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A two-phase two-layer model for uidized granular ows
with dilatancy e ects

Frarncois Bouchut, Enrique D. Ferrandez-Nietd
Anne Mangeney, Gladys Narbona-Rein&

Abstract

We propose a two-phase two-thin-layer model for uidized déris ows that takes into
account dilatancy e ects, based on the closure relation prposed by Roux and Radjai
(1998). This relation implies that the occurrence of dilation or contraction of the granular
material depends on whether the solid volume fraction is rgsectively higher or lower than a
critical value. When dilation occurs, the uid is sucked int o the granular material, the pore
pressure decreases and the friction force on the granular pise increases. On the contrary,
in the case of contraction, the uid is expelled from the mixture, the pore pressure increases
and the friction force diminishes. To account for this transfer of uid into and out of the
mixture, a two-layer model is proposed with a uid layer on top of the two-phase mixture
layer. Mass and momentum conservation are satis ed for the wo phases, and mass and
momentum are transferred between the two layers. A thin-layer approximation is used to
derive average equations, with accurate asymptotic exparisns. Special attention is paid to
the drag friction terms that are responsible for the transfe of momentum between the two
phases and for the appearance of an excess pore pressure wiispect to the hydrostatic
pressure. For an appropriate form of dilatancy law we obtaina depth-averaged model with
a dissipative energy balance in accordance with the corregmding 3D initial system.

Keywords: Fluidized granular ows, two-phase, dilatancy, two-layey depth-averaged model,
critical volume fraction, excess pore pressure

1 Introduction

Gravity driven ows such as debris ows, sub-aerial and subrrine landslides play a key role
in erosion processes on the Earth's surface. They represemte of the major natural hazards
threatening life and property in mountainous, volcanic, gsmic and coastal areas, as shown
recently by the debris ows that occurred in Uganda and Braziin 2010, causing 400 and 350
deaths respectively and displacing several hundred thoushinhabitants.

One of the ultimate goals of landslide studies is to produceols for the prediction of ve-
locity and runout extent of rapid landslides. Developing aheoretical description and physical
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understanding of the associated processes in a natural @oviment remains an unsolved and
extremely challenging problem in Earth science, mechaniesmd mathematics. Recent progress
in the mathematical, physical and numerical modelling of gwity driven ows has led to the
development and use of numerical models for investigatingggmorphological processes and as-
sessing risks related to such natural hazards. However, sgy limitations prevent us from fully
understanding the physical processes acting in natural asvand from predicting landslide dy-
namics and deposition. One of the important issues is that esting models do not accurately
account for the co-existence and interaction of uid (waterand gas) and solid granular phases
within the owing mass, which play a key role in natural gravty related instabilities. Water is
almost always present in natural landslides and the frequéiy resulting debris ows (mixture of
water and grains) are often highly destructive.

The interaction between the uid and granular phases withira saturated mixture essentially
depends on the uid pressure, also called pore pressure, thdetermines the e ective friction
force acting on the granular medium (e.g. Jackson 2000; lgen 2000, 2005). Since the pioneered
work of (Reynolds 1885), a large amount of studies have beeeditated to dilatancy e ects in
granular materials and to their interaction with pore uid pressure, solid pressure and strain
rates (e.g. Scho eld and Wroth 1968; Jackson 1983; Vardolia 1986; Bolton 1986; Mitchell
1993; Wood 1990). A change in the uid pressure may result fimo a dilation of the granular
phase, that induces a sucking of the uid within the mixture aad a diminution of the uid
pressure, thereby increasing the e ective friction on thergnular phase. On the other hand,
a contraction of the granular phase induces an expulsion dig uid from the mixture and an
increase of the uid pressure, thereby decreasing the e age friction. This process is sometimes
called \pore pressure feedback" (Iverson 2005). Contraon of a grain- uid mixture may lead
to liquefaction of the mixture. Dilation and contraction ocur in response to a deformation of
the granular medium, and in particular to shearing. Indeeda densely packed granular assembly
(high solid volume fraction) must dilate to be sheared, in @ker for the grains to have room
enough to move one with respect to the other. On the other hané loosely packed assembly
contracts in response to shearing. These processes play andatic role in the dynamics of u-
idized granular ows, from their initial destabilization to their nal deposition (Andreini et al.
2013; Iverson et al. 2010; George and Iverson 2011; Monts¢rt al. 2012; Rondon et al. 2011;
Iverson and George 2016).

Taking into account dilatancy e ects in numerical models ofjyranular ows is a crucial issue.
However, solving the complete 3D equations of granular mas®tion, with su cient resolution
to describe the real topography, requires prohibitive comytational costs. For this reason, it is
necessary to write simpli ed models. A class of e cient techiques, developed and successfully
employed to reproduce a large range of experimental and gagital observations, makes use of a
depth-averaged continuum description, based on the thimyer approximation (i.e. the thickness
of the owing mass is assumed to be small compared to its dowoge extension) (Savage and
Hutter 1989). This leads to the assumption that the velocitynormal to the topography is small
compared to the downslope velocity. Taking into account twghase grain- uid mixtures and
dilatancy in the thin-layer approximation raises signi cant mathematical di culties because of
the need for a consistent description of these e ects withithis approximation. In particular,
contraction-dilation induces a relative motion of the uid and solid phases in the direction nor-
mal to the topography, that is formally small in the thin-layer asymptotic expansion. The drag
friction force between the uid and solid phases is howevetreng enough to make it important
to take this relative motion into account in the asymptotic nodel as detailed in this paper.



The solid- uid mixture models described in the literature ae generally based on Jackson's
model (Jackson 2000) that describes the main interactiongtween the two phases, such as buoy-
ancy and drag frictional forces. Setting apart rheologicdhws, the main equations in Jackson's
model are mass and momentum conservation for the two phas#ays eight scalar equations. It
has nine principal unknowns: the solid volume fraction, theolid and uid pressures and the
components of solid and uid velocities. As a result, a scalalosure equation is necessary to
complete the model. Several depth-averaged thin-layer meld have been deduced from Jack-
son's model (e.g. Pitman and Le 2005; Pelanti et al. 2008; Ha and Pouliquen 2009; Kowalski
and McElwaine 2013; Iverson and George 2014). Pitman and LZ0Q5) followed by Pelanti et al.
(2008) replaced the closure relation by an extra boundary kdition at the free surface. This
leads to an overdetermined problem at the free surface (twinlematic conditions), and to an un-
derdetermined problem inside the domain. However, givendhhydrostatic pressure assumption,
a depth-averaged model can be obtained since the disappeme of the normal variable gives a
kind of equivalence between a boundary condition and a clasurelation inside the domain. The
lack of a relevant closure equation leads to a non-dissipati energy balance in the Pitman and
Le model, as well as in its variants. Moreover, these models dot take into account dilatancy
e ects. See (Bouchut et al. 2015) for more details on the dirent methods used to tackle this
problem and on the validity of the proposed closure relatian

