
ABSTRACT

VALIDATING STEADY TURBULENT FLOW SIMULATIONS USING
STOCHASTIC MODELS

by John Chabot

Proper Orthogonal Decomposition was heralded as an objective means of ex-
tracting coherent structures from turbulent flows. Prior to its introduction,
coherent structures were subjectively defined and discussed among experts.
Since its introduction many reduced order models have been developed with
inconsistent and often flow dependent validation procedures. This work sets
up a framework for a data driven approach to validation of reduced order
models derived from steady turbulent flows. Here it is proposed that the
‘goodness’ of a model can be scored by how similar experimental and simu-
lated data move through the model space. This is achieved by generating a
Markov model for both data sets, using clustering techniques and maximum
likelihood estimates. Results show increasing scores correlate with improved
turbulent kinetic energy and modal amplitude for 3 data sets and 14 mod-
els. Additionally the generation of a surrogate Markov model can be used to
identify missing dynamics in a simulation.
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Chapter 1

Introduction

The ability to predict the behavior of a turbulent flow in real-time has
the potential to increase the efficiency of fluid dynamic devices when imple-
mented in closed-loop control systems. The Navier-Stokes equations (NSE)
have been shown to accurately predict fluid flow behavior for almost any
fluid in any flow geometry. However, there are only eleven known solutions
to the NSE, all of which are either special cases, where non-linear terms
disappear, or have special symmetry that simplifies them [28]. For practi-
cal applications, scientists and engineers have relied on techniques developed
through computational fluid dynamics, statistical models of the flow, or order
of magnitude analysis to get an understanding of the underlying dynamics.
A more recent approach in reduced order models, seeks to address the com-
putational speed and accuracy of the previous mentioned methods. Reduced
order models (ROMs) lower computational time and cost by simplifying the
NSE from a set of nonlinear partial differential equations to a set of ordinary
differential equations that can be solved more rapidly using well established
numerical methods for ODEs. Recently, ROMs have been gaining popularity
due to advances in data recording, increased computing speeds, and their
reduced computational cost compared to direct numerical simulation of the
NSE [16,25]. Despite these advantages, ROMs typically have a narrow range
of validity around their derived system characteristics such as Mach number,
dynamic pressure, and Reynolds number [58].

While ROMs have been shown to provide a number of benefits over com-
peting modeling methods, validation of such models is inconsistent through-
out the community. Here, a data driven validation method is proposed,
relating the dynamics of the experimental data to data derived from simu-
lation, in a probabilistic sense. The inspiration for this validation procedure
comes from the work of Kaiser et al. [31] who proposed a novel modeling
scheme using the probable evolution of clustered flow states. In this work
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a similar procedure is followed, where the methods of clustering are used
to produce flow states which represent ‘typical’ flow formations, with each
state distilled directly from the empirical data. Simulated flow data is then
grouped to these clusters by identifying which cluster they are most similar
to. Validation comes from identifying models that move through the model
space, in similar patterns as the original empirical data. In order to give
credibility to this procedure, a range of models and data sets are tested.

For this work a collection of low dimensional models that captures the
important dynamics of three sets of experimental data; a mixing layer, a
cavity flow, and flow over an airfoil, as well as a numerical generated ax-
isymmetric jet are produced. The development of these models builds off
the ROMs produced by Caraballo [11], and Sullivan [62] for the cavity and
airfoil flows respectively. Reduced order models were generated for these
flow conditions using experimental data by way of Proper Orthogonal De-
composition (POD), which generates basis functions that represent the most
energetic features of the flow. Using a finite truncation of this basis, the
NSE is projected by Galerkin Method, leaving a low dimension approxima-
tion of the flow dynamics of the original data. POD-Galerkin models and
its many variants and correctors appears to comprise a significant portion of
the models developed in the subfield of reduced order models.

Prior to the introduction of POD, identification of recurring features in
turbulent flow, known as coherent structures, were found through a myriad
of flow visualization techniques or criterion invented by the experiment op-
erator [28]. The introduction of POD into the flow community by Lumley
in 1967 [37] provided a repeatable and objective means of identifying these
flow structures. The POD formulation ensures that the residual of projec-
tion onto that subspace is minimized [16]. The success of POD in the field
of turbulence has spun off alternative methods such as the POD method of
snapshots, extended POD, biorthogonal decomposition, balanced POD, and
dynamic mode decomposition to name a few [2,23,51,54,57]. At their roots
these methods decompose the original model space, into a reduced model
space on which the flow dynamics are projected. While coherent structure
can now be identified objectively, by decomposition of experimental or sim-
ulated data by one of the many previously mentioned methods, validation of
the dynamic evolution of these ROMs is now similarly ambiguous. Because
of the complexity of the underlying problem of validation, categorization of
model accuracy is more of a debate between experts than objective measure-
ment just as coherent structures were 40 years ago.

This leads back to the work of Kaiser et al. [31], who’s clustering proce-
dure was not dependent on a given decomposition method, but was instead
feasible for any decomposition method. While POD was not directly used,
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it was used to perform the clustering. POD decomposes the data using the
fewest orthogonal dimensions, simplifying the clustering problem, and reduc-
ing the time requirements. Because clustering can be performed on any state
vector, it seemed a logical candidate for producing a validation method that
can perform a more direct comparison between models than is performed
today.

The work of this thesis is laid out as follows. First in Chapter 2, a brief re-
view of literature is presented with additional insights into the need for such a
validation procedure. Next Chapter 3 presents theory behind the test models
as well as the validation procedure itself. Chapters 4 and 5 present insights
into the code implementation challenges and the empirical data. While these
chapters are less important to the derivation and results of this work, they
do provide important background information for the experimental results.
Finally chapters 6 and 7 provide the evidence found in favor of the validation
procedure and possible conclusion and further research avenues.
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Chapter 2

Study Rationale

The overarching goal of this work is to develop an objective measure for
the validation of a ROM’s dynamic evolution, based on the dynamics present
in the original data. While these models produce deterministic results, ROMs
reduce the dimensionality of the original empirical data potentially by several
orders of magnitude. This drastic reduction can only approximately resolve
the original model space, leading naturally to some loss of accuracy. At some
point, the accumulations of errors introduced by this approximation almost
certainly causes the solutions to diverge from the raw data, even if they
qualitatively produce similar flow evolution. Because turbulent fluctuations
were classically approached as a stochastic process, it seems reasonable to
look at model accuracy from this prospective [28].

Previous studies have looked at a variety of metrics in order to argue
the accuracy of one particular model over another. One common metric for
determining the accuracy of a model is the comparison of the mean and vari-
ance of the turbulent kinetic energy predicted by the model compared to
its derived data. This is a natural step for models based on POD-Galerkin
methods and their derivatives, as POD produces basis functions that op-
timally capture the kinetic energy of the flow. Östh et al. [44] followed
this approach when comparing several proposed corrective viscous dissipa-
tion methods that attempt to keep standard POD-Galerkin models, that are
notorious for finite time blow up, bounded [41]. A different study, proposed
using an ‘optimal rotation’ of the POD basis, based on the predicted energy
as it’s optimization objective function [5]. In a slightly different approach,
Gross & Fasel [24] looked at the phase and amplitude of only the two most
energetic POD modes as a basis of comparison for models. Other studies
have instead focused on key frequencies of the resulting system as a method
of gauging accuracy. Caraballo et al. [11] looked at models which produced
frequency peaks that closely matched empirically derived Rossiter frequencies
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of a cavity flow. Another emerging method, Dynamic Mode Decomposition
based on a Koopman operator, seeks to produce modes containing only one
frequency, where frequency matching is the primary accuracy criteria [50,54]
. Others still attempt to calculate absolute error between reconstructed ve-
locity fields and original data sets using appropriate norms [6, 8, 9]. These
methods are computationally expensive over large time scales and indicate
huge errors if the system comes out of phase with the original data. Rowley
et al. [51] used a H2 norm giving an exact error for the produced truncated
model compared to the full model but this approach is only applicable to
linear systems.

The review of literature did not uncover a generally agreed upon method
of approach to validating a ROM. Each of the previous methods attempts to
validate a model with one or two specifics criteria, or features directly tied
to the decomposition method or the specific flow configuration. Because of
the complexity of turbulent systems, selecting one or a few features to use in
validation simply provides too coarse of sieve for acceptance that a model,
in fact, reflects reality. It is of interest then to develop a data driven metric
that holistically measures the dynamics of the flow, that is independent of
modeling method or flow configuration. This again leads back to the study
by Kaiser et al. [31] who proposed a clustering approach to flow modeling.
They note that in the clustering process “the POD coefficient vector is only
used for logistical convenience and is not necessary for the clustering algo-
rithm”. POD is also known by statisticians by its alternative alias, principle
component analysis (PCA). PCA can be used to simply increase the speed
and help denoise clustering results which the group of Kaiser et al. claimed
as well. [30,31]. So while decomposing using POD provides some advantages
over other decomposition methods when clustered, clusters could be pro-
duced off of any decomposed data. It is this universalism of clustered states
that leads to the development of the surrogate model produced in this work.
This simplified, but representative model, can then be used to quickly in-
validate models that mimic specific features of the empirical data but retain
little else in resemblance to the real system.
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Chapter 3

Theory

In this chapter a review of the relevant mathematical theory in this thesis
is covered, included are both the reduced order models, as well as, the pro-
posed measures. Building from the work of Sullivan [62], we utilize the widely
deployed POD-Galerkin methods as our reduced order modeling scheme of
choice with additional augmenting corrective methods. After developing the
models that will be used for validation, the theory behind the Surrogate
Markov Model itself is discussed.

