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ABSTRACT 

CELIKBILEK, CAN, M.S., December 2015, Civil Engineering 

Transportation Route Optimization for the State of Ohio's Inland Waterway System: A 

Case Study for Mid-Ohio River Valley Region 

Director of Thesis: Deborah McAvoy 

Within the transportation-engineering field, transportation optimization is a 

paramount concept of the utmost importance for the minimization of costs and 

maximization of efficiency. This research focuses on the intermodal transportation 

environment involving truck and barge transportation modes with a particular emphasis 

on the Mid-Ohio River Valley Region.  The study was conducted with the primary 

objective of optimizing minor port locations within this region by utilizing containers on 

barge shipping to alleviate highway traffic congestion.  In order to determine the optimal 

minor port locations, a mixed integer mathematical model (MIP) was developed to 

minimize the transportation and fixed costs associated with opening each potential port. 

In addition to the developed mixed integer mathematical model, a new heuristic model 

was specifically developed for this particular problem. The developed heuristic model 

resulted in similar solutions compared to the mathematical model thereby allowing it to 

be used as a solution methodology for transportation route optimization.     

The model considered warehousing freight transferred from major ports in 

Cincinnati, OH and Huntington, WV to the Heartland Corridor intermodal terminals of 

Belpre, OH, South Point, OH, and Wellsville, OH.  This study considers various potential 

port locations with different capacities. The optimization results indicated that proposed 
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ports should be opened in the following three locations: Proctorville, OH, Ripley, OH, 

and Ironton, OH. Additionally, according to the sensitivity analysis, the Proctorville, OH 

minor port facility provided the highest total cost savings since it was located in a critical 

location for intermodal transportation.  

This research was unique in the sense of developing and implementing optimizing 

approaches to solve real life intermodal transportation problem observed in Ohio River’s 

Inland Waterway System.  
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1. INTRODUCTION 

Recent boosts in economic growth have prompted an increase in commercial 

traffic, thereby contributing considerably to highway congestion. Without roadway 

capacity improvements, congestion will spread well beyond urban areas and create a 

substantial disruption in freight movement. According to the United States Department of 

Transportation (USDOT) & Federal Highway Administration (FHWA) Freight Facts and 

Figures report in 2013, freight shipments are expected to increase significantly over the 

years.  

 

 

Figure 1: Freight Shipments by Transportation Modes (US DOT, 2013) 

 

Due to the growth in the trucking mode, alternative modes should be considered 

to alleviate roadway congestion. One approach of reducing congestion is to use alternate 
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modes of moving freight, particularly exploiting the underutilized inland waterway 

system. In April of 2011, the U.S. Maritime Administration stated that the waterway 

system was an answer to roadway congestion (Supply Chain Digest, 2011). Inland 

waterway transport utilizes barge tows to transfer cargo from main ports to smaller port 

facilities, from which the goods are shipped to intermodal terminals.  These intermodal 

terminals serve as major distribution centers for international shipments. The 

aforementioned situation often presents a typical supply chain design problem in 

optimization literature. Indeed, there is a dire need for optimization in transportation 

field. One primary reasons is transportation optimization solutions help fortify the 

decision-making in every aspect in the organization, from strategic planning to operation 

decisions (ORTEC, 2013). It is also discovered that transportation optimization reduces 

operating costs on average from 5% to 9%. On the other hand, the optimization approach 

allows logistics providers to save up to 15% on transportation costs (ORTEC, 2013). 

Different optimization approaches are used in this thesis in intermodal transportation 

environment.  This chapter briefly discusses the solution methods used for optimization 

as well as the research motivation and objectives.   

The next chapters discuss the definition of supply chain management, followed by 

facility location decisions, challenges in supply chain management, relevant literature for 

waterway transportation, and developed methodologies. Finally, this paper finishes with 

results and concluding remarks related to this research.   
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1.1. Solution Methods for Optimization 

Several optimizing techniques are used and developed in the literature, including 

Mathematical mnodels and heuristic models.  

1.1.1. Mathematical Modeling 

Various mathematical modeling techniques exist in the literature and those 

solution methodologies guarantee optimal solutions. Techniques such as: Linear 

Programming, Integer Programming, Mixed Integer Programming, Dynamic 

Programming, are the most commonly used for optimizing procedures. However, these 

mathematical models consist of an objective function and constraints.  Accordingly, the 

major drawback of mathematical models is that they are slow in computation time when 

the problem size gets larger (Çelikbilek, 2011). In this thesis, Mixed Integer 

Programming was developed, and the LINGO 15.0 optimization package was used to 

solve the developed mathematical model.  

1.1.2. Heuristics 

Heuristics are one of the fastest solution methodologies used in literature for 

solving optimizational problems. The main drawback of heuristic approaches is that 

while they are fast procedures, they do not guarantee optimal solutions. Moreover, 

heuristics are designed for problem-specific and they cannot be used for solving multiple 

problems and objectives at the same time (Çelikbilek, 2011).  
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1.1.3. Objective of the Thesis 

This research will strive to make inland waterway transport a more feasible 

alternative by optimizing minor port locations along the river.  The Ohio River region 

will serve as a case study for the optimization model, with a focus on the Mid-Ohio 

Valley Region. The primary objective of this research was to determine which cities 

should serve as minor port locations as well as the amount of product that would be 

shipped from each major port through the minor ports to an intermodal terminal. Figure 2 

shows the general distribution diagram. The overarching goal of this research was to 

minimize the total location, allocation and transportation costs of the system.  
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1.1.4. Why Intermodal Transportation?  

The USDOT defines the intermodal transportation as: ―Use of more than one type 

of transportation; e.g. transportation a commodity by barge to an intermediate point and 

by truck to destination.‖ (USDOT Transportation Expressions, 1996) 

USDOT places a paramount importance on intermodal transportation. This 

emphasis is also captured in the Intermodal Surface Transportation Efficiency Act 

(ISTEA) of 1991. It is clearly stated in section 2 that:  

It is the policy of the United States to develop a National Intermodal System that 
is economically efficient and environmentally sound, provides the foundation for 
the Nation to compete in the global economy, and will move people and goods in 
an energy efficient manner. The National Intermodal Transportation System shall 
consist of all forms of transportation in a unified, interconnected manner, 
including the transportation systems of the future, to reduce energy consumption 
and air pollution while promoting economic development and supporting the 
Nation's preeminent position in international commerce. (ISTEA, 1991)   

  
With consideration to the emphasis and importance of intermodal transportation, 

the overarching goal of this study is transportation route optimization by considering 

truck freight and inland waterway transportation options. Here are the other significant 

supporting reasons: 

 Waterways have a lot of capacity and infrastructure. This capacity can be used 

to relieve growing highway transportation congestion. Such congestion 

lessens local life quality, air quality, public safety and emission quality. 

 Driver shortage, increased fuel prices and implementation of new 

governmental regulations restricting service hours on the road, necessitates the 

utilization of intermodal shipments. 
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 Land availability: U.S. has navigable waters and these areas have a large 

accumulation of economic activities. 

 Increase in labor costs, energy prices and particularly petroleum appears to be 

long term challenge and makes waterway transport appealing. 

 Most companies follow a strategy to establish privilege port locations, or 

gateway access, to access other/international markets. By doing that, 

companies can improve their market share and guarantee level of service to 

customers in the current fierce market environment. 

Therefore, the ultimate objective is to consider an intermodal transportation 

network where highway and waterway transportation options will be efficiently utilized 

in the Ohio River, particularly the Mid-Ohio River Valley region (shown Figure 3) in 

order to optimize the transportation route network. 

 

 

Figure 3: Mid-Ohio River Valley Region Study Area (Coles and Associates, 2010) 
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2. SUPPLY CHAIN MANAGEMENT 

Supply Chain Management (SCM) as a broad term, considers the efficient flow 

and integration of materials, goods and services from suppliers to customers via 

manufacturers, distribution centers/warehouses and retailers by considering different cost 

parameters and multiple transportation modes. Overall costs are minimized and service 

levels are maximized when a SCM is out in place (Simchi- Levi., 2009). 

SCM considers the costs and value impact of each and every facility on the supply 

chain structure in terms of meeting customer needs and expectations. Simchi-Levi (2009) 

emphasizes that the primary emphasis of SCM is to be cost effective throughout the 

supply chain structure. The overview of a supply chain system is illustrated in Figure 3. 

In SCM, three planning levels exist considering the time horizon, which include: 

strategic, tactical and operational (Melo et al., 2009). Simchi-Levi (2004) indicates that 

strategic level decisions are long-lasting decisions. These decisions typically last several 

decades and the number, location, allocation and capacity decisions of facilities, as well 

as the flow of materials within these facilities are considered as strategic level of 

decisions. Since facilities serve a fundamental role in supply chain performance and 

efficiency, a significant connection between facility location models and supply chain 

management exist.  
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Figure 4: A Supply Chain Network Diagram (Simchi-Levi, 2009) 

 

Similarly, Chopra (2007) emphasized the importance of facility location decisions 

in the supply chain network design and management. Chopra (2007) emphasized number, 

location, allocation, transportation and flow decisions of facilities highly impact the 

supply chain efficiency and overall system productivity. In this dynamic supply chain, 

facility location decisions have a vital impact on the performance of the supply chain 

(Simchi-Levi, D et al. 2009). Thus, multiple factors such as distance, transportation cost, 

land cost, plant capacities and customer demands are considered for the facility location 

and capacity allocation model in this thesis. 

2.1. Challenges in Supply Chain Network Design 

Facility location decisions are the crucial element in strategic planning of the 

supply chain network. For this reason, making a decision regarding a facility location 

should be carefully considered. Factors such as site costs, taxes, fees, overhead and other 



20 
 
miscellaneous costs should be considered in a long-term perspective. However, due to 

sustainability and maintainability purposes, long lasting impacts and consequences, and 

changing future circumstances should also be taken into consideration while selecting 

appropriate facility locations (Owen and Daskin, 1998). Therefore, finding multi-

objective facility locations presents a very challenging task for meeting uncertain 

demands for the future. 

Moreover, from a competition standpoint, the right location may even strengthen 

the company’s business operations. The company’s close proximity to overall resources 

and assets may provide an outstanding advantage in terms of long term competition. In 

summation, strategic location decisions have a paramount advantage for faster, better and 

more effective delivery to the end users and customer locations. Therefore, while 

selecting a facility, one should note these aforementioned criteria. (Yang and Lee, 1997). 

Furthermore, the location decisions are also effective in terms of logistics and 

transportation policy-making (Ballou and Masters, 1993).   

Nutt (1970) suggests that the ideal location of a plant should be determined based 

on the place where the total cost of production should be minimum and the profits should 

be maximum.  

Facility location decisions have long term objectives including aim to minimize 

overall cost performances and targets for a responsiveness in a supply chain system 

(Chopra, 2007). Several factors influence distribution network design with relation to 

facility location. These factors include: responsiveness, multiple product offerings and 
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their availabilities, customer experiences, ability to adapt market changes, order visibility 

and return ability (Chopra, 2007). 

It is evident that the higher the number of facilities will lead to lower response 

time (Simchi-Levi, 2009). Also, transportation cost decreases until some extent with a 

higher number of facilities. The response time increases when multiple facilities are 

present and facility costs increase when there is an increase of the number of facilities. 

2.2. Facility Location Decisions within Supply Chain Design 

The main purpose of designing a supply chain network is to minimize costs or 

maximize the company’s profits while satisfying the customer’s needs and expectations.  

The overall framework for a network design decision is shown below. 

 

 

Figure 5: Overall Framework for Network Design Decision (Chopra, S., and Meindl, P. 
(2007)) 

 

Step I: Defining the scope of a supply chain network strategy: 

The overall aim of this step is to identify the scope of company’s supply chain 

design. This encompasses identification of the steps within the supply chain. This phase 

starts with the competitive strategy according to customer expectations. 
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Step II: Define the regional facility configuration: 

The main objective of this step is to narrow down the potential sites where the 

possible facilities might be located along with their capacity restrictions.   