A crucial point in order to obtain a realistic model is that the energy balance associated with
the model must be physically relevant. A main objective heres to propose a closure equation
that gives such an energy balance, at least in the case whenai ed rheology is taken. Along
this line, in our previous work (Bouchut et al. 2015) we propged a depth-averaged two-phase
debris ow model that gives a dissipative energy balance. lthat model, the closure equation is
simply the incompressibility of the solid phase { in the sersof cancellation of the dilation rate
(divergence of the solid velocity) { so that dilatancy is notaccounted for. Moreover, in order to
avoid overdetermined boundary conditions, only the sum ohe solid and uid normal stresses
is set to zero at the free surface, instead of both separatel/e propose here to close Jackson's
model by including dilatancy e ects, based on the model pragsed by Roux and Radjai (1998)
for dry granular ows derived from critical state mechanicge.g. Scho eld and Wroth 1968; Wood
1990). In this model, the dilation rate is directly related b the volume fraction and is taken
to be equal to _tan , where _is the shear rate and is the \dilation angle" that depends
on the volume fraction. This description of dilatancy has ben used in (Pailha and Pouliquen
2009) to develop a thin-layer depth-averaged two-phase meldor immersed granular ows. In
this con guration there is one moving surface for the mixtue, and one xed (say horizontal)
surface for the uid, thus there is no excess boundary condiin. However the authors assumed
uniformity in the slope aligned direction. In their nal model, the dilatancy e ect appears
through an excess pore pressure term, in addition to the hyastatic pressure.

Other kinds of debris- ow models are based on the idea of a gie-phase mixture model.
One of the rst such models was presented by Iverson (1997pllbwed by other versions pro-
posed in (Ilverson 2009; George and Iverson 2011; Iverson &ebrge 2014; George and Iverson
2014), still based on a single-phase mixture model. As a réisuhe relative motion between
the solid and uid phases does not appear explicitly. The masand momentum equations for
the mixture are coupled to an advection-di usion equation ¢ describe the changes in pore pres-
sure. The model in (Kowalski and McElwaine 2013) is also of ihtype, it uses a closure by
the (Richardson and Zaki 1954) sedimentation law, which isnaalternative way to formulate
the relative motion of solid and uid phases by an advectiorh usion equation on the volume
fraction indeed. To close the system, Iverson & George asseitihat the mixture obeys a Darcy



law and they use a closure relation that takes into account thdilatancy e ects. More precisely,
they consider a modi cation of the Roux and Radjai dilatancylaw in order to introduce the
variations of the e ective stress, already proposed in (Ilveaon 2009). In this case the dilation
rate is given by tan %( pr ), where is the compressibility of the mixture, the total
normal stress andy the uid pressure. The de nition of is discussed in (Andreini et al. 2013).

The aim of this paper is to establish a depth-averaged two-pke thin-layer model including
dilatancy e ects from Jackson's model with the Roux and Radji closure. It is a kind of exten-
sion with slope aligned variable dependency of the model ¢tgilha and Pouliquen 2009), in the
two thin-layer con guration. As opposed to previously citel works, and in order to be consis-
tent with the physical processes described above, we comsidn extra upper uid layer, that
allows the uid to be expelled or sucked in from the mixture atits upper boundary. This also
allows us to resolve the overdetermination at the boundarjpecause now there are two moving
surfaces, and one kinematic condition for each of them. This a key point in our approach.
An accurate asymptotic analysis is performed to derive theepth-averaged system. We show
that the e ect of dilatancy on the uid pressure appears thraugh an extra contribution to the
hydrostatic pressure, the so-called excess pore pressuteis strongly related to the normal
relative motion between the granular and uid phases. We pree additionally that the proposed
model satis es a dissipative energy balance equation as as the initial 3D starting system,
under the assumption of a pressure dependent critical volw@rfraction. This is obtained via a
compressible interpretation of our model.

The paper is organized as follows. Section 2 describes thes2@rting mixture system together
with closure equation and boundary conditions. The thin-lger model is derived in Section 3
where the scaling assumptions are specied. In Section 4 wesalss the properties of our
thin-layer model and the di erences with other models in thditerature. Section 5 shows some
preliminary numerical simulations in the uniform setting,and Section 6 presents our conclusions.
Technical calculations are provided in several appendices

2 Two-phase mixture model

2.1 Jackson's model

The starting point of our derivation is the same as in (Bouchuet al. 2015), i.e. the 3D model
proposed by Jackson (2000) for ows of solid granular matels lled (saturated) with uid.

A related theory of mixtures is also developed in (Brenner PO). The two mass conservation
equations for the solid and uid phases are, respectively,

@ s)+r (sv) = 0; (2.1a)
@@ "N+r (@ "Ju = 0; (2.1b)
and equations of momentum conservation for each phase are
sI (@‘/+ (V r )V) = r Ts+ f0+ sI g, (2.2&)
i@ ")@u+(ur)u = r T, fot (1 ')g (2.2b)

The velocities arev for the solid phase andu for the uid phase, while Tq and Ty, denote
the (symmetric) stress tensors for the solid and the uid, repectively. Moreover, the constant
densities are denoted by and . Acceleration due to gravity is denoted byg; andf represents
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the average value of the resultant force exerted by the uidma solid particle. The solid volume
fraction is' . The combination of (2.1a) and (2.1b) yields the mass consation for the mixture

@ m)*+r (mVm)=0; (2.3)
where
sV + ¢ (1 I )U_
()
are the density and velocity of the mixture, respectively. viding (2.1a) by «, (2.1b) by ¢ and
adding the results gives

m = s'+ f(l l); Vm: (24)

S

r (v +(1 ')u)=0; (2.5)
that can be written alsor v=r ((1 ')(v u)). Note that this relation does not imply that
r Vp is equal to zero.