3.1 Proper Orthogonal Decomposition

The Proper Orthogonal Decomposition (POD) was first introduced into
the flow community by Lumley [37] which provides an objective and optimal
means of extracting the largest and dynamically most important structure in
a flow. POD detects these structures by identifying the orthogonal directions
in a Hilbert space of squared integrable functions, (L2) that minimizes the
projection residual of the flow onto the finite dimension subspace spanned
by these directions. Formally this can be written as follow:

max
ϕ∈H

〈|(u, ϕ)|〉
(ϕ, ϕ)

(3.1)

Here, u is the velocity field, ϕ is the candidate basis, (·, ·) represents
the inner product on the Hilbert space H defined in Eq. 3.2, and 〈·〉 is a
suitable averaging operator. In the case of this work the averaging operator
will be the ensemble average. Additionally restricting the Hilbert space to
L2, simply restricts that the functional space remains to those that can carry
kinetic energy [7]. The L2 inner product is defined as:
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(u, ϕ) =

∫
Ω

u(x)ϕ∗(x)dx (3.2)

Where Ω is the integration domain and ∗ is the complex conjugate. Fol-
lowing a derivation presented in Holmes et al. [28], Eq. 3.1 can be transformed
into the following eigenvalue problem:

Rϕ = 〈(ϕ, u)u〉 (3.3)

Rϕ = λϕ (3.4)

where R is a linear operator.
This original POD definition was later modified by Sirovich [57] intro-

ducing the POD method of snapshots. This method is better suited for
the needs of data with high spatial resolution that was made possible by
new measurement equipment such as PIV. Sirovich noted that with a large
enough ensemble of flow images, additional images could be reconstructed as
a linear combination of prior images, leading to a new means of obtaining a
spanning basis.

D = [u1 · · ·uM ] (3.5)

1

M
DTDa = λa, ϕ = Da (3.6)

With Eq. 3.6 representing the eigenvalue decomposition of a covariance
matrix defined by “stacking” all M snapshots in Eq. 3.5. Using either Eq.
3.4 or Eq. 3.6 the original velocity field can be reconstructed exactly using an
infinite sum of POD basis functions ϕi of energy λi, and modal amplitudes
ai.

ui(x) = lim
n→∞

n∑
i=1

aiϕi (3.7)

Because the amount of information captured by each POD basis function
is optimal, a decomposition retaining N terms can be used to approximately
reconstruct the turbulent fluctuations optimally for N spatial basis functions
[25].

ui(x) ≈
n∑

i=1

aiϕi (3.8)

The following identities are presented now to be used in later derivations.
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〈ai〉 = 0 (3.9)

〈aiaj〉 = Λij, Λij =

{
i = j Λij = λi

i 6= j Λij = 0
(3.10)

While there are many means by which to produce a reduced model space,
the POD method of snapshots fits the application for this work. In addition
to the optimal reconstruction, advantages include reduced computation cost,
simplicity of implementation and its documented effectiveness for data of
high spatial resolution [4, 11,45,56,61].

3.2 Galerkin Projection

While POD provides an optimal spatial basis to represent its original
data, it does not provide a means of predicting how this basis will evolve in
time. This can be accomplished by means of projecting the Navier-Stokes
equations onto this basis using the Galerkin method [28]. This transforms the
infinite dimensional NSE into a coupled set of non-linear ordinary differential
equations. The experimental data sets that will be used in this work are all
incompressible flows (a < 0.3) so the incompressible Navier-Stokes equations
will be used. The numerically generated jet data lies in the compressible
range but will be modeled using the incompressible equations. The thought
is to investigate models outside of their intended parameter set. This could
provide simulated data that predict some properties of the empirical data
accurately, such as the turbulent kinetic energy, but have dynamics notably
differing from the data. Presented below are the incompressible NSE used
for dynamic modeling.

∇ · u = 0 (3.11)

∂u

∂t
= ν∆u− (u · ∇)u− ∇p

ρ
− g (3.12)

Where ν is the kinematic viscosity, p is the pressure field, ρ is the density
field, and g represents body forces per unit mass. Reynolds decomposition is
performed on the original flow with POD used on the resulting fluctuating
component. The fluctuating component u′ in Eq. 3.13 is “stacked’ into the
data matrix of Eq. 3.5 where POD is performed.
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u = U + u′ → u = U +
∞∑
i=1

aiϕi (3.13)

As a simplification, an additional mean flow mode is defined as ϕ0 :=
U, a0 := 1 [41]. The evolution of each individual modal amplitude is de-
termined by the current state of all modal amplitudes, linked by a set of
coefficients that define the coupled interactions. These coefficients are found
by replacing the flow field in the NSE with the generated POD basis functions
and then taking the inner product with each POD basis function.

∆u→ (∆ϕi, ϕj) = lij (3.14)

(u · ∇)u→ ((ϕi · ∇)ϕj, ϕk) = qijk (3.15)

The subscripts indicate basis functions i, j and k with equations written
in tensor notations. Coefficients l and q are the low dimensional projections
of the viscous and convective terms from the NSE. Body forces are typically
assumed to be negligible, if only gravity is considered, while the pressure
term vanishes identically if Dirichlet boundary conditions are present. For
other boundary conditions the pressure term only provides small alterations
to the behavior of the system. [41]. Together the evolution of the modal
amplitude can be described as such:

ȧ = ν
n∑

i=0

lijaj +
n∑

i=0

qijkajak (3.16)

Often this form is transformed in order to isolate, constant, linear and
quadratic interactions; Ci, Lij, and Qijk respectively. Here Eq. 3.16 is pre-
sented in this fashion:

ȧ = Ci +
n∑

j=1

Lijaj +
n∑

j,k=1

Qijkajak (3.17)

Ci = νli0 + qi00 (3.18a)

Lij = νlij + qij0 + qi0k (3.18b)

Qijk = qijk, i, j, k = 1, . . . , n (3.18c)

In addition to the standard Galerkin expansion, a weak formulation of the
NSE is utilized by replacing the viscous term’s Laplacian operator with a set
of first order gradient terms by way of Green’s Identity [12]. By substituting
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a second order term with a set of first order terms, the solutions have the
potential to be improved for the empirical data [41].∫

Ω

(φ∆ϕ+∇ϕ · ∇φ)dV =

∮
ω

φ∇ϕ · dS (3.19)

Rearranging: ∫
Ω

φ∆ϕdV = −
∫

Ω

∇ϕ · ∇φdV +

∮
ω

φ∇ϕ · dS (3.20)

Using Eq. 3.20 the viscous term can alternatively be calculated as:

lwij = −(∇ϕk,∇ϕi) +

∮
ω

ϕi∇ϕk · dS (3.21)

Where ω is the domain of the free flow boundary for the surface integral.
This formulation is the preferred means of determining the viscous term for
a number of authors. For the remainder of this thesis lwij can be substituted
anywhere lij is used.

3.3 Corrector Methods

In turbulent flows, energy typically cascades from the mean flow down
structures of decreasing length scales until it is eventually dissipated as heat
at the smaller scales [43]. With the goal of reducing the model space to
very few dimensions, the smallest scale structures are typically ignored. This
truncates the energy cascade leading to over prediction of the model energy.
In order to produce bounded models that at least qualitatively predict the
dynamics of the flow, two classes of correction methods are utilized, sub-
scale turbulent models in the form of eddy-viscosity and a optimized basis
transformation method.

3.3.1 Viscous Dissipation

Eddy-viscosity models attempt to bound the solutions by adding addi-
tional viscosity to the POD-Galerkin model at the global or modal level.
This viscosity attempts to mimic the total energy transfer to the truncated
POD basis functions. Three eddy-viscosity models, in addition to a scaling
factor are tested in this work. While each method differs in its approach, the
solution forms follow that of Östh et al. [44] where the total turbulent kinetic
energy is used to form a closure problem to solve for each term. Therefore it
will be useful to define how energy will be calculated.
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K(t) = ρ
1

2

∫
Ω

|u′(x, t)|2dx ∝ 1

2

∫
Ω

|u′(x, t)|2dx (3.22)

Assuming the POD basis functions have been normalized the modal en-
ergy contribution becomes:

Ki(t) = ρ

∫
Ω

|ai(t)ϕi(x)|2dx ∝ a2
i (t)

2
(3.23)

One of the first corrective methods to the base POD-Galerkin model was
introduced by Aubry et al. [3] who first proposed the inclusion of an eddy-
viscosity term. Kraichnan and Chen noted that for a wide class of flow
configurations that the quadratic terms are energy preserving [32]. Based
on this Aubry et al. presented the following ansatz that can be readily
transformed back into the form of Eq. 3.17.

ȧi = (ν + νT )
n∑

j=1

lijaj +
n∑

j,k=1

qijkajak (3.24)

The idea of an eddy-visocity was later extended by Rempfer and Fasel [46]
by postulating that dissipation was a scale dependent phenomena.

ȧi = (ν + νTi )
n∑

j=1

lijaj +
n∑

j,k=1

qijkajak (3.25)

Solutions for νT and νTi can be found by solving for the energy balance
averaged over the ensemble. The change of energy is found as:

n∑
i=0

d

dt
Ki(t) =

n∑
i=0

d

dt

a2
i

2
=

n∑
i=0

aiȧi (3.26)

averaged over the whole ensemble.

n∑
i=0

〈 d
dt
Ki(t)〉 =

n∑
i=0

〈 d
dt

a2
i

2
〉 =

n∑
i=0

〈aiȧi〉 (3.27)

Substituting Eq. 3.25 into Eq. 3.27, using the identity from Eq. 3.10 and
rearranging terms, a solution to νTi is found.

νTi = −

(
ν +

∑n
j,k=0 qijk〈aiajak〉

liiλi

)
(3.28)
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A globally averaged version of Eq. 3.28 can be found by simply summing
the terms in the fraction for all basis functions included in the POD-Galerkin
model.

In addition to the eddy-viscosity terms derived from an averaged energy
balance, values are also found via a least squares solution proposed by Cou-
plet [18].

