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Abstract

We first consider infinite two-player games on pushdown graphs. In previous work,
Cachat, Duparc and Thomas [4] have presented a winning decidable condition that
is Σ3-complete in the Borel hierarchy. This was the first example of a decidable
winning condition of such Borel complexity. We extend this result by giving a fam-
ily of decidable winning conditions of arbitrary finite Borel complexity. From this
family, we deduce a family of decidable winning conditions of arbitrary finite Borel
complexity for games played on finite graphs. The problem of deciding the winner
for these conditions is shown to be non-elementary.

Key words: Pushdown Automata, Two-player Games, Borel Complexity.

1 Introduction

Infinite two-player games have been intensively studied in the last few years.
One of the main motivations is the strong relation that exists with verification
questions and controller synthesis. For instance, µ-calculus model checking for
finite graphs (respectively for pushdown graphs) is polynomially equivalent
to the problem of deciding the winner in a game played on a finite graph [7]
(respectively on a pushdown graph [24]). In addition, constructing a winning
strategy is the same as synthesizing a discrete controller [1].

? This research has been partially supported by the European Community Research
Training Network “Games and Automata for Synthesis and Validation” (GAMES),
(contract HPRN-CT-2002-00283), see www.games.rwth-aachen.de.
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One important branch of game theory is developed in the framework of de-
scriptive set theory in which the central question is determinacy, that is, the
existence of a winning strategy. One of the deepest results is due to Martin
[15] and states that, for Borel winning conditions, games are determined. In
computer science, the games considered are in general equipped with winning
conditions of low Borel complexity and therefore trivially determined. Never-
theless, deciding the winner is, in many cases, a difficult problem. Since we
are mostly interested in decidable games, it is natural to ask whether there
exist decidable games of arbitrary high finite Borel complexity.

For finite graphs and for the natural conditions appearing in verification and
model-checking, efficient algorithms are known to decide the winner and to
compute the associated winning strategies [20,25,10,22]. These winning con-
ditions all belong to a low level of the Borel hierarchy, namely to the boolean
closure of the Borel class Σ2.

In [21], Thomas proposes to study games with winning conditions of Borel
level larger than 2. In the paper, we focus on this topic and exhibit a family
of winning conditions on pushdown games that have an arbitrary high Borel
complexity while remaining decidable. As a corollary, one obtains a similar re-
sult for games on finite graphs. In addition, these games have effective winning
strategies.

The first results concerning high level Borel conditions come from pushdown
games. In this model, the game graph is the infinite graph of the configura-
tions of a pushdown process. Walukiewicz has shown that parity games on
such graphs can be effectively solved [24]. For this model, winning conditions
exploiting the infinity of the stack become natural. In [4], Cachat, Duparc and
Thomas have considered the following condition: Eve wins a play if and only
if some configuration is infinitely often visited. They have shown that it is a
decidable winning condition belonging to Σ3. More recently, Bouquet, Serre
and Walukiewicz have considered in [2] winning conditions that are boolean
combinations of a Büchi condition with a condition called unboundedness that
requires the stack to be unbounded. Gimbert has used the elegant method
from [12] to study the boolean combination of a parity condition with un-
boundedness [9]. All these winning conditions are closely related to the one of
[4] and remain decidable [2,9]. A natural question was therefore to consider
higher level winning conditions.

In this paper, we give a uniform answer to the question of [21] by provid-
ing a family of winning conditions of increasing finite Borel complexity. The
main idea is to require the stack to converge to some limit and then to have
additional conditions on the limit. To solve classical conditions on pushdown
games, one method consists in reducing the problem to a game on a finite
graph [24,2]. We adapt this method and reduce the problem of deciding the
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winner in a pushdown game to the problem of deciding the winner in an-
other pushdown game, equipped with a lower winning condition. Therefore,
the proof goes by induction.

From the proofs we also infer the effectiveness of the winning strategies.
Whereas for previously studied winning conditions on pushdown games, the
set of winning positions was regular, it is no longer the case here. The exact
nature of these sets remains open. We further show that the complexity of
determining the winner for these high level Borel winning conditions is non-
elementary and is elementary-hard. We also show that Eve has, from a winning
position, a persistent strategy, that is, a strategy using memory but such that
the move given from some vertex is always the same for a given play.

The paper is organized as follows. In Section 2, we start with basic definitions
on games and introduce the family of winning conditions that we will consider
in the rest of the paper. In Section 3, we precisely characterize the Borel
complexity of these winning conditions. In Section 4, we give the decidability
results and constructions of these games. Remark that it gives a new proof
of the decidability results of [4]. In Section 5, we show that the complexity
of deciding the winner for such winning conditions is non-elementary and is
elementary-hard. Finally, in Section 6, we discuss several points.

2 Definitions

2.1 Basic Definitions

An alphabet A is a finite or infinite set of letters. A∗ denotes the set of finite
words on A, Aω the set of infinite words on A and A∞ the set A∗ ∪ Aω. The
empty word is denoted by ε. For a word u, we denote its (possibly infinite)
length by |u|. For i < |u|, we write u(i) for the i-th letter of u.

Let u ∈ A∗ and v ∈ A∞. Then u is a prefix of v, denoted u v v if there exists
some word w ∈ A∞ such that v = u · w. For any word u ∈ A∞, there exists a
unique prefix of length k for all k ≤ |u|. This prefix is denoted by u¹k.

Definition 1 (Limit of a sequence of finite words) Let (ui)i≥0 ∈ (A∗)N

be an infinite sequence of words. The limit lim
i∈N

ui of (ui)i≥0 is the maximal

word satisfying the following: for each j, there exists an index r such that the
j-th letter of lim

i∈N

ui equals the j-th letter of up for every p ≥ r. Note that lim
i∈N

ui

can be either finite or infinite.

We recall now the classical notion of deterministic pushdown automaton.
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A deterministic pushdown automaton with input from A∞ is a tuple A =
〈Q, Γ, A,⊥, qin, δ〉, where Q is a finite set of states, Γ is a finite set of stack
symbols, ⊥ ∈ Γ is a special bottom-of-stack symbol, A is the finite input
alphabet, qin ∈ Q is the initial state and

δ : Q × Γ × A → {skip(q), pop(q), push(q, γ) | q ∈ Q, γ ∈ Γ \ {⊥}}

is the transition function. In addition, we require that for all q, q ′ ∈ Q, a ∈ A,
δ(q,⊥, a) 6= pop(q′) (the bottom-of-stack symbol is never removed).

A stack is an element of the set St = (Γ \ {⊥})∗ · ⊥. A configuration of A is
a pair (q, σ) with q ∈ Q and σ ∈ St. Note that the top stack symbol in some
configuration (q, σ) is the leftmost symbol of σ.

A configuration (q, γσ), for some q ∈ Q and γσ ∈ St, has a unique successor
by some letter a ∈ A, which is defined as follows, depending on δ(q, σ, a):

• If δ(q, γ, a) = skip(q′), it is (q′, γσ).
• If δ(q, γ, a) = pop(q′), it is (q′, σ).
• If δ(q, γ, a) = push(q′, γ′), it is (q′, γ′γσ).

A run of A on a (possibly infinite) word α = α0α1 · · · starts from the config-
uration (qin,⊥). A reads α0 and goes to the successor of (qin,⊥) by α0, then
it reads α1 and goes to the successor of the current configuration by α1, and
so on.

One can in addition equip such an automaton with a classical acceptance
condition, for instance a parity condition. In that case, one has a mapping
col from Q to a finite set of colors C ⊂ N. This coloring function naturally
extends to the set of configurations by setting col((q, σ)) = col(q). Finally, an
infinite word α is accepted by A, if and only if the smallest color appearing
infinitely often in the run of A on α is even.

If A is a deterministic pushdown automaton equipped with a parity acceptance
condition, we denote L(A) the language accepted by A.

Let A be a deterministic pushdown automaton and let α be some infinite word
on the input alphabet of A. We say that the stack of A is strictly unbounded
when reading α, if the sequence (σi)i≥0 of stack contents in the run of A on α
is such that lim

i∈N

σi is infinite. Equivalently, we require that for all h ≥ 0, there

is some index jh such that |σi| ≥ h for all i ≥ jh, and the limit of the stack is
the infinite word σj0(0)σj1(1)σj2(2) · · · .
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2.2 The Classes (Cn(A))n≥0

Now, let n ≥ 0 be some integer and let us consider a collection A1, . . . ,An

of deterministic pushdown automata (if n = 0 this collection is considered to
be empty). Let An+1 be a deterministic pushdown automaton equipped with
a parity acceptance condition. On input alphabet of A1, . . . ,An+1, we require
the following stack consistency property:

For all 1 ≤ i ≤ n, the input alphabet of Ai+1 is the stack alphabet of Ai.

Let A be the input alphabet of A1. We associate with A1, . . . ,An,An+1 a
language of infinite words on the alphabet A, that we denote L(A1 ¤ . . . ¤
An ¤An+1), and which is defined as follows:

• If n = 0, L(A1 ¤ . . .¤An ¤An+1) = L(An+1) is the language accepted by
An+1.

• If n > 0, L(A1 ¤ . . . ¤ An ¤ An+1) is the set of infinite words α0 on the
alphabet A such that:
· When A1 reads α0, its stack is strictly unbounded and therefore the se-

quence of stack contents converges to some limit α1.
· α1 ∈ L(A2 ¤ . . .¤An ¤An+1).

Equivalently, a word α0 ∈ Aω belongs to L(A1¤ . . .¤An¤An+1) if and only
if:

• For all 1 ≤ i ≤ n, when Ai reads αi−1, its stack is strictly unbounded and
the sequence of stack contents converges to some limit αi.

• An+1 accepts αn.

Figure 1 illustrate the case where n = 3.

Finally, we denote by Cn(A) the class of languages L on some finite alphabet
A such that L = (A1 ¤ · · · ¤ An ¤ An+1) for some collection of determinis-
tic pushdown automata A1, . . . ,An and some deterministic parity automaton
An+1. In particular C0(A) is the class of deterministic ω-context free languages
on the alphabet A [5].

In the sequel, when considering pushdown automata A1, . . . ,An,An+1 used to
define a language as described above, we will implicitly suppose that they are
stack consistent.
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α1

α0

A1

α1−→

α2

A2

α1

α2−→

α3

A3

α2

α3−→

A4

α3 ∈ L(A4)

Fig. 1. The language L(A1 ¤A2 ¤A3 ¤A4)

2.3 Games

Let A be a finite alphabet and let G = (V,E) be a graph with edges labeled
by letters in some alphabet A or by the empty word ε, that is E ⊆ V × (A ∪
{ε})×V . Let VE∪VA be a partition of V between two players Eve and Adam.
A game graph is such a tuple G = (VE, VA, E).

A two-player game on a game graph G is a pair G = (G, Ω), where Ω is a
winning condition, which can be of two kinds:

• Ω is an internal winning condition if Ω ⊆ V ω.
• Ω is an external winning condition if Ω ⊆ A∞.

A play from some vertex v0 proceeds as follows: if v0 ∈ VE, Eve chooses a
successor v1 and an edge (v0, a0, v1) ∈ E. Otherwise, it is Adam’s turn to
choose a successor v1 and an edge. If there is no such v1, then the play ends
in v0, otherwise the player to whom v1 belongs tries to move to some v2

and so on. Therefore a play starting from v0 is a finite or infinite sequence
λ = v0a0v1a1v2 · · · ∈ V ((A ∪ {ε})V )∞ such that (vi, ai, vi+1) ∈ E for all i. In
the case where the play is finite, we require that there is no (vn, an, vn+1) ∈ E,
if vn was the last vertex of the play. A partial play is any prefix of a play.