According to Anderson and Jackson (1967) and as in (Bouchut al. 2015), the forcef, is
decomposed into the sum of the buoyancy fordg and all remaining contributionsf ,

fo=fg+f = "rp, +f1 (2.6)

where px, is the uid pressure in the mixture (pore pressure). The ternf combines the drag
force, the lift force and the virtual mass force. Note that qearation of the buoyancy force from
the rest of inter-phase forces is not trivial as explained i(Jackson 2000). Here we assume that
f can be expressed simply by the drag force, thus

f=(u v, (2.7)

~ being the drag coe cient given as in (Pailha and Pouliquen 209; Iverson and George 2014)
by

=) (2.8)
where ¢ is the dynamic viscosity of the uid and is the hydraulic permeability of the granular

aggregate, that depends oh.
By substituting (2.6) into (2.2a) and (2.2b), we obtain

s (@ +(v r)v)
11 )@+ (u r)u)

Note that adding (2.9a) and (2.9b) and taking into account (2La), (2.1b) yields the conservation
of total momentum

r Ts "rp,, +f+ ¢ 0; (2.9a)
r Tg, +'rp, f+ ¢(1 '")g: (2.9b)

m

@ SIV + f(l I )U +r SIV v+ f(l I )U u+ TS+ Tfm (210)
= sI + f(l I ) g.
We shall assume rheologies of the form
Ts = psld"'-ﬁs; Ttn = Prn Id+-ﬁfm; (2.11)

whereps and pr, are the total pressures for the solid and uid within the mixiure, respectively,
and &, ®_ need to be de ned, according to rheological assumptions. Wi(2.11), the uid
momentum equation (2.9b) involves the pressure contribwan (1 ' )r pf,, . It is important
to see that, since the factor 1 ' appears also on the left-hand side, the velocity however
only feels the termr px_ , as expected since, . is the pore pressure. The interpretation of the
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solid momentum equation (2.9a) is that the solid feels the lmyancy term ' r p;,, and the solid
pressure termr ps. The latter pressureps (also called e ective normal stress) represents only
the e ects of grains interactions, and its gradient can be euated in practice by measuring the
force exerted on a grid immersed into the mixture.

The system of eight scalar equations (2.1a), (2.1b), (2.98R.9b) has nine scalar unknowns
", Ps, Pt,,» and the components ofs and v. Thus, as exposed in (Bouchut et al. 2015), it is not
closed, and this is due to the averaging process used for itsddction (see (Jackson 2000) for
details). Therefore, a closure relation is needed, underdtiorm of an additional scalar equation
that should be imposed, based on the physical processes Iagd. A possible closure is to impose
the incompressibility of the solid phaser v = 0, considered in the previous work (Bouchut
et al. 2015). But in real granular materials the dilatancy eects, due to geometrical congestion,
may induce changes of the solid dilation rate v, even if the mass of the granular material
remains constant. This e ect has to be included in the modehstead of incompressibility.

2.2 Closure and energy balance

The energy balance associated to Jackson's system can betemi, as in (Bouchut et al. 2015),

@ 5'17]+ i1 ')17] (@ X) s+ (@ ")
.V2 'u'2
+r s %V”L (1 ')JTJU (@ X) sv+ (1 ")u (2.12)

+pr, 'V +@Q "Ju + K _u+ T
=Ts:rv+®_:ru+f (v u);

where X denotes the space position. The friction e ects give natutly a dissipative term f
(v. u) O, anditis also natural to assume thatf_ :r u 0. The sign ofTs : r v remains
however undetermined. Since by (2.11)

Ts:rv=psr v+ Firv; (2.13)

and it is also natural to have® :r v 0, it remains the termpsr v. As mentioned above, the
closure relation that states the incompressibility of thedid phaser v =0 gives a consistent
energy balance and the model of (Bouchut et al. 2015), but d®eot take into account dilatancy.
Thus we consider the following closure equation to Jacksarmodel, involving the solid dilation
rater v,

rv= (2.14)
with a function to be determined, that may depend on the unkmowns of the system, as
discussed in the next subsection. This kind of \weakly compssible” closure is considered in
low Mach number ows, see for example (Penel et al. 2015). Thequation (2.14) together with
(2.1a), (2.1b), (2.9a), (2.9b), (and (2.11) with suitable @ nitions of ¥, ® ), gives a closed
system. Then in the right-hand side of (2.12) with the decomgsition (2.13), only the rst term
ps is not always nonpositive. This term is further analyzed in Subsection 2.4.

2.3 Dilatancy in dense granular ows

In the work of Roux and Radjai (1998), a model for introducingdilatancy e ects into the
behaviour of dry granular media is proposed. This e ect is dectly related to the changes
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experimented by the solid volume fraction. In particular, he rate of volume change is given by
_tan , where _= jDvj is the norm of the strain rateDv = (r v+ r Vv')=2, and is the so called
\dilation angle". This means more explicitly that

@ +vr' ="' tan: (2.15)

From the mass equation (2.1a) we hav@ +v r ' = ' r v, thus we can reformulate (2.15)
as a relation between the solid dilation rate v and the dilation angle , as

r v=_tan: (2.16)

The dilation angle is in turn related to the solid volume fraction' , and a linear approximation
can be written = a(" ' 9, with a> 0, and' the critical-state equilibrium compacity, that
corresponds to the volume fraction obtained when a steadjate regime is reached (Scho eld
and Wroth 1968; Wood 1990). This critical-state compacity £ is generally a function of the
solid pressureps, of the shear rate , and of the granular temperature, increasing with respect
to ps. For the case of pores lled by uid considered here, the graitar temperature can be
neglected. For steady granular ows it was shown in (GDR MiDigroup 2004; Da Cruz et al.
2005; Cassar et al. 2005; Forterre and Pouliquen 2008) thag? is indeed a decreasing function
of =" ps in the dry case (respectively of=ps in the wet case).

This approach with critical-state compacity' % allows to recover the di erent behaviours of
loose and dense granular media, according to the sign'of ' % Namely, for a dense packing
'>" &9 one has a positive dilation angle, > 0, that induces dilation of the granular medium,
r v > 0, while for a loose packing <" £9 one has a negative dilation angle, < 0, that
induces contraction of the granular mediumy v < 0. This is valid as soon as> 0, i.e. when
a deformation occurs.

Pailha and Pouliquen (2009) deal with the immersed granulapws system. They consider
the precedent model where a linearization of tan is proposed,

tan =K '&; (2.17)
K > 0 being a calibration constant (dilation constant). We adopthis dilation model to write
rv=K_(* "'9: (2.18)
Thus the closure considered in this work for (2.14) is
= K_(" " (2.19)

As exposed by Iverson (2005), Schae er and Iverson (2008)ete is a coupling between the
dilatancy and the pore pressure, called \pore pressure fdmtk". This e ect plays an important
role in the way a landslide starts, and then dramatically a ets the ow dynamics. The formula
(2.18) well reproduces the contraction-dilation e ects (8e Andreotti et al. 2011; Pailha and
Pouliquen 2009), which are

If '>" ¢&9then the granular medium dilates { v > 0) as soon as there is a deformation
(> 0). Consequently,

{ the uid must be sucked into the mixture,
{ the pore pressure decreases.