Step III: Select a set of desirable potential sites: 

The main purpose of this step is to perform a feasibility assessment within the 

region for possible site selection.  

Step IV: Location choices: 

The goal of this final step is to identify the optimal location, number and 

allocation decisions of each facility (Chopra, 2007). 

2.3. Facility Location Metrics within Supply Chain Network 

Min and Melachrinoudis (1999) identified six broad categories that potentially 

affect the facility location decision. These factors include: site characteristics, cost, traffic 

access, market opportunity, quality of living and local incentives. Within the site 

characteristics category, they discuss building design, capacity, infrastructure and soil 

condition. Within the cost category (stated as the primary location decision), it further 

encompasses land acquisition, appraisals, building construction and maintenance 

including liability insurance. They also addressed the fact that both land acquisition and 

building construction require substantial investment (Min and Melachrinoudis, 1999). 

In terms of traffic access, Min and Melachrinoudis (1999) highlight the 

importance of accessibility to transportation modes as well as proximity to highways, 

railways and even foreign trade zones. In terms of market opportunity, they emphasize 

the buying power index, in which the measurement of associated market to buy is 
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expressed as a percentage of dollars. Quality of living is another critical factor for a 

facility location decision because a facility hires employees for each business division, 

and the employees’ lifestyles, productivities and patterns are affected by a facility 

location decision. Environmental factors, social factors and economical factors are all 

considered to measure the quality of living, and all of these are highly affected by the 

facility location decisions (Min and Melachrinoudis, 1999). 

Likewise, the location of a specific facility depends on multiple factors and is 

based on performance metrics that are considered for a firm’s business operations and 

long-term sustainability goals (Yang and Lee, 1997). Multiple factors can be considered 

for selecting an appropriate site for company’s business operations. These range from 

market and government rules,  site specific considerations, proximity to raw materials, 

supplication requirements, range of services provided, available transportation modes, 

and lastly, societal expectations (Levine, 1991). 

The selection process for the best facility location can also be divided into 

quantitative and qualitative factors. These factors which are measurable and quantifiable 

(called quantitative factors) consist mainly of material, labor, manufacturing, equipment, 

storage, transportation, and logistics cost parameters. On the other hand, qualitative 

factors can also be taken into consideration while situating an appropriate facility. These 

parameters include business climate, quality of life, and long term desires. These can also 

be considered as fundamental in location decisions. Although it is challenging to measure 

these qualitative factors, it is necessary since factors like shifting businesses, 
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environmental factors, and unexpected natural disasters can also serve as a performance 

measures in the selection decision in supply chain network design.  

Ultimately, based on the individual facility’s needs and expectations, the 

appropriate location will differ (Gopal et al. 2012). While making the facility-related 

design and location decisions, the following metrics should be considered that influence 

supply chain performance.  

 Proximity to suppliers and markets 

 Proximity to potential facilities  

 Forecasted market demand 

 Site specific labor cost, fixed cost, labor cost  

 Cost of logistics and transportation operation between sites 

 Site-specific inventory costs 

 Market value of the product in different market regions 

 Taxes and tariffs 

 Customer response time, lead time and other service parameters (Chopra and 

Meindl, 2007). 

There is no one-size-fits-all solution in terms of selecting performance measures; 

therefore, there might be a conflict between objectives (De Toni and Tonchia, 2001). 

According to Kearney (2009), three components of logistics costs (transport costs, 

warehousing costs and inventory costs) are considered as the performance-driven costs 

for supply chain performance. Ravet (2012) summarizes the several key performance 

indicators (KPI) from the literature for facility distribution location metrics. Bhatnagar 



25 
 
and Sohal (2005) address the main issues for supply chain performance and indicates 

main plant location metrics. Cost, infrastructure, business services, labor, government, 

customer/market, supplier/resources and competitors are the main variables used for 

facility location metrics. 

Farahani et al., (2010) pointed out some objectives that are used for the location 

of new facility sites. Many objectives can be considered such as: 

 Total setup cost minimization 

 Distance minimization from the situated facility, 

 Total establishment cost minimization, 

 Total operations costs minimization, 

 Total or average time/ distance traveled minimization, 

 The number of situation facilities minimization, 

 Minimizing the maximum time/distance traveled, 

 Service level or customer responsiveness maximization, (Farahani et al. 2010). 

The best location is found by considering the aforementioned objectives. In order 

to achieve those objectives, quantitative methods are preferred. Those methods are 

explained in the next section.  

2.4. Quantitative Methods for Facility Location Decisions 

Many techniques can be used by decision-makers and these are: 

 Weighted Factor Rating Model. 

 Economic Analysis (The Break-Even Model). 

 Analytical Hierarchy Process (AHP) 
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 Facility Location Models & Network Optimization Models (Mathematical 

Models). 

2.4.1. Weighted Factor Rating Model 

Weighted Factor Rating Model is commonly used model used to assist making 

global facility location decisions. The main steps of the process include: 

 Specify the critical factors that are fairly important for plant location decision. 

 Based on the importance of these factors, assign weights to these factors. The 

weights should be summed up to 1.  

 Develop a relative importance score between 1 to 100 based on the previous step 

 Multiply the score by the weight of each factor and sum the weighted scores for 

all factors. 

 Recommend the facility with the highest score point. (Wisner, 2011). 

The individual weights and scores are subject to interpretation and bias by the 

analyst. It is highly recommended that a team approach is used for performing this type 

of analysis. 

2.4.2. Economic Analysis (The Break-Even Model) 

The Break-Even Model can also be used when the different types of costs and 

revenues are known for each potential facility. The steps are as follows: 

 Specify the potential/ proposed locations 

 Identify the fixed cost of the proposed facility such as; land cost, excavation, 

building and infrastructure costs, taxes and tariffs, insurance of equipments and 

facilities.  
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 Identify the variable cost of each facility. Variable costs change depending on the 

quantity and volume.  

 Calculate the total cost for each proposed facility  

 Determine the break-even points for each potential facility. 

 Choose the lowest cost facility, consider the break-even point (Wisner, 2011).  

2.4.3. Analytical Hierarchy Process (AHP) 

Analytical Hierarchy Process (AHP) is a multi-criteria decision-making technique 

that relies heavily on the judgment process. The first important part of the process is to 

identify the objective(s), criteria and alternatives for those criteria. This information 

should be arranged in a hierarchical order. The second step is to determine the relative 

importance of the criteria based on judgments and experiences. One of the main 

drawbacks of this technique is considering qualitative techniques and perceptions. The 

third step in this process is to construct a pair wise comparison matrix. In this step, the 

relative importance of one criterion to another is calculated. The fourth step is turning the 

matrix into ranking criteria by using eigenvectors-matrix algebra.  Finally, based on the 

outcome of the algebraic solution, the priorities of each alternative (with respect to each 

criteria) is calculated and the highest priority criterion is selected (Saaty, 1990). The 

major drawback of this methodology is focusing on perceptions and qualitative factors. 

Min, H., and Melachrinoudis, E. (1999) used the AHP approach for selecting the 

appropriate location of a manufacturing facility in the U.S. Three alternative plant 

location points were analyzed according to six major categories of plant locations, and 

the best location was decided accordingly. 
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2.4.4. Network Optimization Models (Mathematical Models) 

Initially, Hakimi (1964) started using mathematical modeling methodology in the 

area of node optimality. This is similar to the concept of the hub location problem (HLP). 

Toh and Higgins (1985) addressed the application of HLP in the airline and aviation 

industry.  

The first mathematical formulation and solution method is proposed by O’Kelly 

(1986a, 1986b). O’ Kelly (1987) tackled the problem of HLP and developed a quadratic 

integer programming methodology. After this study, many researchers and papers were 

conducted and published in the hub location literature. Many mathematical formulations 

have been addressed in the literature as well as in the surveys of HLP literature.  

From the literature review already performed, it became apparent that the trend of 

modeling HLP started in late 1980’s followed soon after by optimization and modeling in 

the 1990’s. Later, the advanced models and application of heuristic approaches emerged 

in the 2000’s and still are continuously being developed at a rapid pace.  

The surveys conducted up to this date until the present were offered by Campbell 

(1994a), O’Kelly and Miller (1994). Moreover, in the recent decade Alumur and Kara 

(2008) elucidated many hub location problems in the literature. More recently Farahani, 

et al., (2013a) provided an extensive literature review classifying and categorizing 

various hub location problems accordingly. As it is the latest HLP review in the literature, 

this research is considered a benchmark for the review and hub-location studies. 

First, O’Kelly (1987) presented a single-hub network location problem as an 

objective function of mini-sum. Non-hub nodes are connected to a single hub and the 
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number of hubs to locate is previously known and is equal to one. In that study, cost of 

establishing a hub is not considered and there was no capacity restriction for the hub. 

Additionally, O’Kelly (1987b) introduced multiple-hub network location 

problems where multiple incapacitated hubs with no cost of establishment are considered 

with mini-sum objectives. Campbell (1991) presented the linear mathematical 

formulation of that problem, calling it p-hub median location problem. Every non-hub 

node could be allocated to one or more hubs in p-hub median location problems. This 

model is named multiple allocation p-HLP. This model has similar assumptions except 

that the flow from non-hub node (i.e. supplier) to non-hub node (i.e. demand) via hub 

facilities located at different locations. The objective is to minimize the total sum of 

transportation costs.   

Campbell (1994b) developed the first linear integer programming formulation for 

the capacitated single allocation p-hub median problem. The formulation variables are 

binary and it has multiple linear constraints (Campbell, 1994b). This study also considers 

the minimum flow and threshold value of flows. The amount of flow and capacities are 

considered for hubs. Skorin-Kapov (1994) applied linear extensions to single allocation 

versions of the Campbell’s (1994b) model and obtained better solutions. They solved the 

problem optimally by using CPLEX.  

Ernst and Krishnamoorthy (1996) proposed a new mixed integer linear 

programming for the incapacitated single allocation p-hub median problem that requires 

less variables and constraints to solve large problem sizes. They consider the hub 

movements within each other as a multi-product flow problem. Ernst and 
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Krishnamoorthy (1999), proposed an integer programming approach for capacitated 

single allocation p-hub median problem. The proposed integer programming approach 

could solve up to 50 nodes and solving more than 50 nodes became too slow or 

impossible. 

Ebery et al., (2000) presented a mixed integer linear mathematical model for 

capacitated multiple-allocation p-hub median (CMAHLP) problem. The model 

determines the number of hubs that are required for minimizing the total transportation 

cost of the system. The system consists of i origins, k hubs, l hubs and j demand nodes. It 

is important to mention that if the nodes are known a priori, then this model becomes a 

multi-commodity flow problem.  

Labbe et al., (2005) tackled the problem of single hub location model where each 

hub has a fixed capacity by considering the flow of transactions passing through it. The 

ultimate objective of their study was to minimize the cost of establishing the hub and 

transfer flow through the hub. They solved the problem by branch-and-cut algorithm. 

Costa et al., (2008) proposed two bi-criteria approach for the single allocation 

capacitated hub location problems. First, the integer mathematical model minimizes the 

total service time of the hubs then the second integer mathematical model minimizes the 

maximum service time for the hubs. This study does not consider the capacity restriction 

on the hubs, which is the main drawback of this study. Also, hypothetical data is used to 

prove their mathematical formulations.  

Martin and Gonzales (2008) proposed a new mixed integer linear programming 

model for the problem of determining routes and the hubs of the set of products from 
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sources to destinations at a minimum cost in a capacitated network. They proposed two 

branch-and-cut algorithms. They tested those algorithms with 25 products/commodities 

and 10 potential hubs.  

Costa et al., (2008) developed a multi-objective HLP in which the first objective 

minimizes the total transportation cost, while the second objective minimizes the 

maximum service time of the hub nodes. The objective function is both mini-sum and 

mini-max, and solution domain is the network. Single allocation strategies with known 

hub locations were considered as well. Costs for hubs and capacity were not considered. 