ν̃Ti =
〈a2

i r
<(A)d>(A)〉

〈a2
i (d

<(A))2〉
(3.29a)

r<(A) =
c∑

j=n+1

lijaj +
c∑

k=n+1

n∑
j=0

qijkajak (3.29b)

d>(A) =
n∑

j=0

lijaj (3.29c)

d<(A) =
c∑

j=n+1

lijaj (3.29d)

Here terms with the superscript > represents terms that are included in
the model, while < represents neglected terms up to c, the number of modes
needed to account for 99% of the flow energy.

The three eddy-viscosity terms presented thus far are all linear correctors.
Noack et al. [41] noted that the previously mentioned linear eddy viscosity
models attempt to model neglected linear and nonlinear interactions. In a
more recent effort to produce bounded solutions to a larger class of POD-
Galerkin models, a non-linear scaling factor was proposed [17] and justified
[44] to the previously discussed eddy-viscosity terms. To begin, a new state
dependent eddy viscosity model is equated to the neglected higher order
interactions in a similar fashion as Eq. 3.28 and 3.29a.

νT (a)
n∑

j=1

lijaj = ν

∞∑
j=n+1

lijaj +
∞∑

j,k=1

qijkajak, max(j, k) > n (3.30)

Again multiplying by ai ensemble averaging 〈·〉 and utilizing Identities
3.9 and 3.10 the follow equality is found.

νT (a)liiλi =
∞∑

j,k=0

qijk〈aiajak〉 (3.31)

Östh et al. [43, 44] utilized a statistical closure representing the inter-
modal energy transfer due to the convection term as a means of justifying the
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scaling introduced by Cordier et al. [17]. Rearranging terms in this closure,
an approximate scaling factor was produced based on the system’s current
turbulent kinetic energy.

KΣ(t) =
n∑

i=1

a2
i /2, KΣ = 〈KΣ(t)〉 (3.32)

With the state dependent eddy viscosity taking the following form.

νT (a) = νT

√
KΣ(t)

KΣ

(3.33)

Justification for this square root relation are somewhat lengthy and there-
fore are omitted. The interested reader should refer to [44] and [41] for full
details.

3.3.2 Basis Transformation

The final correction method utilized in this work is a basis transformation
method, introduced by Balajewicz et al. [5]. The method generates a new
optimal spanning basis from a larger spanning basis derived from a traditional
POD-Galerkin model. Similar to the nonlinear eddy viscosity model, this
method attempts to also address the neglected nonlinear inter-modal energy
transfer. Instead of adding an additional term to the Galerkin system, to
balance the model energy, this method attempts to produce a basis such
that the total neglected inter-modal transfer is minimized towards zero.

In order to determine an optimal basis, average changes of energy must
be determined in a similar fashion as Eq. 3.31 by multiplying the system by
ai and taking the ensemble average 〈 · 〉. Here the system is now represented
in the form of Eq. 3.17 resulting in:

2K̇Σ(t) =
n∑

i=1

Ciai +
n∑

i=1

∞∑
j=1

Lijaiaj +
n∑

i=1

∞∑
j,k=1

Qijkaiajak (3.34)

Simplifying:

0 = 〈2K̇Σ(t)〉 =
n∑

i,j=1

LijΛii + T<, T< =
n∑

i=1

∞∑
j,k=1

Qijk〈aiajak〉 (3.35)

13



Using this equality a new spatial basis is generated such that the inter-
modal energy transfer term T< vanishes. This new basis is ‘minimally ro-
tated’ away from the original basis of size N by a transformation matrix
X ∈ RN×n to a new basis of size n where N > n. This produces a new set
of Galerkin coefficients and modal amplitudes.

ϕ̃ =
N∑
j=1

Xijϕj, ãi =
N∑
j=1

Xjiaj (3.36a)

L̃ = XTLX, C̃ = XTC, Λ̃ = XTΛX, (3.36b)

Q̃ijk =
N∑

p,q,r=1

XpiQpqrXqjXrk i, j, k = 1, · · · , n (3.36c)

Balajewicz et al. [5] remarked that inter-modal energy flows predicted by
Galerkin systems are often under-predicted . In response a free transfer term
parameter ε was introduced to account for these discrepancies:

ε =
n∑
ij

LijΛij (3.37)

r(ε) :=
n∑

i=1

Λ̃ii − 〈
n∑

i=1

ã2
i (t)〉 (3.38)

A root finding procedure is implemented on a function of ε seen in Eq.
3.38 in order to determine the new basis. Full details of the algorithm have
been omitted for brevity, see Balajewicz et al. [5] or Appendix A for more
details.

Together these methods constitute a large spectrum of potential models
to be tested. With the exception of the nonlinear eddy viscosity model and
the basis transformation method, these methods are tried in combination,
as well as isolation, totaling 28 models. A crucial assumption of the basis
transformation method is that because these bases were minimally rotated,
the properties of orthogonal basis were approximately preserved. This as-
sumption, was not rigorously proven and because these bases were no longer
orthogonal, the error in system energy was uncertain leading to separation
of the two methods. Table 3.1 below provides the description of the models
used.
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Table 3.1: Listing of the models that are utilized in this thesis. Subscripts
W, N, and T represent models also using weak formulation, nonlinear eddy
viscosity, and the basis transformation

Method Abbreviation Model Description
GM(W,T ) Base POD-Galerkin Model
GM1(W,N,T ) Averaged global eddy viscosity [44]
GM2(W,N,T ) Averaged modal eddy viscosity [42]
GM3(W,N,T ) Least squares modal eddy viscosity [18]

3.4 Surrogate Markov Models

The previously derived models, only represent a small sample of the pro-
posed models for ROMs of turbulent flows. Each introduced method of mod-
eling claims some aspect of improved agreement to the empirical data over
competing models. The points of comparison in these studies is not consistent
in the literature, making model selection for a practical application difficult.
It was found using the model set shown in Table 3.1 that between a forced
and unforced mixing layer, different model-corrector combinations performed
better between the two flow configurations [14]. It therefore appears unlikely
one modeling procedure, will always produce the best agreement for all flow
configurations. For practical application, it is plausible that several methods
should be tested to find the model with best agreement to the empirical data,
requiring a universally applicable approach to validation.

The process of validating a ROM without introducing some form of sub-
jectivity into the process is again the overarching goal of this work. Cluster-
based reduced order modeling provides the initial framework for this proce-
dure, which models a turbulent system using the most probable evolution
of flow states. The model space is compressed from a POD decomposition,
representing a finite set of dimensions, to a finite number of states via clus-
tering [9, 31]. Once compressed, a Markov model is derived and statistics
from the empirical system’s evolution can be derived. This idea is extended
for validation, by generating an additional Markov model representing the
simulation. A simulated model’s solution trajectory can be classified to one
of the empirical data’s clustered states at each time step, by finding which
cluster it is most similar to. At this point, this new sequence of states can
again be used to produce a Markov model. It is proposed that these simpler
Markov models be used to compare empirical and simulated data indirectly.
Therefore we call them surrogate Markov models (SMM). This section will
provide some background on the basics of Markov models and the means by
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which they shall be compared.

3.4.1 Markov Chains and Stochastic Matrices

While turbulence is deterministic; it was historically, and in many simpli-
fying models treated as a stochastic process [28]. While modeling the system
this way may not be applicable for prediction, it may prove useful for com-
parison. Even viewed in the context of a deterministic system, turbulence
shows some connection to chaotic dynamics, characterized by sensitivity to
initial conditions [60]. Ruelle and Takens [52] have also shown mathemat-
ically that for dissipative systems, which turbulence falls into, a transition
from ordered to chaotic solutions can be dictated by a parameter µ, reflec-
tive of a flows transition based on its Reynolds number. Additionally the
distinction between chaotic and stochastic systems in many ways is not as
well defined as may first appear. Consider the classic real world analog for
a random variable, the dice roll or coin flip. Given exact initial conditions
and a controlled environment the outcome could be predicted prior to any
flip or roll. The key to assumption for these simple systems is that exact
conditions are not known and given the duration of the flip or roll, the sen-
sitivity to initial conditions allows this uncertainty to be magnified. This
same line of logic is applied to the turbulent system. During the clustering
process exact initial conditions are forfeit, and data that is time uncorrelated
in the case of the three experimental data sets allows this uncertainty to be
amplified. With these arguments the author believes the assumption that a
steady flow can be modeled as a stochastic process is justified. Following the
lead of Kaiser et. al [31] this is taken a step further and it is assumed that
a turbulent system can be well approximated as a Markov or memoryless
process. Here the memoryless property is implied for systems with unique
solutions, in which case only the current state of the system is needed to
predict the future. For steady 2D systems it has been proven that for suf-
ficiently smooth initial and boundary conditions the NSE produces unique
solutions [34]. Kaiser et al. [31] suggest that 3D flows can generally be as-
sumed unique in an adequate numerical Navier-Stokes discretization at least
to a prediction horizon of interest. It was also pointed out by Kaiser et al. [31]
that the discretization of the flow field by POD preserves unique solutions
under Galerkin projection [22]. With evidence that a clustered turbulent
system can at least be represented approximately as a Markov process, a
formal definition of a Markov chain is given:

Markov Chain [55] 1. A stochastic process X = {Xt,∈ N} on a state
space S is a discrete-time Markov chain if:
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-for all t ≥ 0 Xt ∈ S
-for all t ≥ 1 and for all i0, . . . , it−1, it ∈ S we have:
P{Xt = it|Xt−1 = it−1, . . . , X0 = i0} = P{Xt = it|Xt−1 = it−1}

The primary characteristics of a Markov chain is that the probability
of transitioning to the next state it is only conditionally dependent on the
current state of the system it−1, and not states prior. Also note that the sum
of P{Xt = it|Xt−1 = it−1} for all it for a given it−1 is identically equal to 1.
With this definition in place it can be seen that only the current state it−1

and the next state it are needed to describe the probability of all transitions
possible in the system. This can neatly be represented by what’s known as
a stochastic matrix or a transition matrix.

