

FPGA-based fault tolerant design and
Deterministic routing-based synthesis for

Digital Microfluidic Biochips

A thesis submitted to the

Graduate School

of the University of Cincinnati

in partial fulfillment of the

requirements for the degree of

Master of Science (M.S.)

in the Department of Electrical & Computer Engineering

of the College of Engineering & Applied Science

by

Onkar Vasant Todakar

B.E., University of Pune, 2009

October 9th 2015

Committee Chair: Dr. Wen-Ben Jone

Committee Members: Dr. Ian Papautsky

Dr. Rashmi Jha

Abstract

Microfluidic biochips have been widely used as an alternative to traditional laboratory equip-

ment. They offer a considerable advantage over traditional equipment when the reduction

in cost, area and efforts is considered. A lot of research has been done on designing general

purpose, cost-effective architectures and also on methods to automate the mapping of assays

on to these biochips. Biochips are susceptible to failures due to various reasons such as

manufacturing defects, wear and tear etc. We propose a fault tolerant scheduling algorithm

which reconfigures the DMFBs in the presence of such faults. A faulty module (for example

a mixer with 2×5 electrodes) can be reconfigured using a droplet routing approach that

routes droplet, avoiding the faulty electrodes. We observe an average 23% reduction in the

assay completion time, when compared to a DMFB with a faulty module. We further extend

this routing-based approach to propose an algorithm to map assays to DMFBs. Most of the

previous work on mapping assays assumes the presence of virtual modules on DMFBs and

schedules operations on them. In our work we propose a deterministic greedy algorithm

that routes the droplet on a random sequence of electrodes rather than restricting it to a

virtual module to execute the operation. Our algorithm moves the droplets on the DMFB

such that the operation is completed in the minimum possible time. The results show ap-

proximately 43% reduction in assay completion time, when compared to traditional module

based mapping algorithm on a FPGA style DMFB array, and 26% improvement compared

to the randomized routing - based synthesis algorithm GRASP.

i

ii

Acknowledgements

I would like to express my gratitude to my research advisor Dr. Wen-Ben Jone for guiding

me at every stage of my research. His constant support, feedback and guidance has been

crucial in shaping this thesis. I would also like to thank Dr. Ian Papautsky and Dr. Rashmi

Jha for agreeing to be on my thesis committee and for spending time in reviewing my work.

I would also like to thank my parents and my brother for their support and encouragement

in every walk of life. Finally, I am thankful to my girlfriend Priti for always standing by my

side and for being a constant source of strength and inspiration in my life.

iii

Contents

1 Introduction 1

1.1 Digital microfluidic biochips . 2

1.2 Contributions . 5

1.3 Thesis organization . 5

2 Background 7

2.1 Working of LOCs . 7

2.2 Electrode addressing on DMFBs . 10

2.3 Overview of GPFP DMFB architecture . 13

2.4 Synthesis . 15

2.5 Faults in DMFBs . 19

2.6 DMFB Testing . 20

2.7 Fault tolerance in DMFBs . 21

2.8 Faults possible in GPFP DMFB . 22

3 Fault Tolerance in FPGA based DMFBs 24

3.1 Characterization of operations based on routing 24

3.2 Module reconfiguration in presence of faults 30

3.2.1 Single Electrode Fault . 30

3.2.2 Multiple Electrode Faults . 33

3.3 Fault Tolerant synthesis for GPFP architecture 35

iv

3.4 Results . 39

4 Routing Based Synthesis 45

4.1 Motivation for routing-based synthesis . 45

4.2 Routing based synthesis algorithm . 50

4.3 Assumptions . 57

4.4 Implementation details . 58

4.5 Results . 60

5 Conclusion and Future Work 65

v

List of Figures

1.1 DMFB setup . 4

2.1 Cross section of a DMFB array . 8

2.2 Operations on a DMFB array . 10

2.3 Direct addressing . 11

2.4 Architecture of FPPC DMFB . 12

2.5 Architecture of GPFP DMFB . 14

2.6 Steps involved in Synthesis . 17

2.7 Scan and hold flip-flop in GPFP DMFB . 23

3.1 Possible routes for any droplet . 25

3.2 Droplet movement in 2 × 2 module . 26

3.3 Droplet movement in 2 × 3 module . 27

3.4 Droplet movement in 2 × 4 module . 27

3.5 Droplet movement in 1×4 module . 28

3.6 Droplet route in a 2×10 module . 29

3.7 Faults in one of corner electrodes . 30

3.8 Mixing route for Type 1 fault . 30

3.9 Faults in electrodes adjacent to the corner electrode 31

3.10 Mixing route for Type 2 fault . 31

3.11 Faults in electrodes in the middle column . 32

vi

3.12 Mixing route for Type 3 fault . 32

3.13 Multiple electrode failure . 33

3.14 Mixing route for Type 4 fault . 34

3.15 Mixing route for Type 5 fault . 35

3.16 Example assay & DMFB on which it is executed 39

3.17 Schematic of in-vitro diagnostic assay . 40

3.18 Schematic of protein Split assay . 41

3.19 Modules on a 13×9 GPFP array . 43

3.20 PCR Assay . 43

4.1 Example assay . 46

4.2 Schedule for the example assay . 46

4.3 Placement for example assay . 47

4.4 Example assay schedule using RBS . 48

4.5 Movement of droplets during execution . 49

4.6 Effect of faults on module based and routing based approach 49

4.7 Dispense operation . 52

4.8 Mixing operation . 53

4.9 Droplet merging using Lee's Algorithm . 54

4.10 Hardware data structure . 59

vii

List of Tables

3.1 Module Library . 25

3.2 Mixing percentage based on droplet direction 29

3.3 Mixing time of reconfigured modules based on fault type 38

3.4 Mixing time of reconfigured modules based on fault type 42

4.1 Comparison of RBS with GPFP . 61

4.2 GRASP vs RBS results . 63

viii

Chapter 1

Introduction

Lab on chip (LOC) refers to devices that miniaturize several laboratory processes like mix-

ing, heating, detection etc. such that they can be included on a small surface like that of

an electronic chip. LOC uses micro-electro-mechanical systems (MEMS) and principles in

microfluidics to control and manipulate tiny nano-liter droplets on the surface of the chip.

Owing to advances in manufacturing, the cost of fabricating these devices is getting lower,

which makes them much more economical for widespread use. Advances in miniaturization

in chemistry, physics and biology, microfluidics, lithography etc. are pushing LOCs to the

forefront of drug discovery, health diagnostics and monitoring. LOCs are used for various

applications like personalized medicines, early diagnostics of disease based on biomarkers,

nutrition diagnosis etc.

LOCs offer several advantages over traditional laboratory work. LOCs use small volumes

of samples and reagents which reduce the cost of the assays as well as the wastage of difficult

to obtain samples and expensive reagents. LOCs are faster and have better response time

when compared to the laboratory approach. LOCs also substitute the need for large and

expensive lab space and lab equipment. Another major advantage of LOCs is automation,

which helps reduce intermediate steps as well as the probability of human error.

Commercial applications of LOCs are being introduced in the market. For example, Med-

1

imate a company in Netherlands has a device to measure concentration of lithium in blood

[1]. People with bipolar disorders are treated with lithium and maintaining the concentration

of lithium in blood is critical. Medimate's devices help rapid detection of lithium concentra-

tion in blood which helps doctors provide on-spot personalized medicine. Medimate also has

a device to measure the concentration of sodium in urine. It is very important to keep track

of daily sodium intake while being treated for hypertension or cardiovascular diseases. In [2],

the author also discusses applications of LOCs like measuring fertility and cancer diagnos-

tics. The widespread of smartphones helps LOCs couple with them to provide a wide range

of applications. Researchers have demonstrated various smart phone based LOC applica-

tions like colorimetric analysis of serum for cholesterol detection, smartphone microscopy,

electrochemistry analysis etc. In [3], the authors develop a RFID-based sweat sensor which

measures the proportion of electrolytes in sweat. This can be used in applications such as

measuring hydration or the concentration of electrolytes etc. The work in [4] demonstrates a

$5 alternative to the expensive cytometers that can be used to determine if a person has HIV

and to track its progress. Such applications are extremely helpful in countries with limited

healthcare resources. Devices like these aid in fast and cheap diagnostics. According to the

forecast in [5] the lab on chip market is expected to grow at a CAGR (compound annual

growth rate) of 18%, and will be valued at $13 billion by year 2021.

1.1 Digital microfluidic biochips

There are different types of LOCs based on their construction, actuation mechanisms etc.,

these types are discussed in detail in Chapter 2. In this thesis we deal with a type of LOCs

called Digital Microfluidic Biochips (DMFBs). This is a droplet based biochip consisting of

an array of electrodes on which droplets are discretely manipulated. The applications/assays

executed on these biochips are made up of series of operations like dispensing, mixing etc.

These operations can be executed by moving droplets on a group of electrodes. The major

2

advantage of DMFBs is that each droplet can be controlled individually which makes the

DMFBs general purpose and easily reconfigurable.

DMFBs are complex devices which combine solid state electronics with micro structures

to execute microfluidic operations. Since they are used in various critical applications like

medical diagnosis, environment monitoring etc., high reliability is a key requirement. DMFBs

exhibit unique defect and failure mechanism due to the underlying mixed technologies and

multiple energy domains. Various types of faults can be present on a DMFB chip. Some

of these faults manifest as a result of defects during manufacturing, while others may be

because of degradation due to excessive use. These faults can be classified as catastrophic

faults when the defects result in permanent failure of one or multiple electrodes, and as

parametric faults when the defects cause variation in parameters like size or concentration of

the droplet. Various methods have been proposed to determine the presence of such faults

during manufacturing and operation [6].

Several methods have been proposed to reconfigure DMFBs in the presence of faults.

For a DMFB array, operations are executed by assuming virtual modules on the surface of

the DMFB. In the presence of faults, these virtual modules are placed on the surface of the

DMFB such that they do not overlap any faulty electrodes [7]. This reconfiguration technique

can be used for both faults detected during manufacturing and operation execution. FPGA-

styled DMFB arrays are proposed in [8], [9] to reduce the number of pins needed to control

each electrode on the array and to speed up operation execution. These FPGA based arrays

have predefined and pre-placed modules. In this work, we propose a reconfiguration method

based on droplet routing to make the modules on these arrays fault-tolerant.

3

Figure 1.1: DMFB setup [10]

The DMFB chip shown in Fig 1.1 is connected to a microcontroller which controls each

electrode on the DMFB individually. To execute an application on the DMFB, the micro-

controller stores a series of electrode activation sequences corresponding to the operations

constituting the assay. For simple assays, these electrode activation patterns can be gen-

erated manually. As the complexity of the applications and the size of the DMFB chip

increases, generating the corresponding electrode activation sequences becomes complicated,

giving rise to need of design automation. The process of generating electrode activation

sequences for an application to be executed on a DMFB array is called synthesis.

Various approaches have been proposed in the literature to solve the synthesis problem.

The most common approach is assumption of virtual modules to execute the operations

like mixing, splitting etc. With virtual modules, all electrodes that are part of module are

assumed to be occupied during operation execution. The virtual modules also require a

segregation layer of one electrode width around the module to prevent accidental mixing of

droplets. This approach blocks a large number of electrodes for a single operation, thereby

reducing the number of operations that can be executed in parallel. As an improvement to

this approach, Maftei et.al [11] proposed a droplet aware execution mechanism to get rid

of the segregation layer around the module. Since operations can be executed by routing

droplets on any sequence of electrodes, they propose a droplet routing based methodology to

4

solve the synthesis problem. In this work we improve the routing based algorithm proposed

by Maftei et.al by making the algorithm deterministic and greedy.

1.2 Contributions

• We determine the type of faults encountered on the modules in the FPGA-based general

pupose field programmable (GPFP) architecture proposed in [8]. Depending on the

type and location of faults, we reconfigure these faulty modules and determine their

operation completion time using droplet routing based operations. We implement a

fault tolerant scheduling algorithm which uses these reconfigured modules rather than

simply discarding them. We observe an average 23% improvement in assay completion

time by using reconfigured faulty modules instead of discarding them.

• We improve upon the routing based synthesis methodology proposed by [11]. The ap-

proach in [11] uses a randomized approach to determine the direction for a droplet to

move during operation execution. We propose a deterministic greedy algorithm that

selects the best possible direction for the droplet to move at each step. Our algorithm

improves the assay completion time by 30% on an average when compared to the rout-

ing based synthesis algorithm proposed by Elena et al.

