¼ 8.3 Hz, H-3, H-5), 7.84 (XX0 part of a AA0XX0 system,
2H, J ¼ 4.4, 1.5 Hz, H-30, H-50), 3.88 (s, 3H, OCH3). 13C NMR (DMSO-
d6): d ¼ 166.3 (CH3OCO), 162.3 (NHCO), 150.9 (C-20; C-60), 148.0
(CHN), 140.7 (C-40), 138.9 (C-4), 131.2 (C-1), 130.2 (C-2, C-6), 127.9
(C-3, C-5), 122,0 (C-30, C-50), 52.8 (OCH3). HRESIMS: m/z 284.10687
[MþH]þ(calcd. for C15H14O3N3þH 284.10297).

5.1.4.4. N0-(E)-(4-phenoxybenzylidene)isonicotinohydrazide (com-
pound 8). White crystals (flash column chromatography with
EtOAc and recrystallization from ethanol/water), yield: 77%
(1.552 g), mp 175.8e176.8 �C. IR (KBr): y (cm�1)¼ 3421 (NH amide),
3103e3038 (Ar CeH), 1659, (C]O amide), 1607 (C]N imine). 1H
NMR (DMSO-d6): d ¼ 12.65 (s, 1H, NH), 8.79 (AA0 part of a AA0XX0

system, 2H, J ¼ 5.9 Hz, H-2, H-6), 8.45 (s, 1H, CHN), 7.83 (XX0 part of
a AA0XX0 system, 2H, J¼ 5.9 Hz, H-3, H-5), 7.77 (AA0 part of a AA0XX0

system, 2H, J ¼ 8.7 Hz, H-20, H-60), 7.45 (AA0 part of a AA0BB0C
system, 2H, J ¼ 7.9 Hz, H-300, H-500), 7.21 (C part of a AA0BB0C system,
1H, J ¼ 7.4 Hz, H-400), 7.10 (BB0 part of a AA0BB0C system, 2H,
J¼ 7.7 Hz, H-200), 7.07 (XX0 part of a AA0XX0 system, 2H, J¼ 8.6 Hz, H-
30, H-50). 13C NMR (DMSO-d6): d ¼ 162.0 (NHCO), 159.3 (C-40), 156.1
(C-100), 150.8 (C-2, C-6), 148.9 (CHN), 141.0 (C-4), 130.7 (C-300, C-500),
129.7 (C-20, C-60), 129.4 (C-10), 124.7 (C-400), 122.0 (C-3, C-5), 120.0
(C-200, C-600), 118.7 (C-30, C-50). HRESIMS: m/z 318.12909
[MþH]þ(calcd. for C19H16O2N3þH 318.12370).

5.1.5. N0-decanoylisonicotinohydrazide (compound 9)
A solution of isoniazid (4 g, 29.2 mmol) and N-methylmorpho-

line (3.2 mL, 29.1 mmol) in acetonitrile (65 mL) was stirred and
heated to reflux. Then, a solution of decanoyl chloride (6.0 mL,
28.9 mmol) in acetonitrile (15 mL) was added dropwise, and the
reaction mixture kept at reflux for 2 h. After cooling to room
temperature, the precipitate was filtered off and washed with
water.

Several recrystallizations from ethanol/water 2:8 and n-hexane/
ethanol 10:2.5 afforded compound 9.

White crystals, yield: 35% (2.977 g), mp 118.4e119.2 �C [lit. 110e
112 �C] [87]. HRESIMS: m/z 292.20190 [MþH]þ(calcd. for
C16H25N3O2 þ H 292.20195).

5.1.6. N0-(2-methylheptanoyl)isonicotinohydrazide (compound 10)
2-methylheptanoic acid (10 mL, 61 mmol) was refluxed with

35.8 mL (487mmol) of thionyl chloride for two hours. The excess of
thionyl chloride was removed under reduced pressure and the
crude 2-methylheptanoyl chloride was used in the next step
without further purification. A solution of isoniazid (8.36 g,
60.9 mmol) in acetonitrile (136 mL) was stirred and heated to
reflux. Then, a solution of 2-methylheptanoyl chloride (8.96 g,
60.31 mmol) in acetonitrile (30 mL) was added dropwise, and the
reaction mixture kept at reflux for 1 h and left overnight at room
temperature. The reaction mixture was neutralized with a 25%
solution of ammonium hydroxide and the formed precipitate
washed with water and filtered off.

White solid, yield: 30.6% (4.866 g), mp 122.2e123.5 �C. IR (KBr):
y (cm�1) ¼ 3194 (NeH amide), 3027 (ArCeH), 2954e2930 (aliph.
CeH), 1602 (C]O amide). 1H NMR (DMSO-d6): d ¼ 10.79(s, 1H,
pyCONH), 9.57 (s, 1H, NHCOCH2), 8.66 (d, 2H, J ¼ 5.0 Hz, H-2, H-6),
7.63 (d, 2H, J ¼ 5.7 Hz, H-3, H-5), 2.47 (ddd, 1H, J ¼ 13.8; 6.8 Hz, H-
20), 1.65 (m, 1H, H-3a0), 1.42 (m, 1H, H-3b0), 1.25 (s, 6H, H-40, H-50, H-
60), 1.17 (d, 3H, J ¼ 6.80 Hz, H-80), 0.86 (t, 3H, J ¼ 5.9 Hz, H-70); 13C
NMR (DMSO-d6): d ¼ 175.1 (C-10), 162.6 (pyCONH), 150.4 (C-2, C-6),
138.3 (C-4), 121.1 (C-3, C-5), 39.1 (C-20), 34.0(C-30), 31.7(C-50), 27.0
(C-40), 22.5 (C-60), 17,61(C-80), 14.0 (C-70). HRESIMS:m/z 264.107748
[MþH]þ(calcd. for C14H21N3O2þH 264.107653).

5.1.7. N0-acetylisonicotinohydrazide (compound 11)
Acetic anhydride (1.8 mL, 19.0 mmol) was added dropwise to a

solution of isoniazid (2 g, 14.6 mmol) inwater (20 mL). The reaction
mixture was stirred at room temperature for 30 min and the
resulting solid filtered off, washed with dichloromethane and
recrystallized from water.

White crystals, yield: 53.5% (1.399 g), mp 163.0e163.9 �C, lit.
[162.0e163.0 �C] [113]. EIMS (probe) 70 eV: m/z 179 [M]þ., 137
[C6H7N3O]þ, 106 [C6H4NO]þ, 78 [C5H4N]þ, 51 [C4H3]þ.

5.1.8. N0-(4-phenylcyclohexyl)isonicotinohydrazide (compound 12)
A solution of methanolic 5 M HCl was added, dropwise, to a

solution of compound 6 (1.004 g, 3.4 mmol) and NaBH3CN (143 mg,
2.3 mmol) in 50 mL of methanol until pH3 was reached. The so-
lution was stirred for 3 h, and methanol was removed under
reduced pressure. The residue was flash chromatographed over
silica-gel (acetone/CH2Cl2 3:7). Fractions containing the reduced



Table 9
Crystal data and structure refinement for Compound 7.

