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SUMMARY

The objective of this thesis is to design a relative navigation and guidance law

for unmanned aerial vehicles, or UAVs, for vision-based control applications. The

autonomous operation of UAVs has progressively developed in recent years. In par-

ticular, vision-based navigation, guidance and control has been one of the most fo-

cused on research topics for the automation of UAVs. This is because in nature, birds

and insects use vision as the exclusive sensor for object detection and navigation.

Furthermore, it is efficient to use a vision sensor since it is compact, light-weight and

low cost. Therefore, this thesis studies the monocular vision-based navigation and

guidance of UAVs.

Since 2-D vision-based measurements are nonlinear with respect to the 3-D rel-

ative states, an extended Kalman filter (EKF) is applied in the navigation system

design. The EKF-based navigation system is integrated with a real-time image pro-

cessing algorithm and is tested in simulations and flight tests. The first closed-loop

vision-based formation flight between two UAVs has been achieved, and the results

are shown in this thesis to verify the estimation performance of the EKF. In addition,

vision-based 3-D terrain recovery was performed in simulations to present a navi-

gation design which has the capability of estimating states of multiple objects. In

this problem, the statistical z-test is applied to solve the correspondence problem of

relating measurements and estimation states.

As a practical example of vision-based control applications for UAVs, a vision-

based obstacle avoidance problem is specially addressed in this thesis. A navigation

and guidance system is designed for a UAV to achieve a mission of waypoint tracking
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while avoiding unforeseen stationary obstacles by using vision information. An EKF

is applied to estimate each obstacles’ position from the vision-based information.

A collision criteria is established by using a collision-cone approach and a time-to-

go criterion. A minimum-effort guidance (MEG) law for multiple target tracking

is applied for a guidance design to achieve the mission. Through simulations, it is

shown that the control effort can be reduced by using the MEG-based guidance design

instead of a conventional proportional navigation-based one. The navigation and

guidance designs are implemented and evaluated in a 6 DoF UAV flight simulation.

Furthermore, the vision-based obstacle avoidance system is also tested in a flight test

using a balloon as an obstacle.

For monocular vision-based control problems, it is well-known that the separation

principle between estimation and control does not hold. In other words, that vision-

based estimation performance highly depends on the relative motion of the vehicle

with respect to the target. Therefore, this thesis aims to derive an optimal guidance

law to achieve a given mission under the condition of using the EKF-based relative

navigation. Unlike many other works on observer trajectory optimization, this the-

sis suggests a stochastically optimized guidance design that minimizes the expected

value of a cost function of the guidance error and the control effort subject to the

EKF prediction and update procedures. A suboptimal guidance law is derived based

on an idea of the one-step-ahead (OSA) optimization, in which the optimization is

performed under the assumption that there will be only one more final measurement

at the one time step ahead. The OSA suboptimal guidance law is applied to problems

of vision-based rendezvous and vision-based obstacle avoidance. Simulation results

are presented to show that the suggested guidance law significantly improves the

guidance performance. The OSA suboptimal optimization approach is generalized as

the n-step-ahead (nSA) optimization for an arbitrary number of n. Furthermore, the

nSA suboptimal guidance law is extended to the p %-ahead suboptimal guidance by

xiv



changing the value of n at each time step depending on the current time. The nSA

(including the OSA) and the p %-ahead suboptimal guidance laws are applied to a

2-D vision-based target tracking problem, and their optimality and computational

cost are investigated through simulation results.

xv



CHAPTER I

INTRODUCTION

The objective of this thesis is to develop a monocular vision-based navigation and

guidance design for unmanned aerial vehicles (UAVs). The first challenge in this thesis

is to realize closed-loop vision-based control in actual flights. This requires a vehicle’s

flight system to have the capabilities of real-time image processing, target and own-

ship state estimation, and flight guidance and control. Each of these are substantial

research topics in their own right. This thesis, however, focuses on the problems of

target state estimation and vehicle flight guidance. A second challenge is to establish

an optimal guidance design while accounting for the dependence between estimation

and guidance in vision-based control problems. By including this dependence in a

guidance design, it is expected to improve the estimation accuracy and hence improve

the overall guidance performance. This chapter outlines the problems that this thesis

aims to solve and also discusses relevant literature.

1.1 UAV Autonomous Flight

UAVs are expected to play an important role in both military and commercial ap-

plications. Two main advantages of using UAVs instead of manned aircraft for these

operations are the following: they are considered to be cost-effective and there is no

risk in the loss of human pilot life[9]. Tremendous work in navigation and flight con-

trol systems have been done since the early 1990’s, and many successful automated

flights of UAVs have been achieved[10][71]. The development of new sensors, such as

the Global Positioning System (GPS), and communication technologies have made

large contributions to autonomous UAV flights. There already exist some cases in

1



Figure 1: (Left) U.S. Airforce Predator used for military operations[80], (Right)
Yamaha RMax used for volcano observations[65]

which UAVs have been utilized for practical missions by means of remotely com-

manded/controlled operation. The U.S. Air Force Predator (Figure 1, Left) is one

of the most recognized examples of these UAVs. Since 1995, the Predator has been

operational in actual battlefields for surveillance and reconnaissance[80]. As another

example, Yamaha’s unmanned helicopter RMax (Figure 1, Right) has operated in the

proximity of active volcanos for observation purposes[65]. Moreover, UAVs are con-

sidered to have significant potential for mine detection and removal applications[69]

because UAVs can detect mines without touching them.

The autonomous operation of UAVs has been progressively developed in recent

years[16]. Autonomy is distinguished from automation as it requires the capability

of making decisions as well as executing them. Autonomous control systems enable

UAVs to accomplish high-level missions with less or no human operators. One of

the most challenging problems for autonomous UAV flight is situational awareness.

Since in most missions, UAVs are expected to operate in an uncertain and possi-

bly adversarial environment, the system requires active or passive sensors to provide

information about the environment, and also requires algorithms that extract ob-

jects of interest from that information. For example, laser rangefinders can provide

highly accurate data about the surrounding environment[53]. 3-D terrain can also

be accurately modelled by the sensor fusion of laser range readings with camera

images[79][52]. However, a laser rangefinder takes a long time to scan and render

the information, which is not preferable for some missions such as target tracking.
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As seen in nature among birds and insects, a 2-D passive vision sensor can provide

sufficient information as an exclusive sensor for object detection and navigation. Fur-

thermore, it is efficient to use a vision sensor since it is compact, light-weight and low

cost compared to a laser rangefinder. Therefore, this thesis considers the utilization

of a single 2-D passive vision sensor to detect objects. The next section discusses the

vision-based navigation and guidance problem.

1.2 Vision-Based Navigation and Control

As stated above, vision-based UAV operation has significant potential. Flying insects

and birds highly rely on visual information to navigate themselves in a 3-D environ-

ment. Some have experimentally investigated the visual strategies of insects, and

have consequently designed robot navigation and control system inspired by their

results[76][55]. Srinivasan et al. studied the visual landing strategy of honeybees

and applied it to UAVs[77]. These nature-inspired algorithms are very simple and

efficient.

Monocular vision-based navigation and control is one of the most focused on re-

search topics for the automation of UAVs. Vision-based navigation and control have

been studied in many applications. Some studies focus on vision-based vehicle local-

ization. Vision information is utilized to determine the vehicle states, such as position

and attitude, in case of GPS failure[90][43][88]. Others have developed algorithms to

recover the 3-D environment from 2-D vision measurements, assuming all the vehicle

states are known through its own-ship navigation system. [18], [19], [20] and [85]

address the terrain recovery problem. Terrain models can be created by visually

detecting features on the ground while flying a UAV over a field. Collecting this

environmental information is very important in order to operate the vehicle safely in

unknown and possibly adversarial environments. The resulting terrain map can be

used for path planning and obstacle avoidance. Vision-based target tracking has also
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been intensively investigated. In the target tracking problem, a given target (station-

ary or moving) is detected in an image, its relative state with respect to the vehicle is

estimated and the vehicle is guided to track it by using the estimate. Vision-based au-

tonomous landing[74] and ground object and vehicle tracking[63][56] are examples of

air-to-ground tracking. Vision-based formation flight[34] and aerial refueling[81] are

examples of air-to-air tracking. Furthermore, simultaneous localization and modeling

(SLAM) problems have been investigated. This problem is even more difficult since

there is neither knowledge about the vehicle states nor its environment. However, it

has been proven that the problem has a solution and several applications have been

presented[17][46][33].

To achieve autonomous vision-based UAV operations, a real-time image process-

ing algorithm is required. In particular, the processing time is critical for guidance

with the purpose of object tracking. Image processing itself is a very challenging

topic. Even though so many different kinds of image processing algorithms have been

developed, it is still difficult to process complex images in realtime. This thesis does

not focus on image processing algorithms, but makes use of an active contour method

developed in [24][25]. Active contours are processes that use image coherence to

track features of interest over time[8]. They fit naturally into control frameworks and

have often been employed in conjunction with Kalman filtering. Specifically, the fast

marching level set method is used in our application. The level set method performs

Figure 2: Examples of Image Processing: (Left) Detecting an airplane flying ahead,
(Right) Detecting edges of a ground obstacle
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processing calculations only in a limited region near the active contour[70]. Therefore,

it can reduce the computational burden and make the process realtime applicable.

Furthermore, adding a particle filtering to an object search enables the image proces-

sor to track multiple objects (possibly moving) in a cluttered background. Figure 2

shows examples of image processing.

Assuming the real-time image processor detects the target in each image frame,

an estimator is designed to estimate the target relative state needed in the guid-

ance law. Kalman suggested an optimal estimator for a linear system, known as the

Kalman filter in [40]. The Kalman filtering process consists of two different steps:

one is prediction, which is performed based on the state dynamics, and the other

is an update, which is an estimate correction based on the measurement. The lin-

ear Kalman filter was extended so that it could be applied to nonlinear system by

linearizing about the predicted estimate at each time step. This nonlinear filter is

called the extended Kalman filter or the EKF[12][93]. In our applications, the EKF

is utilized since the vision-based measurement is a nonlinear function of the relative

state. Although convergence of the EKF estimation is not theoretically guaranteed,

its performance has been demonstrated in many practical applications. However,

when a system is highly nonlinear and cannot be well propagated by its first-order

approximation, an EKF can cause poor estimation performance. To overcome this

problem, other nonlinear filtering methods such as the unscented Kalman filter (UKF)

and the particle filter (PF) have been suggested[39]. The UKF and the PF use Monte

Carlo sampling to propagate the nonlinear system, and they capture the system’s

nonlinearity more accurately[11]. [57] and [58] compare estimation performance be-

tween the three different estimation frameworks for a vision-based target tracking

problem and conclude a superiority of the UKF and the PF over the EKF. Moreover,

adaptive estimation is also an efficient filtering method when there is uncertainty in

the dynamics. Especially, it can be useful when the target’s maneuver is unknown.
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[49] and [67] suggest adding a neural-network based adaptation to an EKF. In their

work, the adaptive estimator is applied to a vision-based maneuvering target tracking

problem. The adaptation compensates for an unknown target acceleration and hence

it improves the EKF estimation performance. Works showed that these advanced

filtering methods can provide more accurate estimates for some cases. However, the

EKF is applied in this thesis because it has already been successfully utilized for sys-

tems without large uncertainties. As an example, the estimation results from actual

flight tests of vision-based formation flight are presented in this thesis to show that

the EKF attains sufficiently accurate estimation in our application. The estimated

states are fed back to a guidance law to achieve some given mission.

1.3 Vision-Based Obstacle Avoidance

As an important and practical example of vision-based control applications for UAVs,

a vision-based obstacle avoidance problem is specially addressed in this thesis. For

some missions UAVs have to operate in congested environments that include unknown

obstacles. For such missions, obstacle avoidance is an anticipated requirement. This

thesis presents a vision-based navigation and guidance design for UAVs to detect and

avoid obstacles while executing a given mission such as preplanned path following or

waypoint tracking.

Kumar and Ghose proposed a navigation and guidance law that achieves both

waypoint tracking and collision avoidance[44]. This algorithm assumes range infor-

mation is available from a radar. A method described in [45] also assumes a radar

sensor system for collision avoidance. A laser scanner is suggested as an alternative

sensor and successful flight test results of laser-based obstacle avoidance are presented

in [71] and [23]. On the other hand, passive vision sensors are also commonly used

for obstacle sensing especially for small scale UAVs. Stereo vision system has been
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designed for real-time obstacle detection[31][62]. However, stereo vision systems re-

quire precise camera calibration and also a feature matching algorithm for relating

two images. Hence, this thesis focuses on monocular vision-based obstacle detection

and avoidance.

Many studies have been done on a guidance strategy for collision avoidance. A

method discussed in [68] uses a combination of circular paths as a vehicle’s avoiding

maneuver, so that the vehicle can efficiently sense its surroundings in every direction.

Pollini et al. suggested giving a velocity command so that a vehicle keeps a certain

distance from each obstacle[61]. In their work, a shadow cone is used in the guidance

design to avoid collisions with a group of multiple obstacles. [27] and [87] proposed a

guidance design based on a proportional navigation (PN) law along with the use of the

collision cone approach suggested by [15]. However, all of these algorithms are limited

to the case in which the vehicle and the obstacles stay in a 2-D plane. That is, they are

effective only for operations on ground or in planar flight at constant altitude. This

thesis establishes a guidance design for 3-D waypoint tracking and obstacle avoidance

by extending the collision cone approach from 2-D to 3-D. Furthermore, a minimum-

effort guidance (MEG) for multiple target tracking derived in [3] and [4] is applied

instead of PN. It is always important to minimize the required control energy in UAV

operations to save fuel. Simulation results show that the MEG-based guidance law

achieves waypoint tracking and obstacle avoidance mission with less control effort

than the PN-based guidance law[82][83]. The suggested MEG-based guidance design

is integrated with a real-time image processor and an EKF-based navigation filter, and

is implemented and evaluated in the image-in-the-loop 6 DoF UAV flight simulation.

Finally, the vision-based obstacle avoidance system is implemented in the autonomous

flight system of an actual UAV, and flight test results are presented in this thesis.
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1.4 Observer Trajectory Optimization

The guidance law for the UAV in vision-based control applications should be designed

to achieve given missions by using vision-based navigation. Generally, the guidance

design is formulated as a vehicle trajectory optimization problem. There is a large

body of research on this subject[64][6][2]. Most considered off-line trajectory genera-

tion and aimed to solve the optimization problems efficiently under the assumption

of full state information. Even if the algorithm is realtime applicable, the state is not

fully available in reality. In real applications, the optimal vehicle trajectory needs

to be calculated by using the state estimate which is updated at each time step by

available measurements. A common way to determine the vehicle guidance law for

such a case is to replace the true states by their estimates in the optimal solution

that is obtained by assuming full state information. However, this approach is not

optimal and can even cause mission failure due to estimation errors. Since a vehicle

guidance law uses these estimates, obtaining good guidance performance requires ac-

curate estimates. Blackmore suggested a guidance design which considers estimation

and modeling uncertainties[7]. This work designs a guidance law for obstacle avoid-

ance by using the estimated vehicle states. The guidance design utilizes particles

to measure the probabilistic estimation uncertainties and the vehicle is guided to a

further distance from the obstacle when the estimate includes a larger uncertainty.

Frew and Sangupta also developed a guidance design for the vision-based obstacle

avoidance problem, including an error model of a stereo vision system[21].

For vision-based relative navigation, it is well known that estimation performance

significantly depends on sensor motion relative to the target[51]. In other words,

unlike linear systems, the separation principle does not hold between estimation and

control. Observability of the vision-based estimator depends on the vehicle motion

which is determined by the guidance law. At the same time, guidance performance

directly depends on estimation accuracy since the estimate is fed back to the guidance
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law. Therefore, an objective of this thesis is to derive an optimal guidance design

which can achieve given missions while minimizing the estimation uncertainty. Esti-

mation enhancement by trajectory modification was first considered in a homing mis-

sile guidance problem in the 1980’s[75][32][28]. This problem is called Dual Control.

In dual control, a guidance law is designed to maximize the information content of a

missile’s intercept trajectory. The resulting trajectory ensures that the line-of-sight

between the missile and the target is always in motion in order to increase observ-

ability. In [32], the maximization of the lateral motion is formulated in a quadratic

form and an analytical optimal solution is derived. Observer trajectory optimization

for estimation improvement was also treated by Hammel et al[26]. Similar studies

have been performed in bearing-only localization and target tracking[59][60][47] and

in vision-based estimation[22][84]. In these papers, an optimal observer trajectory

is calculated so that the estimation error is minimized. Singh et al. formulated a

more generalized problem called sensor scheduling[73]. They introduced the concept

of sensor actions which could not only be a sensor trajectory but also a choice of sen-

sor to be used, tunable parameters and so forth. The estimation error is minimized

over available sensor actions. However, only sensor trajectory optimization is treated

in their paper. Some studies listed above have a target tracking mission which ap-

pears as a terminal condition in the optimization problem. The main focus of these

works was cost function selection so that the resulting optimization problem can be

efficiently solved. For example, [26] and [59] choose the determinant of the Fisher

information matrix and utilize a direct gradient numerical method to maximize it

over the observer trajectory. Frew et al. minimize the determinant of the predicted

estimation error covariance matrix over the discretized observer motion[22]. There

are two main issues associated with these works. One is that there has not yet been

established a systematic way to choose the cost function. The other is that most of

their algorithms require iterative calculations to obtain the optimal solution and they
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are computationally expensive. Therefore, this thesis aims to establish a real-time

applicable guidance design which can be systematically determined from the original

vehicle trajectory optimization problem.

1.5 Stochastically Optimal Guidance Design

Since the estimation error is assumed to be white Gaussian noise with zero mean

and with its estimated covariance matrix obtained in the EKF process, stochastic

optimization can be performed for the original vehicle trajectory optimization problem

which has been set up to achieve given missions. In this approach, the cost function

will be systematically obtained. Kim and Rock also suggested a stochastic feedback

controller design for bearing-only tracking[42]. Since the EKF update law is nonlinear

with regard to the relative motion dynamics, a solution of the resulting stochastic

optimization problem can only be obtained numerically by using iterative calculations

such as dynamic programming. To reduce the computational cost, we will try to

obtain an approximately optimal or suboptimal solution. In [42], a steady state

solution is assumed and the optimal guidance law is derived by solving the algebraic

Ricatti equation (ARE). This assumption is not appropriate when a finite terminal

time is given. Logothetis et al. compared several different suboptimal techniques for

observer trajectory optimization for the bearing-only tracking problem[48]. The idea

of one-step-ahead (OSA) optimization was introduced as one of these techniques in

[48]. This is a suboptimal optimization strategy in which the optimization problem is

solved under the assumption that there will be only one more final measurement at the

next time step. Under this assumption, the observer trajectory optimization needs to

be considered only for a guidance input at the current time step since there will be no

chance to improve the estimation accuracy after the final measurement is obtained.

Therefore, the optimization will be performed over a single vector representing a

guidance input at the current time step, and it can be solved by an algebraic equation.
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This thesis combines the stochastic optimization formulation and the OSA op-

timization approach to establish a suboptimal guidance design for the monocular

vision-based control problem. Through simulations of vision-based rendezvous and

vision-based obstacle avoidance, it is observed that the suggested approach signifi-

cantly improves the guidance performance without large computational load[86]. Fur-

thermore, the OSA suboptimal guidance law is generalized to n-steps-ahead (nSA)

optimization for an arbitrary number of n in this thesis. As the number of steps n

increases, the suboptimal solution approaches the optimal solution, but at the same

time it requires more computations. The optimal solution can be numerically derived

by using a sufficiently large value for n. Then the OSA suboptimal guidance law is

just a special case of n = 1. In addition, the p %-ahead suboptimal guidance is sug-

gested by modifying the nSA suboptimal guidance. In that approach, at each time

step, a value for n is determined by a number of steps including in the first p % of the

time period from the current time to the terminal time. The nSA and the p %-ahead

suboptimal guidance designs are applied to a vision-based 2-D target tracking prob-

lem. Simulation results are compared for different values of n (including the OSA

suboptimal guidance, which corresponds to n = 1) and of p, and their optimality and

computational costs are examined in this thesis.

1.6 Thesis Objectives and Outline

Figure 3 is a diagram of a vision-based autonomous flight system for a UAV. The

goals of this thesis are to design the relative navigation and guidance systems, to

integrate them with the other subsystems (which are assumed to be available), and

to evaluate the entire system in realistic simulations and also in actual flight tests.

The thesis is organized as follows: Chapter 2 presents a vision-based navigation

design using an extended Kalman filter. A standard EKF formulation is provided,

and the navigation design for vision-based formation flight between two UAVs is
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Figure 3: Vision-Based Autonomous Flight System

shown as an example. The navigation results of both simulation and flight test are

presented to verify the EKF estimation performance. For another example, the EKF-

based navigation design is applied to a vision-based 3-D obstacle modeling problem.

In this example, multiple objects need to be tracked. The statistical z-test is used

to solve the correspondence problem between measurements and estimates. Chapter

3 focuses on a 3-D vision-based obstacle avoidance problem for UAVs. A relative

navigation and guidance system is developed and tested in simulations and flight

tests. The results show that the control effort can be reduced by using the suggested

minimum-effort guidance. Chapter 4 develops the stochastically optimized guidance

design. For a given trajectory optimization problem, a stochastic optimization is

formulated subject to the vehicle dynamics and the EKF estimation process. A

real-time applicable suboptimal guidance law is designed by applying the one-step-

ahead (OSA) optimization, and its guidance performance is evaluated in simulations

with vision-based target tracking applications. In addition, the OSA suboptimal

12



guidance law is extended to the n-step-ahead and the p %-ahead suboptimal guidance

designs. Simulation results of these suboptimal guidance laws are compared with

a numerically obtained optimal solution, and their optimality and computational

loads are examined. Chapter 5 summarizes contributions of the thesis and addresses

recommended future work related to the research in this thesis.
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CHAPTER II

VISION-BASED NAVIGATION DESIGN

This chapter describes a vision-based navigation design. Since the 2-D vision-based

measurement is nonlinear with respect to the 3-D relative state, an extended Kalman

filter (EKF) is applied to estimate the relative state from the measurement. The

EKF-based relative navigation design is applied to vision-based formation flight and

to vision-based 3-D obstacle modeling problems, and its estimation performance is

evaluated in simulations. Furthermore, successful flight test results of a closed-loop

vision-based formation flight between two UAVs are presented.

2.1 Problem Formulation

Let Xv and V v be a vehicle’s position and velocity vectors expressed in an inertial

frame (denoted by FI). Suppose that the vehicle dynamics can be modeled as the

following simple linear system.