Campbell (1994b) defined the p-hub center problem as a minimax type of 

problem and proposed three different types of p-hub center problems. The first type of 

problem was the minimization of the maximum cost origin-destination pair; the second 

type of problem was the minimization of maximum cost of origin-hub, hub-hub and hub-

spoke connection; and the third type of problem was the minimization of the maximum 

cost of hub-spoke connection. Considering these types of problems were important in the 

sense of considering time-dependent real-life problems. Campbell et al. (2007) presented 

the purpose of p-hub center problem is to locate hubs and allocate spokes to hubs such 

that the maximum travel time (distance) between any origin-destination pair is 

minimized. 

Campbell (1994b) presented the first mixed integer formulations where the 

establishment cost of hubs is minimized. The hub-set covering problem is equivalent to 

p-hub median problem with some exceptions. The objective is to minimize the total cost 
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of opening new hub facilities. Each demand pair is trigger to be covered by at least one 

time by a hub pair. 

On the other hand, in p-hub maximal hub-covering problem, the demand is 

maximized while considering the existing location of hubs. The location of hubs is 

previously specified. In addition, the fixed cost of establishing hub facilities is not taken 

into consideration. The objective is to maximize the total transportation demand covered. 

The hub-location problem with star-star network is mostly observed in cargo 

delivery companies. In this type of network, each spoke (non-hub) is connected to a 

single hub, and then each hub is connected to main hub. The main objective is to 

minimize the cost of hub establishments as wells as transportation costs within hub 

locations. Yaman (2008) proposed two mathematical modeling techniques along with a 

heuristic approach in order to overcome that problem.  

As it is observed from literature, the supply chain literature is greatly saturated for 

facility location and allocation problems that utilize most truck freight transportation. 

Theoretical formulations and hypothetical scenarios were developed to analyze different 

aspects of supply chain problems. However, current real-life situations and circumstances 

make the problems harder to solve; therefore, most of the parameters are either assumed, 

constant, or negligible in developing supply chain problems. Another aspect to tackling 

real-life supply chain problems is the need to relax the assumptions in the model and also 

propose additional solution methodologies. Consequently, considering a real-life situation 

is important in our analysis. We will be solving real optimization problem which is rarely 

done in network optimization literature.   
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 With the recent environmental, social, economic implications, the supply chain 

optimization lean towards the alternative transportation modes. Therefore, more research 

started to consider the intermodal, multimodal transportation aspects of supply chain 

optimization literature, especially considering waterway transportation. The recent 

findings from the literature indicated that, there is a gap for using alternative 

transportation modes in network optimization literature. Therefore, considering 

alternative transportation modes in supply chain network optimization will be integral 

part in our research and analysis. 

The next section discusses the recent literature and research conducted in the U.S. 

regarding inland waterway transportation optimization field.  
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3. LITERATURE ON WATERWAY TRANSPORTATION 

OPTIMIZATION 

The inland waterway provides an integral part in increasing supply chain 

performance. Several quantitative studies have been conducted in the U.S. in order to 

analyze the waterway transportation in supply chain optimization. Recently Caris et al., 

(2014) addressed the issues in integration of inland waterway transportation in supply 

chain environment. The researchers pointed out the crucial role of inland waterways in 

integrated intermodal transportation in supply chain.  

Robinson (2002) emphasizes the importance of waterway port selections within 

the supply chain so that cargo flows with a minimum total cost. Moreover, Groothedde et 

al.  (2005)  indicates that inland waterway transport creates advantages in economies of 

scale and flexibility when combined with the other transportation modes such as roads 

and rails.  

Bush et al., (2003) approached the problem of barge traffic on an inland waterway 

by proposing an iterative linear programming and simulation models. The results and the 

parameters of the linear programming were used in a simulation model to minimize the 

costs associated with the barge movement. These costs included travel costs related to the 

type of boat used to tow a barge and the total distance traveled.   

Walter and Poist (2004) conducted a study for the Midwest to better facilitate 

commerce by utilizing ports and services. The researchers conducted a qualitative study 

and asked Iowa shippers about their perceptions and preferences about international and 

domestic-only shipment for a proposed inland port location. The study aimed to guide 
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policy makers and investors to contemplate an implementation strategy for an inland port 

location.   

Taylor et al., (2005) present a simulation-based system to schedule barge 

dispatching and boat assignment problems for inland waterways.  The efficiency of the 

system was simulated by using the data provided by American Commercial Barge Line, 

LLC (ACBL) for the Ohio River.  Although the simulation is not an optimization 

technique, this approach is helpful for observing the large-scale dispatching and load 

assignment problems in Ohio River.  

Konings (2006) discusses the hub-and-spoke networks for container-on-barge 

(COB) transport and its advantages for improving the performance of COB transport as 

well as gaining market share for the companies’ waterway industry. Konings (2006) also 

discusses the importance of port locations, the allocation decisions and efficient use of 

vessel capacity.  

Maraš (2008) offers a mixed integer linear programming model for container ship 

or tow allocation problem. The proposed model determines whether an inland waterway 

container ship or tow should be charted or not. Chang et al., (2010) considered an 

environmental perspective of intermodal optimization of container cargoes while 

incorporating the external costs of the modes. The overall objective is to minimize the 

total logistic costs, which include total shipping and land costs as well as external costs 

such as air pollutants and greenhouse gases.   

Rahimi et al., (2008) identify and analyze inland port sites in the five counties in 

California around Los Angeles area. Their study similarly considers inland ports’ for 
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potential integration for intermodal transportation. They divide the regions into zones by 

the Geographical Information System (GIS). A single facility location model was used to 

identify proximal locations of ports to minimize the total vehicles miles travelled (VMT). 

The overall objective was to develop a simple mathematical model to determine the 

internal port locations in a hub-and-spoke network, in order to minimize the total VMT 

for intermodal transportation.   

Winebreak et al., (2008) presented a network optimization model named as GIFT 

to analyze the cost, time-of-delivery, energy and environmental impacts of the intermodal 

freight transportation. The researchers conducted three case studies or in other words 

three different pre-determined origin-destination routes. They considered truck, rail and 

container transportation options as well as combinations of these for each origin-

destination route. Although they pointed out that the outcome of cost, time, energy and 

environmental emissions depend on the origin-destination points, they proposed that their 

model can be used to study infrastructure investments. They suggest that this could 

reduce intermodal transfer penalties while observing the potential impact of highway 

congestion and contraction. 

Fan et al., (2010) propose a general optimization model to determine optimal 

container flows from origins to destinations in the United States. The proposed model 

evaluates the inter-port competitiveness and showed the overall impact of congestion on 

container flows as well as new port locations and routes. The sensitivity results indicate 

that optimal port, route and interior shipping corridor that are significantly important for 

shipment efficiencies.  



37 
 

Moreover, Pant et al., (2011) present an interesting novel approach in the multi-

modal transportation system. They model the adverse impacts across the inland waterway 

ports, relating them to disruptive port operations in the related industries across multiple 

regions. Three disruption scenarios were considered for inland port operations. The 

quantitative impacts were calculated for multiple regions and industries. Mainly, terminal 

closure, crane outage and departure stoppage were considered for the Arkansas River. 

Their proposed multi-regional inoperability input-output model (MRIIM) demonstrates 

that, the disruption in inland ports resulted in hundreds of millions of dollars in economic 

loss for almost 10 states. This study clearly presents the importance of inland waterway 

transportation within intermodal transportation systems. Here, the port locations were 

situated and known in advance. Therefore, the optimal port locations should be 

determined in an optimal fashion as well.     

Gelareh and Pisinger (2011) developed a mixed integer mathematical model for 

concurrent optimization of network design and fleet allocation problem for deep-sea liner 

service provider. They consider an elastic demand environment. Along with the mixed 

integer mathematical model, an exact decomposition algorithm (benders algorithm) was 

implemented. Additionally, empirical experimentation environment was considered.     

Maraš et al., (2013) propose a mixed-integer programming (MIP) formulation for 

barge container routing decisions. The research considered that the ports were already 

established and only concentrated on routing decisions. Along with the MIP formulation, 

the researchers proposed variable neighborhood decomposition, branching and local 
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branching heuristics. A hypothetical problem environment was generated and the overall 

objective was to minimize the total routing costs of barge container ships.   

Recently, DiPietro et al.,(2015) propose alternative methods to assess the Ohio 

River system efficiency by proposing stochastic shipping time model. The motivation for 

this study is to assess the inland waterway infrastructure. Although this study does not 

consider any optimization approaches, this study is helpful for assessing the 

characteristics of the Ohio River such as locks, capacities, lock operations, closures and 

time information.  

Moreover, DiPietro et al., (2015) also focused on another study in the Ohio River 

Basin and developed a new method for tracking the shipment of coal in the study area. 

This paper demonstrates the difference between vessel trips and commodity shipments. 

This study only considers a methodology for estimating commodity trips and shipping 

costs, the number, location and allocation optimization decisions are not performed. 

As observed from the U.S. waterway transportation optimization literature, the 

main focus was to consider a barge dispatching problem. In almost all of the studies, the 

ports were previously located and shipment decisions were solely considered. In other 

words, in most cases operational decisions were performed rather than strategical 

decisions. Another observation with that most of the studies emphasized the importance 

of inland waterway transportation in network optimization literature. Consequently, there 

is a gap in Ohio River’s transportation optimization literature where location, allocation 

and dispatching decisions are performed simultaneously. Therefore, it is important to 

consider these simultaneous decisions in the research and analysis.     
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Moreover, most of the studies considered the environmental implications such as 

air pollutants and greenhouses gases. Very few studies considered the Ohio River as their 

scope of study, but those studies were particularly helpful for assessing the current 

infrastructure, capacities and current conditions of ports. Along with the recent finding, 

our study is also considering the port capacities and current conditions of ports.   

According to the literature that has been reviewed so far, this thesis will be unique 

in the sense that it considers new optimization approaches for intermodal inland 

waterway transportation in the Mid-Ohio River Valley region, where port location, 

product allocation and dispatching decisions are performed simultaneously.  

The proposed mixed-integer-mathematical model and associated heuristic 

considers an intermodal transportation environment (waterway and truck freight) and 

determines the number, location and allocation decisions of ports in order to minimize the 

total transportation and system-wide costs in supply chain environment.  
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4. AN OVERVIEW OF U.S TRANSPORTATION SYSTEM 

This chapter presents an overall framework of different ground transportation 

modes that are heavily used in the United States. According to the US DOT Framework 

Policy (2014), the moving freight costs are expected to increase from $882/ton to 

$1,377/ton between years 2007-2040. Moreover, in terms of tonnage of imports and 

exports, an increase from 11% to 19% is expected. Along with that, the freight value is 

expected to increase from 19% to 31% between the years 2007 and 2040 in the US (US 

DOT, 2014). In the US, freights are often transported via truck, rail, water or some 

combinations of these. Figure 6 shows an overview of railroads, highways and waterways 

throughout the US. 

 

 

Figure 6: Freight Flow Map of Highway, Railroad and Waterway Transportation-2010 
(USACE, 2013; Surface Transportation Board, 2013; U.S DOT, 2013) 
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 In the US, trucks are mainly used as a transportation mode, and carry the highest 

amount of tonnage and value of freight. In contrast, waterways and railways are mainly 

used for long distance carrying with a high volume of products. Railways a carry large a 

volume of commodities between Wyoming and the Midwest, whereas inland waterways 

mainly carry a large volume of commodities in Lower Mississippi River. As seen from 

Figure 2, the Mississippi River is the primary inland waterway system, stretching along 

the state of Minneapolis to the Gulf of Mexico. The Mississippi supports the Ohio River, 

the Gulf Intracoastal Waterway and the Columbia-Snake River System. The Mississippi 

River’s carrying capacity for each year is equivalent to 58 million truck trips (MARAD, 

2014).  