1.3 Thesis organization

• Chapter 2 includes some background information to get a better understanding of the

microfluidic biochips. We discuss various types of microfluidic devices and their char-

acteristics. We define the architecture of DMFBs, the working principle and various

electrode addressing schemes. We review various synthesis approaches proposed in

literature. We also discuss about faults and their effects on DMFBs. We review the

5

GPFP architecture and various faults it is susceptible to.

• Chapter 3 first discusses the completion time for routing-based operations. We char-

acterize the routing based operation completion, and use the results to calculate the

mixing time of reconfigured modules on the GPFP architecture. We then discuss the

fault-tolerant list scheduling algorithm and evaluate it.

• Chapter 4 extends the routing-based operation completion methodology to synthesis.

We propose routing based synthesis (RBS), a deterministic and greedy routing based

algorithm which is an improvement over GRASP proposed in [11].

• Chapter 5 discusses conclusion and future work.

6

Chapter 2

Background

In this chapter we provide some background information for better understanding of the

field of LOCs. We begin the chapter with a brief description of different types of LOCs.

We describe the construction and working principle of DMFBs. We then briefly cover other

topics like synthesis, faults and fault tolerance.

2.1 Working of LOCs

LOCs implement various applications like detection of glucose in blood,urine etc. by moving,

mixing, separating and observing small amounts of liquids on their surface using principles

in microfluidics. Microfluidics is an interdisciplinary field that applies various concepts from

physics, chemistry, biology, engineering etc. to design systems which manipulate extremely

small volumes of liquids. These devices can be classified into two main categories based on the

mechanisms they use to actuate the liquids. The first category is called passive microfluidics

which employs passive techniques like capillary forces [12] for liquid movement. The second

category is active microfluidic devices which force the droplet movement using internal or

external devices like micropumps, microvalves [13] or using electrokinectic mechanisms [14].

In this thesis, we only consider active microfluidic devices.

Active microfluidic devices are further categorized based on their architecture. Channel-

7

based devices have etched micro channels through which samples and reagents flow either

continuously or as discrete droplets using either internal or external forces. Using droplets

over continuous flow of liquids has advantages like better control over liquid volume, better

mixing operation and high throughput [15]. Various flow control mechanisms like focused

flow [16], T-shape generators [17] etc. are used to generate discrete droplets in a channel

based microfluidic device. These devices are cheap and are easier to manufacture. Since

each fluid has dedicated channels, there is very little probability of droplet contamination.

On the other hand, since these devices are manufactured with pre-etched channels they are

application specifc and hence have limited re-configurability. To overcome this limitation, a

completely reconfigurable, general purpose device called digital microfluidic biochip (DMFB)

is proposed.

Figure 2.1: Cross section of a DMFB array

A DMFB is an array of special electrodes on which discrete nano-liter sized droplets are

manipulated using a phenomenon called electrowetting on dielectric (EWOD). The DMFB

array is made up of two parallel glass plates of indium tin oxide, seperated by a tiny gap

between which the droplets are sandwiched. The bottom plate has a patterned array of

individually controllable electrodes and the top plate is continuous ground [18]. Both top

and bottom electrodes are coated with a dielectric to reduce the wettability of the surface.

The construction of a DMFB array is explained in detail in [19]. The DMFB also has

reservoirs for samples and reagents which are connected to the input ports of the chip. It

also has output ports to collect waste droplets. In addition to ports, the DMFB can also have

other peripherals like heaters, optical detectors etc. EWOD is defined as the modification

8

of interfacial tension between droplet and the electrode due to electric field applied at the

surface of the electrode. If the voltage is applied only on one side of the droplet, as shown

in Fig 2.1 a gradient in surface tension is created which causes the droplet to move in the

direction of the activated electrode.

The sample droplet is enclosed in a filler medium like silicone oil, and is sandwiched

between the electrodes. The droplet is sized such that it overlaps with the adjacent electrodes.

To move a droplet, we deactivate the electrode it is currently on and activate its neighbor.

EWOD causes gradient in the interfacial tension between the droplet and the electrode,

thereby making it move towards the activated electrode. Each assay is made up of a series of

dispensing, transport, mixing, splitting and detection operations. Each operation executed

on a digital microfluidic biochip can be broken down into a series of simple operations

which can be performed by repeatedly routing the droplet on a series of electrodes. Droplet

transport in a particular direction is implemented by activating an electrode adjacent to the

droplet in that direction. Dispense operation can be considered to be made up of several

individual transport steps. To merge two droplets, they are brought closer such that they are

separated by one electrode. We then activate the middle electrode such that both droplets

move towards it, effectively merging both droplets. To split a droplet, both electrodes on

either side of the droplet either in X direction or Y direction are activated such that the

droplet tries to move in both directions causing it to split. These operations are depicted

graphically in Fig 2.2.

9

Figure 2.2: Operations on a DMFB array

2.2 Electrode addressing on DMFBs

To move each droplet on the DMFB array discretely, each electrode needs to be controllable

individually. The process of assigning these individually controllable electrodes to external

pins to send control signals to them is called electrode addressing. Early DMFBs used

direct addressing in which each electrode was assigned to an individual pin as shown in

Fig 2.3. Since each electrode can be directly controlled from external inputs, this offers

great flexibility. Direct addressing is extremely beneficial for smaller DMFBs; but as the

size increases, so does the complexity. Routing wires on the substrate under the DMFB

electrodes gets complicated and expensive to manufacture. This also makes the DMFB

more susceptible to faults.

10

Figure 2.3: Direct addressing [8]

To reduce the pin-count, various pin constrained methodologies are proposed which assign

a single pin to a group of electrodes. in [20] the authors propose a pin constrained design using

a multi-phase bus in which every nth electrode is connected to a single pin, thereby reducing

the pin count to n. In [21] Hwang et al. propose an array partioning scheme to determine

pin assigment such that each set of pins correspond to a partition. This method is improved

in [22] by making the partioning droplet aware. Xu and Chakrabarty in [23] proposed a

broadcast addressing scheme by which pin count is reduced by grouping electrodes together.

They first synthesize a given assay assuming a direct addressed DMFB to obtain the electrode

actuation sequences. These sequences are then partitioned into groups such that each group

is controllable individually via a single pin. This approach uses the direct addressing based

routing information as its input to reach broadcast addressing based routing. Using the

broadcast addressing scheme also makes the array assay specific. Thus this approach cannot

be used for general purpose field programmable applications.

To overcome the limitations of direct addressing, [24] proposed a cross referencing ap-

proach that uses M+N electrodes to control droplets on an M×N chip. In this method,

electrodes are in the form of orthogonal rows. To move a droplet from on location to other,

we activate the row and column corresponding to the new position. In [24] the authors

proposed a modified cross referencing approach that allowed multiple droplets to be con-

11

trolled simultaneously. There is an inherent limitation: the number of droplets the device

can simultaneously control due to the possible electrode interference.

A novel architecture called field programmable pin constrained (FPPC) is proposed by

Grissom et al. in [9] which retains the benefits of pin constrained methodologies and is field

programmable such that it can be used for any application. The topology of the FPPC

architecture is shown in Fig 2.4. On DMFB architectures which are in the form of electrode

arrays, reconfigurable operations like mixing, splitting etc. can be implemented on any

electrode. The FPPC architecture, on the other hand, has dedicated regions/modules to

implement specific applications. The numbers on the electrodes specify the group to which

they belong. All electrodes belonging to any particular group are connected to a single

external pin. On the left side, we see four 2×4 modules which can be used for operations

like mixing and merging. All four modules use identical group of electrodes (electrodes 7

to 13) as shown in Fig 2.4. Using these modules we can mix 4 droplets simultaneously by

activating those electrodes. In addition to the mixing modules, on the right side, we have 6

modules that can be used for split, store and detect operations. The FPPC uses multi-phase

bus proposed in [20] for routing. Electrodes labelled 1-6 are used for routing.

Figure 2.4: Architecture of FPPC DMFB [9]

The synthesis process on the FPPC architecture is simpler, because the allocation and

12

placement steps are already taken care of. Routing multiple droplets over pin constrained

electrodes is complicated and computationally intensive due to electrode interference. Even

though FPPC is a general-purpose architecture that can implement any assay, the perfor-

mance of the FPPC array method is worse than direct addressing arrays. In [8] Rissen et al.

proposed an improved version of FPPC called general purpose field programable (GPFP)

architecture whose performance matches direct addressing arrays. The details of the GPFP

architecture are described later in this chapter.

Active matrix (AM) addressing is another electrode addressing methodology that retains

the benefits of direct addressing arrays. Using AM addressing, an M × N array can be

controlled using M + N pins. To select an element at (m, n), pulses of appropriate pulse

width are applied to the row and column select lines. In [25], the authors implement an

AM addressing system using thin-film transistors (TFTs) and integrate them with EWOD

electrodes. This addressing scheme requires special fabrication techniques to help electrodes

hold charge during off pulses.

2.3 Overview of GPFP DMFB architecture

The GPFP DMFB architecture proposed in [8] shows significant improvements over the

FPPC architecture proposed by Grissom and Brisk in [9]. The architecture proposed in [8]

is the first to use scan chain-based electrode control mechanism. The scan chain is made up

of scan and hold flip-flops, one for each group of labelled electrodes. This drastically reduces

the number of external pins required to control the array. The number of pins required

by the GPFP architecture is equal to twice the number of scan chains on the array. The

routing approach on GPFP is similar to that on the FPPC. They differ in the arrangement

and structure of modules. The GPFP architecture has eight 2×5 electrode modules which

can be used for any reconfigurable operation. Each module has a dedicated electrode (orange

electrode) that can be used for operations like storage and detection. Another difference is

13

that each module has its own group of pin-constrained electrodes which allows all modules

to work independently. The assay execution time is 40% faster compared to the FPPC

architecture of similar size. In spite of these advantages, there are a few drawbacks of the

GPFP architecture. They are discussed below.

Figure 2.5: Architecture of GPFP DMFB [8]

Electrode utilization is low

The total number of electrodes in this 13×15 GPFP architecture in Fig 2.5 is 145. Out

of these 145 electrodes, 65 electrodes (colored in blue) are dedicated to routing, i.e., approxi-

mately 45% of the electrodes are idle during operation execution. This will cause non-uniform

wear in the electrodes used for routing versus the electrodes used for reconfigurable opera-

tions. Reconfiguring these electrodes such that they are utilized during operation execution

will help speed up the execution time.

Routing overhead not considered

The results mentioned in [8] compare the GPFP with the FPPC architecture. The FPPC

14

architecture calculates the routing overhead introduced by its pin-constrained nature, but

GPFP on the other hand does not mention the routing overhead involved. Considering lim-

ited routing resources and its pin constrained architecture, the routing overhead introduced

by GPFP should be significant. Routing droplets between modules has to be sequential.

Fluidic constraints between droplets need to be maintained. The GPFP architecture has

much higher routing complexity than a simple 2-dimensional array of electrodes.

Difficult to scale

For larger assays we need more resources to speed up their execution. To increase the

number of modules, we need to extend the existing architecture. There are two possible

ways to extend the GPFP architecture. The first option is to add more modules under the

existing modules. In this scenario, the number of rows available for routing remains the

same, thereby increasing the routing complexity even more. The second option is to add

another column for modules next to the existing column of modules. Even in this scenario

transporting droplets between columns would be complex. Thus its difficult to scale-up this

architecture without any modification.

Highly susceptible to faults

In addition to the catastrophic and parametric faults discussed later in this chapter,

GPFP is also susceptible to failures in the underlying scan-chain based actuation circuitry.

Different faults impacting GPFP are discussed later in this chapter.

2.4 Synthesis

DMFBs execute the required operations on droplets by actuating electrodes in a particular

sequence such that they are moved, mixed, etc. For simple assays it is possible to schedule

operations and generate electrode patterns manually. But for applications like drug discovery,

where we iterate over various combinations and concentrations of samples and reagents,

this manual translation is too repetitive and inefficient. Also in the case of large assays,

15

the manual translation may not lead to the best possible solution. Hence, we use design

automation techniques from the EDA (electronic design automation) industry to automate

this translation. Considering the similarities between digital microfluidic biochips and digital

electronics, we call this translation process as synthesis. Synthesis can be defined as the

process of mapping an assay on to any given DMFB array and generating the electrode

activation sequences.