A finite play is lost by the player that cannot move. An infinite play λ =
v0a0v1a1v2 · · · is won by Eve if and only if:
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• Ω is internal and v0v1v2 · · · ∈ Ω.
• Ω is external and a0a1a2 · · · ∈ Ω.

For a play λ = v0a0v1a1v2 · · · we denote by Lab(λ) the word a0a1 · · · . For
instance Lab(v0εv1bv2bv3εv4εv5av6εv7) = bba. Therefore, if λ is a play in a
game equipped with an external winning condition Ω, it is won by Eve if and
only if Lab(λ) ∈ Ω.

A strategy for Eve is a function assigning, to any partial play ending in some
vertex v ∈ VE, an edge (v, a, v′) ∈ E. Eve respects a strategy f during some
play λ = v0a0v1a1v2 · · · if (vi, ai, vi+1) = f(v0a0 · · · vi), for all i ≥ 0 such that
vi ∈ VE. Finally a strategy for Eve is winning from some position v, if any
play starting from v ∈ V , where Eve respects f , is won by her. A vertex v ∈ V
is winning for Eve if she has a winning strategy from v. Symmetrically, one
defines the strategies and the winning positions for Adam.

A game G is determined if, from any position, either Eve or Adam has a
winning strategy.

2.4 Pushdown Games

Pushdown processes provide a natural model for programs with recursive pro-
cedures. They are like pushdown automata except that they are nondetermin-
istic. In addition, in this model, the input word (and therefore the initial state
and acceptance condition) are ignored.

More formally, a pushdown process is a tuple P = 〈Q, Γ,⊥, ∆〉 where Q is a
finite set of states, Γ is a finite stack alphabet that contains a special bottom-
of-stack symbol ⊥ and

∆ : Q × Γ → 2({skip(q),pop(q),push(q,γ)|q∈Q,γ∈Γ\{⊥}})

is the transition relation. As for pushdown automata, we require that, for all
q ∈ Q, ∆(q,⊥) does not contain any element pop(q′). Finally, the notions of
stack and configuration of a pushdown process are defined as for pushdown
automata.

From P , one defines an infinite graph, denoted G = (V,E), whose vertices are
the configurations of P , and edges E are defined by the transition relation ∆,
i.e., from a vertex (p, γσ) one has:

• (q, γσ) whenever skip(q) ∈ ∆(p, γ).
• (q, σ) whenever pop(q) ∈ ∆(p, γ).
• (q, γ′γσ) whenever push(q, γ ′) ∈ ∆(p, γ).
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Finally, let QE∪QA be some partition of Q between Eve and Adam. It induces
a natural partition VE ∪VA of V by setting VE = QE ×St and VA = QA ×St.
The game graph G = (VE, VA, E) is called a pushdown game graph.

Note that in a pushdown game graph, the edges are not labeled. Therefore,
we will equip them only with internal winning conditions. Moreover a play
will be represented as a word on the alphabet V of vertices, and a strategy
for Eve will be a function f : V ∗VE → V .

For a vertex v = (q, σ) of V , we define |v| to be the length of σ. In a play
λ = v0v1v2 · · · , the stack is strictly unbounded if the stack size converges to
+∞. More formally we require that for all k ≥ 0, there exists some i such
that: for all j ≥ i, |vj| > k.

If the stack in a play λ = v0v1 . . . is strictly unbounded, we will consider its
limit, StLimλ = lim σi, where for all i ≥ 0, vi = (pi, σi) for some pi ∈ Q and
σi ∈ St.

The following internal winning condition Ωubd = {λ | the stack is strictly
unbounded in λ} is called the strict unboundedness winning condition. A push-
down game G = (G, Ωubd) is called a strict unboundedness pushdown game.

Remark 2 In [4], it is shown that it can be decided in Dexptime whether
Eve has a winning strategy in a pushdown game equipped with a winning con-
dition requiring that some configuration is infinitely often visited. It is easily
seen that this condition is the dual condition of the strict unboundedness win-
ning condition. Therefore, it is equivalent to decide a strict unboundedness
pushdown game. In section 4.3, we show that our main result gives the one of
[4] as a corollary, hence provides a new proof.

Finally, let us mention the parity condition on pushdown games. Let col be
a coloring function from Q into a finite set of colors C ⊂ N. This function is
easily extended into a function from V in C by setting col((q, σ)) = col(q).
The parity condition is the internal winning condition defined by:

Ωpar = {v0v1 · · · | inf{c | ∃∞i s.t. col(vi) = c} is even}

2.5 The Winning Conditions Ωint
A1¤···¤An¤An+1

and Ωext
A1¤···¤An¤An+1

Let n ≥ 0 be some integer and let A1, . . . ,An,An+1 be some pushdown au-
tomata where in addition An+1 is equipped with a parity condition. Let Γ
be the input alphabet of A1. From A1, . . . ,An,An+1, we define two winning
conditions, an external one that will be used for games played on finite graphs,
and an internal one for pushdown games. It will be shown later that they are
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closely related.

Definition 3 The external winning condition Ωext
A1¤···¤An¤An+1

, is defined by:

Ωext
A1¤···¤An¤An+1

= L(A1 ¤ . . .¤An ¤An+1)

Definition 4 Let G be a pushdown game graph constructed from some push-
down process with Γ as stack alphabet. Then Ωint

A1¤···¤An¤An+1
is defined by:

Ωint
A1¤···¤An¤An+1

= {λ ∈ Ωubd | lim λ ∈ L(A1 ¤ . . .¤An ¤An+1)}

Example 5 We finish with examples of such winning conditions:

(1) Let A be some parity automaton accepting all infinite words on some
alphabet Γ. Then the winning condition Ωint

A is the strict unboundedness
winning condition.

(2) Consider the deterministic parity pushdown automaton A that accepts the
language {α ∈ {p, c, t}ω | ∀k ≥ 0, |α¹k |c ≤ |α¹k |p} of words α on the
alphabet {c, p, t} such that in any prefix of α, the number of p is greater
than the number of c (|u|a designates the number of occurrences of some
letter a in some word u). If p stands for produced, c for consumed and
t for transform, the winning condition Ωint

A expresses that, in a system
using recursive procedure and such that at the end of the main procedure
(where all recursive calls end), some resource may be produced, consumed
or transformed (which is also recorded in the stack by pushing either p,
c or t), there is always an available resource when the consumer asks for
it.

3 Borel Complexity

3.1 Borel Hierarchy

Let A be a (possibly infinite) alphabet. We consider the set Aω of infinite words
on the alphabet A, and we equip it with the usual Cantor topology where the
open sets are those of the form W · Aω where W ⊆ A∗ is a language of finite
words on the alphabet A. The finite Borel hierarchy (Σ1, Π1), (Σ2, Π2), · · · is
inductively defined as follows:

• Σ1 = {W · Aω | W ⊆ A∗} is the set of open sets.
• For all n ≥ 1, Πn = {Sco | S ∈ Σn} consists of the complements of Σn-sets.

• For all n ≥ 1, Σn+1 =





⋃

i∈N

Si | ∀i ∈ N, Si ∈ Πn



 is the set of countable

union of Πn-sets.
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Finally, if we denote by B(Σn) the Boolean combination of Σn-sets, we have
the following strict inclusions:

Σ1 ∩ Π1

Σ1

Π1

B(Σ1)

Σ2 =
⋃

∞

Π1

Π2 =
⋂

∞

Σ1

B(Σ2)

Σ3

Π3

· · ·

· · ·

· · ·
Clopen sets

Open sets

Closed sets

A set S is a proper-Σn-set if it is in Σn but not in Πn.

3.2 Borel Complexity of a Winning Condition

Let G = (G, Ω) be some game played on a game graph G and equipped with
a winning condition Ω. The Borel complexity of the winning condition Ω is
its Borel complexity when considered as a set on the alphabet of the vertices
of G if Ω is internal, and on the alphabet A that labels the edges of G if Ω is
external.

Here are some examples of internal winning conditions:

Example 6 (1) Consider a reachability winning condition (Eve wins if and
only if the play eventually visits a vertex in some subset F ⊆ V ). Such a
condition is a Σ1-winning condition, as the winning condition for Eve is
(V ∗F )V ω.

(2) Consider a Büchi winning condition (Eve wins if and only if the play
infinitely visits vertices belonging to some subset F ⊆ V ). Such a con-
dition is a Π2-winning condition, as the winning condition for Eve is⋂

n≥0[(V
nV ∗F )V ω].

(3) Consider a Muller condition (Eve wins if and only if the set of infinitely
visited vertices belongs to a set of subsets of V ). Such a winning condition
is a B(Σ2)-winning condition, as it is a Boolean combination of Büchi
winning conditions.

(4) Consider an unboundedness winning condition for pushdown games (Eve
wins if and only if the stack size is not bounded). Such a condition is a
Π2-winning condition. Indeed, for any n ≥ 0, if one denotes by Vn the
set of configurations of stack size n, the winning condition for Eve is⋂

n≥0[(V
∗Vn)V ω].

(5) Consider a strict unboundedness winning condition for pushdown games
(Eve wins if and only if the stack size converges to ∞). The corresponding
condition for Adam is the one considered in [4]: Adam wins if and only
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if some configuration (equivalently some stack size) is infinitely repeated.
Therefore, if one denotes by Vn the set of configurations of stack size n,
the winning condition for Adam is

⋃

n≥0

⋂

m≥0

[(V mV ∗Vn)V ω]

Therefore, the winning condition for Adam is a Σ3-set, and thus the strict
unboundedness winning condition is a Π3-winning condition for Eve.

Finally, let us mention the well-known Martin’s Borel determinacy theorem.

Theorem 7 [15] Any game equipped with a Borel winning condition is deter-
mined.

3.3 Wadge Games

Definition 8 (Wadge game) [23] Let A and B be two (possibly infinite)
alphabets. Let X ⊆ Aω and Y ⊆ Bω. The Wadge game G(X,Y ) is a two-
player game between Alice and Bob. Alice first chooses a letter a0 in A. Then,
Bob chooses a (possibly empty) finite word b0 ∈ B∗. Then Alice chooses a
letter a1, and Bob a word b1, and so on. Therefore a play consists in writing
an infinite word α = a0a1 · · · for Alice, and writing a word β = b0b1 · · · for
Bob. Bob wins if and only if both β is infinite, and α ∈ X ⇔ β ∈ Y .

Notions of strategies, and winners in Wadge games are defined similarly. These
games are strongly related to the following notion.

Definition 9 (Wadge reduction) We say that X ⊆ Aω Wadge reduces to
Y ⊆ Bω, denoted X ≤W Y , if and only if there exists a continuous function
f : Aω → Bω such that X = f−1(Y ). If X ≤W Y and Y ≤W X, then we say
that X and Y are Wadge equivalent and we denote this by X ≡W Y .

Then, we have the following well-known result.

Proposition 10 ([23]) Bob has a winning strategy in the game G(X,Y ) if
and only if X ≤W Y .

Example 11 Consider the language Aω on some non empty alphabet A. Then
Aω ≤w Y for any non empty set Y . Indeed, a winning strategy for Bob in
W (Aω, Y ) consists in describing some word in Y .

Let A = {a, b}. Let X ⊆ Aω be a closed set and let Y = {aω} ⊆ Aω. Then,
X ≤w Y . Indeed, Bob plays a if the prefix played by Alice is a prefix of some
word in X. Otherwise, he plays b. This strategy is winning as an infinite word
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is in a closed set X if and only if any prefix of the word is a prefix of some
word in X (see [17]). Note that these two examples stress the importance of
the underlying alphabets.

The Wadge equivalence preserves the Borel hierarchy levels.

Proposition 12 Let X and Y be two Wadge equivalent sets. Then they belong
to the same level of the Borel hierarchy.

Then, it is natural to consider the following completeness notion induced by
the relation ≤W .