According to the U.S DOT Office of Freight Management and Operations, 

highway segments carry at least 8,500 trucks per day, and move 50 million tons per year 

with an average of 16 tons per truck. In comparison, rail lines and waterways carry an 

average of 50 million tons of bulk cargo per year (U.S DOT, 2008). Subsequent sections 

will discuss different transportation modes in detail. 

4.1. Rail Transportation in the United States  

Since 1980, the United States has spent $575 billion to create a freight rail 

network (AAR, 2015). According to the U.S DOT Federal Railroad Administration, the 

U.S freight rail industry is valued at $60 billion and consists of 140,000 rail miles. 

According to IBIS World; one of the most powerful market research providers, annual 

growth is expected to be 5% for the period between 2010 and 2015. Moreover, annual 
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growth is expected to be 3% for the period between 2015 and 2020 (Rivera, 2015). The 

overall illustration of U.S Railroad Network Map is presented in Figure 7.  

 

 

Figure 7: U.S Railroad Network Map (Maps of World, 2014) 

 

Almost anything can be carried by railway, and rail is convenient for shipping 

commodities over long distances. The main rail hubs are primarily situated in big cities 

such as Chicago, New York, Boston, Philadelphia, Washington DC, Miami, Atlanta, 

Houston, Dallas, Los Angeles, San Francisco and Seattle. According to the IBISWorld 

Report; Rivera’s (2015) study and Figure 8 below, bulk freight (54.1%) is heavily 

transported throughout the U.S. 
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Figure 8: Products and services transported in US Railroad Transportation  

(Rivera, 2015) 

  

Railway transportation plays a significant role for the country’s development in 

terms of trade, industry and commerce. It enables the transportation of long-distance 

heavy, bulk goods, which cannot be transported via trucks and trailers. Moreover, 

railroad transportation is a great source of employment, currently supporting 583 

businesses and providing $21.3 billion in wages (Rivera, 2015). The strengths, 

weaknesses, opportunities and threats (SWOT) analysis is performed for the holistic 

assessment of various factors for railroad transportation and the results presented in Table 

1.  

It is important to assess several factors of each ground transportation mode. 

Overall, the SWOT assessments are synthesized based on the IBISWorld industry reports 

for rail, long-distance truck freight and inland waterway transportation in the US (Rivera, 

2015 and Soshkin, 2015).    
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Table 1: SWOT Analysis for Railroad Transportation (Rivera, 2015) 
Strengths  Weaknesses  

 Carries heavy bulky roads 

 Relatively cheaper than trucks 

 Higher profit margins compared 

to other transportation modes 

 Relatively slow compared to trucks 

 Not suitable for perishable items 

 Not flexible mode of transportation 

Opportunities Threats 

 Newly railroad establishments 

 Sector grows between 3% -5% 

over decades 

 Saturated Industry assistance 

 Shifting trends to waterway which 

is safer and more reliable 

 Investment costs  

 High industry competition shifts 

employment to other modes  

 

4.2. Truck Freight Transportation in the United States 

Truck freight transportation grows significantly as the economy, industrial 

production and general trade volume increases across the country. According to the 

IBISWorld-leading industry market study by Rivera (2015), the provider- truck freight 

industry revenue is expected to grow at an average rate of 3.6% and will reach $209.7 

billion revenue in upcoming decades. In 2012, the American Trucking Association 

declared that 9.4 billion tons of commodities were moved by trucks and expected this 

increase by 2.3% of the annual total by 2024 (Rivera, 2015). Although economic, social 

and environmental sustainability issues are present, truck transportation will still be the 

most widely use mode of freight transportation. Statistics of vehicle miles of travel and 
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lanes miles information are shown in Figure 9. Since lane miles were only collected at the 

beginning of 1970’s, prior data is unavailable.  

 

 

Figure 9: US VMT and Road Mileage  

(Retrieved from: USDOT, Office of Highway Policy Statistics- Highway Statistics 2013) 

 

The statistics recently showed that 3 trillion vehicle miles of travel and 

approximately 9 million lane miles have been observed in the road transportation 

industry. USDOT (2013) indicates that there is an increasing VMT trend in the industry. 

An illustration for National Highway System Route is shown Figure 10.  
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Figure 10: National Highway System Routes (US DOT, 2013) 

  

In terms of the products and services, truckload carriers are taking the lead by 

62.1% and 25.7% less than truckload carriers. Other small-scale services constitute 

12.2% of overall products and services. In order to assess the truck transportation in a 

managerial perspective, a SWOT analysis was synthesized based on Rivera’s (2015) 

study and presented in Table 2. 
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Table 2: SWOT Analysis for Truck Freight Transportation (Rivera, 2015) 
Strengths  Weaknesses  

 Faster, flexible mode 

 Ideal for perishable items 

 Can be cheaper for short 

hauls 

 

 Higher fuel costs 

 Frequent maintenance costs 

 Size and weight restrictions 

 Too expensive for bulk items 

 Driving regulations  

 Bad weather can cause delays 

 Traffic delays 

Opportunities Threats 

 Sector grows 3.6% 

 Leasing, third-party 

logistic providers 

 Saturated Industry  

 Shifting trends to waterway which is safer 

and more reliable 

 Investment costs  

 Different state policies/no standardization 

on truck size and weight  

 Highway capacity restrictions  

 High industry competition shifts 

employment to other modes  
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4.3. Inland Waterway Transportation in the United States 

Due to fierce competition among other transportation modes, increasing economic 

conjecture, growth of markets, and economic, social and environmental sustainability 

factors, the volume of freight transported via inland and coastal waterways will 

predictably rise. Currently, the industry revenue is around $7.7 billion, but demand for 

industry services will increase at an annualized 2.6% to $8.7 billion, including 2.4% 

increase in 2015 (Soshkin, 2015). According to the recent data on different mode of 

freight shipments, waterway transportation carried 434 billion ton miles in 2011 (Freight 

Shipments within the U.S. by Mode, 2014). Figure 11 also shows the U.S Waterborne 

Freight information in millions of tons of freight and the portion of inland waterways. 

 

 

Figure 11: U.S Waterway Freight Transportation- U.S Waterway Freight 

Transportation. (2014). 

 

1960 1970 1980 1990 2000 2005 2006 2007 2008 2009 2010 2011 2012

TOTAL freight 1,099 1,531 1,998 2,163 2,424 2,527 2,588 2,564 2,477 2,210 2,334 2,367 2,327
Imports 211.3 339.3 517.5 600.0 939.7 1,096 1,130 1,075 998.7 858.9 883.1 869.1 804.5
Exports 128.0 241.6 403.9 441.6 415.0 401.8 434.0 466.8 522.1 494.8 557.8 610.4 617.4
Inland 291.1 472.1 535.0 622.6 628.4 624.0 627.6 621.9 588.5 522.5 565.6 553.6 565.0
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As seen from Figure 11, Inland waterway freight transportation carried tonnage 

has grown recently and shown fluctuations over the last decades. 

The U.S waterway system is comprised of 12,000 miles of navigable waterway 

containing the Mississippi, Ohio, Gulf and the Pacific Coast systems (NETS, 2009; U.S 

Army Corps of Engineers, 2005).   

 

 

Figure 12: Ports and Navigable Waterways in U.S (U.S Army Corps of Engineers, 2014) 

 

Overall, the Ohio River Basin encompasses 2,800 miles of navigable water and 

incorporates other rivers such as the Tennessee, Cumberland, Monongahela, Allegheny, 

Green, Kanawha, and Big Sandy Rivers. Moreover, it supports the states of Alabama, 

Illinois, Indiana, Kentucky, Mississippi, Ohio, Pennsylvania, Tennessee and West 
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Virginia (NETS, 2009; U.S Army Corps of Engineers, 2005).  The products and service 

segmentation within inland waterway transportation is illustrated in Figure 13. 

 

 

Figure 13: Types of products and services transported within Inland Waterway 

(Soshkin, 2015) 

 

Inland waterway transport presents four principal advantages over conventional 

truck transport: capacity, energy efficiency, minimal CO2 emission impacts, and safety.  

The capacity of barge tows greatly exceeds that of semi-trucks, thereby alleviating some 

of the burden on aging transportation infrastructure systems.  According to the U.S. Army 

Corps of Engineers, a single fifteen-barge tow possesses a capacity comparable to that of 

1,050 semi-trucks (American Commercial Lines, 2012; Neff, 2010; Coles and Associates, 

2010).  A visual representation of this comparison is provided in Figure 14.  Apart from 

this increased capacity, river transport is also a more energy efficient alternative than 

truck transport.  As exemplified in Figure 15, a tow of barges can travel 576 ton-miles per 
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gallon of fuel, while trucks can only travel approximately 155 ton-miles per gallon of fuel 

(American Commercial Lines, 2012; Neff, 2010; Coles and Associates, 2010; Ingram 

Marine Group, 2014).  Furthermore, river transport presents an eco-friendly alternative to 

truck transport.  As illustrated in Figure 16, barges emit nearly one quarter of the carbon 

dioxide released by semi-trucks (US Army Corps 2014).  An additional environmental 

benefit is the reduction of hazardous material spills, which is about 50% less for barges 

than for trucks, as shown in Figure 17 (Ingram Marine Group, 2014; American 

Commercial Lines, 2012). Finally, as exhibited in Figure 18, river transport is considered 

a safer means of transporting cargo, with only one barge related fatality for every 155 

truck related fatalities (Neff, 2010; Ingram Marine Group, 2014).  

 

 
Figure 14: Cargo Capacity Comparison of Multiple Transportation Modes 

United States Army Corps of Engineers (2014). 
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Figure 15: Comparison of Multi-Modal Ton-Miles Traveled per Gallon of Fuel 

(Neff, 2010; Coles and Associates, 2010; Ingram Marine Group, 2014) 
 

 
Figure 16: Comparison of Carbon Dioxide Emissions by Transportation Mode.  

American Commercial Lines (2012). 
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Figure 17: Comparison of Hazardous Material Spill Rates by Transportation Mode 

 (Ingram Marine Group, 2014; American Commercial Lines, 2012)  

 

 
Figure 18: Ratio of Fatalities by Transportation Mode  

 (Ingram Marine Group, 2014) 

 

Despite all the advantages of inland waterway transport, this method of conveying 

cargo remains underutilized primarily as a result of inadequate inland waterway 

infrastructure including locks and dams.  As such, in order to realize the full potential of 

river transport and encourage manufacturers and customers alike to embrace intermodal 

means of shipping, the location of port facilities must be carefully selected to minimize 
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infrastructure cost while maintaining an efficient system.  This statement holds true 

particularly for the state of Ohio, which has access to the Atlantic Ocean and the Gulf of 

Mexico through Lake Erie and the Ohio River, respectively.  

Waterway transportation carries goods and services with fewer societal, 

economical and environmental impacts than other modes of ground transportation. A 

hypothetical study conducted in Texas Transportation Institute (TTI) Center for Ports and 

Waterways discussed the possible consequences of shutting down the Mississippi and 

Illinois Rivers. The results indicated that this would result in a, 200% increase in truck 

traffic, as well as a 500% increase in traffic delays, a 36% to 45% increase in injuries and 

fatalities on Interstates. Finally, an 80% to 93% increase in maintenance costs would be 

observed. All in all, this study clearly delineates the merit of using river transportation for 

society (Texas Transportation Institute, 2008). Therefore, diverting highway cargo from 

the nation’s interstates would dramatically alleviate traffic congestion thereby improving 

highway capacity.  