The biochemical application or assay that we want to execute on the DMFB array is mod-

elled as a directed acyclic graph. Each node in the graph represents a operation performed

in the assay and each edge determines the dependencies between those operations. Alterna-

tives to graphs are programming languages like BioCoder [26] that describe applications in

a form much easier for automation tools. Either one of these approaches can work well with

the synthesis tools. We also have a module library which contains information about the

dimensions and execution time of various modules like mixers, dispensers, detectors etc. We

also model the DMFB array in terms of its dimensions, input output ports and peripherals.

16

Figure 2.6: Steps involved in Synthesis [8]

The synthesis problem can be broken down into two parts namely architecture level syn-

thesis and physical level synthesis. In architecture level synthesis we schedule all operations

such that all dependencies between them and resource constraints are met. These operations

are scheduled on the selected modules and with a simplified estimate of the placement. The

goal of this step is to generate the best solution such that it minimizes the operation comple-

tion time. This is followed by physical synthesis, which deals with placement of the modules

based on the previous step and routing of droplets between them. The scheduling step of

architectural synthesis has proven to be NP-complete. In [27], the authors propose ILP and

heuristics algorithms. i.e., List scheduling algorithm and genetic algorithm for architectural

level synthesis. They use simulated annealing based method to do the placement of the

modules during the physical synthesis step. Even though the two step approach simplifies

the problem, the scheduling step works by assuming placement of modules. This may not

17

be correct at times and the scheduling step needs to be re-run to solve this problem.

The unified synthesis methodology has been proposed by Su et al. in [7] which determines

the placement of modules using simulated annealing during scheduling. These results are

further improved by Yuh et al. [28] using T-tree data structure. A routing aware synthesis

methodology is proposed by Xu et al. [29] that considers routing during scheduling and

placement of modules. In [11], the author proposes a unified synthesis methodology based

on the tabu search metaheuristic to determine allocation and binding. This current allocation

and binding is then used by List scheduling to determine the schedule.

In the synthesis algorithms discussed so far, the reconfigurable modules e.g., mixers are

assumed to be fixed during operation execution. Since operations can be executed by routing

droplets on any sequence of electrodes, [11] proposes a synthesis approach in which reconfig-

urable modules are moved during operation execution to avoid space fragmentation, leading

to better placement. The approach is further extended by using non-rectangular modules to

better utilize the space on the DMFB array. Better placement improves parallelism, thereby

allowing more operations to execute in the same time step. All these solutions assume an

isolation ring of 1 electrode width around each module to prevent accidental merging with

other droplets. [11] further proposes a droplet aware execution approach that prevents ac-

cidental merging and this allows placement of modules without the isolation ring, thereby

helping better utilization of the chip area. This approach also helps routing by allowing

droplets to move over modules.

Since we execute operations on DMFBs by routing droplets on a series of electrodes,

these operations can also be executed by routing them on any random sequence of electrodes.

The next step in improving synthesis would be getting rid of the virtual modules used for

executing operations. In [11] the author proposes a routing-based synthesis method in which

each operation is implemented by moving the droplet on a random sequence of electrodes.

The direction of the droplet is selected randomly from the list of best possible moves at that

time step. This approach shows an improvement of approximately 47% over the module-

18

based approach.

2.5 Faults in DMFBs

DMFBs are affected by different types of faults which may lead to failures in operation

execution or incorrect results. These faults are discussed extensively in [6]. There are 2

types of faults encountered in DMFBs: permanent/catastrophic faults and transient faults.

Permanent faults

Permanent faults are introduced either by manufacturing defects or by aging. These

faults lead to failures in operation execution or completion. Here is a list of commonly

encountered permanent faults.

• Dielectric Breakdown is caused due to high voltages applied to the electrodes. This

causes a short between the droplet and the electrode, thereby causing the droplet to

be stuck at that particular electrode.

• Short between neighboring electrodes causes neighboring electrodes to behave as one big

electrode. The droplets on such a large electrode have no overlap with their adjacent

electrodes. This makes it impossible for the droplet to move.

• Breaking down of the insulator is the result of repeated use or aging. This causes the

droplet to break into fragments due to irregularities in surface tension.

• Open in the electrode control circuitry results in failure to actuate the electrode, thereby

rendering it useless during operation execution.

Transient Faults

Transient faults are intermittent faults that occur during operation execution. These

faults do not block the execution of the assay. These may cause incorrect results due to

various reasons such as variation in droplet volume or concentration. The most common

causes of transient faults are discussed below.

19

• Variation in geometrical parameters such as thickness of insulator, dimensions of the

electrode, spacing between the electrodes may result in transient faults.

• Incorrect overlap between the droplet and electrode results in droplets of unequal volume

during operations like dispense or splitting. This effect cascades over time and results

in incorrect operations.

• Change in viscosity of droplets or filler medium may be caused due to variation in

temperature. This causes incorrect concentration of the fluids which may lead to

incorrect results.

• Cross contamination may occur due to droplets which have tendencies to get adsorbed

on the surface of the electrodes. When other droplets move on to these contaminated

electrodes, the purity of the droplets may be compromised. This will result in incorrect

results.

2.6 DMFB Testing

As DMFBs are used in various safety critical applications, reliability becomes the key per-

formance parameter. DMFBs are tested for permanent/catastrophic faults and parametric

faults by controlling and tracking the movement of droplets on the surface of the microfluidic

array. Testing for manufacturing defects such as shorts between electrodes, variation in geo-

metrical parameters should be performed immediately after manufacturing. Other faults like

degradation of the insulator, breakdown of the dielectric may occur during operation execu-

tion. Various methods for online testing (testing concurrently during operation execution)

are proposed in literature [6].

Catastrophic fault testing

Most methodologies proposed for testing catastrophic faults route test droplets across

the microfluidic array to locate the faults. A simple testing scheme called parallel scan is

20

proposed in [6], where droplets are routed row-wise and column-wise on the microfluidic

array. The presence of the droplet at an electrode can be determined using a capacitive

sensor. In case of catastrophic faults the test droplet would be stuck at the faulty electrode;

its absence at the destination electrode can be detected using the capacitive sensor. By

row-wise and column-wise routing of the droplet, the exact location of a faulty electrode can

be determined. Various sophisticated techniques to reduce test-time, number of reservoirs,

detect multiple faults in parallel and concurrent testing etc. are proposed in [6].

Parametric fault testing

DMFBs can have integrated sensors that can facilitate real-time fault detection and

correction. A combination of LED and photodiode can be used to measure the concentration

of a droplet [30] [20]. A capacitive sensor can be used to determine the volume of the droplet.

A CCD camera based system can also be used to measure the volume of a droplet. This

CCD based system is complex but is easier to use, since it eliminates the need to route the

droplet to specific locations for detection.

2.7 Fault tolerance in DMFBs

The use of DMFBs in critical applications like clinical diagnosis, pathogen monitoring etc.

requires a high level of accuracy and reliability. We can improve the reliability and accuracy

of DMFBs by making them resistant to both catastrophic and parametric faults. One of

the ways to make a system fault tolerant is to add some level of redundancy. For DMFBs

we can add redundancies at the device level to deal with catastrophic faults or at the assay

level to deal with parametric faults.

To handle catastrophic faults the most straightforward approach is to reconfigure modules

such that the faulty electrode is discarded. Su et.al [31] proposed a simulated annealing based

placement methodology which allows a module to be placed elsewhere, if the module overlaps

with a faulty electrode. A tile-based architecture is proposed in [32] which handles faulty

21

electrodes with partial or global reconfiguration depending on the operation schedule and

resource availability. In [33] parametric faults are handled by considering both time and

space redundancies.

2.8 Faults possible in GPFP DMFB

GPFP is susceptible to the catastrophic and parametric faults discussed in the previous

section. In this thesis work, we only deal with catastrophic faults that cause a single electrode

failure. Various possible causes for single electrode failure are discussed in this section.

Short or Open in the actuation circuitry

The GPFP uses scan chained based architecture to control the electrodes on the chip. A

special type of sequential circuit called scan and hold flip-flop shown in Fig 2.7 is used to

control the electrodes. The scan and hold flip-flop adds a hold latch at the output of the

standard flip-flop circuit. A short or open in the section labelled Flip-flop circuit will result in

scan chain failures, thereby causing all electrodes connected to this scan chain to malfunction.

For example, with this type of scan chain failures one may have multiple modules M1, M2,

M3 etc. shown in Fig 2.5 fail. Similarly a short or open in the section labelled as Hold Latch

will cause electrodes connected to that particular Hold latch to malfunction. For example,

consider module M1 in Fig 2.5, a failure in the hold latch may cause all electrodes labelled

9, 10, 11 etc. to fail. These type of failures leads to either complete failure of few modules

or failure of two or more electrodes in a particular module. In both cases, the entire module

is faulty and unsuitable for the fault tolerance method proposed in this thesis.

22

Figure 2.7: Scan and hold flip-flop in GPFP DMFB [8]

Open or Short in the Level Shifter circuitry

The DMFB electrodes need high voltage, typically around 20V for operation. The input

from the scan and hold flip-flop is typically around 5V and hence we need a high voltage

level shifter for each electrode. The output of each scan and hold flip-flop fans out to the

corresponding level shifters connected to the individual electrodes (For each of the electrodes

labelled 9 has its own level shifter circuit). Faults in the level shifter circuitry will result in

failure in the electrode connected to the faulty level shifter. This type of single electrode

failure is considered as a target fault addressed by the fault tolerant algorithm proposed in

this thesis.

Permanent Faults

The typical permanent faults like dielectric breakdown, insulator breakdown, and open

in control circuitry occur in the GPFP architecture as well. These faults also result in single

electrode failure and are considered as target faults in our fault tolerant algorithm.

23

Chapter 3

Fault Tolerance in FPGA based

DMFBs

In this chapter, we develop a fault tolerant approach to deal with catastrophic faults in the

GPFP architecture. We start by characterizing operation completion percentage based on

the droplet movement. Based on the characterization results, we calculate the mixing time

of 2×5 modules in the GPFP architecture reconfigured for different fault types. We then

propose a fault tolerant synthesis algorithm for catastrophic faults in the GPFP architecture.

3.1 Characterization of operations based on routing

Paik et al. [34] determine the operation completion time for mixers of various dimensions.

The results of their experiment are summarized in Table 3.1. These results are for mixers

that have the electrode pitch, i.e., the size of the electrode as 1.5mm and the gap between

two electrodes is 600µm. We assume same dimensions for the GPFP architecture used in

this experiment.

24

Table 3.1: Module Library

DIMENSIONS MIXING TIME (in seconds)

1 × 4 linear mixer 4.6

2 × 2 9.95

2 × 3 6.1

2 × 4 2.9

In [11], Maftei proposes an analytical approach to determine the percentage completion of

mixing operation based on its droplets movement. The percentage of operation completion is

dependent on the direction in which the droplet moves. A droplet at any electrode (excluding

the boundary electrodes and fluidic constraints) at any instant can be moved in one of the

five possible directions as shown in Fig 3.1

Figure 3.1: Possible routes for any droplet

Consider a droplet d shown in Fig 3.1, at time t, at location (1, 1). Assume that the

droplet moves up north from its initial position (1, 0) at time t-1. At time t+1, the droplet

can move in any of the four directions indicated by the arrows or it can stay at its current

location. At time t+1,

• If the droplet moves up north, we say that the droplet moved in direction 0° with

25

respect to its current direction.

• If the droplet moves either east or west, the direction of the droplet is considered to

be 90° with respect to its current direction.

• If the droplet moves down south, the direction of the droplet is considered to be 180°

with respect to its current direction.

• The droplet can also stay at its current location. This has no impact on the operation

completion time and therefore has no special significance.

We use an analytical approach proposed in [11] to determine the completion percentage of

mixing based on its droplet movement. We start by decomposing the movement inside a

2×2 mixer with mixing time 9.95 seconds according to Table 3.1.

Figure 3.2: Droplet movement in 2 × 2 module

The mixing/rotation of a droplet in a 2 × 2 mixer can be decomposed as 4 steps of 90°

movements. Based on the data in [11] we assume that a droplet takes 0.01 seconds per step,

i.e., to move from one electrode to the other. Considering the mixing time of 9.95 seconds,

we can say that it takes 995 time steps to complete the mixing operation.

If 995 steps = 100 % mixing

1 rotation, i.e., 4 steps of 90° operations = 0.40% mixing

Therefore 1 step of 90 = 0.1 % mixing

Let us consider a 2×3 mixer whose mixing time is 6.1 seconds according to Table 3.1.