Ẋv(t) = V v(t), V̇ v(t) = av(t) (2.1)

where av is the vehicle’s acceleration input. It is assumed that all the vehicle states are

available through its own-ship navigation system. The target dynamics are similarly

given by

Ẋ t(t) = V t(t), V̇ t(t) = at(t) (2.2)

where X t, V t and at are the target’s position, velocity and acceleration vectors,

respectively. Relative position, velocity and acceleration of the target with respect to
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the vehicle are defined by

X(t) = X t(t)−Xv(t)

V (t) = V t(t)− V v(t) (2.3)

a(t) = at(t)− av(t)

Then the relative motion dynamics are formulated as follows.

Ẋ(t) = V (t), V̇ (t) = a(t) (2.4)

Since the target’s maneuver is unknown in most cases, we need to apply some model

for at based on its prior knowledge. For example, the following target model is called

Singer model[72].

ȧt(t) = −αat(t) + w(t), α > 0

where w(t) is a zero mean Gaussian noise. A target’s velocity is modeled as a random

walk process in the following.

at(t) = 0 + w(t)

In this problem, for simplicity, it is assumed that a 2-D passive vision sensor is

mounted at the center of gravity of the vehicle. (This assumption can be easily

removed by including extra rotational dynamics caused by an offset in the relative

motion model.) We also assume that an image processor which is able to detect a

target position in an image frame is available. Let Lc denote a known camera attitude

represented by a rotation matrix from the inertial frame FI to a camera frame which

is denoted by FC . A camera frame is taken so that the camera’s optical axis aligned

with its Xc axis. Then the relative position expressed in FC will be

Xc(t) = Lc(t)X(t) =

[
Xc(t) Yc(t) Zc(t)

]T

(2.5)
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Figure 4: Pin-Hole Camera Model

Assuming a pin-hole camera model shown in Figure 4, the target position in the image

at a k-th time step tk is given by

xk =




yk

zk


 =

f

Xc(tk)




Yc(tk)

Zc(tk)


 (2.6)

where f is the focal length of the camera. In this thesis, f = 1 is used without

loss of generality. More target information will be available if the image processor

can detect the target’s shape, size, contours or other characteristics in addition to its

center position x. The vision-based navigation objective is to estimate the unknown

target states from the image processor outputs and the known vehicle and camera

states.
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2.2 Extended Kalman Filter

Since the 2-D vision-based measurement (2.6) is a nonlinear function with respect to

the 3-D relative state, an extended Kalman filter (EKF) is applied to estimate the

relative states from the measurement. The Kalman filter is a recursive solution to the

least-squares method for a linear filtering problem[40]. Since the filter was introduced

by Kalman in 1960, it has been the subject of extensive research and application

particularly in the area of autonomous navigation[89]. The EKF is an extension of

the standard linear Kalman filter so that it can be applied to nonlinear systems by

linearizing the system about the predicted estimate at each time step[11][12][93]. Even

though the convergence of its estimate cannot be theoretically proven, good estimation

performance of the EKF has been demonstrated in many practical applications.

A general formulation of the EKF is presented in this section. Consider the

following nonlinear system.

ẋ(t) = f(x(t),u(t)) + w(t) (2.7)

zk = h(xk) + νk (2.8)

where x is a state vector, u is a system input, w is a random zero-mean process

noise, zk is a measurement at time step k and νk is a discrete measurement noise.

Let x̂−k and x̂k be the predicted and updated estimates of x(tk), and P−
k and Pk be

their estimated error covariance matrices. A state estimate at tk−1 is propagated to

the next time step tk through a first-order Euler integration of the original nonlinear

system (2.7).

x̂−k ' x̂k−1 + f(x̂k−1, uk−1)(tk − tk−1) (2.9)

Then the system dynamics and the measurement model (2.7-2.8) are linearized about

x̂−k and discretized as follows.

xk = Φkxk−1 + Γkuk−1 + wk−1 (2.10)

zk = Hkxk + νk (2.11)
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where

Φk = eFk(tk−tk−1) (2.12)

Γk =

∫ tk

tk−1

eFk(tk−s)Gkds (2.13)

wk−1 =

∫ tk

tk−1

eFk(tk−s)w(s)ds (2.14)

and

Fk =
∂f(x,u)

∂x

∣∣∣
x=x̂−

k ,u=uk−1

, Gk =
∂f(x,u)

∂u

∣∣∣
x=x̂−

k ,u=uk−1

, Hk =
∂h(xk)

∂xk

∣∣∣
xk=x̂−

k

(2.15)

Now the linear discrete Kalman filtering algorithm can be applied to the linearized

system (2.10-2.11). The predicted and updated error covariance matrices and the

Kalman gain are calculated by

P−
k = ΦkPk−1Φ

T
k + Qk (2.16)

Kk = P−
k HT

k

(
HkP

−
k HT

k + Rk

)−1
(2.17)

Pk = (I −KkHk) P−
k (2.18)

where Qk and Rk are covariance matrices of the discrete process noise wk and mea-

surement noise νk. Finally, the updated state estimate is obtained by

x̂k = x̂−k + Kk

(
zk − h(x̂−k )

)
(2.19)

Since a camera’s field of view is limited and the image processor may sometimes

fail to capture the target, the vision-based measurement is not always available. When

this happens, only the EKF prediction procedure (2.9, 2.16) is performed. The ab-

sence of a measurement corresponds to having a measurement with an infinitely large

noise. When Rk = ∞ in (2.17), the Kalman gain Kk becomes zero. It results in

x̂k = x̂−k and Pk = P−
k , and nothing will be changed in the EKF update procedure

(2.18, 2.19).
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2.3 Application 1 : Vision-Based Formation Flight

In order to evaluate the EKF estimation performance for applications of vision-based

navigation, the EKF-based relative navigation design is applied and tested in two

different frameworks. For missions such as surveillance and reconnaissance, multiple

UAVs are expected to execute the missions more efficiently by maintaining a forma-

tion. Moreover, it will be important to minimize the communication between vehicles.

For those reasons, vision-based formation flight between two UAVs is addressed in

this section. In this application, an EKF is designed to estimate the relative state

of the leader aircraft with respect to the follower from the vision information. The

EKF is implemented and tested in an image-in-the-loop 6 DoF multiple UAV flight

simulation and in actual flights of UAVs. An image processor, an own-ship naviga-

tion filter and a flight guidance and control system have already been developed and

implemented. The image processor used is developed for realtime target tracking by

Ha et al. in [24] and [25]. In flight experiments, closed-loop vision-based formation

flights of two UAVs have been successfully achieved[35]. Estimation results obtained

in both simulations and flight tests are illustrated in this section.

2.3.1 Navigation Filter Design

(a) Process Model

In the framework of the vision-based formation flight of two UAVs (a leader and a

follower), the EKF is designed to estimate the relative position of the leader aircraft

with respect to the follower from the vision-based measurement. In the EKF design

for this application, an estimation state vector is taken as follows.

x =

[
uT u̇T 1

r
ṙ
r

b

]T

(2.20)

u is an unit vector pointing from the follower to the leader and r is a range between
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the two aircraft. They are defined by

u =
X

‖X‖ , r = ‖X‖ (2.21)

where X is the relative position vector. In bearing-only tracking problem, it is very

common to use an inverse of range 1/r instead of the range itself to reduce the

nonlinearity associated with its dynamics[1]. Moreover, the unit vector is chosen

as an estimation state, instead of bearing and elevation angles which are commonly

used[1], to avoid a singularity. b in (2.20) is a constant wingspan of the leader airplane.

When using the random walk model for the target’s velocity, the process model is

written as follows.

ẋ =




u̇

− (‖u̇‖2 − 1
r
u · av

)
u− 2 ṙ

r
u̇− 1

r
av

−1
r

ṙ
r

‖u̇‖2 − 1
r
u · av −

(
ṙ
r

)2

0




+ w = f(x,av) + w (2.22)

where av is the follower’s acceleration input and w is the process noise.

(b) Measurement Model

It is well-known that the range information is not always observable when only a 2-D

image position of a target center is measured from a single camera[51]. To guarantee

range observability, the line-of-sight from the camera to the target needs to be in

motion[84]. However, in the formation flight application, there should not be a relative

motion between the two aircraft and this may result in poor range estimation. To

overcome this observability issue, an angle that is subtended by the leader’s size (e.g.

wingspan) is introduced as an additional measurement. The subtended angle α is

defined by

α = 2 tan−1 b

2r
(2.23)

The image processor developed in [24] tracks the target’s contour in images, and so it

can extract the target size. Figure 5 shows an example of the image tracking result.
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Figure 5: Image Tracking Result: (Left) Original image taken by the onboard
camera, (Right) Center and two wing-tip positions of the leader airplane are detected

The image processor processes original images captured by the onboard camera, and

then outputs image coordinates of the center and the two wing-tips of the leader

airplane. Let xc be an image coordinate of the center position, and xl and xr be

those of the left and right wing-tip positions respectively. Since a pin-hole camera

model is assumed, the subtended angle measurement can be calculated by using xl

and xr as follows.

α = 2 tan−1 ‖xl − xr‖
2

(2.24)

The measurement vector in the EKF is chosen as

z =

[
uT

c α

]T

(2.25)

where uc is the unit vector expressed in the camera frame FC . The unit vector is

chosen as a measurement instead of the two angles for the same reason as choosing

it as an estimation state. The measurement vector z can be expressed as a nonlinear

function of the estimation state x. The measurement model is given by

zk =




Lck
uk

2 tan−1 bk

2

(
1
r

)
k


 + νk = h(xk) + νk (2.26)

where Lck
is the known camera attitude at the time step tk and νk is a measurement

error. The EKF prediction and update procedures discussed in the previous section

are applied to the process and measurement models given in (2.22) and (2.26).
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(c) State Constraint Enforcement

Since the unit vector u defined in (2.21) always satisfies ‖u‖ = 1, the estimates of u

and its changing rate u̇ in the state vector used in the EKF design have the following

constraints.

‖u‖ = 1, uT u̇ = 0 (2.27)

These constraints are naturally satisfied in the EKF prediction procedure (2.9), but

not in the EKF update procedure (2.19). Therefore, the constraints (2.27) need to

be enforced after the EKF update at each time step as follows.

ûk =
ûk

‖ûk‖ (2.28)

ˆ̇uk = ˆ̇uk −
(
ûT

k
ˆ̇uk

)
ûk (2.29)

Calise proposed another method to enforce the state constraints in the EKF

design[14]. In his work, the Kalman gain was computed by minimizing the aug-

mented Lagrangian that includes the estimation error and the state constraint. This

results in simply adding the correction term to the original EKF update laws (2.18,

2.19). However, this approach is not used in this work to avoid using a singular

measurement error covariance matrix.

(d) Leader’s State Estimation

Once the estimation state is updated by using a measurement at tk in the EKF, the

leader’s estimated position and velocity can be calculated from the updated estimate

x̂k and from the known follower’s state as shown below.

X̂ tk =
ûk

ˆ(1
r

)
k

+ Xvk
(2.30)

V̂ tk =
ˆ̇uk

ˆ(1
r

)
k

+
ûk

ˆ(1
r

)
k

·
( ˆ̇r

r

)
k
+ V vk

(2.31)

Since a non-accelerating target is assumed in the EKF design, the leader’s acceleration

is estimated by âtk = 0. These estimated leader states are fed back to the guidance

system to maintain the formation.
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2.3.2 Simulation Results

Figure 6 shows a 6 DoF multi-airplane flight simulation in a formation flight config-

uration (left) and the airplane model used in this simulation (right). The airplane

is the MURI research airplane whose wingspan is 15.7 (ft) and overall length is 11

(ft). A basic controller and guidance system have already been implemented in this

simulation. The controller is a neural-network based adaptive flight controller and it

determines actuator commands based on the navigation system outputs and a posi-

tion/velocity/attitude command[36]. In addition to that, the follower airplane has a

camera and its images are also simulated. The synthetic images are processed and

provide the locations of the leader’s center and the two wing-tips. The synthetic

image and the image processor outputs are shown in the left bottom window of the

simulation interface in Figure 6.

The estimation performance of the suggested EKF design has been evaluated

in this flight simulation. In the simulation, the leader airplane flies straight with

a constant speed of 100 (ft/sec). The follower aircraft is commanded to maintain

a given position relative to the leader. The formation is maintained by using the

estimation result. Figure 7 compares the estimated (in blue) and the true (in green)

relative positions and velocities. The vision-based estimation results match with their

corresponding true state very well in the simulation. There is a bias in the range

(X position) estimation. Even though the range estimation accuracy is improved

after the vehicle’s lateral motion due to the position command changes, a small bias

remains. This is because of a measurement bias in the leader’s size. However, the

estimation is sufficiently accurate to achieve the closed-loop vision-based formation

flight. Since the EKF-based estimation performance is validated in the simulation, it

is implemented and tested in actual flights of UAVs. The next subsection discusses

the flight experiment.
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Figure 6: (Left) 6 DoF Multi-Airplane Flight Simulation Interface, (Right) MURI
Research Airplane
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Figure 7: Estimated vs. True Relative Position and Velocity
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2.3.3 Flight Test Results

(a) Platform Aircraft

The same image processing algorithm and the same relative navigation system used in

the 6 DoF flight simulation have been implemented in the autonomous flight system

of two different types of UAVs. Georgia Tech’s unmanned helicopter, the GTMax,

is used as a follower aircraft. The GTMax is based on the Yamaha RMax industrial

helicopter. As an alternative follower aircraft, the GTYak, which is a model airplane

of Yak-54, is used. The basic flight controller, own-ship navigation and guidance

system of the GTMax and GTYak have already been developed[36][37]. For the

vision-based guidance and control, the UAVs are equipped with cameras fixed to

their bodies. The real-time image processor has also been implemented in the flight

system of the GTMax and the GTYak. As a leader airplane, another Georgia Tech

fixed wing airplane, the GTEdge, is used. The GTEdge is a 33% scale model of the

aerobatic Edge 540T airplane. The GTEdge is a highly maneuverable airplane having

the capability of vertical hovering flight[91]. The same adaptive flight controller used

on the GTMax and the GTYak is used to fly the GTEdge. Table 1 summarizes

specifications of the three UAVs used in the flight tests.

Table 1: Specifications of Georgia Tech UAVs
Name GTMax GTYak GTEdge
Model Yamaha RMax Yak-54 Edge540T

Wingspan (ft) - 8.50 8.75
Rotor Diameter (ft) 10.2 - -
Overall Length (ft) 11.9 7.90 7.80
Empty Weight (lbs.) 157 40 35
Engine (cc) 246 100 100
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(b) EKF Modification

In the flight test of the vision-based formation flight, the GTEdge is commanded

to fly in a circle with a constant ground speed Vt and a constant angular rate ωt.

Unlike the straight level flight used in the simulations, a circling motion is chosen

because of a limited flight test field size. Since the leader’s motion does not satisfy

the zero acceleration assumption, the EKF design discussed in Subsection 2.3.1 is

slightly modified. Suppose that it is known that the leader is flying in a circle at a

constant altitude. In the modified EKF design, the leader’s lateral acceleration alat

is added as an extra estimation state of the EKF. Since alat should be constant in a

circling motion, the dynamics can be modeled by

ȧlat = 0 + walat
(2.32)

where walat
is a zero mean Gaussian noise. By assuming that the leader’s lateral

acceleration is perpendicular to the velocity vector in the horizontal X-Y plane, the

leader’s acceleration is estimated by

at =
alat√

V 2
Xt

+ V 2
Yt




−VYt

VXt

0




(2.33)

where the leader’s velocity vector V t =

[
VXt VYt VZt

]T

is given in (2.31). In the

process model (2.22), av should be replaced by av − at.

(c) Results

The first sustained closed-loop vision-based formation flight between the GTMax and

the GTEdge was achieved in June, 2006 [35][38]. This may have been the first time

automated formation flight based on vision only has ever been done. Figure 8 shows

the GTMax and the GTEdge in a formation configuration. For the leader’s circling

motion, Vt = 65 (ft/sec) and ωt = 0.1 (rad/sec) were used. The GTMax is com-

manded to maintain a relative position Xcom =

[
100 −15 −20

]T

(ft) in its body
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frame. This means that the GTMax follows the GTEdge from 100 (ft) behind, 15 (ft)

inside the circle and 20 (ft) below. Formation flight performance was improved by

feeding back the vision-based navigation output instead of the transmitted navigation

output computed on the GTEdge. This is because the time delay due to the commu-

nication was removed. Figure 9 illustrates the image processing performance during

the flight. The images from the onboard camera were processed at about 10 (Hz).

Although the image processor sometimes failed to capture the leader airplane, it could

still detect the leader even after several frames. Figure 10 compares the vision-based

estimation results with the GPS-based estimates which are supposed to include very

small errors. It can be concluded that the performance of the vision-based estimator

is sufficiently accurate as long as the image processor’s performance is good.

The closed-loop vision-based formation flight between two fixed-wing airplanes,

the GTYak and the GTEdge, was achieved in July, 2007. In this flight test, the

GTEdge flew in a circle with Vt = 75 (ft/sec) and ωt = 0.1 (rad/sec). Since the

GTYak has more maneuverability than the GTMax, a higher speed was used. The

relative position command was Xcom =

[
80 0 −20

]T

(ft). Figure 11 shows the

GTYak and the GTEdge flying in formation. A left plot of Figure 12 shows the image

processor outputs. The image processor was able to track the GTEdge with much

less failures in this flight. A right plot of Figure 12 and Figure 13 show the vision-

based estimates of the relative position, velocity and acceleration. The estimates are

compared with the GPS-based estimates (shown in dashed green lines). As seen in

the figures, the vision-based estimation performs accurately. The achievement of the

closed-loop formation flight verified the estimation performance of the vision-based

relative navigation filter design by using an EKF.
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Figure 8: GTMax and GTEdge in Formation
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Figure 9: Image Processor Outputs and Processing Time
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Figure 11: GTYak and GTEdge in Formation
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2.4 Application 2 : Vision-Based 3-D Obstacle Modeling

The second application of vision-based navigation is 3-D obstacle modeling. This

work is for automatic obstacle detection when a vehicle operates in the vicinity of

unknown terrain or structures. Unlike the formation flight discussed in the previous

section, there can be multiple targets to track, and the data correspondence problem

needs to be solved in this application. In some studies, vision-based terrain modeling

is achieved by tracking feature points in a sequence of images and updating estimates

of their actual 3-D positions[54][50]. Unlike the feature point-based estimator, a line-

based estimator design is developed in this thesis[85]. In urban areas, obstacles are

mostly artificial structures (e.g.buildings) with sharp edges. By an image segmenta-

tion technique, such obstacle edges are detected as a set of straight line segments in an

image. Therefore, the vision-based obstacle modeling can be performed by recovering

the actual 3-D obstacle edges from the detected line segments.

2.4.1 Correspondence Problem

As stated above, the image processor detects line segments in an image, which corre-

spond to obstacle edges. Each measured line segment (`) is expressed by two endpoint

positions in image coordinates as x1 and x2. Once the line segments are measured,

they are associated with 3-D estimated lines in a database. Each estimated line (L̂)

is stored in the form of its two endpoint positions X̂1 and X̂2 in the inertial frame.

Before examining the correspondence between the estimates and the measurements,

all the 3-D estimated lines are predicted and projected onto the current image plane

by using a known own-ship position Xv and a known camera attitude Lc. Hence, the

projected line estimate (ˆ̀−) is expressed by its two endpoints x̂−1 and x̂−2 , which are

given by

x̂−i =
1

X̂−
ci




Ŷ −
ci

Ẑ−
ci


 , X̂

−
ci

= Lc

(
X̂

−
i −Xv

)
, i = 1, 2 (2.34)
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The statistical z-test is utilized to associate the measurement ` with the estimate

ˆ̀−. The z-test value is taken for a given error index J . It is defined by the square of

the error J divided by its variance[29]. That is, the z-test value is inversely related

to the likelihood of the correspondence between ` and ˆ̀−. If there is a large error

between them but the measurement has a large uncertainty, then the probability of

their correspondence should be higher than the case in which the measurement has

a small uncertainty. Therefore, each measured line segment should be assigned to

the estimated line data which attains the least z-test value or the highest likelihood.

Define the error index J as follows.

J = d2
1 + d2

2 + c(e2
1 + e2

2) (2.35)

where d1 and d2 are signed distances perpendicular to the projected line estimate ˆ̀−,

and e1 and e2 are signed distances parallel to ˆ̀− (as shown in Figure 14), and c is a

constant weight. Those distances are determined by ` = (x1,x2) and ˆ̀− =
(
x̂−1 , x̂−2

)

as follows.

d1 =

(
x1 − x̂−1

)× (
x̂−1 − x̂−2

)

‖x̂−1 − x̂−2 ‖
, d2 =

(
x2 − x̂−1

)× (
x̂−1 − x̂−2

)

‖x̂−1 − x̂−2 ‖
(2.36)

e1 =

(
x1 − x̂−1

) · (x̂−1 − x̂−2
)

‖x̂−1 − x̂−2 ‖
, e2 =

(
x2 − x̂−1

) · (x̂−1 − x̂−2
)

‖x̂−1 − x̂−2 ‖
(2.37)

Figure 14: Projected Line Data and Measured Line Segment
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Then, the z-test value of J is defined by

ztest =
J2

σ2
J

(2.38)

where σJ is the variance of the error index computed using the predicted estimation

error covariance matrix P− and the measurement error covariance matrix R.

For each measurement, the z-test value is calculated for all the estimates in the

database. As stated above, the measurement is assigned to the line estimate which

attains the least z-test value. However, when the least z-test value is larger than

a given threshold value ztestmax, the measurement does not match well with the

assigned line estimate. In such a case, the measured line segment is considered to be

a newly detected obstacle edge and new line data is added to the database. On the

other hand, if an existing line in the database is supposed to be visible but is not

detected by the vision sensor, then the line may no longer exist and is deleted from

the database. The line addition and deletion procedure will be discussed in detail in

Subsection 2.4.3.

