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Maximum likelihood estimator consistency for
ballistic random walk in a parametric random

environment.

Francis COMETS∗ Mikael FALCONNET† Oleg LOUKIANOV‡

Dasha LOUKIANOVA§ Catherine MATIAS†

October 24, 2012

Abstract

We consider a one dimensional ballistic random walk evolving in an
i.i.d. parametric random environment. We provide a maximum likelihood
estimation procedure of the parameters based on a single observation of
the path till the time it reaches a distant site, and prove that the estima-
tor is consistent as the distant site tends to infinity. We also explore the
numerical performances of our estimation procedure.

Key words : Ballistic regime, maximum likelihood estimation, random walk in
random environment. MSC 2000 : Primary 62M05, 62F12; secondary 60J25.

1 Introduction

Random walks in random environments (RWRE) have attracted much attention
lately, mostly in the physics and probability theory literature. These processes
were introduced originally by Chernov (1967) to model the replication of a DNA
sequence. The idea underlying Chernov’s model is that the protein that moves
along the DNA strand during replication performs a random walk whose tran-
sition probabilities depend on the sequence letters, thus modeled as a random
environment. Since then, RWRE have been developed far beyond this original

∗Laboratoire Probabilités et Modèles Aléatoires, Université Paris Diderot, UMR CNRS 7599,
E-mail: comets@math.univ-paris-diderot.fr; † Laboratoire Statistique et Génome,
Université d’Évry Val d’Essonne, UMR CNRS 8071, USC INRA, E-mail: {mikael.falconnet,
catherine.matias}@genopole.cnrs.fr; ‡ Département Informatique, IUT de
Fontainebleau, E-mail: oleg.loukianov@u-pec.fr; § Laboratoire Analyse et Probabil-
ités, Université d’Évry Val d’Essonne, E-mail: dasha.loukianova@univ-evry.fr

1



motivation, resulting into a wealth of fine probabilistic results. Some recent sur-
veys on the subject include Hughes (1996) and Zeitouni (2004).

Recently, these models have regained interest from biophysics, as they fit the de-
scription of some physical experiments that unzip the double strand of a DNA
molecule. More precisely, some fifteen years ago, the first experiments on un-
zipping a DNA sequence have been conducted, relying on several different tech-
niques (see Baldazzi et al., 2006, 2007, and the references therein). By that time,
these experiments primarily took place in the quest for alternative (cheaper,faster
or both) sequencing methods. When conducted in the presence of bounding
proteins, such experiments also enabled the identification of specific locations
at which proteins and enzymes bind to the DNA (Koch et al., 2002). Nowadays,
similar experiments are conducted in order to investigate molecular free energy
landscapes with unprecedented accuracy (Alemany et al., 2012; Huguet et al., 2009).
Among other biophysical applications, one can mention the study of the forma-
tion of DNA or RNA hairpins (Bizarro et al., 2012).

Despite the emergence of data that is naturally modeled by RWRE, it appears
that very few statistical issues on those processes have been studied so far. Very
recently, Andreoletti and Diel (2012) considered a problem inspired by an ex-
periment on DNA unzipping (Baldazzi et al., 2006, 2007; Cocco and Monasson,
2008), where the aim is to predict the sequence of bases relying on the obser-
vation of several unzipping of one finite length DNA sequence. Up to some ap-
proximations, the problem boils down to considering independent and identi-
cally distributed (i.i.d.) replicates of a one dimensional nearest neighbour path
(i.e. the walk has ±1 increments) in the same finite and two-sites dependent
environment, up to the time each path reaches some value M (the sequence
length). In this setup, the authors consider both a discrete time and a continu-
ous time model. They provide estimates of the values of the environment at each
site, which corresponds to estimating the sequence letters of the DNA molecule.
Moreover, they obtain explicit formula for the probability to be wrong for a given
estimator, thus evaluating the quality of the prediction.

In the present work, we study a different problem, also motivated by some DNA
unzipping experiments: relying on an arbitrary long trajectory of a transient
one-dimensional nearest neighbour path, we would like to estimate the param-
eters of the environment’s distribution. Our motivation comes more precisely
from the most recent experiments, that aim at characterising free binding ener-
gies between base pairs relying on the unzipping of a synthetic DNA sequence
(Ribezzi-Crivellari et al., 2011). In this setup, the environment is still considered
as random as those free energies are unknown and need to be estimated. While
our asymptotic setup is still far from corresponding to the reality of those exper-
iments, our work might give some insights on statistical properties of estimates
of those binding free energies.

The parametric estimation of the environment distribution has already been
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studied in Adelman and Enriquez (2004). In their work, the authors consider
a very general RWRE and provide equations relying the distribution of some
statistics of the trajectory to some moments of the environment distribution.
In the specific case of a one-dimensional nearest neighbour path, those equa-
tions give moment estimators for the environment distribution parameters. It is
worth mentioning that due to its great generality, the method is hard to under-
stand at first, but it takes a simpler form when one considers the specific case
of a one-dimensional nearest-neighbour path. Now, the method has two main
drawbacks: first, it is not generic in the sense that it has to be designed differ-
ently for each parametric setup that is considered. Namely, the method relies
on the choice of a one-to-one mapping between the parameters and some mo-
ments. Note that the injectivity of such a mapping might even not be simple
to establish (see for instance the case of Example II below, further developed in
Section 5.1). Second, from a statistical point of view, it is clear that some map-
pings will give better results than others. Thus the specific choice of a mapping
has an impact on the estimator’s performances.

As an alternative, we propose here to consider maximum likelihood estimation
of the parameters of the environment distribution. We consider a transient near-
est neighbour path in a random environment, for which we are able to define
some criterion - that we call a log-likelihood of the observed process, see (8) be-
low. Our estimator is then defined as the maximiser of this criterion - thus a
maximum likelihood estimator. When properly normalised, we prove that this
criterion is convergent as the size of the path increases to infinity. This part of
our work relies on using the link between RWRE and branching processes in
random environments (BPRE). While this link is already well-known in the liter-
ature, we provide an explicit characterisation of the limiting distribution of the
BPRE that corresponds to our RWRE (see theorem 4.5 below). Relying on this
precise characterisation, we then further prove that the limit of our normalised
criterion is finite in what is called the ballistic region, namely the set of param-
eters such that the path has a linear increase (see Section 2.1 below for more
details). Then, following standard statistical results, we are able to establish the
consistency of our estimator. We also provide synthetic experiments to compare
the effective performances of our estimator and Adelman and Enriquez’s pro-
cedure. In the cases where Adelman and Enriquez’s estimator is easily settled,
while the two methods exhibit the same performances with respect to their bias,
our estimator exhibits a much smaller variance. We mention that establishing
asymptotic normality of this estimator requires much more technicalities and is
out of the scope of the present work. This point will be studied in a companion
article, together with variance estimates and confidence intervals.