The movement of a droplet in a 2×3 mixer can be broken down into 6 steps, 4 steps of 90°

26

and 2 steps of 0° movements. The entire mixing operation is completed in 610 steps.

Figure 3.3: Droplet movement in 2 × 3 module

Assuming that 610 steps = 100 % mixing

6 steps (4 steps of 90° + 2 steps of 0°) = 0.98 % of mixing

2 steps of 0° = 0.98 −0.4 (i.e., 4 steps of 90°)

Therefore, 1 step of 0° = 0.29% mixing

The forward mixing percentage (in 0°) is not a constant value. It depends on the number

of electrodes the droplet moves in a linear direction, i.e., 0°. In a 20×4 module, the droplet

moves 2 electrodes in linear direction. We use the nomenclature 1 - 0° for a droplet which

moves one electrode in 0° and 2 - 0° for the droplet which moves two or more electrodes in

0°. The mixing percentage for 2 - 0° can be calculated by decomposing a 2 × 4 mixer. The

mixing time of a 2×4 mixer according to Table 3.1 is 2.9 seconds.

Figure 3.4: Droplet movement in 2 × 4 module

The rotation inside a 2×4 mixer can be decomposed as 4 steps of 90°, 2 steps of 1 - 0°

and 2 steps of 2 - 0° movements. In [11], the author assumes that all the 0° movements in

a 2×4 module are similar and uses them to calculate a new mixing percentage. The results

27

in [11] however assign two different values to 0° steps to movements which are similar i.e.,

the 1 - 0° step in 2×3 mixer and 2×4 mixer respectively. We assume that the step 1 - 0°

in a 2×4 mixer is the same as the one in a 2×3 mixer. We consider the mixing percentage

calculated in the previous step to calculate 2 - 0 °. The mixing time of a 2×4 mixer is 2.9

seconds which implies 290 steps. Thus we have the following derivations.

290 steps = 100 % mixing

8 steps (4 steps 90° + 2 steps 1 - 0° + 2 steps 2 - 0°) = 2.76 %

2 steps 2 - 0 ° = 2.76 −0.4 −0.58

Therefore, 1 step 2 - 0 ° = 0.89 % mixing

As stated earlier, the mixing percentage increases as the droplet continues to move in its

existing direction. In this thesis however, we take a pessimistic approach and consider only

2 values for mixing. For droplets moving 2 or more electrodes in 0°, we consider that the

mixing percentage equivalent to 2 - 0° step.

To calculate the mixing percentage for 180° step, we decompose a 1×4 mixer. Its mixing

time according to Table 3.1 is 4.6 seconds. The rotation in a 1×4 mixer can be broken down

into 2 steps of 1 - 0°, 2 steps of 2 - 0° and 2 steps of 180°. It takes 460 steps to finish mixing

on a 1×4 mixer. The value of 1 step of 180° mixing can be derived as follows.

Figure 3.5: Droplet movement in 1×4 module

460 steps = 100% mixing

6 steps (2 steps 1 - 0° + 2 steps 2 - 0° + 2 steps 180°) = 1.304% mixing

2 steps 180° = 1.304 −0.58 −1.78

Therefore 1 step 180° = −0.52 % mixing.

According to [11], negative mixing can be attributed to the unfolding of patterns inside

the droplet i.e. droplets have a tendency to separate when moved backwards. The results of

28

the module characterization experiment are summarized in Table 3.2.

Table 3.2: Mixing percentage based on droplet direction

DIRECTION MIXING % COMPLETE

1 - 0 ° 0.29%

2 - 0° 0.89%

90° 0.1%

180° −0.52%

Let us calculate the mixing time of a 2×10 module based on the results summarized in

Table 3.2.

Figure 3.6: Droplet route in a 2×10 module

The route of a droplet inside a 2 × 10 module can be broken down into following steps,

four 90° steps, two 1 - 0° steps and fourteen 2 - 0° steps.

Thus, we have mixing completed in 1 rotation = 4× (0.1) + 2 × (0.29) + 14 ×(0.89)

= 0.4 + 0.58 + 12.46

= 13.44% mixing per rotation

The number of rotations needed to complete the mixing equals 100/13.44 = 7.44 rotations.

Thus, the time taken for each rotation is 0.2 seconds. Finally, we have the mixing time of a

2×10 module as 7.44×0.2 = 1.48 seconds.

29

3.2 Module reconfiguration in presence of faults

3.2.1 Single Electrode Fault

In this section we will calculate the mixing time of a reconfigured module in the GPFP

architecture with a single electrode fault. The mixing time depends on the location of the

fault in the module. Let us assume Module 1 in Fig 2.4 as the faulty module. In this case

one of the 10 electrodes is faulty, and the remaining 9 electrodes can be used to route the

droplet.

Type 1: Fault in one of the corner electrodes

Figure 3.7: Faults in one of corner electrodes

For example, in the presence of a single electrode fault at the corner electrode labelled

10, the droplet can be routed as shown in Fig 3.8.Owing to the symmetry in the module,

the path taken by the droplet will be similar to the other Type 1 faults shown in Fig 3.7.

Figure 3.8: Mixing route for Type 1 fault

Each rotation can be decomposed into steps as shown in Fig 3.8. The routing path is

made up of 10 steps, 2 steps in 1 - 0°, 3 steps in 2 - 0°, 4 steps in 90° and 1 step in 180°. The

mixing percentage completed in 1 rotation can be calculated as follows.

30

Percentage completed in 1 rotation = 1× (-0.52) + 4 × (0.1) + 2 × (0.29) + 3 × (0.89)

= −0.52 + 0.4 + 0.58 + 2.67

= 3.13% mixing per rotation

The total number of rotations needed to complete the operation is 100/3.13 = 31.95. Since

the time needed for each step (movement of the droplet from 1 electrode to the next) is 0.01

seconds and the number of steps taken to complete each rotation is 10, the time taken for

each rotation is 0.1 seconds. Thus the total mixing time is equal to 3.195 seconds. According

to Table 3.1, the mixing time of a 2×4 mixer is 2.9 seconds. This mixing time is smaller

than the mixing time for single electrode fault shown in Fig 3.8. Thus, if we reconfigure the

faulty 2×5 module as a 2×4 mixer rather than as shown in Fig3.8, we can reuse the faulty

module with small performance penalty.

Type 2: Fault in one of the electrodes adjacent to the corner electrode

Figure 3.9: Faults in electrodes adjacent to the corner electrode

For example, electrode 11 next to the corner cell 10 is considered to be faulty. In such a

case, the droplet can be routed as shown in Fig 3.10. Owing to the symmetry in the module,

the path taken by the droplet will be the same for all Type 2 faults shown in Fig 3.10.

Figure 3.10: Mixing route for Type 2 fault

Each rotation can be decomposed into single steps as labelled in Fig 3.10. The routing

path is made up of 3 steps in 1- 0°, 2 steps in 2 - 0°, 4 steps in 90° and 1 step in 180°. The

31

mixing percentage completed in 1 rotation can be calculated as follows.

Percentage completed in 1 rotation = 1× (-0.52) + 4 × (0.1) + 3 × (0.29) + 2 × (0.89)

= −0.52 + 0.4 + 0.87 + 1.78

= 2.53%mixing per rotation

The total rotations needed to complete the operation is equal to 100/2.53 i.e., 39.53 ro-

tations. The number of steps in each rotation is 10, so the time taken for each rotation is

0.10 seconds. Therefore, the total mixing time is 3.953 seconds. Some operations can be

scheduled on this reconfigured module rather than completely discarding it. The mixing

time of a 2×3 module is 6.1 seconds. Thus by reconfiguring the module as shown in Fig 3.10

we get a mixing time of 3.95 seconds which is 36% better than the mixing time of a 2×3

module.

Type 3: Fault in electrodes in the middle column

Figure 3.11: Faults in electrodes in the middle column

In this case, let us assume that the electrode labelled 9 in the middle column is faulty.

In the presence of such a fault the droplet can be routed as shown in Fig 3.11. For the fault

on the middle electrode 10 as shown in Fig 3.12, the mixing time can be derived similarly.

Figure 3.12: Mixing route for Type 3 fault

32

Each rotation can be decomposed into single steps as labelled in Fig 3.12. The routing

path is made up of 2 steps in 1 - 0°, 2 steps in 2 - 0° and 8 steps in 90°. The mixing percentage

completed in 1 rotation can be calculated as follows.

Percentage completed in 1 rotation = 8× (0.1) + 2 × (0.29) + 2 × (0.89)

= 0.4 + 1.45 + 1.74

= 3.16% mixing per rotation

The total number of rotations needed to complete the operation is 100/3.16 i.e., 31.64.

The number of steps in each rotation is 12, so the time taken for each rotation is 0.12 sec-

onds. Therefore, the total mixing time is equal to 3.797 seconds. Thus, by reconfiguring

the module rather than completely discarding it, some operations can be scheduled on this

reconfigured module with reasonable completion time.

3.2.2 Multiple Electrode Faults

Multiple electrode faults can result either from multiple single electrode failures as discussed

above or from failures in the scan and hold flip-flops in the scan chains used to control the

electrodes. Let us assume failures are in the hold part of the scan and hold flip-flop, and

this will cause failures in all electrodes connected to this particular scan and hold flip-flop.

Figure 3.13: Multiple electrode failure

Failures in the hold flip-flop will cause all electrodes connected to that particular flip-flop

to fail. This can result in two types of failures as shown in Fig 3.13. Reconfiguration for

these type of failures is discussed below.

Type 4: Failure on 3 electrodes (e.g. Electrodes labelled 9 or 10)

33

Figure 3.14: Mixing route for Type 4 fault

Fig 3.14 demonstrates a path the droplet can take in the presence of Type 4 multiple

electrode faults. Owing to the symmetry, the path taken by the droplet will be similar in

case of failures on electrodes labelled 10. The routing path in Fig 3.14 is made up of 2 steps

in 1 - 0°, 8 steps in 90° and 2 steps in 180°. The mixing percentage completed in 1 rotation

can be calculated as follows.

Percentage completed in 1 rotation = 2× 0.29 + 8 × 0.1 + 2 × (-0.52)

= 0.58 + 0.8 − 1.04

= 0.34% mixing per rotation

The percentage of mixing completed in 1 rotation is 0.34% and the total number of rotations

required for operation completion is 100/0.34 i.e. 294.117 rotations. Since the number of

steps in each rotation is 12, the time taken for each rotation is 0.12 seconds. Therefore the

total mixing time is 35.29 seconds.

The mixing time is prohibitively large when compared with the mixing time of a 2×5

module (2.202 seconds). Scheduling an operation on this reconfigured module will block the

execution of children nodes for a long time. In such a case it makes more sense to discard a

module with multiple electrode failures like in Fig 3.14.

Type 5: Failure on 2 electrodes (e.g. Electrodes 11 or 12)

34

Figure 3.15: Mixing route for Type 5 fault

Fig 3.15 demonstrates a path the droplet can take in the presence of Type 5 fault. Owing

to the symmetry, the path taken will be similar to the case of failures on electrodes labelled

12. Each rotation can be decomposed into single steps as labelled in Fig 3.15. The routing

path in Fig 3.15 is made up of 4 steps in 1 - 0°, 8 steps in 90° and 2 steps in 180° .The mixing

percentage completed in 1 rotation can be calculated as follows.

Percentage completed in 1 rotation = 4× 0.29 + 8 × 0.1 + 2 × (-0.52)

= 1.16 + 0.8 − 1.04

= 0.94% mixing per rotation

The percentage of mixing completed in 1 rotation is 0.94%, and the number of rotations

for operation completion equal to 100/0.94, i.e., 106.38. Since the number of steps in each

rotation is 14, the time taken for each rotation is 0.14 seconds. Therefore the total mixing

time is 14.89 seconds. Similar to the Type 4 failures, the mixing time in this case is also too

large. Therefore a module with this type of failures should be discarded.

3.3 Fault Tolerant synthesis for GPFP architecture

For application/assay specific DMFBs, electrode actuations are determined during the de-

sign process and are stored in a controller connected to the array. In the case of general

purpose DMFBs, the controller is programmed on the fly according to the assay that will be

executed on it. The process of generating electrode actuation patterns for an assay based on

35

parameters like DMFB array used, expected completion time etc. is called synthesis. The

target assay to be executed is modelled as a directed acyclic graph (DAG), with its nodes

denoting the operations to be performed in the assay and the edges signifying dependencies

between them. The DMFB array is modelled as an array of electrodes with various input

output ports and peripherals like detector, heater etc. In the case of the GPFP architecture,

the modules and pin-constraints are modelled according to the architecture specified in Fig

2.4.