Definition 13 (Complete sets) A set Y ∈ Σn is Σn-complete if and only if
X ≤W Y for all X ∈ Σn. In particular, a Σn-complete set is a proper Σn-set.
One easily defines Πn-complete sets.

Remark 14 The notion of complete sets is not relevant for the class B(Σn),
as there are no complete set for such a class for n ≥ 1 [11].

Now, we give some examples to illustrate the completeness notion.

Example 15 Let A = {a, b}. Let X ⊆ Aω be the set of infinite words that
contains infinitely many a. X is a Π2-complete set. Indeed X =

⋂

i≥0

AiA∗aAω,

hence X is a Π2-set. Let Y be a Π2-set on some alphabet B. Therefore, Y =⋂

i≥0

Yi for some family (Yi)i≥0 of open sets, where Yi = ZiB
ω. In the game

G(Y,X), Bob has a winning strategy that consists in maintaining some counter
i which is initialized to 0. If the word already written by Alice is in ZiB

∗, he
plays a and changes his counter to i + 1. Otherwise, he plays b and does not
change the value of his counter. Therefore, the word played by Bob contains
infinitely many a if and only if the word played by Alice belongs to Yi for all
i ≥ 0, that is, it belongs to Y .

3.4 The Operation X 7→ X∼

In [6], Duparc introduces several Borel operations that are homomorphic to
ordinal sum, to multiplication by a countable ordinal and to ordinal expo-
nentiation of base κ (for some uncountable regular cardinal κ). Here, we only
focus on the operation X 7→ X∼, which is the Borel counterpart of the ordinal
exponentiation of base κ.

The operation X 7→ X∼ works on sets X ⊆ A∞ of finite or infinite words on
some alphabet A. Nevertheless one needs to transform finite words into infinite
words to define the operation. In this paper, we will only use a consequence
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of Duparc’s results that works for languages of infinite words. That is why we
only describe the result in the framework of languages of infinite words.

Definition 16 (def. 22 of [6]) Let A be some alphabet, let X ⊆ A∞, and
´/∈ A (a symbol for ”Back Space”), then X∼ = {u ∈ (A∪ {´})∞ | u" ∈ X}
where u" is inductively defined by:

• ε" = ε
• for u finite with |u"| = k:
· (u · a)" = u" · a if a 6=´.
· (u· ´)" = u"¹(k−1) if k > 0 (erases the last letter of u").
· (u· ´)" = ε if k = 0 (there is nothing to erase).

• for u infinite, u" = lim
n∈N

((u¹n)").

For instance, ab ´´ c = a ´ c = c, bb(ab ´)ω = bbaω and bb(b ´)ω = bb.

The operation X 7→ X∼ has a very natural interpretation in terms of Wadge
game. A player in charge of X∼ is like a player in charge of X that can in
addition erase symbols as often as he wants by simply playing the Back Space
letter ´.

The iterated version of the operation X 7→ X∼ is defined as follows.

Definition 17 Let X be some set. Then, we define X∼0 = X and ∀n ∈ N,
X∼n+1 = (X∼n)∼.

In this paper, we use the following consequence of Lemma 31 of [6], that works
for languages of infinite words.

Lemma 18 [8] Let A be some alphabet and let X ⊆ Aω be some Πk-complete
set for some k ≥ 2. Then, (X∼n) is a Πn+k-complete set, for all n ≥ 0.

Finally, let us give the following result due to Löding [13].

Lemma 19 Let A be some alphabet and let X ⊆ Aω. If X ∈ B(Σn) for n ≥ 2
then L∼ ∈ B(Σn+1).

PROOF. We start proving the result for open sets. For this, it suffices to
prove it for some Σ1-complete set as the operation X 7→ X∼ respects the
Wadge ordering ≤W [6]. Let us consider the language O = (a∗b)Aω on the
alphabet A = {a, b} which is the complement of the Π1-complete language aω

(see Example 11).

13



Then one has:

O∼ =
⋃

n≥0

((A ∪ {´})nb(A ∪ {´})ω ∩ Kn

where Kn is the set of infinite words α on the alphabet A ∪ {´} such that
the n-th letter of α is not erased when computing α". More precisely,

Kn = (H≥n(A ∪ {´})ω)co

where H≥n is the set of finite words u such that the n-th letter of u is erased
when computing n", that is u(n + 1) · · · u(|n| − 1) = v ´ v′ for some v such
that v" = ε.

Therefore, Kn is a Π1-set and therefore O∼ is a Σ2-set.

Now, note that the operation X 7→ X∼ on set of infinite words distributes
over intersection and union.

For complementation, in general, (X co)∼ Ã (X∼)co. Indeed, (X∼)co also con-
tains the words α such that α" is finite. Therefore (Xco)∼ = (X∼)co ∩ Inf ,
where Inf is the set of words α ∈ (A ∪ {´})ω such that α" is infinite:

Inf =
⋂

m≥0

⋃

n≥m

Kn

Hence, Inf is a Π3-set.

Now, if X is some set in B(Σn) for some n ≥ 2, one applies the X 7→ X∼ op-
eration to the formula proving its membership to B(Σn), pushes the preceding
operation to the level of Σ1-sets and intersect with Inf whenever complemen-
tation is used. In the resulting formula, all Σ1-sets have been changed into
Σ2-sets, and therefore it shows that X∼ belongs to B(Σn+1) (intersection with
Inf does not increase the Borel complexity, as n ≥ 2). 2

3.5 Borel Complexity of L(A1 ¤ · · ·¤An ¤An+1)

In this section, we study the Borel complexity of languages in the class Cn(A)
for some finite alphabet A and some integer n ≥ 0.

More precisely, we show the following result.

Theorem 20 Let A be some finite alphabet and let n ≥ 0 be some integer.
Then a language in Cn(A) belongs to B(Σn+2). In addition, there is a language
in Cn(A) that is Πn+2-complete.
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Note that for n = 0 the result is the classical one stating that a language
recognized by some deterministic machine equipped with a parity condition
is in B(Σ2) (the proof is a generalization of the one showing that ω-regular
languages are in B(Σ2) [17]). For completeness, one can consider the ω-regular
language on the alphabet {a, b} of infinite words containing infinitely many
occurrences of the letter a (see Example 15).

The proof of Theorem 20 goes by induction on n, and relies on the following
lemma.

Lemma 21 Let n ≥ 1 and let A1, . . . ,An be a collection of pushdown au-
tomata and let An+1 be a parity pushdown automaton. Then L(A1 ¤ · · · ¤
An ¤An+1) ≤W L(A2 ¤ · · ·¤An ¤An+1)

∼.

In addition, there is some pushdown automaton A1 such that the preceding
inequality is an equivalence.

PROOF. Let X = L(A1¤ · · ·¤An¤An+1) and let Y = L(A2¤ · · ·¤An¤

An+1)
∼.

We show that Bob has a winning strategy in the Wadge game G(X,Y ). Indeed,
Bob plays so that when Alice has played some word u, he has played a word
v such that v" is the stack content of A1 when having read u. Bob wins by
the very definition of X from Y , hence X ≤W Y .

Now consider the special case where A1 = 〈{q}, Γ, Σ,⊥, q, δ〉 where:

• Γ = Σ ∪ {´} where ´/∈ Σ.
• For all γ ∈ Σ, δ(q, γ,´) = pop(q) and δ(q, γ, a) = push(q, a), for a 6=´.

Then, if we consider ´ as an eraser, we directly have that the stack contents
of A1, after reading some word u, is u". In addition, the stack limit of A1

after reading some infinite word α is α". By definition of acceptance, an
infinite word α ∈ X if and only if the stack limit of A1 when reading α is
infinite and is in L(A2 ¤ · · · ¤ An ¤ An+1). Therefore, α ∈ X if and only if
α" ∈ L(A2 ¤ · · ·¤An ¤An+1). This exactly means that X ≡W Y . 2

Then, Theorem 20 follows from transitivity of ≤W , lemmas 18 and 19, and
from the basic case n = 0.
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3.6 Borel Complexity of Ωint
A1¤···¤An¤An+1

and Ωext
A1¤···¤An¤An+1

In this section, we discuss the Borel complexity of the winning conditions of
the form Ωint

A1¤···¤An¤An+1
and Ωext

A1¤···¤An¤An+1
.

For the external winning condition Ωext
A1¤···¤An¤An+1

, we have the following
corollary of Theorem 20.

Corollary 22 For all n ≥ 0 the following holds:

• For any collection of deterministic pushdown automata A1, . . . ,An, and any
parity pushdown automaton An+1, Ωext

A1¤···¤An¤An+1
is a B(Σn+2) external

winning condition.
• There exists a collection of deterministic pushdown automata A1, . . . ,An,

and a parity pushdown automaton An+1 such that Ωext
A1¤···¤An¤An+1

is a Πn+2-
complete internal winning condition.

For the internal winning condition Ωint
A1¤···¤An¤An+1

on pushdown games, we
have the following result.

Theorem 23 For all n ≥ 0 the following holds:

• For any collection of deterministic pushdown automata A1, . . . ,An, and any
parity pushdown automaton An+1, Ωint

A1¤···¤An¤An+1
is a B(Σn+3) internal

winning condition for pushdown games.
• There exists a collection of deterministic pushdown automata A1, . . . ,An,

and a parity pushdown automaton An+1 such that Ωint
A1¤···¤An¤An+1

is a Πn+3-
complete internal winning condition for pushdown games.

Theorem 23 is a consequence of Theorem 20 together with the following
lemma.

Lemma 24 Let P be a pushdown process with stack alphabet Γ and associ-
ated with some pushdown game graph G equipped with the winning condition
Ωint

A1¤···¤An¤An+1
. Then

Ωint
A1¤···¤An¤An+1

≡W L(A1 ¤ · · ·¤An ¤An+1)
∼

PROOF. Let X = Ωint
A1¤···¤An¤An+1

and Y = L(A1 ¤ · · ·¤An ¤An+1)
∼

Consider the Wadge game W (X,Y ). A winning strategy for Bob consists in
playing so that if u is the word he has written since the beginning of the play,
u" equals the stack contents in the last configuration (that is the last letter)
written by Alice.
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Conversely, consider the Wadge game W (Y,X). The winning strategy for Bob
is to write a configuration which stack contents equal to u", where u is the
word already played by Alice. 2

4 Decidability

In this section, we explain how to decide the winner in a game played on a finite
game graph equipped with a winning condition of the form Ωext

A1¤···¤An¤An+1

and in a pushdown game equipped with a winning condition of the form
Ωint

A1¤···¤An¤An+1
. More precisely, we show the following result.

Theorem 25 Consider some integer n ≥ 0 and a collection A1, . . . ,An,An+1

of pushdown automata where in addition An+1 is equipped with a parity con-
dition. Then the following holds:

• Let G be a finite game graph. Then, for any vertex v in G, it is decidable
whether Eve has a winning strategy from v in the game G = (G, Ωext

A1¤···¤An¤An+1
).

• Let G be a pushdown game graph. Then, for any configuration of the form
(q,⊥) in G, it is decidable whether Eve has a winning strategy from (q,⊥)
in the game G = (G, Ωint

A1¤···¤An¤An+1
).

The proof follows from theorems 26, 27 and 28 that show how to transform a
game on a finite game graph into an equivalent pushdown game with a simpler
winning condition, and how to transform a pushdown game into an equivalent
game on a finite game graph with a winning condition of the same complexity.
Thus, several transformations yield a pushdown game with a parity winning
condition, a problem known to be decidable [24].

4.1 From a Game on a Finite Game Graph to a Pushdown Game

In this subsection, we consider a finite game graph G = (VE, VA, E) with
edges labeled by letters on some alphabet A or by the empty word ε, and
we set V = VE ∪ VA. We also consider some integer n ≥ 0, and a collection
A1, . . . ,An,An+1 of pushdown automata, where in addition An+1 is equipped
with a parity condition and such that A is the input alphabet of A1. Finally,
we consider an initial vertex vin ∈ V .