The article is organised as follows. Section 2.1 introduces our setup: the one di-
mensional nearest neighbour path, and recalls some well-known results about
the behaviour of those processes. Then in Section 2.2, we present the construc-
tion of our M-estimator (i.e. an estimator maximising some criterion function),
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state the assumptions required on the model as well as our consistency result
(Section 2.3). Section 3 presents some examples of environment distributions
for which the model assumptions are satisfied so that our estimator is consis-
tent. Now, the proof of our consistency result is presented in Section 4. The
section starts by recalling the link between RWRE and BPRE (Section 4.1). Then,
we state our core result: the explicit characterisation of the limiting distribution
of the branching process that is linked with our path; and its corollary: the ex-
istence of a (possibly infinite) limit for the normalised criterion (Section 4.2). In
Section 4.3 we first provide a technical result on the uniformity of this conver-
gence, then establish that in the ballistic case, the limit of the normalised crite-
rion is finite. An almost converse statement is also given (Lemma 4.9). To con-
clude this part, we prove in Section 4.4 that the limiting criterion identifies the
true parameter value (under a natural identifiability assumption on the model
parameter). Finally, numerical experiments are presented in Section 5.2, focus-
ing on the three examples that were developed in Section 3. Note that we also
provide an explicit description of the form of Adelman and Enriquez’s estimator
in the particular case of the one-dimensional nearest neighbour path in Sec-
tion 5.1.

2 Definitions, assumptions and results

2.1 Random walk in random environment

Let ω= {ωx }x∈Z be an independent and identically distributed (i.i.d.) collection
of (0,1)-valued random variables with distribution ν. The process ω represents
a random environment in which the random walk will evolve. We suppose that
the law ν = νθ depends on some unknown parameter θ ∈ Θ, where Θ ⊂ R

d is
assumed to be a compact set. Denote by P

θ = ν⊗Z
θ

the law on (0,1)Z of the envi-

ronment {ωx }x∈Z and by E
θ the expectation under this law.

For fixed environment ω, let X = {Xt }t∈N be the Markov chain on Z starting at
X0 = 0 and with transition probabilities

Pω(Xt+1 = y |Xt = x) =






ωx if y = x +1,
1−ωx if y = x −1,
0 otherwise.

The symbol Pω denotes the measure on the path space of X given ω, usually
called quenched law. The (unconditional) law of X is given by

Pθ(·) =
∫

Pω(·)dPθ(ω),

this is the so-called annealed law. We write Eω and Eθ for the corresponding
quenched and annealed expectations, respectively. We start to recall some well-
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known asymptotic results. Introduce a family of i.i.d. random variables,

ρx =
1−ωx

ωx
, x ∈Z, (1)

and assume that logρ0 is integrable. Solomon (1975) proved the following clas-
sification:

(a) if Eθ(logρ0)< 0, then

lim
t→∞

Xt =+∞, Pθ-almost surely.

(b) If Eθ(logρ0) = 0, then

−∞= liminf
t→∞

Xt < limsup
t→∞

Xt =+∞, Pθ-almost surely.

The case of Eθ(logρ0) > 0 follows from (a) by changing the sign of X . Note that
the walk X is Pθ-almost surely transient in case (a) and recurrent in case (b).

In the present paper, we restrict to the case (a) when X is transient to the right.
Then, it was also found that the rate of its increase (with respect to time t ) is
either linear or slower than linear. The first case is called ballistic case and the
second one sub-ballistic case. More precisely, letting Tn be the first hitting time
of the positive integer n,

Tn = inf{t ∈N : Xt =n}, (2)

and assuming E
θ(logρ0) < 0 all through, we have

(a1) if Eθ(ρ0)< 1, then, Pθ-almost surely,

Tn

n
−−−−→
n→∞

1+E
θ(ρ0)

1−Eθ(ρ0)
, (3)

(a2) If Eθ(ρ0) ≥ 1, then Tn/n →+∞ Pθ-almost surely, when n tends to infinity.

2.2 Construction of a M-estimator

We address the following statistical problem: estimate the unknown parameter
θ from a single observation of the RWRE path till the time it reaches a distant site.
Assuming transience to the right, we then observe X[0,Tn ] = {Xt : t = 0,1, . . . ,Tn},
for some n ≥ 1.
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If x[0,t ] := (x0, . . . , xt ) is a nearest neighbour path of length t , we define for all
x ∈Z,

L(x,x[0,t ]) :=
t−1∑

s=0
1{xs = x; xs+1 = x −1}, (4)

and R(x,x[0,t ]) :=
t−1∑

s=0
1{xs = x; xs+1 = x +1}, (5)

the number of left steps (resp. right steps) from site x. (Here, 1{·} denotes the
indicator function). We let also vt (resp. VTn

) be the set of integers visited by the
path x[0,t ] (resp. X[0,Tn ]). Consider now a nearest neighbour path x[0,tn] starting
from 0 and first hitting site n at time tn. It is straightforward to compute its
quenched and annealed probabilities, respectively

Pω(X[0,Tn ] = x[0,tn ]) =
∏

x∈vtn

ω
R(x,x[0,tn ])
x (1−ωx )

L(x,x[0,tn ])

and

Pθ(X[0,tn] = x[0,tn]) =
∏

x∈vtn

∫1

0
aR(x,x[0,tn ])(1−a)L(x,x[0,tn ])dνθ(a).

Under the following assumption, these weights add up to 1 over all possible
choices of x[0,tn].

Assumption I. (Transience to the right). For any θ ∈Θ, Eθ| logρ0| <∞ and

E
θ(logρ0)< 0.

Introducing the short-hand notation

Ln
x := L(x, X[0,Tn ]) and Rn

x := R(x, X[0,Tn ]),

we can express the (annealed) log-likelihood of the observations as

ℓ̃n(θ) =
n−1∑

x=0
log

∫1

0
aRn

x (1−a)Ln
x dνθ(a)+

∑

x<0,x∈VTn

log
∫1

0
aRn

x (1−a)Ln
x dνθ(a). (6)

Note that as the random walk X starts from 0 (namely X0 = 0) and is observed
until the first hitting time Tn of n ≥ 1, we have Rn

x = Ln
x+1 +1 for x = 1,2, . . . ,n −

1. We will perform this change in the first line of the right-hand side of (6).
Also, since the walk is transient to the right (Assumption I), the second sum in
the right-hand side (accounting for negative sites x) is almost surely bounded.
Hence, this sum will not influence in a significant way the behaviour of the nor-
malised log-likelihood, and we will drop it. Therefore, we are led to the following
choice.
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Definition 2.1. Let φθ be the function from N
2 to R given by

φθ(x, y) = log
∫1

0
ax+1(1−a)y dνθ(a). (7)

The criterion function θ 7→ ℓn(θ) is defined as

ℓn(θ) =
n−1∑

x=0
φθ(Ln

x+1,Ln
x ), (8)

that is the first sum (dominant term) in (6).