Crystal data

Empirical formula C15 H17 N3 O5

Mr 319.32
Temperature 150(2) K
Wavelength 0.71073 �A
Crystal system Triclinic
Space group P �1
Unit cell dimensions a ¼ 6.4597(7) �A

b ¼ 9.8034(11) �A
c ¼ 12.4981(14) �A
a ¼ 103.411(7) � .
b ¼ 97.331(6) � .
g ¼ 94.030(7) � .

Volume 759.49(15) �A3

Z 2
Calculated density 1.396 Mg/m3

Absorption coefficient 0.106 mm�1

F(000) 336
Crystal size 0.430 � 0.250 � 0.190 mm
q range for data collection 3.197e28.368� .
Limiting indices �8 � h � 8

�13 � k � 13
�16 � l � 16

Reflections collected/unique 13890/3751 [R(int) ¼ 0.0354]
Completeness to q ¼ 25.242[deg.] 99.1%
Refinement method Full-matrix least-squares on F2

Data/restraints/parameters 3751/0/276
Goodness-of-fit on F2 1.014
Final R indices [I > 2sigma(I)] R1 ¼ 0.0387;

wR2 ¼ 0.0956
R indices (all data) R1 ¼ 0.0561;

wR2 ¼ 0.1054
Extinction coefficient n/a
Largest diff. peak and hole 0.315 and �0.215 e �A�3
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compound were further chromatographed using hexane/acetone
6:4 as eluent.

White crystals, yield: 10% (0.107 g), mp 114e115 �C (dec.). IR
(KBr): y (cm�1) ¼ 3296 (NH amide), 2922 (Ar CeH), 1674, (C]O
amide). 1H NMR (CDCl3): d ¼ 8.73 (AA0 part of a AA0XX0 system, 2H,
J ¼ 4.6; 1.4 Hz, H-2, H-6), 7.65 (XX0 part of a AA0XX0 system, 2H,
J ¼ 4.6, J¼ 1.2 Hz, H-3, H-5), 7.30* (m, 2H, H-300, H-500), 7.28* (m, 2H,
H-200, H-600), 7.20 (tt, 1H, J¼ 7.1; 1.5 Hz H-400), 3.36 (m,1H, H-10), 2.60
(m, 1H, H-40), 1.94** (m, 4H, H-20, H-60), 1.69 (m, 4H, H-30, H-50). 13C
NMR (CDCl3): d¼ 165.6 (NHCO), 150.6 (C-2; C-6), 147.1 (C-100), 140.2
(C-4), 128.4* (C-200, C-600), 126.9* (C-300, C-500), 125.9 (C-400), 120.9 (C-
3; C-5), 53.9 (C-10), 43.7 (C-40), 29.1** (C-30), 28.0** (C-20). HRESIMS:
m/z 296.17583 [MþH]þ(calcd. for C18H21N3O þ H 296.175739).

5.1.9. 2-Hydrazinoisonicotinohydrazide (compound 13)
Compound 13 was prepared according to a procedure reported

in literature [84]. Yellow crystals (recrystallization from water),
yield: 25% (0.270 g), mp 215.8e216.9 �C, [lit. 216.5e217.0 �C]. IR
(KBr): y (cm�1) ¼ 3312e3123 (NH amide and amine), 3020e2920
(Ar CeH), 1653 (C]O amide). 1H NMR (DMSO d6): d ¼ 9.84 (s, 1H,
NHNH2), 8.03 (dd, 1H, J¼ 5.2, 0.4 Hz, H-6), 7.64 (s, 1H, NHNH2), 7.08
(s, 1H, H-3), 6.85 (dd, 1H, J ¼ 5.2, 1.6 Hz, H-5). 13C NMR (DMSO d6):
d ¼ 164.8 (NHCO), 162.4 (C-2), 147.8 (C-6) 141.4 (C-4), 109.3 (C-5),
104.2 (C-3). HRESIMS: m/z 168.08797[MþH]þ(calcd. for
C6H9N5O þ H 168.08799).

5.1.10. Crystallographic structure determination
Single crystal X-ray analysis of a suitable quality crystal of

compound 7 was performed with a Bruker AXS-KAPPA APEX II
diffractometer using graphite-monochromated Mo-Ka radiation
(l ¼ 0.71069�A) and operating at 50 kV and 30 mA. A single crystal
was mounted loop with protective oil and placed under a flow of
nitrogen gas at 150 K. All measurements were conducted on the
Crystallography Laboratory at Instituto Superior Técnico. Cell pa-
rameters were retrieved using Bruker SMART (Bruker 2005) soft-
ware and refined using Bruker SAINT (Bruker 2005) on all observed
reflections. Absorption corrections were applied using SADABS
(Bruker 2005). Structure solution and refinement were performed
using direct methods with program SHELXS [114]and SHELXL-2013
[114], both included in the package of programs WINGX-Version
2013.3 [115]. Non-hydrogen atoms were refined anisotropically. A
full matrix least-squares refinement on F2 was used for the non-
hydrogen atoms with anisotropic thermal parameters. All hydro-
gens were located in difference Fourier maps, and their coordinates
were refined with isotropic displacement parameters. Table 9
summarizes the crystallographic data for compound 7.

5.2. Microbiology studies

For the biological evaluation of the synthesized compounds, the
Mtb strain H37Rv ATCC27294T experimentally assayed in this work,
pan-susceptible to the first-line antibiotics (MIC for INH ¼ 0.04 mg/
mL), was obtained from the culture collection of Grupo de Mico-
bactérias, Unidade de Microbiologia Médica, Instituto de Higiene e
Medicina Tropical (IHMT, UNL). For the resistance studies, we have
used a Mtb clinical strain carrying only a katG S315T mutation (MIC
for INH ¼ 6 mg/mL) and the INH high-level resistant strain H37Rv
ATCC27294T (H37RvINH) that suffered a full deletion of the katG
gene after prolonged exposure to INH (MIC for INH ¼ 128 mg/mL)
[28]. Cultures and minimum inhibitory concentration (MIC)
determination were conducted using the BACTEC� MGIT� 960
system (BACTEC 960) and the Epicenter V5.53A software equipped
with the TB eXIST module (Becton Dickinson Diagnostic Systems,
Sparks, MD, USA), as previously described [26,28]. Stock-solutions
of the compounds were prepared in methanol (Pronalab, Lisbon,
Portugal). The stock solutions were aliquoted and stored at �20 �C
and the working solutions freshly prepared with sterile deionized
water on the day of the experiment. The desired concentrations of
the compounds were prepared with sequential dilutions in sterile
deionized water and ranged from 0.01 to 12.0 mg/mL. MICs of
compounds were evaluated in accordance to the procedures issued
by the manufacturer of the BACTEC 960 system, revised by Springer
et al. and slightly adapted by us [116,117]. Briefly, each compound-
containing tube was inoculated with 0.8 mL of SIRE supplement,
0.1 mL of each compound in the appropriated concentration and
0.5 mL of the culture. For the preparation of the compound-free
growth control tube (proportional control), the culture was
diluted 1:100 with a sterile saline solution and 0.5 mL transferred
into a new MGIT tube. Additionally, a second compound-free
growth control, inoculated with 0.5 mL of the undiluted suspen-
sion of the strain, was prepared and served as absolute control for
inoculums errors. The tubes were inserted in the BACTEC 960
system and the growth was continuously monitored with the
EpiCenter TB eXIST software. The interpretation of the results was
performed as follows: when the compound-free proportional
control tube reached a growth unit (GU) value of 400 the test was
considered complete. At that time, if the GU of the compound-
containing tube to be compared with was �100, the strain was
considered resistant; otherwise, if the GU of the compound-
containing tube was <100, the strain was considered susceptible
to that concentration. The MIC was defined as being the lowest
concentration necessary to inhibit 99% of the bacterial population,
corresponding to the compound-containing tube first recorded as
susceptible [26,28]. Each MIC value determined with the BACTEC�
MGIT� 960 system corresponds to three independent assayswith a
nil variance. MIC values reported for INH were also determined
with this protocol for each strain.
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5.3. Cytotoxicity evaluation by the MTT assay