We construct a pushdown game equipped with the winning condition Ωint
A2¤···¤An¤An+1

if n ≥ 1, and with a parity condition if n = 0. In addition, we show that there
is a position in that game such that it is winning for Eve if and only if vin is
winning for Eve in the game G = (G, Ωext

A1¤···¤An¤An+1
).
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From G and A1 = 〈Q, Γ, A,⊥, qin, δ〉, we define the following pushdown process
P = 〈Q × V, Γ,⊥, ∆〉 where:

• skip((q′, v′)) ∈ ∆((q, v), γ) if and only if there is some a ∈ A such that
(v, a, v′) ∈ E and δ(q, γ, a) = skip(q′), or (v, ε, v′) ∈ E and q = q′.

• pop((q′, v′)) ∈ ∆((q, v), γ) if and only if there is some a ∈ A such that
(v, a, v′) ∈ E and δ(q, γ, a) = pop(q′).

• push((q′, v′), γ′) ∈ ∆((q, v), γ) if and only if there is some a ∈ A such that
(v, a, v′) ∈ E and δ(q, γ, a) = push(q′, γ′).

We consider the partition Q × VE ∪ Q × VA of Q × V , and denote by G the
pushdown game graph induced by P and the preceding partition. Intuitively,
G encodes on-the-fly computations of A1 on plays in G. Then, we have the
following result.

Theorem 26 If n ≥ 1, for any vertex vin ∈ V , Eve has a winning strategy in
G = (G, Ωext

A1¤···¤An¤An+1
) from vin if and only if she has a winning strategy in

G = (G, Ωint
A2¤···¤An¤An+1

) from ((vin, qin),⊥).

PROOF.

Assume that Eve has a winning strategy f from vin in G. We define a strategy
f in G from ((qin, vin),⊥). As G encodes an on-the-fly computation of A1 on
a play in G, f will reconstruct a play in G (using some function τ), and use
the value of f on it, to compute the move to play, and use δ to update the
stack and the first component of the control state.

Let λ be a partial play in G starting from ((qin, vin),⊥) and let τ(λ) be
inductively defined by:

• If λ = ((qin, vin),⊥), then τ(λ) = vin.
• If λ = λ′ · ((q′, v′), σ′), then, let ((q, v), σ) be the last vertex of λ′. Then

τ(λ) = τ(λ′) · a · v′ for some a ∈ A∪ {ε} such that (v, a, v′) ∈ E and (q′, σ′)
is the successor of (q, σ) by a in A1. Note that by construction of P , τ(λ)
is always defined (and may not be unique).

Now, for any partial play λ ending in some configuration ((q, v), σ), we set
f(λ) = ((q′, v′), σ′) where (v, a, v′) = f(τ(λ)) for some a ∈ A∪{ε}, and where
(q′, σ′) is the successor by a of (q, σ) in A1.

Now, it is easily seen that any partial play λ in G starting from ((qin, vin),⊥)
where Eve respects f is such that:

(1) τ(λ) is a play in G starting from vin where Eve respects f .
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(2) The run of A1 on Lab(τ(λ)) ends in the configuration (q, σ) where the
last vertex of λ is of the form ((q, v), σ) for some v ∈ V .

Now, we conclude that a play λ in G, where Eve respects f , is winning for her.
If the play is finite then the first point allows us to conclude that the player
who cannot move is Adam. If λ is infinite, τ(λ) is won by Eve, and therefore
the stack of A1 when reading Lab(τ(λ)) is unbounded and has its limits in
L(A2¤ · · ·¤An¤An+1). Therefore, the stack in λ is unbounded and its limit
is in L(A2 ¤ · · ·¤An ¤An+1). Thus λ ∈ Ωint

A2¤···¤An¤An+1
.

Conversely, assume that Eve has a winning strategy f from ((qin, vin),⊥) in
G. Let λ be a partial play in G starting from vin and let π(λ) be inductively
defined by:

• If λ = vin, then π(λ) = ((qin, vin),⊥).

• If λ = λ
′
· a · v′, then, let ((q, v), σ) be the last vertex of π(λ

′
). Then π(λ) =

π(λ
′
) · ((q′, v′), σ′) where (q′, σ′) is the successor by a of (q, σ) in A1.

Now, for any partial play λ ending in some configuration v, we set f(λ) =
(v, a, v′) where ((q′, v′), σ′) = f(π(λ)) and a ∈ A∪{ε} is such that (q′, σ′) is the
successor in A1 by a of (q, σ), where ((q, v), σ) designates the last configuration
of π(λ). Note that, by definition of λ, such an a always exists (and may not
be unique).

Now, it is easily seen that any partial play λ in G starting from vin where Eve
respects f is such that:

(1) π(λ) is a play in G starting from ((vin, qin),⊥) where Eve respects f .
(2) The run of A1 on Lab(λ) ends in the configuration (q, σ) where the last

vertex of π(λ) is of the form ((q, v), σ), for some v ∈ V .

Now, we easily conclude that a play λ in G, where Eve respects f , is winning for
her. If the play is finite then the first point allows to conclude that the player
who cannot move is Adam. If λ is infinite, π(λ) is won by Eve, and therefore
the stack is unbounded in π(λ) and its limits is in L(A2 ¤ · · ·¤An ¤An+1).
Therefore, the stack of A1 when reading Lab(λ) is unbounded and its limit
is in L(A2 ¤ · · · ¤ An ¤ An+1). Thus λ is winning for the external condition
Ωext

A1¤···¤An¤An+1
. 2

For the case where n = 0, A1 is equipped with a coloring function col : Q →
C. Therefore, we extend col into a function col : Q × V → C by setting
col(q, v) = col(q). We denote by G the pushdown parity game played on G
and induced by col. Then, using the same techniques as for Theorem 26, we
prove the following result.

19



Theorem 27 For any vertex vin ∈ V , Eve has a winning strategy in G =
(G, Ωext

A1
) from vin if and only if she has a winning strategy in the parity push-

down game G from ((vin, qin),⊥).

4.2 From a Pushdown Game to a Game on a Finite Game Graph

In this section, we consider a pushdown process P = 〈Q, Γ,⊥, ∆〉 together with
a partition QE ∪ QA of Q. The associated pushdown game graph is denoted
by G. We also consider some integer n ≥ 0 and a collection A1, . . . ,An,An+1

of pushdown automata where in addition An+1 is equipped with a parity
condition and such that Γ is the input alphabet of A1. Finally, we set G =
(G, Ωint

A1¤···¤An¤An+1
) and we consider an initial configuration (pin,⊥) in G.

We now construct a finite game graph G with the external winning condition
Ωext

A1¤···¤An¤An+1
, such that Eve has a winning strategy in G from (pin,⊥) if and

only if she has a winning strategy in G from some special vertex. Intuitively,
in G, we keep track only of the control state and the symbol on the top of
the stack. The interesting aspect of the game is when it is in a control state
p with top-of-stack γ, and the player owning p wants to push a letter γ ′ onto
the stack. Consider the set of all (finite) continuations of the play that will
end with popping this γ ′ symbol from the stack. We require Eve to declare
the set of all states the game can be in after the popping of γ ′ along these
plays. Note that since it’s a game, Eve does not have complete control, hence
she cannot give one exact state, but can only give the set of possible states
the game could be in at the corresponding pop. Let this set be R.

Adam now has two choices. He can either continue the game by pushing γ ′

onto the stack and updating the state (we call this a pursue move), or he can
pick some state p′′ ∈ R and continue from that state, leaving γ on the top
of the stack (we call this a jump move). If he makes a pursue move, then he
remembers R, and makes sure that if there is a pop-transition on γ ′ later in
the play, then the resulting state is indeed in R (if it is not, Eve would lose
the game). If along a play such a pop-transition on γ ′ is indeed met, and the
resulting state is in R, then the play stops right there and Eve is declared the
winner.

Now consider an infinite play in this game, that is a play that never simulates
a pop-transition. In such a play, a pursue move corresponds to a new letter
pushed forever on the stack. Therefore, if there are only finitely many pursue
moves, the stack is not strictly unbounded (some stack level is infinitely often
visited), and therefore the play will be lost for Eve. If it goes infinitely often
through pursue moves, the stack is strictly unbounded and its limit is obtained
by considering the word which letters are the top stack symbols just before
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pursue moves. Hence, the winning condition becomes external, if we label the
pursue move by the top stack symbol in the configuration just before the
pursue move.

Let us now describe the construction more precisely. The structure of the finite
game graph G is depicted in Figure 2.

The main vertices of G are tuples in Q × Γ × 2Q. A vertex (p, γ, R) belongs
to Eve if and only if p ∈ QE. Intuitively, a vertex (p, γ, R) denotes that p is
the current state, γ is the symbol on the top of the stack and R is the current
commitment Eve has made, i.e. Eve has previously claimed that if there is a
pop-γ transition, then the state will be in R. The starting vertex is (pin,⊥, ∅)
(the bottom-of-stack symbol will never be popped, and therefore the third
component is ∅).

In order to simulate an internal-transition skip(p′) ∈ ∆(p, γ), we have edges
in G of the form ((p, γ, R), ε, (p′, γ, R)), for all R ⊆ Q.

Pop-transitions are not simulated. From any vertex (p, γ, R), we have a tran-
sition to tt if ∃r ∈ R such that pop(r) ∈ ∆(p, γ) (showing that R was correctly
defined with respect to this transition). Also, we have a transition to ff , if
∃r 6∈ R such that pop(r) ∈ ∆(p, γ) (showing that R was not correctly defined
with respect to this transition).

The simulation of a push-transition goes in several steps. Let (p, γ, R) be a ver-
tex. The player owning p first picks a particular push-transition push(p′, γ′) ∈
∆(p, γ) by moving (through an edge labeled by ε) to the vertex (p, γ, R, p′, γ′),
which belongs to Eve. Then Eve proposes a set R′ ⊆ Q containing the states
that she claims to be reached if γ ′ gets eventually popped. She does this by
moving (through an edge labeled by ε) to the vertex (p, γ, R, p′, γ′, R′), which
belongs to Adam.

Now, Adam has two kinds of choices. He can do a jump move by picking a
state p′′ ∈ R′, and move to the vertex (p′′, γ, R) through an edge labeled by
ε. Or he can do a pursue move by moving to the vertex (p′, γ′, R′) through an
edge labeled by γ. Note that these last edges are the only ones that are not
labeled by ε.

Now we have the following result.

Theorem 28 Eve has a winning strategy from (pin,⊥) in G if and only if she
has a winning strategy from (pin,⊥, ∅) in G = (G, Ωext

A1¤···¤An¤An+1
).

Before starting the proof, we introduce two notations. Let λ be some play in
G, we set Stepsλ = {n ∈ N | ∀m ≥ n, |λ(m)| ≥ |λ(n)|}, where |λ(n)| is the
size of the stack when being in the configuration λ(n). Therefore Stepsλ is
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(p′, γ, R)

tt ff(p, γ, R)

(p, γ, R, p′, γ′)

(p, γ, R, p′, γ′, R′)

(p′, γ′, R′) (p′′, γ, R)

ε

ε

ε

ε

ε ε

εε ε

γ ε

If ∃ pop(r) ∈ ∆(p, γ)
s.t. r ∈ R

If ∃ pop(r) ∈ ∆(p, γ)
s.t. r /∈ R

∀ skip(p′) ∈ ∆(p, γ)

∀ push(p′, γ′) ∈ ∆(p, γ)

∀R′ ⊆ Q

∀ p′′ ∈ R′

Fig. 2. Local structure of G: oval vertices belong to Eve, square for Adam.

the set of indexes corresponding to positions where the stack height will not
decrease later on the play.