If '<' ¢£9then the granular medium contracts ( v < 0) as soon as there is a deformation
(> 0). Consequently,

{ the uid must be expelled from the mixture,
{ the pore pressure increases.

The type of closure (2.18) entails a modi cation of the coe ¢ent of the Coulomb friction
law that becomes tan( + ) instead of tan . By linearization, we can write an e ective friction
coe cient as

tan ¢ =tan +tan : (2.20)

In the thin-layer expansion performed below, we neglect thdeviatoric solid stressF; inside the
mixture, and only consider the bottom solid friction with the friction coe cient tan . .
Closure laws slightly di erent from (2.19) are consideredni Subsection 4.6.

2.4 Interpretation as a compressible model

We would like here to propose an interpretation of the Roux ahRadjai (1998) dilatancy relation
under the form (2.18) as a compressible model, that enables write down a fully dissipative
energy equation in the case when the critical-state compagci' % depends only on the pressure
ps, and not on .

We consider the critical volume fraction' £9to be an increasing function of the solid pressure
only, ' £9 = ' £9ps), bounded by some maximal valué nax (' max 0:6 for monodisperse
spherical grains, but' .« can be higher for real polydisperse materials). This funcin ' =
' S9(ps) can be dened by its inversep = pg(" ) (pEY(" ) being called the critical pressure),
as for examplep$?(" ) = K' =" max '), for some coe cient K, and some exponents,
Particular dependencies opg(" ) in ' appear for example in (Lee et al. 2015). Since the granular
temperature is negligible in the present context of poresléd by uid, the critical pressure pg(" )
is only related to the deformation of the grains that are in catact. A formula valid in the context
of granular mixtures is given in (Iverson and George 2014) a8(' )=p =exp((" ' min)=8 1,
with 0:01 a 005and 10Pa py 1000Pa, depending on the materials.

Classically in thermodynamics, the mechanical internal emgy U is related to the pressure
p and volumeV by the relation dU = pdV. Here the specic volume (i.e. volume per mass
unit) is 1=( ' ), thus to the critical pressurepS9(' ) one can associate by this relation a specic
internal energy (i.e. internal energy per mass unitg?(' ). Since d(&')= d'=" 2 we obtain
the di erential relation

det® _ pc?

a = ¢
Then writing the mass equation (2.1a) as@ +v r "' +'r v = 0, and multiplying it by
def9=d' , we get

(2.21)

ed
@+ v r €9+ —=r v=0: (2.22)

S
Multiplying this by ' and using again (2.1a) yields
eq
@eN+r (eiV)+ =r v=0: (2.23)

S



Adding this times s to the energy equation (2.12) gives

2 Li2
@ 5+ @ NS @X) s )+ el
jVj? u
i M e Y @) @ (2.2
+pfm IV +(1 l )u + -efmu + TSV+ Sle gqv
=(ps PO v+E:irv+® ru+f (v u):
Now, according to (2.18) and sinc@s pg4(' ) and' ' £9(ps) have opposite signs because

is an increasing function ofps, one has ps pYr v 0, and the energy balance equation
(2.24) has a nonpositive right-hand side. This means that,sarequired by the laws of physics,
the total mechanical energy of the system is dissipated.

Another way to understand the dilatancy law (2.18) is to pexdrm a further linear approxima-
tion K(" ' g9ps)) ' Kp(pEI(' ) ps), which is valid for' and ps far from extreme values 0 nyax
and 0,1 respectively, withK , the order of magnitude ofK (dpf?=d' ) *. Then the dilatancy law
(2.18) is tranformed into

rov= Ko () po); (2.25)

which can be written also as
r v

- pcq( ) Kp .

When (2.26) is introduced into the stress in (2.9a) it gives @i usion equation on the solid
velocity v (or on its divergence), with di usion coe cient that is indu ced by the Roux-Radjai
dilatancy law,

(2.26)

eq
d X

(2.27)

Drr = :
RR K_sl

Indeed (2.26) appears clearly as a compressible rheoloylesv with bulk viscoplastic term (be-
cause of _in the denominator), that can be compared with (6) in (Lee et k 2015).

We can propose also a general closure law under the form of dical pressurepg?(’; ) that
generalises (2.25), by de ning in (2.14) as

= Kpo G0 D ps s (S D =max Poompr (' )3 ( 5 (2.28)
| eq
where peompr (' ) IS @ static compressible law, andeq(' ) is an equilibrium relating the volume
fraction ' to the inertial number | . It can be for examplel (' ) = (' & ' )=K; in the context
of (5.8). The compressible pressurpeompr Can be taken as aboveeompr (' )= = exp((’

I min ):a) 1.

2.5 Domain and boundary conditions

We assume that the mixture (0<'< 1) lies between a xed bottom and an interface, and that
between the interface and an upper free surface, there is ynlid (' 0), see gure 1. The
thickness of the mixture layer is denoted by, the thickness of the uid-only layer by h;, and
the xed bottom is de ned by a function b.

The uid velocity in the top layer is denoted by u;, and in the mixture layer by u, while
v denotes the velocity of the solid phase. For other terms, weillwuse as general notation the
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Figure 1: Domain and geometrical parameters. The solid- di mixture lies between a xed
bottom and an upper pure uid layer. The width h,, of the mixture layer and the width hs of
the pure uid layer evolve with time.

subscript ()s for the solid phase, (),, for the uid in the mixture and just () ¢ for the uid-only
layer.

Then the solid equations (2.1a), (2.9a) are set in the mixtérdomain, while the uid equations
(2.1b), (2.9b) must hold within both domains. This yields fo the uid-only domain

r u = 0; (2.29a)
t(@us +(ur r)u) = r T+ g (2.29b)
with the energy equation
e i2 e i2
@ fJfJ (g X) +r flfl Us (g X)us + Truy =8 or ug: (2.30)

2 2

We can also consider that (2.1a), (2.9a) hold in the upper damn with the convention that there
" =0 and Ts = 0. The closure equation (2.14) holds in the mixture domain.