The cytotoxicity of compounds with MIC values <0.5 was
evaluated in Vero (African green monkey kidney) cells. Exponen-
tially growing cells were seeded, in a 96-well flat-bottomed
microplate, at a density of approximately 4 � 105 cells/mL and
incubated for 48 h in a humidified atmosphere of 95% air/5% CO2 at
37 � 0.1 �C. Cells were then treated with the selected compounds,
dissolved in DMSO, in concentrations ranging from 1 to 500 MIC,
and incubated at the conditions described above. After 48 h, the
MTT dye solution (100 mL, 0.5 mg/mL) was added to each well and
cells were further incubated for 2 h at 37 � 0.1 �C. The cellular
medium was removed and DMSO was added to dissolve the for-
mazan crystals. The absorbance was measured at 570 nm using a
96-well multiscanner autoreader (Tecan Sunrise). DMSO was used
as control.
Acknowledgments

Financial support from Fundação para a Ciência e a Tecnologia
(FCT) Portugal, under Project and BPD grant (VK) FCT/PTDC/QUI/
67933/2006, projects PTDC/SAU-FCF/102807/2008 and PEst-OE/
QUI/UI0612/2013 and grants BPD/20743/2004 (CV), and BPD/
63192/2009 (DL) are greatly appreciated. The authors also
acknowledge FCT for project REDE/1501/REM/2005 and Dr. Paulo
Madeira for providing data from the FTICR-MS at the Faculdade de
Ciências da Universidade de Lisboa, Portugal. We also thank Prof.
Fátima Piedade from CQE/IST and DQB/FCUL, for providing the X-
ray data. We are also thankful to Prof. Claúdio Soares and Dr. Bruno
Victor from ITQB/FCT-UNL, for the preliminary Docking studies and
to Prof. Margarida Meireles and Miss Soraia Martins from CQB/
FCUL, for their invaluable assistance in the cytotoxicity assays. We
are indebted to Prof. Michael Abraham from UCL and Dr. Andreas
Zissimos (formerly at UCL) for the calculation of the Abraham’s
descriptors with the Absolv program.
Appendix A. Supplementary data

Supplementary data related to this article can be found at http://
dx.doi.org/10.1016/j.ejmech.2014.04.077.
References

[1] World Health Organization, Global Tuberculosis Report 2013, World Health
Organization, Geneva, Switzerland, 2013. http://www.who.int/tb/
publications/global_report/en/index.html (last accessed 06.02.14.).

[2] http://www.who.int/tb/publications/factsheets/en/ (last accessed 06.02.14.).
[3] G.B. Migliori, G. De Iaco, G. Besozzi, R. Centis, D.M. Cirillo, First tuberculosis

cases in Italy resistant to all tested drugs, Eurosurveillance 12 (2007).
[4] A.A. Velayati, M.R. Masjedi, P. Farnia, P. Tabarsi, J. Ghanavi, A.H. ZiaZarifi,

S.E. Hoffner, Emergence of new forms of totally drug-resistant tuberculosis
bacilli super extensively drug-resistant tuberculosis or totally drug-resistant
strains in Iran, Chest 136 (2009) 420e425.

[5] Z.F. Udwadia, R.A. Amale, K.K. Ajbani, C. Rodrigues, Totally drug-resistant
tuberculosis in India, Clinical Infectious Diseases 54 (2012), 579eU156.

[6] WHO The Stop TB Strategy, 2010. http://www.who.int/tb/strategy/stop_tb_
strategy/en/index.html (last accessed 11.04.13.).

[7] Global Plan to Stop TB 2011-2015, Stop TB Partnership and World Health
Organization, World Health Organization, Geneva, 2010 (last accessed
11.04.13.), http://www.stoptb.org/global/plan/.

[8] A. Koul, E. Arnoult, N. Lounis, J. Guillemont, K. Andries, The challenge of new
drug discovery for tuberculosis, Nature 469 (2011) 483e490.

[9] S. Munack, V. Leroux, K. Roderer, M. Ökvist, A. van Eerde, L.L. Gundersen,
U. Krengel, P. Kast, When inhibitors do not inhibit: critical evaluation of
rational drug design targeting chorismate mutase from Mycobacterium
tuberculosis, Chemistry & Biodiversity 9 (2012) 2507e2527.

[10] C. Lienhardt, M. Raviglione, M. Spigelman, R. Hafner, E. Jaramillo,
M. Hoelscher, A. Zumla, J. Gheuens, New drugs for the treatment of tuber-
culosis: needs, challenges, promise, and prospects for the future, The Journal
of Infectious Diseases 205 (2012) S241eS249.
[11] H. Tomioka, Y. Tatano, K. Yasumoto, T. Shimizu, Recent advances in antitu-
berculous drug. Development and novel drug target, Expert Review of Res-
piratory Medicine 2 (2008) 455e471.

[12] B. Villemagne, C. Crauste, M. Flipo, A.R. Baulard, B. Déprez, N. Willand,
Tuberculosis: the drug development pipeline at a glance, European Journal of
Medicinal Chemistry 51 (2012) 1e16.

[13] A. Zumla, P. Nahid, S.T. Cole, Advances in the development of new tuber-
culosis drugs and treatment regimens, Nature Reviews. Drug Discovery 12
(2013) 388e404.

[14] FDA, U.S. Foods and Drugs Administration, Press Release of Dec. 31, 2012.
[15] HIV-HCV-TB Pipeline Report, Drugs, Diagnostics, Vaccines & Preventive

Technologies, Update February 2013. http://www.pipelinereport.org/
browse/tb-treatments/bedaquiline-tmc207 (last accessed 13.02.13.).

[16] Briefing document, Anti-Infective Drugs Advisory Committee Meeting,
Jansson Pharmaceutical Company of Johnson & Johnson, November 2013,
http://www.fda.gov/downloads/AdvisoryCommittees/
CommitteesMeetingMaterials/Drugs/Anti-
InfectiveDrugsAdvisoryCommittee/UCM329260.pdf (last accessed 11.04.13.).

[17] J. Bernstein, W.A. Lott, B.A. Steinberg, H.L. Yale, Chemotherapy of experi-
mental tuberculosis .5. Isonicotinic acid hydrazide (Nydrazid) and related
compounds, American Review of Tuberculosis 65 (1952) 357e364.

[18] C. Vilchèze, W.R. Jacobs Jr., The mechanism of isoniazid killing: clarity
through the scope of genetics, Annual Review of Microbiology 61 (2007) 35e
50.

[19] F. Bardou, C. Raynaud, C. Ramos, M.A. Lanéelle, G. Lanéelle, Mechanism of
isoniazid uptake in Mycobacterium tuberculosis, Microbiology (Reading, U.K..)
144 (1998) 2539e2544.