Let λ be some play in G, we set Stepsλ = {n ∈ N | λ(n) = (p, γ, R), for some p ∈
Q, γ ∈ Γ, R ⊆ Q}. Therefore Stepsλ is the set of indexes corresponding to
positions where the play is in one of the main vertices of G.

From G to G.

Assume that (pin,⊥) is winning for Eve in the game G. This means that Eve
has a winning strategy f : V ∗VE → V from (pin,⊥).

We define, using f , a strategy f for Eve in G from (pin,⊥, ∅). For this we
inductively construct a play λ in G and consider the prefix of λ already con-
structed to determine how to play in G at any time: f is defined from f and
from the prefix of λ already constructed.

Let us describe λ and f :

(1) At the beginning λ = (pin,⊥).
(2) Assume that the play is in some configuration (p, γ, R). If p ∈ QE, Eve

considers the move given in G by f when having played λ (for instance
at the beginning from (pin,⊥)). In other words, she considers the value
of f(λ). If it is a skip-transition skip(p′), she moves to (p′, γ, R). If it is
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a pop-transition then she goes to tt (Proposition 29 will show that such
a move is always possible in that case). Otherwise she goes to the vertex
(p, γ, R, p′, γ′), where the push-transition was push(p′, γ′).

If p ∈ QA, Adam goes either to ff (Proposition 29 will show that such
a move is impossible), to tt, to some vertex (p′, γ, R) or to some vertex
(p, γ, R, p′, γ′).

(3) From a vertex (p, γ, R, p′, γ′), Eve considers the set of all (finite) exten-
sions of λ · (p′, γ′γσ) (where (p, γσ) was the last configuration in λ) in G,
where she respects f , and that end with popping γ ′ from the stack. She
moves to (p, γ, R, p′, γ′, R′), where R′ is the set of all states the game can
be in after popping γ ′ along these plays.

(4) Assume Adam goes from (p, γ, R, p′, γ′, R′) to (p′′, γ, R), by playing a
jump move. If (p, γσ) is the last configuration in λ, then Eve completes
λ by adding (p′, γ′γσ) followed by a sequence of moves respecting f in G
that ends in (p′′, γσ). Then she goes to step (2).

(5) Assume Adam goes from (p, γ, R, p′, γ′, R′) to (p′, γ′, R′) by playing a
pursue move. If (p, γσ) is the last configuration in λ, then Eve completes
λ by adding (p′, γ′γσ). Then she goes to step (2).

Therefore with any partial (resp. infinite) play λ in G is associated a partial
(resp. infinite) play λ in G.

From the definition of f , it follows that for any partial play λ in G, where
Eve respects f , the corresponding partial play λ is a valid partial play in G
where Eve follows her winning strategy f . The same holds for infinite plays.
Therefore, if λ is infinite, it is a winning play for Eve.

In addition, we have the following proposition, which is a direct consequence
of how f is defined.

Proposition 29 Consider a partial play λ in G where Eve respects f and that
ends in a vertex (p, γ, R). Then, the associated partial play λ (constructed by
f) ends in some vertex (p, γσ) for some σ ∈ St. Moreover, for any continu-
ation of λ where Eve respects f , if γ is eventually popped and leads to some
configuration (r, σ), then r ∈ R.

In particular, the above proposition implies that λ does not eventually reach
some vertex ff (such a move would be done by Adam and would correspond to
a pop-transition from λ that contradicts Proposition 29) and that the moves
to tt given by f are always possible. Therefore, finite plays in G are won by
Eve.

Now, consider some infinite play λ in G starting from (pin,⊥, ∅) where Eve
respects f . Let λ be the infinite play constructed by f while playing λ. λ is won
by Eve as it is a play where she respects her winning strategy f . Moreover,
we have the following straightforward result.
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Lemma 30 Let Stepsλ = {n0 < n1 < n2 < · · · } and let Stepsλ = {m0 <
m1 < m2 < · · · }. Then for any index i ≥ 0, one has the following:

• λ(ni) = (p, γσ) for some p ∈ Q, γ ∈ Γ and σ ∈ St if and only if λ(mi) =
(p, γ, R) for some R ⊆ Q.

• |λ(ni)| = |λ(ni+1)| if and only if in the factor λ(mi) · · ·λ(mi+1) of λ, all the
edges are labeled by ε.

• |λ(ni)| + 1 = |λ(ni+1)| if and only if in the factor λ(mi) · · ·λ(mi+1) of λ,
there is exactly one edge which is not labeled by ε. In addition, it is labeled
by γ where γ is such that λ(ni) = (p, γσ) for some p ∈ Q and σ ∈ St.

Now, as λ is an infinite play starting from (pin,⊥), where Eve respects her
winning strategy f , it implies that the stack of P is strictly unbounded in λ
and therefore StLim(λ) ∈ L(A1 ¤ · · ·¤An ¤An+1). Therefore, using Lemma
30, we conclude that Lab(λ) = StLim(λ) and therefore, Lab(λ) ∈ L(A1 ¤

· · · ¤ An ¤ An+1) = Ωext
A1¤···¤An¤An+1

, which exactly means that λ is winning
for Eve.

From G to G.

Assume that (pin,⊥, ∅) is winning for Eve in G and let f be a winning strategy
for Eve in G from (pin,⊥, ∅). From f , we define a winning strategy f in G
from (pin,⊥).

The strategy f uses a stack Υ containing vertices of G. At the beginning, Υ
only contains (pin,⊥, ∅). By top(Υ) we denote the top symbol of Υ. We will
have top(Υ) = (p, γ, R) if and only if the current partial play λ in G ends
in some configuration (p, γσ) for some σ ∈ St. In addition, R is such that, if
Eve respects f , and if γ is eventually popped, it leads to some state r ∈ R.
By StCont(Υ) we denote the word obtain by reading Υ from bottom to top.
StCont(Υ) will contain a play in G starting from (pin,⊥, ∅), and where Eve
respects her winning strategy f .

In order to describe f , let us assume that we are in some configuration (p, γσ)
with top(Υ) = (p, γ, R). First we describe how Eve plays if she is the one that
has to move, and then we explain how Υ is updated.

• Choice of the move: From some configuration (p, γσ) where p ∈ QE, Eve
considers the value of f(StCont(Υ)). If the move given by f(StCont(Υ))
is to some vertex (p′, γ, R), then, in G, Eve plays the internal-transition
skip(p′) ∈ ∆(p, γ).

If it is a move to tt then Eve plays some pop-transition pop(r) ∈ ∆(p, γ)
for some r ∈ R (Lemma 31 will show that it is always possible).

If the move given by f(StCont(Υ)) is to some vertex (p, γ, R, p′, γ′), then,
in G, Eve plays the push-transition push(p′, γ′) ∈ ∆(p, γ).

24



• Update of Υ: If the move (made by whoever) from (p, γσ) is to move to
a configuration (p′, γσ), Eve updates Υ by pushing the transition
((p, γ, R), ε, (p′, γ, R)) followed by the vertex (p′, γ, R).

If the move (made by whoever) from (p, γσ) is to pop and reach a con-
figuration (r, σ), Eve updates Υ by popping the top symbols until finding a
transition labeled by some letter γ ′ 6= ε. Let ((q′, γ′, R′, q, γ, R), γ ′, (q, γ, R))
be this top symbol. She removes it and pushes the edge
((q′, γ′, R′, q, γ, R), ε, (r, γ ′, R′)) followed by the vertex (r, γ ′, R′). This up-
date is illustrated in Figure 3.

If the move (made by whoever) from (p, γσ) is to push γ ′ and reach some
configuration (p′, γ′γσ), then Eve pushes on Υ’s top the edge
((p, γ, R), ε, (p, γ, R, p′, γ′)) followed by the vertex (p, γ, R, p′, γ′). Then she
pushes the value ((p, γ, R, p′, γ′, R′), ε, (p, γ, R, p′, γ′, R′)) of f(StCont(Υ))
followed by (p, γ, R, p′, γ′, R′) on Υ’s top. Finally, she pushes the transition
((p, γ, R, p′, γ′, R′), γ, (p′, γ′, R′)) followed by (p′, γ′, R′) on Υ’s top.

We then have the following lemma.

Lemma 31 Let λ be a partial play starting from (pin,⊥) in G where Eve
follows her strategy f and that ends in a configuration (p, γσ). Then, the fol-
lowing holds:

(1) top(Υ) = (p, γ, R) for some R ⊆ Q.
(2) StCont(Υ) is a partial play in G that starts in (pin,⊥, ∅), ends in (p, γ, R)

and in which Eve respects f .
(3) If the next move is a pop-γ-transition, then it leads to some configuration

(r, σ) with r ∈ R.

PROOF.

The proof goes by induction on the length of the play.

First we show that the third point is a direct consequence of the two other
points. Assume that from (p, γσ) a pop-transition pop(r) ∈ ∆(p, γ) is applied.
Therefore, there is an edge in G from (p, γ, R) to tt or ff depending whether
r ∈ R. If p ∈ QE then, due to how f is defined, the edge is to tt and thus
we have the result. If p ∈ QA then, if r /∈ R, Adam could move in G from
(p, γ, R) to ff : using the second point, StCont(Υ) is a partial play that ends
in (p, γ, R) and where Eve respects her winning strategy f . Thus, it cannot
be extended by a move of Adam into a loosing play for Eve.

Now assume that the result holds for some play λ, and let us show that it also
holds for some play λ′ obtained from λ by applying some transition. We have
two cases, depending on the kind of transition is applied :
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Fig. 3. Updating Υ after popping

• λ′ is obtained from λ by playing some internal-transition or some push-
transition. The first two points are immediate using the induction hypothesis
and considering the way Υ is updated.

• λ′ is obtained from λ by applying some pop-γ-transition. Then let (p, γσ)
be the last configuration of λ and let R be the third component of top(Υ)
in (p, γσ). Then by induction hypothesis, and using the third point, λ′ =
λ · (r, σ) for some r ∈ R. In addition, it is easily seen that, if n = |σ|,
there are n edges with labels different from ε, and that StCont(Υ) =
λ1 · (p

′, γ′, R′, q, γ, R) · ((p′, γ′, R′, q, γ, R), γ ′, (q, γ, R)) ·λ2 · (p, γ, R) for some
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p′, q ∈ Q, R′ ⊆ Q, γ′ ∈ Γ, and for some partial plays λ1, λ2 of G. In ad-
dition, all vertices in λ2 have R as third component and λ2 only contains
edges labeled by ε. Now if we denote by Υ′ the updated value of Υ, by def-
inition of how the stack Υ is updated, StCont(Υ′) = λ1 · (p

′, γ′, R′, q, γ, R) ·
((p′, γ′, R′, q, γ, R), ε, (r, γ ′, R′)) · (r, γ ′, R′). By induction hypothesis on
StCont(Υ) and as r ∈ R, StCont(Υ′) is a valid play in G where Eve re-
spects f . This shows that the second point holds. The first points is a direct
consequence of the second one. 2

By induction, one easily has the following proposition.

Proposition 32 Let λ be a partial play starting from (qin,⊥) in G where
Eve follows her strategy f , and that ends in a configuration (p, γσ) where
top(Υ) = (p, γ, R) when being in (p, γσ). Let λ be equal to StCont(Υ). Let
Stepsλ = {n0 < n1 < n2 < · · · < nh} and let Stepsλ = {m0 < m1 < m2 <
· · · < mk}. Then the following holds:

• h = k.
• For every i = 0, . . . , h, λ(ni) is of the form (p, γσ) for some p ∈ Q, γ ∈ Γ

and σ ∈ St if and only if λ(mi) is of the form (p, γ, R) for some R ⊆ Q
and σ = Lab(λ¹mi

).