The boundary conditions are taken as follows.
At the bottom we consider the non penetration conditions
u n=0; v n=0 at the bottom, (2.31)

where n is the upward space unit normal (i.e. the normal to the topogphy). This is
completed with friction conditions. At rst, a solid Coulomb friction law is applied,

(Tsn) = tan ¢ sgn{)(Tsn) n at the bottom; (2.32)

where . is the e ective intergranular Coulomb friction angle from @.20), sgny) = v3vj,
and the subscript denotes the tangential projectiony = v (v n)n for any vectorv.
Unless not written explicitly here, a viscous friction termcan also be added to (2.32), as
is done for the numerical tests in Section 5. Moreover, a geieNavier friction condition
for the uid phase is applied,

(T;, n) = Kkpu at the bottom, (2.33)

for some coe cient k, 0. In particular, the choiceky, = 0 is possible for a slip condition.
It seems irrelevant to consider a no-slip conditionkg = 1 ). A possibility is to take a
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Manning-Strickler law, for which k;, is proportional to ¢juj. The choice of (lverson and
George 2014) is to take a viscous friction whelkg is proportional to ; =(h,, + hs), with
the viscosity of the uid. One can think anyway that except fa large times, the e ects of
uid friction at the bottom are negligible with respect to the drag friction forces and the
bottom Coulomb friction on the solid phase. Note that any chige of friction boundary
conditions for the uid and solid phases at the bottom is formally possible in the model
presented here. This choice will not a ect our asymptotic aalysis nor the form of the
limit averaged system.

At the free surface we assume no tension for the uid
T:Nx =0 at the free surface, (2.34)
together with the kinematic condition
Ni{+ us Nyx =0 at the free surface, (2.35)

whereN = (N¢; Ny ) is a time-space normal to the free surface.

At the interface, we consider the kinematic condition for tle solid phase
Ni+v Nx =0 at the interface, (2.36)

where we denote by = ( Ny; Ny ) a time-space upward normal to the interface. Additional
jump relations have to be prescribed. These relations stathat the uxes on both sides
of the interface are related through transfer conditions. fiese are determined by global
conservation properties, under the form of Rankine-Hugawti conditions. We must rst
ensure that the total uid mass is conserved. The Rankine-Hyoniot condition associated
to (2.1b), where' vanishes in the uid-only region, leads to

Ni+u Ny=(1 " )Ny+u Ny) V¢ at the interface; (2.37)

where' is the value of the solid volume fraction at the interface (tb limit is taken from
the mixture side). Note that' is discontinuous at the interface. The ternV; de nes the
uid mass that is transferred from the mixture to the uid-only layer (Vi < 0 means that
the uid is transferred from the uid-only region to the mixt ure region). The equation
(2.37) says that the amount of uid that is entering in the uid-only region is the same as
the amount of uid that leaves the mixture. This relation canalso be written as (A.3).

The conservation of the total momentum gives (see Appendix)A
V(U up)+(Ts+ Ty, )Ny = Tp Ny at the interface (2.38)

The energy balance through the interface (see Appendix A)elds the stress transfer con-
dition

N 2
TNx = o (U w)
IN] ! (2.39)
Nk ' )
+ (T; N — N at the interface
(Tr Nx) N E T X

11



3

These conditions are completed by a Navier uid friction codition

wm = ki(usy u) at the interface (2.40)
wherek; 0 is a friction coe cient. This last condition is indeed a boundary friction for
the upper uid layer. Since this pure uid layer is not a ected by drag, the coe cient
ki cannot be neglected, and can be taken proportional tgj(uf u) j. Note that since
" 6 0 and according to (2.37), one has in general{ u) Ny 6 0 because of the uid
mass exchange through the interface. The no-slip conditiqu; u) =0 (i.e. k; = 1)
is of interest, and is indeed chosen in the simpli ed two-vetity model of Subsection 4.3.
More involved conditions are considered in (Beavers and &ph 1967).

Derivation of the thin-layer depth-averaged model

In this section we derive a depth-integrated thin-layer moel from the Jackson model with the
closure stated in Section 2.

The geometrical setting is as follows. We have two layers,@lone below being lled with the

mixture of grains and uid and the one above only with uid (see gure 1). The equations of
mass and momentum in the mixture region are given by (2.1a)2(lb), (2.9a) and (2.9b), closed
by the relation (2.14) with de ned by (2.19). The equations for the uid-only layer are de ned
by (2.29a), (2.29b). The stress tensors for the solid and diphases in the mixture are given by
(2.11). The boundary conditions are written in the previousubsection, as (2.31)-(2.40).

3.1 Local coordinates

We now write the equations in local coordinates. We use a deoposition of the velocities and
the derivatives in their longitudinal and normal componerg. We denote byx = (X;y) a vector
variable in a xed plane inclined at angle , x being in the direction of the slope, and by the

variable normal to this plane (see gure 1). The equation oftte bottom is thus given byz = b(x),

the interface byz = b(x) + h(t; x) and the free surface byz = b(x) + hn,(t; X) + hs (t; x). The

gravity vector is then

g=( gsin;0; gcos ) (3.1)

(the slope angle is indeed negative on gure 1). The velocities are written ag; = (Uuf; uf),

X =
ug =

(uf;u); u = (usu?), u* = (usw); vo= (VA vE), vE o= (v W) and the gradient is

r =(r x;@ with r , =(@; @). The equations can then be written as follows.

In the mixture layer b<z <b+ hpy:

@ +ry (VI)+ @(v?=0; (3.2a)
@1 ')+ry (1 "YW +@@ ")u* =0; (3.2b)
s (@ + V' 1 WHV@V)=r T @T T« pr,
+f, ' sgsin (1;0) (3.3a)
S(@F VTV V@A) T T @TE @, (3.3b)

+f, ' sgcos;
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P10 )@+ U T U w@U) = T T @Tet T,

fo (@ ) rgsin oy &4
@ )@+ Ut r Ut ut@ut) = r o Tinf @Trp + '@qpx,
f, (@ ') ¢gcos; (3.4b)
re« Vi+ @Qv2 = (3.5)
In the uid-only layer b+ h,, <z<b + hy, + h;:
rx uf+ @uf =0; (3.6)

f(@UF+ Uf r U+ uE@ui)= 1 o, T @TF* ¢gsin (1,0);  (3.7a)
f(@Quf +uf ryuf +uf@ui)=r T @T#*  ¢gcos: (3.7b)
The boundary conditions can be written as follows.
. p A . - 3 0
At the bottom z= b with n=(r b;1)= 1+ jr b2

{ Non-penetration condition for each phase

Ve yb=Vv? at z=b; (3.8)
u* r yb=u? at z= b: (3.9)
{ Coulomb friction law
Xz XX + X
Ts TsprM(Tsn) "= tan e P ;(Tsn) n atz = b;
1+jr b2 Jvijz + (v7)?
(3.10)
with (T¥*r b r b 2TX* r yb+ TZ
—_ S S S .
(Tsn) n= T+ b2 ; (3.11)
{ Nauvier friction condition for the uid phase
T2 Ter yb+r1 «b(Tf, n) n
fm Ty X <O, M) N _ keu*  atz= b (3.12)

DT 2
At the free surfacez = b+ hy,+ h¢, with Ny =(r y(b+thy,+hf);1), Ny = @b+ hy,+ hy):
{ Stress free condition
Tr «(b+ hy + he) + T = at z= b+ h, + hs; (3.13)
T r w(b+ hy+ he))+ T2 =0 at z= b+ h, + hs: (3.14)
{ Kinematic condition