2.4.2 EKF Formulation

After all measurements are assigned, an EKF is applied to estimate the 3-D obstacle

edge line from the assigned measurements. In this application, more than one mea-

sured line segment may be associated with a single obstacle edge. Suppose that the

estimated edge L̂ =
(
X̂1, X̂2

)
is updated by multiple measurements `1 = (x11 ,x21),

`2 = (x12 ,x22), · · · , then the EKF is designed to estimate the 3-D endpoint positions

X1 and X2 from the residuals d1 and d2 defined in (2.36). That is, the estimation

state vector and the measurement vector are taken as follows.

x =




X1

X2


 , z =




d1

d2


 (2.39)

32



Assuming static obstacles, the process model is given by ẋ = 0. Without a process

noise, this results in no change in the estimation state nor in the error covariance ma-

trix by the EKF prediction procedure. When there is more than one measurement,

the Kalman gain and the corresponding correction terms are computed individually

for each assigned measurement. Then, the predicted estimate x̂− and its error co-

variance matrix P− are updated by the sum of them. This is known as a sequential

EKF update[57]. Let Kki
denote the Kalman gain calculated by using the i-th mea-

surement zi that corresponds to the i-th measured line segment `i. The EKF update

law is formulated by

Pk = P−
k −

∑
i

Kki
HkP

−
k (2.40)

x̂k = x̂−k +
∑

i

Kki

(
zki

− h(x̂−k )
)

= x̂−k +
∑

i

Kki
zki

(2.41)

where the summations are taken over all of the assigned measurements `1, `2, · · · .
Since the measurement vector includes residuals from the projected line estimate, the

estimated measurement h(x̂−k ) becomes zero in (2.41).

2.4.3 Line Addition and Deletion

Since a camera’s field of view changes due to the vehicle’s motion, algorithms have

been included for adding and deleting line data as obstacles enter and leave the field

of view. As mentioned in Subsection 2.4.1, unassigned line segments are treated as

newly detected obstacle edge lines and new estimated line data should be added to the

database. In order to create a new line estimate, the initial estimate of its endpoint

positions in a 3-D local frame FI has to be determined from the 2-D information.

When other information about the line is not available, a new line in the database

is created by assuming that the line is on the zero altitude surface. With this as-

sumption, the initial 3-D line estimate L̂0 =
(
X̂10 , X̂20

)
can be obtained from the

measurement ` = (x1, x2) and the current camera attitude and the vehicle’s position

as follows. Suppose that the local frame FI is chosen as the North-East-Down (NED)
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frame fixed on the zero altitude surface. Then, the initial guess for each of the two

endpoints can be written by X̂ i =

[
X̂i0 Ŷi0 0

]T

for i = 1, 2. By assuming zero

measurement error, the following relationship has to be satisfied.

X̂ i = Xv + LT
c Xc = Xv + LT

c




1

xi


 X̂ci

= Xv + X̄ iX̂ci
, i = 1, 2 (2.42)

where X̂ci
is the depth information and it is the only unknown parameter in the right

hand side. Since Ẑi = 0 is assumed, the depth is given by X̂ci
= −Zv/Z̄i, and finally

the initial estimate X̂ i is calculated by substituting it into (2.42).

On the other hand, if a line estimate in the database is supposed to be visible,

but is not detected by the image processor, then the line estimate may not exist

and it is deleted from the database. To ensure that only lines that do not exist are

deleted, only lines with no measurement assigned for more than N(≥ 1) consecutive

time steps are removed. In addition to the algorithms for line addition and deletion,

procedures for line extension and shrinkage are included[85].

2.4.4 Simulation Results

(a) Preliminary Simulation : 3-D Obstacle Modeling

The line-based estimator developed in the previous subsections is applied and eval-

uated in simulations of 3-D obstacle modeling. In the simulations, image processor

outputs are created by adding a random noise to the true image coordinate of each

endpoint of the object edge line. ∆t = 0.02 (sec) is used as the sampling time. Figure

15 and Figure 16 show simulation results for two different cases; Case 1 and Case

2. In Case 1, a vehicle flies over a pyramid shaped obstacle. The vehicle has a cir-

cling motion with a constant angular velocity ω = π/10 (rad/sec), as shown in red in

Figure 15. A camera is fixed on the vehicle’s body with a mount angle of π/6 (rad)

from the vertical downward axis (i.e., Z-axis in a body frame). In Figure 15, the

modeling result (in blue) is compared with the actual obstacle edges (in green). From
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the result at the initial time step t = 0.02 (sec), it is seen that the initial estimates of

the detected edge lines are created on the zero altitude surface. Then, the estimated

edges come closer to the actual ones as the vehicle flies over the obstacle. After one

revolution of the circle, all the eight edges of the pyramid are modeled very accurately

in 3-D space. In this simulation, the whole obstacle is always within the camera’s

field of view. This means that the line addition and deletion algorithms introduced

in Subsection 2.4.3 are not necessary. Figure 16 shows the modeling results of Case

2, in which the vehicle flies closer to a square-frame obstacle, and so the camera can

only see part of the obstacle at each time instant. In this simulation, the vehicle has

a zig-zag trajectory with the camera looking straight downward. At the initial time

step t = 0.02 (sec), only a small part of the two edges were visible. As the vehicle

moves, the camera detected more of the obstacle and the estimated edge lines in the

database were properly extended or added. Even though the resulting obstacle model

has some missing parts of one edge, the four edge lines are modeled accurately after

the vehicle flies over the whole obstacle. These results verify the performance of the

line addition and extension algorithms.

(b) Image-in-the-Loop Simulation : 3-D Grid Terrain Modeling

The line-based estimator can be applied to 3-D terrain mapping by partitioning the

terrain into many grids. Figure 17 shows a vision-based 3-D terrain mapping sim-

ulation interface. The top right window illustrates current states including camera

position and attitude, the estimated terrain model, and the actual grid terrain. The

bottom right window shows a simulated camera image and the image segmentation

outputs. A navigation system for the camera motion and an image processor have

been implemented in this simulation. From the image segmentation technique devel-

oped in [78], the image processor computes each grid-point position in the image and

the connectivity between all points. The connectivity corresponds to line segments

which are measurements for the line-based estimator.
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Figure 15: 3-D Object Modeling Result (Case 1 : Pyramid, Circling Motion)
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Figure 16: 3-D Object Modeling Result (Case 2 : Square-Frame, Zig-Zag Motion)
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In this simulation, the camera is moving over the terrain in a circle of radius 100

(ft) with a constant speed of 20 (ft/sec). The simulation runs for 200 seconds, and

the camera flies through approximately 6 full revolutions. Figure 18 shows position

estimation errors for three different sample points (Point 73, Point 139 and Point 227)

that were randomly chosen. Figure 19 illustrates the 3-D terrain model constructed by

the line-based estimator after times t = 0, 50, 100, 150 and 200 (sec). Since the initial

estimate for each terrain edge is chosen on the zero altitude surface, the terrain model

at the beginning is flat. As the camera flies over the terrain, the estimation errors

converge to zero as shown in Figure 18. The last picture in Figure 19 demonstrates

that a sufficiently accurate 3-D terrain model is obtained after 200 seconds. The

estimation convergence is slow in this simulation because the camera is moving fast

and each terrain edge is in the field of view for only a short time interval per each

revolution. The rate of convergence can be improved by using a faster image processor

and also by taking a larger initial covariance matrix in the EKF design.

Figure 17: 3-D Grid Terrain Mapping Simulation
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Figure 19: Estimated vs. True Grid Terrain
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2.5 Conclusion

This chapter designed a relative navigation system which estimates the relative state

of a target with respect to a vehicle from 2-D information from a single camera

by applying an extended Kalman filter. The EKF-based relative navigation design

has been applied to vision-based formation flight and vision-based obstacle modeling

problems. In the formation flight application, the target size was used as additional

information so that range observability could be assured. The navigation filter has

been tested in a 6 DoF multiple aircraft flight simulation and also in actual flights

of UAVs. The achievement of closed-loop vision-based formation flight in flight tests

proved its accurate estimation performance. In the vision-based obstacle modeling, a

line-based estimator was suggested to recover 3-D obstacle edge lines from their 2-D

projection onto each image plane. In addition to the EKF, a statistical z-test was

used to address the correspondence problem between measurements and estimates.

3-D obstacle modeling accuracy of the line-based estimator has been verified in simu-

lations with different shaped obstacles and with different camera motions. Then, the

estimator was implemented and evaluated in the image-in-the-loop 3-D grid terrain

mapping simulation.
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CHAPTER III

VISION-BASED OBSTACLE AVOIDANCE

Vision-based obstacle avoidance is one of the most important and practical applica-

tion of vision-based control of UAVs. UAVs are sometimes expected to operate in an

uncertain environment that includes both fixed obstacles such as trees and buildings

and moving obstacles such as other vehicles flying in proximity to them. Then, au-

tonomous obstacle detection and avoidance is a requirement. Therefore, this chapter

focuses on developing a vision-based navigation system for obstacle detection and a

guidance law for obstacle avoidance. The EKF-based navigation discussed in Chap-

ter 2 is applied. The guidance law is derived based on minimum-effort guidance for

multiple target tracking[3][4]. The navigation and guidance systems are integrated

with a real-time image processor, and autonomous vision-based obstacle avoidance

with a static obstacle has been achieved in flight test.

3.1 Problem Formulation

Figure 20 summarizes the problem geometry of vision-based obstacle avoidance con-

sidered in this chapter. The linear vehicle dynamics model (2.1) is assumed. Let

av =

[
ax ay az

]T

be the vehicle’s acceleration input. In this problem, the vehicle

is assumed to have a constant speed in the inertial X direction. It means that ax = 0

is always applied and the vehicle is controlled by commanding a lateral acceleration

ay and a vertical acceleration az.

Consider that the vehicle is required to reach a given waypoint location Xwp =[
Xwp Ywp Zwp

]T

that is expressed in the inertial frame FI . Then, the waypoint
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Figure 20: Problem Geometry of Vision-Based Obstacle Avoidance

tracking mission is achieved if

Yv(tf ) = Ywp, Zv(tf ) = Zwp (3.1)

where tf is a time at which Xv(tf ) = Xwp is satisfied. Since the waypoint position is

known to the vehicle, this mission itself is not very difficult to accomplish. However,

there may exist unforeseen obstacles on the vehicle’s path to the waypoint. Let

Xobs be an obstacle’s position in FI and assume Ẋobs = 0, i.e., stationary obstacles.

In order to avoid obstacles, the vehicle is required to keep a minimum separation

distance d from every obstacle’s center position. Hence, as shown in Figure 20, a

collision-safety boundary can be defined for each obstacle by a spherical surface with

radius d and center at Xobs. To achieve waypoint tracking without colliding with the

obstacles, the vehicle needs to satisfy (3.1) while always maintaining

‖Xobs −Xv‖ > d (3.2)

for all obstacles. However, the obstacle’s location Xobs is unknown to the vehicle,
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and so the guidance law can only access its estimate. The next section presents the

navigation filter design that estimates Xobs by using 2-D vision-based information

from an onboard camera.

3.2 Estimator Design

This section designs a vision-based estimator which estimates each obstacle’s position

from a 2-D vision-based measurement. First, the z-test algorithm used in Section 2.4

is applied to make a correspondence between measurements and estimated obstacles

in a database. Then, an EKF is formulated to calculate the estimated 3-D obstacle

positions.

3.2.1 Correspondence Problem

Since there can be multiple obstacles in the vehicle’s surroundings, the image proces-

sor may detect more than one obstacle in the same image frame. Suppose that the

image processor calculates the center position of the detected obstacles on each image

frame. Let X = Xobs −Xv and Xc = LcX be a relative position vector of the i-th

obstacle expressed in the inertial frame FI and in the camera frame FC , respectively.

Then, a 2-D position of the obstacle measured at the k-th time step tk is modeled by

adding a measurement noise νk to (2.6).

zk =
1

Xck




Yck

Zck


 + νk = h(Xk) + νk (3.3)

νk is a zero mean Gaussian discrete white noise process with its covariance matrix

Rk = E
[
νkν

T
k

]
= σ2I. Suppose that n different obstacles (denoted by zk1 , zk2 ,

· · · , zkn) are detected on an image at tk. Also suppose that the predicted estimate

of the relative position of m obstacles (denoted by X̂
−
k1

, X̂
−
k2

, · · · , X̂
−
km

) have been

obtained and stored in the database. In order to update each estimate correctly, it

is very important to create the right correspondence between the measurements and
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the estimates before applying the EKF routine. As in Section2.4, the z-test is applied

for this purpose. In this problem, the z-test value of the correspondence between the

i-th measurement and the j-th estimate is calculated for the residual

rij = zki
− ẑ−kj

= zki
− h(X̂

−
kj

) (3.4)

Then the z-test value is defined by

ztestij = rT
ij

(
E

[
rijr

T
ij

])−1
rij = rT

ij

(
Hkj

P−
kj

HT
kj

+ Rk

)−1

rij (3.5)

where Hkj
is a measurement matrix defined by (2.15) and P−

kj
is a predicted estimation

error covariance matrix associated with the j-th predicted estimate X̂
−
kj

. As stated

in Subsection 2.4.1, a small z-test value ztestij indicates a high correspondence of a

chosen pair (zki
, X̂

−
kj

). For each measurement, the z-test value is calculated for every

predicted estimate. Then the i-th measurement zki
updates the predicted estimate

X̂
−
kj

if

ztestij = min
j=1,2,··· ,m

ztestij AND ztestij ≤ ztestmax (3.6)

is satisfied. ztestmax is a given threshold value of the z-test value.

When the least value of ztestij is still larger than the threshold, the measurement

is considered to come from a newly detected obstacle and a new estimated obstacle

data X̂km+1 is added to the existing data set. Assume that some knowledge about

a range (r0) and its error standard deviation (σr0) is available. Then the (m + 1)-th

new estimate and its error covariance matrix are created as follows.

X̂km+1 = r0




1

zki


 , Pkm+1 = σ2

r0




1 0

0 Rk


 (3.7)

After all the n measurements’ correspondences are made, there may remain a pre-

dicted estimate which was not updated by any of the measurements. This happens

when the corresponding obstacle lies outside of the camera’s field of view or when the
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image processor fails to detect it. For such an estimate, only the EKF prediction pro-

cedure is executed. The next subsection formulates the EKF update and prediction

procedures.

3.2.2 EKF Formulation

An EKF is formulated to estimate the relative position of an obstacle from its 2-D

image position measurement. Since static obstacles are assumed, obstacle motion

dynamics are given by

Ẋobs = 0 (3.8)

Therefore, the EKF prediction process (2.9,2.16) is written by:

X̂
−
k = X̂obsk−1

−Xvk
(3.9)

P−
k = Pk−1 + Qk (3.10)

where Xvk
is the known vehicle position and Qk is the covariance matrix of the process

noise at tk. The form Qk = σ2
XI ·∆tk is used in this filter design. ∆tk = tk − tk−1 is

the sampling time. Now recall the EKF update procedures (2.17-2.19).

X̂k = X̂
−
k + Kk

(
zk − h(X̂

−
k )

)
(3.11)

Pk = P−
k −KkHkP

−
k (3.12)

Kk = P−
k HT

k

(
HkP

−
k HT

k + Rk

)−1
(3.13)

where a measurement matrix Hk is derived as follows.

Hk =
∂h(X̂

−
k )

∂X̂
−
k

=
1

X̂−
ck



− Ŷ −ck

X̂−
ck

1 0

− Ẑ−ck

X̂−
ck

0 1


 Lck

=
1

X̂−
ck

[
−h(X̂

−
k ) I

]
Lck

(3.14)

After the EKF update, an absolute position estimate of the obstacle is computed by

adding the known vehicle position to the relative position estimate.

X̂obsk
= X̂k + Xvk

(3.15)
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3.3 Collision Criteria

For the purpose of obstacle avoidance, each obstacle in the estimate set is examined

to determine if it is critical to the vehicle using the latest updated estimate of the

obstacle positions. Chakravarthy and Ghose suggested a 2-D collision cone approach

to establish a collision criteria[15]. In the collision cone approach, a collision cone is

defined for each obstacle and an obstacle is considered to be critical if the vehicle’s

velocity vector relative to the obstacle lies within its collision cone.

This thesis applies their 2-D collision cone criteria to a 3-D obstacle avoidance

problem by only considering a 2-D plane which includes the relative position vector

X and the relative velocity vector V = −V v. As discussed in Section 3.1, the vehicle

is required to maintain a minimum separation distance d from every obstacle, and a

collision-safety boundary of each obstacle is taken as a spherical surface with radius

d and center at the obstacle position Xobs. Then a collision cone is defined by a

set of tangential lines from the vehicle to the obstacle’s collision-safety boundary.

As shown in Figure 21, the spherical collision-safety boundary appears as a circle in

the 2-D plane formed by X and V , and hence the collision cone is specified by two

vectors (denoted by p1, p2) originating at the vehicle position Xv and tangential to

the boundary circle. The vectors p1 and p2 can be expressed as follows.

pi = X + dui, i = 1, 2 (3.16)

where u1 and u2 are unit vectors from the obstacle position to the two tangential

points:




u1 = − 1

‖X‖2 (c(X · V v) + d) + cV v

u2 = 1

‖X‖2 (c(X · V v)− d)− cV v, c =

√
‖X‖2−d2

‖X‖2‖V v‖2−(X ·V v)2

(3.17)

The vehicle velocity is decomposed into two components; one parallel to p1 and the

other parallel to p2.

V v = ap1 + bp2 (3.18)
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Figure 21: Collision Cone and Aiming Point

where the coefficients a and b are calculated as follows.

a =
1

2

(
X · V v

‖X‖2 − d2
+

1

cd

)
, b =

1

2

(
X · V v

‖X‖2 − d2
− 1

cd

)
(3.19)

Since the approach is to examine if the vehicle’s velocity vector V v lies within the

collision cone, the collision cone criterion is given by

a > 0 AND b > 0 (3.20)

When the collision cone criterion (3.20) is satisfied, the vehicle is considered to be

in danger of colliding with the obstacle and should execute some avoidance maneuver.

The aiming point Xap to be used for obstacle avoidance is given by

Xap =




Xap

Yap

Zap




=





p1 + Xv, 0 < b ≤ a

p2 + Xv, 0 < a < b

(3.21)

Since the vehicle has constant speed in the X-direction, a time-to-go to the aiming

point is derived as

tgo = tk +
Xap −Xvk

Uvk

(3.22)

where Uvk
is the vehicle’s speed in the X direction at the time step tk. When (tgo−tk)

is larger than a given threshold T , there is no urgency for the vehicle to execute an
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avoidance maneuver. Also, if it is negative or tgo is larger than the terminal time tf ,

there is no chance of collision. Therefore, in addition to the collision cone criterion

(3.20), we impose the following time-to-go criterion.

tgo − tk < T AND 0 < tgo < tf (3.23)

An obstacle is considered to be critical only if both (3.20) and (3.23) are satisfied.

If there is more than one critical obstacles, the one having the smallest time-to-go

is chosen as the most critical obstacle. An avoiding maneuver is taken for the most

critical obstacle.

3.4 Guidance Design

In this section, a guidance design to achieve waypoint tracking (3.1) with obstacle

avoidance is presented. If there is a critical obstacle, the vehicle is guided to the

aiming point specified in (3.21) so that it can avoid the obstacle. Refs. [27] and

[87] design guidance laws by applying proportional navigation (PN) sequentially. On

the other hand, this thesis proposes a guidance design based on the minimum-effort

guidance (MEG) derived by Ben-Asher[3][4]. It is shown that the control cost can be

reduced by using the suggested MEG-based guidance instead of the sequential PN

approach.

3.4.1 Proportional Navigation for Waypoint Tracking

When there is no critical obstacle, the vehicle is guided directly to the waypoint.

Then the vehicle’s acceleration input for waypoint tracking can be derived by solving

the following minimization problem.

min
av

J =
1

2

∫ tf

tk

aT
v (t)av(t)dt =

1

2

∫ tf

tk

(
ay(t)

2 + az(t)
2
)
dt (3.24)

subject to the vehicle dynamics (2.1), with a terminal constraint (3.1). The terminal

time tf is given by

tf = tk +
Xwp −Xvk

Uvk

(3.25)
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Since the waypoint location and the vehicle’s own-ship state are known, the optimal

guidance is able to be realized. The solution of (3.24) can be analytically obtained

by solving the Euler-Lagrange equations[13].

a∗vk
= 3




1

(tf − tk)2




0

Ywp − Yvk

Zwp − Zvk



− 1

(tf − tk)




0

Vvk

Wvk







(3.26)

This solution is the well-known PN guidance, which is considered to be a simple and

very effective strategy in target interception[92].

3.4.2 Minimum-Effort Guidance for Obstacle Avoidance

When there is a critical obstacle, a corresponding aiming point Xap and time-to-go tgo

are provided from the collision criteria. However, since the obstacles’ true positions

are unknown, the guidance system can only access their estimated values X̂ap and

t̂go which are calculated from the estimated obstacle position X̂obs. In order to avoid

collision with the most critical obstacle, the vehicle should fly towards the aiming

point.

(a) Sequential Proportional Navigation

A sequential PN-based approach was suggested by Han and Bang[27]. This method is

derived by minimizing the control cost over a path from the vehicle’s current position

to the aiming point, and then over a path from the aiming point to the waypoint sep-

arately. Therefore, the vehicle’s acceleration input at the current time tk is obtained

by solving

min
av

J =
1

2

∫ t̂go

tk

aT
v (t)av(t)dt =

1

2

∫ tf

tk

(
ay(t)

2 + az(t)
2
)
dt (3.27)

with the terminal constraint

Yv(t̂go) = Ŷap, Zv(t̂go) = Ẑap (3.28)
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This is the same minimization problem as formulated in Subsection 3.4.1 and its

solution is given by

âPN
vk

= 3




1

(t̂go − tk)2




0

Ŷap − Yvk

Ẑap − Zvk



− 1

(t̂go − tk)




0

Vvk

Wvk







(3.29)

(b) Minimum-Effort Guidance

As an alternative, the minimum-effort guidance (MEG) for multiple targets tracking

is applied in this thesis. In this problem, the aiming point X̂ap and the waypoint

Xwp are considered as two targets to be tracked. The minimum-effort guidance law

is derived by solving

min
av

J =
1

2

∫ tf

tk

aT
v (t)av(t)dt =

1

2

∫ tf

tk

(
ay(t)

2 + az(t)
2
)
dt (3.30)

subject to the vehicle’s dynamics (2.1) with the following interior and terminal point

constraints. 



Yv(t̂go) = Ŷap, Zv(t̂go) = Ẑap

Yv(tf ) = Ywp, Zv(tf ) = Zwp

(3.31)

Since the MEG-based guidance law minimizes the control effort over the vehicle’s

entire flight path while the sequential PN guidance minimizes it only for the vehicle’s

path to reach the aiming point, the MEG-based guidance law is expected to make the

vehicle achieve the mission with less control effort than the sequential PN guidance

law does. From the Euler-Lagrange equation, this minimization problem can be solved

analytically[13]. The resulting optimal solution is given as follows[82][83].

âMEG
vk

= âPN
vk

+ ∆aMEG
vk

(3.32)

where âPN
vk

is the PN guidance input for the aiming point tracking given in (3.29)
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and ∆aMEG
vk

is an additional guidance input given by

∆aMEG
vk

=
3

3(t̂go − tk) + 4(tf − t̂go)




3
t̂go − tk




0

Ŷap − Yvk

Ẑap − Zvk



− 2

tf − t̂go




0

Ywp − Ŷap

Zwp − Ẑap



−




0

Vvk

Wvk







(3.33)

A derivation of the MEG-based guidance (3.32,3.33) is presented in Appendix A.