[20] D.A. Mitchison, J.B. Selkon, The bactericidal activities of antituberculous
drugs, American Review of Tuberculosis 74 (1956) 109e116.

[21] F.G. Winder, P.B. Collins, Inhibition by isoniazid of synthesis of mycolic acids
in Mycobacterium tuberculosis, Journal of General Microbiology 63 (1970)
41e48.

[22] K. Johnsson, P.G. Schultz, Mechanistic studies of the oxidation of isoniazid by
the catalase peroxidase from Mycobacterium tuberculosis, Journal of the
American Chemical Society 116 (1994) 7425e7426.

[23] B.F. Lei, C.J. Wei, S.C. Tu, Action mechanism of antitubercular isoniazid e
activationMycobacterium tuberculosis KatG, isolation, and characterization of
InhA inhibitor, The Journal of Biological Chemistry 275 (2000) 2520e2526.

[24] R. Rawat, A. Whitty, P.J. Tonge, The isoniazid-NAD adduct is a slow, tight-
binding inhibitor of InhA, the Mycobacterium tuberculosis enoyl reductase:
adduct affinity and drug resistance, Proceedings of the National Academy of
Sciences of the United States of America 100 (2003) 13881e13886.

[25] Y. Zhang, B. Heym, B. Allen, D. Young, S. Cole, The catalase peroxidase gene
and isoniazid resistance of Mycobacterium tuberculosis, Nature 358 (1992)
591e593.

[26] D. Machado, J. Perdigão, J. Ramos, I. Couto, I. Portugal, C. Ritter, E.C. Boettger,
M. Viveiros, High level resistance to isoniazid and ethionamide in multidrug
resistant Mycobacterium tuberculosis of the Lisboa family is associated with
InhA double mutations, Journal of Antimicrobial Chemotherapy 68 (2013)
1728e1732.

[27] M. Viveiros, M. Martins, L. Rodrigues, D. Machado, I. Couto, J. Ainsa, L. Amaral,
Inhibitors of mycobacterial efflux pumps as potential boosters for anti-
tubercular drugs, Expert Reviewof Anti-infective Therapy 10 (2012) 983e998.

[28] D. Machado, I. Couto, J. Perdigão, L. Rodrigues, I. Portugal, P. Baptista,
B. Veigas, L. Amaral, M. Viveiros, Contribution of efflux to the emergence of
isoniazid and multidrug resistance in Mycobacterium tuberculosis, Plos One 7
(2012) e34538.

[29] R.Z. Pellicani, A. Stefanachi, M. Niso, A. Carotti, F. Leonetti, O. Nicolotti,
R. Perrone, F. Berardi, S. Cellamare, N.A. Colabufo, Potent galloyl-based se-
lective modulators targeting multidrug resistance associated protein 1 and
P-glycoprotein, Journal of Medicinal Chemistry 55 (2012) 424e436.

[30] M.H. Hazbón, M. Brimacombe, M.B. del Valle, M. Cavatore, M.I. Guerrero,
M. Varma-Basil, H. Billman-Jacobe, C. Lavender, J. Fyfe, L. García-García,
C.I. León, M. Bose, F. Chaves, M. Murray, K.D. Eisenach, J. Sifuentes-Osornio,
M.D. Cave, A.P. de León, D. Alland, Population genetics study of isoniazid
resistance mutations and evolution of multidrug-resistant Mycobactetium
tuberculosis, Antimicrobial Agents and Chemotherapy 50 (2006) 2640e
2649.

[31] H. van de Waterbeemd, E. Gifford, ADMET in silico modelling: towards
prediction paradise? Nature Reviews. Drug Discovery 2 (2003) 192e204.

[32] L.C. Yee, Y.C. Wei, Current modeling methods used in QSAR/QSPR, in:
M. Dehmer, K. Varmuza, D. Bonchev (Eds.), Statistical Modeling of Molecular
Descriptors in QSAR/QSPR, Wiley-VCH Verlag GmbH & Co., KGaA Weinhein,
2012.

[33] R.V.C. Guido, G. Oliva, A.D. Andricopulo, Virtual screening and its integration
with modern drug design technologies, Current Medicinal Chemistry 15
(2008) 37e46.

[34] K.K. Chohan, S.W. Paine, N.J. Waters, Advancements in predictive in silico
models for ADME, Current Chemical Biology 2 (2008) 215e228.

[35] C. Ventura, F. Martins, Application of quantitative structure-activity re-
lationships to the modeling of antitubercular compounds. 1. The hydrazide
family, Journal of Medicinal Chemistry 51 (2008) 612e624.

[36] V. Kovalishyn, J. Aires-de-Sousa, C. Ventura, R.E. Leitão, F. Martins, QSAR
modeling of antitubercular activity of diverse organic compounds, Chemo-
metrics and Intelligent Laboratory Systems 107 (2011) 69e74.

http://dx.doi.org/10.1016/j.ejmech.2014.04.077
http://dx.doi.org/10.1016/j.ejmech.2014.04.077
http://www.who.int/tb/publications/global_report/en/index.html
http://www.who.int/tb/publications/global_report/en/index.html
http://www.who.int/tb/publications/factsheets/en/
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref2
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref2
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref3
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref3
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref3
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref3
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref3
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref4
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref4
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref4
http://www.who.int/tb/strategy/stop_tb_strategy/en/index.html
http://www.who.int/tb/strategy/stop_tb_strategy/en/index.html
http://www.stoptb.org/global/plan/
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref6
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref6
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref6
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref7
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref7
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref7
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref7
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref7
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref8
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref8
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref8
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref8
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref8
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref9
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref9
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref9
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref9
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref10
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref10
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref10
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref10
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref11
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref11
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref11
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref11
http://www.pipelinereport.org/browse/tb-treatments/bedaquiline-tmc207
http://www.pipelinereport.org/browse/tb-treatments/bedaquiline-tmc207
http://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/Anti-InfectiveDrugsAdvisoryCommittee/UCM329260.pdf
http://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/Anti-InfectiveDrugsAdvisoryCommittee/UCM329260.pdf
http://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/Anti-InfectiveDrugsAdvisoryCommittee/UCM329260.pdf
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref13
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref13
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref13
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref13
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref14
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref14
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref14
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref19a
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref19a
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref19a
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref19a
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref15
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref15
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref15
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref16
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref16
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref16
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref16
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref17
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref17
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref17
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref17
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref18
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref18
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref18
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref18
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref19
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref19
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref19
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref19
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref19
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref20
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref20
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref20
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref20
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref21
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref21
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref21
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref21
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref21
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref21
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref22
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref22
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref22
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref22
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref23
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref23
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref23
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref23
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref24
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref24
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref24
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref24
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref24
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref25
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref25
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref25
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref25
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref25
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref25
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref25
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref26
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref26
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref26
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref27
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref27
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref27
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref27
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref28
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref28
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref28
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref28
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref29
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref29
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref29
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref30
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref30
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref30
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref30
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref31
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref31
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref31
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref31


F. Martins et al. / European Journal of Medicinal Chemistry 81 (2014) 119e138 137
[37] C. Ventura, D. Latino, F. Martins, Comparison of multiple linear regressions
and neural networks based QSAR models for the design of new antituber-
cular compounds, European Journal of Medicinal Chemistry 70 (2013) 831e
845.