Once the array is modelled, we select modules from the library which we intend to use

on this array. This step is called allocation. In the case of the GPFP architecture, since all

modules are configured as 2×5 mixers, we skip this step. We then move on to scheduling,

which determines the start and stop time of each operation in the DAG, considering de-

pendencies between operations and resource constraints. After scheduling, the next step is

binding which binds each operation scheduled in a particular time step to its corresponding

module. The next step is placement in which we place these modules in each time step on

the DMFB array such that there is no overlap. After placement, we need to route droplets

between different modules based on operation requirements, this phase is called routing. In

the GPFP architecture, the modules are pre-placed and therefore the binding and placement

steps are combined into one single binding step.

In [8] the author proposed that any scheduling algorithm which has scheduling results

comparable to the best available algorithms or which has small execution time is a good fit

for the GPFP synthesis. To evaluate the performance of the GPFP architecture, they use

the well-known List Scheduling algorithm. List scheduling is a greedy scheduling algorithm,

and the psuedo code for the algorithm is explained in Algorithm 1.

A straightforward way to add fault tolerance to the existing scheduling algorithm is to

update the list of modules, Lmodules, such that we can simulate a faulty module and a

reconfigured module. We assume an offline fault detection approach. Prior to executing

any assay, we run the testing process to determine location of faults if there is any. Based

36

Data: assay specified as a DAG, Architecture, faults
Result: Scheduled assay
Read in list of nodes to execute and store them in list Loperations ;
Read in the list of modules on the array and store them in list Lmodules ;
Set current time step to zero;
Create a list Lready to hold nodes that are ready to execute;
if faults specified then

Update the faulty module in list Lmodules ;
end
while all operations in Loperations are NOT complete do

for each node in Lnodes do
if node status is not COMPLETE/EXECUTING & parent nodes are
COMPLETE then

Add node to Lready.;
end

end
for each node in Lready do

if modules availabe in Lmodules then
Set this module as NOT available;
Set current node as executing;
Set node start time as current time;
Set node complete time as time taken by this module to complete
operation;
Set module free time as time taken for node to complete;

end

end
Increment current time step. ;
for each module in Lmodules do

if module is NOT available AND module free time equal to current time step
then

Mark node executing on this module as COMPLETE;
Set module as AVAILABLE;
Remove node from list Lready ;

end

end

end
Algorithm 1: List Scheduling algorithm for Fault tolerant GPFP architecture

37

on this information, we reconfigure the faulty module accordingly. For a good 2×5 module

in the GPFP architecture, the completion time for mixing is 2.2 seconds. To simulate an

array with a single faulty module we discard that module by reducing the number of available

modules in Lmodules. To simulate a reconfigured module, we add a new module to Lmodules

depending on the fault type and mixing time summarized in Table 3.3. The mixing time

required depends on the fault targeted during the experiment. The target fault is passed to

the modified scheduling algorithm. Based on this value, an appropriate reconfigured module

is selected and added to Lmodules.

Table 3.3: Mixing time of reconfigured modules based on fault type

FAULT TYPE MIXING TIME(in seconds)

Type 1 2.9

Type 2 3.953

Type 3 3.797

We now explain the modified list scheduling shown in Algorithm 1 with an example. Fig

3.16 shows the DMFB architecture used on the right and assay that is executed on the left.

The DMFB in Fig 3.16 has four dispense ports which hold the samples/reagents used in the

assay, one output port and two 2×5 general purpose modules. We read in the DMFB input

file and store the information of non-reconfigurable modules, i.e., dispense ports, output

ports and reconfigurable modules like 2×5 modules in this case. Assuming no faults, we

add both two 2×5 modules to a list Lmodules. In the case of a faulty module, we assume

that the faulty module is discarded and remove one module from Lmodules. To simulate a

reconfigured module, we add a new module to the list Lmodules according to the type of the

fault (single fault assumption). We read in the assay description file and store all the nodes

as a directed acyclic graph (DAG), and then add the nodes to list called Lnodes. We set the

current time step as zero and begin the execution of Algorithm 1.

38

Figure 3.16: Example assay & DMFB on which it is executed

While all nodes in the assay are not marked as complete, we check the list Lnodes for

nodes that are ready to be executed. At time zero, since dispense ports have no parent

operations, we set all dispense operations (DIS1, DIS2, DIS3, DIS4) as ready to be executed

and add them to Lready. After adding all nodes that are currently ready to execute to the

Lready list, we go to the next step. In this step we iterate over Lready and execute nodes

according to the availability of all resources. If the required resource is available, we mark

the current node as executing and update its start and end time. After iterating over the

Lready list, we increment the timestep and check for operations that are complete. Since

dispensing operation is assumed to take a single time step, we mark dispensing operation as

complete.

In the next iteration of the while loop, MIX1 and MIX2 are added to the ready list and

executed depending on the availability of modules. We continue this until all nodes in the

assay are marked as complete.

3.4 Results

The DMFB Static Synthesis Simulator (DSSS), is an open source simulation platform de-

veloped by Grissom et al. [36]. The platform is modular and flexible and it is easy to

develop new architectures and algorithms and compare them to existing algorithms without

too much effort. We use a modified version of the DSS presented in [8]. The DSS simulator

is modified to support the GPFP architecture. To add fault tolerant capabilities to the

39

GPFP architecture, we modified the scheduling and the binding algorithm as discussed in

the previous section.

We compare the assay completion time on the GPFP architecture with no faults, with

one faulty module (which covers all types of faults discussed earlier) and reconfigured faulty

module conditions. We use the benchmarks used in [8] and [36] to evaluate the fault tolerance

algorithm. We simulate the polymerase chain reaction (PCR) assay which is used to amplify

or quantify DNA or RNA. We simulate a convergent PCR assay. In-vitro assays are used to

measure glucose and other metabolites in blood, plasma, urine and saliva. This is important

in clinical diagnosis as variation in these metabolites is often a symptom of various disorders.

Figure 3.17: Schematic of in-vitro diagnostic assay

We implement various combinations of in-vitro diagnostics (Fig 3.17), measuring multiple

metabolites thereby increasing the number of operations performed on the array. We also

implement protein split assays (Fig 3.18) which are divergent assays. The numerical value in

the name of the protein split assay specifies the number of split levels in the assay as shown

in Table 3.4. As shown in Fig 3.18, as the number of split levels increases, the number of

operations and thereby the complexity of the assay increases.

40

Figure 3.18: Schematic of protein Split assay

We assume that the droplet actuation frequency is 100Hz, i.e., the time step is 0.01

seconds. Similar to the experiment in [8], we do not consider the routing time required

for each assay in these results due to its small value. These simulations were run on a 2nd

generation Intel i5 processor with 12 GB of RAM running 64-bit Windows 7. The simulation

results are summarized in Table 3.4.

41

Table 3.4: Mixing time of reconfigured modules based on fault type

Assay Dimensions Modules No Fault With Fault Type -1 Type - 2 Type -3

B1 PCR 13×9 4 6609 8811 7307 8360 8204

B1 PCR 13×12 6 6609 6609 - - -

B2 InVitro Ex1 2s 2r 13× 9 4 4409 8811 5805 7911 7599

B2 InVitro Ex1 2s 2r 13×12 6 4409 4409 - - -

B2 InVitro Ex2 2s 3r 13× 9 4 8813 8813 - - -

B2 InVitro Ex2 2s 3r 13×12 6 4413 8811 5809 7915 7603

B2 InVitro Ex3 3s 3r 13× 9 4 13215 13217 13215 13215 13215

B2 InVitro Ex3 3s 3r 13×12 6 8813 8813 - - -

B2 InVitro Ex4 3s 4r 13× 9 4 13219 17619 16707 17619 17619

B2 InVitro Ex4 3s 4r 13×12 6 8813 13217 11605 14066 13598

B2 InVitro Ex5 4s 4r 13× 9 4 17619 26427 22505 22023 22023

B2 InVitro Ex5 4s 4r 13×12 6 13217 17619 13217 14066 13598

B4 ProteinSplit 1 Eq 13× 9 4 15417 15417 - - -

B4 ProteinSplit 1 Eq 13×12 6 15417 15417 - - -

B4 ProteinSplit 2 Eq 13× 12 6 17621 30831 21111 24625 24001

B4 ProteinSplit 2 Eq 13×15 8 17621 17621 - - -

B4 ProteinSplit 3 Eq 13× 12 6 33035 46245 33035 33035 33035

B4 ProteinSplit 3 Eq 13×15 8 19827 33033 23317 26831 26207

B4 ProteinSplit 4 Eq 13×18 10 48449 61659 48449 48449 48449

B4 ProteinSplit 4 Eq 13×21 12 35241 35243 35241 35241 35241

Let us analyze the result in the 1st row, the PCR assay executing on the 13×9 array,

which has 4 modules as shown in the Fig 3.19. The PCR assay shown in Fig 3.20 has 4 oper-

ations that should be executed and completed in parallel to enable the children operations.

Operations MIX 3, 6, 9 and 12 should be executed in parallel to reduce the assay completion

time. In the case of a fault in the 13×9 array, the number of available modules is 3, therefore

only 3 of those parallel mixing operations can be scheduled. This in turn increases the assay

42

completion time to 8811 milliseconds from 6609 milliseconds as shown in Table 3.4.

Figure 3.19: Modules on a 13×9 GPFP array

Figure 3.20: PCR Assay

By reconfiguring the faulty module, we have a slower 4th module, which can help the

parallel mixing operation to finish at a slower rate. We simulate all single electrode faults

namely Type 1, 2 and 3. We observe that the effect of a faulty module is dependent on the

number of parallel operations in the assay, the number of modules available on the array,

and the type of fault. In the case where the number of available modules is greater than the

number of parallel operations, for e.g., row 2 in Table 3.4, the presence of a faulty module

has no impact on the assay completion time. We observe an average improvement of 31.62%

in completion time of the assay in the case of Type 1 fault, 17.18% in the case of Type 2

fault and 19.67% in the case of Type 3 fault.

43

By reconfiguring modules with routing-based operation execution we are able to improve

the assay completion time for arrays with faulty modules. In the next chapter we will apply

the routing-based operation execution results to develop a different synthesis algorithm.

44

Chapter 4

Routing Based Synthesis

In chapter 3, we characterized the percentage of mixing completed when the droplet moves

in a particular direction. In this chapter, we apply this routing-based methodology to de-

velop a different type of synthesis mechanism. The previous work on synthesis assumes the

presence of virtual modules to complete reconfigurable operations like mixing, splitting etc.

Since these operations can be performed by routing the droplets on any random sequence of

electrodes, we do not need a virtual bounding box. In this chapter, we first discuss the limi-

tations of this module-based synthesis approach and then propose a routing-based synthesis

approach to overcome these limitations.

4.1 Motivation for routing-based synthesis

Let us consider the synthesis of the example assay shown in Fig 4.1 on a 7×7 array. The

example assay has seven input/dispense operations (D1 - D7), six mixing operations (M1 -

M6) and one output operation (O). Let us assume that we have a 2×4 mixer with mixing

time of 2.9 seconds and a 2×5 mixer with mixing time of 2.2 seconds.

45

Figure 4.1: Example assay

For simplicity, we assume that dispense operations D1 to D4 are complete and their

children nodes are ready to execute. The droplets are dispensed and are ready on the

chip for merging. We ignore the overhead of routing the droplets, since the time taken to

route droplets is too small compared to the mixing time. Since each merging operation is

essentially routing two droplets to a common location, merging time can be ignored as well.

The optimal solution for this assay is shown in Fig 4.2. The placement for this schedule is

as shown Fig 4.3.

Figure 4.2: Schedule for the example assay

46

Figure 4.3: Placement for example assay

The module-based synthesis approach considers all electrodes (colored blue in Fig 4.3)

belonging to a module as occupied during operation execution. In addition to that, to

maintain fluidic constraints, i.e., to prevent accidental merging or mixing of droplets, a

segregation layer is maintained around the modules (electrodes colored in red in Fig 4.3).