In this thesis, only a case of single waypoint tracking is considered. However, the

MEG-based guidance law can be easily derived for the case of multiple waypoint

tracking[3][4].

3.5 Simulation Results

The EKF-based estimator, the collision criteria and the guidance system for vision-

based obstacle avoidance designed above have been implemented and evaluated in

simulations. First, the algorithms are evaluated in simulations using simulated image

measurements. Simulation results are presented comparing the sequential PN guid-

ance law given in (3.29) and the suggested MEG-based guidance law given in (3.32).

Then, the navigation and guidance algorithms are implemented and tested in a 6 DoF

image-in-the-loop UAV flight simulation along with the real time image processor.

3.5.1 Preliminary Simulation Results

Simulation of vision-based obstacle avoidance is performed with simulated image mea-

surements for the case of two obstacles. In this simulation, measurements are provided

by a sum of a true obstacle’s position on each image frame and a random measurement

noise. The main purpose of this simulation is to show that the control effort required

to achieve the waypoint tracking and obstacle avoidance mission is reduced by using

the suggested MEG-based guidance law instead of the sequential PN guidance.
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(a) Simulation Settings

A mission given to the vehicle is to reach a waypoint at Xwp =

[
80 0 0

]T

(ft) from

the origin X0 =

[
0 0 0

]T

(ft). The vehicle has a constant speed Uv = 10 (ft/sec)

in the X direction. There are two obstacles, called Obstacle 1 and Obstacle 2, on the

vehicle’s way from X0 to Xwp. The obstacles are located at

Xobs1 =




20

−5

5




(ft), Xobs2 =




50

5

−5




(ft)

and are unknown to the vehicle. A minimum safety distance is given by d = 10 (ft),

and T = 5 (sec) is used for the time-to-go threshold in this simulation. It is assumed

that the camera’s attitude always coincides with the inertial frame, i.e., Lc = I.

Let X i = Xobsi
− Xv(tk) =

[
Xik Yik Zik

]T

be the relative position of the i-th

obstacle (i = 1, 2) with respect to the vehicle at time step tk. Assuming a 180-degree

field of view for the camera, image processor outputs are created as follows when

Xik > f = 1.

zik =
1

Xik




Yik

Zik


 + νik = h(X ik) + νik (3.34)

where νik is a zero mean Gaussian white noise with its error covariance matrix of

Rk = 0.12I. An EKF is used to estimate the relative position X i from the simu-

lated measurement zik . The initial guess of the estimated relative position X̂ i0 is 5

(ft) underestimated for Obstacle 1 and 5 (ft) overestimated for Obstacle 2 in every

axes. The initial estimation error covariance matrix is Pi0 = I. True correspondence

between the measurements and the estimation data is used in this simulation.

(b) Results

Simulation results are compared between the sequential PN guidance law given in

(3.29) and the MEG-based guidance law given in (3.32). The results of the MEG-

based guidance are drawn in blue solid lines, and the results of the sequential PN
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guidance law are drawn in green dashed lines. Figure 22 presents the vehicle’s trajec-

tories due to the PN-based and the MEG-based guidance laws. The starting point,

waypoint, the two obstacles and their collision-safety boundaries are also shown. Both

trajectories successfully reach the waypoint Xwp. The vehicle’s position along each

axis is plotted in Figure 23. From this figure, it is clearer that the guidance laws

created an avoiding maneuver in both lateral and vertical directions. Figure 23 also

shows distances from the vehicle to Obstacle 1 and Obstacle 2. The minimum safety

distance d = 10 (ft) is shown in red. When using the sequential PN guidance law,

there is a violation of Obstacle 2’s collision-safety boundary at about t = 5 (sec).

This violation is due to an estimation error in its position. Figure 24 presents posi-

tion estimation errors of Obstacle 1 and Obstacle 2, respectively. The difference in

the estimation performance can be seen in estimating the depth (along the X-axis)

to Obstacle 2. The estimation error converges faster when using the MEG-based

guidance. This difference is due to the property of the MEG-based guidance law that

creates larger lateral and vertical motions earlier in the maneuver in comparison to the

sequential PN guidance law. Figure 25 is the resulting acceleration input calculated

in (3.29) or (3.32) and the control effort. The total control cost required to make the

vehicle achieve the waypoint tracking and obstacle avoidance mission is Jc = 34.338

when using the MEG and Jc = 40.409 when using the sequential PN. The control

effort was reduced by 15.5% by using the suggested MEG-based guidance instead

of the PN. In conclusion, the simulation results verified that the obstacle avoidance

mission can be achieved with less control effort by the MEG-based guidance. In ad-

dition, the MEG approach also improves the vision-based estimation accuracy and

hence improves the overall obstacle avoidance performance.
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3.5.2 6 DoF Image-in-the-Loop Simulation

The entire vision-based navigation and guidance system for obstacle avoidance, in-

cluding the EKF, the z-test algorithm, the collision criteria and the MEG-based

guidance law, has been integrated with a real-time image processor and implemented

in a 6 DoF UAV flight simulation. This is in direct preparation for flight tests using

an actual vehicle. The image processing results and the estimation and guidance

performances are presented in this subsection.

(a) 6 DoF UAV Flight Simulation

The vehicle modeled in the simulation is the GTMax whose specification is shown in

Table 1. As stated in Subsection 2.3.3, the basic flight controller, own-ship navigation

and guidance system of the vehicle have already been developed and implemented. A

real-time image processor which is able to detect multiple obstacles in each simulated

image frame has also been implemented[25]. Figure 26 is a display of the flight

simulation in an obstacle avoidance configuration. Red spheres are obstacles which

the vehicle needs to avoid. The window on the left is a map view from the top and

the yellow line is the vehicle trajectory. Each grid has a length of 50 (ft). However,

the GTMax helicopter does not appear in true scale in the simulation interface. The

window at the top right shows a synthetic camera image in the simulation. The image

processor outputs are represented by small green crosses in this window. The image

processor is detecting the center positions of two obstacles in this picture. The right

bottom window displays a chase view from behind of the vehicle. The estimated

obstacle positions are indicated in the map view and the chase view windows.

(b) Simulation Settings

Before starting a mission, the vehicle is commanded to fly upward 400 (ft) and then

forward 200 (ft) to reach a starting point X0 =

[
200 0 −400

]T

(ft) with velocity

V 0 =

[
50 0 0

]T

(ft/sec) by using the basic guidance system. As soon as the vehicle
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Figure 26: 6 DoF UAV Flight Simulation Interface in Vision-Based Obstacle Avoid-
ance Configuration

passes the starting point, the vision-based obstacle avoidance system is turned on and

the guidance system is switched to the one described in Section3.4. The vehicle is

required to fly 1600 (ft) forward from the starting point, which means that a waypoint

is given at Xwp =

[
1800 0 −400

]T

(ft). On the way to the waypoint, there exist

two unforeseen stationary obstacles at

Xobs1 =




600

50

−420




(ft), Xobs2 =




1200

0

−400




(ft)

Both obstacles are given as spheres with radius 20 (ft). To avoid collision, the vehicle

needs to maintain a minimum separation distance d = 100 (ft) from the obstacles

during the entire flight. After reaching the waypoint, the guidance system is switched

back to the basic one and it guides the vehicle to reach and stop at the terminal point

Xf =

[
2000 0 −400

]T

(ft).

For the navigation filter design, σ = 0.1 and σX = 0.1 were used for the measure-

ment noise covariance matrix Rk = σ2I and for the process noise covariance matrix

Qk = σ2
XI ·∆tk, respectively. The EKF is initialized by using the first measurement
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z0 obtained for each obstacle. It is assumed that we have some knowledge about

range r0 (only for the initialization). Then the initial estimate of a relative position

and its error covariance matrix are set as

X̂0 = r0




1

z0


 , P0 = Lc0




σ2
r 0

0 r0Rk


 LT

c0
(3.35)

where Lc0 is a known camera attitude at that time step. In the simulation, r0 = 300

(ft) was used for the first obstacle and r0 = 800 (ft) was used for the second one,

and σr = 50 (ft) was used for the both. If the image processor detects both obstacles

immediately after starting the mission, the first and second obstacles are 400 (ft) and

1000 (ft) ahead of the vehicle at that time. Therefore, initially, a range to the first

obstacle is underestimated by 100 (ft) and that to the second one is underestimated

by 200 (ft). For the correspondence problem, ztestmax = 3 was set as the threshold

value. By looking at the z-table[30], this threshold value implies that a hypothesis of

the correspondence is rejected when its likelihood is less than 9.364 %. In the collision

criteria, a threshold value for the time-to-go used in the simulation was T = 4 (sec).

Since the vehicle maintains approximately 50 (ft/sec) speed in the X-direction, T = 4

(sec) means that an obstacle is not considered to be critical if it has a range more

than double that of the minimum separation d from the vehicle.

(c) Results 1: Image Processing and Estimation

A left figure of Figure 27 plots the number of obstacles which are detected by the image

processor and the measurement assignment result from z-test. In this simulation, the

vehicle reached the starting point X0 at t0 = 69.9 (sec), passed by the first obstacle

Xobs1 at t1 = 78.1 (sec) and the second obstacle Xobs2 at t2 = 91.5 (sec), and finally

reached the waypoint Xwp at tf = 106.1 (sec). From Figure 27, the image processor

detected only Obstacle 1 for the first 5 (sec). After that, Obstacle 1 went out the

camera’s field of view and the image processor detected Obstacle 2 until t = 87.5

(sec). Even though the image processor is capable of detecting multiple objects, it
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does not capture both the obstacles in the same image frame in this example. The

second plot in Figure 27 shows the z-test results. At the initial time t0, estimated

obstacle data X̂1 which corresponds to Obstacle 1 was created based on the first

measurement. After that, the z-test value is calculated to check the correspondence

between the measurement and the updated estimate at each time step. At t = 74.5

(sec), the z-test value became larger than its threshold value ztestmax = 3 and a new

estimated obstacle date X̂2 which corresponds to Obstacle 2 was created. From that

point onwards, the z-test values are calculated to check the correspondence between

the measurement and the estimates X̂1 and X̂2. The z-test value for X̂1 was much

larger than that for X̂2 and hence the measurement was correctly assigned to the

estimate corresponding to Obstacle 2 by using the z-test algorithm. In the right plot

of Figure 27, the image coordinates of each obstacle’s position detected by the image

processor are compared with those calculated by using true states of the vehicle and

the obstacles. These are perfectly matched at the beginning. However, since the

obstacle’s size on the image becomes larger as the vehicle (or camera) comes closer to

the obstacle, the measurement error becomes larger. An average processing time of

the image processor was ∆t = 0.1213 (sec). Figure 28 presents the position estimation

error for each obstacles. When the estimate is initialized for each obstacle, there is a

very large range estimation error eX (ft), which is 100 (ft) underestimated for Obstacle

1 and 50 (ft) overestimated for Obstacle 2. Those estimation errors are reduced to

less than 10 (ft) through the EKF updates by using the image processor outputs.

Even though there remains a small bias in the estimates (which is due to a bias in

the measurement error), vision-based estimation performance is sufficiently accurate

to be used in the collision criteria and the guidance system.

(d) Results 2: Guidance Performance

Figure 29 shows the vehicle trajectory and locations of the start point, waypoint and

the two obstacles. Figure 30 shows a time profile of the vehicle’s position in each
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direction and the distance from the vehicle to each obstacle. From these results, we

can see that the suggested guidance law successfully guided the vehicle to a given

waypoint while not violating the minimum separation distance d = 100 (ft) from the

two obstacles. Figure 31 shows the acceleration input determined by the minimum-

effort guidance (3.33). The flight controller implemented in the simulation calculates

actuator inputs by using this acceleration command. The actual vehicle’s acceleration

is also shown in Figure 31. The lateral acceleration command is very large at around

t = 78 (sec). This is because the denominator (t̂−go − tk) went close to zero. Figure

31 also shows the critical obstacle flag, which is 1 when an obstacle is critical and

0 when it is not, for each obstacle. From the figure, it is verified that the collision

criteria established in Section 3.3 can appropriately determine the critical obstacle.
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3.6 Flight Test Results

The autonomous flight system for vision-based obstacle avoidance has been evalu-

ated in realistic simulations in the previous section. Now the exact same system is

implemented in an onboard flight computer of the GTMax helicopter (See Table 1)

to realize closed-loop vision-based obstacle avoidance in flight. The flight test is con-

ducted with a large balloon as an obstacle and successful test results are shown in

this section.

3.6.1 Flight Test Settings

Flight tests of vision-based obstacle avoidance are performed with a single obstacle

and waypoint. A red balloon 7 (ft) in diameter is used as the obstacle. Figure 32

shows a picture map of the flight test field. Each edge of a grid on the map is 50

(ft). The origin of the inertial (NED) frame is taken at a center of the runway. The

balloon is launched at a corner of the runway to an altitude of about 50 (ft) and it

is tethered to the ground by three strings. The obstacle position is approximately

Xobs =

[
100 −100 −50

]T

(ft). The GTMax is guided to fly along the runway edge

from a start point to a waypoint, whose locations are given at

X0 =




150

200

−100




(ft), Xwp =




−50

−400

−100




(ft) (3.36)

The vehicle speed is maintained constant at 20 (ft/sec2) along the direction of the

relative vector Xwp−X0. In other words, the acceleration command is always zero in

that direction. In addition to the waypoint tracking, the vehicle is required to avoid

the balloon obstacle with a 100 (ft) separation distance by using information from

the image processor. T = 10 (sec) is used for the time-to-go threshold in the collision

criteria. The EKF is initialized by using an initial estimated range of 400 (ft).
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Figure 32: Vision-Based Obstacle Avoidance Flight Test Configuration

Figure 33: The GTMax and a Balloon Obstacle
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3.6.2 Results

A first flight of closed-loop vision-based obstacle avoidance and waypoint tracking

was achieved in October, 2007. Figure 33 shows the GTMax flying by the balloon

obstacle. Figure 34 shows a trajectory of the GTMax with an approximate position

of the true obstacle. An estimated obstacle position is also shown on this figure. The

obstacle position was 100 (ft) underestimated at the beginning and the estimated

position moved closer to its actual position. Figure 35 are time profiles of the vehicle

position, estimated obstacle position and the aiming point position. This result shows

that the GTMax achieved accurate waypoint tracking and took a left-upward avoid-

ing maneuver to stay away from the obstacle. The first plot in Figure 36 illustrates

the collision flag and estimated and true distances from the vehicle to the obstacle.

Because of the underestimated range, the obstacle was considered to be critical after

passing the starting point. Then the vehicle stayed on the collision-safety boundary

(d = 100 (ft)) with its velocity being kept outside of the obstacle’s collision cone. At

t = 27 (sec), due to the estimation update, the estimated range violated the minimum

separation distance and the avoiding maneuver was taken again. The green dashed

line in the left plot of Figure 36 is the true distance between the vehicle and the obsta-

cle, and the result shows that there was no violation of the minimum collision-safety

distance. The right plot of Figure 36 compares the resulting acceleration input com-

mand with the vehicle’s true acceleration. Even though the commanded acceleration

becomes very large when the vehicle came close to the obstacle or the waypoint, the

flight controller takes into account the vehicle’s maneuver limits and prevents large

actuator inputs. Figure 37 plots the image processor outputs. The image processor

sometimes detected two objects in the same image frame. However, the z-test algo-

rithm assigns the right one to update the estimate. The image processor processed

images at about 5 (Hz) in the flight. Figure 37 also shows the standard deviations of

the obstacle’s position estimation errors.
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3.7 Conclusion

This chapter developed a vision-based relative navigation and guidance system for

a UAV to achieve 3-D waypoint tracking with vision-based obstacle avoidance. It

also suggested applying a minimum-effort guidance law for multiple targets tracking

as the guidance law for obstacle avoidance. Simulation results were compared with

those due to the sequential PN guidance approach, which has been commonly used,

and proved that the control effort required to achieve the mission was significantly

reduced by using the suggested MEG-based guidance. All the algorithms designed in

this chapter have been integrated with the real-time image processor and evaluated

in realistic simulations and in flight tests using a UAV helicopter and a balloon as an

obstacle.
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CHAPTER IV

STOCHASTICALLY OPTIMIZED GUIDANCE DESIGN

This chapter discusses a stochastically optimized guidance design for monocular

vision-based control applications of UAVs. The EKF-based navigation filter designed

in Section 2 is used for relative navigation, and the estimates are fed back to the

guidance system. For monocular vision-based relative navigation, it is well known

that the estimation performance significantly depends on sensor motion relative to

a target[51]. We have already seen an example in simulation results of vision-based

obstacle avoidance when comparing the two different guidance laws (MEG vs. PN)

in Subsection 3.5.1 in the previous chapter. In that example, the MEG created larger

lateral motion which is preferable for the estimation and resulted in better perfor-

mance in comparison with the PN. Therefore, this thesis suggests a guidance design

which includes a sensor trajectory optimization to improve estimation accuracy, and

hence improve overall guidance accuracy. Furthermore, a suboptimal optimization

technique is applied to solve the optimization problem for real-time applicability of

the guidance strategy.

4.1 Stochastic Optimization

The goal of the guidance design addressed in this chapter is to guide a vehicle to

achieve a given mission such as waypoint tracking and path following using a single

2-D vision sensor. As discussed in Chapter 2, an EKF is applied to estimate the

3-D relative state assuming the linear relative dynamics given in (2.4). Let x =[
XT V T

]T

be the relative state vector where X and V are the relative position

and velocity respectively. For simplicity, a non-accelerating target is assumed in this
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problem. Then the linear dynamics (2.4) can be rewritten as

ẋ(t) =




O I

O O


 x(t) +




O

−I


 av(t) = Fx(t) + Gav(t) (4.1)

Suppose that a mission given to the vehicle is represented as the following quadratic

minimization problem

min
av

J =
1

2
(x(tf )− xf )

T Sf (x(tf )− xf )

+
1

2

∫ tf

t0

[
(x(t)− xc(t))

T A (x(t)− xc(t)) + aT
v (t)Bav(t)

]
dt (4.2)

subject to the linear relative dynamics (4.1) with a given initial state x(t0) = x0.

xf is the desired terminal relative state and xc(t) for t0 ≤ t ≤ tf is the commanded

relative state path. Sf , A and B are constant weight matrices satisfying

Sf ≥ O, A ≥ O, B > O (4.3)

Then, the goal of the guidance design in this problem is to realize the optimal solution

a∗v(t) of the minimization problem (4.2).

4.1.1 Optimal Guidance

Consider the problem of trying to determine the acceleration input at a current time

step tk, av(tk), given the current state x(tk) = xk. When the true state x is available,

the optimal guidance input at tk can be obtained by solving (4.2) with the initial

time at tk. An analytical solution for this minimization problem can be obtained by

solving the Hamilton-Jacobi-Bellman (HJB) equation. The HJB equation is based

on dynamic programming theory established by Bellman, and is given by a set of

first-order nonlinear partial differential equations that must be solved with boundary

conditions[13]. The optimal acceleration input at a current time step tk and the

optimal cost are given as follows

a∗v(tk) = −B−1GT (S(tk)x(tk) + v(tk)) (4.4)

J∗(tk) =
1

2
xT (tk)S(tk)x(tk) + xT (tk)v(tk) + w(tk) (4.5)
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where the matrix S, the vector v and the scalar w satisfy the following differential

equations.

Ṡ + SF + F T S + A− SGB−1GT S = O, S(tf ) = Sf (4.6)

v̇ +
(
F T − SGB−1GT

)
v − Axc = 0, v(tf ) = −Sfxf (4.7)

ẇ − 1

2
vT GB−1GT v +

1

2
xT

c Axc = 0, w(tf ) =
1

2
xT

f Sfxf (4.8)

A derivation of the optimal solution (4.4,4.5) using the HJB equations are shown in

Appendix B. The first term of the guidance input (4.4) is feedback and the second

term is feed-forward control. In the special case of terminal tracking (i.e., A = O), a

closed form of the optimal solution can be derived as follows

a∗v(tk) = −B−1GT eF T (tf−tk)Sf (I + GkSf )
−1 (

eF (tf−tk)x(tk)− xf

)
(4.9)

J∗(tk) =
1

2

(
eF (tf−tk)x(tk)− xf

)T
(I + GkSf )

−T Sf

(
eF (tf−tk)x(tk)− xf

)
(4.10)

where

Gk =

∫ tf

tk

eF (tf−s)GB−1GT eF T (tf−s)ds

Note that Gk > 0 when (F,G) is controllable and B > 0. The derivation of (4.9,4.10)

is also shown in Appendix B.

4.1.2 Estimated Optimal Guidance

When the measurement model is linear, an optimal estimator and controller can be

designed separately and it results in a standard linear Kalman filter and an LQG

controller[5][94]. However, the 2-D vision-based measurement is a nonlinear function

of the 3-D relative state, and for such a case, the separation principle does not hold

between estimation and control, and closed form solutions are not available. A com-

mon way to determine a guidance law is to replace the true state by its estimate in

(4.4).

â∗v(tk) = −B−1GT (S(tk)x̂(tk) + v(tk)) (4.11)

= a∗v(tk) + B−1GT S(tk)x̃(tk) = a∗v(tk)− ã∗v(tk)
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where x̃(tk) = x(tk) − x̂(tk) is the estimation error. In this thesis, we will refer to

this guidance design as the estimated optimal guidance or the conventional guidance.

Consider the case of A = O, then the estimated optimal guidance and the expected

cost are

â∗v(tk) = −B−1GT eF T (tf−tk)Sf (I + GkSf )
−1 (

eF (tf−tk)x̂(tk)− xf

)
(4.12)

Ĵ∗(tk) = E [J(tk)]

= J∗(tk) +
1

2
trPke

F T (tf−tk) (I + GkSf )
−T Sf (I + GkSf )

−1 eF (tf−tk)(4.13)

assuming E [x̃(tk)] = 0 and E
[
x̃(tk)x̃

T (tk)
]

= Pk. The second term of the right hand

side in the equation (4.13) corresponds to an increase in cost due to the estimation

error x̃(tk). Since the optimization is performed by assuming zero estimation error in

the previous subsection, this guidance policy can cause poor guidance performance

when the estimation error is large.