Now consider an infinite play λ in G where Eve respects f . Then, either some
level is infinitely repeated or not. For every integer i ≥ 0, let λi = StCont(Υi),
where Υi is the (strategy) stack in λ(i). Then, in both cases, for all k ≥ 0 there
is some j ≥ 0 such that λi¹k= λj¹k for all i ≥ j. Let λ be the infinite word
such that for all k ≥ 0, λ¹k is the limit of (λi¹k)i≥0. Then, from Lemma 31,
it follows that λ is a play in G starting from (pin,⊥, ∅) where Eve respects
f . Therefore Lab(λ) ∈ L(A1 ¤ · · · ¤ An ¤ An+1) and is thus infinite. Using
Proposition 32, we conclude that the stack is strictly unbounded in λ and that
StLim(λ) = Lab(λ). Therefore StLim(λ) ∈ L(A1¤ · · ·¤An¤An+1) and thus
λ is winning for Eve. 2

4.3 The Special Case of Strict Unboundedness Pushdown Games

In this section, we consider the special case of strict unboundedness push-
down games. In [4], the following internal winning condition on pushdown
game graphs was considered: Eve wins an infinite play if and only if some
configuration is infinitely often visited. It is easily seen that the corresponding
winning condition for Adam is the strict unboundedness winning condition.

Since the strict unboundedness winning condition is the winning condition
Ωint

A for any automaton A recognizing the ω-regular language Γω (where Γ is

27



(p′, γ, R)

tt ff(p, γ, R)

(p, γ, R, p′, γ′)

(p, γ, R, p′, γ′, R′)

(p′, γ′, R′) (p′′, γ, R)

?

If ∃ pop(r) ∈ ∆(p, γ)
s.t. r ∈ R

If ∃ pop(r) ∈ ∆(p, γ)
s.t. r /∈ R

∀ skip(p′) ∈ ∆(p, γ)

∀ push(p′, γ′) ∈ ∆(p, γ)

∀R′ ⊆ Q

∀ p′′ ∈ R′

Fig. 4. Local structure of G for strict unboundedness: final edges are marked by ?.

the stack alphabet of the pushdown graph), we conclude that the preceding
constructions induce the decidability for the strict unboundedness pushdown
game (and for the games considered in [4]).

More precisely, let P = 〈Q, Γ,⊥, ∆〉 be a pushdown process with a partition
QE ∪QA of Q. We denote by G the associated pushdown game graph, and by
Gubd the associated strict unboundedness pushdown game. Then, the equiva-
lent game, played on a finite graph described as above, is equipped with the
winning condition Ωext

A . Therefore, this last game is a Büchi game, as Eve
wins a play if and only if infinitely many edges not labeled by ε are visited.
Therefore, we have the following special case of Theorem 28.

Theorem 33 Eve has a winning strategy from a configuration (pin,⊥) in G
if and only if she has a winning strategy from (pin,⊥, ∅) in the Büchi game G
played on the finite game graph G (with edges marked final) depicted in Figure
4.

Therefore, we have the following corollary.

Corollary 34 Deciding the winner in a strict unboundedness pushdown game
(respectively in a pushdown game equipped with the winning condition of [4])
can be achieved in Dexptime.
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5 Complexity

5.1 Main Results

We first start with some definitions.

Definition 35 For any h,N ≥ 0, tow(h,N) is defined inductively by:

• tow(0, N) = N .
• tow(h,N) = 2tow(h−1,N) for h ≥ 1.

For instance, tow(3, N) = 222N

.

Definition 36 (h-Dexptime) Let consider a problem P and a deterministic
Turing machine deciding in O(tow(h,N)) steps whether some instance of the
problem P is true, where N is polynomial in the size of the instance. Then the
problem P belongs to the class h-Dexptime.

We have the following upper bounds.

Proposition 37 Let consider an integer k ≥ 0 and a collection A1, . . . ,Ak,
Ak+1 of pushdown automata, where in addition Ak+1 is equipped with a parity
condition.

Let G be a pushdown game equipped with the winning condition Ωint
A1¤···¤Ak¤Ak+1

.
Deciding the winner in such a game is a (k + 2)-Dexptime problem.

Let G be a game on a finite game graph equipped with the winning condition
Ωext

A1¤···¤Ak¤Ak+1
. Deciding the winner in such a game is a (k + 1)-Dexptime

problem.

PROOF. First note that the transformation described in section 4.1 is poly-
nomial, and that the transformation described in section 4.2 is exponential.
Moreover, recall that deciding the winner in a parity pushdown game costs
exponential time [24]. Then the proof is immediate by induction on k. 2

Concerning the lower bound, we have the following result which is proved in
section 5.2.

Proposition 38 The problem of deciding the winner in a game played on a fi-
nite game graph and equipped with a winning condition of the form Ωext

A1¤···¤Ak¤Ak+1
,

with k ≥ 0, is a (k + 1)-Dexptime hard problem.
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From Proposition 38 and from the polynomial reduction described in section
4.1, we obtain the following corollary.

Corollary 39 The problem of deciding the winner in a pushdown game equip-
ped with a winning condition of the form Ωint

A1¤···¤Ak¤Ak+1
, with k ≥ 0, is a

(k + 2)-Dexptime hard problem.

Recall that a problem is elementary if it is a k-Dexptime problem for some
k ≥ 0. An elementary hard problem is thus a problem which is k-Dexptime

hard for all k ≥ 0.

Propositions 37 and 38 and Corollary 39 leads to the following result.

Theorem 40 The complexity of deciding the winner in a pushdown game
(resp. a game on a finite game graph) equipped with a winning condition
of the form Ωint

A1¤···¤Ak¤Ak+1
(resp. Ωext

A1¤···¤Ak¤Ak+1
) is non-elementary and is

elementary-hard.

5.2 Proof of Proposition 38

5.2.1 Presentation of the Proof

The proof starts with the basic case k = 0. Then, it focuses on the case k = 1
that gives some insight for the general case. The basic idea of the proof is to
simulate an alternating Turing machine using tow(k,N) space for some k ≥ 1
and some polynomial N in the size of the input. Such a Turing machine is
equivalent to a deterministic Turing machine using tow(k + 1, N) time [16]
which completes the proof.

From now on, a configuration of a Turing machine is described by a word upv,
where uv is the contents of the tape, p is the control state and the head of the
Turing machine is just after u.

Note that in all the proof Ak+1 will not be equipped with a parity acceptance
condition but with a weaker one, namely a reachability condition.

5.2.2 Basic Case: k = 0

This case is a slightly modified version of the proof showing that deciding the
winner in a reachability pushdown game is Dexptime hard [24].
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5.2.3 Basic Case: k = 1

We start by proving the hardness for the special case of a game G played on
a finite game graph G equipped with a winning condition Ωext

A1¤A2
. We explain

how such a game can be used to simulate an alternating Turing machine M of
exponential space 2N , where N is polynomial in the size of M . More precisely,
G is constructed so that Eve has a winning strategy if and only if M accepts
from a blank tape. A play in G is the description by Eve and Adam of a run
of the Turing machine M , that is a sequence of configurations. For this the
players go through labeled-edges. In what follows, we say that a player writes
a instead of saying that he goes through an edge labeled by a.

A configuration a0a1 . . . a2N−1 of M will be represented by the following word:

(#a0a1)(n0, ñ0)
2N

(a0a1a2)(n1, ñ1)
2N

. . . (a2N−2a2N−1#)(n2N−1, ñ2N−1)
2N

where ni is the binary representation of i on N bits with the most significant bit
on the left and ñi is the binary representation of i with the most significant
bit on the right. For instance, if N = 4, n10 = 1010 and ñ10 = 0101. By
(ni, ñi) we mean (n0

i , n
N−1
i )(n1

i , n
N−2
i ) . . . (nN−1

i , n0
i ) where ni = n0

i n
1
i . . . nN−1

i ,
e.g. (n10, ñ10) = (1, 0)(0, 1)(1, 0)(0, 1). For a word u and an integer k ≥ 0, uk

is the word obtained by concatenating k copies of u (e.g. u4 = uuuu). The
sequence (ni, ñi) is called a counter. The reason why we copy 2N times the
same counter will appear later when we perform an exhaustive search of a
counter in a stack.

A play goes as follows: Eve describes (going through labeled-edges) the initial
configuration (that is, the initial state i followed by 2N−1 blank symbols) then,
depending on whether the control state in the initial configuration is existential
or universal, Eve (existential state) or Adam (universal state), chooses a move,
that is, goes through an edge whose label is the description of a transition of
the Turing machine. Then, Eve describes the resulting configuration and so
on. If some accepting configuration is eventually reached then the play goes
in a special vertex where it loops forever through an edge labeled by a special
symbol ♥.

To prevent Eve from cheating in the description of the configurations, there
are 5 special symbols !c, !̃c, !v, !̃v and ? (c stands for copy and v for value).
Adam can write them to contest the validity of the last symbol written by
Eve. They can be used in the following cases:

• The j-th pair of bits of a counter (ni, ñi) is false. If it is the first copy of
the counter, the value of the counter should be equal to the value of the
preceding counter plus 1. Therefore, Adam writes !v (if the mistake is for
ni) or !̃v (otherwise) just after the wrong pair of bits. If it is not the first
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copy, the error concerns the duplication. In that case, Adam writes !c (if the
mistake is for ni) or !̃c (otherwise) just after the wrong pair of bits.

• The value of a tuple (ai−1aiai+1) is incorrect. In that case, Adam writes ?
just after it.

Once a contesting !c, !̃c, !v or !̃v has been made, the play goes in a special
vertex where it loops forever through an edge labeled by a special symbol ♠.
In the case of a contesting ?, the value of the next counter is written (and can
be contested), and then the play reaches the aforementioned special vertex
and loops forever through an edge labeled by ♠.

The alternation between both players (that allows Adam to contest any symbol
written by Eve), the memory to decide whether the control state is existential
or universal, and the memory of a contesting or a final configuration (to write
♠ or ♥) are encoded in the vertices of G. It is also the same to change of
component of G when (n2N−1, ñ2N−1) has been written or to force Eve to start
describing the empty tape configuration and to write (n0, ñ0) after the first
tuple of a configuration. Moreover, the vertices are also used to force Eve to
describe an overlapping sequence of tuples of letters. More precisely, if she has
just written the tuple (ai−1, ai, ai+1), then she will be in some vertex where
she will be forced to write as next tuple (ai, ai+1, ai+2) for some letter ai+2.

Let us now describe how the validity of a contesting is checked. For the contest-
ing concerning (ni, ñi), the preceding counter must be considered to compute
the correct value of the contested bit, which allows to decide if the contest-
ing is valid or not. The computation of that bit will of course depend on the
nature of the contesting.

For a contesting ? on a tuple of letters, the corresponding tuple in the pre-
ceding configuration has to be considered. To find it, one uses the values of
the counters that must therefore be correct. For this reason, the validity of
the counters has to be checked first and only after this, can one check the
validity of the tuples. Therefore, in the winning condition Ωext

A1¤A2
, A1 will be

used to check the validity of the counters and A2 to check the validity of the
configurations.

The automaton A1 copies its input word (in our case the description of the run
of M) in its stack. If it eventually reads a contesting !v or !̃v, it determines the
index j of the contested bit (which is bounded by N) by popping and counting
the bits already written in its stack until it finds a tuple of letters. Figure 5
illustrates the next two cases. If the contesting is !v, A1 pops the next j pairs
of bits of its stack and considers their second components to compute the j-th
bit of the counter obtained by adding 1 to the top counter of the stack, and
thus decides whether or not there was an error. If the contesting was !̃v, it
pops and ignores the j first pairs and then verifies with the first components
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Fig. 5. Stack content of A1 when reading !v or !̃v

of the next N − j bits stored in the stack whether or not there was an error.
After having checked the correctness of the contesting, A1 pushes an infinite
sequence of ♠ if the contesting was correct, and pushes an infinite sequence
of ♥ otherwise.