[38] P. Gramatica, P. Pilutti, E. Papa, Validated QSAR prediction of OH tropo-
spheric degradation of VOCs: splitting into training-test sets and consensus
modeling, Journal of Chemical Information and Computer Science 44 (2004)
1794e1802.

[39] G. Klopman, D. Fercu, J. Jacob, Computer-aided study of the relationship
between structure and antituberculosis activity of a series of isoniazid de-
rivatives, Chemical Physics 204 (1996) 181e193.

[40] J.K. Seydel, K.J. Schaper, E. Wempe, H.P. Cordes, Mode of action and quan-
titative structure-activity correlations of tuberculostatic drugs of
isonicotinic-acid hydrazide type, Journal of Medicinal Chemistry 19 (1976)
483e492.

[41] S. Mohamad, P. Ibrahim, A. Sadikun, Susceptibility of Mycobacterium tuber-
culosis to isoniazid and its derivative, 1-isonicotinyl-2-nonanoyl hydrazine:
investigation at cellular level, Tuberculosis 84 (2004) 56e62.

[42] A. De Logu, V. Onnis, B. Saddi, C. Congiu, M.L. Schivo, M.T. Cocco, Activity of a
new class of isonicotinoylhydrazones used alone and in combination with
isoniazid, rifampicin, ethambutol, para-aminosalicylic acid and clofazimine
against Mycobacterium tuberculosis, The Journal of Antimicrobial Chemo-
therapy 49 (2002) 275e282.

[43] D. Sriram, P. Yogeeswari, K. Madhu, Synthesis and in vitro and in vivo
antimycobacterial activity of isonicotinoyl hydrazones, Bioorganic & Me-
dicinal Chemistry Letters 15 (2005) 4502e4505.

[44] P. Prathipati, N.L. Ma, T.H. Keller, Global Bayesian models for the prioritiza-
tion of antitubercular agents, Journal of Chemical Information and Modeling
48 (2008) 2362e2370.

[45] B. Bottari, R. Maccari, F. Monforte, R. Ottana, E. Rotondo, M.G. Vigorita,
Isoniazid-related copper(II) and nickel(TI) complexes with antimycobacterial
in vitro activity. Part 9, Bioorganic & Medicinal Chemistry Letters 10 (2000)
657e660.

[46] J. Bernstein, W.P. Jambor, W.A. Lott, F. Pansy, B.A. Steinberg, H.L. Yale,
Chemotherapy of experimental tuberculosis .6. Derivatives of isoniazid,
American Review of Tuberculosis 67 (1953) 354e365.

[47] N. Georgieva, V. Gadjeva, Isonicotinoylhydrazone analogs of isoniazid: rela-
tionship between superoxide scavenging and tuberculostatic activities,
Biochemistry (Moscow) 67 (2002) 588e591.

[48] M.C.D. Lourenço, M.D. Ferreira, M.V.N. de Souza, M.A. Peralta,
T.R.A. Vasconcelos, M.D.M.O. Henriques, Synthesis and anti-mycobacterial
activity of (E)-N0-(monosubstituted-benzylidene)isonicotinohydrazide de-
rivatives, European Journal of Medicinal Chemistry 43 (2008) 1344e1347.

[49] M.J. Hearn, M.H. Cynamon, M.F. Chen, R. Coppins, J. Davis, H.J.O. Kang,
A. Noble, B. Tu-Sekine, M.S. Terrot, D. Trombino, M. Thai, E.R. Webster,
R. Wilson, Preparation and antitubercular activities in vitro and in vivo of
novel schiff bases of isoniazid, European Journal of Medicinal Chemistry 44
(2009) 4169e4178.

[50] C.H. Andrade, L.D. Salum, M.S. Castilho, K.F.M. Pasqualoto, E.I. Ferreira,
A.D. Andricopulo, Fragment-Based, Classical Quantitative, Structure-activity
relationships for a series of hydrazides as antituberculosis agents, Molecular
Diversity 12 (2008) 47e59.

[51] https://www.collaborativedrug.com/pages/public_access (last accessed
13.02.13.).

[52] http://www.talete.mi.it/products/dragon_description.htm (last accessed
20.05.13.).

[53] http://www.molecular-networks.com/products/adrianacode (last accessed
12.04.13.).

[54] J.A. Platts, D. Butina, M.H. Abraham, A. Hersey, Estimation of molecular linear
free energy relation descriptors using a group contribution approach, Journal
of Chemical Information and Computer Science 39 (1999) 835e845.

[55] J.A. Platts, M.H. Abraham, D. Butina, A. Hersey, Estimation of molecular linear
free energy relationship descriptors by a group contribution approach. 2.
Prediction of partition coefficients, Journal of Chemical Information and
Computer Science 40 (2000) 71e80.

[56] M.H. Abraham, A. Ibrahim, A.M. Zissimos, Y.H. Zhao, J. Comer, D.P. Reynolds,
Application of hydrogen bonding calculations in property based drug design,
Drug Discovery Today 7 (2002) 1056e1063.

[57] Molecular Modeling Pro Plus, version 6.2.5. www.chemistry-software.com.
[58] ChemDraw Ultra,Version 11.0.1, �, CambridgeSoft, 1986e2007.
[59] L. Breiman, Random forests, Machine Learning 45 (2001) 5e32.
[60] R Development Core Team, R: a Language and Environment for Statistical

Computing, R Foundation for Statistical Computing, Vienna, Austria, 2004,
ISBN 3-900051-07-0. URL, http://www.R-project.org (last accessed
20.05.13.). Fortran Original by Leo Breiman, Adele Cutler, R port by Andy
Liaw and Matthew Wiener. (2004).

[61] I.V. Tetko, Neural network studies. 4. Introduction to associative neural
networks, Journal of Chemical Information and Computer Science 42 (2002)
717e728.

[62] Organization for Economic Co-operation and Development (OECD), Envi-
ronment Health and Safety Publications Series on Testing and Assessment,
69, Guidance Document on the Validation of (Quantitative) Structure-
Activity Relationship [(Q)SAR] Models, 2007. http://www.oecd.org/fr/env/
ess/risques/guidancedocumentsandreportsrelatedtoqsars.htm (last accessed
11.04.13.).
[63] A. Tropsha, P. Gramatica, V.K. Gombar, The importance of being earnest:
validation is the absolute essential for successful application and
interpretation of QSPR models, QSAR & Combinatorial Science 22 (2003)
69e77.

[64] T.I. Netzeva, A.P. Worth, T. Aldenberg, R. Benigni, M.T.D. Cronin, P. Gramatica,
J.S. Jaworska, S. Kahn, G. Klopman, C.A. Marchant, G. Myatt, N. Nikolova-
Jeliazkova, G.Y. Patlewicz, R. Perkins, D.W. Roberts, T.W. Schultz,
D.T. Stanton, J.J.M. van de Sandt, W.D. Tong, G. Veith, C.H. Yang, Current
status of methods for defining the applicability domain of (quantitative)
structure-activity relationships e the report and recommendations of
ECVAM workshop 52, Atla-Altern, Laboratory Animals 33 (2005) 155e173.