For vision-based measurements, estimation performance significantly depends on

the relative motion with respect to the target[51]. For example, range information

becomes unobservable when a camera moves straight towards the target without any

change in the line-of-sight. Hence, the estimation performance can be improved by

a guidance design which creates some relative motion lateral to the line-of-sight, and

hence the overall guidance performance is also improved by it. This thesis suggests

designing a guidance law by stochastically minimizing J in (4.2) under the condition of

using the EKF. In this approach, the guidance design is separated from the estimator

design, but the resulting guidance design takes into account the dependence of the

guidance on the estimation performance. The resulting guidance is conditionally

optimal instead of globally optimal. A detail of the stochastic optimization approach

will be discussed in the next subsection.
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4.1.3 Stochastic Optimization

The guidance design suggested in this thesis minimizes the expected value of the

cost function defined by (4.2) under the condition of using the EKF-based relative

navigation. The expected value of J is taken as follows.

E [J ] =
1

2
E

[
(x(tf )− xc(tf ))

T Sf (x(tf )− xc(tf ))
]

+
1

2

∫ tf

t0

(
E

[
(x(t)− xc(t))

T A (x(t)− xc(t))
]

+ aT
v (t)Bav(t)

)
dt

=
1

2
E

[
(x̂(tf )− xc(tf ) + x̃(tf ))

T Sf (x̂(tf )− xc(tf ) + x̃(tf ))
]

+
1

2

∫ tf

t0

(
E

[
(x̂(t)− xc(t) + x̃(t))T A (x̂(t)− xc(t) + x̃(t))

]
+ aT

v (t)Bav(t)
)

dt

=
1

2
(x̂(tf )− xc(tf ))

T Sf (x̂(tf )− xc(tf ))

+
1

2

∫ tf

t0

(
(x̂(t)− xc(t))

T A (x̂(t)− xc(t)) + aT
v (t)Bav(t)

)
dt

+ (x̂(tf )− xc(tf ))
T SfE [x̃(tf )] +

∫ tf

t0

(x̂(t)− xc(t))
T AE [x̃(t)] dt

+
1

2
trE

[
x̃(tf )x̃

T (tf )
]
Sf +

1

2

∫ tf

t0

trE
[
x̃(t)x̃T (t)

]
Adt

Assuming E [x̃(t)] = 0 and E
[
x̃(t)x̃T (t)

]
= P (t), the stochastically optimized guid-

ance design can be formulated as follows

min
av

E [J ] =
1

2
(x̂(tf )− xf )

T Sf (x̂(tf )− xf )

+
1

2

∫ tf

t0

(
(x̂(t)− xc(t))

T A (x̂(t)− xc(t)) + aT
v (t)Bav(t)

)
dt

+
1

2
trP (tf )Sf +

1

2

∫ tf

t0

trP (t)Adt (4.14)

subject to the EKF prediction and update laws (2.9, 2.16-2.19). The EKF process is

recalled here for the case of a linear process model:

Prediction :

x̂−k+1 = Φk+1x̂k + Γk+1av(tk) (4.15)

P−
k+1 = Φk+1PkΦ

T
k+1 + Qk+1 (4.16)
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where

Φk+1 = I + F (tk+1 − tk), Γk+1 = G(tk+1 − tk) +
1

2
FG(tk+1 − tk)

2 (4.17)

Update :

x̂k+1 = x̂−k+1 + Kk+1

(
zk+1 − h(x̂−k+1)

)
(4.18)

Pk+1 = (I −Kk+1Hk+1) P−
k+1 (4.19)

where

Kk+1 = P−
k+1H

T
k+1

(
Hk+1P

−
k+1H

T
k+1 + Rk+1

)−1
(4.20)

The optimization problem (4.14) is nonlinear due to the nonlinear vision-based

measurement, and the analytical optimal solution cannot be obtained in most cases.

There are numerous numerical optimization algorithms, such as dynamic program-

ming, which can be used to solve this problem. However, these numerical optimiza-

tions require iterative computations, and thus they are not suitable for realtime ap-

plication. Therefore, this thesis aims to establish suboptimal optimization strategies

which reduce the computational burden in performing the optimization.

4.2 One-Step-Ahead Optimization Approach

In this section, the one-step-ahead (OSA) suboptimal optimization technique is ap-

plied to solve the stochastic optimization problem established in Subsection 4.1.3.

The idea of the OSA optimization is introduced by Logothetis et al. in [48]. In this

approach, at the current time step tk, the optimization is performed under the as-

sumption that the observer anticipates only one more final measurement at one time

step ahead tk+1. In [48], the OSA optimization is applied to minimize several dif-

ferent estimation performance costs for bearings-only tracking problem. This section

applies the OSA optimization approach to perform the stochastic optimization[86],

and presented simulation results of the guidance performance with applications of

vision-based target tracking and vision-based obstacle avoidance problems.
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4.2.1 Approach

Consider to determine the guidance input at a current time step tk, given the current

updated estimate x̂k and its error covariance matrix Pk. Let

a1
v(t) = â∗vk

(t) + ∆a1
k (4.21)

be the vehicle acceleration input for a time interval tk ≤ t ≤ tk+1. The input â∗vk
(t)

denotes the estimated optimal guidance given in (4.11), which can be considered as

a zero-step-ahead suboptimal guidance law (a0
v(t) = â∗vk

(t) for tk ≤ t ≤ tf ). ∆a1
k

in (4.21) is an additional input which is for the estimation improvement. Under the

one-step-ahead optimization assumption, there will be only one more measurement

available at the next time step. Therefore, the estimation accuracy will not be im-

proved after tk+1. This means that what can be done after tk+1 is only to apply the

estimated optimal guidance law which was recalculated at tk+1 using the updated

estimate x̂k+1.

a1
v(t) = â∗vk+1

(t), tk+1 ≤ t ≤ tf (4.22)

Then, the expected cost E [J ] at tk can be derived by assuming E [x̃(tk+i)] = 0 and

E
[
x̃(tk+i)x̃

T (tk+i)
]

= Pk+i for i = 0, 1. In addition, a zero process noise covariance

Qk = O is assumed in the calculation of E [J ] for simplicity. The expected cost results

in a function of the current estimate x̂k, its error covariance Pk and the additional

acceleration input ∆a1
k. Since x̂k and Pk are given, the minimization problem (4.14)

now becomes a minimization over a single vector ∆a1
k, and the optimal ∆a1

k which

minimizes E [J(tk)] can be derived by solving the following algebraic equation.

∂E [J(tk)]

∂∆a1
k

= 0 (4.23)

The resulting ∆a1
k can be expressed in terms of the given estimate x̂k and its error

covariance matrix Pk.
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4.2.2 Special Case of Terminal Tracking

The OSA suboptimal guidance law is derived for the special case of terminal tracking,

i.e., a case of A = O in this subsection. As derived in (4.12), the estimated optimal

guidance calculated at tk or the zero-step-ahead suboptimal guidance is

a0
v(t) = â∗vk

(t) = −B−1GT eF T (tf−t)Sf (I + GkSf )
−1 (

eF (tf−tk)x̂k − xf

)
(4.24)

When applying a0
v(t) for tk ≤ t ≤ tk+1, the true relative state at tk+1 will be

x0(tk+1) = eF (tk+1−tk)x(tk) +

∫ tk+1

tk

eF (tk+1−s)Ga0
vk

(s)ds

= eF (tk+1−tk) (x̂k + x̃k)

−e−F (tf−tk+1) (Gk − Gk+1) Sf (I + GkSf )
−1 (

eF (tf−tk)x̂k − xf

)
(4.25)

The OSA suboptimal guidance for tk ≤ t ≤ tk+1 is given by (4.21), and the true

relative state at tk+1 becomes

x1(tk+1) = eF (tk+1−tk)x(tk) +

∫ tk+1

tk

eF (tk+1−s)G
(
a0

vk
(s) + ∆a1

k

)
ds

= x0(tk+1) + Γk+1∆a1
k = x0(tk+1) + ∆x1

k+1 (4.26)

where Γk=1 is defined in (4.17) and ∆x1
k+1 = Γk+1∆a1

k. Then, the estimated optimal

guidance is recalculated at tk+1 as follows.

â∗vk+1
(t) = −B−1GT eF T (tf−t)Sf (I + Gk+1Sf )

−1 (
eF (tf−tk+1)x̂k+1 − xf

)

= a0
v(t)−B−1GT eF T (tf−t)Sf (I + Gk+1Sf )

−1 eF (tf−tk+1)
(
x̃−k+1 − x̃k+1

)

−B−1GT eF T (tf−t)Sf (I + Gk+1Sf )
−1 eF (tf−tk+1)∆x1

k+1 (4.27)

where x̃−k+1 = eF (tk+1−tk)x̃k is the predicted estimation error at tk+1. In the OSA

suboptimal guidance law, â∗vk+1
(t) is applied for tk+1 ≤ t ≤ tf . Then the terminal

tracking error is given by

x1(tf )− xf = eF (tf−tk+1)x1(tk+1) +

∫ tf

tk+1

eF (tf−s)Ga0
vk+1

(s)ds

=
(
x0(tf )− xf

)− Gk+1Sf (I + Gk+1Sf )
−1 eF (tf−tk+1)

(
x̃−k+1 − x̃k+1

)

+ (I + Gk+1Sf )
−1 eF (tf−tk+1)∆x1

k+1 (4.28)
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The second term in (4.28) represents the deviation from the estimated optimal guid-

ance due to the estimation update at tk+1, and the third term represents the deviation

due to the additional input ∆a1
k. The expected cost Ĵ1(tk) = E [J(tk)] is calculated

by assuming ideal estimates having E [x̃k+i] = 0 and E
[
x̃k+ix̃

T
k+i

]
= Pk+i for i = 0, 1.

J1(tk) =
1

2
E

[(
x1(tf )− xf

)T
Sf

(
x1(tf )− xf

)
+

1

2

∫ tf

tk

a1T

v (t)Ba1
v(t)dt

]

' Ĵ∗(tk)− 1

2
tr

(
P−

k+1 − Pk+1

)
eF T (tf−tk+1)SfGk+1Sf (I + Gk+1Sf )

−1 eF (tf−tk+1)

+
1

2
∆a1T

k

(
ΓT

k+1e
F T (tf−tk+1)Sf (I + Gk+1Sf )

−1 eF (tf−tk+1)Γk+1 + Bk+1

)
∆a1

k

= J0(tk)− 1

2
tr

(
P−

k+1 − Pk+1

)Sk+1 +
1

2
∆a1T

k Bk+1∆a1
k (4.29)

where Bk+1 = B(tk+1 − tk) and Sk+1 and Bk+1 are constant matrices defined by

Sk+1 = eF T (tf−tk+1)SfGk+1Sf (I + Gk+1Sf )
−1 eF (tf−tk+1) (4.30)

Bk+1 = ΓT
k+1e

F T (tf−tk+1)Sf (I + Gk+1Sf )
−1 eF (tf−tk+1)Γk+1 + Bk+1 (4.31)

Ĵ∗(tk) = J0(tk) in (4.29) is the expected cost when applying the estimation optimal

guidance for tk ≤ t ≤ tf . For the case of A = O, it is given by (4.13). The second

term in (4.29) represents a decrease in terminal tracking error due to the estimation

improvement by the measurement update at tk+1, and the third term represents an

increase in control cost due to the additional input ∆a1
k. From the EKF update law

(4.19, 4.20), the second term in (4.29) can be rewritten as follows.

1

2
tr

(
P−

k+1 − Pk+1

)Sk+1 =
1

2
trKk+1Hk+1P

−
k+1Sk+1

=
1

2
trHT

k+1

(
Hk+1P

−
k+1H

T
k+1 + Rk+1

)−1
Hk+1S̄k+1(4.32)

where S̄k+1 = P−
k+1Sk+1P

−
k+1 is a constant matrix which is determined by given Pk.

Now the OSA guidance policy is to find ∆a1
k which maximizes the decrease in

cost. Hence the optimal solution for ∆a1
k can be obtained by solving the following

algebraic equation.

∂

∂∆a1
k

(
J0(tk)− J1(tk)

)
= 0 (4.33)

76



From (4.29) and (4.32), it can be expanded as

∂

∂∆a1
k

(
trHT

k+1

(
Hk+1P

−
k+1H

T
k+1 + Rk+1

)−1
Hk+1S̄k+1 −∆a1T

k Bk+1∆a1
k

)
= 0

∴ ∆a1
k =

1

2
B−T

k+1

[
∂

∂∆a1
k

tr
(
Hk+1P

−
k+1H

T
k+1 + Rk+1

)−1
Hk+1S̄k+1

]T

(4.34)

Hk+1 on the right hand side of (4.34) is a measurement matrix defined by a Jacobian

of the measurement model h(x) evaluated at x = x̂−k+1, and it becomes a function of

∆a1
k. To simplify the calculation, we will approximate the solution for (4.34) by

∴ ∆a1
k =

1

2
B−T

k+1

[
∂

∂∆a1
k

tr
(
Hk+1P

−
k+1H

T
k+1 + Rk+1

)−1
Hk+1S̄k+1

]T ∣∣∣
x̂−

k+1=x̂∗−
k+1

(4.35)

where x̂∗−k+1 is the predicted estimate at tk+1 when applying only the estimated optimal

guidance av(t) = â∗vk
(t) = a0

v(t) for tk ≤ t ≤ tk+1. From the form of (4.35), it can

be said that the S̄k+1 matrix plays the role of weighing the additional input ∆a1
k.

Since S̄k+1 is a quadratic function of the current estimation error covariance Pk, the

resulting ∆a1
k is small when having accurate estimation and it is large when having

poor estimation. This is reasonable because the vehicle does not need to create the

extra maneuver to improve the estimation when the estimate is already sufficiently

accurate.

4.2.3 Application 1 : Vision-Based Rendezvous

The EKF-based navigation system and the OSA suboptimal guidance law designed

in Subsection 4.2.2 have been applied to two different applications. The first appli-

cation is a vision-based rendezvous problem with a stationary target in 3-D space.

This is the simplest problem to apply the suggested OSA suboptimal guidance law

and an improvement in the tracking performance can be clearly seen in the results.

Simulation results with a simulated vision-based measurement are shown to illustrate

the guidance performance improvement.
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(a) Problem Formulation

A mission of the rendezvous with a stationary target at a given terminal time tf can

be formulated as a quadratic minimization problem given in (4.2) with the following

parameters

A = O, B = I, Sf =




sxI O

O svI


 , xf = 0 (4.36)

where sx > 0 and sv ≥ 0 are constant weights. The vision-based measurement is a

target’s center position in each image frame, which is formulated in (2.6) in Chapter

2. Because of a fixed image resolution, a noise on the vision-based measurement

should depend on the range to the target from the camera. Hence, the measurement

error covariance matrix Rk is modeled as follows in the EKF design.

Rk =
σ2

X̂2
ck

I (4.37)

Since it is known that the target is stationary in this application, the EKF is for-

mulated to estimate the relative position of the target with respect to the vehicle.

Therefore, the estimation error covariance matrix Pk and the measurement matrix

Hk+1 in the EKF are 3 × 3 and 2 × 3 matrices respectively, and we need to replace

the P−
k+1 and Hk+1 matrices in (4.35) by

P−
k+1 =




P−
k+1 O

O O


 , Hk+1 =

[
Hk+1 O

]

(b) Guidance Design

The estimated optimal guidance law at tk with the parameters given in (4.36) results

in the following linear feedback controller.

â∗vk
(tk) = KXX̂k −KV V v(tk) (4.38)

where

KX =
sx(tf − tk) + sxsv

2
(tf − tk)

Λk

, KV =
sx(tf − tk)

2 + sxsv

3
(tf − tk)

3 + sv

Λk
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Λk = 1 +
sx

3
(tf − tk)

3 +
sxsv

12
(tf − tk)

4 + sv(tf − tk)

In the OSA suboptimal guidance design, an additional guidance input ∆a1
k is added to

â∗vk
(tk) in order to create an extra motion which improves the estimation performance.

For the measurement of the target position in an image, the measurement matrix in

the EKF is given by

Hk+1 =
1

X̂−
ck+1



− Ŷ −ck+1

X̂−
ck+1

1 0

− Ẑ−ck+1

X̂−
ck+1

0 1


 (4.39)

where

X̂
−
ck+1

=

[
X̂−

ck+1
Ŷ −

ck+1
Ẑ−

ck+1

]T

= Lc(tk+1)X̂
−
k+1

= Lc(tk+1)

(
X̂k + V v(tk)(tk+1 − tk)− 1

2

(
â∗(tk) + ∆a1

k

)
(tk+1 − tk)

2

)

Therefore, the measurement matrix Hk+1 is a function of the additional input ∆a1
k

and the derivative (4.35) can be obtained. The resulting ∆a1
k is a function of the

current estimate X̂k, its error covariance Pk, the known vehicle velocity V v(tk) and

camera attitude Lc(tk+1).

(c) Simulation Results

Simulation results for the vision-based rendezvous with a stationary target are com-

pared between two guidance policies: the OSA suboptimal guidance a1
v and the es-

timated optimal guidance â∗v. The vehicle is located at the origin with its veloc-

ity as V v(0) =

[
10 2 0

]T

(ft/sec) at the initial time, and the target is fixed at

X t =

[
100 20 20

]T

(ft). The vehicle’s mission is to make a rendezvous with the

target at time tf = 20 (sec). sx = 100 and sv = 10 are given. The initial estimation

error of the target position is −20 (ft) in each axis, and the initial error covariance is

P0 = 202I (ft2). For the measurement noise covariance matrix, σ = 1 is used. Figure

38 shows the vehicle trajectory, and Figure 39 is the vehicle velocity and acceleration

which are generated by those two guidance laws. The results of the OSA suboptimal
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Figure 38: Vehicle Trajectory and Target Location (OSA Suboptimal vs. Estimated
Optimal)

guidance law are shown in blue solid lines and those of the estimated optimal guid-

ance law are shown in green dashed lines. Figure 40 summarizes the total cost which

includes the terminal tracking error and the control cost for the entire mission. Figure

41 presents a convergence of the estimation error and its standard deviation. When

using the estimated optimal guidance policy, the vehicle approaches almost straight

to the target. Range observability is lost in such a case, and a large bias in the posi-

tion estimation error remains. Due to the large bias, the vehicle fails to rendezvous

with the target and its final miss distance is 14.8 (ft). On the other hand, the OSA

suboptimal guidance law creates lateral motions to keep the range observability and

hence improve the vision-based estimation performance, and it enables the vehicle to

achieve the rendezvous mission with high accuracy (within 0.03 (ft)). Even though

the control cost increases due to the additional input ∆a1
k, the terminal tracking error

and the total cost are significantly reduced by using the OSA suboptimal guidance

policy as shown in Figure 40.
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4.2.4 Application 2 : Vision-Based Obstacle Avoidance

The second application is a combined mission of waypoint tracking and vision-based

obstacle avoidance. A vehicle is required to visit a given waypoint while avoiding

unforeseen obstacles on its way by using 2-D vision information. This problem has

been already treated in Chapter 3. By applying the collision-cone approach developed

in Section 3.3, a guidance for obstacle avoidance is reduced to a target tracking

problem and the same guidance law that was used in the first application is applied.

(a) Problem Formulation

In this example, a constant known speed U in the X- direction is assumed. The

waypoint tracking problem is given by (4.2) with

A = O, B =




∞ 0 0

0 1 0

0 0 1




, Sf =




sxI O

O svI


 , xf =




0

−U

0

0




where sx > 0 and sv ≥ 0 are constant weights. Since the relative state between the

vehicle and the waypoint is assumed to be completely known, optimal guidance can

be realized if there is no obstacle. However, if there is an obstacle which is critical to
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the vehicle, the vehicle needs to take some avoiding maneuver. Same as in the first

application, a vision-based measurement is an obstacle center position in each image

frame. Stationary point obstacles are assumed in this problem, and the vehicle always

needs to maintain a certain minimum separation distance d from every obstacles to

avoid a collision with them.

(b) Guidance Design

Suppose there is no critical obstacle. Then the optimal guidance input for waypoint

tracking is given by

a∗wp(tk) = KX (Xwp −Xv(tk))−KV V v(tk) (4.40)

where KX and KV are the same gain as derived in the previous section. The terminal

time is calculated by using a known speed U and the remaining X distance to the

waypoint.

tf = tk +
Xwp −Xv(tk)

U
(4.41)

For obstacle avoidance, the collision-cone criteria developed in Section 3.3 is used

to determine the most critical obstacle. Let Xobs denote an obstacle position. Xv

and V v are vehicle position and velocity. If the collision cone criteria is satisfied,

an aiming point Xap is specified at a tangential point of the collision cone and the

obstacle’s safety boundary (See Figure 21). Now the obstacle avoidance mission

coincides with the aiming point tracking problem. Therefore, a similar guidance law

from the waypoint tracking problem can be applied.

â∗oa(tk) = KX

(
X̂ap −Xv(tk)

)
−KV V v(tk) (4.42)

X̂ap is used instead of Xap since the aiming point is determined based on the esti-

mated obstacle position X̂obs instead of the true obstacle’s position Xoba. The gains

KX and KV are still the same but are calculated by using the terminal time

tf = tk +
X̂ap −Xvk

U
(4.43)

83



In the OSA suboptimal guidance policy, we add the additional input ∆a1
k to the

estimated optimal guidance (4.42). ∆a1
k is computed by (4.35) in a similar manner

as done in the previous example. The overall guidance policy is to apply a∗wp(tk)

when there is no critical obstacle, and to apply â∗oa(tk) + ∆a1
k when there is a critical

obstacle.

(c) Simulation Results

Simulation results are compared between the OSA suboptimal guidance policy and

the estimated optimal guidance policy. The vehicle is initially at the origin with its

velocity V v(0) =

[
10 2 2

]T

(ft/sec), and a constant speed in the X-direction is

U = 10 (ft/sec). A waypoint is given at Xwp =

[
100 20 20

]T

(ft). There are two

unforeseen obstacles on the way to the waypoint: Obstacle 1 at Xobs1 =

[
30 6 6

]T

(ft) and Obstacle 2 at Xobs2 =

[
60 20 15

]T

(ft). The minimum separation distance

from obstacles is d = 10 (ft). The initial estimation error is +50% of the original

relative position for each obstacle, and its initial error covariance is P0 = 202I (ft2).

sx = 100 and sv = 10 are used. Figure 42 shows the vehicle trajectory, obstacle

locations and their safety boundaries, and the waypoint location. Figure 43 is the

vehicle velocities and accelerations. Figure 44 presents a time profile of distances from

each obstacle and Figure 45 shows the control cost. The blue lines are the results

using the suggested OSA suboptimal guidance, and the green dashed lines are the

results using the estimated optimal guidance. We can see that there is a violation of

Obstacle 1’s safety boundary when the estimated optimal guidance law is used, and

that the violation is removed when using the OSA suboptimal guidance. Therefore the

guidance performance of obstacle avoidance is significantly improved by introducing

the additional input ∆a1
k. However, it is obvious that additional input increases

a control cost and the total control cost is almost doubled when using the OSA

suboptimal guidance policy. Figure 46 shows the estimation error of each obstacle
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position and its standard deviation. It is clear from the result that convergence of the

estimation error is significantly improved by the OSA suboptimal guidance. That is

why the guidance performance was improved.