Some module placement algorithms allow segregation layers to overlap. For the 7×7 array,

only two 2×5 modules can be placed at a time, and therefore we can only have two operations

execute at a time. In our example assay, we have three operations that can be executed in

parallel. Using smaller modules (For example, 2×2 having mixing time of 9.1 seconds)

47

will increase the assay completion time drastically. Therefore, we have to schedule mixing

operation M3 in the next time step. Let us consider the 2×5 modules in Fig 4.3. This module

is made up of 10 electrodes that perform mixing and 18 electrodes that are a part of the

segregation layer, i.e., 28 electrodes in all are considered to be occupied when an operation

is being executed on this module. Since a droplet occupies only one electrode at any given

time, the remaining electrodes can be used by other droplets to complete their operations.

This allows multiple operations to be scheduled at a time, thereby increasing the parallelism

in operation execution by better utilization of electrodes on the array.

The schedule for the example assay in Fig 4.1 using a routing-based synthesis approach

is shown in Fig 4.4. We assume that all dispensing operations are complete and the droplets

are on the array ready for the next operation. The time taken to route droplets around

is negligible compared to the time taken for a mixing operation to complete therefore, we

ignore the routing time. Mixing using the routing based-technique takes an average of 2

seconds to complete depending on the size of array and the number of droplets on the chip.

We therefore assume 2 seconds as the upper bound for all mixing operations in the schedule

shown in Fig 4.4.

Figure 4.4: Example assay schedule using RBS

Operations whose parents nodes are completed are ready to execute. Once dispensing

operations D1 to D6 are complete, mixing operations M1, M2 and M3 are ready to execute.

The dispensed droplets are merged to form mix droplets M1, M2 and M3 and the mixing

operations begin. In each step the droplets are routed based on the mixing values mentioned

48

in Table 3.2 such that the greatest mixing percentage can be obtained. The movement of

the droplets at intermediate time steps during the execution of example assay is shown in

Fig 4.5. The routing-based synthesis approach offers much better parallelism compared to

the module-based synthesis approach as shown in Fig 4.2 and Fig 4.4.

Figure 4.5: Movement of droplets during execution

The impact of electrode failures is significant on module-based synthesis. During recon-

figuration the modules have to be placed such that they do not overlap the faulty electrode.

As a result, at times we may have to use smaller modules which impacts the assay completion

time. As shown in Fig 4.6, on the left we have to use a smaller 2×2 mixer in presence of a

faulty electrode. In the case of routing-based approach, the droplets can be routed around

the faulty electrode. Thus, the routing based-synthesis approach has better fault tolerance.

Figure 4.6: Effect of faults on module based and routing based approach

The module-based synthesis method is made up of steps like allocation, binding, schedul-

49

ing, placement and routing. The computational complexity of each of those steps is high.

To obtain an optimal solution, we frequently use heuristics like Tabu search etc. to iterate

over the search domain. This further increases the complexity of the module-based synthesis

approach. Routing-based synthesis transforms the synthesis problem into a routing-problem

which is a simple deterministic selection problem.

4.2 Routing based synthesis algorithm

The disadvantages of module-based synthesis approach based on virtual modules is discussed

in the previous section. In this section we propose a routing-based synthesis algorithm in

which operations are executed by routing the droplets on a random sequence of electrodes on

the array. In this work, we propose a greedy algorithm which executes operations by routing

the droplet along the best possible path at every time step. The major difference between

this algorithm and the routing-based algorithm presented in [37] is that this algorithm uses a

deterministic approach in selecting the next step for the droplet and it has a better merging

algorithm. The following pseudo-code gives a high level overview of the algorithm.

Data: assay specified as a DAG, Architecture;
Result: Scheduled assay
Read in list of nodes to execute and store them in list Lnodes ;
Set current time step to zero;
Create a list LcompletedNodes to hold nodes that are complete;
while Length of Lnodes is NOT EQUAL to Length of LcompletedNodes do

Call addReadyNodes();
Call executeReadyNodes();
Call bookkeeping();

end
Algorithm 2: Routing based sythesis psuedo code

The inputs to the routing-based synthesis (RBS) algorithm are: (a) the array on which

an assay is to be scheduled and (b) the assay in form of nodes and dependencies between

them represented by the edges. The architecture input file is read in and the details of the

architecture such as its dimensions, location of the input output ports and peripherals such

50

as detectors, heaters etc. are stored. A directed acyclic graph (DAG) is constructed based

on the assay input file. Each node of the DAG represents operations to be executed and

the edges define the dependencies between nodes. A list of nodes Lnodes is constructed

after reading the DAG. This list contains all nodes/operations to be executed for this assay.

We construct another list of nodes LcompletedNodes, which is empty initially. As nodes are

completed, they are added to this list. While all the nodes are not executed i.e., the length

of Lnodes is not equal to the length of LcompletedNodes, we execute the following steps.

STEP 1: addReadyNodes

This step uses the well-known List Scheduling method to schedule operations for execu-

tion. We scan through the list Lnodes, for each node that is not complete/executing/dispense,

we check the status of its parent nodes. If the parent node(s) is (are):

• Complete, the node is ready for execution and we add it to the LreadyNodes list.

• If one of the parent node is complete, and the other parent is dispense, we add the

dispense parent to the LreadyNodes list.

• If both parent nodes are dispense, add parent dispense operations to the LreadyNodes

list.

• Otherwise, continue to the next node.

The function addReadyNodes returns after iterating through all nodes in the list. Lrea-

dyNodes is updated with all nodes that are ready to be executed at that particular time

step.

STEP 2: executeReadyNodes

In this step, we iterate over the list LreadyNodes created in the previous step. This step

executes all operations that are ready to be executed in the current time step. Each node

is handled based on the type of operation it belongs to. If the node status is READY, its

start time is updated as the current time step and its status is set as EXECUTING. If the

51

node has its status as EXECUTING, it is currently being executed, we continue executing

it at each time step until the operation is complete. The different operations than can be

performed in this step are as follows,

1. Dispense Droplet : In this operation, a new droplet is dispensed from one of the input

reservoirs and is added to the DMFB array. We check if the new droplet can be

dispensed from the port. The presence of another droplet around the port violating

fluidic constraints may block the dispensing operation. This is shown in the Fig 4.7.

Figure 4.7: Dispense operation

If there is another droplet in the shaded region, the dispensed droplet may accidentally

merge with it. To avoid this we dispense a new droplet only when there is no other

droplet in the shaded region. According to the module library mentioned in [37],

dispensing operation takes 2 seconds, but considering Fig 4.7, dispensing operation is

completed by moving the droplet over 3 electrodes. The droplet can be dispensed from

the reservoir by activating electrodes 1, 2 and 3 in that order. Since the time taken for

a droplet to move from one electrode to the other is 0.01 seconds, the total time for

dispensing operation to complete will be 0.03 seconds. In this work we assume that the

dispense droplet is ready at electrode 2 in the previous time step and the time taken

to dispense a droplet is 0.01 seconds. Once a new droplet is available at electrode 3,

52

we mark the executing node as COMPLETE.

2. Mix Droplet : A mixing operation is denoted as shown in Fig 4.8. Let us assume

that droplet D1 is created for node DISPENSE 1 and droplet D2 is created for node

DISPENSE 2. For mixing operation MIX 3 to begin, droplets D1 and D2 must merge

to create a new droplet, droplet D3. Thus, the mixing operation is broken down into

2 parts, first merging the droplets and then mixing them.

Figure 4.8: Mixing operation

When the operation being executed is mixing, we check if there exists a droplet associ-

ated with the mixing node (for example droplet D3 associated with node MIX 3 in Fig

4.8) on the array, if not the parent droplets have not merged yet to form the mixing

droplet. In such a case the parent droplets must be merged. In [37], the authors use

Manhattan distance between the two droplets to determine the best possible direction

the droplet must move in. Out of the five possible directions in which any droplet can

move at any instant, the author generates a list of the best three directions the droplet

can move and randomly selects one of those. This randomized approach may or may

not select the best possible move at that instant.

We use a deterministic approach to determine the direction in which both droplets

should move in order to merge. We apply the well known Lee's maze routing algo-

rithm to determine the best possible path for the droplets. This approach considers

the presence of all other droplets on the array which may block paths suggested by

calculating the Manhattan distance between both droplets S and T in Fig 4.9.

53

Figure 4.9: Droplet merging using Lee's Algorithm

Let us merge the droplets at locations denoted by S and T in Fig 4.9. If we consider

moving the droplets such that the Manhattan distance between them is reduced, we

may be blocked by other droplets. The shaded region around the droplet denotes the

segregation layer around them to maintain fluidic constraints. In such a case, we may

need to move initially in directions that may increase the Manhattan distance between

these two droplets. The Lee's algorithm helps us find the route even in the presence of

other droplets. We begin by marking the droplets as Source (S) and Target (T). We

then propagate a wave of numbers, like in Fig 4.9 and each number denotes the number

of steps droplet at S needs to take to reach that electrode. We stop once we reach the

target T. We then backtrack from T, tracing the numbers in decreasing order until

we reach S. We use this backtracked path to determine the direction in which both

droplets S and T should move for merging. We continue this operation at every time

step until both droplets merge. Once the droplets are merged we begin with mixing.

The mixing operation can start once the parent droplets merge to form a mix droplet.

We use a greedy approach to determine the best direction in which the droplet should

move in order to complete mixing as soon as possible. For a newly merged droplet,

based on its current location, we move it such that it can continue its linear movement

54

as long as possible. We assume that this step completes 0.29% of the mixing. We

record the entire route taken by the droplet and use it to calculate the new mixing

percentage in the current time step. If the droplet continues moving in the current

direction for more than one electrode (2-0°), we add 0.89% to the mixing percentage;

if it is just one electrode in the current direction (1-0°), we add 0.29% to the mixing

percentage. If the droplet cannot continue its movement in the current direction we

move the droplet 90° of the current direction such that the droplet can continue its

straight line motion for the maximum number of electrodes. After moving the droplet

90° of the current direction we add 0.1% to the mixing percentage. If the droplet

cannot be moved 90° as well, we keep the droplet at its current location. This does

not change the mixing percentage. We continue moving the droplet at each time step

until the mixing percentage is 100%.

3. Split droplet : The next operation we consider is to splitting a droplet. To split a

droplet, we have to simultaneously activate the electrode on either side of the droplet,

either in X direction or in Y direction. We first check the location of the droplet. If it

is located along the boundary of the array, we can only split it in either in X direction

or Y direction; otherwise we try splitting in X direction first, if not possible we try

Y direction. The droplet can be split, only if both new droplets can be placed on

the array without violating any fluidic constraints. If this is not possible, we move

the droplet in a randomly selected direction so that we can split the droplet in the

next time step. Since splitting operation involves splitting a droplet and moving one

electrode, we assume that the time taken for splitting operation is 0.01 seconds.

4. Detect operation: For detect operation we move the droplet to the electrode marked

as detector. We use the Lee's algorithm to find the best path for the droplet to move

to the detector. The droplet moves one electrode at a time. We continue this until the

droplet reaches the detector electrode. Once the droplet reaches the detector electrode

55

we mark the detect operation as COMPLETE. The time taken for detect operation to

complete is equal to the time taken for the droplet to move the detect electrode.

5. Output operation: For output operation to complete we move the droplet to the output

port. Like in detect operation, we use the Lee's algorithm to find the best path to move

the droplet to the output port. The droplet moves one electrode at a time. Once the

droplet reaches the output port we mark the operation as COMPLETE. Similar to

detect, the time taken for output operation equal to the time taken by the droplet to

reach the output port.

STEP 3: bookkeeping

In this step, we go through the list of ready nodes LreadyNodes and check the status of

each node. We continue to the next node if the status is READY or EXECUTING. If the

status of the node is COMPLETE, we remove it from LreadyNodes and add it to the list of

completed nodes LcompletedNodes. The MIX operation droplets are handled differently.

For a MIX operation, first we check if the mixing percentage is 100%, if not the operation

is still EXECUTING. If the mixing percentage is 100%, we check the location of the droplet.

Once we set the mix operation as complete the droplet remains at the current electrode until

its child operation is ready to execute. In most cases, the mix droplet combines with a new

droplet from the dispense port for next operation. If the MIX droplet is around the periphery

of the array, the dispense operation is blocked thereby causing a deadlock situation. To avoid

this, once the mixing percentage reaches 100%, we check the location of the droplet. If it

is located close to the periphery it is moved closer to the center of the array in the next

time step. Otherwise, the operation is marked as COMPLETE and removed from the list of

ready nodes. We then add this operation to the list of completed nodes LcompletedNodes.