Similarly, a SWOT analysis was conducted and presented in Table 3 for Inland 

Waterway Transportation in U.S.  
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Table 3: SWOT Analysis for Inland Waterway Transportation (IBISWorld, 2015) 

Strengths  Weaknesses  

 Low Cost 

 Larger capacity 

 Flexible service compared 

to railways 

 The Safest mode 

 Lower CO2 emission 

 

 Slow 

 Not good for perishable goods 

 Limited area  

 Seasonality 

 

Opportunities Threats 

 Sector annually grows 

2.7% 

 New Trend 

 Alleviates traffic 

congestion 

  Reduces highway capacity 

 Obsolete waterway infrastructure   

 Having diverse range of clients  

 Ability to accommodate emission 

requirements 

 Optimum capacity utilization 

 

With these aspects in mind, it is essential to integrate highway and waterway 

transportation as stated by the USDOT’s National Freight Policy Framework (USDOT, 

2006). This integration is further discussed in the next section.  
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4.3.1. Ohio’s Waterway Transportation 

Ohio is a maritime state surrounded by 716 miles of navigable waterways and is 

8th in the Nation for total tonnage moved. Ohio’s maritime ports and river terminals 

handle over 103 million tons of commodities which values $11 billion worth of cargo per 

year generated by the Lake Erie and Ohio River System. The Lake Erie system has 265 

miles of coast line that transports 40.6 million tons of commodities with a value of $3.6 

billion worth of cargo. The Ohio River has 451 miles of coastline and carries 63 million 

tons of commodities with a value of $7.4 billion worth of cargo. This study only 

considers the Ohio River, and specifically, the Mid-Ohio River valley region (ODOT, 

2004).  

Ohio River terminals provide a pathway to the Gulf and Pacific Ocean by using 

the Panama Canal, thereby invigorating business transactions in Ohio (ODOT, 2010). 

The Panama Canal promotes shipping via the Ohio River and provides a cost effective 

access to global and domestic markets. Additionally, due to a change in global supply 

chain causing national freight congestion to become a prominent issue, there is an 

opportunity for the Ohio River to expand waterborne transportation. Moreover, the Ohio 

River eases congestion, and the statistics indicate that the Ohio River carries an 

equivalent of 58 million highway truck trips per year. Also, the statistics indicate that if 

the Ohio River’s cargo is redirected from highway and rail routes into Ohio River’s 

waterways, truck traffic on interstates would diminish by 50% and rail tonnage would 

decrease by 25%. Therefore, an optimal balance is needed for efficient transportation 

integrated system (ODOT, 2012).   
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Ohio River water ports provide a convenient access to other transportation modes 

such as highways and rails terminals; and therefore, serve as important intermodal 

connectors.  Figure 19 shows the total ports of Ohio River considered in our study (lower 

portion of the map).  

 

 

Figure 19: Ohio River Water Ports (ODOT, 2004) 

 

In terms of inter and intra state regional analysis, the Ohio River serves these 

states: Kentucky, Indiana, Ohio, West Virginia and Pennsylvania as shown in Figure 16.  
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4.3.2. Ohio River Study Area Terminals  

The local highway and interstate connectivity is also an important parameter to 

consider for intermodal transportation systems. Figure 20 illustrates the interstates and 

highways in the study area depicted in red. 

 

 

Figure 20: Highway and Interstate Connectivity of Study Area 

  

The terminals along the Ohio River are clustered into three regions: the Cincinnati 

region, Portsmouth-Marietta and West Virginia- Panhandle (Ohio River Terminals 

Analysis, Ohio State Wide Freight Study, 2013). The characteristic of these regions are 

described briefly below.  
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4.3.2.1. Port of Cincinnati  

The Cincinnati terminal is the main terminal that has barge, truck, rail loading and 

unloading opportunities. I-71, I-74, and I-75 converge in the region, and I-275 fortifies 

the flexibility for routing opportunities (River Trading Company, 2015). The terminal 

stretches along a mile of the Ohio River. The Port of Cincinnati has a mix of cargo 

specialties including dry bulk and packaged commodities. General cargo and fuel are the 

primary products transported from this port. The terminal has three barge unloading 

docks and one barge loading dock. The total ground storage capacity is 200,000 tons 

(River Trading Company, 2015). The terminal’s annual capacity is 1.5 million tons of 

coal, and 2 million tons of bulk material per year. Ten acres of outside storage and 57,000 

sq. ft. of inside storage is available and can handle multiple commodities at the same time 

(River Trading Company, 2015). Figure 21 shows the Port of Cincinnati. 

 

 

Figure 21: Port of Cincinnati 
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4.3.2.2. Port of Huntington- Tristate 

The Port of Huntington in West Virginia (WV) is one of the biggest inland ports 

in the United States. Approximately 80 million tons of cargo ($5.3 billion of cargo) is 

moved through the Port of Huntington, WV. Among the cargo, 60% is coal and 30% is 

petroleum/chemical products. The port is situated along 100 miles of the Ohio River, 90 

miles along the Kanawha River and 9 miles of the Big Sandy River. Based on the 2010 

data, 461 commercial vessels per month use the Port of Huntington (National Waterways 

Council, 2014; US Army Corps of Engineers, 2012). Figure 22 illustrates the Port of 

Huntington.  

 

 

Figure 22: Port of Huntington, WV 

 

The Port of Huntington has close access to I-64 and sits in the intersection of US 

23 and US 52. Interstate-64 provides an efficient access to multiple corridors. In addition, 

I-64 provides a convenient access point to the I-77 North-South corridor (The Point 

Industrial Park, 2011). The Port of Huntington accommodates 15 jumbo-sized barges. For 
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comparison purposes, this equals two and a quarter trains and 900 trucks (Rosenberger, 

2010).  

4.3.2.3. South Point Intermodal Terminal 

The South Point, Ohio terminal is situated on a 500 acres Ohio land. The terminal 

is capable of handling multiple transportation modes (rail, truck, and barge). Three 

vessels can be handled for loading and unloading purposes. The facility has a dock load 

capacity of over 300 tons each lift (Alten, 2009).  

 

 

Figure 23: South Point Intermodal Terminal  

(The Point Industrial Park, 2011) 

 

The commodities are transported via US 52. The terminal has a capacity of six 

barges and two cranes to load and unload barge items (Alten, 2009). In conclusion, the 

South Point is a truly multimodal facility for the facilitation of cargo movement between 

river, interstate and rail. 
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4.3.2.4. Belpre Intermodal Terminal 

The Belpre Intermodal Terminal is situated on 160 acres of land along the Ohio 

River. The terminal connects to OH SR 7 and US 50. The location provides convenient 

access to rail, truck and waterways. The terminal has a capacity of 6,000 tons of silo, 

three acres of concrete stockpile area and 10 acres of coal storage area. This terminal 

offers various commodity handling opportunities as well. Figure 24 shows the location of 

Belpre Intermodal facility (The Price Inland Terminal, 2013). 

 

  

Figure 24: Belpre Intermodal Terminal (The Price Inland Terminal, 2013) 

  

The facility has 9000 feet of river frontage with barge mooring facilities, 3 docks 

(each with a 100-ton crane), 3 front end loaders, a barge loading and unloading facility, 

1000 feet portable conveyors, and 1000 feet stationery conveyors and a belt sampler 

system. Unlike others, Belpre Intermodal Terminal is operated by the private sector, and 

ownership is held by private parties (The Price Inland Terminal, 2013).  This terminal 

also has an important role in moving a variety of goods and services along the Mid- Ohio 

Valley region. 



63 
 

4.3.2.5. Wellsville Intermodal Terminal 

The Wellsville Intermodal Terminal is situated on the northern point of the Ohio 

River and near the Ohio State Route 7. It provides intermodal truck access to locations 

north and west of the Ohio River. The commodities are diverted from barge to truck or 

rail for outbound transportation. The main locations are, Pittsburg, PA at 46 miles, 

Cleveland, OH at 95 miles, Buffalo, NY at 209 miles and Detroit, MI at 250 miles. 

Figure 25 illustrates the Wellsville facility (Wellsville Terminals Co., 2014). 

 

 

Figure 25: Wellsville Intermodal Terminal  

(Wellsville Terminal Co., 2014; O’Brien, 2013) 

 

The Wellsville Intermodal Terminal has a capacity of handling of 12-14 barges 

per month and is expected to grow significantly up to 28 barges a month. The terminal 

has a 60-ton overhead crane and delivers 200 to 400 trucks a day at the site (O’Brien, 

2013). Most importantly, the Wellsville intermodal facility is currently one of the fastest 

developing facilities within Ohio due to its technological infrastructure and close 

proximity to large customer locations. 
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4.3.2.6. The Proposed Minor Port Locations  

Integrating minor ports into the intermodal commodity movement is the emphasis 

of this research effort. The main ports (Cincinnati, OH and Huntington, WV) serve as the 

gateway to the Gulf of Mexico, Oceans and major urban areas across the Midwest region 

via rail and interstates. The intermodal distribution terminals provide service to the Ohio 

Valley Region via rail, state routes and some interstates. The primary focus of the minor 

ports is to serve local areas via trucks traveling along state and local roadways. The 

primary effort is to propose the best location, number and allocation decisions for inland 

ports to facilitate domestic trade activity within the Ohio River Valley. In the system, the 

assumption was that the containers will be transported to the minor ports by truck from 

the local distributors and then delivered via barges to intermodal terminals for 

distribution to the region or to main ports for distribution to major urban areas or 

international trade. Using intermodal terminals, the commodities will be going to their 

final destinations. Significant reductions in vehicles miles traveled (VMT), congestion, 

air pollution and other aspects (see next section for details) in the Mid-Ohio River Valley 

region are expected as a result of this integration.  

The proposed minor ports include: Wheeling, WV, Moundsville, WV, Proctor, 

WV, New Martinsville, WV, Paden City, WV, Matamoras, OH, Newport, OH, 

Williamstown, WV, Marietta, OH, Parkersburg, WV, Hockingport, OH, Sherman, WV, 

Ravenswood, WV, Racine, OH, Pomeroy, OH and Middleport, OH. Point Pleasant, WV, 

Gallipolis, OH, Glenwood, WV, Rome, OH, Proctorville, OH, Ironton, OH, Sciotoville, 

OH, Portsmouth, OH, Vanceburg, KY, Manchester, OH, Marysville, OH, and Ripley, 
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OH. If implemented as ports, these locations can offer many benefits. The locations were 

determined based on economic development and wealth, population, available workers, 

costs, increased revenues and potential social benefits.  

Moreover, these ports were selected based on the physical infrastructure, 

proximity to the river, time required to move through the commodity, labor availability, 

and tax considerations. Minor ports could not be considered in these locations due to 

serious maintenance and infrastructure renovations (facility upgrade, technology 

upgrade) in order for them to be utilized effectively. Therefore, truck distribution is only 

considered at the minor ports to/from local areas. Ohio River distribution diagram is 

shown in Figure 26.  
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Figure 26: Ohio River Distribution Diagram  
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5. PROPOSED SOLUTION METHODOLOGIES 

The main emphasis of this study is the determination of the optimal locations for 

docks and transportation routes for different commodities. This is optimally done by 

mathematical modeling approach. The State of Ohio’s Inland Waterway system is the 

central focus. Mathematical model and associated heuristic approach are proposed to find 

optimal solutions. One of reasons to propose both approaches was to present the trade-off 

between two approaches in terms of solution quality and time. Another reason was to 

support that a heuristic approach can be also used an alternative optimization 

methodology. The following two sections discuss each model including parameters, 

limitations and assumptions.     

5.1. Mathematical Model 

LINGO 15.0 optimization studio is used for solving the Mathematical Model. The 

objective function is to minimize total transportation and the total fixed cost of the 

system; it is given in Equation (1). Each main port has a certain capacity that cannot be 

exceeded as shown in Equation (2). Equation (3) guarantees that minor port capacity is 

not exceeded.  Equation (4) guarantees each demand constraint is satisfied. Equation (5) 

ensures that each intermodal terminal/customer zone must be served by a single minor 

port. Equation (6) ensures to open the port if it serves to the intermodal terminal, and 

Equation (7) is the binary constraint, i.e. it is either ―1-selected‖ or ―0-not selected‖. 