[65] A. Gissi, D. Gadaleta, M. Floris, S. Olla, A. Carotti, E. Novellino, E. Benfenati,
O. Nicolotti, An alternative QSAR-based approach for predicting the bio-
concentration factor for regulatory purposes, Altex-Alternatives to Animal
Experimentation 31 (2014) 23e36.

[66] J. Jaworska, N. Nikolova-Jeliazkova, T. Aldenberg, QSAR applicability domain
estimation by projection of the training set in descriptor space: a review,
Altex-Alternatives to Animal Experimentation 33 (2005) 445e459.

[67] A. Tropsha, Best practices for QSAR model development, validation, and
exploitation, Molecular Informatics 29 (2010) 476e488.

[68] P. Gramatica, Principles of QSAR models validation: internal and external,
QSAR & Combinatorial Science 26 (2007) 694e701.

[69] D. Livingstone, A Practical Guide to Scientific Data Analysis, Wiley & Sons Ltd,
Chichester, 2009.

[70] C. Kim, Y. Lee, B.U. Park, Cook’s distance in local polynomial regression,
Statistics & Probability Letters 54 (2001) 33e40.

[71] J.A. Díaz-García, G. González-Farías, A note on the Cook’s distance, Journal of
Statistical Planning and Inference 120 (2004) 119e136.

[72] A. Golbraikh, A. Tropsha, Beware of q2!, Journal of Molecular Graphics and
Modelling 20 (2002) 269e276.

[73] P.P. Roy, S. Paul, I. Mitra, K. Roy, On two novel parameters for validation of
predictive QSAR models, Molecules 14 (2009) 1660e1701.

[74] N. Chirico, P. Gramatica, Real external predictivity of QSAR models: how to
evaluate it? Comparison of different validation criteria and proposal of using
the concordance correlation coefficient, Journal of Chemical Information and
Modeling 51 (2011) 2320e2335.

[75] N. Chirico, P. Gramatica, Real external predictivity of QSAR models. Part 2.
New intercomparable thresholds for different validation criteria and the
need for scatter plot inspection, Journal of Chemical Information and
Modeling 52 (2012) 2044e2058.

[76] K. Roy, I. Mitra, S. Kar, P.K. Ojha, R.N. Das, H. Kabir, Comparative studies on
some metrics for external validation of QSPR models, Journal of Chemical
Information and Modeling 52 (2012) 396e408.

[77] P.K. Ojha, I. Mitra, R.N. Das, K. Roy, Further exploring r2m metrics for vali-
dation of QSPR models, Chemometrics and Intelligent Laboratory Systems
107 (2011) 194e205.

[78] I. Mitra, A. Saha, K. Roy, Exploring quantitative structure-activity relationship
studies of antioxidant phenolic compounds obtained from traditional Chi-
nese medicinal plants, Molecular Simulation 36 (2010) 1067e1079.

[79] L. Eriksson, J. Jaworska, A.P. Worth, M.T.D. Cronin, R.M. McDowell,
P. Gramatica, Methods for reliability and uncertainty assessment and for
applicability evaluation of classification- and regression-based QSARs,
Environmental Health Perspectives 111 (2003) 1361e1375.

[80] N. Minovski, S. Zuperl, V. Drgan, M. Novic, Assessment of applicability
domain for multivariate counter-propagation artificial neural network pre-
dictive models by minimum Euclidean distance space analysis: a case study,
Analytica Chimica Acta 759 (2013) 28e42.

[81] G. Palla, G. Predieri, P. Domiano, C. Vignali, W. Turner, Conformational
behavior and E/Z isomerization of N-acyl and N-aroylhydrazones, Tetrahe-
dron 42 (1986) 3649e3654.

[82] E. Wyrzykiewicz, D. Prukala, Isomeric N-substituted hydrazones of 2-, 3- and
4-pyridinecarboxaldehydes, Journal of Heterocyclic Chemistry 35 (1998)
381e387.

[83] E. Wyrzykiewicz, A. Blaszczyk, New isomeric N-substituted hydrazones of 2-,
3-and 4-pyridinecarboxaldehydes and methyl-3-pyridylketone, Journal of
Heterocyclic Chemistry 37 (2000) 975e981.

[84] A.M. Municio, A. Ribera, Sintesis De 2-Hidracino-Isonicotinoilhidracida Y Su
N-Oxido, Anales de la Real Sociedad Española de Física y Química B 59 (1963)
179e184.

[85] M.J. Hearn, Antimycobacterial Compounds and Method for Making the Same.
USA Patent n� US 6,846,933 B1, 2005.

[86] A. Rieche, G. Hilgetag, C. Bischoff, H. Mucke, Die Tuberkulostatische Wirk-
samkeit Von Inh-Acyl-Verbindungen, Archiv der Pharmazie Bericht 295
(1962) 707e714.

[87] L.I. Giannola, G. Giammona, R. Alotta, Pro-drugs of isoniazid e synthesis
and diffusion characteristics of acyl derivatives, Pharmazie 47 (1992) 423e
425.

[88] C. Ràfols, E. Bosch, R. Ruiz, K.J. Box, M. Reis, C. Ventura, S. Santos, M.E. Araújo,
F. Martins, Acidity and hydrophobicity of several new potential antituber-
cular drugs: isoniazid and benzimidazole derivatives, Journal of Chemical &
Engineering Data 57 (2012) 330e338.

[89] Y. Benadie, M. Deysel, D.G.R. Siko, V.V. Roberts, S. Van Wyngaardt,
S.T. Thanyani, G. Sekanka, A.M.C. Ten Bokum, L.A. Collett, J. Grooten,
M.S. Baird, J.A. Verschoor, Cholesteroid nature of free mycolic acids from
M. tuberculosis, Chemistry and Physics of Lipids 152 (2008) 95e103.