@hm + he)+ uf r (b+ hy + he) = uf atz= b+ h, + h;: (3.15)
At the interface z = b+ h,, with Ny =(r 4(b+ hy);1), Ny = @b+ hy):
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{ Kinematic condition
@hm + V© 1 (b+ hy) = V? atz= b+ hy: (3.16)

{ Conservation of uid mass

@hy + uf 1 x(b+ hy) uf
=1 ') @n+ury(b+hy) u V ; atz= b+ hpy:

{ Conservation of total momentum
tVE(US up) (TP + Tegd TP)r (bt hy) + TE2+ T L2 T2 =0;  (3.18)
eVie(uroouf) (TP + Tt T rx(b+ hy)+ T2+ Tl T2 =05 (3.19)
atz= b+ hy,.
{ Stress transfer
TEr x(b+ hy)+ TX2 = pr x(b+ hy) at z= b+ hy; (3.20a)
TS 1 «(b+ hy) + T2 = p, at z= b+ hpy; (3.20b)

(3.17)

with
ps = * L u> uf (U uf) r x(b+ hy) ’
ST 21+jr x(b+ hp)j? f o "

(Tf),z(r x(b+ hy)) r x(b+ hy) 2T; ),;Z r x(b+ hy)+ Tfﬁqz
T LT (0% )}

+

Pt
(3.21)
{ Navier uid friction
T + 1% (T + TEOr x(b+ hi)
+r x(b+ hy) (Tr o + T)r x(b+ hp)) 1 «(b+ hy)
2T X2+ TF%) 1 x(b+ hy)+ T2+ TP = 1+jr 4 (b+ hp)j?
WU u) 1 (b hy)

uZ
= 2k uf U +r ,(b+ hy)— 1+ jr x(b+ hpy)j?
X m

atz= b+ hy:
(3.22)

3.2 Averaged mass equations

In order to get the averaged solid mass equation, we integea(3.2a) with respect toz in the
mixture layer b <z <b + hy. Using (3.8) and (3.16) we obtain
YA b+ hm Z b+ hm
@ 'dz +r 'v *dz=0: (3.23)
b b
Similarly, the uid averaged mass equation in the mixture iobtained by integrating (3.2b) for
b<z<b+ hy,. According to (3.9) and (3.17) it gives
b+ him Z by
@ @1 '")dz+r (1 '")udz= V g: (3.24)
b b
Finally, the uid averaged mass equation in the uid-only layer is obtained by integrating (3.6)
for b+ h,, <z <b + h, + hs together with the conditions (3.15) and (3.17). It yields
V4 b+ hm + h¢

@hs +r ufdz = V;: (3.25)
b+ hm

The sum of (3.24) and (3.25) gives indeed the total uid massonservation.
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3.3 Asymptotic hypothesis

We introduce the characteristic width and length of the domiam, H and L respectively, and the
aspect ratio = H=L, supposed to be small in agreement with the thin-layer framerk. Then,
we assume the following asymptotic scales in terms qf

hn  ;he 51 xb=0(); Ts=0(); Tr,, = O(); Tr = O();
V= O(1); u* = O(1); uf = O(1); ' = O(1); = O(); (3.26)
ko= O( ); ki = O( ):

These orders of magnitude have indeed to be expressed in theumal units of each quantity.
Taking L as typical length unit, =~ L=g as typical time unit, all these natural units can be
expressed interms of, , and s (or ¢, thatis assumed of the same order of magnitude asg).
We assume that the unknowns vary at the scalds in the downslope direction, L in the normal
direction, and in time, which means formally thatr , = O(1); @ = O( 1Y); @= O(1).

These scaling assumptions deserve some comments. Firste tcaling in the downslope
direction means that we are describing the observable phanenon at the typical scaleL where
the collective phenomenon take place, this scale being muleiger than the size of the grains.
Second, the scaling in the normal direction means that thereould be normal variations at the
scale of the layer. Third, the time scale that is used is the one at which gravity comes into
play. It means that we are describing transient ows typicalin avalanche dynamics, that occur
for example when an initial mass at rest is entrained by grayi Indeed in natural avalanche
ows the events never last longer than a few. Moreover, even for larger times that can be
relevant in laboratory experiments, shallow water type awvaged equations are commonly used
to describe well-established almost steady ows for whichrayity balances viscoplastic e ects.
Thus our nal set of equations will be relevant also in this suation.

Then, (3.25) implies thatV; = O( ). Asin (Bouchut et al. 2003; Bouchut and Westdickenberg
2004) we shall assume that the tangential velocities and trs®lid volume fraction do not depend
on z up to errors in O( ?),

V<= VX(t x)+ O( 2); (3.27)
u* = UX(t;x)+ O( ?); (3.28)
uf = uX(tx)+ O(?); (3.29)
o= (thx)+ O(?): (3.30)

Then, from (3.5) and the boundary condition (3.8) we get that* = O( ). Similarly, from (3.2b)
and (3.9), we get (1 ')u* = O(), thus u* = O( ). Finally, from (3.6) and (3.17) we obtain
uf = O( ). We assume also for the closure function (2.19) an expansias

(t;x)+ O(?); (3.31)
with

= K_( " (3.32)
We adopt this approximation in order to make the derivation wssible, even if it looks not
appropriate because of the dependency on the pressure g%, and of the nonlinear coupling of
_. Without (3.31), one should analyze the dependency im of ' and , as done in (Morales

de Luna 2008) in the dry case. The values for and ' £% are discussed in Subsection 4.6. Then
using the closure equation (3.5), the equation (3.2a) for gives

@ +V< ry = '+ O(H: (3.33)
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About the stress tensorsTy (k = s;f,;f), they are decomposed as
Tk = Pk Id+ -?k, (334)

and suitable rheological assumptions should be made to denf. A general approach has
been proposed in (Bouchut and Boyaval 2016) to deal with vadiy pro les in the thin-layer
asymptotics and in the case of Newtonian or non-Newtonian @ologies. Here, as in (Bouchut
and Westdickenberg 2004), since we aim to represent only deverage e ects, we prefer to
simplify the rheologies and replace the e ect of the stresgmsors inside the domain by boundary
layers due to the friction conditions, namely (3.10), (3.12(3.22), and also due to the momentum
conservation (3.18), while we neglect viscous e ects. Thuge shall assume that the stressef
are O( ?) far from the boundariesz = b; b+ h,, and can just be nonzero close to these boundaries.
Indeed, because of the particular form of (3.10), (3.12), @), (3.18), we assume that

B B B can beO( ) close to the boundaries = b; b+ hy,;

but are O( 2) far from these boundaries (3.35)
while the other components satisfy
B> = ®7%=0(? everywhere (3.36)
Regarding the drag term de ned in (2.7), we have according t(2.8)
~= (tx) 1+0(? ; (3.37)
with
=1 )L (3.38)
We shall consider two possible sets of assumptions.
() The drag term is quite strong, that is
L (3.39)

Then since the drag force™(u v) has to balance gravity terms, it necessarily remains
bounded. This implies that after an eventual initial layer (.e. a short time interval during
which the initial value of u* v* is damped), one has

u vi=0(): (3.40)

(i) The drag term is moderate, that is
= O(1): (3.41)
In this case one has just* v* = O(1), according to (3.26).