Notation: 

 Indices: 

i  product index 
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j main port index 

k  minor port index 

l  intermodal terminal index 

Parameters:  

I  number of products 

J number of main ports 

K  number of minor ports 

L number of intermodal terminals 

dil Demand of product i in intermodal terminal zone l 

cijk Unit cost of transportation for product i from any main port j to any minor 

port k 

cikl Unit cost of transportation for product i from any minor port to any intermodal 

terminal l 

fk Fixed cost of minor port k 

Sij Main port capacity for product i at main port j,  

Qk Minor port Capacity  

Decision variables: 

Xijk  demand flow of product i from any main port j to any minor port k  

ykl  1 if any minor port k is linked to any intermodal terminal zone l, 0 otherwise. 

zk  1 if any minor port k is open, 0 otherwise. 
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                                                  (7) 

 

In terms of the cost perspective of the system, the overarching goal of this 

research is to minimize the total cost of the system for the public sector. A heuristic 

approach is also implemented along with the aforementioned Mathematical Model. Both 

will be explained in the next section.  
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5.2. Mathematical Model Limitations & Assumptions 

In developing the Mathematical Model, assumptions were made regarding the 

locations of terminals and potential ports, the capacities of the various river transport 

entities, the types and amounts of cargo, and the transport distances.  Also, due to the 

nature of each problem setting, some limitations are also discussed below: 

 Only one product category, warehousing product, was considered. 

 Potential port locations were selected based on the proximity to river, highways 

and land availability.  

 Each main port had a certain supply capacity.  

o Cincinnati, OH: 100,000 TEUs/yr. 

o Huntington, OH: 100,000 TEUs/yr.  

 Each minor port had a certain capacity constraint. 

o Low Capacity: 48,970 TEUs/yr. 

o Medium Capacity: 78,351 TEUs/yr. 

o High Capacity: 107,731 TEUs/yr. 

 Transfer time of cargo between barge, truck and rail were not considered. 

 Each intermodal port had a certain demand based on the demand volume 

transactions. 

o Wellsville, OH: 51,700 TEUs/yr. 

o Belpre, OH: 50,600 TEUs/yr. 

o South Point, OH: 7,700 TEUs/yr. 
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 River carrying capacity and seasonality factors were not considered.  

 Lock carrying capacities were not considered. 

 Environmental effects such as impacts on water quality, animal habitat and etc. 

were not considered. 

 Each intermodal terminal was supported by only one minor port.  

 Modeling was performed based on the port capacity, travel distances & costs, 

establishment/fixed cost of ports, demand of intermodal terminals. 

 Travel time was not considered due to high correlation with travel distance. 

However, for every lock a vessel an additional minutes was included for lock 

maneuvering and water transition once the vessel was secured within the lock.   

Modeling assumptions are listed in the subsequent sections.  

5.2.1. Terminal and Port Assumptions 

As previously mentioned, this research considers the Ohio River region, with a 

specific focus on the Mid-Ohio Valley Region.  This area was selected in accordance 

with recent research conducted on behalf of the Ohio Department of Transportation for 

which inbound and outbound freight data was available (Coles and Associates, 2010).  As 

such, the following ports and intermodal terminals were considered the ―manufacturing 

plant‖ and ―customer‖ locations. These cities, which serve as major hubs along the 

Heartland Corridor, are as follows: 

 Cincinnati, OH – river port 

 Huntington, WV – river port 

 South Point, OH– intermodal terminal 
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 Belpre, OH – intermodal terminal 

 Wellsville, OH – intermodal terminal 

As for the minor port locations, the following cities were selected as potential 

candidates for new port facilities:   

 Wheeling, WV 

 Moundsville, WV 

 Proctor, WV 

 New Martinsville, WV 

 Paden City, WV 

 Matamoras, OH 

 Newport, OH 

 Williamstown, WV 

 Marietta, OH 

 Parkersburg, WV 

 Hockingport, OH 

 Sherman, WV 

 Ravenswood, WV 

 Racine, OH 

 Pomeroy, OH 

 Middleport, OH 

 Point Pleasant, WV 

 Gallipolis, OH 
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 Glenwood, WV 

 Rome, OH 

 Proctorville, OH 

 Ironton, OH 

 Sciotoville, OH 

 Portsmouth, OH 

 Vanceburg, KY 

 Manchester, OH 

 Marysville, KY 

 Ripley, OH 

5.2.2. Inland Waterway Infrastructure Capacities 

In determining constraints for the Mathematical Model, the tow capacity, port 

capacity, and river capacity was considered.  In defining tow capacity, the capacities were 

specified in twenty-foot equivalent units (TEUs) rather than tons since warehousing 

freight is considered a container on barge shipping.  A single TEU refers to a twenty-foot 

container; thus, a container that is forty feet in length would be considered two TEUs.  

Each TEU typically holds approximately 26 tons of cargo.   

As for Ohio River transport, each tow consists of 15 barges, with each barge 

capable of carrying 1750 tons of dry bulk freight; therefore, each tow possesses a 

maximum capacity of 26,250 tons (Coles and Associates, 2010).  However, with regards 

to a container on barge shipping, space was the limiting factor controlling tow capacity, 
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with each fifteen-barge tow capable of transporting 750 TEUs (Southeastern Ohio Port 

Authority, 2008). 

Port capacity depends primarily on three factors: mechanical handling 

capabilities, storage facilities, and transport capabilities (Eastgate Regional Council of 

Government, 2013).  Existing ports along the Ohio River provided the basis for the 

derivation of realistic port capacities for optimization.  In order to assess the sensitivity 

and observe port location parameters, three capacity levels were considered. These ports 

classified as low, medium, or high capacity according to the specifications listed in Table 

4. The purpose of considering different level of port capacity scenarios was based upon 

considering the uncertainty associated with the future. These scenarios were also 

constructed by considering the changing demand patterns, geographical distribution, 

population and growth. Also, these levels of port capacity scenarios were considered in 

order to observe different port selection decisions based on the changing capacity 

classifications.  

 

Table 4: Mid-Ohio River Port Capacities 
Capacity Classification Mechanical Handling Storage Facilities Transport Capabilities 

Low 48,970 TEUs/yr 1029 TEUs 1 TEU/Truck 

Medium 78,351 TEUs/yr 1646 TEUs 1 TEU/Truck 

High 107,731 TEUs/yr 2264TEUs 1 TEU/Truck 

     

Although Table 4 defines capacities in terms of all three factors, only the 

mechanical handling capabilities dictated the capacity of proposed minor ports for the 

purposes of this case study.   
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The river capacity was dictated by the capacity of the locks along the river.  Each 

lock and dam averages one hour per tow through the system.  Also, according to The 

Barge Association, the maximum speed of each barge is approximately 7.5 mph and an 

average cruising speed approximately 3.7 mph (The Barge Association, 2013). Thus, the 

time required traveling through the 10 locks between Cincinnati and Wheeling would be 

considered approximately 72 hours, considering the allowances as well.  The locks are 

capable of accommodating up to 20 fifteen-barge tows per day.  These locks are pictured 

in Figure 27.  

 

 

Figure 27: Locks and Dams along the Ohio Valley Region (Neff, 2010) 

 

5.2.3. Cargo Assumptions 

Assumptions were also made with regard to the type of cargo that will be 

considered in this case study.  After reviewing the various inbound and outbound 
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commodities for the region, warehousing freight was selected as the cargo of choice for 

this study.  This decision was made on the basis of three factors.  First, the overall value 

of the cargo was considered, which $5,222,916,547 and $20,812,124,247 was for 

outbound and inbound shipments, respectively.  Second, the percentage of this cargo 

currently transported by truck was considered such that river transport would be able to 

effectively reduce truck traffic.  As for warehousing freight, 100% of the 3,204,409 tons 

of inbound and 804,164 tons of outbound cargo is transported via trucks (Coles and 

Associates, 2010). Thus, if this freight could be transferred via container on barge 

shipping instead, a considerable reduction in truck traffic would be experienced.  Finally, 

due to the fact that warehousing freight was constituted of non-perishable containerized 

consumer goods, these products can be manufactured early and will not require expedited 

shipping.  In consideration of these three factors, this type of cargo was a prime candidate 

for containers on barge shipping.   

This research will only consider the outbound freight that needs to be transferred 

through the region to the intermodal terminals since information regarding the exact 

destination of inbound freight was ambiguous.  As such, the demand shall be set at 

804,164 tons/yr (110,000 TEUs/yr) and the supply shall be equal to the demand.  All of 

the supply will originate from the Cincinnati and Huntington ports, which will provide 

equal amounts of supply (50% each), respectively.  Due to the fact that warehouse freight 

was currently only shipped via trucks, these percentages were derived from the 

proportion of each port’s capacity to the total capacity of both ports combined.  The 

demand at each intermodal terminal was assumed to be 47%, 46%, and 7% for 
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Wellsville, Belpre, and South Point, respectively (Coles and Associates, 2010). These 

percentages were based upon the final destinations of cargo to Canada and regions in the 

United States, assuming that cargo through the aforementioned intermodal terminals will 

end up in the following locations: 

 Wellsville, OH  Central Midwest, Northeast, Midwest, West Pacific, and 

Canada 

 Belpre, OH West Mountain and West South Central regions  

 South Point, OH  South Atlantic and East South Central 

5.2.4. Transportation Distances and Costs  

In order to optimize the minor port locations, transport distances and the 

corresponding costs were determined.  Due to the fact that the cargo would be transported 

through multi-modal means, river mileage was obtained for the tows and roadway 

mileage was obtained for the trucks.  As such, the distances from the main ports to each 

proposed minor port were derived upon the basis of the Ohio River mileage.  Similarly, 

the distance from each proposed minor port to the intermodal terminals assumes transport 

will take place along the major routes.  All distances considered in this study, which are 

given in miles, have been compiled in Table 5. 
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Table 5: Transport Distances between Minor Ports, Main Ports, and Intermodal 
Terminals (distances in miles) 

  
Main Ports (road) Intermodal Terminals (river) 

  

Huntington Cincinnati South Point, 
OH 

Belpre, 
OH 

Wellsville, 
OH 

Po
te

nt
ia

l M
in

or
 P

or
t L

oc
at

io
ns

 

Wheeling WV 205 231 228.9 92.9 17.8 
Moundsville WV 176 242 218.1 82.1 28.6 

Proctor WV 156 260 200.3 64.3 46.4 
New Martinsville, 

WV 152 265 191.8 55.8 54.9 
Paden City, WV 144 238 186.3 50.3 60.4 
Matamoras, OH 135 255 177.6 41.6 69.1 
New Port, OH 123 218 163.8 27.8 82.9 

Williamstown, WV 112 208 158.3 22.3 88.4 
Marietta, OH 106 202 148.5 12.5 98.2 

Parkersburg WV 95.1 192 134.5 1.5 112.2 
Hockingport, OH 84.5 181 120.3 15.7 126.4 

Sherman, WV 73.6 183 102.5 33.5 144.2 
Ravenswood, WV 70.2 179 98.9 37.1 147.8 

Racine, OH 72 169 77.8 58.2 168.9 
Pomeroy, OH 59.2 156 69.3 66.7 177.4 

Middleport, OH 57.1 156 67.3 68.7 179.4 
Point Pleasant, WV 42.2 151 54.5 81.5 192.2 

Gallapolis, OH 39.3 148 50.3 85.7 196.4 
Glenwood, WV 22.4 168 33.5 102.5 213.2 

Rome, OH 73.8 84 16.6 119.4 230.1 
Proctorville, OH 4.7 154 14.5 121.5 232.2 

Ironton, OH 19.8 132 7.2 143.2 253.9 
Sciotoville, OH 40.4 118 29.2 165.2 275.9 
Portsmouth, OH 46.2 104 35.6 171.6 282.3 
Vanceburg, KY 60.8 89.6 57.5 193.5 304.2 
Manchester, OH 87.2 73.8 69.5 205.5 316.2 
Maysville, KY 88.5 62.9 86.7 222.7 333.4 

Ripley, OH 99.6 52.5 96.4 232.4 343.1 
 

With the transportation distances determined, costs were assigned to each link 

from main port to minor port and minor port to intermodal terminal.  The cost 

calculations assume a variable cost of $0.97/ton-mile and $5.35/ton-mile associated with 
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transporting freight via barge tows and trucks, respectively (Eastgate Regional Council of 

Government, 2013). These costs were then multiplied by the distances provided in Table 

2 and converted from tons to TEUs to obtain the cost/TEU for each possible link in the 

network, which is summarized in Table 6.  An additional cost that was also considered in 

this study was the fixed cost for each potential minor port.  Without access to specific 

fixed cost data for ports, the fixed cost was based upon costs associated with similar 

existing port facilities along the Ohio River.  In terms of determining the fixed cost, or 

the total investment cost of a port, tax incentives were considered. It is assumed that the 

less populated areas have lower taxes and densely populated locations have higher taxes. 