Stochastic Matrix [15] 2. A stochastic matrix is a matrix containing ele-
ments pij, the transition probabilities, with i, j ∈ S at times t− 1 and t is:

P =


p11 p12 · · · p1n

p21 p22 · · · p2n
...

...
. . .

...
pn1 pn2 · · · pnn

 (3.39)

Typically the stochastic matrix will be unknown and will have to be esti-
mated by observing one or many Markov chains. This can be accomplished
by using a maximum likelihood estimate (MLE) which, as its name implies
estimates a parameter or parameters θ by θ̂ based on likelihood of observing
such a sequence given the parameter(s). Here, the equation for likelihood
function and MLE of the stochastic matrix are presented , with a derivation
of the MLE provided in Appendix B

L(p, π|X) =
n∏

i=1

π
n1
i

i

n∏
i,j=1

p
nij

ij (3.40)

p̂ij =
nij∑n
j=1 nij

(3.41)

Here nij represents the observed number of transitions from state i into
state j, πi is known as the stationary distribution and n1

i is the number of
starts in position i. Again full descriptions of these terms are provided in
Appendix B. With this there is now a means of describing a discrete process
only with probabilities. Some thought was given to attempt to represent the
system in terms of a hidden Markov model, allowing estimation of a stochastic
matrix from the state vector directly, but it is suspected that amount of data
in each data set described in Chapter 5 is simply inadequate to estimate the
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transition probabilities accurately. In addition it was unclear how another
data set, in our case the simulated model, could be classified to the same
set of states. Because of this, our ROM’s state vector must be mapped from
Rn :→ N which will be described in the next section.

3.4.2 Clustering and Classification

The key challenge with producing a map from the system’s state vector in
Rn to a discrete point in N is to do so without prior knowledge of the system.
For this problem the methods of machine learning or more specifically, unsu-
pervised learning, a branch of machine learning, are used [26]. An important
task in unsupervised learning is giving data, structure, without information
outside of the data itself. This could broadly be used as a description for
the clustering problem. While it seems obvious to us as humans on what
is or isn’t a cluster in a data set, we are pattern recognition machines and
really carry many definitions on what constitutes a pattern. Likewise, in the
clustering problem there are many definitions with pros and cons.

This work will focus on two methods of clustering, the k-means algorithm
and clustering based on the posterior probability of a fitted Gaussian mixture
model. The k-means algorithm was the method used by Kaiser et. al [31] to
segment the data in k clusters [38]. This method produces ‘hard’ segmenta-
tion where each element is exclusively the member of one cluster. Clustering
based on a Gaussian mixture model (GMM) was included because POD ba-
sis functions generated from Reynolds decomposed flow snapshots closely
approximates a normal or Gaussian distribution where ai ≈ N(0, λi). [28].
clustering from a GMM can be performed with ‘hard’ segmentation by as-
signing each data point to the Gaussian component contributing the largest
posterior probability of all components. Here an informal description will be
given for each.

K-means can be thought of as a heuristic for finding global minima to the
minimization problem of the following form [30].

min
C1,...,Ck

{ K∑
k=1

W (Ck)

}
(3.42)

Where Ck are the K clusters and W is a measure of the difference between
elements within the same cluster. The most common way to determine this
difference is by Euclidean squared distance to the cluster centroid which this
work will follow.
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min
C1,...,Ck

{
K∑
k=1

1

nk

∑
i∈Ck

(xi − ck)2

}
(3.43)

Here nk is the number of elements and ck is the centroid of cluster Ck.
While k-means is only guaranteed to converge to local minima of Eq. 3.42
it is found in practice to often converge to global minima if the data is well
spaced [29, 40]. A high level overview of the heuristic is outlined below in
Algorithm 1.

Algorithm 1: k-means algorithm for finding cluster centroids

Input : array x on Rn and integer k
Output: integer membership array y and k centroids on Rn

1 function: k-means (x, k) ;
2 ck ← initialize(k);
3 y ← assign(x, ck);
4 wnew ← within(x, ck);
5 wold ←∞;
6 while (wold − wnew)/wold ≥ tolerance do
7 ck ← average(y);
8 y ← assign(x, ck);
9 wold ← wnew;

10 wnew ← within(x, ck);

11 end

Figure 3.1 shows k-means after 1, 10 and 100 iterations, for a structured
data set representing the forced mixing layer and a relatively unstructured
data from the baseline mixing layer. This depicts how k-means converges to
a local or global minimum for the clustering problem.

Once the data from the POD-Galerkin model has been grouped into k
clusters, simulated data from one of the POD-Galerkin models in Table 3.1
can be classified to one of these clusters by finding its nearest neighbor cen-
troid.

Clustering based on Gaussian mixture models is accomplished by the
widely applicable EM algorithm. Similar to k-means it can be thought of
as heuristic for solving for local optima of a complex likelihood function.
Unlike the MLE of the stochastic matrix presented above in Eq. 3.41, where
an analytical solution is available, closed-form solution are the exception for
most MLE [35]. The EM algorithm is guaranteed to iteratively move towards
a local or global maximum by repeatably applying an expectation step (E)
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(a) 1 iteration of k-means:
organized flow.

(b) 10 iteration of k-means:
organized flow.

(c) 100 iteration of k-means:
organized flow.

(d) 1 iteration of k-means:
unorganized flow.

(e) 10 iteration of k-means:
unorganized flow.

(f) 100 iteration of k-means:
unorganized flow.

Figure 3.1: Different iterations of k-means for structured (forced) and un-
structured (baseline) mixing layer data.
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followed by a maximization step (M). The EM algorithm assumes there is
some unknown complete data set X which must be estimated with observed
data Y [35]. The case of a Gaussian mixture model it is assumed that X is
derived from a mixture of K Gaussian components.

In the expectation (E) step, the conditional expected value is calculated
for θ from the observed elements of Y and the current estimate of Gaussian
components θ̂ as shown below:

Q(θ|θ̂i) = E

(
ln
(
f(X|θ)

) ∣∣∣ Y = y, θ̂i

)
(3.44)

Where f(X|θ) is the conditional probability density function of the Gaus-
sian components. Once the conditional expected value is calculated, the
parameter θ is maximized with respect to the likelihood function in the max-
imization (M) step by either close form solution or using an iterative method
such as gradient descent. This maximized value of θ becomes the new esti-
mate θ̂i+1 in the following expectation step [35]. Once the EM algorithm has
converged to a local or global solution of the MLE, points can be assigned to
the cluster based on which Gaussian component provided the largest poste-
rior probability. As with k-means, a high-level overview of how clusters are
determined is provided.

Algorithm 2: GMM clustering algorithm for finding Gaussian mixture
components

Input : array x on Rn and integer k
Output: integer membership array y and k Gaussian mixture

components θ on Rn

1 function: GMM cluster (x, k) ;

2 θ̂ ←∞ ;
3 θ ← initialize(k);
4 θ ← gauss maximize(x, θ);

5 while (θ − θ̂)/θ̂ ≥ tolerance do

6 θ̂ ← θ;

7 θ ← gauss expectation(x, θ̂);

8 θ ← gauss maximize(x, θ̂);

9 end
10 y ←posterior probability(x, θ)

Figure 3.2 shows clustering based on GMM after 1, 10 and 100 iterations
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(a) 1 iteration of EM GMM:
organized flow.

(b) 10 iteration of EM
GMM: organized flow.

(c) 100 iteration of EM
GMM: organized flow.

(d) 1 iteration of EM GMM:
unorganized flow.

(e) 10 iteration of EM
GMM: unorganized flow.

(f) 100 iteration of EM
GMM: unorganized flow.

Figure 3.2: Different iterations of EM GMM for structured (forced) and
unstructured (baseline) mixing layer data. Contour lines indicate the prob-
ability density function of the fitted Gaussian components.

of the EM algorithm. Data is again shown for a structured data set repre-
senting the forced mixing layer and a relatively unstructured data set from
the baseline mixing layer. This depicts how the EM converged to a local or
global maximum of the likelihood function.

In order to classify the simulated data to this fitted GMM, data is again
assigned by finding which component has the highest posterior probability.

The last issue to deal with, when classifying the simulated data is what to
do when the solution is very far from the region defined by the empirical data.
If the simulated trajectory moves sufficiently far from all of the k-means cen-
troids or the posterior probability, becomes sufficiently small when clustering
with GMM, it no longer make sense to assign this predicted point to one of
the valid clusters. Therefore, an additional outlier state is defined outside the
region occupied by the empirical data. Models which predict solutions that
move sufficiently far from the region of phase space occupied by the empiri-
cal data, are penalized by predicting some probability of transitioning to this
outlier state. Because the probability of transition from the current state i
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to another state j must sum to one, predicting any probability of transition
to this erroneous state will scale down the probabilities of transitioning to a
valid state. In order to reduce tuning of this value, the distance that defines
the boundary between valid states and the outlier state, is scaled based on
the properties of the generated clusters. For k-means this is a multiple of the
largest distance between cluster centroid. For GMM clustering, this taken as
a fixed Mahalanobis distance which is a generalization of standard deviation
shown in Eq. 3.45.

DM(x) =
√

(x− µ)TS−1(x− µ) (3.45)

Here, x is a vector µ is the mean of a joint distribution, and S is the covariance
matrix.

3.4.3 Measures

Now that methods have been established on how to estimate the stochas-
tic matrix of both empirical and simulated SMMs, scoring method can now
be developed. One approach will make a direct comparison of the estimated
stochastic matrices between the empirical and simulated data. The other ap-
proach will look at the likelihood that the simulated data was derived from
the stochastic matrix that describes the empirical data.