If A1 reads a contesting !c or !̃c, it pops the last N bits in its stack and compares
the new top bit with the contested one. The contesting is correct if and only
if they are different. This case is illustrated by Figure 6. After having checked
the correctness of the contesting, A1 pushes an infinite sequence of ♠ if the
contesting was correct, and pushes an infinite sequence of ♥ otherwise.

The automaton A2 copies its input word in its stack. It goes in a final state
when it reads ♥ and goes and stays forever in a non final state when it reads
♠. In particular, it accepts any word ending by an infinite sequence of ♥ and
rejects any word ending by an infinite sequence of ♠. Note that the limits of
the stack contents of A1 can only contain a contesting of the form ?. Figure 7
illustrates the behavior of A2. When A2 reads some contesting ?, it pops until
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k , ñj+1

k )

...

(nN−1
k , ñN−1
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Fig. 6. Stack content of A1 when reading !c or !̃c

it finds a symbol describing a transition of the Turing machine and remembers
it. Then it reads synchronously the first components of the counters described
after ? and pops its stack and focuses on the second component of the coun-
ters. It does so until it finds a correspondence between the counters. Note that
for this search, it only compares the counter it reads with the first copy of the
counter it has in its stack (otherwise it might run out of copies before finding
the corresponding counter). This search terminates because there are 2N pos-
sible values for a counter and the counter in the input word is repeated 2N

times. Therefore, there are enough copies to successfully perform an exhaus-
tive search. Once the corresponding counter is found, the top stack symbol
is the tuple of letters whose index is the same as the one being contested.
The automaton A2 can therefore decide whether its central letter has been
correctly updated and thus concludes on the validity of the contesting. Then
it stops reading its input word and goes in an accepting state if the contesting
was not correct, and loops in a non accepting state otherwise. Finally, in the
case where no correspondence was found, it loops in an non accepting state.
In that case, Eve did an error in the description of the configurations of the
Turing machine.

One can prove that this reduction is of polynomial size, and is such that Eve
has a winning strategy if and only if the Turing machine accepts from the
empty tape. The winning strategy for Eve is to describe an accepting run
of the Turing machine. If the Turing machine rejects from the empty tape,
a winning strategy for Adam is to describe a rejecting run and to contest

34



...

m ∈ ∆M (. . . )

(#, a′0, a
′
1)

(n0, ñ0)
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(a′k, a
′
k+1, a

′
k+2)

...

...

(#, a0, a1)

(n0, ñ0)
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Fig. 7. Behavior of A2 after reading ?

whenever Eve cheats in the description of the run.

5.2.4 General Case: k ≥ 1

In this section, we explain how to extend the techniques used in section 5.2.3
to prove the (k + 1)-Dexptime hardness of the winning conditions of the
form Ωext

A1¤···¤Ak¤Ak+1
. For this, we simulate an alternating Turing machine M
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using tow(k,N) space by a game on a finite game graph equipped with such
a winning condition.

As in the case k = 1, Eve and Adam will describe a branch of a run of the Tur-
ing machine by writing sequences of configurations. Previously, a configuration
was represented by a sequence of the form

(#a0a1)(n0, ñ0)
2N

(a0a1a2)(n1, ñ1)
2N

. . . (a2N−2a2N−1#)(n2N−1, ñ2N−1)
2N

.

Now, the length of a configuration is no longer exponential but k-times expo-
nential. A first idea would be to keep the same representation, except that the
counters (ni, ñi) would be bigger. Unfortunately, their length would no longer
be linear (but (k − 1)-times exponential), and therefore it would no longer be
possible, with polynomial size memory, to check whether they represent the
correct integers.

To address this problem, we adopt a more refined representation.

Definition 41 (h-exp decomposition of an integer) The 1-exp decompo-
sition of an integer R < tow(1, N) is the sequence

((bN−1, b0) . . . (b1, bN−2)(b0, bN−1))
tow(1,N), where bN−1 . . . b1b0 is the binary rep-

resentation of R with the most significant bit on the left and therefore b0b1 . . .
bN−2bN−1 is the binary representation of R with the most significant bit on the
right.

Let h > 1 and let R be some integer such that R < tow(h,N). The h-exp
decomposition of R is the sequence:

[
(b0, btow(h−1,N)−1)α0(b1, btow(h−1,N)−2)α1 · · · (btow(h−1,N)−1, b0)αtow(h−1,N)−1

]tow(h,N)

where

• btow(h−1,N)−1 . . . b1b0 is the binary representation of R with the most signifi-
cant bit on the left;

• b0 . . . btow(h−1,N)−2btow(h−1,N)−1 is the binary representation of R with the
most significant bit on the right;

• αi is the (h − 1)-exp decomposition of i.

For convenience, we assume that the binary alphabets used in the h-exp de-
composition are distinct for any level h so that the decomposition is easily
readable.

Finally, we designate the sequence (b0, btow(h−1,N)−1) . . . (btow(h−1,N)−1, b0) as a
counter of level h.
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A configuration a0a1 · · · atow(k,N)−1 of the Turing machine M is then repre-
sented by the following word

(#a0a1)n0(a0a1a2)n1 . . . (a(tow(k,N)−2)a(tow(k,N)−1)#)ntow(k,N)−1,

where ni is the k-exp decomposition of i. Note that for k = 1, we obtain
exactly the representation used in the preceding section.

Let us now explain how a play goes on. Eve describes the initial configuration.
Then, depending on whether the control state in this configuration is existen-
tial or universal, Eve (existential state) or Adam (universal state), chooses a
move, that is, goes trough an edge whose label is a description of a transition
of the Turing machine. Then, Eve describes the resulting configuration and
so on. If an accepting configuration is eventually reached, then the play goes
in a special vertex where it loops forever trough an edge labeled by a special
symbol ♥.

To prevent Eve from cheating, there are special symbols !hc , !̃
h
c , !

h
v , !̃

h
v for all

h = 1 . . . k (c stands for copy and v for value) and ? that Adam can write
whenever he wants to contest the validity of the last symbol written by Eve.
They can be used in the following cases:

• The j-th pair of bits of a counter of level h is false. If it is the first copy of the
counter, the value should be equal to the value of the preceding counter plus
1. Therefore, Adam writes !hv (if the mistake is for the representation with

the most significant bit on the left) or !̃hv (otherwise) just after the wrong
pair of bits. If it is ont the first copy, the error concerns the duplication. In
that case, Adam writes !hc (if the mistake is for the representation with the

most significant bit on the left) or !̃hc (otherwise) just after the wrong pair
of bits.

• The value of some tuple (ai−1aiai+1) is incorrect. In that case, Adam writes
? just after it.

Once a contesting on a counter of level 1 has been made, the play goes in
a special vertex where it loops forever trough an edge labeled by a special
symbol ♠. In the case of a contesting concerning a counter of level h ≥ 2, the
(h − 1)-exp decomposition of the index of the contested bit is written (and
can be contested) and then the symbol ♠ is written forever. In the case of a
contesting ?, the value of the k-decomposition of the index of the contested
tuple is written (and can be contested) and then the symbol ♠ is written
forever.

The alternation between both players (that allows Adam to contest any symbol
written by Eve), the memory to decide whether the control state is existential
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or universal, and the memory of a contesting or a final configuration (to write
♠ or ♥) are encoded in the vertices. It is also the same to force Eve to start
by describing the k-exp decomposition of 0, and to describe an overlapping
sequence of tuples of letters. More precisely, if the last tuple was (ai−1, ai, ai+1),
then Eve is forced to write as next tuple (ai, ai+1, ai+2) for some letter ai+2.

Let us now describe how the validity of a contesting is checked. For the con-
testing concerning a counter, the preceding counter must be considered to
compute the correct value of the contested bit, which allows to conclude. The
computation of that bit will of course depend on the nature of the contest-
ing. For a contesting ? on a tuple of letters, the corresponding tuple in the
preceding configuration has to be considered. To find it, one uses the values
of the counters that must therefore be correct. For this reason, the validity of
the counters of level 0 is checked first, then the validity of counters of level
1 is checked and so on. Finally, the validity of the configurations is checked.
Therefore, in the winning condition Ωext

A1¤...¤Ak¤Ak+1
, Ah will be used to check

the validity of the counters of level h ≤ k and Ak+1 to check the validity of
the configurations.

Now, let us describe how the different pushdown automata behave.

• The automaton A1 copies its input word in its stack. If it reads a contesting
!1c or !̃1c , it pops the last N bits in its stack and compares the new top
bit with the contested one. The contesting is correct if and only if they are
different. If the contesting was correct, it stops reading the word and pushes
an infinite sequence of ♠, otherwise it stops reading and pushes an infinite
sequence of ♥.

If it eventually reads a contesting !1v or !̃1v, it determines the index j of
the contested bit (which is bounded by N) by popping and counting the
bits already written in its stack until it finds a bit from a counter of level 2.
If the contesting was !1v, it pops the next j first pairs of bits and considers
their second components to compute the j-th bit of the counter obtained
by adding 1 to the top counter (of level 1) of the stack. Then it can decide

whether or not there was an error. If the contesting was !̃1v, it pops and
ignores the j first pairs and then verifies, with the first components of the
next N − j bits stored in the stack whether there was or not an error.
After having checked the correctness of the contesting, A1 pushes an infinite
sequence of ♠ if the contesting was correct, and pushes an infinite sequence
of ♥ otherwise.

• The automaton A2 copies its input word in its stack. If it reads a contesting
!2c or !̃2c , it has to pop its stack until it finds the bit whose index in the
preceding counter of level 2 is the same as the one being contested. In order
to do this, it reads the next 1-decomposition (which is a repeated binary
representation of the index of the contested bit) and at the same time, it
pops its stack and compares what it reads with the various indices it has
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in its stack (note that in the stack the indices are also represented in a
iterated form: A2 only compares to the first representation). In order to
do this, it compares the first component (most significant bit first) of what
it reads with the second component (less significant bit first) of what it
pops. Eventually, it finds the corresponding bit of the preceding counter
and compares it with the contested one. The contesting is correct if and
only if they are not equal. If the contesting was correct, it stops reading the
word and pushes an infinite sequence of ♠, otherwise it stops reading and
pushes an infinite sequence of ♥.

If it finds a contesting !2v or !̃2v, let j be the index of the contested pair
of bits (which is bounded by (tow(1, N) − 1)). To check the validity of
the contesting, one has to compute the bit from the preceding value of the
counter. The computation depends on whether the contested bit is the first
or the second of the pair. If the contesting is !2v, it is sufficient to consider the
second component of the pairs of indices (tow(1, N)−1) . . . (tow(1, N)−1−j)

of the preceding counter. If the contesting is !̃2v, it is sufficient to consider
the first component of the pairs of indices (tow(1, N) − 1 − j) . . . 0 of the
preceding counter. Note that the binary representation of tow(1, N)− 1− j
is obtained from the binary representation of j by changing all 0 by 1 and
all 1 by 0. Therefore, the binary representation of (tow(1, N) − 1 − j) can
be computed on the fly from the one of j (which is read by A2). Both cases
are thus almost the same as for the preceding contestings, except that an
on the fly addition is performed while searching. Thus, these cases are no
more difficult than the preceding ones. If the contesting was correct, A2

stops reading the word and pushes an infinite sequence of ♠, otherwise it
stops reading and pushes an infinite sequence of ♥.

If, at any moment, A2 reads some symbol ♠ (there was a valid contesting
on a counter of level 1), it stops reading and pushes an infinite sequence of
♠. Symmetrically, if A2 reads some symbol ♥, it stops reading and pushes
an infinite sequence od ♥.