We maximise this criterion function to obtain an estimator of the unknown pa-
rameter. To prove convergence of the estimator, some assumptions are further
required.

Assumption II. (Ballistic case). For any θ ∈Θ, Eθ(ρ0) < 1.

As already mentioned, Assumption I is equivalent to the transience of the walk
to the right, and together with Assumption II, it implies positive speed.

Assumption III. (Continuity). For any x, y ∈N, the map θ 7→φθ(x, y) is continu-

ous on Θ.

Assumption III is equivalent to the map θ 7→ νθ being continuous on Θ with
respect to the weak topology.

Assumption IV. (Identifiability). ∀(θ,θ′) ∈Θ
2, νθ 6= νθ′ ⇐⇒ θ 6= θ′.

Assumption V. The collection of probability measures {νθ : θ ∈Θ} is such that

inf
θ∈Θ

E
θ[log(1−ω0)] >−∞.

Note that under Assumption II we have E
θ[logω0] > − log 2 for any θ ∈ Θ. As-

sumptions III and V are technical and involved in the proof of the consistency
of our estimator. Assumption IV states identifiability of the parameter θ with
respect to the environment distribution νθ and is necessary for estimation.

According to Assumption III, the function θ 7→ ℓn(θ) is continuous on the com-
pact parameter set Θ. Thus, it achieves its maximum, and we define the estima-
tor θ̂n as a maximiser.

Definition 2.2. An estimator θ̂n of θ is defined as a measurable choice

θ̂n ∈ Argmax
θ∈Θ

ℓn(θ). (9)

Note that θ̂n is not necessarily unique.

Remark 2.3. The estimator θ̂n is a M-estimator, that is, the maximiser of some

criterion function of the observations. The criterion ℓn is not exactly the log-

likelihood for we neglected the contribution of the negative sites. However, with

some abuse of notation, we call θ̂n a maximum likelihood estimator.
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2.3 Asymptotic consistency of the estimator in the ballistic case

From now on, we assume that the process X is generated under the true param-
eter value θ⋆, an interior point of the parameter space Θ, that we want to esti-
mate. We shorten to P⋆ and E⋆ (resp. P⋆ and E

⋆) the annealed (resp. quenched)
probability Pθ⋆

(resp. Pθ⋆

) and corresponding expectation Eθ⋆

(resp. Eθ
⋆

) under
parameter value θ⋆.

Theorem 2.4. (Consistency). Under Assumptions I to V, for any choice of θ̂n sat-

isfying (9), we have

lim
n→∞

θ̂n = θ⋆,

in P⋆-probability.

3 Examples

3.1 Environment with finite and known support

Example I. Fix a1 < a2 ∈ (0,1) and let ν= pδa1 + (1−p)δa2 , where δa is the Dirac

mass located at a. Here, the unknown parameter is the proportion p ∈ Θ ⊂ [0,1]
(namely θ = p). We suppose that a1, a2 and Θ are such that Assumptions I and II

are satisfied.

This example is easily generalised to ν having m ≥ 2 support points namely ν=∑m
i=1 piδai

, where a1, . . . , am are distinct, fixed and known in (0,1), we let pm =

1−
∑m−1

i=1 pi and the parameter is now θ = (p1, . . . , pm−1).

In the framework of Example I, we have

φp (x, y)= log[pax+1
1 (1−a1)y + (1−p)ax+1

2 (1−a2)y ], (10)

and

ℓn(p) := ℓn(θ) =
n−1∑

x=0
log

[
pa

Ln
x+1+1

1 (1−a1)
Ln

x + (1−p)a
Ln

x+1+1
2 (1−a2)

Ln
x

]
. (11)

Now, it is easily seen that Assumptions III to V are satisfied. Coupling this point
with the concavity of the function p 7→ ℓn(p) implies that p̂n =Argmaxp∈Θℓn(p)
is well-defined and unique (as Θ is a compact set). There is no analytical expres-
sion for the value of p̂n . Nonetheless, this estimator may be easily computed by
numerical methods. Finally, it is consistent from Theorem 2.4.

3.2 Environment with two unknown support points

Example II. We let ν = pδa1 + (1 − p)δa2 and now the unknown parameter is

θ = (p, a1, a2) ∈Θ, where Θ is a compact subset of

(0,1)× {(a1, a2) ∈ (0,1)2 : a1 < a2}.
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We suppose that Θ is such that Assumptions I and II are satisfied.

This case is particularly interesting as it corresponds to one of the setups in
the DNA unzipping experiments, namely estimating binding energies with two
types of interactions: weak or strong.

The function φθ and the criterion ℓn(·) are given by (10) and (11), respectively.
It is easily seen that Assumptions III to V are satisfied in this setup, so that the
estimator θ̂n is well-defined. Once again, there is no analytical expression for
the value of θ̂n . Nonetheless, this estimator may also be easily computed by
numerical methods. Thanks to Theorem 2.4, it is consistent.

3.3 Environment with Beta distribution

Example III. We let ν be a Beta distribution with parameters (α,β), namely

dν(a)=
1

B(α,β)
aα−1(1−a)β−1da, B(α,β) =

∫1

0
tα−1(1− t )β−1dt .

Here, the unknown parameter is θ = (α,β) ∈Θ where Θ is a compact subset of

{(α,β) ∈ (0,+∞)2 : α>β+1}.

As Eθ(ρ0) = β/(α−1), the constraint α > β+1 ensures that Assumptions I and II

are satisfied.

In the framework of Example III, we have

φθ(x, y) = log
B(x +1+α, y +β)

B(α,β)
(12)

and

ℓn(θ) =−n log B(α,β)+
n−1∑

x=0
log B(Ln

x+1 +α+1,Ln
x +β)

=
n−1∑

x=0
log

(Ln
x+1+α)(Ln

x+1+α−1). . .α× (Ln
x +β−1)(Ln

x +β−2). . .β

(Ln
x+1+Ln

x +α+β−1)(Ln
x+1+Ln

x +α+β−2). . . (α+β)
.