4.3 Extended Suboptimal Optimization Strategies

In this section, two different suboptimal optimization techniques are studied as ex-

tended approaches of the OSA suboptimal guidance law to solve the stochastic op-

timization problem established in Subsection 4.1.3. The previous section suggests

the OSA suboptimal guidance and the simulation results showed that it significantly

improves the guidance performance compared to the conventional guidance. Also,

this guidance strategy does not require the iterative computation and is real-time

applicable. However, the OSA assumption used in the design is far from reality and

an optimality of the solution has not been investigated. Therefore, this section aims

to develop suboptimal guidance strategies that can well-approximate the optimal
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solution. First, the OSA optimization is generalized as the n-step-ahead (nSA) opti-

mization for an arbitrary number n. Then, it is extended to the p %-ahead suboptimal

guidance by changing a value for n at each time step. The nSA and the p %-ahead

suboptimal guidance designs are studied with an application to a very simple problem

of 2-D vision-based target tracking. Simulation results of the suggested two subopti-

mal guidance designs are compared with results of the conventional guidance given in

Subsection 4.1.2, and also with the optimal solution which is numerically obtained.

4.3.1 n-Step-Ahead Optimization

The first suboptimal guidance strategy proposed in this thesis is called n-step-ahead

(nSA) optimization. This approach is a generalization of the OSA optimization ap-

proach discussed in the previous section with an arbitrary number of n instead of

n = 1. In the nSA optimization, the optimization is performed under the assump-

tion that the observer anticipates n more final measurements for n time steps ahead

from the current time. The optimal solution of (4.14) can be obtained by setting

a sufficiently large number for n. The solutions for different values of n are derived

numerically, and their optimality and computational cost will be investigated through

the simulation results in Subsection 4.4.

(a) Approach

As done in the previous section, consider the problem of determining a vehicle’s

acceleration input at the k-th time step tk given the estimated relative state x̂k =

x̂(tk) and its error covariance matrix Pk = P (tk). In the nSA optimization approach,

the optimization is performed under the assumption of having measurements for only

the first n steps ahead from tk. Let an
v (t) denote the nSA-based suboptimal guidance

input computed at tk. Let

an
v (t) = â∗vk+i

(t) + ∆an
k+i, tk+i ≤ t ≤ tk+i+1 (4.44)

be the vehicle acceleration input for 0 ≤ i ≤ n − 1. The input â∗vk+i
(t) denotes the
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estimated optimal guidance law which is recalculated at tk+i by using the last updated

estimate x̂k+i and its error covariance matrix Pk+i. ∆an
k+i is an additional input which

is for estimation improvement. Note that the estimated optimal guidance law at tk,

â∗vk
(t), coincides with the zero-step-ahead (n = 0) suboptimal guidance a0

v(t) given in

(4.11). Under the nSA optimization assumption, the estimation accuracy will not be

improved after the time step tk+n because of the lack of measurements beyond this

time. Therefore, the estimated optimal guidance law which was recalculated at tk+n

will be applied after tk+n.

an
v (t) = â∗v(t), tk+n ≤ t ≤ tf (4.45)

Then, the expected cost E [J(tk)] can be derived by assuming E [x̃(tk+i)] = 0,

E
[
x̃(tk+i)x̃

T (tk+i)
]

= Pk+i and Qk+i = O. The expected cost becomes a func-

tion of the current estimate x̂k and Pk and the additional acceleration input ∆an =[
∆anT

k ∆anT

k+1 · · · ∆anT

k+n−1

]T

. The minimization problem (4.14) now becomes a

minimization over a single vector ∆an, and the optimal ∆a which minimizes E [J(tk)]

can be derived by solving the following algebraic equation.

∂E [J(tk)]

∂∆an
= 0 (4.46)

The resulting ∆an can be expressed in terms of the given estimate x̂k and its error

covariance matrix Pk.

(b) Special Case of Terminal Tracking

The special case of terminal tracking (i.e., A = O) is considered. As derived in

Equation (4.12), the estimated optimal guidance or the zero-step-ahead suboptimal

guidance calculated at tk by using the estimate x̂(tk) = x̂k is given as follows.

â∗vk
(t) = a0

v(t) = −B−1GT eF T (tf−t)Sf (I + GkSf )
−1 (

eF (tf−tk)x̂k − xf

)
(4.47)
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When applying a0
v(t) for tk ≤ t ≤ tf , the relative state at tk+i is given by

x0(tk+i) = eF (tk+i−tk)x(tk) +

∫ tk+i

tk

eF (tk+i−s)Gâ0
v(s)ds

= eF (tk+i−tk) (x̂k + x̃k)

−e−F (tf−tk+i) (Gk − Gk+i) Sf (I + GkSf )
−1 (

eF (tf−tk)x̂k − xf

)
(4.48)

In the nSA suboptimal optimization approach, the guidance input for tk ≤ t ≤ tk+1

is a sum of the estimated optimal guidance â∗vk
(t) and an additional input ∆an

k .

an
v (t) = â∗vk

(t) + ∆an
k = a0

v(t) + ∆an
k , tk ≤ t ≤ tk+1 (4.49)

Then, the true relative state at the next time step tk+1 becomes

xn(tk+1) = x0(tk+1) + Γk+1∆an
k = x0(tk+1) + ∆xn

k+1 (4.50)

where Γk+1 is defined in (4.17) and ∆xn
k+1 = Γk+1∆an

k . Similar as (4.27), the esti-

mated optimal guidance is recalculate at tk+1 as follows.

â∗vk+1
(t) = a0

v(t)−B−1GT eF T (tf−t)Sf (I + Gk+1Sf )
−1 eF (tf−tk+1)

(
∆xn

k+1 + ∆x̃k+1

)

(4.51)

where ∆x̃k+1 = x̃−k+1− x̃k+1 = Φk+1x̃k− x̃k+1 denotes an improvement in estimation

by the measurement obtained at tk+1. Now, the nSA suboptimal guidance input for

tk+1 ≤ t ≤ tk+2 is determined by the sum of â∗vk+1
(t) and the additional input ∆an

k+1.

an
v (t) = â∗vk+1

(t) + ∆an
k+1, tk+1 ≤ t ≤ tk+2 (4.52)

By iterating the same procedure for n steps until tk+n, the nSA suboptimal guidance

an
v (t) for tk+i ≤ t ≤ tk+i+1 (0 ≤ i ≤ n− 1) can be derived as

an
v (t) = â∗vk+i

(t) + ∆an
k+i

= a0
v(t) + ∆an

k+i −B−1GT eF T (tf−t)Sf

i∑
j=1

(I + Gk+jSf )
−1 eF (tf−tk+j)∆xn

k+j

−B−1GT eF T (tf−t)Sf

i∑
j=1

(I + Gk+jSf )
−1 eF (tf−tk+j)∆x̃k+j (4.53)
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where

∆xn
k+j = Γk+j∆an

k+j (4.54)

∆x̃k+j = x̃−k+j − x̃k+j = Φk+jx̃k+j−1 − x̃k+j, 1 ≤ j ≤ n (4.55)

Then, the true relative state at tk+n is given by

xn(tk+n) = x0(tk+n)

+e−F (tf−tk+n) (I + Gk+nSf )
n∑

j=1

(I + Gk+jSf )
−1 eF (tf−tk+j)∆xn

k+j

−e−F (tf−tk+n)

n−1∑
j=1

(Gk+j − Gk+n) Sf (I + Gk+jSf )
−1 eF (tf−tk+j)∆x̃k+j

(4.56)

After the n-time-step ahead from the current time, it is assumed that the measure-

ments are not available, and hence there is no need to add extra maneuvers for es-

timation performance improvement. Therefore, the estimated optimal guidance law

calculated at tk+n is applied for the rest of the time interval tk+n ≤ t ≤ tf .

an
v (t) = â∗vk+n

(t), tk+n ≤ t ≤ tf

= a0
v(t)−B−1GT eF T (tf−t)Sf

n∑
j=1

(I + Gk+jSf )
−1 eF (tf−tk+j)∆xn

k+j

−B−1GT eF T (tf−t)Sf

n∑
j=1

(I + Gk+jSf )
−1 eF (tf−tk+j)∆x̃k+j (4.57)

When applying the nSA suboptimal guidance (4.53) and (4.57), the terminal tracking

error will be

xn(tf )− xf = eF (tf−tk+n)xn(tk+n) +

∫ tf

tk+n

eF (tf−s)Gâ∗vk+n
(s)ds− xf

=
(
x0(tf )− xf

)
+

n∑
j=1

(I + Gk+jSf )
−1 eF (tf−tk+j)∆xn

k+j

−
n∑

j=1

Gk+jSf (I + Gk+jSf )
−1 eF (tf−tk+j)∆x̃k+j (4.58)
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Now the expected value of the total cost J is calculated by assuming E [∆x̃k+j] =

0 and approximating its covariance matrix by

E
[
∆x̃k+j∆x̃T

k+i

]
=





P−
k+j − Pk+j = Kk+jHk+jP

−
k+j, i = j

O, i 6= j

where P−
k+j is the predicted estimation error covariance matrix calculated in the EKF

prediction procedure (4.16). From the nSA guidance input given in (4.53) and (4.57)

and the terminal tracking error in (4.58), the expected cost E [J(tk)] can derived as

Jn(tk) = E [J(tk)] = J0(tk)−1

2

n∑
j=1

trKk+jHk+jP
−
k+jSk+j+

1

2

n∑
j=1

∆anT

k+j−1Bk+j∆an
k+j−1

(4.59)

where

Sk+j = eF T (tf−tk+j)SfGk+jSf (I + Gk+jSf )
−1 eF (tf−tk+j)

Bk+j = ΓT
k+je

F T (tf−tk+j)Sf (I + Gk+jSf )
−1 eF (tf−tk+j)Γk+j + B(tk+j − tk+j−1)

The first term in (4.59), J0(tk) = Ĵ∗(tk) is the expected cost when using the estimated

optimal guidance law given in (4.13). The second term represents an increase in con-

trol cost due to the additional input ∆an
k+j, and the third term represents a decrease

in terminal tracking error due to the estimation improvement by the measurement up-

dates at tk+j (j = 1, · · · , n). The main concept of the optimal guidance design in this

thesis is to decrease the total expected cost (4.59) by improving the overall guidance

accuracy by making some favorable maneuvers to improve the estimation accuracy.

In this example, it means that we would like to make the decrease in cost (the second

term in (4.59)) larger than the increase in cost (the third term). Hence, the nSA sub-

optimal guidance policy is to find a vector ∆an =

[
∆anT

k ∆anT

k+1 · · · ∆anT

k+n−1

]T

which maximizes the decrease in cost.

max
∆an

∆Jn(tk) =
(
J0(tk)− Jn(tk)

)
(4.60)
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Since this is a maximization problem over a single vector ∆an, the optimal ∆an can

be obtained by solving

∂∆Jn(tk)

∂∆an
=

∂

∂∆an

1

2

n∑
j=1

(
trKk+jHk+jP

−
k+jSk+j −∆anT

k+j−1Bk+j∆an
k+j−1

)
= 0

∴ ∆an
k+i−1 =

1

2
B−T

k+i

[
∂

∂∆an
k+i−1

n∑
j=1

(
trKk+jHk+jP

−
k+jSk+j

)
]T

, i = 1, 2, · · · , n

(4.61)

In particular, the additional input at the current time step tk can be obtained by

solving (4.61) when i = 1. By substituting the Kalman gain Kk+j with the form

given in (4.20), ∆an
k can be rewritten by

∆an
k =

1

2
B−T

k+1

[
∂

∂∆an
k

n∑
j=1

(
trP−

k+jSk+jP
−
k+jH

T
k+j

(
Hk+jP

−
k+jH

T
k+j + Rk+j

)−1
Hk+j

)]T

(4.62)

By applying the EKF update and prediction laws, it can be proved that the matrix

P−
k+jSk+jP

−
k+j includes a constant matrix

S̄k+j = Pke
F T (tk+j−tk)Sk+je

F (tk+j−tk)Pk (4.63)

As explained in Subsection 4.2.2, this S̄k+j matrix plays the role of weighing the

additional input ∆an
k and having the small estimation error covariance matrix results

in the small additional input.

The matrix Hk+j in (4.62) is the measurement matrix that is defined by the

Jacobian of the measurement model h(x) evaluated at a predicted estimate x =

x̂−k+j when applying the nSA guidance an(t). From the EKF prediction (4.15), it

is obvious that the predicted state x̂−k+j is a function of the last updated estimate

x̂k and the additional inputs ∆an
k+i for i = 0, 1, · · · , j − 1. Hence, the function

trKk+jHk+jP
−
k+jSk+j is highly nonlinear with respect to ∆an

k+i−1 and the derivative

on the right hand side of (4.62) is difficult to solve analytically. This thesis suggests

applying a numerical derivation method.
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(c) Numerical Derivation

The derivative in (4.61) is numerically solved by using the Secant approximation[41].

The Secant approximation is simply an one-sided first order approximation of the

derivative. For a given i, consider the derivative

∂

∂∆an
k+i−1

n∑
j=1

(
trKk+jHk+jP

−
k+jSk+j

)
(4.64)

evaluated at av(t) with known x̂k and Pk. First, the traces trKk+jHk+jP
−
k+jSk+j

when applying av(t), denoted by trKk+jHk+jP
−
k+jSk+j|av , is computed for each j

by iterating the EKF prediction and update process until the time step tk+n. This

computation is performed assuming the residual
(
zk+j − h(x̂−k+j)

)
is zero. Let

δa{1,2,3}(t) =








δa

0

0




,




0

δa

0




,




0

0

δa




, tk+i−1 ≤ t ≤ tk+i

0, otherwise

be three different deviations for small δa. In the same way, the traces when ap-

plying a{1,2,3}(t) = av(t) + δa{1,2,3}(t) are computed. Then, the derivative (4.64) is

approximated by

1

δa

n∑
j=i




trKk+jHk+jP
−
k+jSk+j

∣∣∣
a1(t)

− trKk+jHk+jP
−
k+jSk+j

∣∣∣
av(t)

trKk+jHk+jP
−
k+jSk+j

∣∣∣
a2(t)

− trKk+jHk+jP
−
k+jSk+j

∣∣∣
av(t)

trKk+jHk+jP
−
k+jSk+j

∣∣∣
a3(t)

− trKk+jHk+jP
−
k+jSk+j

∣∣∣
av(t)




(4.65)

Since ∆an
k+i−1 only affects the terms Kk+jHk+jP

−
k+j for j ≥ i, the summation in

(4.64) can be replaced by a summation taken only from j = i to n. By using the

Secant approximation to derive the derivatives, the equation (4.61) is solved for ∆an

by the following iterative procedure:
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1. First iteration :

(i) Determine ∆an
k from (4.61) by evaluating the derivative at

av(t) = â∗vk
(t) = a0

v(t), tk ≤ t ≤ tf

a0
v(t) is the estimated optimal guidance given in (4.47).

(ii) Iteratively, determine ∆an
k+j for j = 1, 2, · · · , n − 1 from (4.61) by evalu-

ating the derivative at

av(t) =





â∗vk+i−1
(t) + ∆an

k+i−1 = an
v (t), tk+i−1 ≤ t ≤ tk+i (i = 1, 2, · · · , j)

â∗vk+j
(t), tk+j ≤ t ≤ tf

where an
v (t) is given by (4.53) with ∆xn

k+i = Γk+i∆an
k+i−1 and ∆x̃k+i = 0.

∆an
k+i−1 is the result from the previous j steps. â∗vk+j

(t) is the esti-

mated optimal guidance calculated at tk+j assuming ∆x̃k+i = 0 for all

i = 1, 2, · · · j.

2. Second and further iterations :

(i) Set ∆an0
= ∆an, which was calculated in the previous iteration.

(ii) Iteratively, determine ∆an
k+j for j = 0, 1, 2, · · · , n− 1 from (4.61) by eval-

uating the derivative at

av(t) =





â∗vk+i−1
(t) + ∆an

k+i−1 = an
v (t), tk+i−1 ≤ t ≤ tk+i (i = 1, 2, · · · , n)

â∗vk+n
(t), tk+n ≤ t ≤ tf

where an
v (t) is given by (4.53) with ∆xn

k+i = Γk+i∆an
k+i−1 and ∆x̃k+i = 0.

∆an
k+i−1 for i = 1, 2, · · · , j − 1 is the result from the previous j steps and

that for i = j, j+1, · · · , n is the result from the previous iteration. â∗vk+n
(t)

is the estimated optimal guidance calculated at tk+j assuming ∆x̃k+i = 0

for all i = 1, 2, · · ·n.
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(iii) If ‖∆an −∆an0‖ ≤ ε, stop the iteration. Otherwise, start the next itera-

tion. If the number of iterations is larger than Nmax, stop the iteration.

ε > 0 is a given tolerance. Nmax is a maximum limit on the number of iterations.

Hence, the EKF prediction and update process will be repeated at most nNmax times.

4.3.2 p %-Ahead Optimization

In this subsection, the nSA suboptimal guidance law discussed in Subsection 4.3.1 is

modified by changing the value of n at each time step. This thesis suggests p %-ahead

optimization as an alternative method to the nSA optimization. In this approach, the

optimization is performed under the assumption that the measurements are available

only for the first p % of the rest of the vehicle path. At the current time step tk, the

value of n should be determined as follows.

n = round

(
p

100
· tf − tk
tk − tk−1

)
(4.66)

where round() is a rounding function which returns the nearest integer. Therefore,

the number n decreases as time goes to the terminal time tf . Once n is specified, the

guidance input is calculated numerically in the same way as shown in the previous

subsection.

4.4 Simulation Results

This section studies the nSA and the p %-ahead suboptimal optimization strategies

developed in Section 4.3 through simulations of a 2-D vision-based target tracking

problem. The simulation results using these suboptimal guidance strategies are com-

pared with the numerically obtained optimal solution in order to see how well the

suboptimal strategies approximate it. The optimal solution can be derived by setting

a sufficiently large value for n or p in the nSA or the p %-ahead suboptimal guidance

laws. Furthermore, the processing time required to compute the suboptimal guidance

solution is compared for different values for n and p.
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4.4.1 Simulation Settings

(a) Problem Formulation

In this subsection, 2-D vision-based target tracking problem is considered. In this

problem, a vehicle is required to reach a target at a given terminal time tf . A

stationary target is assumed and its location is X t =

[
100 0

]T

(ft). The vehicle is

initially located at the origin Xv(0) =

[
0 0

]T

(ft) with the initial velocity V v(0) =

[
10 0

]T

(ft/sec). Let X = X t −Xv be the relative position. The target tracking

problem is formulated as a minimization problem with Sf = sxI, A = O and B = I.

min
av

J =
sx

2
XT (t)X(t) +

1

2

∫ tf

0

aT
v (t)av(t)dt (4.67)

sx is a constant weight on the terminal tracking error. sx = 1 and tf = 10 (sec)

are used in the simulations. If the target’s location X t is known to the vehicle, the

optimal guidance input is a∗v(t) = 0 (ft/sec2) for 0 ≤ t ≤ tf and the optimal cost is

J∗(0) = 0. However, in this problem, the target location is unknown and is estimated

using 2-D vision information. In simulation, the fake image processor outputs are

created by adding a range-related noise to the true image coordinate of the target.

Since a target’s size appears smaller when the range from the camera to the target

is larger, it is assumed that the measurement noise is inversely related to the range.

The camera’s attitude is controlled so that its optical axis is always aligned with the

inertial X-axis in this problem. The image processor output at time tk is given by

zk =
Y (tk)

X(tk)
+

σx

X(tk)
νk (4.68)

where νk is a standard white Gaussian noise and σx = 1 (ft) is used. The sampling

time used in the simulation is ∆t = 0.1 (sec).

(b) EKF Settings

An EKF is applied to estimate the relative position X from the vision-based mea-

surement zk given in (4.68). The EKF is initialized by using the first measurement
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z0 and a 20 (ft) under-estimated range r0 = 80 (ft). The initial estimated state and

its error covariance matrix are set as follows.

X̂0 = r0




1

z0


 , P0 = 202




1 0

0 z2
0


 (4.69)

The measurement and process noise covariance matrices used in the EKF are

Rk =

(
σz

X̂k

)2

, Qk = σ2I ·∆t (4.70)

where σz = 1 (ft) and σ = 0.1 (ft/sec).