The first proposed approach generates an estimate for the transition ma-
trices of both the empirical data P̂ e, as well as the simulated data P̂ s. From
this, a direct comparison of the stochastic matrix structure can be performed
by using the matrix analog to Euclidean distance, the Frobenius norm.

σd =

√√√√ n∑
i,j=1

(p̂eij − p̂sij)2 p̂eij ∈ P̂ e, p̂sij ∈ P̂ s (3.46)

Some basic insight into this shows that for σd = 0 → P̂ e = P̂ s and the
worst possible score of σd = 2n by noting each row must sum to 1 for each
stochastic matrix.

The second proposed approach looks at the measure known as the rel-
ative likelihood function, to attempt to quantify the model accuracy. The
relative likelihood function is defined as the ratio between the likelihood of an
estimate θ̃ and the MLE θ̂ for some random variable X [27]. Here the MLE
of the simulated data is taken as the alternative model and then compared
back to the MLE predicted by the empirical data. This measure for accuracy
then becomes:
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σl =
L(P s|X)

L(P e|X)
=
P{X1 = j1}

∏n
i,j=1 p

snij

ij

P{X1 = j1}
∏n

i,j=1 p
enij

ij

p̂eij ∈ P̂ e, p̂sij ∈ P̂ s (3.47)

Repeated products of pij when pij ≤ 1 in excess of 1000 times can quickly
run into the finite precision of floating point arithmetic. In order to avoid this
Eq. 3.47 is transformed into the log domain were floating point precision is
again adequate. In addition, the negative of this value is taken so that higher
scores indicate worse agreement for both σd and σl.

σl = −

(
n∑

i,j=1

nijln(psij)−
n∑

i,j=1

nijln(pgij)

)
(3.48)

One caveat of this method is the possibility of the simulated model pre-
dicting a zero probability of a particular transition, which may occur in the
empirical data. In order to get a score for models even when a given transi-
tion is not predicted, each zero probability element of the stochastic matrix
of the simulated data is given a small probability (0.001), with the remaining
elements in that row scaled proportionally to ensure that the probability of
all transitions from a given state when summed, is still identically 1

In total this gives four means of measuring each model detailed in Table
3.1. Ideally, this will be reduced to the method found to universally be most
effective, at measuring the ’goodness’ of the tested models.
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Chapter 4

Code Implementation

A secondary goal of this work was to develop a high performance, data
abstract, computational pipeline that attempts to minimize additional devel-
opment time for new data sets. In addition to the complexity of the modeling
methods described in Chapter 3, some challenges emerged while implement-
ing the theory. These were the result of attempts to keep the code abstract
and minimize assumptions about the data. The two notable challenges were
calculating an approximate volume at each mesh vertex, as well as, dealing
with numerical integration without prior knowledge of boundaries present in
the flow. Finally, a significant effort was made to optimize and parallelize the
codebase in order to efficiently run through the large number of test cases,
needed to validate the proposed measure.

First, a high level overview of the code is presented. Overall the code is
divided into four primary segments, the preprocessing and POD basis func-
tion generation, calculation of the Galerkin coefficients and time integration,
the basis transformation method, and the scoring method. A condensed
summary of the preprocessing and POD generation code is given first.
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Algorithm 3: POD Gen (generate a POD basis given a set of raw
data)

Input : A set of configurations flags and a test directory
Output: A file containing information about the POD basis functions

1 function: POD Gen (flags, directory) ;
2 [u, x]← read data(directory);
3 [u, x]← non dimensionalize(u, x, flags);
4 [u, x]← image flip(u, x, flags);
5 [u, U ]← reynold decomposition(u);
6 bnds← detect bounds(U);
7 bnds← gui bounds(bnds, U);
8 vol← calculate volume(x, bnds);
9 cov ← calculate covariance(u, vol);

10 [podu, λ, a]← pod(cov, u);
11 foreach podu do
12 plot(podu);
13 end
14 save(u, U, x, bound, volume, podu, λ, a, clusters)

Here the POD Gen code is a essentially a set of sequential steps to prepare
the data for Proper Orthogonal Decomposition. The generated POD basis
functions will then be used in the latter three stages of computation. Here,
all the preprocessing such as correctly orienting and non-dimensionalizing
the data is performed, based on flags passed at startup. Additional data is
derived from the raw data, such as an approximation of volume represented
by each mesh vertex and information about the location of solid and open
boundaries. A nearly direct translation of the theory in Section 3.1, is used
to generate the POD basis functions.

Next, a high level overview of the Galerkin coefficient generation and
model simulation is given:
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Algorithm 4: Galerkin Project (generate and simulate ROMs given a
set of POD basis functions)

Input : A set of configurations flags and a test directory
Output: A file containing each models’ coefficents and simulation

results
1 function: Galerkin Project (flags, directory) ;
2 [x, bnds, vol, poduλ, a]← load pod(directory);
3 mode set←mode(flags);
4 foreach mode set do
5 [l, q]← galerkin coefficients(podu, vol, bnds);
6 ν ← eddy viscosity(l, q, a, λ);
7 [as, ts]← ode solve(l, q, ν);
8 plot(as, ts);
9 save(as, ts, l, q);

10 end

The Galerkin Project code will load the results saved by POD Gen and
proceed to generate and simulate the produced models. In order to help
minimize the amount of time loading data, sets of models based on various
combinations of POD basis functions can be produced and simulated in se-
ries. As an example, the Galerkin Project code could be requested to produce
models for the following set of POD bases {{1, 2, 3}, {1, 2, 3, 4}, {1, 3, 5}}. For
this example, models would be generated using the first 3 basis functions, the
first 4 basis functions, and the first 5 basis function excluding the 2nd and
4th basis functions. From this set of basis functions, the Galerkin coefficients
and eddy viscosity terms would be calculated for each model described in Ta-
ble 3.1, with the exception of those using the basis transformation method.
With each model generated, simulation would be performed by integrating
these models such that at least as many state transitions are observed as in
the empirical data source. This will ensure that at the estimate of simula-
tions stochastic matrix is at least as good as the estimate produced for the
empirical data.

This estimate can be performed in a number of ways using different final
times and sampling rates. The maximum likelihood estimate of the stochastic
matrix in Eq. 3.41 has been shown in Appendix B to be valid for multiple
Markov chains of the same length. Because the ratio between the ensemble
sampling rate and the system’s key frequency may be fensemble/fsystem � 1,
time integration in some scenarios proved to be excessively long. To overcome
this when the frequency ratio follows the above inequality, tens or hundreds
of Markov chains are interleaved such that the required integration time is
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reduced signifcantly. Figure 4.1 below, presents a sample image showing how
the integration time is reduce using many Markov chains compared to only
one.

(a) Integration profile using one Markov chain.

(b) Integration profile using many Markov chains.

Figure 4.1: Comparison of how time integration is performed for one and
two Markov chains for an example system with empirical sampling rate of
0.5Hz. In subfigure b, red and black represent samples used for two different
Markov chains.

Notice in Figure 4.1b that the two sets of lines, black and red, both have
spacing of 2 seconds between each sample. Notice that while the sampling
rate of the integration is doubled, and time integrated is nearly halved, the
spacing between elements of the same Markov chain are kept at the example
empirical sampling rate. This process of interweaving chains can be extended
for many additional chains in order to reduce integration time. Results are
then saved to a file to be potentially be used as a basis for the basis trans-
formation method explained next, or for scoring.

The basis transformation method can be seen as a post-processing method
that potentially provides a further refinement to each model, and is thus
invoked last, as Modified Basis. Again, a top level overview is described:

28



Algorithm 5: Modified Basis (generate and simulate a modified ROM
given an existing ROM)

Input : A set of configurations flags and a test directory
Output: A file containing modified model’s coefficents and simulation

results
1 function: Modified Basis (flags, directory) ;
2 [x, podu, λ]← load pod(directory);
3 [l, q]← load galerkin(directory);
4 foreach model do
5 [C,L,Q, λ]← term2order(λ, l, q);
6 ε← coarse search(C,L,Q, λ);

7 [C̃, L̃, Q̃]← fine search(C,L,Q, λ, ε);

8 [as, ts]← ode solve(C̃, L̃, Q̃);
9 plot(as, ts);

10 save(as, ts, l, q, sigmad, sigmal);

11 end

Modified Basis departs slightly from the exact procedure set forth by
Balajewicz et. al [5], by separating the root finding procedure into two
steps. It was originally suggested that MATLAB’s fzero command would
be sufficient to find a root. This rarely proved to be fruitful, so a coarse
sweep of values in the vicinity of the initial guess for ε is performed. If a
change of sign is found, then a formal root finding procedure is performed.
Otherwise, a minimization is performed at the lowest value found during the
coarse sweep. Once the resulting model is simulated, data is again stored to
be scored later.

Once all the models have been generated they now can be scored by
the methods presented at the end of Chapter 3. Below is its operational
description.
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Algorithm 6: Score Model (score model)

Input : A set of configurations flags and a test directory
Output: A file containing model score to the data

1 function: Score Model (flags, directory) ;
2 [ae, fs]← load pod(directory);
3 [as]← load galerkin(directory);
4 [clusters,Xi]← cluster(ae);
5 Pe ← MLE(clusters, as);
6 foreach model do
7 Xi ← classify(clusters, as);
8 Ps ← MLE(clusters, ae);
9 [σd, σl]← score(Pe, Ps, ae);

10 save(σl, σd)

11 end

Once models are generated, scoring takes relatively little time, on the
order of a few seconds, with results saved to file.

4.1 Non-Orthogonal Vertex Volume

The first notable obstacle in implementing the theory came in the form
of determining the volume or area represented at each vertex. Throughout
this section the word volume will be used in a n-dimensional sense of a
finite, closed, boundary in Rn. The data used in this work is discrete, so
the volume represented by each vertex is required for the many L2 inner
products taken. Data coming from experimental sources proved trivial as
the mesh was uniform and orthogonal. On the other hand, data from the
numerically generated axisymetric jet used a non-uniform, non-orthogonal
mesh, as a means of balancing computation cost and accuracy. In addition,
information about the boundary was included to further refine the estimate
of the volume.