The cost of establishing a fully functional port in the highest populated city was set at 

$500,000, and it changes based on the population parameter (Eastgate Regional Council 

of Government, 2013). 
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Table 6: Variable Cost of Transport along Network Links (in $/TEU) 

  
Main Ports Intermodal Terminals 

  

Huntingto
n Cincinnati South Point, 

OH 
Belpre, 

OH 
Wellsville, 

OH 

Po
te

nt
ia

l M
in

or
 P

or
t L

oc
at

io
ns

 

Wheeling WV 42.18 47.53 8.54 3.47 0.66 
Moundsville WV 36.22 49.80 8.14 3.06 1.07 

Proctor WV 32.10 53.50 7.47 2.40 1.73 
New Martinsville, 

WV 31.28 54.53 7.16 2.08 2.05 
Paden City, WV 29.63 48.97 6.95 1.88 2.25 
Matamoras, OH 27.78 52.47 6.63 1.55 2.58 
New Port, OH 25.31 44.86 6.11 1.04 3.09 

Williamstown, WV 23.05 42.80 5.91 0.83 3.30 
Marietta, OH 21.81 41.57 5.54 0.47 3.66 

Parkersburg WV 19.57 39.51 5.02 0.06 4.19 
Hockingport, OH 17.39 37.24 4.49 0.59 4.72 

Sherman, WV 15.14 37.66 3.82 1.25 5.38 
Ravenswood, WV 14.45 36.83 3.69 1.38 5.51 

Racine, OH 14.82 34.78 2.90 2.17 6.30 
Pomeroy, OH 12.18 32.10 2.59 2.49 6.62 

Middleport, OH 11.75 32.10 2.51 2.56 6.69 
Point Pleasant, WV 8.68 31.07 2.03 3.04 7.17 

Gallapolis, OH 8.09 30.45 1.88 3.20 7.33 
Glenwood, WV 4.61 34.57 1.25 3.82 7.95 

Rome, OH 15.19 17.28 0.62 4.45 8.58 
Proctorville, OH 0.97 31.69 0.54 4.53 8.66 

Ironton, OH 4.07 27.16 0.27 5.34 9.47 
Sciotoville, OH 8.31 24.28 1.09 6.16 10.29 
Portsmouth, OH 9.51 21.40 1.33 6.40 10.53 
Vanceburg, KY 12.51 18.44 2.15 7.22 11.35 
Manchester, OH 17.94 15.19 2.59 7.67 11.80 
Maysville, KY 18.21 12.94 3.23 8.31 12.44 

Ripley, OH 20.49 10.80 3.60 8.67 12.80 
 

Based on the aforementioned input parameters, both models will be solved and 

the results will be discussed in the following section.    
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5.3. The Proposed Heuristic for the Inland Waterway Transportation 

Heuristic approaches are specifically designed for the problem settings.  In this 

research, a heuristic is proposed for finding the optimal number, location and allocation 

decisions of the ports, and the total transportation cost of the system.  The following are 

the steps for the proposed heuristic:  

Step 1: Calculate shipping costs of all product demands from minor ports to intermodal 

terminals. 

Step 2: Construct a two-dimensional matrix by calculating the total cost of each minor 

port-intermodal terminal link for products  

Step 3: Now we have the total costs of minor port-intermodal combinations that includes 

sum of all products. It is now decide which intermodal terminals should be 

opened. This is called the First Round in the heuristic. 

Step 4: A threshold value is calculated for each customer whether it is worth to assign 

that minor port to that intermodal terminal. Threshold value is calculated by max-

min average shipping costs that are calculated in step 3. 

Step 5: Once step 5 is performed, check whether the cheapest total cost of minor port-

intermodal terminal combination is worthwhile to be linked, in the meantime the 

capacity of the minor ports are checked. 

Step 6: If the capacity is available and it is worthwhile to assign intermodal to port, then 

assign it and opened that port. If not, hold that intermodal terminal in the reserve 

list. 
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Step 7: Continue with the second intermodal terminal and check again whether the 

cheapest total cost of port-intermodal combination is worthwhile to be linked 

while checking the capacity. If the capacity is full, check the next cheapest total 

cost of port-intermodal combination. 

Step 8: Assign if it is worthwhile to assign compared to threshold. If it is not worthwhile, 

hold that intermodal terminal in the reserve list. 

Step 9: Perform steps 6-7-8 until all intermodal terminals are either assigned or hold in 

the reserve list. It is now time to perform The Second Round of the heuristic, 

which is called the assignment of unassigned intermodal terminals from the 

reserved list. 

Step 10: Select the highest total shipping cost of intermodal terminal from the reserved 

list and start assigning that intermodal to the available port. 

Step 11:Based on the selected customer in step 11, calculate total system cost by adding 

the total shipping cost with the total minimum cost of major port-minor port 

combination for each product to find the total cheapest cost of that minor port-

intermodal combination. 

Step 12: If the calculated total cheapest value combination for that minor port is 

previously opened, then assign it if the capacity is available. If capacity is not 

available, check the next total cheapest value combination and assign it if that 

minor port is previously opened and capacity is available. If aforementioned rules 

are not met, open a new minor port and assign that customer. 
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Step 13: Perform steps 11-12 for the rest of the unassigned reserved list intermodal 

terminals. 

Step 14: Since each and every customer is satisfied by the corresponding minor port, it is 

time to determine major port-minor port combination. 

Step 15: Calculate the cost combination for each major and minor (with its corresponding 

products) and connect the cheapest major-minor combination. 

Step 16: Now calculate the total system-wide cost (total shipping costs from major ports 

to minor ports and total shipping costs from minor ports to intermodal terminals) 

Step 18: Terminate 
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6. OPTIMIZATION RESULTS  

The analysis was conducted with the Mathematical Model and the heuristic model 

to determine the optimal locations of minor ports such that demand would be satisfied, 

supply would not be exceeded, and total costs would be minimized.  Both models also 

yielded the amount of TEUs that would need to be transported through each selected 

route. Three different scenarios based on low, medium, and high minor port capacities 

were considered to observe different port location decisions within the region. The 

Mathematical Model coded in LINGO 15.0 is presented in Appendix A.   

6.1. Low-Capacity Scenario 

First, low port capacity was considered, for which each proposed port location 

could only transfer 50,000 TEUs/yr.  Based upon this assumption, new port facilities 

were opened at Proctorville-OH, Ironton-OH, and Ripley-OH.  These results appear to be 

fairly intuitive, as the proximity of these three locations to major highway networks such 

as U.S. Route 52 and I-64 minimize the truck transport costs.  The flow of TEUs through 

each proposed minor port is summarized in Tables 7 and 8. This set of results yielded a 

total cost of $3,044,137.   

 

Table 7: TEU Transfer from Major Ports to Minor Ports with Low Capacity 
Main Port Proposed Port Location Flow - TEU's 

Cincinnati, OH 28-Ripley, OH 50,600 
 

Huntington, WV 
21-Proctorville, OH 51,700 

22-Ironton, OH 7,700 
Total 110,000 
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Table 8: TEU Transfer from Minor Ports with Low Capacity to Intermodal Terminals 

From Proposed Port To Intermodal Terminal Location Flow - TEU's 
21-Proctorville, OH 3- Wellsville, OH 51,700 

22-Ironton, OH 1-South Point 7,700 
28-Ripley, OH 2-Belpre, OH 50,600 

  Sum of Demand 110,000 
 

The commodity flow diagram from each main port to intermodal terminal via 

minor ports is illustrated in Figure 28, Figure 29 and Figure 30, respectively. The black 

line denotes the truck transportation and blue color denotes the barge transportation for 

the region.  

 

 

Figure 28: Flow of Commodities from Cincinnati to Belpre via Ripley Minor Port 

 

In Figure 28, the warehousing freight is shipped by truck from the origin 

destination, Cincinnati, OH main port to Ripley, OH and travels along the Ohio River via 

a tow of barges to its final destination – Belpre, OH intermodal facility.  
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Similarly, Figure 29 illustrates the flow of warehousing freight that is shipped 

from Huntington, WV main port to Proctorville, OH minor port facility by truck and from 

there, the commodities are transported via barges to their final destination Wellsville, OH 

intermodal facility. 

 

 

Figure 29: Flow of Goods from Huntington, WV to Wellsville, OH via Proctorville, OH 

 

Also, Figure 30 shows that the commodities are shipped from Huntington, WV 

facility to South Point, OH terminal via Ironton, OH facility.  
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Figure 30: Flow of Goods from Huntington, WV to South Point, OH via Ironton, OH 

 

6.2. Medium-Capacity Scenario  

Similar optimization was conducted considering a medium port capacity of 

80,000 TEUs/yr.  This modification in the minor port capacity reduced the number of 

port locations to two (Proctorville and Ripley), which also reduced the total cost to 

$2,522,374.  The flow of TEUs from the major ports through the minor ports to the 

intermodal terminals is compiled in Tables 9 and 10. 

 

Table 9: TEU Transfer from Major Ports to Minor Ports with Medium Capacity 
Main Port Proposed Port Location Flow - TEU's 

Cincinnati, OH 28-Ripley, OH 50,600 
Huntington, 
WV 21-Proctorville, OH 59,400 

  Total 110,000 
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Table 10: TEU Transfer from Minor Ports with Medium Capacity to Intermodal 
Terminals 

From Proposed Port To Intermodal Terminal Location Flow - TEU's 
21-Proctorville, OH 1- South Point, OH 7,700 
21-Proctorville, OH 3- Wellsville, OH 51,700 

28-Ripley, OH 2- Belpre, OH 50,600 
  Sum of Demand 110,000 
 

Figure 31 clearly illustrates that the flow of warehousing freight shipments are 

shipped from Cincinnati, OH facility to Ripley, OH facility by trucks and then transferred 

and transported via barges to its final destination to Belpre, OH intermodal facility 

terminal. Figure 32 shows the flow of goods from Huntington, WV main port terminal to 

Proctorville, OH by using trucks and then transferred and shipped to South Point, OH 

intermodal terminal by using barges.  Figure 33 also shows the flow of goods from main 

port to minor port by trucks and then shipped via barges to reach its final destination.   

 

 

Figure 31: Flow of Goods from Cincinnati, OH to Wellsville, OH via Proctorville, OH 
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Figure 32: Flow of Goods from Huntington, WV to South Point, OH via Proctorville, OH 

 

 

Figure 33: Flow of Goods from Huntington, WV to Wellsville, OH via Proctorville, OH 

 

6.3. High-Capacity Scenario 

The final optimization analysis performed with the model considered minor ports 

with a high capacity of 110,000 TEUs/yr.  Coincidentally, this scenario assumes that the 

minor ports have a capacity equivalent to the total amount of TEUs that need to be 

transferred in order to satisfy customer demands.  Thus, this optimization analysis only 

opened a port in Proctorville-OH through which all cargo would be transferred.  The cost 

associated with this scenario was $2,416,415. 
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Table 11: TEU Transfer from Major Ports to Minor Ports with High Capacity 
Main Port Proposed Port Location Flow - TEU's 

Cincinnati, OH 21-Proctorville, OH 36,052 
Huntington, WV 21-Proctorville, OH 73,948 
  

 

Total 110,000 
 

Table 12: TEU Transfer from Minor Ports with High Capacity to Intermodal Terminals 
From Proposed Port To Intermodal Terminal Location Flow - TEU's 
21-Proctorville, OH 1- South Point, OH 7,700 
21-Proctorville, OH 2- Belpre, OH 50,600 
21-Proctorville, OH 3- Wellsville, OH 51,700 
  Sum of Demand 110,000 
 

The computation time for all of these scenarios takes several seconds in LINGO 

15.0 optimization software.  Figure 34 illustrates that goods are transported from 

Huntington, WV to Proctorville, OH minor facility by truck, and then transferred to 

barges to reach Belpre, OH intermodal facility.  
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Figure 34: The Flow of Goods Huntington, WV to Belpre, OH via Proctorville, 

OH 

 

Figure 35 shows that goods are transported from Cincinnati, OH to Proctorville, 

OH minor facility by truck and then transferred to barges for their final destination to 

Wellsville, OH. 