http://refhub.elsevier.com/S0223-5234(14)00406-1/sref32
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref32
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref32
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref32
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref32
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref33
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref33
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref33
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref33
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref34
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref34
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref34
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref34
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref34
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref35
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref35
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref35
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref35
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref36
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref36
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref36
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref36
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref36
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref36
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref37
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref37
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref37
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref37
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref38
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref38
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref38
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref38
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref39
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref39
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref39
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref39
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref39
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref40
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref40
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref40
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref40
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref41
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref41
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref41
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref41
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref42
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref42
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref42
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref42
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref42
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref42
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref43
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref43
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref43
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref43
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref43
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref43
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref44
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref44
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref44
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref44
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref44
http://https://www.collaborativedrug.com/pages/public_access
http://www.talete.mi.it/products/dragon_description.htm
http://www.molecular-networks.com/products/adrianacode
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref45
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref45
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref45
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref45
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref46
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref46
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref46
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref46
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref46
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref47
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref47
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref47
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref47
http://www.chemistry-software.com
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref48
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref48
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref48
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref49
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref49
http://www.R-project.org
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref51
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref51
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref51
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref51
http://www.oecd.org/fr/env/ess/risques/guidancedocumentsandreportsrelatedtoqsars.htm
http://www.oecd.org/fr/env/ess/risques/guidancedocumentsandreportsrelatedtoqsars.htm
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref53
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref53
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref53
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref53
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref53
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref64a
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref64a
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref64a
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref64a
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref64a
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref64a
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref64a
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref64a
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref64a
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref54
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref54
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref54
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref54
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref54
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref55
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref55
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref55
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref55
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref56
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref56
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref56
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref57
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref57
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref57
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref58
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref58
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref59
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref59
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref59
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref60
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref60
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref60
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref61
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref61
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref61
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref62
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref62
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref62
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref63
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref63
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref63
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref63
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref63
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref64
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref64
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref64
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref64
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref64
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref65
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref65
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref65
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref65
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref66
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref66
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref66
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref66
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref66
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref67
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref67
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref67
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref67
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref68
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref68
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref68
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref68
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref68
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref69
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref69
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref69
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref69
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref69
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref70
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref70
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref70
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref70
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref71
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref71
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref71
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref71
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref72
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref72
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref72
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref72
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref73
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref73
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref73
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref73
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref74
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref74
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref74
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref74
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref75
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref75
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref75
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref75
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref76
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref76
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref76
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref76
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref76
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref77
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref77
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref77
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref77
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref77


F. Martins et al. / European Journal of Medicinal Chemistry 81 (2014) 119e138138
[90] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, I.H. Witten, The
WEKA data mining software: an update, SIGKDD Explorations 11 (2009) 10e
18.

[91] A. Verloop, J. Tipker, Pharmaco chemistry library, in: D. Hadzi, B. Jorman-
Blazic (Eds.), QSAR in Drug Design and Toxicology, Elsevier Science Pub-
lishers BV, Amsterdam, 1987, pp. 97e125.

[92] R.P. Verma, A. Kurup, S.B. Mekapati, C. Hansch, Chemical-biological in-
teractions in human, Bioorganic & Medicinal Chemistry 13 (2005) 933e948.

[93] C.E. Barry, R.A. Slayden, A.E. Sampson, R.E. Lee, Use of genomics and
combinatorial chemistry in the development of new antimycobacterial
drugs, Biochemical Pharmacology 59 (2000) 221e231.

[94] T. Scior, S.J. Garces-Eisele, Isoniazid is not a lead compound for its pyridyl
ring derivatives, isonicotinoyl amides, hydrazides, and hydrazones: a critical
review, Current Medicinal Chemistry 13 (2006) 2205e2219.

[95] A. Punkvang, P. Saparpakorn, S. Hannongbua, P. Wolschann, A. Beyer,
P. Pungpo, Investigating the structural basis of arylamides to improve po-
tency against M. tuberculosis strain through molecular dynamics simulations,
European Journal of Medicinal Chemistry 45 (2010) 5585e5593.

[96] http://www.organic-chemistry.org/prog/peo/.
[97] A.M. Matos, M. Reis, V. Miranda, L. Santos, S. Santos, F. Martins, C. Ventura,

M.S. Santos, Lipophilicity of some activeMycobacterium tuberculosis isoniazid
derivatives: a comparative study between octanol-water (log Po/w) and
micelle-water (log Kp) partition coefficients, in: Abstracts of the XXII Inter-
national Symposium on Medicinal Chemistry, Berlin, Germany, 2012,
ChemMedChem, Weinheim, Germany, 2012, p. 328. Abstract P521.

[98] N.L. Wengenack, F. Rusnak, Evidence for isoniazid-dependent free radical
generation catalyzed by Mycobacterium tuberculosis KatG and the isoniazid-
resistant mutant KatG(S315T), Biochemistry-Us 40 (2001) 8990e8996.

[99] R. Pierattelli, L. Banci, N.A.J. Eady, J. Bodiguel, J.N. Jones, P.C.E. Moody,
E.L. Raven, B. Jamart-Gregoire, K.A. Brown, Enzyme-catalyzed mechanism of
isoniazid activation in class I and class III peroxidases, The Journal of Bio-
logical Chemistry 279 (2004) 39000e39009.

[100] T. Deemagarn, X. Carpena, R. Singh, B. Wiseman, I. Fita, P.C. Loewen, Struc-
tural characterization of the Ser324Thr variant of the catalase-peroxidase
(KatG) from Burkholderia pseudomallei, Journal of Molecular Biology 345
(2005) 21e28.

[101] X.B. Zhao, H. Yu, S.W. Yu, F. Wang, J.C. Sacchettini, R.S. Magliozzo, Hydrogen
peroxide-mediated isoniazid activation catalyzed by Mycobacterium tuber-
culosis catalase-peroxidase (KatG) and its S315T mutant, Biochemistry-Us 45
(2006) 4131e4140.

[102] X.B. Zhao, S.W. Yu, R.S. Magliozzo, Characterization of the binding of isoni-
azid and analogues to Mycobacterium tuberculosis catalase-peroxidase,
Biochemistry-Us 46 (2007) 3161e3170.

[103] N.L. Wengenack, S. Todorovic, L. Yu, F. Rusnak, Evidence for differential
binding of isoniazid by Mycobacterium tuberculosis KatG and the isoniazid-
resistant mutant KatG(S315T), Biochemistry-Us 37 (1998) 15825e15834.

[104] B. Heym, P.M. Alzari, N. Honore, S.T. Cole, Missense mutations in the
catalase-peroxidase gene, Katg, are associated with isoniazid resistance in
Mycobacterium tuberculosis, Molecular Microbiology 15 (1995) 235e245.
[105] J.M. Musser, V. Kapur, D.L. Williams, B.N. Kreiswirth, D. vanSoolingen,
J.D.A. vanEmbden, Characterization of the catalase-peroxidase gene (katG)
and InhA locus in isoniazid-resistant and -susceptible strains of Mycobacte-
rium tuberculosis by automated DNA sequencing: restricted array of muta-
tions associated with drug resistance, The Journal of Infectious Diseases 173
(1996) 196e202.

[106] R.A. Slayden, C.E. Barry, The genetics and biochemistry of isoniazid resistance
in Mycobacterium tuberculosis, Microbes and Infection 2 (2000) 659e669.

[107] L. Powers, A. Hillar, P.C. Loewen, Active site structure of the catalase-
peroxidases from Mycobacterium tuberculosis and Escherichia coli by
extended X-ray absorption fine structure analysis, Biochimica et Biophysica
Acta 1546 (2001) 44e54.

[108] Y.G. Jin, S.F. Chen, R. Xin, Y.S. Zhou, Monolayers of the lipid derivatives of
isoniazid at the air/water interface and the formation of self-assembled
nanostructures in water, Colloid Surface B 64 (2008) 229e235.

[109] S.W. Yu, S. Girotto, C. Lee, R.S. Magliozzo, Reduced affinity for isoniazid in the
S315T mutant of Mycobacterium tuberculosis KatG is a key factor in antibiotic
resistance, The Journal of Biological Chemistry 278 (2003) 14769e14775.