The first stage in calculating the volume, is determining which interstitial
points to include in the computation. Below, in Figure 4.2, is an example of
a two dimensional mesh with interstitial points included, but note this can
be extended to three dimensional meshes as well.

From this mesh, any of the surrounding vertices could be in or on a
boundary. Information about the boundary is determined by inspecting the
velocity magnitude at each point. Points where 99% of the images show zero
velocity are considered out of the flow. MATLAB’s edge function, which

30



Figure 4.2: Generic two dimensional grid. Black circles represent vertices
of the mesh, while red crosses and blue squares represent each interstitial
points.

uses a Sobel operator and line thinning algorithm, is used to detect the
boundaries between points in and out of the flow. Using this information
the central vertex and all surrounding interstitial vertices are included that
are either in the flow or on the boundary. Examples of this methodology are
shown in Figure 4.3.

In Figure 4.3, the blue region shows the volume represented by the central
vertex and the black region shows vertices on or in the boundary. Now that
the interstitial vertices have been found that define the region represented
by the central vertex, its volume can be determined. First, the blue region
in Figure 4.3 needs to be subdivided such that each resulting subregion is
convex. An example of this is shown in Figure 4.4a. Typically, breaking
down a whole region into ‘corners’ such as Figure 4.4a will result in a convex
region for affine or curvilinear coordinates. Once the subregion is known to
be convex it and can be further segmented into a set of simplices on Rn with
volume represented by Eq. 4.1 for arbitrary dimension. The final volume
is found by summing these simplices for the entire region defined by central
vertex. ∣∣∣∣ 1

n!
det(v1 − v0, v2 − v0, . . . , vn − v0)

∣∣∣∣ (4.1)

Finally, as an illustrative example, a surface plot of the area represented
by meshes for the jet and airfoil at each vertex are shown in Figure 4.5. figures
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(a) No vertices in bounds (b) Three vertices in bounds

(c) Six vertices in bounds (d) Eight vertices in bounds

Figure 4.3: How volume is determined for different boundary configuration.

(a) Subdivided into convex subregion. (b) Subdivided into simplices.

Figure 4.4: Subdivision of vertex volume into simplices.
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4.5b and 4.5d shows how area represented by each vertex changes across the
entire mesh for meshes shown in figures 4.5a and 4.5c. In Figure 4.5b the area
of each vertex is quite small near the x and y axis, and again small near the
origin of Figure 4.5d. Figure 4.5e shows a constant mesh spacing across the
whole grid, which is reflected by the constant area captured at each vertex
with the exception of those points not captured by the PIV system, and those
on the boundary.

4.2 Adaptive Numerical Differentiation

The second major challenge with implementing the theory of Chapter 3,
was to calculate numerically the many required derivative terms of the vector
fields with accuracy. The empirically and numerically generated data each
presented their own challenges. As mentioned in the previous section, the
numerical data does not use a uniformly spaced or orthogonal mesh. This
requires the use of a coordinate transformation to a ‘computational’ domain;
where the use of finite difference methods become straight forward. The
empirical data presents an entirely different problem, the identification of
open or closed boundaries. Regions of the grid indicating zero fluid movement
may be a byproduct of the position of the PIV system relative to the test
chamber, in which case the gradient near this region should be relatively low.
On the other hand some regions of the grid are on physical boundaries such
as the wall that defines the cavity or the airfoil. In these cases, because of
the no-slip condition, the gradient should be quite steep. In both scenarios
only the velocity is known to be zero at the real or imaginary boundary.

4.2.1 Coordinate Transform

The coordinate transform, is effectively a multivariable application of the
chain rule. Here, we want to represent the following derivative term as:

∂u

∂x
=
∂u

∂ξ

∂ξ

∂x
(4.2)

Where ξ is the ‘computational’ domain, a uniformly increasing field,
which discreetly can be thought of as a matrix of indices in a given direc-
tion. This enables the use of the well described finite difference methods for
∂u/∂ξ. Unfortunately, this still leaves the computation of ∂ξ/∂x dependent
on the non-orthogonal basis of x. First, it is noted that ∂ξ/∂x at its core is
a function f(·) = ∂(·)/∂x. This function can be expressed with all derivative
terms taken on ξ as follows:
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(a) Streamwise-normal plane mesh of the
jet

(b) Streamwise-normal plane area of the jet

(c) Spanwise-normal plane mesh of the jet (d) Spanwise-normal plane area of the jet

(e) Streamwise-normal plane mesh of the
airfoil

(f) Streamwise-normal plane area of the
airofil

Figure 4.5: Examples of the calculated area of uniform and nonuniform
meshes.
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∂

∂ξ
=
∂x

∂ξ

∂

∂x
(4.3)

rearranging:

∂

∂x
=

(
∂x

∂ξ

)−1
∂

∂ξ
(4.4)

Where (∂x/∂ξ)−1 generalizes to the inverse jacobian. The final represen-
tation of the derivative term is now:

∂u

∂x
=
∂u

∂ξ

(
∂x

∂ξ

)−1

(4.5)

With Eq. 4.5 derivatives with respect to x are now possible by using
finite difference methods with respect only the computational domain ξ

4.2.2 Method Selection

In order to maximize the accuracy of the many derivative terms needed
generate the POD-Galerkin coefficients, finite difference methods are dynam-
ically selected based on the boundaries present in the data. At a high level
the procedure follows Algorithm 7 below.
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Algorithm 7: boundary diff (used to calculate derivative based on
boundaries)

Input : An array u and x representing the the velocity field and
coordinate grid

Output: An array udx representing the gradient
1 function: boundary diff (u, x) ;
2 [bnds, bndsn]← bounds(u);
3 [bnds, bndsn]← gui bounds(u, bnds, bndsn);
4 uniform← check mesh(x);
5 if uniform = false then
6 ξ ←make mesh(x);
7 J ← jacobain(x, ξ);
8 transform← coordinate transform1(J);
9 x← ξ;

10 end
11 method← select method(bnds, bndsn);
12 α← get coefficients(method, x);
13 udx← finite difference(α, u);
14 if uniform = false then
15 udx← coordinate transform2(udx, transform);
16 end

As previously described in Section 4.1, the boundaries and boundary nor-
mals are found by locating grid points with no velocity and MATLAB’s edge
function. In order to distinguish between physical and imaginary boundaries
an interactive GUI is launched, to remove regions of the boundary surface
normal that correspond to some physical structure, such as a wall. An ex-
ample instance of the GUI is shown a airfoil data sets shown in Figure 4.6.

36



(a) Intial view GUI for an Airfoil

(b) GUI after a boundary normal region was removed from Airfoil

Figure 4.6: An example use of the GUI, to remove physical boundaries.
Detected boundaries shown in red along perimeter

Once the modification have been made to the boundary normal matrix,
the coordinate transform can be performed. In order to account for non-
orthogonal meshes a matrix of indices ξ is produced representing the ‘com-
putational’ domain. Using the index matrix ξ and the grid x representing the
location of each grid point, a transformation matrix is calculated by taking
the inverse jacobian of ξ and x over the whole grid.
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Selection of an appropriate finite difference method proved crucial to pro-
ducing sufficiently accurate differentiation for model generation. The method
is selected based on the number of consecutive grid points within the bound-
aries. Along any dimension, if there is a at least 5 grid points that are consec-
utively within the boundary, that region of the grid will use 4th order finite
difference methods. This proceeds down until only 2 points are available,
where 1st order methods are used. In the base case, where only one point is
present, it is assumed to have a gradient of 0 along that dimension. In order
to account for locations that have been deemed to be physical boundaries,
points within two indices of the boundary are changed to 4th order central to
account for the hard gradient present in these locations. Below, Figure 4.7
shows an example of how finite difference methods would be selected for a
hypothetical grid with boundaries. A legend of the finite difference methods
is presented in Table 4.1 for reference.

Table 4.1: Legend for Figure 4.7, indicating the order and form of the finite
difference methods used. Circles indicate the location of the grid point in
question for each finite element stencil

Name Pattern Name Pattern

C4 4th order central ×× ◦ ×× C2 2nd order central × ◦ ×
F4 4th order forward ◦ × × ×× F3 3rd order forward ◦ × ××
F2 2nd order forward ◦ × × F1 1st order forward ◦×
B4 4th order backward ×××× ◦ B3 3rd order backward ×××◦
B2 2nd order backward ×× ◦ B1 1st order backward ×◦
FB4 4th order forward bias × ◦ × ×× FB3 3rd order forward bias × ◦ ××
BB4 4th order backward bias ××× ◦ × BB3 3rd order backward bias ×× ◦×

4.3 Parallelization

Beyond the challenges of implementing methods to calculate the quanti-
ties required to generate each model a significant effort was placed in produc-
ing efficient and scalable code. This was achieved with the common practice
in MATLAB and other scientific scripting languages of ‘vectorizing’ as well
as explicit parallelization using MATLAB’s parallel computing toolbox. A
small set of tests were performed on quad-core workstation computer to in-
vestigate this effort.

Two common means of assessing the performance of parallel code are
known as speedup and efficiency. The relationships are simple and shown
below
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Figure 4.7: Example results of calling the select method function on a grid
with boundaries for the x direction. Black shows areas out of the flow, gray
represents areas where boundary are due to some constraint on the PIV
system, and red represents points on a physical boundary
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Sn =
Tn
T1

(4.6)

En =
Sn

n
(4.7)

Where T is the run time, n is the number of cores, S is the speedup
and E is the runtime efficiency. An ideal parallelization would result in
runtime efficiency of 100%, indicting the use of n processors would result
in a runtime speedup of n. Note that such efficiency is rarely achieved in
practice. A small test was conducted on a local workstation for 1 to 4 cores
with results shown below in figures 4.8 and 4.9. Included in the test is the
POD Gen, Galerkin Proj and Modified Basis functions. Because of the very
low run time of Score Model, it was not included.