Note that in both cases one has (U Vv*) = O(1). The relevance of the assumptions (3.39)
or (3.41) can be evaluated as follows. According to (2.9aje e ective drag friction coe cient
for the solid phase is= ' . The assumption (3.39) or (3.41) has to be evaluated in the Ico
respﬁn@g unit, which means that we must evaluate the dimsronless number = ', with
= L=g the reference time unit (see above). We compute using (3.38)
12
B CHD R (3.42)

S S
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We consider the valuegy = 9:81m/s?, ¢ = 2500kg/m?3. In the typical laboratory experimental
context we can take as in (Pailha and Pouliquen 2009) = d?(1 ' )3=(150 2?) with d the
diameter of the (spherical) grains. The typical valuess=5 10 “m,L 02m,=(1 ') 1

with ; =10 3Pas for water give a slightly strong dimensionless drag coeient = ' 34.
For natural landslides or large scale USGS debris ows (lveon et al. 2010), one can take as in
Iverson and George (2014) a grain-size variability empiat formula = yexp((0:6 ' )=0:04)

with o 10 *m?. We choose.  20m, ; =10 2Pas for muddy water,"  0:5, which gives
a very strong dimensionless drag coe cient = ' 2 104

We conclude that the assumption (3.39) is valid in the naturacontext, while (3.41) is more
valid in the experimental context. However, (3.41) could bealid also in the natural context if
the permeability is higher o 10 ‘m? for highly mobile ows (lverson and George 2014).

3.4 Averaged momentum equations

In order to get the averaged momentum equations, we have rdb get expressions for the
pressures. Computations shown in Appendix B give the uid mssure in the uid-only layer

pr = tgcos (b+ hy+hi 2z)+ O(? forb+ hy<z<b+hy+ h; (3.43)
and in the mixture layer
P, = £gcos (b+ hp+he 2)+pf +0O(? forb<z<b+ hy; (3.44)

where Z oon
m

P T (u*  v*)(z9d2° (3.45)
z
is the excess pore pressure. In the expression (3.44) of thed pressure we can see that there
is an extra contribution pf  to the commonly found hydrostatic pressure (3.43). A simika
contribution to the hydrostatic pressure of the uid phase $ found in (Pailha and Pouliqguen
2009). This excess pore pressure term is induced by the notfndisplacement produced by
the dilation-compaction of the granular material immersednto the uid. As seen on (3.45),
the excess pore pressure is negative if the granular matérggpoes up with respect to the uid
(v >u?), and positive in the converse case. It vanishes at= b+ hy,.
The solid pressure is given (see Appendix B) by

ps="(s f)gcos (b+ h, 2) p$m+0(2) forb<z<b+ hpy: (3.46)

Its nonhydrostatic component is the opposite of that ofy, in (3.44).
About the averaged tangential components of momentum equans, we have the momentum
equation for the uid-only layer

(@ T T )= cgoos Tab b h) SVt k @ T g
tgsin (1;0)' + O( ?);
the momentum equation for uid phase in the mixture
1 ") @F+UuX ru = (1 ") gcost (bt hpy+hi) (L ")r.pE
ho 2 tVi ki (Uf UX) + kpU® (3.48)

(W@ V) (1 ") gsin (1;0) + O(?);
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wherer ,pf is given by (B.16), and the momentum equation for the solid pise

@+ L, T)= g cos oy b h)+ roh (s (geos ot
£ TR, sgn@)tan o
+ (X V) ' osgsin (1,0 + O( ?);
(3.49)
where according to (3.46) the bottom value of the solid prese is given by
Psp="(s )gcoshn, (pf )ip+ O(?); (3.50)
and according to (3.45) 7
b+ hm
(I [ (> v¥)(z29dz* (3.51)

b

3.5 Evaluation of the excess pore pressure

The excess pore pressung is involved in (3.48), (3.49) and represents physically inggtant
e ects. Thus it is necessary to derive an expansion pf up to O( ?) error terms. Recalling the
de nition (3.45) of pf_, we have thus to evaluateu® v up to O( 2) errors. We use equations
(3.5) and (3.8) to get the solid normal velocity,

V=V rub+(z B r 4 VO)+ O(3): (3.52)
Next, adding the mass equations in the mixture (3.2a), (3.3bwe nd
rx (v +@ "u)+@v +(1 ')Hu)=0; (3.53)
and using (3.8) and (3.9), we get
VIt@d YE=(C V@ )UN) rb (z bry (V@ )HuN)+ O(%):  (3.54)
Then, subtracting (3.52) to (3.54) yields

z b

u>  vi=(UuX VX)) r b 1

+ ry, (1 )W V) +0(3: (3.55)

The de nition (3.45) of pf  then gives forb <z <b + hy

pr, = 1 (b+ hy  Z)(UX VX) 1 «b
2 5 (3.56)
B @ @ o)
2 1
Noticing that with either assumptions (i) or (ii) we have = O( !) (because a bounded term

gives also something bounded when multiplied by), we deduce the bottom value §_);, and
the averagepf  as (3.58) and (3.59) below.
We can then consider two possible sets of expansions for treues of ©f _);n, ﬁ:

(I) The values of (of )in, Pf_ are given simply by

2 2
(0= Gyt O = gyt O (@8]
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expansion (I) expansion (lI)
assumption (i) i.e. 1 relevant relevant
assumption (i) i.e. = O(1) not relevant relevant

Table 1: Relevance of the formulas (1) or (Il) for the valuesfo(pf_ ), and pf -

(1) The values of (pf )in, PF, are given by

— h2 —
B = 7 Mn(@ VO Ob gy + 1a (1) VD +O0; (358)
e = hnm — o h% CVTIX OX 3y.
pfm - 1 ?(UX VX) r xb 3(1 1 ) oIy (1 )(UX VX) +O( ) (3'59)

Indeed, (3.57) follows from (3.58), (3.59) by droppin@( 2) terms (because with either assump-
tions (i) or (i) we have (uX VvX) = O(1)). Thus the relations (I) are just simpli ed lower
order approximations of the relations (II). However under ssumption (ii) i.e. (3.41), it is not
appropriate to consider (I) because the leading term is al€d( 2). Thus in this case only (ll) is
relevant, and the errors in (3.58), (3.59) are indee®( #) as shown by the above computations.
The relevance of the expansions (1) or (Il) is summarized orable 1.