[110] K.E. Dooley, C.D. Mitnick, M.A. DeGroote, E. Obuku, V. Belitsky, C.D. Hamilton,
M. Makhene, S. Shah, J.C.M. Brust, N. Durakovic, E. Nuermberger, Resist-Tb,
old drugs, new purpose: retooling existing drugs for optimized treatment of
resistant tuberculosis, Clinical Infectious Diseases 55 (2012) 572e581.

[111] I. Orme, J. Secrist, S. Anathan, C. Kwong, J. Maddry, R. Reynolds,
A. Poffenberger, M. Michael, L. Miller, J. Krahenbuh, L. Adams, A. Biswas,
S. Franzblau, D. Rouse, D. Winfield, J. Brooks, T.D.S. Progra, Search for new
drugs for treatment of tuberculosis, Antimicrobial Agents and Chemotherapy
45 (2001) 1943e1946.

[112] F.R. Pavan, P.I.D. Maia, S.R.A. Leite, V.M. Deflon, A.A. Batista, D.N. Sato,
S.G. Franzblau, C.Q.F. Leite, Thiosemicarbazones, semicarbazones, dithio-
carbazates and hydrazide/hydrazones: anti-Mycobacterium tuberculosis ac-
tivity and cytotoxicity, European Journal of Medicinal Chemistry 45 (2010)
1898e1905.

[113] W. Vonsassen, M. Castroparra, E. Musch, M. Eichelbaum, Determination of
isoniazid, acetylisoniazide, acetylhydrazine and diacetylhydrazine in
biological-fluids by high-performance liquid-chromatography, Journal of
Chromatography 338 (1985) 113e122.

[114] G.M. Sheldrick, A short history of SHELX, Acta Crystallographica A 64 (2008)
112e122.

[115] L.J. Farrugia, WinGX suite for small-molecule single-crystal crystallography,
Journal of Applied Crystallography 32 (1999) 837e838.

[116] S. Rusch-Gerdes, G.E. Pfyffer, M. Casal, M. Chadwick, S. Siddiqi, Multicenter
laboratory validation of the BACTEC MGIT 960 technique for testing sus-
ceptibilities of Mycobacterium tuberculosis to classical second-line drugs and
newer antimicrobials, Journal of Clinical Microbiology 44 (2006) 688e692.

[117] B. Springer, K. Lucke, R. Calligaris-Maibach, C. Ritter, E.C. Bottger, Quantita-
tive drug susceptibility testing of Mycobacterium tuberculosis by use of MGIT
960 and EpiCenter instrumentation, Journal of Clinical Microbiology 47
(2009) 1773e1780.

http://refhub.elsevier.com/S0223-5234(14)00406-1/sref78
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref78
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref78
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref79
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref79
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref79
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref79
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref80
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref80
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref80
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref81
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref81
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref81
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref81
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref82
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref82
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref82
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref82
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref83
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref83
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref83
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref83
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref83
http://www.organic-chemistry.org/prog/peo/
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref84
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref84
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref84
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref84
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref84
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref84
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref85
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref85
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref85
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref85
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref86
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref86
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref86
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref86
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref86
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref87
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref87
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref87
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref87
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref87
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref88
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref88
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref88
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref88
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref88
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref89
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref89
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref89
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref89
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref90
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref90
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref90
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref90
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref91
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref91
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref91
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref91
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref92
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref92
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref92
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref92
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref92
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref92
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref92
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref93
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref93
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref93
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref94
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref94
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref94
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref94
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref94
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref95
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref95
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref95
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref95
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref96
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref96
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref96
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref96
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref97
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref97
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref97
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref97
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref97
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref98
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref98
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref98
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref98
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref98
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref98
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref99
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref99
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref99
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref99
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref99
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref99
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref100
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref100
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref100
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref100
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref100
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref101
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref101
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref101
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref102
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref102
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref102
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref103
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref103
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref103
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref103
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref103
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref104
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref104
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref104
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref104
http://refhub.elsevier.com/S0223-5234(14)00406-1/sref104

	Design, synthesis and biological evaluation of novel isoniazid derivatives with potent antitubercular activity
	1 Introduction
	2 Methods
	2.1 Data sets
	2.1.1 RFs and ASNNs data sets
	2.1.2 Virtual data set
	2.1.3 MLR data sets

	2.2 Molecular descriptors
	2.2.1 Molecular descriptors for RFs and ASNNs models
	2.2.2 Molecular descriptors for MLR models

	2.3 Classification and regression techniques
	2.3.1 Random Forests
	2.3.2 Associative neural networks
	2.3.3 Multiple linear regressions

	2.4 Selection of descriptors for ASNNs and RF models
	2.5 Validation procedures
	2.5.1 Validation of RFs and ASNN models
	2.5.2 Validation procedures used on MLR models


	3 Results and discussion
	3.1 Chemistry
	3.2 Information retrieved from QSAR models
	3.2.1 RFs and neural networks models
	3.2.1.1 ASNN results
	3.2.1.2 RF results

	3.2.2 MLR models

	3.3 QSAR-oriented design and compound selection
	3.4 Biological activity
	3.4.1 Activities against the wt strain
	3.4.2 Activities against resistant strains

	3.5 Cytotoxicity assays

	4 Conclusions
	5 Experimental section
	5.1 Chemistry
	5.1.1 General
	5.1.2 General procedure for the synthesis of hydrazones 1 and 2
	5.1.2.1 N′-(E)-(3-methanoylbenzylidene)isonicotinohydrazide (compound 1)
	5.1.2.2 N′-(E)-(4-methanoylbenzylidene)isonicotinohydrazide (compound 2)

	5.1.3 General procedure for the synthesis of hydrazones 3 and 4
	5.1.3.1 N′-(E)-3-(hydroxymethyl)benzylidene)isonicotinohydrazide (compound 3)
	5.1.3.2 N′-(E)-4-(hydroxymethyl)benzylidene)isonicotinohydrazide (compound 4)

	5.1.4 General procedure for the synthesis of hydrazones 5–8
	5.1.4.1 N′-cyclopentylideneisonicotinohydrazide (compound 5)
	5.1.4.2 N′-(4-phenylcyclohexylidene)isonicotinohydrazide (compound 6)
	5.1.4.3 Methyl 4-[(E)-(isonicotinoylhydrazone)methyl] benzoate (compound 7)
	5.1.4.4 N′-(E)-(4-phenoxybenzylidene)isonicotinohydrazide (compound 8)

	5.1.5 N′-decanoylisonicotinohydrazide (compound 9)
	5.1.6 N′-(2-methylheptanoyl)isonicotinohydrazide (compound 10)
	5.1.7 N′-acetylisonicotinohydrazide (compound 11)
	5.1.8 N′-(4-phenylcyclohexyl)isonicotinohydrazide (compound 12)
	5.1.9 2-Hydrazinoisonicotinohydrazide (compound 13)
	5.1.10 Crystallographic structure determination

	5.2 Microbiology studies
	5.3 Cytotoxicity evaluation by the MTT assay

	Acknowledgments
	Appendix A Supplementary data
	References