In this case, it is easily seen that Assumptions III to V are satisfied, ensuring that
θ̂n is well-defined. Moreover, thanks to Theorem 2.4, it is consistent.

4 Consistency

The proof of Theorem 2.4 relies on classical theory about the convergence of
maximum likelihood estimators, as stated for instance in the classical approach
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by Wald (1949) for i.i.d. random variables. We refer for instance to Theorem 5.14
in van der Vaart (1998) for a simple presentation of Wald’s approach and further
stress that the proof is valid on a compact parameter space only. It relies on the
two following ingredients.

Theorem 4.1. Under Assumptions I to V, there exists a finite deterministic limit

ℓ(θ) such that
1

n
ℓn(θ) −−−−→

n→∞
ℓ(θ) in P⋆-probability,

and this convergence is "locally uniform" with respect to θ.

The sense of the local uniform convergence is specified in Lemma 4.7 in Subsec-
tion 4.3, and the value of ℓ(θ) is given in (17).

Proposition 4.2. Under Assumptions I to V, for any ε> 0,

sup
θ:‖θ−θ⋆‖≥ε

ℓ(θ) < ℓ(θ⋆).

Theorem 4.1 induces a pointwise convergence of the normalised criterion ℓn/n

to some limiting function ℓ, and is weaker than assuming uniform convergence.
Proposition 4.2 states that the former limiting function ℓ identifies the true value
of the parameter θ⋆, as the unique point where it attains its maximum.

Here is the outline of the current section. In Subsection 4.1, we recall some
preliminary results linking RWRE with branching processes in random environ-
ment (BPRE). In Subsection 4.2, we define the limiting function ℓ involved in
Theorem 4.1 thanks to a law of large numbers (LLN) for Markov chains. In Sub-
sections 4.3 and 4.4, we prove Theorem 4.1 and Proposition 4.2, respectively. It
is important to note that the limiting function ℓ exists as soon as the walk is
transient. However, it is finite in the ballistic case and everywhere infinite in the
sub-ballistic regime of uniformly elliptic walks, see Lemma 4.9. This latter fact
prevents the identification result stated in Proposition 4.2 and explains why we
obtain consistency only in the ballistic regime. From all these ingredients, the
consistency of θ̂n , that is, the proof of Theorem 2.4 easily follows.

4.1 From RWRE to branching processes

We start by recalling some already known results linking RWRE with branch-
ing processes in random environment (BPRE). Indeed, it has been previously
observed in Kesten et al. (1975) that for fixed environment ω = {ωx }x∈Z, under
quenched distribution Pω, the sequence Ln

n ,Ln
n−1, . . . ,Ln

0 of the number of left
steps performed by the process X[0,Tn ] from sites n,n−1, . . . ,0, has the same dis-
tribution as the first n generations of an inhomogeneous branching process with
one immigrant at each generation and with geometric offspring.
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More precisely, for any fixed value n ∈ N
∗ and fixed environment ω, consider a

family of independent random variables {ξk ,i : k ∈ {1, . . . ,n}, i ∈N} such that for
each fixed value k ∈ {1, . . . ,n}, the {ξk ,i }i∈N are i.i.d. with a geometric distribution
on N of parameter ωn−k , namely

∀m ∈N, Pω(ξk ,i = m)= (1−ωn−k )mωn−k .

Then, let us consider the sequence of random variables {Z n
k

}k=0,...,n defined re-
cursively by

Z n
0 = 0, and for k = 0, . . . ,n −1, Z n

k+1 =

Z n
k∑

i=0
ξk+1,i .

The sequence {Z n
k

}k=0,...,n forms an inhomogeneous BP with immigration (one
immigrant per generation corresponding to the index i = 0 in the above sum)
and whose offspring law depends on n (hence the superscript n in notation Z n

k
).

Then, we obtain that

(Ln
n ,Ln

n−1, . . . ,Ln
0 ) ∼ (Z n

0 , Z n
1 , . . . , Z n

n ),

where ∼ means equality in distribution. When the environment is random as
well, and since (ω0, . . . ,ωn ) has the same distribution as (ωn , . . . ,ω0), it follows
that under the annealed law P⋆, the sequence Ln

n ,Ln
n−1, . . . ,Ln

0 has the same dis-
tribution as a branching process in random environment (BPRE) Z0, . . . , Zn , de-
fined by

Z0 = 0, and for k = 0, . . . ,n, Zk+1 =

Zk∑

i=0
ξ′k+1,i , (13)

with {ξ′
k ,i }k∈N∗;i∈N independent and

∀m ∈N, Pω(ξ′k ,i = m) = (1−ωk )mωk .

Now, when the environment is assumed to be i.i.d., this BPRE is under annealed
law a homogeneous Markov chain. We explicitly state this result because it is
important; however its proof is immediate and therefore omitted.

Proposition 4.3. Suppose that {ωn}n∈N are i.i.d. with distribution νθ. Then the

sequence {Zn}n∈N is a homogeneous Markov chain whose transition kernel Qθ is

given by

Qθ(x, y)=

(
x + y

x

)

eφθ(x,y) =

(
x + y

x

)∫1

0
ax+1(1−a)y dνθ(a). (14)

Finally, going back to (8) and the definition (7) of φθ, the annealed log-likelihood
satisfies the following equality

ℓn(θ) ∼
n−1∑

k=0

φθ(Zk , Zk+1) under P⋆. (15)
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Remark 4.4. Up to an additive constant (not depending on θ), the right-hand

side of (15) is exactly the log-likelihood of the Markov chain {Zk }0≤k≤n. Indeed,

we have

logQθ(x, y)= log

(
x + y

x

)

+φθ(x, y), ∀x, y ∈N.

We prove in the next section a weak law of large numbers for {φθ(Zk , Zk+1)}k∈N

and according to (15), this is sufficient to obtain a weak convergence of ℓn(θ)/n.

4.2 Existence of a limiting function

It was shown by Key (Theorem 3.3, 1987) that under Assumption I (and for a
non-necessarily i.i.d. environment), the sequence {Zn}n∈N converges in annea-
led law to a limit random variable Z̃0 which is almost surely finite. An explicit
construction of Z̃0 is given by Equation (2.2) in Roitershtein (2007). In fact, a
complete stationary version {Z̃n}n∈Z of the sequence {Zn}n∈N is given and such a
construction allows for an ergodic theorem. In the i.i.d. environment setup, we
obtain more precise results than what is provided by Key (Theorem 3.3, 1987), as
{Zn}n∈N is a Markov chain. Thus Theorem 4.5 below is specific to our setup: ge-
ometric offspring distribution, one immigrant per generation and i.i.d. environ-
ment. We specify the form of the limiting distribution of the sequence {Zn}n∈N

and characterise its first moment. We later rely on these results to establish a
strong law of large numbers for the sequence {φθ(Zk , Zk+1)}k∈N.