4.4.2 Results 1 : n-Step-Ahead Suboptimal Guidance

First, the simulations are performed with the nSA suboptimal guidance law for dif-

ferent values of n’s from n = 0 to n = 100. The case of n = 0 is the estimated optimal

guidance (4.47). Since the sampling time is ∆t = 0.1 (sec) and the simulation time

is 10 (sec) in this simulation, the case of n = 100 corresponds to the optimal solution

which was solved without any assumptions. The case of n = 1 is the OSA subopti-

mal guidance law established as a real-time applicable guidance strategy in Section

4.2. In the simulations, a series of random numbers was used for the measurement

noise νk in (4.68). Hence, the average costs and processing times are taken over 100

simulation runs for each value of n. A left plot in Figure 47 compares examples of

vehicle trajectories for cases of the different n’s while simulating with the same series

of random numbers for νk. A right figure of Figure 47 shows the average control effort

Jc (in green), the average terminal tracking error Jf (in red), and the average total

cost J = Jc + Jf (in blue) versus the number of steps n. Figure 48 presents exam-

ples of the target position estimation error and its standard deviation from the same

simulation in which the results of the vehicle trajectory in Figure 47 were obtained.
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Figure 47: (Left) Example of Vehicle Trajectory, (Right) Control Effort, Terminal
Tracking Error, and Total Cost (nSA)
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Figure 48: Example of (Left) Position Estimation Error and (Right) Error Standard
Deviation (nSA)

Table 2: Average Costs (nSA : n = 0, 1, 50, 100)
n Tracking Error : Jf Control Effort : Jc Total Cost : J
0 50.865 5.8310 56.696
1 14.917 7.873 22.791
50 1.678 7.705 9.383
100 1.867 7.5585 9.424
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In Figures 47 and 48, the results of the estimated guidance (n = 0) and the

optimal guidance (n = 100) are shown in a black solid line and in a black dashed

line, respectively. The results of the OSA suboptimal guidance design is shown in

a blue solid line. When n = 0, the vehicle moves straight towards the target and

results in a large tracking error. By applying the idea of stochastic optimal guidance,

a lateral maneuver which improves the range observability is created for the vehicle

motion. From Figure 48, it is clear that the estimation performance in range X

is improved by the suggested nSA suboptimal guidance design. Since this problem

has a symmetric configuration, there exist two symmetric trajectory candidates for

the optimal solution. However, one of them is specified to be optimal since the

measurement noise νk breaks the symmetry. In the example shown in Figure 47,

the initially estimated lateral position has a negative error, and hence the optimal

guidance includes a lateral motion in the opposite (positive) side. As shown Figure 47,

for cases of n ≤ 5, the guidance law tries to reduce the tracking error Jf by increasing

the control effort Jc. When n = 5, the guidance law achieves a very accurate tracking

performance, but with a large control effort which is far from optimal. After n = 5,

the resulting lateral motion in the vehicle trajectory becomes smaller to reduce the

control effort as n increases. At the same time, the motion is created later in the

trajectory, or at a closer distance to the target. This is because the variation in the

vision-based measurements is still large with the smaller motion. The compensation

between the control cost and the tracking error settles down after n = 50, and the

optimal solution is well-approximated by the nSA suboptimal guidance for cases of

n ≥ 50. Table 2 compares the averaged costs between the estimated optimal (n = 0),

the OSA suboptimal (n = 1), the 50-steps-ahead suboptimal (n = 50) and the optimal

(n = 100) guidance laws. By compared to the optimal solution, the OSA suboptimal

guidance law has a large tracking error. However, the total cost J is reduced by

almost 60 % by using the OSA instead of the estimated guidance law.
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Figure 49: (Left) Processing Time at Each Time Step and (Right) Total Processing
Time for 100 Time Steps (nSA)

0 2 4 6 8 10
−5

0

5

10

15

20

25

30

35

40

Simulation Time (sec)

P
ro

ce
ss

in
g

 T
im

e 
(s

ec
)

Actual Processing Time (n=100)
2nd Order Polynomial Curve Fitting
Modified Curve Fitting

0 20 40 60 80 100
0

200

400

600

800

1000

1200

n

T
o

ta
l P

ro
ce

ss
in

g
 T

im
e 

(s
ec

)
Actual Processing Time
Analytical Estimate

Figure 50: (Left) Curve Fitting for Processing Time at Each Time Step (n = 100),
(Right) Estimated Total Processing Time

Table 3: Average Processing Time (nSA : n = 0, 1, 50, 100)
n At Each Time Step (sec) Total Time (sec)
0 2.132× 10−4 0.0215
1 0.0016 0.1585
50 8.6948 543.840
100 34.5938 1.134× 103
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Figure 49 presents the average processing time at each time step tk = 0.1k (sec)

and the average total processing time for all 100 time steps. Simulations are performed

by using MATLAB with a processor of Intel Core2Duo 1.6 MHz. The processing time

at each time step is almost constant at the beginning, and it decreases after certain

time since there are less than n steps left to reach the terminal time tf beyond that

time. The curve fitting is performed on the resulting processing time in the first

plot of Figure 49 for the case of n = 100. When n = 100, a number of steps-ahead

to calculate at the time step tk = 0.1k coincides with a number of steps left to the

terminal time, i.e. (100 − k). Therefore, theoretically, the processing time should

decrease as a function of (100 − k). By performing the 2nd order polynomial curve

fitting on the result, the following parabolic curve is obtained.

{processing time at tk} = 0.3648t2k − 7.2015tk + 35.0171

= 0.3648 (9.87− tk)
2 − 0.5222

= 0.003648 (98.7− k)2 − 0.5222 (4.71)

Hence, the processing time is almost linear to the square of the number of steps-ahead

to calculate. A left plot of Figure 50 shows the actual average processing time and

the fitted curve given by (4.71). However, the parabola (4.71) gives a negative value

at and around k = 99 which is not appropriate. Therefore, the curve was modified

by using the average processing time at t0 as follows.

{processing time at tk} = 0.3459 (10− tk)
2 = 0.003459 (100− k)2 (4.72)

The modified fitted curve (4.72) was also shown in Figure 50. There is a large mis-

match when the number of steps left is small (after t = 6). This is due to the iteration

stopping algorithm (iii) on the top of Page 96. Now, suppose that the processing time

to calculate the (100 − k)-step-ahead optimization is given by (4.72). Consider the

result of the total processing time for 100 time steps shown in a right plot of Figure
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49. When using the nSA suboptimal guidance, a number of steps-ahead to calculate

at the time step tk is given by

{a number of steps-ahead to calculate at tk} =





n, k < 100− n

100− k, k ≥ 100− n

(4.73)

Then, for the nSA suboptimal guidance, the processing time at each time step is

{processing time at tk} =





0.003459n2, k < 100− n

0.003459 (100− k)2 , k ≥ 100− n

(4.74)

By taking a summation of this, the total processing time can be estimated by

{total processing time} =
100∑

k=0

{processing time at tk}

= 0.003459

(
100−n−1∑

k=0

n2 +
100∑

k=100−n

(100− k)2

)

= 0.003459

(
(100− n)n2 +

1

6
n(n + 1)(2n + 1)

)
(4.75)

A right figure in Figure 50 compares the actual total processing time with its analytical

estimate obtained by (4.75). Again, the difference between the results comes from

the stopping algorithm.

Table 3 compares these processing times for the cases of n = 0, 1, 50, 100. In

these simulation results, only the cases with n ≤ 20 have a processing time at each

time step less than the actual sampling time 0.1 (sec) and the total time less than the

actual simulation time 10 (sec). From the results shown in Table 2 and Table 3, the

OSA suboptimal guidance law can still be considered very efficient because it achieves

the significant improvement in the guidance performance (which corresponds to the

decrease in the total cost) with a very small increase in the processing time.

4.4.3 Results 2 : p %-Ahead Suboptimal Guidance

The p %-ahead suboptimal guidance proposed in Subsection 4.3.2 is applied to the

same simulation. Similar as done for the nSA suboptimal guidance, simulation results
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are compared for different values of p from 0 to 100 (%). Again, the case of p = 0

(%) corresponds to the estimated optimal guidance law and the case of p = 100 (%)

corresponds to the optimal guidance law. A left plot of Figure 51 shows examples of

the vehicle trajectories for the cases of several different values of p while simulating

with the same series of random numbers as used in simulations of Figure 47. A

right plot of Figure 51 summarizes the control cost Jc, the tracking error Jf and the

total cost J that are averaged over 100 simulations. Figure 52 present examples of

the estimation performance. From these results, it can be said that the p %-ahead

suboptimal solution well-approximates the optimal solution when p ≥ 60 % in this

problem. Table 4 compares the average costs for the cases of p = 0, 10, 60, 100 %.

We have seen that the simulation results of the p %-ahead suboptimal guidance

law were similar as those of the nSA suboptimal guidance law. However, a main

difference between the two appears in their computational loads. Figure 53 shows

the average processing time at each time step tk = 0.1k (sec) and the average total

processing time versus p. Since the number of steps n is determined by (4.66) in the

p %-ahead suboptimal guidance law, the n linearly decreases from p to 0 as k increases

from 0 to 100. Thus, as shown in Figure 53, the processing time at tk decreases almost

linearly with regard to tk. The second plot in Figure 53 shows that the average total

processing time of the p %-ahead optimization is always smaller than that of the

nSA optimization for n = p. Table 5 shows the processing time at the initial time

t0, which is the maximum processing time at one time step, and the total processing

time for the cases of p = 0, 10, 60, 100 (%). Comparing the total processing time

for the case of p = 60% in this table and that for the case of n = 50 in Table 3, the

well-approximated solution is obtained with about 25 % less computational load by

using the p %-ahead suboptimal guidance law.
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Figure 51: (Left) Example of Vehicle Trajectory, (Right) Control Effort, Terminal
Tracking Error, and Total Cost (p %-ahead)
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Figure 52: Example of (Left) Position Estimation Error and (Right) Error Standard
Deviation (p %-ahead)

Table 4: Average Costs (p %-ahead : p = 0, 10, 60, 100 %)
p (%) Tracking Error : Jf Control Effort : Jc Total Cost : J

0 50.865 5.8310 56.696
10 1.221 24.307 25.529
60 1.402 7.082 8.485
100 1.867 7.558 9.424
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Figure 53: (Left) Processing Time at Each Time Step, (Right) Total Processing
Time for 100 Time Steps (p %-ahead)

Table 5: Average Processing Time (p %-ahead : p = 0, 10, 60, 100 %)
p (%) At Initial Time Step (sec) Total Time (sec)

0 9.360× 10−4 0.0215
10 0.370 5.213
60 12.483 405.960
100 34.594 1.134× 103
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4.5 Conclusion

This chapter developed the stochastic optimal guidance design which improves the

relative guidance performance under the condition of using the EKF to estimated the

relative states from the 2-D vision-based measurements. The one-step-ahead (OSA)

optimization approach was used to solve the stochastic optimization problem. The

OSA suboptimal guidance law is applied to two different problems; the vision-based

rendezvous with a stationary target and the vision-based obstacle avoidance. The

significant improvement in the overall guidance performance was observed in the sim-

ulation results of both two applications. Furthermore, the OSA suboptimal guidance

was generalized as the n-step-ahead (nSA) suboptimal guidance. The p %-ahead sub-

optimal guidance was also suggested as an extension of the nSA suboptimal guidance.

Simulations of the 2-D vision-based target tracking problem were performed by using

these guidance laws, and the results were compared for different values of n and p to

examine the optimality and the computational cost. It has seen that the p %-ahead

suboptimal guidance law can achieve the well-approximate optimal solution with less

processing time compared with the nSA suboptimal guidance. From the simulation

results of the nSA suboptimal guidance law, it can be concluded that the OSA subop-

timal guidance law is sill effective in improving the guidance performance in real-time

implementations relative to conventional approaches, but is not necessarily close to

the optimal solution.
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CHAPTER V

THESIS CONTRIBUTIONS, CONCLUDING REMARKS

AND RECOMMENDED FUTURE RESEARCH

This chapter summarizes the contributions and conclusions of this thesis, and also

recommends future research. This thesis addressed the monocular vision-based rela-

tive navigation and guidance design for unmanned aerial vehicles (UAVs). Unlike a

stereo-vision system, the major challenge in the monocular vision-based estimation

problem is that the range (or depth) information is not necessarily observable. One

way to ensure the observability is to extract information about the target other than

its image coordinates, such as the target’s size. The relative navigation design for

the vision-based formation flight discussed in Section 2.3 utilized the image size of

the leader airplane’s wingspan as an additional measurement to guarantee range ob-

servability. The other way is to create camera motion that is perpendicular to the

line-of-sight to the target. This approach is known as Motion Stereo. Chapter 4

of this thesis formulated the stochastic optimal guidance problem which maximizes

the accuracy of the target tracking performance under the condition of using the

EKF-based navigation system. In this work, the vehicle trajectory was optimized to

minimize the weighted sum of the tracking error and the control effort. For real-time

implementation of the optimal guidance law, the suboptimal optimization technique

was suggested and its optimality and computational cost were examined.

Another challenge of vision-based control problems is the real-time implementa-

tion of all the algorithms. In this thesis, the relative navigation and guidance systems

have been integrated with the real-time image processing algorithms, and the in-

tegrated system was applied in various vision-based control applications of UAVs
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including formation flight, obstacle modeling and avoidance, and target tracking.

In particular, Chapter 3 focuses on the vision-based obstacle avoidance and way-

point tracking problem. The navigation filter design was based on the EKF, and the

guidance law was derived based on the collision-cone approach and minimum-effort

guidance. These were implemented and evaluated in image-in-the-loop simulations

and flight tests.

5.1 Contributions and Conclusions

Three main contributions of this thesis are listed in this section.

5.1.1 Real-Time Implementation of the Monocular Vision-Based Relative
Navigation Filter

Chapter 2 presented the vision-based relative navigation filter design using an ex-

tended Kalman filter (EKF). The EKF-based navigation design has been integrated

with the real-time image processor, and applied to two different vision-based control

and navigation applications; the formation flight between two UAVs and the 3-D

obstacle modeling problem. The navigation performance of the suggested estimator

designs are verified in simulations and flight tests.

In the first application of vision-based formation flight, the follower aircraft is

required to maintain a position command relative to the leader aircraft by using

vision-based information. The EKF is formulated to estimate the leader aircraft’s

relative states from the measurement of its image coordinates and size in each image

frame. The leader’s size on the image is used as a measurement to guarantee the range

observability. The originality of the EKF design for this target tracking application is

that the unit vector from the follower to the leader aircraft is chosen as the estimated

state, instead of the bearing and elevation angles that are commonly used, to avoid a

singularity. The estimation accuracy of the EKF is verified in the image-in-the-loop
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6 DoF multi-aircraft flight simulation. The highlight of this work is that closed-

loop vision-based formation flight has been achieved with the unmanned helicopter,

the GTMax, as the follower and the unmanned model airplane, the GTEdge, as

the leader. This may have been the first time automated formation flight based on

vision only and without communication between two aircraft has ever been done. By

using the same image processor and navigation system, the closed-loop vision-based

formation between the two fixed-wing airplanes was also achieved. These successful

flights proved that the EKF-based relative navigation filter is effective in vision-based

control applications of UAVs.

Section 2.4 of this thesis proposed the line-based estimator design for the vision-

based 3-D obstacle modeling problem. The suggested line-based obstacle modeling

system recovers the 3-D obstacle edges from the measurements of their 2-D projections

onto the image plane. Such measurements can be obtained by an image segmentation

technique. The benefit of using the line-based estimator instead of using a feature

point-based estimator, which is used in most related work, is that it can make use of

the connectivity information between the feature points. In this application, the rel-

ative states of multiple objects need to be estimated. In order to solve the correspon-

dence problem associating the measurements to the estimates, this thesis suggested

applying the statistical z-test. After performing the measurement assignment using

the z-test algorithm, an EKF is applied to estimate two endpoint positions of each

obstacle edge from residuals between the measured line segment and the estimated

edge that is projected onto an image plane. In addition, line addition and extension

algorithms were developed in this thesis to enable the estimator to update the 3-D

estimated obstacle edges that are partially visible in one image frame. Simulation

results with the simulated vision-based measurements were presented to verify the

capability of the suggested line-based estimator to recover 3-D objects. Furthermore,
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this estimator design was implemented with the real-time image segmentation algo-

rithm in an image-in-the-loop simulation of vision-based 3-D grid terrain modeling,

where it correctly estimated the 3-D terrain model.

5.1.2 3-D Collision Criteria and Minimum-Effort Guidance for Vision-
Based Obstacle Avoidance

Chapter 3 considered the vision-based obstacle avoidance and waypoint tracking prob-

lem. In this problem, the vehicle is required to reach a given waypoint while avoiding

unforeseen obstacles on its path to the waypoint by detecting the obstacles positions

using an onboard camera. One of the contributions of this thesis is that it established

the 3-D collision criteria. A large amount of research work has been done for au-

tonomous obstacle avoidance guidance for UAVs. However, most of these restrict the

algorithms to a case of 2-D planar flight at constant altitude, and do not take advan-

tage of the vehicle’s full maneuver capability. Unlike these approaches, the guidance

strategy for obstacle avoidance designed in this thesis creates the 3-D avoidance ma-

neuvers. In Section 3.3, the collision-cone approach was extended from 2-D to 3-D by

considering the 2-D plane formed by the relative position and velocity vectors from

the vehicle to the obstacle. Each obstacle is examined if it is critical to the vehicle by

imposing the 3-D collision-cone and the time-to-go criteria. For the critical obstacle,

the aiming point location is specified and the vehicle is guided to reach the waypoint

via this aiming point.

Another contribution of this thesis is that it applied the minimum-effort guidance

(MEG) for multiple target tracking to the guidance design and it showed that the

control effort require to reach the waypoint can be reduced by using the suggested

MEG-based guidance. The conventional approach was to apply proportional naviga-

tion (PN) for single target tracking sequentially, to achieve the aiming point tracking

and then to achieve the waypoint tracking. While that sequential PN guidance law

minimizes the control effort over a path from the vehicle’s current position to the
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aiming point, and then over a path from the aiming point to the waypoint separately,

the MEG-based guidance law minimizes it over the vehicle’s entire flight path with

the interior position constraint at the aiming point. Therefore, the vehicle can achieve

the waypoint tracking and obstacle avoidance mission more efficiently with the sug-

gested MEG approach than with the conventional PN guidance law. This was also

verified by the simulation results.

The vision-based navigation and MEG-based guidance law for obstacle avoidance

and waypoint tracking problem have been implemented in an image-in-the-loop 6

DoF UAV flight simulation, and their performances were evaluated in a realistic

configuration using a realistic vehicle model. This simulation was in direct preparation

for flight tests, and finally closed-loop vision-based obstacle avoidance was achieved

using the GTmax and the balloon obstacle.

5.1.3 Stochastic Optimal Guidance Design

Chapter 4 proposed the stochastic optimal guidance design for the vision-based tar-

get tracking problem. Since the vision-based relative navigation performance highly

depends on vehicle motion (or camera motion) relative to the target, the guidance law

is designed to achieve the target tracking mission while creating the vehicle motion

that improves the vision-based estimation performance. It is well-known that mo-

tion lateral or vertical to the line-of-sight to target improves observability and hence

improves the estimation accuracy. However, the excessive maneuvers created result

in large control effort. Therefore, this thesis suggested a stochastic optimal guidance

which minimizes the expected cost defined by a weighted sum of the tracking error

and control cost. The optimization was performed subject to the EKF process. In

many studies on observer trajectory optimization, an estimation performance cost is

chosen by design and is minimized or maximized subject to the vehicle’s dynamics.

The suggested stochastic optimal guidance design takes a different approach from
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these other studies in that it does not require selection of the performance cost in the

design procedure.

Due to the nonlinear measurement model, this optimization problem is also nonlin-

ear and can only be solved numerically. For the purpose of real-time implementation

of the guidance law, this thesis suggested applying the suboptimal optimization tech-

nique based on the one-step-ahead (OSA) optimization in order to solve the stochastic

optimization problem. In the OSA optimization approach, the stochastic optimiza-

tion problem is solved under the assumption that only one more measurement is

available at the next time step. By applying the OSA optimization, the subopti-

mal guidance law was obtained without any iterative computations. In this thesis,

the OSA suboptimal guidance law was applied to two different vision-based target

tracking applications; the vision-based rendezvous with a stationary target and the

vision-based obstacle avoidance. The simulation results were compared with those

due to the conventional guidance law which uses the optimal guidance law solved

with the assumption of full-information. The results illustrated the significant im-

provement in the estimation and hence overall guidance performance by using the

suggested guidance law in both the two applications.

Furthermore, to examine the optimality of the OSA suboptimal guidance law, the

OSA optimization approach was generalized as the n-step-ahead (nSA) optimization

with an arbitrary number for n. The nSA suboptimal guidance was derived by using

a numerical derivation method. The suboptimal solution approaches the optimal

solution as the number n increases, and the optimal solution can be numerically

obtained when n is sufficiently large. However, the computational load becomes large

when n is large. By performing a 2nd order polynomial curve fitting, it was shown

that the processing time increases quadratically with n. The good match between

the analytically estimated processing time and the actual processing time was also

shown. In addition, the nSA suboptimal guidance is modified by changing the number
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n at each time step, and the p %-ahead suboptimal guidance was developed. The

nSA and the p %-ahead suboptimal guidance laws were studied in a simulation of

vision-based target tracking in 2-D plane. Their optimality and computational costs

were examined for different values of n and p. In particular, by comparing the OSA

suboptimal guidance solution with the optimal solution, it was concluded that the

OSA suboptimal guidance law is effective for real-time implementation even though

it is not a very well-approximated optimal solution.

5.2 Recommended Future Research

Several recommended future works related to the research topics studied in this thesis

are provided in this section.

5.2.1 Relative Navigation with Unknown Target Maneuvers

Throughout this thesis, the target motion is assumed to be known in the vision-

based relative navigation design. In all the applications in this thesis except for

the formation flight in Section 2.3, stationary targets were assumed. Even in the

formation flight application, the leader airplane’s maneuver is assumed to be known

(either non-accelerating or circling). However, for many practical applications such as

adversarial target tracking, the target motion is unknown to the own-ship vehicle and

the relative motion dynamics include uncertainty associated with the target motion.

There are two issues to be solved in the relative navigation design with unknown

target maneuvers. One is how to model the target motion dynamics, and the other

is how to compensate the uncertainty. There are several approaches that suggest

augmenting the EKF-based estimator design with neural network-based adaptation

to solve this problem[49][66]. It would be a challenging but important research topic

to design the navigation filter in the presence of unknown target maneuvers and

investigate its robustness against these maneuvers.

114



5.2.2 Image Processing with Feedback Loop from the Navigation Filter

As stated in the introduction part, developing real-time image processing algorithms is

very difficult. This thesis made use of the algorithm that has been developed based on

the active contour, and this image processor is designed independently from the rest of

the system. During the real-time image processing, in order to reduce the processing

time, a region of interest is chosen from the entire image plane and the image data

is processed only in that region. Since the relative navigation filter estimates and

predicts the target states relative to the vehicle, this information could be useful for

the image processor in choosing the region of interest. One suggested approach is to

feed back the predicted relative position of the target from the estimator to the image

processor and to project it onto the current image plane so that the image processor

can expect the target to appear around that location. However, this approach can

cause a problem in finding the target in the image plane when estimation accuracy is

poor. Therefore, the estimation error covariance can also be used to determine if the

estimate is reliable. This would improve the selection of the region of interest in the

image processing.

5.2.3 Guidance Design for Obstacle Avoidance

In this thesis, the guidance law for obstacle avoidance problem was developed based

on the minimum-effort guidance with the assumption of a constant speed in the X-

axis. This approach cannot deal with a case in which an obstacle is detected at a

short distance. In such a case, the vehicle should slow down the approaching speed

and take an avoiding maneuver. Therefore, more generally, the guidance problem for

obstacle avoidance can be formulated as a minimum time problem with a control limit

constraint. In this approach, the vehicle is able to use its full maneuver capability to

avoid obstacles and to reach the waypoint as soon as possible. Therefore, it would be

very interesting to derive the guidance law by formulating and solving the minimum
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time optimization problem for the obstacle avoidance problem.

5.2.4 Experimental Validation of Obstacle Modeling System

The line-based 3-D obstacle modeling system developed in Section 2.4 in this thesis

has been integrated with the image segmentation algorithm, and its performance was

evaluated in simulations. For the next step, the entire system should be tested with

recorded onboard video images of an actual object such as a building. After validation

with actual image data, the system should be implemented in the onboard computer

and evaluated in flight test. It could also be integrated with the guidance system for

obstacle avoidance.