After iterating over all nodes in the LreadyNodes list we increment the current time step by

one.

DEADLOCK AVOIDANCE: We keep track of each droplet at every time step. If the

droplet is at its current position for more than 3 time steps, we assume that the droplet is in

56

a deadlock situation. We then move the droplet randomly in any possible direction to break

the deadlock. If the droplet is a mix droplet, we update the mix percentage appropriately.

4.3 Assumptions

Architectural assumption: We assume that the RBS (routing based synthesis) algorithm is

executed to schedule an assay on a general purpose DMFB, i.e., an array of electrodes with

no architectural modifications like the FPPC/GPFP architecture and no pin-constrained

designs. Pin-constrained architectures have been proposed as a solution to the growing com-

plexity of direct addressing (DA) arrays as the number of electrodes on the array increased.

In [25], the authors propose an active matrix addressing (AMA) approach, in which m + n

pins can be used to control an m × n electrode array. We assume that the electrodes are

individually addressable using either DA or AMA techniques.

Dispensing time: According to [37], the time taken for dispensing operation to complete

is 2 seconds. According to Fig 4.7, dispensing operation needs a droplet split and move

operation and the time taken for this to complete is 0.03 seconds. We assume that dispense

droplet is ready on electrode 2, hence the operation is instantaneous and needs one time step

for completion. Once the assay is scheduled an electrode activation sequence file is generated,

it can be modified such that Electrodes 1 and 2 shown in Fig 4.7 can be activated in the

previous 2 time steps before dispense operation to make dispensing operation instantaneous.

Detection time: Depending on the type of assay we may need different types of peripheral

operations in the detect step, for e.g. heater, photodiode etc. The time taken for detect

operation is assay specific. We assume that each detect operation is a unit step operation.

The time taken for detection can be added later according to the type of detect operation.

57

4.4 Implementation details

The routing based synthesis (RBS) simulator developed in this work is modular, general

purpose and can be used to simulate any synthesis algorithm. It is programmed in C++

using the object oriented paradigm. We use the same input file format as used by the DSSS

simulator [9], i.e., a DMFB architecture file and an assay description file. The DMFB archi-

tecture file contains the dimensions and the location of input output ports and peripherals.

The assay is specified as a directed acyclic graph, where each node represents the operations

to be performed and the edges represent dependencies between the nodes.

The simulator models every part of the entire simulation process such that it makes the

code modular and easy to change. We divide the simulation process into distinct categories

and define the interactions between them. We model the hardware, i.e., the DMFB array on

which we execute our assays and the droplets. The DMFB array is an array of electrodes.

As shown in the Fig 4.10, we model each electrode as an object with properties like a unique

ID, its location when used in the array, its type and whether it is occupied or not. We use

this electrode object to model the DMFB array object. We also model each IO ports on the

DMFB array with properties like ID, name, location, fluid dispensed, dispensing time etc.

The DMFB array has properties like architecture name, its dimensions, an array of electrode

objects, a list of input output port objects and the time step for each operation.

58

Figure 4.10: Hardware data structure

We read in the DMFB architecture file and instantiate the objects described above ac-

cordingly. We also model a droplet which is another major building block for the simulator.

We model the droplet such it has its unique ID and the operation ID/node it is associated

with. We also keep track of its current position, routing path, mix percentage if it is a mix

droplet, its current status (active or inactive) and whether it moved in the current time step.

To construct the assay DAG, we first model each node such that it includes information such

as its ID, operation type, its parent nodes, children nodes, execution time stamps etc. We

then build the DAG based on the assay file read in by the simulator.

We also built an interface to all standard operations performed on the DMFB array.

We built routines such as dispensing droplet which instantiates a new droplet object on the

DMFB object. We also have standard functions which perform operations like moving a

droplet etc. By using these routines the simulator can be extended to simulate any synthesis

algorithm.

59

4.5 Results

Experiment 1: Comparison of assay completion time with GPFP architecture

To evaluate the performance of RBS, we first compare the assay completion time with the

List scheduling algorithm used on a GPFP architecture defined in [8]. The assay completion

time on the GPFP array is compared with a DMFB array with direct addressing. The results

in [8] show that the assay completion on the GPFP array is comparable to the DA array when

the number of electrodes on DA array are approximately 3 times more than that of the GPFP

array. To evaluate performance of the RBS algorithm, we first compare its assay completion

time with the time required by list scheduling for the same assay on the GPFP architecture

using an array of same dimensions. Because of the modular nature of the GPFP architecture,

the number of electrodes on the DA array is approximately 26% more than the electrodes

on the GPFP array. We evaluate the RBS algorithm using the same set of benchmarks used

in the previous section, namely the PCR assay, in-vitro assay and protein split assays. We

modify the scheduling algorithm for GPFP such that the assumptions made for RBS match

with the GPFP scheduling algorithm i.e., dispense and detect are both considered as unit

time operations. The results of the comparison is summarized in Table 4.1.

60

Table 4.1: Comparison of RBS with GPFP

Array GPFP RBS % Increase in Assay completion time

Assay Dimensions Electrodes Electrodes Electrodes GPFP RBS % Improvement

B1 PCR 13×12 113 156 27.56 6630 4260 35.75

B1 PCR 13×15 145 195 25.64 6630 4190 36.79

B2 InVitro Ex1 2s 2r 13×9 87 117 25.64 2300 1670 27.39

B2 InVitro Ex1 2s 2r 13×12 113 156 27.56 2300 1600 30.43

B2 InVitro Ex2 2s 3r 13×9 87 117 25.64 4470 1900 57.49

B2 InVitro Ex2 2s 3r 13×12 113 156 27.56 2300 1580 31.3

B2 InVitro Ex3 3s 3r 13×9 87 117 25.64 6660 2020 69.67

B2 InVitro Ex3 3s 3r 13×12 113 156 27.56 4470 1860 58.39

B2 InVitro Ex4 3s 4r 13×9 87 117 25.64 6700 2520 62.39

B2 InVitro Ex4 3s 4r 13×12 113 156 27.56 4470 2150 51.9

B2 InVitro Ex5 4s 4r 13×9 87 117 25.64 8870 4200 52.65

B2 InVitro Ex5 4s 4r 13×12 113 156 27.56 6680 2460 63.17

B4 ProteinSplit 1 Eq 13×9 87 117 25.64 13240 8720 34.14

B4 ProteinSplit 1 Eq 13×12 113 156 27.56 13240 8570 35.27

B4 ProteinSplit 2 Eq 13×12 113 156 27.56 15460 10320 33.25

B4 ProteinSplit 2 Eq 13×15 145 195 25.64 15460 10260 33.64

B4 ProteinSplit 3 Eq 13×12 113 156 27.56 28670 12930 54.9

B4 ProteinSplit 3 Eq 13×15 145 195 25.64 17700 12490 29.44

B4 ProteinSplit 4 Eq 13×18 174 234 25.64 41880 15710 62.49

B4 ProteinSplit 4 Eq 13×21 203 273 25.64 30910 28580 7.54

Observations

Based on the results summarized in Table 4.1, we observe that RBS consistently shows

an average reduction of 43% in the assay completion time for benchmarks used to evaluate

it. This can be attributed to two key factors: improvement in the mixing time and increased

parallelism during assay execution.

The time taken for a mixing operation to complete on a 2 × 5 module on the GPFP array

is 2200 milliseconds. This mixing time reduces by 32% on average by using the routing-based

61

approach for mixing over the traditional module-based approach. This can be observed in

assays like B1 PCR, B2 InVitro Ex1 2s 2r in which the number of operations that can be

executed in parallel are less than or equal to the number of available modules. In this case

the improvement we see in the assay completion time can be attributed to the better mixing

time, because of the routing-based mixing approach.

The inherent limitation of the GPFP architecture is an upper bound on the number

of operations that can be executed in parallel. For example the 13×9 GPFP architecture

has four modules and therefore we cannot execute more than four operations in parallel.

However, larger assays usually have many operations that can be executed in parallel. For

example B2 InVitro Ex2 2s 3r has six operations that can be executed in parallel. When

scheduled on a four module 13×9 GPFP array, the operations have to wait until the resources

are available thereby increasing the execution time significantly. Comparing this with RBS

synthesis we observe an average improvement of 57% which can be attributed to both the

improved mixing quality and better parallelism. Since RBS has no limitation on the number

of operations, we can schedule on the chip as opposed to virtual modules on the GPFP

array, so RBS offers much better parallelism. When the same assay is scheduled on a larger

6 module 13×12 GPFP array we observe that the assay is completed in half the time taken

by the assay on a 13×9 GPFP array. The only improvement we see in this case is due to

better mixing time.

Based on this experiment, we can conclude that RBS offers reduction in assay completion

time by approximately 30% due to better mixing time and another 20% - 25% improvement

by executing maximum possible operations in parallel. Since we observe a better assay

completion time than the GPFP architecture, we can conclude that RBS offers significant

improvement over the traditional synthesis approach involving binding, scheduling, place-

ment and routing. With RBS we simplify the synthesis problem into an easier routing

problem in contrast to the traditional approach. Therefore the execution time of RBS is

much smaller compared to approaches specified in [27], [7], [29] etc.

62

Experiment 2: Comparison of assay execution time with GRASP [37]

In [37], the author proposes a routing based-synthesis algorithm GRASP for DMFBs.

GRASP stands for greedy randomized adaptive search procedure. This algorithm finds

the routes for operation completion using a randomized and greedy approach. At each time

step, the algorithm creates a list of possible directions the droplet can move in and randomly

selects one out of them. To evaluate the performance of RBS against GRASP we use the

same set of synthetic benchmarks used in [37]. These benchmarks include a random sequence

of operations that can be performed on any microfluidic array. The name of each benchmark

specifies the number of operations in it. We compare the assay completion time for the

given benchmarks using arrays of different dimensions. The results of this comparison are

summarized in Table 4.2

Table 4.2: GRASP vs RBS results

Benchmark Size GRASP RBS %age Size GRASP RBS %age Size GRASP RBS %age

Graph 10 6×6 4777 3689 22.78 10×10 4119 3537 14.13 15×15 4034 3499 13.26

Graph 20 6×6 7574 4296 43.28 10×10 5019 3996 20.38 15×15 4809 4079 15.18

Graph 30 6×6 11401 5779 49.31 10×10 6797 4629 31.90 15×15 6478 4416 31.83

Graph 40 6×6 16670 5678 65.94 10×10 6317 4422 30.00 15×15 6101 4285 29.77

Graph 50 8×8 11887 8011 32.61 10×10 9712 7542 22.34 15×15 8853 7936 10.36

Graph 60 6×6 11750 8603 26.78 10×10 10262 8281 19.30 15×15 9639 8639 10.37

Graph 70 8×8 29587 19894 32.76 10×10 21049 15116 28.19 15×15 17897 14851 17.02

Graph 80 8×8 19622 15392 21.56 10×10 15546 12515 19.50 15×15 12970 11084 14.54

Observations

With RBS, we have an average 26% improvement in assay execution time across all assays

and all dimensions. GRASP relies on a randomized approach in determining the next step

the droplet should take to complete the mixing operation. This may or may not be the best

step the droplet can take at that instant. For example in benchmark Graph10 executing on a

6×6 array, we observe that the mixing operations using RBS is 65% better on average when

compared to GRASP. We observe that RBS performs better in the case of smaller array

63

dimensions e.g. 6×6 or 8×8, with an average 35% improvement in the assay completion

time. This can be attributed to the congestion on the chip due to same number of droplets

on a smaller arrays. With GRASP, droplets frequently end up moving in 180°, i.e., opposite

to the current direction, which results in negative mixing. In RBS, we avoid moving the

droplet in 180° unless the droplet reaches a deadlock state.

GRASP is a randomized algorithm, therefore to obtain the best results we have to let

the algorithm run multiple times for it to explore the search space and determine the best

solution. RBS on the other hand is a deterministic algorithm which greedily selects the best

possible move at any instant. Therefore, RBS is much more suited for field programmable

operations which require fast synthesis.