We observe on (3.55) and (3.57) that at leading order, as equohed in the introduction, the
relative velocity u* v and the excess pore pressug_ have sign opposite to.

4 The two-phase two-layer model

In the previous section we have established a complete setegfuations for our two-phase two-
layer model. In this section we give the main properties of ik system.

4.1 System and rst properties

The system of equations derived in Section 3 has three scalarknowns' , hy,, hs, and three
vector unknownsvX, uX, uX. Dropping the error terms, it can be written as follows. The rass
conservation equations follow from (3.23)-(3.25) by droppg O( 3) terms,

@'h m)+ryx (hnpv*)=0; (4.1)
@ (1 I )hm Iy (1 I )hmu_x =V f (4-2)
@t +rx (hruf) = Vs (4.3)

We can eliminate the uid mass exchange ternV; by writing the uid total mass conservation.
Adding the two last equations yields

@@ ")hm+he +ry (1 ")hau<+ heuf =0: (4.4)
Adding (4.1) we deduce also whole system volume conservatias

@hm+hf)+rx (1 I)hmu_x"‘lh mVX + hf@ =0: (45)
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The evolution equation (3.33) for' is
@ +Vv- oy = ' (4.6)

Multiplying it by h,, and subtracting the result to (4.1), it yields

@hm + 1 x (hpV¥) = hy (4.7)
Finally, combining it with (4.5) gives
@y +ry (1 ")hp(UX V)+ huf = hy o (4.8)

Thus, regarding scalar equations we have to keep a set of tarendependent equations for the
three independent unknowns , h,,, hs. This can be either (4.1), (4.4), (4.6), or (4.1), (4.4),
(4.8), or (4.6), (4.7), (4.8), or (4.1), (4.7), (4.8). This las to be completed by (4.2) or (4.3) to
de ne V, that can in fact be expressed without time derivative, sire subtracting (4.8) to (4.3)
yields

Vi= hn 1 x (1 ")hp(ux v9): (4.9)

The momentum equations are given by (3.47), (3.48), and (@4 Thus the model is reduced

to the following set of equations:
@'h m)+rx (h mv¥)
s (@ + VX 1 V)

0; (4.10a)
Ig CosS sf x(b+ hm)+ il th

h S
( S f)gCOS _mr X' +(1 I )I’ xpsm

2
! cosh e )i
sgn@) tan (s 1)0 . m  (FF,)ib
+ (U5 VX)) ' ggsin (1;0) (4.10b)
@@ ")hm +rx (I ")hpux = Vi (4.11a)
(L )Y@ +uX r,uX = (1 ') tgceosr (bt hy + hy)
(T ")r «xpf,
1 1 — __
m é f Vf ki (U])c( UX) + kbUX

V) (1 ') ¢gsin (1;0); (4.11b)

@ne +ry (heuf) = Vi (4.12a)
$(@uf + uf ryuf) = £9cos r y(b+ hy + hy)
11 -

h 2 fVe+k (UF U%)  fgsin (1;0); (4.12b)

@ +v<ory, = ' (4.13)

where we used the formulas, = ' (s r)gcoshy,  (pf, )b from (3.50), the averager pf
is computed by (B.16) i.e.

— 1 __
rxPF, = 5 1 x(hmpf,) + (7, il «D (4.14)
m
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and according to (3.57) and (3.58), (3.59),

h2

2
(pfm)jb = ﬁ? ; pfm = ﬁ? for case (I) X (415)
__ 9
. ha + rx (@ ") V) S
(Pf)ib = 1 '+ 2 1 A (U VE) 1 b 2 for case
Py = 1 3 1 ?(u V<) r b

(4.16)
We put a positive part (we denote the positive part of a numbex by x;.  max(0; x)) in the
bottom solid friction term in (4.10b) because otherwise weotld have a negative value fops;,.
The coecient isdenedin (3.38)i.e. =(1 ')? ;= , and the closure function is de ned
in(3.32)i.e. = K_(* "'&.
We observe that writing the linear combination v* (4.10a)+h;, (4.10b)+ (u* (4.11a)+h,
+ fuf (4.12a)+h; (4.12b) we obtain the total momentum conservation

@ slh mV_X+ f(1 I)hmu_x"' fhfw Iy slh mV_X VX
2 2
+ ¢(1 ")hpu* U+ ¢heuf Ul +gcosry (s f) h?’“+ fw
= sgn@X)tan o ' (s f)gcoshy  (PF )b, KeU¥
slh m f((l I )hm + hf) gcosr xb+ gSin (1;0)t :
(4.17)
The system (4.10)-(4.14) has the following other propertse It is a quasilinear system in case
(), while in case (I) it has an extra second-order term invlving r , (1 " )(uX VX) due
to the term r , (hypf ) in (4.14), and also a nonlinearity in terms off , (1 ' )(UX V¥) in
the bottom solid friction term. Next, solid and uid masses ae conserved, according to (4.10a)
and (4.11a)+(4.12a). The width of the mixture h,, remains nonnegative because of (4.10a). The
solid volume fraction' remains between 0 and 1 because of (4.6) and (3.32), indeed tlalue
' &9 is an attractive value for' . However, there is no reason for the width of the uid-only
layer h¢ to remain nonnegative, and this is due to the fact that the ud could be fully sucked
into the granular material. Therefore, our model is valid asong ash; remains nonnegative.
Otherwise, one should write down equations that include thease of a mixture layer topped
by a dry granular layer, what we have not done here. The systefmas the solution at rest
characterized byv* = uXx = uX =0, =0, b+ b+ hy, = cst, hf = cst,' = cst, with B xtan .

4.2 Comparison with other debris ows models

In this subsection we would like to explain the main di erenes between our model and other
debris ow models in the literature that include excess por@ressure e ects, namely those of
Pailha and Pouliquen (2009) and Iverson and George (2014).

4.2.1 The Pailha and Pouliguen model

In Pailha and Pouliquen (2009) a two-phase debris ows modé& proposed. As in our model,
it is based on the dilatancy law proposed by Roux and Radjai (26). In their case the granular
assembly ismmersed meaning that there is a thin mixture layer and a uid layer alove it, but

as opposed to us the uid layer is not thin but is approximate} at rest. The hydrostatic pore
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(4.11b)









































































