Theorem 4.5. Under Assumption I, for all θ ∈Θ the following assertions hold

i) The Markov chain {Zn}n∈N is positive recurrent and admits a unique in-

variant probability measure πθ satisfying

lim
n→∞

Pθ(Zn = k)=πθ(k), ∀k ∈N.

ii) Moreover, for all k ∈N, we have πθ(k)= E
θ[S(1−S)k], where

S := (1+ρ1 +ρ1ρ2 +·· ·+ρ1 . . .ρn + . . . )−1 ∈ (0,1).

In particular, we have
∑

k∈Nkπθ(k)=
∑

n≥1(Eθρ0)n , and the distributionπθ

has a finite first order moment only in the ballistic case.

Proof. We introduce the quenched probability generating function of the ran-
dom variables ξ′

n,i and Zn introduced in (13), respectively defined for any u ∈

[0,1] by

Hn(u) := Eω

(
uξ′n,0

)
=

ωn

1− (1−ωn )u
, and Fn(u) := Eω

(
u Zn

)
,

12



as well as the quantities Sn and S̃n defined as

S−1
n = 1+ρn +ρnρn−1 +·· ·+ρn . . .ρ1,

S̃−1
n = 1+ρ1 +ρ1ρ2 +·· ·+ρ1 . . .ρn .

According to (13), we have

Fn+1(u)= Fn[Hn+1(u)]×Hn+1(u),

and by induction

Fn(u)=
ω1 . . .ωn

An(ω)−Bn(ω)u
,

where An and Bn satisfy the relations

{
An+1(ω) = An(ω)−Bn (ω)×ωn+1,
Bn+1(ω) = An(ω)× (1−ωn+1).

A simple computation yields

An(ω) =ω1 . . .ωn S−1
n and Bn(ω) =ω1 . . .ωn(S−1

n −1).

Finally, we have for any u ∈ [0,1]

Fn(u)=
Sn

1− (1−Sn)u
.

This means that under quenched law Pω, the random variable Zn follows a geo-
metric distribution on N with parameter Sn . Note that Sn and S̃n have the same
distribution under Pθ , implying that Fn(u) has the same distribution as

S̃n

1− (1− S̃n )u
.

Under Assumption I, we have P
θ-a.s.

lim
n→∞

1

n
log(ρ1 . . .ρn) = lim

n→∞

1

n

n∑

i=1
logρi = E

θ logρ0 := m < 0,

and hence
P
θ
(
∃ n(ω), s.t . ∀n > n(ω), ρ1 . . .ρn ≤ enm/2)

= 1.

Then, as n →+∞, S̃n ց S = (1+ρ1+ρ1ρ2+. . . )−1
P
θ-a.s. withP

θ(0 < S < 1) = 1. As
a consequence, the quenched probability generating function Fn(u) converges
in distribution under Pθ to

F (u)=
S

1− (1−S)u
,

the probability generating function of a geometric distribution with parameter
S. Under annealed law, for any k ∈N we have

13



Pθ(Zn = k)= E
θPω(Zn = k)= E

θ
[

Sn (1−Sn)k
]
= E

θ
[

S̃n

(
1− S̃n

)k
]

.

Since 0 < S̃n < 1, dominated convergence implies that for all k ∈N,

lim
n→+∞

Pθ(Zn = k)= E
θ
[

S (1−S)k
]

:=πθ(k). (16)

As an immediate consequence, we obtain

∑

k∈N

kπθ(k)= E
θ
(
S−1−1

)
=

∞∑

n=1
(Eθρ0)n ,

Moreover, by Fubini-Tonelli’s theorem and P
θ(0 < S < 1) = 1, we have

∑

k∈N

πθ(k)= 1 and πθ(k)> 0, ∀k ∈N.

Thus the measure πθ on N is a probability measure and thanks to (16), it is in-
variant. We note that {Zn}n∈N is irreducible as the transitions Qθ(x, y) defined by
(14) are positive and the measure νθ is not degenerate. Thus, the chain is pos-
itive recurrent and πθ is unique (see for instance Norris, 1998, Theorem 1.7.7).
This concludes the proof.

Let us define {Z̃n}n∈N as the stationary Markov chain with transition matrix Qθ⋆

defined by (14) and initial distribution π⋆ := πθ⋆ introduced in Theorem 4.5. It
will not be confused with {Zn}n∈N from (13). We let ℓ(θ) be defined as

ℓ(θ) = E⋆[φθ(Z̃0, Z̃1)] ∈ [−∞,0], (17)

where φθ is defined according to (7). (Note that the quantity ℓ(θ) may not neces-
sarily be finite). As a consequence of the irreducibility of the chain {Zn}n∈N and
Theorem 4.5, we obtain the following ergodic theorem (see for instance Norris,
1998, Theorem 1.10.2).

Proposition 4.6. Under Assumption I, for all θ ∈Θ, the following ergodic theorem

holds

lim
n→∞

1

n

n−1∑

k=0
φθ(Zk , Zk+1) = ℓ(θ) P⋆-almost surely.

4.3 Local uniform convergence and finiteness of the limit

According to (15) and Proposition 4.6, we obtain

lim
n→∞

1

n
ℓn(θ) = ℓ(θ) in P⋆-probability. (18)

To achieve the proof of Theorem 4.1, it remains to prove that the convergence
is "locally uniform" and that the limit ℓ(θ) is finite for any value of θ. The local
uniform convergence is given by Lemma 4.7 below while Proposition 4.8 gives a
sufficient condition for the latter fact to occur.
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Lemma 4.7. Under Assumption I, the following local uniform convergence holds:

for any open subset U ⊂Θ,

1

n

n−1∑

x=0
sup
θ∈U

φθ(Ln
x+1,Ln

x ) −−−−→
n→∞

E⋆

(
sup
θ∈U

φθ(Z̃0, Z̃1)
)

in P⋆-probability .

Proof of Lemma 4.7. Let us fix an open subset U ⊂Θ and note that

1

n

n−1∑

x=0
sup
θ∈U

φθ(Ln
x+1,Ln

x ) ∼
1

n

n−1∑

k=0

ΦU (Zk , Zk+1),

where we have ΦU := supθ∈U φθ. As the function ΦU is non-positive, the expec-
tation E⋆(ΦU (Z̃0, Z̃1)) exists and relying again on the ergodic theorem for Markov
chains, we obtain the desired result.