64

Chapter 5

Conclusion and Future Work

The GPFP architecture proposed in [4] overcomes the limitations of direct addressing DMFBs

by reducing the pin count. It also simplifies the synthesis problem to a scheduling, bind-

ing and routing problem which facilitates fast synthesis, thereby making it truly field pro-

grammable. However, the limitation of the GPFP architecture is the fixed number of mod-

ules. For example a 13×9 DMFB array has 4 modules, so it can execute a maximum of

4 operations in parallel. If any of the electrodes forming modules on the GPFP array is

faulty, the module is rendered useless for operation execution, thereby reducing the number

of available modules. Depending on the number of parallel operations in an assay executed

on this faulty chip, the assay execution time might increase by as much as 100 %. In this

thesis we make these modules fault-tolerant by reconfiguring them based on the location and

type of faults. We reconfigure faulty 2×5 modules in the GPFP array into smaller mixers

which can complete the mixing operation in comparable time. We use an analytical approach

to determine the percentage of mixing completed when the droplet moves in any direction.

The results show that reconfiguration of faulty modules can improve the assay completion

time by 23% on an average, when compared to execution time of the same assay on an array

with a faulty module.

We then extend this analytical approach to implement a routing based synthesis (RBS)

65

methodology for DMFB arrays. Since mixing can be performed by routing a droplet on

any random sequence of electrodes, we can modify the synthesis problem into a droplet

routing problem. By transforming the synthesis problem into a routing problem we reduce

its computational complexity drastically. This routing based sythesis approach can now be

used to perform in-field fast synthesis. This approach can be used to synthesize the assay

even in the presence of faulty electrodes. To evaluate RBS, we compare its results with

the assay completion time on the GPFP architecture. We observe that RBS offers 43%

improvement in the assay completion time. We also compare RBS with GRASP, a greedy

randomized routing based synthesis algorithm. RBS offers approximately 26% improvement

over GRASP owing to better mixing and merging operations. The execution time of GRASP

is much higher due to its randomized nature.

RBS is a greedy algorithm which selects the next step based on the current position of

each droplet. It does not consider collision or deadlock situations that may arise by moving

droplets without considering the location of other droplets. With the information about

location of other droplets, we can route droplets such that they are evenly distributed on

the electrode array. We can also reduce the negative movements or waiting at the current

location, if we route droplets by considering other droplets. Contamination occurs when

droplets get adsorbed on the surface of the electrode, thereby contaminating other droplets

that pass over the surface of this contaminated electrode. To avoid contamination, we

enclose the droplet in a filler medium like silicone oil. An alternative approach would be to

use wash droplets. RBS can be modified to include wash droplets to clean the surface of the

contaminated electrodes effectively.

66

Bibliography

[1] Arjan Floris, Steven Staal, Stefan Lenk, Erik Staijen, Dietrich Kohlheyer, Jan Eijkel,

and Albert van den Berg. A prefilled, ready-to-use electrophoresis based lab-on-a-chip

device for monitoring lithium in blood. Lab on a Chip, 10(14):1799–1806, 2010.

[2] Albert van den Berg. Labs on a chip for health care applications. In The 14th Interna-

tional Conference on Miniaturized Systems for Chemistry and Life Sciences, 2010.

[3] Daniel P Rose, M Ratterman, Daniel K Griffin, Liwen Hou, Nancy Kelley-Loughnane,

Rajesh Naik, Joshua Hagen, Ian Papautsky, Jason Heikenfeld, et al. Adhesive rfid sensor

patch for monitoring of sweat electrolytes. 2014.

[4] Hongying Zhu, Sam Mavandadi, Ahmet F Coskun, Oguzhan Yaglidere, and Aydogan

Ozcan. Optofluidic fluorescent imaging cytometry on a cell phone. Analytical Chemistry,

83(17):6641–6647, 2011.

[5] Biochips Global Market iq4i research and consultancy report. $http://www.pr.com/

press-release/619088$. Accessed: 2015-10-02.

[6] Fei Su, Sule Ozev, and Krishnendu Chakrabarty. Testing of droplet-based microelec-

trofluidic systems. volume 0, page 1192. IEEE, 2003.

[7] Fei Su and Krishnendu Chakrabarty. Unified high-level synthesis and module placement

for defect-tolerant microfluidic biochips. In Proceedings of the 42nd annual Design

Automation Conference, pages 825–830. ACM, 2005.

67

$http://www.pr.com/press-release/619088$
$http://www.pr.com/press-release/619088$

[8] Rissen Alfonso Joseph. A General Purpose Field-Programmable Digital Microfluidic

Biochip with Scannable Electrofluidic Control. PhD thesis, University of Cincinnati,

2014.

[9] Daniel Grissom and Philip Brisk. A field-programmable pin-constrained digital mi-

crofluidic biochip. In Proceedings of the 50th Annual Design Automation Conference,

page 46. ACM, 2013.

[10] Madhuri N Gupta. Multi-Board Digital Microfluidic Biochip Synthesis with Droplet

Crossover Optimization. PhD thesis, University of Cincinnati, 2014.

[11] Elena Maftei, Paul Pop, and Jan Madsen. Synthesis of digital microfluidic biochips

with reconfigurable operation execution. PhD thesis, Technical University of Denmark-

Danmarks Tekniske Universitet, Department of Applied Mathematics and Computer

ScienceInstitut for Matematik og Computer Science, Software EngineeringSoftware En-

gineering, 2011.

[12] David Juncker, Heinz Schmid, Ute Drechsler, Heiko Wolf, Marc Wolf, Bruno Michel,

Nico de Rooij, and Emmanuel Delamarche. Autonomous microfluidic capillary system.

Analytical chemistry, 74(24):6139–6144, 2002.

[13] Anthony K Au, Hoyin Lai, Ben R Utela, and Albert Folch. Microvalves and micropumps

for biomems. Micromachines, 2(2):179–220, 2011.

[14] Howard A Stone, Abraham D Stroock, and Armand Ajdari. Engineering flows in small

devices: microfluidics toward a lab-on-a-chip. Annu. Rev. Fluid Mech., 36:381–411,

2004.

[15] Venkatachalam Chokkalingam, Jurjen Tel, Florian Wimmers, Xin Liu, Sergey Semenov,

Julian Thiele, Carl G Figdor, and Wilhelm TS Huck. Probing cellular heterogeneity

in cytokine-secreting immune cells using droplet-based microfluidics. Lab on a Chip,

13(24):4740–4744, 2013.

68

[16] Yung-Chieh Tan, Vittorio Cristini, and Abraham P Lee. Monodispersed microfluidic

droplet generation by shear focusing microfluidic device. Sensors and Actuators B:

Chemical, 114(1):350–356, 2006.

[17] Piotr Garstecki, Michael J Fuerstman, Howard A Stone, and George M Whitesides.

Formation of droplets and bubbles in a microfluidic t-junctionscaling and mechanism of

break-up. Lab on a Chip, 6(3):437–446, 2006.

[18] Krishnendu Chakrabarty and Fei Su. Digital microfluidic biochips: synthesis, testing,

and reconfiguration techniques. CRC Press, 2006.

[19] Michael George Pollack. Electrowetting-based microactuation of droplets for digital mi-

crofluidics. PhD thesis, Duke University, 2001.

[20] Vijay Srinivasan, Vamsee K Pamula, and Richard B Fair. An integrated digital mi-

crofluidic lab-on-a-chip for clinical diagnostics on human physiological fluids. Lab on a

Chip, 4(4):310–315, 2004.

[21] William L Hwang, Fei Su, and Krishnendu Chakrabarty. Automated design of pin-

constrained digital microfluidic arrays for lab-on-a-chip applications*. In Proceedings of

the 43rd annual Design Automation Conference, pages 925–930. ACM, 2006.

[22] Tao Xu and Krishnendu Chakrabarty. Droplet-trace-based array partitioning and a

pin assignment algorithm for the automated design of digital microfluidic biochips.

In Proceedings of the 4th international conference on Hardware/software codesign and

system synthesis, pages 112–117. ACM, 2006.

[23] Tao Xu and Krishnendu Chakrabarty. Broadcast electrode-addressing for pin-

constrained multi-functional digital microfluidic biochips. In Proceedings of the 45th

annual Design Automation Conference, pages 173–178. ACM, 2008.

69

[24] Shih-Kang Fan, Craig Hashi, and Chang-Jin Kim. Manipulation of multiple droplets on

n× m grid by cross-reference ewod driving scheme and pressure-contact packaging. In

Micro Electro Mechanical Systems, 2003. MEMS-03 Kyoto. IEEE The Sixteenth Annual

International Conference on, pages 694–697. IEEE, 2003.

[25] Joo Hyon Noh, Jiyong Noh, Eric Kreit, Jason Heikenfeld, and Philip D Rack. Toward

active-matrix lab-on-a-chip: programmable electrofluidic control enabled by arrayed

oxide thin film transistors. Lab on a Chip, 12(2):353–360, 2012.

[26] Vaishnavi Ananthanarayanan and William Thies. Biocoder: A programming language

for standardizing and automating biology protocols. Journal of biological engineering,

4(1):1–13, 2010.

[27] Fei Su and Krishnendu Chakrabarty. Architectural-level synthesis of digital

microfluidics-based biochips. In Proceedings of the 2004 IEEE/ACM International con-

ference on Computer-aided design, pages 223–228. IEEE Computer Society, 2004.

[28] Ping-Hung Yuh, Chia-Lin Yang, and Yao-Wen Chang. Placement of defect-tolerant

digital microfluidic biochips using the t-tree formulation. ACM Journal on Emerging

Technologies in Computing Systems (JETC), 3(3):13, 2007.

[29] Tao Xu and Krishnendu Chakrabarty. Integrated droplet routing and defect tolerance

in the synthesis of digital microfluidic biochips. ACM Journal on Emerging Technologies

in Computing Systems (JETC), 4(3):11, 2008.

[30] Vijay Srinivasan, Vamsee Pamula, Michael Pollack, and Richard Fair. A digital mi-

crofluidic biosensor for multianalyte detection. In Micro Electro Mechanical Systems,

2003. MEMS-03 Kyoto. IEEE The Sixteenth Annual International Conference on, pages

327–330. IEEE, 2003.

[31] Fei Su and Krishnendu Chakrabarty. Module placement for fault-tolerant microfluidics-

70

based biochips. In ACM Transactions on Design Automation of Electronic Systems

(TODAES), volume 11, pages 682–710. ACM, 2004.

[32] Fei Su and Krishnendu Chakrabarty. Defect tolerance for gracefully-degradable

microfluidics-based biochips. In VLSI Test Symposium, 2005. Proceedings. 23rd IEEE,

pages 321–326. IEEE, 2005.

[33] Mirela Alistar, Paul Pop, and Jan Madsen. Compilation and Synthesis for Fault-Tolerant

Digital Microfluidic Biochips. PhD thesis, Technical University of DenmarkDanmarks

Tekniske Universitet, Department of Informatics and Mathematical ModelingInstitut

for Informatik og Matematisk Modellering.

[34] Phil Paik, Vamsee K Pamula, and Richard B Fair. Rapid droplet mixers for digital

microfluidic systems. Lab on a Chip, 3(4):253–259, 2003.

[35] MG Pollack, AD Shenderov, and RB Fair. Electrowetting-based actuation of droplets

for integrated microfluidics. Lab on a Chip, 2(2):96–101, 2002.

[36] Daniel Grissom, Kenneth O’Neal, Benjamin Preciado, Hiral Patel, Robert Doherty, Nick

Liao, and Philip Brisk. A digital microfluidic biochip synthesis framework. In VLSI

and System-on-Chip (VLSI-SoC), 2012 IEEE/IFIP 20th International Conference on,

pages 177–182. IEEE, 2012.

[37] Elena Maftei, Paul Pop, and Jan Madsen. Routing-based synthesis of digital microfluidic

biochips. Design Automation for Embedded Systems, 16(1):19–44, 2012.

71

	Introduction
	Digital microfluidic biochips
	Contributions
	Thesis organization

	Background
	Working of LOCs
	Electrode addressing on DMFBs
	Overview of GPFP DMFB architecture
	Synthesis
	Faults in DMFBs
	DMFB Testing
	Fault tolerance in DMFBs
	Faults possible in GPFP DMFB

	Fault Tolerance in FPGA based DMFBs
	Characterization of operations based on routing
	Module reconfiguration in presence of faults
	Single Electrode Fault
	Multiple Electrode Faults

	Fault Tolerant synthesis for GPFP architecture
	Results

	Routing Based Synthesis
	Motivation for routing-based synthesis
	Routing based synthesis algorithm
	Assumptions
	Implementation details
	Results

	Conclusion and Future Work