5.2.5 Suboptimal Guidance Design for Real-Time Implementation

This thesis studied the stochastic optimal guidance design for vision-based control

applications of UAVs. The OSA suboptimal guidance design has been proposed and

its effectiveness was verified. However, it has been shown that the optimal solution

is not very well-approximated by the suggested OSA optimization approach via the

optimality analysis from the simulation results. Therefore, the further development of

a suboptimal guidance design that can achieve the well-approximated optimal solution

with small computational load will be needed.

In addition, the suboptimal guidance design proposed in this thesis was validated

in simulation using simulated image processor outputs. Immediate future work would

be to integrate the guidance design with the real image processor, and evaluate the

guidance performance in more realistic simulations and in flight tests.
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APPENDIX A

DERIVATION OF MINIMUM-EFFORT GUIDANCE FOR

OBSTACLE AVOIDANCE

The minimum-effort guidance (MEG) law for obstacle avoidance is derived in this

appendix. The MEG-based guidance law (3.33) is obtained by minimizing the control

effort with an interior point position constraint at a given aiming point and with a

terminal position constraint at a given waypoint. Since the vehicle is assumed to

have a constant speed in the inertial X direction, only its lateral (Y ) and vertical

(Z) motion needs to be considered in this problem. Therefore, for convenience, we

will redefine the position, velocity and acceleration vectors by truncating their fist

component in this section. For example,

Xv =




Yv

Zv


 , V v =




Vv

Wv


 , av =




ay

az


 (A.1)

A.1 Optimization Problem

As discussed in Section 3.4, the MEG-based guidance can be obtained by solving the

following minimization problem.

min
av

J =
1

2

∫ tf

tk

aT
v (t)av(t)dt (A.2)

subject to the linear vehicle dynamics

Ẋv = V v, V̇ v = av (A.3)
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with the following initial, interior and terminal constraints.




Xv(tk) = Xvk
, V v(tk) = V vk

Xv(t̂go) = X̂ap

Xv(tf ) = Xwp

(A.4)

The terminal time tf and the interior time t̂go are both fixed.

A.2 Euler-Lagrange Equations

Euler-Lagrange equations for solving the optimization problem given in Section A.1

are formulated in this section. Define an adjoint minimization cost function by

J̄ = µT
1

(
Xv(t̂go)− X̂ap

)
+ µT

2 (Xv(tf )−Xwp)

+

∫ tf

tk

(
H − λT

1 Ẋv − λT
2 V̇ v

)
(t) dt (A.5)

where µ1 and µ2 are some constants, λ1 and λ2 are constants called Lagrange mul-

tipliers, and H(t) is a Hamiltonian defined by

H(t) =
1

2
aT

v (t)av(t) + λT
1 (t)V v(t) + λT

2 (t)av(t) (A.6)

By splitting the integral over a time interval [tk, tf ] in (A.5) into two integrals over

[tk, t̂−go] and over [t̂+go, tf ], J̄ can be rewritten as follows.

J̄ = µT
1

(
Xv(t̂go)− X̂ap

)
+

∫ t̂−go

tk

(
H − λT

1 Ẋv − λT
2 V̇ v

)
(t) dt

+µT
2 (Xv(tf )−Xwp) +

∫ tf

t̂+go

(
H − λT

1 Ẋv − λT
2 V̇ v

)
(t) dt (A.7)

Furthermore, it can be expanded by applying an integration by parts.

J̄ = µT
1

(
Xv(t̂go)− X̂ap

)
+ µT

2 (Xv(tf )−Xwp)

− [
λT

1 Xv + λT
2 V v

]t̂−go

tk
+

∫ t̂−go

tk

(
H + λ̇

T

1 Xv + λ̇
T

2 V v

)
(t) dt

− [
λT

1 Xv + λT
2 V v

]tf

t̂+go
+

∫ tf

t̂+go

(
H + λ̇

T

1 Xv + λ̇
T

2 V v

)
(t) dt (A.8)
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Now consider the first variation of J̄ due to variations in the acceleration input av(t).

Because of the initial condition, the interior position constraint and the terminal

position constraint given in (A.4), the corresponding variations δXv(tk), δV v(tk),

δXv(t̂go) and δXv(tf ) become zero. Therefore, the variation of J̄ can be written as

follows.

δJ̄ =
(
λ2(t̄

+
go)− λ2(t̄

−
go)

)T
δV v(t̂go) + λT

2 (tf )δV v(tf )

+

∫ t̂−go

tk

(
∂H

∂av

δav +

(
∂H

∂Xv

+ λ̇
T

1

)
δXv +

(
∂H

∂V v

+ λ̇
T

2

)
δV v

)
(t) dt

+

∫ tf

t̂+go

(
∂H

∂av

δav +

(
∂H

∂Xv

+ λ̇
T

1

)
δXv +

(
∂H

∂V v

+ λ̇
T

2

)
δV v

)
(t) dt(A.9)

As discussed in [13], the optimal solution of (A.2) can be found as a∗ which attains

δJ̄ = 0. Since δV v(t̂go), δV v(tf ), δav(t), δXv(t) and δV v(t) do not need to be

zero, their coefficients should be all zero. Euler-Lagrange equations are formulated

by doing so. For each of tk ≤ t ≤ t̂−go and t̂+go ≤ t ≤ tf ,

∂H

∂av

(t) = aT
v (t) + λT

2 (t) = 0 (A.10)

λ̇1(t) = −
(

∂H

∂Xv

)T

(t) = 0 (A.11)

λ̇2(t) = −
(

∂H

∂V v

)T

(t) = −λ1(t) (A.12)

with the following constraints.

λ2(t̂
−
go) = λ2(t̂

+
go), λ2(tf ) = 0 (A.13)

In addition, since the vehicle’s states should be continuous over time,

Xv(t̂
−
go) = Xv(t̂

+
go), V v(t̂

−
go) = V v(t̂

+
go) (A.14)

A.3 Optimal Solution

The optimal solution of the problem given in Section A.1 can be obtained by solving

the differential equations (A.3) and (A.11,A.12) with the constraints (A.4), (A.13)
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and (A.14). First, consider the first time interval tk ≤ t ≤ t̂−go. From (A.11,A.12),

λ̇1(t) = 0 ⇒ λ1(t) = c1

λ̇2(t) = −λ1(t) = −c1 ⇒ λ2(t) = −c1t + d1

From (A.3),

V̇ v(t) = av(t) = λ2(t) = −c1t + d1 ⇒ V v(t) = −1

2
c1t

2 + d1t + e1

Ẋv(t) = V v(t) = −1

2
c1t

2 + d1t + e1 ⇒ Xv(t) = −1

6
c1t

3 +
1

2
d1t

2 + e1t + f 1

where c1, d1, e1 and f 1 are constant vectors. Similarly, for the second time interval

t̂+go ≤ t ≤ tf , with constant vectors c2, d2, e2 and f 2,

λ1(t) = c2 (A.15)

λ2(t) = −c2t + d2 (A.16)

V v(t) = −1

2
c2t

2 + d2t + e2 (A.17)

Xv(t) = −1

6
c2t

3 +
1

2
d2t

2 + e2t + f 2 (A.18)

There are sixteen unknown constants in the equations (A.15-A.18). They can be

solved by applying the sixteen constraints (A.4,A.13,A.14). From the terminal con-

ditions,

λ2(tf ) = −c2tf + d2 = 0 ⇒ d2 = c2tf

Xv(tf ) = −1

6
c2t

3
f +

1

2
c2t

3
f + e2tf + f 2

=
1

3
c2t

3
f + e2tf + f 2 = Xwp ⇒ f 2 = Xwp − 1

3
c2t

3
f − e2tf

From the interior point constraint,

Xv(t̂
+
go) = −1

6
c2t̂

3
go +

1

2
c2tf t̂

2
go + e2t̂go − 1

3
c2t

3
f − e2tf + Xwp

= −1

6
c2

(
2t3f − 3tf t̂

2
go + t̂3go

)− e2

(
tf − t̂go

)
+ Xwp = X̂ap

⇒ e2 =
Xwp − X̂ap

tf − t̂go

− 1

6
c2

2t3f − 3tf t̂
2
go + t̂3go

tf − t̂go
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Then λ2(t̂
+
go) and V v(t̂

+
go) result in

λ2(t̂
+
go) = −c2t̂go + c2tf = c2

(
tf − t̂go

)
(A.19)

V v(t̂
+
go) = −1

2
c2t̂

2
go + c2tf t̂go − 1

6
c2

2t3f − 3tf t̂
2
go + t̂3go

tf − t̂go

+
Xwp − X̂ap

tf − t̂go

= −1

3
c2

(
tf − t̂go

)2
+

Xwp − X̂ap

tf − t̂go

(A.20)

From the initial conditions,

V v(tk) = −1

2
c1t

2
k + d1tk + e1 = V vk

⇒ e1 = V vk
+

1

2
c1t

2
k − d1tk

Xv(tk) = −1

6
c1t

3
k +

1

2
d1t

2
k +

(
V vk

+
1

2
c1t

2
k − d1tk

)
tk + f 1

=
1

3
c2t

3
k −

1

2
d1t

2
k + f 1 + V vk

tk = Xvk
⇒ f 1 = Xvk

− V vk
tk − 1

3
c1t

3
k +

1

2
d1t

2
k

From the interior point constraint,

Xv(t̂
−
go) = −1

6
c1t̂

3
go +

1

2
d1t̂

2
go +

(
V vk

+
1

2
c1t

2
k − d1tk

)
t̂go + Xvk

− V vk
tk − 1

3
c1t

3
k +

1

2
d1t

2
k

= −1

6
c1

(
t̂3go − 3t̂got

2
k + 2t3k

)
+

1

2
d1

(
t̂go − tk

)2
+ V vk

(
t̂go − tk

)
+ Xvk

= X̂ap

⇒ d1 =
1

3
c1

t̂3go − 3t̂got
2
k + 2t3k(

t̂go − tk
)2 + 2

X̂ap −Xvk(
t̂go − tk

)2 − 2
V vk

t̂go − tk

Then λ2(t̂
−
go) and V v(t̂

−
go) can be written as functions of c1 as follows.

λ2(t̂
−
go) = −c1t̂go +

1

3
c1

t̂3go − 3t̂got
2
k + 2t3k(

t̂go − tk
)2 + 2

X̂ap −Xvk(
t̂go − tk

)2 − 2
V vk

t̂go − tk

= −2

3
c1

(
t̂go − tk

)
+ 2

X̂ap −Xvk(
t̂go − tk

)2 − 2
V vk

t̂go − tk
(A.21)

V v(t̂
−
go) = −1

2
c1t̂

2
go + d1

(
t̂go − tk

)
+ V vk

+
1

2
c1t

2
k

= −1

2
c1

(
t̂2go − t2k

)
+

1

3
c1

t̂3go − 3t̂got
2
k + 2t3k

t̂go − tk
+ 2

X̂ap −Xvk

t̂go − tk
− 2V vk

+ V vk

= −1

6
c1

(
t̂go − tk

)2
+ 2

X̂ap −Xvk

t̂go − tk
− V vk

(A.22)

From the continuity between (A.19,A.20) and (A.21,A.22), the remaining constant

vectors c1 and c2 can be derived. From λ2(t̂
+
go) = λ2(t̂

−
go),

c2

(
tf − t̂go

)
= −2

3
c1

(
t̂go − tk

)
+ 2

X̂ap −Xvk(
t̂go − tk

)2 − 2
V vk

t̂go − tk
(A.23)
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By substituting (A.23) into (A.20),

V v(t̂
+
go) =

2

9

(
c1

(
t̂go − tk

)− 3
X̂ap −Xvk(
t̂go − tk

)2 + 3
V vk

t̂go − tk

)
(
tf − t̂go

)
+

Xwp − X̂ap

tf − t̂go

=
2

9

(
c1

(
t̂go − tk

)− âPN
vk

) (
tf − t̂go

)
+

Xwp − X̂ap

tf − t̂go

(A.24)

where âPN
vk

is the proportional guidance input derived in (3.29). Since this should

coincide with (A.22),

1

18
c1

(
t̂go − tk

) (
4
(
tf − t̂go

)
+ 3

(
t̂go − tk

))

= 2
X̂ap −Xvk

t̂go − tk
− V vk

+
2

9
âPN

vk

(
tf − t̂go

)− Xwp − X̂ap

tf − t̂go

Finally, the MEG-based guidance input at the current time step tk can be obtained

as follows.

âMEG
vk

= λ2(tk) = −c1tk +
1

3
c1

t̂3go − 3t̂got
2
k + 2t3k(

t̂go − tk
)2 + 2

X̂ap −Xvk(
t̂go − tk

)2 − 2
V vk

t̂go − tk

=
1

3
c1

(
t̂go − tk

)
+

2

3
âPN

vk

=
6

4
(
tf − t̂go

)
+ 3

(
t̂go − tk

)
(

2
X̂ap −Xvk

t̂go − tk
− V vk

− Xwp − X̂ap

tf − t̂go

)

+
2

3
âPN

vk

(
2
(
tf − t̂go

)

4
(
tf − t̂go

)
+ 3

(
t̂go − tk

) + 1

)

= âPN
vk

+
3

4
(
tf − t̂go

)
+ 3

(
t̂go − tk

)
(

3
X̂ap −Xvk

t̂go − tk
− 2

Xwp − X̂ap

tf − t̂go

− V vk

)

= âPN
vk

+ ∆aMEG
vk

(A.25)

where ∆aMEG
vk

is the same as defined in (3.33).
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APPENDIX B

DERIVATION OF LINEAR QUADRATIC OPTIMAL

GUIDANCE

The optimal guidance law (4.4,4.5) which minimizes a quadratic cost is derived by

using the Hamilton-Jacobi-Bellman equation in this appendix.

B.1 Optimization Problem

Recall the quadratic minimization problem given in Section 4.1 here. The optimal

guidance law at a time step tk is derived by solving

min
av

J =
1

2
(x(tf )− xf )

T Sf (x(tf )− xf )

+
1

2

∫ tf

tk

(
(x− xc)

T A (x− xc) + aT
v Bav

)
(t) dt (B.1)

subject to the linear relative dynamics ẋ = Fx + Gav with the initial condition

x(tk) = xk.

B.2 Hamilton-Jacobi-Bellman Equation

Hamilton-Jacobi-Bellman equation is formulated based on dynamic programming the-

ory or Bellman’s principle of optimality. Suppose that a path A-C is an optimal path

from Point A to Point C and Point B is an interior point on the path. Then the path

B-C is the optimal path from Point B to Point C.

Figure 54: Bellman’s Principle of Optimality
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Define an optimal return function J0(x, t) by the optimal cost of (B.1) as a func-

tion of the initial state x and the initial time t[13]. According to Bellman’s principle

of optimality, for small ∆t > 0,

J0(x, t) = J0 (x + (Fx + Ga∗v(t))∆t, t + ∆t)

+
1

2

(
(x− xc(t))

T A (x− xc(t)) + a∗Tv (t)Ba∗v(t)
)

∆t

= J0(x, t) +
∂J0

∂x
(Fx + Ga∗v(t))∆t +

∂J0

∂t
∆t

+
1

2

(
(x− xc(t))

T A (x− xc(t)) + a∗Tv (t)Ba∗v(t)
)

∆t (B.2)

where a∗v is the optimal guidance input. It leads the following relationship.

∂J0

∂x
(Fx + Ga∗v(t)) +

∂J0

∂t
+

1

2
(x− xc(t))

T A (x− xc(t)) +
1

2
a∗Tv (t)Ba∗v(t) = 0(B.3)

When applying a non-optimal guidance av = a∗v + ∆av for [t, t + ∆t] and applying

an optimal guidance for [t + ∆t, tf ], the resulting cost will become

J1(x, t) = J0 (x + (Fx + Gav(t))∆t, t + ∆t)

+
1

2

(
(x− xc(t))

T A (x− xc(t)) + aT
v (t)Bav(t)

)
∆t

= J0(x, t) +
∂J0

∂x
(Fx + G (a∗v(t) + ∆av))∆t +

∂J0

∂t
∆t

+
1

2
(x− xc(t))

T A (x− xc(t)) ∆t

+
1

2
(a∗v(t) + ∆av)

T B (a∗v(t) + ∆av) ∆t (B.4)

By substituting (B.3) into (B.4),

J1(x, t) = J0(x, t) +

(
∂J0

∂x
G + a∗Tv (t)B

)
∆av∆t +

1

2
∆aT

v B∆av∆t (B.5)

Since J0(x, t) is the optimal cost, J1(x, t) > J0(x, t) should be satisfied. For ∆t > 0,

(
∂J0

∂x
G + a∗Tv (t)B

)
∆av +

1

2
∆aT

v B∆av > 0 (B.6)

The last term on the left hand side is always positive for non-zero ∆av due to the

positive definite weight matrix B. In order to ensure that the first two terms are
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non-negative for any ∆av, a sufficient condition is

∂J0

∂x
G + a∗Tv (t)B = 0 ⇒ a∗v(t) = −B−1GT

(
∂J0

∂x

)T

(B.7)

Now this a∗v(t) can be substituted back into (B.3).

∂J0

∂x
Fx− 1

2

(
∂J0

∂x

)
GB−1GT

(
∂J0

∂x

)T

+
∂J0

∂t
+

1

2
(x− xc(t))

T A (x− xc(t)) = 0

(B.8)

Assume the following quadratic form for the optimal return function J0(x, t).

J0(x, t) =
1

2
xT S(t)x + vT (t)x + w(t) (B.9)

where S(t), v(t) and w(t) are coefficient matrix, vector and scalar functions. Without

loss of generality, S(t) can be taken as a symmetric matrix. Then,

∂J0

∂x
= xT S(t) + vT (t),

∂J0

∂t
=

1

2
xT Ṡ(t)x + v̇T (t)x + ẇ(t) (B.10)

Substitute these into (B.8) and obtain

0 =
1

2
xT

(
Ṡ(t) + S(t)F + F T S(t) + A− S(t)GB−1GT S(t)

)
x

+
(
v̇(t) +

(
F T − S(t)GB−1GT

)
v(t)− Axc(t)

)T
x

+

(
ẇ(t)− 1

2
vT (t)GB−1GT v(t) +

1

2
xT

c (t)Axc(t)

)
(B.11)

Therefore, the coefficients S(t), v(t) and w(t) must satisfy the following first-order

differential equations.

Ṡ(t) + S(t)F + F T S(t) + A− S(t)GB−1GT S(t) = O (B.12)

v̇(t) +
(
F T − S(t)GB−1GT

)
v(t)− Axc(t) = 0 (B.13)

ẇ(t)− 1

2
vT (t)GB−1GT v(t) +

1

2
xT

c (t)Axc(t) = 0 (B.14)

Since a terminal condition of the optimal return function is given by

J0(x, tf ) =
1

2
xT S(tf )x + vT (tf )x + w(tf )

=
1

2
(x− xf )

T Sf (x− xf ) =
1

2
xT Sfx− xT

f Sfx +
1

2
xT

f Sfxf (B.15)
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the terminal conditions on S(t), v(t) and w(t) are obtained as follows.

S(tf ) = Sf , v(tf ) = −Sfxf , w(tf ) =
1

2
xT

f Sfxf (B.16)

Then, the optimal guidance input at the current time tk becomes

a∗v(tk) = −B−1GT

(
∂J0

∂x

) ∣∣∣
T

(x(tk),tk)
= −B−1GT (S(tk)x(tk) + v(tk)) (B.17)

and the optimal cost is

J∗(tk) = J0(x, tk) =
1

2
xT (tk)S(tk)x(tk) + vT (tk)x(tk) + w(tk) (B.18)

B.3 Optimal Solution for Terminal Tracking

Consider a special case of terminal tracking, which is the case of A = O. Define a

vector function u(t) = S(t)x(t)+v(t). Then the optimal guidance law can be written

by using u as follows.

a∗v(t) = −B−1GT u(t) (B.19)

A differential equation associated with u will be

u̇(t) = Ṡ(t)x(t) + S(t)ẋ(t) + v̇(t) = Ṡ(t)x(t) + S(t) (Fx(t) + Ga∗v(t)) + v̇(t)

=
(
Ṡ(t) + S(t)F

)
x(t)− S(t)GB−1GT u(t) + v̇(t)

= − (
F T − S(t)GB−1GT

)
(S(t)x(t) + v(t))− S(t)GB−1GT u(t)

= −F T u(t) (B.20)

with the terminal condition

u(tf ) = S(tf )x(tf ) + v(tf ) = Sfx(tf )− Sfxf = Sf (x(tf )− xf ) (B.21)

Therefore, the vector u(t) and the optimal solution can be solved as

u(t) = eF T (tf−t)u(tf ) = eF T (tf−t)Sf (x(tf )− xf ) (B.22)

∴ a∗v(t) = −B−1GT eF T (tf−t)Sf (x(tf )− xf ) (B.23)
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From the linear relative dynamics,

ẋ(t) = Fx(t) + Ga∗v(t) = Fx(t)−GB−1GT eF T (tf−t)Sf (x(tf )− xf ) (B.24)

This differential equation can be solved with a given initial state.

x(t) = eF (t−tk)x(tk)−
∫ t

tk

eF (t−s)GB−1GT eF T (tf−s)Sf (x(tf )− xf ) ds (B.25)

Then the term (x(tf )− xf ) is derived as

x(tf ) = eF (tf−tk)x(tk)−
∫ tf

tk

eF (tf−s)GB−1GT eF T (tf−s)dsSf (x(tf )− xf )

= eF (tf−tk)x(tk)− GkSf (x(tf )− xf )

⇒ (I + GkSf ) (x(tf )− xf ) = eF (tf−tk)x(tk)− xf

⇒ x(tf )− xf = (I + GkSf )
−1 (

eF (tf−tk)x(tk)− xf

)
(B.26)

where

Gk =

∫ tf

tk

eF (tf−s)GB−1GT eF T (tf−s)ds

By substituting this into (B.23), the optimal solution can be obtained as follows.

a∗v(t) = −B−1GT eF T (tf−t)Sf (I + GkSf )
−1 (

eF (tf−tk)x(tk)− xf

)
(B.27)

The optimal cost results in

J∗(tk) =
1

2
(x(tf )− xf )

T Sf (x(tf )− xf ) +
1

2

∫ tf

tk

a∗Tv (t)Ba∗v(t)dt

=
1

2

(
eF (tf−tk)x(tk)− xf

)T
(I + GkSf )

−T Sf (I + GkSf )
−1 (

eF (tf−tk)x(tk)− xf

)

+
1

2

(
eF (tf−tk)x(tk)− xf

)T
(I + GkSf )

−T SfGkSf (I + GkSf )
−1 (

eF (tf−tk)x(tk)− xf

)

=
1

2

(
eF (tf−tk)x(tk)− xf

)T
(I + GkSf )

−T Sf

(
eF (tf−tk)x(tk)− xf

)
(B.28)
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