Proposition 4.8. (Ballistic case). As soon as

E
⋆(ρ0) < 1, (19)

the limit ℓ(θ) is finite for any value θ ∈Θ.

Proof of Proposition 4.8. For all x ∈N, y ∈N, by using Jensen’s inequality, we may
write

log
∫1

0
ax+1(1−a)y dνθ(a) ≥ (x +1)Eθ[log(w0)]+ yEθ[log(1−w0)]. (20)

This implies that for any k ∈N,

φθ(Zk , Zk+1) ≥ (Zk +1)Eθ[log(w0)]+Zk+1E
θ[log(1−w0)],

and in particular

1

n

n−1∑

k=0

φθ(Zk , Zk+1) ≥ E
θ[log(w0)]

1

n

n−1∑

k=0

(Zk +1)+E
θ[log(1−w0)]

1

n

n−1∑

k=0

Zk+1. (21)

Now, as a consequence of Theorem 4.5, we know that in the ballistic case given
by (19) the expectation E⋆(Z̃0) is finite. From the ergodic theorem, P⋆-almost
surely,

1

n

n−1∑

k=0

(Zk +1) −−−−→
n→∞

E⋆(Z̃0)+1 and
1

n

n−1∑

k=0

Zk+1 −−−−→
n→∞

E⋆(Z̃0). (22)

Combining this convergence with the lower bound in (21), we obtain ℓ(θ) ∈

(−∞,0] in this case.

The next lemma specifies that condition (19) is necessary for ℓ(θ) to be finite at
least in a particular case.
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Lemma 4.9. (Converse result in the uniformly elliptic case). Assume thatνθ([δ,1−
δ]) = 1 for some δ > 0 and all θ ∈ Θ (uniformly elliptic walk). Then, in the sub-

ballistic case, that is E⋆(ρ0) ≥ 1, the limit ℓ(θ) is infinite for all parameter values.

Proof. For any integers x and y and any a in the support of νθ, we have

0 <δx+1 ≤ ax+1 ≤ (1−δ)x+1, 0 < δy ≤ (1−a)y ≤ (1−δ)y ,

and then

(x + y +1)log(δ) ≤ log
∫1

0
ax+1(1−a)y dνθ(a)≤ (x + y +1)log(1−δ).

This implies that for any k ∈N,

(Zk +Zk+1 +1)log(δ) ≤φθ(Zk , Zk+1)≤ (Zk +Zk+1+1)log(1−δ),

and in particular

1

n

n−1∑

k=0

φθ(Zk , Zk+1) ≤ log(1−δ)
1

n

n−1∑

k=0

(Zk +Zk+1 +1). (23)

Combining the convergence (22) with the above upper bound implies that as
soon as ℓ(θ) > −∞, we get E⋆(Z̃0) < +∞ and according to point i i i ) in Theo-
rem 4.5, this corresponds to the ballistic case (19).

4.4 Identification of the true parameter value

Fix ε> 0. We want to prove that under Assumptions I to V,

sup
θ:‖θ−θ⋆‖≥ε

ℓ(θ) < ℓ(θ⋆).

First of all, note that according to Proposition 4.8, Assumption II ensures that
ℓ(θ) is finite for any value θ ∈Θ.

Now, we start by proving that for any θ ∈ Θ, we have ℓ(θ) ≤ ℓ(θ⋆). According
to (17), we may write

ℓ(θ)−ℓ(θ⋆) = E⋆[φθ(Z̃0, Z̃1)−φθ⋆ (Z̃0, Z̃1)],

which may be rewritten as

∑

x∈N

π⋆(x)

[
∑

y∈N

log

(
Qθ(x, y)

Qθ⋆ (x, y)

)
Qθ⋆(x, y)

]

.

Using Jensen’s inequality with respect to the logarithm function and the (condi-
tional) distribution Qθ⋆(x, ·) yields

ℓ(θ)−ℓ(θ⋆) ≤
∑

x∈N

π⋆(x) log
( ∑

y∈N

Qθ(x, y)

Qθ⋆ (x, y)
Qθ⋆(x, y)

)
= 0. (24)
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The equality in (24) occurs if and only if for any x ∈N, we have Qθ(x, ·) =Qθ⋆ (x, ·),
which is equivalent to the probability measures νθ and νθ⋆ having identical mo-
ments. Since their supports are included in the bounded set (0,1), these proba-
bility measures are then identical (see for instance Shiryaev, 1996, Chapter II,
Paragraph 12, Theorem 7). Hence, the equality ℓ(θ) = ℓ(θ⋆) yields νθ = νθ⋆

which is equivalent to θ = θ⋆ from Assumption IV.

In other words, we proved that ℓ(θ) ≤ ℓ(θ⋆) with equality if and only if θ = θ⋆.
To conclude the proof of Proposition 4.2, it suffices to establish that the function
θ 7→ ℓ(θ) is continuous.

From Inequality (20) and Assumption V, we know that there exists a positive con-
stant A such that for any θ ∈Θ,

∣∣φθ(Z̃0, Z̃1)
∣∣≤ A(1+ Z̃0 + Z̃1).

Under Assumption II, we know that E⋆(Z̃0) = E⋆(Z̃1) is finite, and under As-
sumption III, the function θ 7→ φθ(x, y) is continuous for any pair (x, y). We
deduce that the function θ 7→ ℓ(θ) is continuous.

5 Numerical performances

In this section, we explore the numerical performances of our estimation pro-
cedure and compare them with the performances of the estimator proposed by
Adelman and Enriquez (2004). As this latter procedure is rather involved and far
more general than ours, we start by describing its form in our specific context in
Section 5.1. The simulation protocol as well as corresponding results are given
in Section 5.2, where we focus on Examples I to III.

5.1 Estimation procedure of Adelman and Enriquez (2004)

The estimator proposed by Adelman and Enriquez (2004) is a moment estima-
tor. It is based on collecting information on sites displaying some specified his-
tories. We shortly explain it in our context: the one dimensional RWRE.

Let H (t , x) denote the history of site x at time t defined as

H (t , x)= (L(x, X[0,t ]),R(x, X[0,t ])),

where L(x, X[0,t ]) and R(x, X[0,t ]) are respectively defined by (4) and (5), and rep-
resent the number of left and right steps performed by the walk at site x until
time t . Note that H (0, x) = (0,0) for any site x.

We define H (t ) as the history of the currently occupied site Xt at time t , that is

H (t )= H (t , Xt ).
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For any h = (h−,h+) ∈ N
2, let {K h

i
}i≥0 be the successive times where the history

of the currently occupied site is h:

K h
0 = inf{t ≥ 0 : H (t )= h}, K h

i+1 = inf{t > K h
i : H (t )= h}.