 

 

Figure 35: The Flow of Goods from Cincinnati, OH to Wellsville, OH via Proctorville 
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Figure 36 illustrates that the warehousing freights are shipped by trucks from 

Huntington, WV to Proctorville, OH minor facility and then transferred to barges to reach 

its final South Point, OH intermodal destination.  

 

 

Figure 36: The Flow of Goods from Huntington, WV to South Point, OH Proctorville, 

OH via Proctorville, OH  

 

6.4. Overall Findings  

The overall optimization results--opened minor ports as well as the flow of goods 

from main ports to intermodal terminals via minor ports--revealed that the trucks were 

heavily used for short haul distances and the barges are used for long haul transportation. 

The overarching goal of this research was satisfied by optimal location of minor ports to 

alleviate the truck traffic congestion within the region. One of the primary objectives was 

to consider barge transportation for longer haul distances to minimize the truck freight 

costs as well as relieve the highway congestion and maximize the overall quality of life 
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for the Mid-Ohio Valley region. As shown, the primary goal of this research was 

satisfied.  

6.5. Comparison of the Model Results (Mathematical Model vs. Heuristic) 

The results of the Mathematical Model were discussed in the aforementioned 

sections. Since heuristics are designed specifically for problem settings and the proposed 

heuristic in section 5.3 was designed for the Mathematical Model and the problem at 

hand, both results were identical. The scope of our study consisted of two main ports, 

twenty-eight proposed minor port locations and three intermodal terminals, as well as the 

number, location and allocation decisions. All the profits associated with each scenario 

were same; however, the solutions might change on different problem sizes and scopes.   

Heuristic approaches are developed for cases where mathematical models cannot 

solve larger problems in a timely fashion, or rather, cannot find any solutions due to 

limited capacity. In such cases, although heuristics do not guarantee optimal solutions, 

they are fast procedures and are used for finding solutions in a timely manner. All in all, 

since the scope of our study is well-established and defined, the heuristic here found the 

solutions in even less than one second with exactly the same results as the mathematical 

model. The overall findings of both models are shown in Table 13.     
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Table 13: Summary of Model Results 

 

The Proposed Port 

Locations 

Capacity Scenario Mathematical Model Heuristic 

Low 

(50,000 TEU/yr) 

21-Proctorville, OH 
22-Ironton,OH 
28- Ripley, OH 

21-Proctorville, OH 
22-Ironton,OH 
28- Ripley, OH 

Medium 

(80,000 TEU/yr) 
21-Proctorville, OH 

28- Ripley, OH 
21-Proctorville, OH 

28- Ripley, OH 

High 

(110,000 TEU/yr) 
21-Proctorville, OH 

 
21-Proctorville, OH 

 

 

Total Cost ($) 

Low $3,044,137 $3,044,137 

Medium $2,522,374 $2,522,374 

High $2,416,415 $2,416,415 

 

Computation Time 

(hour) 

Low 00:00:03:15 00:00:01:02 

Medium 00:00:02:56 00:00:00:52 

High 00:00:01:34 00:00:00:44 

Gap (%) 0% 0% 

 

Although the computation time difference is negligible for our models, the 

proposed heuristic solves faster than the Mathematical Model.  

6.6. Discussion of Model Results and Sensitivity Analysis  

The optimization results of different scenarios show that the capacity decisions 

determine the port locations. When low-capacity restrictions exist in minor port locations, 

more ports are open and able to cover the demand in the region. Since more ports are 

open, a higher total cost is observed. On the other hand, when there is a large-capacity in 

minor port locations, fewer ports are needed to cover the demand in the region. 

Therefore, the number of opened facilities significantly affects the total cost of the 
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system. Specifically, in high capacity scenario, only Proctorville, OH facility is located 

within the region. The highest total cost is observed in low capacity scenario where 

Proctorville, OH, Ironton, OH and Ripley, OH minor port facilities are open to facilitate 

the flow around the region.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      

A sensitivity analysis is conducted to observe the effects of different parameters 

on the model and a solution quality. Although the sensitivity of the model is tested by 

changing port capacities, it is observed that changing port capacities significantly 

affecting the number of opened ports and overall cost of the system. Moreover, a 

sensitivity analysis is also conducted among ports to assess which port has significantly 

affected the solution quality and the total cost of the system. Assuming that the minor 

port is shut down or no longer in service (while the others are in service), the total cost 

savings is compared based on the original solution.  Figure 37 shows the sensitivity 

results for low-capacity scenario. All in all, the sensitivity analysis aims to justify which 

ports provides the highest cost savings and more importantly than the other selected 

minor port locations. 
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Figure 37: % Total Cost Savings of Minor Ports 

 

The sensitivity results indicated that if the Proctorville, OH port is shut down, the 

total cost would be $3,194,653- 4.9% increase- from the original total cost value. 

Secondly, if the Ironton, OH minor facility is shut down, the cost would slightly increase 

by 0.39% from the original total cost value. Thirdly, if Racine, OH facility is shut down, 

the total cost would be $3,056,945 with an increase of 2.55% compared to existing 

solution. In conclusion, based on the current situation in a low capacity scenario, 

Proctorville, OH minor port facility is located in a more critical place than the others for 

total cost savings of the public sector investment. 
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7. CONCLUSIONS & FUTURE DIRECTIONS 

This research was performed with the overall objective of optimizing minor port 

locations such that inland waterway transport could become a more preferable and viable 

alternative to conventional truck transport.  In doing so, a mathematical model was 

developed whereby port locations were selected such that the total cost of transportation 

and investment was minimized.  The mixed integer mathematical model and the proposed 

heuristics were then utilized for optimization, considering three levels of minor port 

capacities.  Based upon this optimization, the number of port locations necessary to 

accommodate the inflow and outflow of warehousing freight ranged from one to three for 

the various port capacity levels.  For low port capacities, Proctorville, OH, Ripley, OH 

and Ironton, OH were identified as optimal port locations.  However, as port capacity 

increased to medium and high levels, the number of port locations dropped to two and 

one, respectively.  Of the three locations identified for low capacity levels, Proctorville, 

OH and Ripley, OH were retained for medium capacity levels.  At the high capacity 

level, only Proctorville, OH was selected for a proposed port facility.  

Since the heuristic model was specifically designed for the current problem 

setting and the mathematical model, it provided exact optimal solutions within faster 

computation time. Moreover, the conducted sensitivity analysis indicated that among the 

most open minor port facilities, Proctorville, OH transfer port facility provides the 

highest total cost savings, located on the critical location for inflow and outflow of goods 

around the region.  
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The primary objective of this thesis was achieved by using barges for long haul 

transportation instead of truck freights. Therefore, truck traffic, congestion, truck-related 

fatalities and CO2 emission around the region will be diminished, whereas the quality of 

life, safety and utilization of existing water resources will be increased. 

While these results represent a step forward in the quest to reduce roadway traffic 

congestion by utilizing inland waterway transport, several other factors will need to be 

considered in future works.  In terms of future work, the following suggestions can be 

investigated.  The mathematical model developed for this case study can be improved by 

obtaining more exact data regarding the fixed costs of investment, operation and 

maintenance for each port location.  Furthermore, the model could also be expanded to 

include smaller shipments from the minor ports to minor distribution centers and 

customers within the counties that comprise the study region.  As more information is 

gathered, the model can be modified to consider each individual type of product that is 

currently considered part of warehousing freight as well as the manufacturing schedules 

and customer due dates.  Once the model has been validated again following the 

inclusion of these factors, the study region can be expanded to consider additional 

waterways in the inland waterway system.  For instance, the smaller navigable waterways 

within the Ohio River system might be considered as potential routes for distributing 

goods to specific customers with each region.  Furthermore, the model could also be 

applied on a larger scale to include the entire the Mississippi River system as a whole 

such that freight may be more readily accessible for barge travel. 
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APPENDIX: LINGO MATHEMATICAL MODEL CODE 
 
MODEL: 

! CAN'S OHIO RIVER PORT LOCATION MODEL; 

SETS: 

! one products; 

  PRODUCT/ A/; 

! Two ports; 

  PLANT/ P1, P2/; 

! Each minor port has an associated fixed cost, F, 

  and an "open" indicator, Z.; 

  DISTCTR/ DC1..DC16/: F, Z, Q; 

! Three intermodal terminals; 

  CUSTOMER/ C1, C2,C3/; 

! D = Demand for a product by a intermodal terminal.; 

  DEMLINK( PRODUCT, CUSTOMER): D; 

! S = Capacity for a product in a port; 

  SUPLINK( PRODUCT, PLANT): S; 

  ! Each intermodal is served by one minor port,  

  indicated by Y.; 

  YLINK( DISTCTR, CUSTOMER): Y; 

! C= Cost/ton of a product from a port to a minor port, 

  X= tons shipped.; 

  CLINK( PRODUCT, PLANT, DISTCTR): C, X; 

! G= Cost/ton of a product from a minor to a intermodal; 

  GLINK( PRODUCT, DISTCTR, CUSTOMER): G;  

ENDSETS 

DATA: 

! Port Capacities; 

S = @OLE ('data3', 's'); !port capacities 

! minor CAP; 

Q = @OLE ('data3', 'k');  

! Shipping costs, port to transfer;  

C =  @OLE ('data3', 'pdc');  

! Minor port fixed costs; 

 F = @OLE ('data3', 'f'); 

! unit cost of transportation, minor to intermodal; 

 G =@OLE ('data3', 'dcc'); 

! Intermodal Demands; 

 D = @OLE('data3', 'demands'); 

ENDDATA 

!--------------------------------------------------; 

! Objective function minimizes total costs.; 

 [OBJ] MIN = SHIPDC + SHIPCUST + FXCOST; 

 SHIPDC = @SUM( CLINK: C * X); 

 SHIPCUST = 

  @SUM( GLINK( I, K, L):  

   G( I, K, L) * D( I, L) * Y( K, L)); 

 FXCOST = @SUM( DISTCTR: F * Z); 

 

! Port capacity; 

 @FOR( PRODUCT( I): 

  @FOR( PLANT( J): 

   @SUM( DISTCTR( K): X( I, J, K)) <= S(I, J)) 
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 ); 

! Minor port CONSTRAINT; 

 @FOR( DISTCTR( K): 

   @SUM( PRODUCT( I): @SUM( PLANT( J): X( I, J, K)))<= Q 

 ); 

! Minor balance constraints; 

 @FOR( PRODUCT( I): 

  @FOR( DISTCTR( K): 

   @SUM( PLANT( J): X( I, J, K)) = 

    @SUM( CUSTOMER( L): D( I, L)* Y( K, L))) 

 ); 

 

! Intermodal Demand; 

  @FOR( CUSTOMER( L): 

  @SUM( DISTCTR( K): Y( K, L)) = 1 

 ); 

 

! Force Minor K open if it serves intermodal L; 

 @FOR( CUSTOMER( L): 

  @FOR( DISTCTR( K): Y( K, L) <= Z( K)) 

 ); 

 

! Y binary; 

 @FOR( DISTCTR( K): 

  @FOR( CUSTOMER( L): @BIN( Y( K,L))) 

 ); 

 

END 
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