(a) POD Gen speedup (b) Galerkin Proj speedup (c) Modified Basis speedup

Figure 4.8: Speedup of POD Gen, Galerkin Proj and Modified Basis for 1
to 4 cores.

(a) POD Gen efficiency (b) Galerkin Proj efficiency (c) Modified Basis effi-
ciency

Figure 4.9: Efficiency of POD Gen, Galerkin Proj and Modified Basis for 1
to 4 cores.

From figures 4.8 and 4.9 it becomes obvious that both the Galerkin pro-
jection code and the basis transformation code scale much better than the
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POD basis function generation code. This is likely due to the lack of highly
CPU bound operations, with the exception of POD itself, which for these
data sets does not take longer than 10 seconds. On the other hand, the
Galerkin projection code and the basis transformation code scale because of
the many required ODE integrations that can simply be run simultaneously.
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Chapter 5

Experimental Data

In an attempt to get a good spread of possible flow configurations that
the proposed validation procedure could be implemented for, four data sets
are explored. Three of the data sets are gathered experimentally using a
2D PIV system with sampling rates that are low compared to the typical
frequency ranges present in each system. The last data set is derived nu-
merically and operates in the compressible flow regime. This last set was
included for two reasons, first its sampling rate is significantly higher than
the frequency content of the flow, which will help give some insights on the
possible importance of the ratio between fundamental flow frequencies and
sampling rate for the measures. In addition, the numerical data set will be
modeled using the incompressible Navier-Stokes equations. Intuition says
that these simulation results should perform poorly as an invalid assumption
will be enforced. These models will ensure that trends in the measurement
can be explored for model characteristics that are further from the actual
system.

5.1 Axisymetric Jet

The oldest data set is for a 3D large eddy simulation (LES) generated
axisymetric jet of air, developed by Dr. James DeBonis, of NASA’s Glenn
Research Center, using a compressible Smagorinsky sub-grid model [20]. The
jet has an inlet velocity of Mach 1.4 for a 2.54 cm nozzle operating in the
fully developed regime. The simulated region stretches 20 jet diameters in
the streamwise direction and 10 jet diameters in the spanwise and normal
directions. From the full 3D data, a selection of 2D slices are extracted
following Caraballo [13]. Slices are located in the streamwise-normal plane,
centered on the jet, as well as three spanwise-normal planes, with slices at 3,
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6 and 9 jet diameters from the nozzle exit. The mesh is non-orthogonal in
both the affine streamwise-normal plane and radial spanwise-normal planes,
which requires the techinques for calculating volume described in Section 4.1.
The flow’s Reynolds number based on the diameter of nozzle and the free
stream velocity at the nozzle exit is 1.2× 106. Figures 5.1 and 5.2 show the
averaged and instantaneous plots of the flows vorticity.

(a) Mean spanwise component vorticity
field

(b) Sample spanwise component Instanta-
neous vorticity field

Figure 5.1: PIV data for the axisymetric jet in streamwise and normal plane.

(a) Mean streamwise component vorticity
field

(b) Sample streamwise component Instan-
taneous vorticity field

Figure 5.2: PIV data for the axisymetric jet in spanwise and normal plane
at 9 jet diameters downstream.

Figure 5.1 shows that the jet remains very organized for roughly the
first 1/4th of the viewing window then rapidly mixes with the surrounding
low speed flow. Figure 5.2 shows the flow in the spanwise-normal plane
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at 9 jet diameters downstream. Below in figures 5.3 and 5.4 are shown the
dominate structures in the flow. Note that for Figure 5.3 the colormap scaled
to highlight features further downstream.

Figure 5.3: First 4 POD basis functions shown as vorticity for the streamwise
and normal plane. (magnitude scaled by maximum absolute value)

Figure 5.4: First 4 POD basis functions shown as vorticity for spanwise and
normal plane. (magnitude scaled by maximum absolute value)
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From the POD basis functions generated, models described in the previ-
ous chapter are produced. Here plots of the modal amplitude, system energy
and frequency response are shown for a model that the author would consider
good based on a few criteria. First, the system does not come to rest on a fix
point or diverge in the long term. Next, a quick observation about the mean
and spread of each modal amplitude is made, favoring models that maintain
some level of oscillation with the mean of the oscillation centered around 0
on the y axis, because each POD basis function should be approximately
normally distributed with a mean of zero [28]. Finally, models that main-
tain or minimally grow in energy from their initial conditions derived from
an empirical flow snapshot are preferred. These attributes are favorable for
any POD-Galerkin models because their predictions more closely follow the
model amplitude distribution of the empirical data. Therefore these are the
author’s subjective ‘at a glance’ criteria for model selection. While frequency
components carry meaningful information about the system, it requires some
form of outside knowledge such as predicable key frequencies or some other
data, such as pressure sensors or hot film measurements. Forcing frequency
in the other test cases also provides a target for frequency comparison, but
from the onset it is not clear what POD basis function or functions the forc-
ing will manifest, so frequency was not considered in selecting the models
shown in this chapter. Below, in Figure 5.5, candidate models for the jet are
shown that follow these criteria. In these plots and those following, modal
amplitude and frequency response plots show the value or frequency content
of each of the modal amplitudes ai from Eq. 3.8.
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(a) Modal amplitude of streamwise-normal
jet

(b) Modal amplitude of spanwise-normal jet

(c) System energy of streamwise-normal jet (d) System energy of spanwise-normal jet

(e) Frequency response of streamwise-
normal jet

(f) Frequency response of spanwise-normal
jet

Figure 5.5: System characteristics for candidate models of the jet. Here
a, c and e represent characteristics for the streamwise-normal plane, and
b, d, and f represent spanwise-normal plane model at 3 jet diameters from
the orifice.
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Both the streamwise-normal and spanwise-normal flows appears to move
through at least 2 transitions in phase space. In both cases there appears
to be a transition from the initial conditions to some new attracting region
in the model space, with both appearing to reach a long term stability. In
the spanwise-normal case, the predicted solution likely has little to do with
the real dynamics of the jet. Not only is the flow modeled using the incom-
pressible Navier-Stokes, but the oscillations in the modal amplitude abruptly
appears after a relatively short period in the solution. The streamwise-normal
plane produces a more sensible model, that may to some degree approximate
the real system. This is because, a small region immediately following the jet
orifice actually falls into the compressible range of Mach number, therefore
dynamics outside of this small cone may be adequately modeled using the
incompressible equations.

5.2 Cavity Flow

The oldest experimental data set is a cavity flow, collected at the Gas
Dynamics and Turbulence Laboratory at the Ohio State University between
2005 and 2007. The test chamber features a shallow cavity of width 50.8mm
depth of 12.7mm and length of 50.8mm [11]. Air for this data set was stored
and dried in two high capacity tanks and is conditioned in a stagnation cham-
ber before entering the test section through a smoothly contoured converging
nozzle [19]. The test chamber is capable of producing flows up to Mach 0.7
but flows were recorded in the incompressible range of Mach 0.3 [11, 19].
Flow forcing is provided by a Selenium D3300Ti compression driver capable
of producing oscillation of 1 − 20 kHz and connected to the flow through
a highly converging nozzle at a 30◦ angle to the flow. This nozzle exalted
forcing frequencies in the range of 500−3000 Hz, while in isolation, the com-
pression driver had a relatively flat frequency response. Reynolds numbers
for this cavity flow are 1× 105 based on step height and 2× 104 based on the
initial shear momentum thickness.

Velocity data for this flow was captured using a 2D LaVision particle
image velocimetry system. A series of baseline flow conditions, as well as,
forced flows with driving actuation frequencies over a spectrum of 1610−3920
Hz with driving voltages between 190 to 750 volts were investigated. Velocity
fields were captured at 128× 78 or 128× 84 grid points, typical in a series of
1000 images. The size of the chamber and grid points collected resulted in
a spatial resolution of approximately 0.4mm. Several flush mounted Kulite
pressure transducers were placed around the test chamber with a frequency
response of up to 50 kHz. These sensors were originally used to generate
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stochastic estimations of the flow state for online control purposes [12]. An
image of the experimental setup shown in Figure 5.6 for reference [53]. For
this study only [53] the velocity data will be used to generate the ROMs. An
example forced flow using a driving frequency at 1830 Hz and driving voltage
of 400, as well as, its accompanying baseline flow is shown in Figure 5.7 and
Figure 5.8 and below.

Figure 5.6: Image of the experimental test section of the cavity with flow
inlet on the left [53]. Numbered locations indicate the position of pressure
transducer in the original studies.

(a) Mean spanwise component vorticity
field

(b) Sample spanwise component Instanta-
neous vorticity field

Figure 5.7: PIV data for cavity flow: baseline case.
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(a) Mean spanwise component vorticity
field

(b) Sample spanwise component Instanta-
neous vorticity field

Figure 5.8: PIV data for cavity flow: forced case.