Define ∆
h
i

with values in {−1,1} as

∆
h
i = XK h

i
+1 −XK h

i
,

which represents the move of the walk at time K h
i

, that is, the move at the i th
time where the history of the currently occupied site is h.

According to Proposition 4 and Corollary 2 in Adelman and Enriquez (2004), the
random variables ∆h

i
are i.i.d. and we have

lim
m→∞

1

m

m∑

i=1
1{∆h

i
=1} =V1(h) P⋆-a.s., (25)

and lim
m→∞

1

m

m∑

i=1
1{∆h

i
=−1} =V−1(h) P⋆-a.s., (26)

where

V1(h)=
E
⋆[ω1+h+

0 (1−ω0)h− ]

E⋆[ωh+

0 (1−ω0)h− ]
and V−1(h) =

E
⋆[ωh+

0 (1−ω0)1+h−]

E⋆[ωh+

0 (1−ω0)h− ]
.

The quantities V1(h) and V−1(h) are the annealed right and left transition prob-
abilities from the currently occupied site with history h. In particular, in our
case V1(h)+V−1(h) = 1. The consequence of the previous convergence result is
that by letting the histories h vary, we can potentially recover all the moments
of the distribution ν and thus this distribution itself. The strategy underlying
Adelman and Enriquez’s approach is then to estimate some well-chosen mo-
ments V1(h) or V−1(h) so as to obtain a set of equations which has to be inverted
to recover parameter estimates.

We thus define M h
n and for ε=±1 the estimators V̂ n

ε (h) as

M h
n = sup{K h

i < Tn : i ≥ 1}, V̂ n
ε (h) =

1

M h
n

Mh
n∑

i=1
1{∆h

i
=ε}, ε=±1.

The quantity V̂ n
ε (h) is either the proportion of sites from which the first move

is to the right (ε = 1) or to the left (ε = −1), among those with history h. (In
particular, V̂ n

1 (h)+ V̂ n
−1(h) = 1.) Then, from (25) and (26) and the fact that Tn

goes to infinity P⋆-almost surely when n grows to infinity, we get

lim
n→∞

V̂ n
ε (h) =Vε(h) P⋆-almost surely.

Hence, we can estimate θ⋆ by the solution of an appropriate system of equa-
tions, as illustrated below.
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Example I (continued). In this case the parameter θ equals p and we have

V1(0,0) = E
⋆[ω0] = p⋆a1 + (1−p⋆)a2.

Hence, among the visited sites (namely sites with history h = (0,0)), the pro-
portion of those from which the first move is to the right gives an estimator for
p⋆a1 + (1−p⋆)a2. Using this observation, we can estimate p⋆.

Example II (continued). In this case the parameter θ equals (p, a1, a2) and we
may for instance consider

V1(0,0) = p⋆a⋆

1 + (1−p⋆)a⋆

2 ,

V1(0,1) = {p⋆[a⋆

1 ]2 + (1−p⋆)[a⋆

2 ]2} ·V1(0,0)−1, (27)

V1(0,2) = {p⋆[a⋆

1 ]3 + (1−p⋆)[a⋆

2 ]3} ·V1(0,1)−1.

Hence, among the visited sites (sites with history h = (0,0)), the proportion of
those from which the first move is to the right gives an estimator for p⋆a⋆

1 + (1−
p⋆)a⋆

2 . Among the sites visited at least twice from which the first move is to the
right (sites with history h = (0,1)), the proportion of those from which the second
move is also to the right gives an estimator for p⋆[a⋆

1 ]2 + (1−p⋆)[a⋆

2 ]2. Among
the sites visited at least three times from which the first and second moves are
to the right (sites with history h = (0,2)), the proportion of those from which
the third move is also to the right gives an estimator for p⋆[a⋆

1 ]3 + (1−p⋆)[a⋆

2 ]3.
Using these three observations, we can theoretically estimate p⋆, a⋆

1 and a⋆

2 ,
as soon as the solution to this system of three nonlinear equations is unique.
Note that inverting the mapping defined by (27) is not trivial. Moreover, while
the moment estimators might have small errors, inverting the mapping might
result in an increase of this error for the parameter estimates.

Example III (continued). In this case, the parameter θ equals (α,β) and we
have

V−1(0,0) =
β⋆

α⋆+β⋆
and V−1(1,0) =

β⋆+1

α⋆+β⋆+1
.

Hence, among the visited sites (sites with history h = (0,0)), the proportion of

those from which the first move is to the left gives an estimator for β⋆

α⋆+β⋆ . Among
the sites visited at least twice from which the first move is to the left (sites with
history h = (1,0)), the proportion of those from which the second move is also

to the left gives an estimator for β⋆+1
α⋆+β⋆+1 . Using these two observations, we can

estimate α⋆ and β⋆.

5.2 Experiments

We now present the three simulation experiments corresponding respectively to
Examples I to III. Note that in Example II, the set of Equations (27) may not be
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trivially inverted to obtain the parameter θ = (p, a1, a2). In particular, we were
not able to perform (even only numerically) the mapping inversion needed to
compute Adelman and Enriquez’s estimator in this case. Thus, in the experi-
ments presented below, we choose to only consider our estimation procedure
in this case. The comparison with Adelman and Enriquez’s procedure is given
only for Examples I and III. In those cases, while Adelman and Enriquez’s pro-
cedure may be easily performed, we already obtain much better estimates with
our approach. Since inverting the set of Equations (27) will increase the uncer-
tainty of the moment estimators, we claim that Adelman and Enriquez’s proce-
dure would do even worse in this case.

For each of the three simulations, we a priori fix a parameter value θ⋆ as given
in Table 1 and repeat 1 000 times the procedure described below. We first gen-
erate a random environment according to νθ⋆ on the set of sites {−104, . . . ,104}.
In fact, we do not use the environment values for all the 104 negative sites, since
only few of these sites are visited by the walk. However the computation cost is
very low comparing to the rest of the estimation procedure, and the symmetry
is convenient for programming purpose. Then, we run a random walk in this
environment and stop it successively at the hitting times Tn defined by (2), with
n ∈ {103k ;1≤ k ≤ 10}. For each stop, we estimate θ⋆ according to our procedure
and Adelman and Enriquez’s one (except for the second simulation). In all three
cases, the parameters in Table 1 are chosen such that the RWRE is transient and
ballistic to the right. Note that the length of the random walk is not n but rather
Tn . This quantity varies considerably throughout the three setups and the dif-
ferent iterations. Figure 1 shows (frequency) histograms of the hitting times Tn

for some selected values n (n = 1 000, 5 000 and 10 000), obtained from 1 000
iterations of the procedures in each of the three different setups.