• Let 3 ≤ h ≤ k. Ah works as A2 except that it handles on the contesting !hc ,

!̃hc , !hv , !̃hv . Another difference is that Ah copies the word it reads in its stack,
but it skips all bits concerning counters of level h− 2 as they are no longer
useful. Therefore, in its stack, there are only informations on counters of
level greater or equal than h − 1.

• Ak+1 copies the word, it reads in its stack, but it skips all bits concerning
counters of level k− 1. It goes in a final state when it reads ♥ and goes and
stays forever in a non final state when it reads ♠. In particular, it accepts
words ending by an infinite sequence of ♥ and rejects words ending by an
infinite sequence of ♠. Note that the limits of stack contents that Ak+1

reads can only contain a contesting of the form ?. When Ak+1 reads some
contesting ?, it reads the next symbol (which is a tuple of bits) and pops
in its stack until it finds a symbol describing the transition of the Turing
machine and remembers it. Then, it reads synchronously the first component
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of the counters described after ?, and pops in the stack and considers on the
second component of the counters. It does so until it finds a correspondence
between the counters. Again, this exhaustive search works since there are
enough copies of the searched counter in the input word (when popping
Ak+1 only compares to the first value of the iterated counter it reads in the
stack). Then, as top symbol, it gets the tuple of letters whose index is the
same as the one being contested. It can therefore check whether there was
an error for the central letter of the tuple. In case of error, it stops reading
and loops in a non accepting state, otherwise, it stops reading and goes in
an accepting state. In the case where no correspondence was found, it loops
in a non accepting state.

One can prove that the preceding reduction is of polynomial size and is such
that Eve has a winning strategy if and only if the Turing machine accepts from
the empty tape. The winning strategy for Eve is to describe an accepting run
of the Turing machine. If the Turing machine rejects from the empty tape, a
winning strategy for Adam is to describe a rejecting run and to contest if Eve
cheats in the description of the run.

6 Winning Positions and Strategies

6.1 Winning Positions

In this section, we give results on the set of winning positions for pushdown
games equipped with winning conditions of the form Ωint

A1¤···¤An¤An+1
.

In [18,3], it is shown that the set of winning positions in a parity pushdown
game is a regular language. In fact, using the same techniques, one can prove
similar results for various winning conditions [19]. For instance: unbounded-
ness, strict unboundedness, trampoline (Eve wins if and only if some config-
uration is infinitely visited while the stack is unbounded) or for more exotic
winning conditions (for instance: if ni denotes the number of distinct palin-
dromes appearing in the stack of the i-th configuration of a play, Eve wins if
and only if (ni)i≥1 is unbounded).

The main idea to prove these results is to note that the winner does not depend
on a prefix of the play neither on a finite number of letters on the bottom of the
stack, provided these letters will never appear on top of the stack. This second
point is no longer true for the winning conditions Ωint

A1¤···¤An¤An+1
. Indeed, if

some extra letter is added somewhere in the stack, the stack limit is modified,
even if this letter never appears on top of the stack. Therefore, the winner of
the play may changed.
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In fact, for the winning conditions of the form Ωint
A , the set of winning positions

may not be regular. For instance, every deterministic context-free language
may occur as a winning set.

Proposition 42 Let A be some deterministic pushdown automaton on finite
words. There exists a deterministic Büchi automaton B, a pushdown process
P = 〈Q, Γ,⊥, ∆〉, a state q ∈ Q and a partition Q = QE ∪ QA such that, in
the induced pushdown game equipped with the winning condition Ωint

B , the set
{u | (q, u) ∈ WE} is exactly the language accepted by A.

PROOF. Let A be the alphabet of A and let # /∈ A be a new symbol. We set
P = 〈{p, q}, A∪{#},⊥, ∆〉 where ∆ is defined by: ∆(q, a) = {push(p, #)} for
all letter a ∈ A and ∆(p, #) = {push(p, #)}. In other words, P is determin-
istic, and pushes an infinite sequence of # on top of its initial stack contents.
QE ∪ QA is any partition of Q. B works as A, except that it loops when it
reads # and cannot read any letter after having read #. Therefore, B accepts
the words of the form u#ω, where u is accepted by A. 2

It remains open whether there exists a pushdown game equipped with a win-
ning condition of the form Ωint

A1¤···¤An¤An+1
such that the set of winning posi-

tions for Eve is not a deterministic context-free language.

6.2 Strategies

In this section, we discuss the nature of the winning strategies in the push-
down games equipped with winning conditions of the form Ωint

A1¤···¤An¤An+1
.

In particular, we show that there are persistent strategies in these games.

First, let us recall the definition of a persistent strategy [14].

Definition 43 (Persistent strategy) A strategy ϕ for Eve is persistent if
for any partial play v1v2 · · · vk where Eve respects ϕ, if vi = vj, for some 1 ≤ i,
j < k, and if vi is a vertex where Eve is to move, then vi+1 = vj+1.

In other words, a persistent strategy may require memory, but once a choice
is made, it is forever. In this section, we show that for the pushdown games
equipped with winning conditions of the form Ωint

A1¤···¤An¤An+1
Eve has a per-

sistent winning strategy.

Theorem 44 Let G be a pushdown game graph and let G = (G, Ωint
A1¤···¤An¤An+1

)

be a game on G equipped with some winning condition Ωint
A1¤···¤An¤An+1

. Then,
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Eve has a persistent winning strategy from any winning position for her in the
pushdown game G.

Before proving Theorem 44, let us give some definitions.

Definition 45 (Subword) Let u = a0a1a2a3 · · · be an infinite word and let
(ij)j≥0 be a strictly increasing sequence of integers. The word v = ai0ai1ai2ai3 · · ·
is called a subword of u.

Definition 46 (Strategy Tree) Let ϕ be a strategy for Eve in a game G =
(G, Ω) played on an unlabeled game graph G = (VE, VA, E) and equipped with
an internal winning condition Ω. Let V = VE ∪ VA and let v ∈ V . One
associates with ϕ and v an infinite tree Tϕ with nodes labeled by V in the
following way. The root of Tϕ is labeled by v. For any node in Tϕ, labeled by
some element w ∈ V one has:

• If w ∈ VE, the node has a unique successor labeled by ϕ(λ) where λ is the
labeling of the unique path from the root of Tϕ to the current node.

• If w ∈ VA, let {w1, w2, . . . , wk} be the set of successors of w in G. Then the
node has k successors labeled by w1, w2, . . . wk.

Therefore any labeling of an infinite path in Tϕ is a play in G starting from v
where Eve respects ϕ. Conversely, any such play is the labeling of some infinite
path in Tϕ.

The following result directly implies Theorem 44.

Proposition 47 Let G = (G, Ω) be a game on an unlabeled game graph G =
(VE, VA, E) equipped with an internal winning condition Ω. Assume that Ω
satisfies the two following conditions:

(1) For all winning play λ ∈ Ω, and for all vertex v ∈ V = VE ∪ VA, v appears
only finitely often in λ.

(2) For all winning play λ ∈ Ω, any infinite subword λ′ of λ is in Ω.

Then, from any winning position for Eve, she has a winning strategy which
insures that every vertex is visited at most once in a play. In particular, this
strategy is a persistent one.

PROOF. Let v be a winning position for Eve and let ϕ be a winning strategy
for her from v. ϕ can be represented as an infinite V -labeled tree Tϕ describing
all the plays where Eve follows ϕ. Condition (1) implies that for every label w ∈
V appearing in Tϕ, there is some infinite subtree of Tϕ, which root is labeled by
w and in which w only labels the root. Indeed, assume by contradiction, that
any infinite subtree of Tϕ which root is labeled by w contains another node
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labeled by w. Let T1 be some infinite subtree of Tϕ which root is labeled by w.
T1 contains therefore another node labeled by w. Let T2 be the infinite subtree
of T1 (and therefore of T ) rooted in that node. Iterating the construction, one
obtains an infinite sequence Tϕ ) T1 ) T2 ) · · · of infinite subtrees ,which
roots are all labeled by w. The infinite path from the root of Tϕ that visits
the roots of the trees (Ti)i≥1 is an infinite path in Tϕ that contains infinitely
many nodes labeled by w. As the labeling of such a path is a winning play in
G, it leads a contradiction with (1).

Now, let us describe how to construct from ϕ a winning strategy ϕ′ for Eve
that does not visit a vertex twice. The strategy ϕ′ maintains an infinite tree
T as memory. At the beginning, T = Tϕ. From a position w ∈ VE and a tree
T , ϕ′ considers a subtree of T which root is labeled by w, and where w only
labels the root. This tree becomes the new memory T , and the move given
by ϕ′ is to the vertex labeling the (unique) son of the root of T . One easily
shows that ϕ′ is always defined, and insures that no vertex is visited twice. In
addition, any play, where Eve respects ϕ′ is a subword of a play where Eve
respects ϕ, and is therefore winning by condition (2). 2

6.3 Effective Strategies

In this section, we informally discuss the following questions: do our methods
provide effective winning strategies? Which kind of machine model may be
used to give a finite description of a winning strategy?

In the proof of Theorems 26 and 27, we have shown how to construct an effec-
tive strategy in the game played on a finite graph from an effective strategy
in the equivalent pushdown game. The main idea was to build, from the cur-
rent partial play, an equivalent partial play in the pushdown game. This was
done by a function τ that computes the run of some deterministic pushdown
automaton on the labeling of the current play. Then, the value of the strategy
in the pushdown game on this partial play was considered. Now, assume that
the strategy in the pushdown game only needs a stack, therefore, the strategy
we obtain by this construction for the game on the finite graph only needs
a stack (which alphabet is augmented by a finite number of symbols used to
simulate τ). For instance, as pushdown parity games admits effective stack
strategies [24], it implies that there are effective stack strategies in a the game
played on a finite graph equipped with a condition of the form Ωext

A1
.

Now, consider the reduction from the pushdown game to a game played on
a finite graph. In the converse implication of the proof of Theorem 28, we
construct a strategy in the pushdown game from a strategy in the game played
on the finite graph. For this, a stack Υ is used to store a play in the finite
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graph. Then, the value of the strategy in the finite graph on the partial play
stored in the stack is used to decide how to play. Now, assume that the strategy
in the finite graph uses a stack on some alphabet S. Then, one can encode and
update this into the stack Υ which alphabet is now augmented by stacks on
the alphabet S: Υ is a stack (on an alphabet S) containing stacks and other
symbols.

Iterating this reasoning shows that the preceding constructions provide effec-
tive winning strategies. Moreover, an high-order stack (that is a stack which
elements are also stacks) is sufficient as a memory for these strategies. The
number of nested stacks is n + 2 if the winning condition that we consider is
of the form Ωint

A1¤···¤An¤An+1
or Ωext

A1¤···¤An+1¤An+2
.

7 Conclusion and Perspectives

We have provided a family of winning conditions that have an arbitrary finite
Borel complexity while remaining decidable for pushdown games and games
on finite graphs. The complexity of deciding the winner for such a winning
condition is a non-elementary problem that is elementary-hard. In addition,
for pushdown games, it gives an example of decidable winning conditions in-
ducing non regular sets of winning positions. The exact form of the winning
sets remains open. Finally, we have shown that there are persistent winning
strategies for pushdown games equipped with these winning conditions. The
existence of positional strategies remains open.

Studying the classes (Cn(A))n∈N is also an interesting question. As they con-
tain languages of arbitrary finite Borel complexity, these classes are not in-
cluded in the one of determinisitic ω-context-free languages (which only con-
tains languages in B(Σ2)). Are they a strict subclass of ω-context-free lan-
guages? Note that in case of inclusion it would be strict as there are ω-context-
free languages that are not Borel sets. From the game point of view, studying
the closure properties of these classes under boolean operations is also rele-
vant. Finally, let us mention that the decidability of the emptiness problem
and the universality problem for languages of these classes directly follows
from the decidability of the games on finite graphs.
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