Simulation Fixed parameter Estimated parameter
Example I (a1, a2) = (0.4,0.7) p⋆ = 0.3
Example II - (a⋆

1 , a⋆

2 , p⋆)= (0.4,0.7,0.3)
Example III - (α⋆,β⋆) = (5,1)

Table 1: Parameter values for each experiment.

Figure 2 shows the boxplots of our estimator and Adelman and Enriquez’s esti-
mator obtained from 1 000 iterations of the procedures in the two Examples I
and III, while Figure 3 only displays these boxplots for our estimator in Exam-
ple II. First, we shall notify that in order to simplify the visualisation of the re-
sults, we removed in the boxplots corresponding to Example I (Bottom panel
of Figure 2) about 0.8% of outliers values from our estimator, that where equal
to 1. Indeed in those cases, the likelihood optimisation procedure did not con-
verge, resulting in the arbitrary value p̂ = 1. In the same way for Example III,
we removed from the figure parameter values of Adelman and Enriquez’s esti-
mator that were too large. It corresponds to about 0.7% of values α̂ larger than
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10 (for estimating α⋆ = 5) and about 0.2% of values β̂ larger than 3 (for estimat-
ing β⋆ = 1). In the following discussion, we neglect these rather rare numerical
issues. We first observe that the accuracies of the procedures increase with the
value of n and thus the walk length Tn . We also note that both procedures are
unbiased. The main difference comes when considering the variance of each
procedure (related to the width of the boxplots): our procedure exhibits a much
smaller variance than Adelman and Enriquez’s one as well as a smaller number
of outliers. We stress that Adelman and Enriquez’s estimator is expected to ex-
hibit its best performances in Examples I and III that are considered here. In-
deed, in these cases, inverting the system of equations that link the parameter
to the moments distribution is particularly simple.

References

Adelman, O. and N. Enriquez (2004). Random walks in random environment:
what a single trajectory tells. Israel J. Math. 142, 205–220.

Alemany, A., A. Mossa, I. Junier, and F. Ritort (2012). Experimental free-energy
measurements of kinetic molecular states using fluctuation theorems. Nat

Phys 8(9), 688–694.

Andreoletti, P. and R. Diel (2012). DNA unzipping via stopped birth and death
processes with unknown transition probabilities. Applied Mathematics Re-

search eXpress.

Baldazzi, V., S. Bradde, S. Cocco, E. Marinari, and R. Monasson (2007). Inferring
DNA sequences from mechanical unzipping data: the large-bandwidth case.
Phys. Rev. E 75, 011904.

Baldazzi, V., S. Cocco, E. Marinari, and R. Monasson (2006). Inference of DNA se-
quences from mechanical unzipping: an ideal-case study. Phys. Rev. Lett. 96,
128102.

Bizarro, C. V., A. Alemany, and F. Ritort (2012). Non-specific binding of na+ and
mg2+ to RNA determined by force spectroscopy methods. Nucleic Acids Re-

search.

Chernov, A. (1967). Replication of a multicomponent chain by the lightning
mechanism. Biofizika 12, 297–301.

Cocco, S. and R. Monasson (2008). Reconstructing a random potential from its
random walks. EPL (Europhysics Letters) 81(2), 20002.

Hughes, B. D. (1996). Random walks and random environments. Vol. 2. Oxford
Science Publications. New York: The Clarendon Press Oxford University Press.
Random environments.

21



Huguet, J. M., N. Forns, and F. Ritort (2009, Dec). Statistical properties of
metastable intermediates in DNA unzipping. Phys. Rev. Lett. 103, 248106.

Kesten, H., M. V. Kozlov, and F. Spitzer (1975). A limit law for random walk in a
random environment. Compositio Math. 30, 145–168.

Key, E. S. (1987). Limiting distributions and regeneration times for multi-
type branching processes with immigration in a random environment. Ann.

Probab. 15(1), 344–353.

Koch, S. J., A. Shundrovsky, B. C. Jantzen, and M. D. Wang (2002). Probing
protein-DNA interactions by unzipping a single DNA double helix. Biophysi-

cal Journal 83(2), 1098 – 1105.

Norris, J. R. (1998). Markov chains, Volume 2 of Cambridge Series in Statistical

and Probabilistic Mathematics. Cambridge: Cambridge University Press.

Ribezzi-Crivellari, M., M. Wagner, and F. Ritort (2011). Bayesian approach to
the determination of the kinetic parameters of DNA hairpins under tension.
Journal of Nonlinear Mathematical Physics 18(supp02), 397–410.

Roitershtein, A. (2007). A note on multitype branching processes with immigra-
tion in a random environment. Ann. Probab. 35(4), 1573–1592.

Shiryaev, A. N. (1996). Probability (Second ed.), Volume 95 of Graduate Texts in

Mathematics. New York: Springer-Verlag.

Solomon, F. (1975). Random walks in a random environment. Ann. Probability 3,
1–31.

van der Vaart, A. W. (1998). Asymptotic statistics, Volume 3 of Cambridge Series in

Statistical and Probabilistic Mathematics. Cambridge: Cambridge University
Press.

Wald, A. (1949). Note on the consistency of the maximum likelihood estimate.
Ann. Math. Statistics 20, 595–601.

Zeitouni, O. (2004). Random walks in random environment. In Lectures on prob-

ability theory and statistics, Volume 1837 of Lecture Notes in Math., pp. 189–
312. Berlin: Springer.

22



0 20000 40000 60000 80000

0
10

0
20

0
30

0

0 5000 10000 15000

0
10

0
20

0
30

0
40

0
50

0
60

0

Figure 1: Histograms of the hitting times Tn obtained from 1 000 iterations in
each of the two setups and for values n equal to 1 000 (white), 5 000 (grey) and
10 000 (hatched). Top panel: Example I; bottom panel: Example III.
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Figure 2: Boxplots of our estimator (left and white) and Adelman and Enriquez’s
estimator (right and grey) obtained from 1 000 iterations and for values n rang-
ing in {103k ;1 ≤ k ≤ 10} (x-axis indicates the value k). Top panel displays es-
timation of p⋆ in Example I. Second and third panels display estimation of α⋆

(second panel) and β⋆ (third panel) in Example III. The true values are indicated
by horizontal lines.
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Figure 3: Boxplots of our estimator obtained from 1 000 iterations in Example II
and for values n ranging in {103k ;1 ≤ k ≤ 10} (x-axis indicates the value k). Es-
timation of a⋆

1 (top panel), a⋆

2 (middle panel) and p⋆ (bottom panel). The true
values are indicated by horizontal lines.
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