The mean flow images in Figures 5.7a and 5.8a show strong clockwise
rotation near the leading edge of the cavity indicating rapid diffusion of
momentum at the boundary of the cavity and free stream regions. What
can be seen in Figure 5.8b is the faint presence of a large roll absence in
the unforced case of Figure 5.7b. The presence of forcing is again reflected
in the POD modes shown below in figures 5.9 and 5.10. Here the most
energetic basis functions for the baseline case show rotation throughout the
free stream boundary. The forced case shows the strongest regions in the
organized structures closer to the leading edge of the boundary. This reflects
the intended goal of exciting the natural instabilities present at edge of the
cavity.
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Figure 5.9: First 4 POD basis functions shown as vorticity for the cavity
baseline case. (magnitude scaled by maximum absolute value)

Figure 5.10: First 4 POD basis functions shown as vorticity for the cavity
forced case. (magnitude scaled by maximum absolute value)

Here as with the jet data, sample candidate models are provided in Figure
5.11 to give an example of what is produced programmatically.
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(a) Modal amplitude of a baseline cavity
flow

(b) Modal amplitude of a forced cavity flow

(c) System energy of a baseline cavity flow (d) System energy of a forced cavity flow

(e) Frequency response of a baseline cavity
flow

(f) Frequency response of forced cavity flow

Figure 5.11: System characteristics for candidate models of the cavity. Here
a, c, and e represent model characteristics for a baseline cavity flow, and
b, d, and f represent a forced cavity flow with actuation provided 1830 Hz at
400 volts
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Again, models are selected primarily based on the mean and variance of
the modal amplitude as well as the predicted model energy. Observations
of the cavity data with Rossiter frequencies will be left to Chapter 6, but
the differences in the frequency response is interesting in of itself. In the
forced case, the provided models appear to be attracted to a closed orbit in
phase space. This is reflected by the unphysically smooth frequency response
of this model. Contrast this to the selected baseline model, which like the
forced model quickly moves from the initial conditions to a new attracting
region in phase space. Unlike the baseline model, this model does not appear
to fall on a closed orbit and produces a frequency response more similar to
a real data set.

5.3 Airfoil Flow

The experimental data for the airfoil flow was also obtained at the Gas
Dynamics and Turbulence Laboratory at the Ohio State University. The data
corresponds to the subsonic flow over a NACA 0015 airfoil with a 203mm
chord length and 609.6mm span. The recirculating wind tunnel is capa-
ble of producing velocities from 3 to 95m/s with free stream turbulence
level on the order of 0.25%. The facility includes a heat exchanger to main-
tain temperature near ambient levels during prolonged testing. For the data
used in this work, the Reynolds number based on the chord length and free
stream velocity was held constant at 1.15× 106 corresponding to Mach 0.26
(U∞ = 93m/s). The data include test runs with angles of attack in post-stall
configurations of 20◦, 18◦ and 16◦ as well as pre-stall conditions at 14◦, 12◦,
and 10◦. Each inclination includes two runs with open loop forcing and two
runs in a baseline configuration.

The velocity data for the flow field was again obtained using a 2D LaV-
ision Particle Image Velocimetry (PIV) system. Nanosecond pulse driven
Dielectric Barrier Discharge (ns-DBD) plasma actuators, installed at the
leading edge (x/c = 0.01) were used to force the flow in an attempt to
partially reattach the flow stream to airfoil surface. The forced instances for
this data set consist of a forcing frequency of 1250 Hz, which corresponds
to a Strouhal number of F+ = fc/U∞ = 2.75 based on the free stream ve-
locity and the chord of the airfoil. The PIV images have a 128 × 84 grid
with spatial resolution of approximately 2.4mm sampled at 10 Hz. While
additional data was available in the form of pressure and hot film data, only
the PIV collected velocity fields will be used to generate the ROMs described
in Table 3.1. Additional information on the experimental setup and plasma
actuators are given in Rethmel et al. [48] and Little et al. [36]. An image of
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the experimental setup is provided in Figure 5.12 for reference [48]. A sample
of a post stall flow at 20◦ is also provided for both forced and unforced cases
in figures 5.13 and 5.14. Note in these images, the region below the airfoil
is removed because of interference with the control cables visible in Figure
5.12.

Figure 5.12: Image of the experimental airfoil test section with flow inlet on
the right [48].

(a) Mean spanwise component vorticity
field

(b) Sample spanwise component Instanta-
neous vorticity field

Figure 5.13: PIV data for a 20◦ post stall airfoil: baseline case.
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(a) Mean spanwise component vorticity
field

(b) Sample spanwise component Instanta-
neous vorticity field

Figure 5.14: PIV data for a 20◦ post stall airfoil: forced case.

The mean flows of figures 5.13a and 5.14a show how the flow is at least
partially reattached by the forcing with strong vortical regions surrounding
the low pressure zones behind the stalled baseline wing. The POD baseline
reflect this phenomena, with baseline modes of Figure 5.15 indicating fluctu-
ations in the low pressure zone and the free stream. The reattached flow in
the forced case indicates the strongest vortical structures directly above the
wing surface with weaker features in the wing’s wake.

Figure 5.15: First 4 POD basis functions shown as vorticity for the airfoil
flow: baseline case. (magnitude scaled by maximum absolute value)
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Figure 5.16: First 4 POD basis functions shown as vorticity for the airfoil
flow: forced case. (magnitude scaled by maximum absolute value)

Following the trend of the last two data sets, sample models are again
shown in the case of the airfoil.
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(a) Modal amplitude of baseline airfoil flow (b) Modal amplitude of forced airfoil flow

(c) System energy of baseline airfoil flow (d) System energy of forced airfoil flow

(e) Frequency response of baseline airfoil
flow

(f) Frequency response of forced airfoil flow

Figure 5.17: System characteristics for candidate models of the airfoil. Here
a, c, and e represent model characteristics for a baseline airfoil flow at a 18◦

angle of attack, and b, d, and f represent a forced airfoil flow at a 20◦ angle
of attack

56



Both the baseline and forced models (shown in Figure 5.17), again quickly
move from dynamics near the initial conditions to long run dynamics later
in the simulation. This discrepancy between the dynamics near the initial
conditions and in long run appears as a consistent behavior for the major-
ity of models presented. Another point of interest is the bursting in the
forced model. It may be possible that the model is predicting a temporary
detachment of flow from the wing. This in itself highlights the difficulty of
identifying valid and invalid behavior in ROMs. Even when using a rela-
tively small number of basis functions which only captures 60%− 70% of the
fluctuating energy, dynamics, such as flow detachment, may be represented
by the coupled movement of several basis functions. This is illustrates how
SMM could identify missing dynamics that may be difficult to detect using
energy or frequency methods.

5.4 Mixing Layer Flow

The mixing layer flow’s data was obtained at The University of Arizona
in a 304.8mm × 304.8mm × 914.4mm closed test section of an open circuit
wind tunnel [21]. The low and high speed streams were separated by a splitter
plate of dimensions 304.8mm× 304.8mm and a thickness of 34.92mm. The
splitter plate is tapered on the downstream side and a recess is present to
accommodate the Dielectric Barrier Discharge (DBD) actuator flush to the
splitter plate surface. The head loss is produced by way of two polyurethane
filters and a honeycomb in order to decrease the velocity on the low speed
side and provide flow conditioning. This configuration produces a velocity of
11.8m/s on the high speed side and a velocity ratio of r ≈ 0.28. The Reynolds
number for this flow configuration is approximately 0.28× 106 based on the
total splitter plate length and high speed velocity. Reynolds number defined
by free stream velocity difference and downstream shear layer thickness is
1.53× 103 [21].

The velocity data for the flow field was obtained using a 2D LaVision
PIV system of higher resolution than the previous two empirical data sets.
AC-DBD discharge plasma actuators were used to force the flow at 30 Hz and
60 Hz via modulation of a 12 kVpp and 15 kVpp, 3 kHz sinusoidal carrier
frequency. In this work the focus will be on the 60 Hz 15 kVpp case. The
experimental data sets are composed of 2000 instantaneous velocity fields for
both baseline and forced cases. Resolution for both sets are comparable at
1.65mm and 1.6mm for the baseline and open forced cases respectively. An
image of the experimental setup is provided for reference in Figure 5.18. Fig-
ures 5.19 and 5.20 show the mixing layer’s mean and instantaneous vorticity

57



entering the chamber nearest the splitter plate on the left, and exiting the
test chamber at outlet on the right.

Figure 5.18: Image of the experimental mixing layer test section with flow
inlet on the left courtesy of Dr. Little of the University of Arizona.

(a) Mean spanwise component vorticity
field

(b) Sample spanwsie component Instanta-
neous vorticity field

Figure 5.19: PIV data for the mixing layer: baseline case.
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(a) Mean spanwise component vorticity
field

(b) Sample spanwise component Instanta-
neous vorticity field

Figure 5.20: PIV data for the mixing layer: forced case.

As with the airfoil and cavity flows, notable changes to the flow occur
with the application of open loop forcing in both the mean and instantaneous
images. The forced case shows a much wider mixing region in Figure 5.19a
and distinct rolls in Figure 5.19b. The forced flow in Figure 5.20 has its first
two basis functions shown in Figure 5.22 as nearly perfectly phase shifted
copies of itself. In addition, forcing again moves the high energy structures
to locations much sooner in the flow as compared to its baseline counterpart.

Figure 5.21: First 4 POD basis functions shown as vorticity for the mixing
flow: baseline case. (magnitude scaled by maximum absolute value)
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Figure 5.22: First 4 POD basis functions shown as vorticity for the mixing
flow: forced case. (magnitude scaled by maximum absolute value)

Of interest are the two vertical lines best seen in basis function 1 in Figure
5.21 of the baseline flow and basis function 3 in Figure 5.22 of the forced flow.
It was found in a study by Chabot et al. [14] these lines in the POD modes
correspond to an artifact in the collection of the PIV snapshots. Because
the test chamber for this setup was fairly large, two separate cameras were
used, with a composite image stitched together along the lines seen best in
the indicated POD basis functions. Selectively removing these modes where
the artifact was primarily captured generally improved the predicted model
results [14]. Here, to keep a uniform procedure, the POD basis function
where the artifacts manifested included in model derivations. The effects
of these basis functions can be seen in the solutions of the selected models
below in Figure 5.23. In the selected baseline flow model, the suspect basis
function in Figure 5.23a is shown by the dashed light blue line. For basis
function 3 of the forced case, this is seen as the dashed yellow line of Figure
5.23b.
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(a) Modal amplitude of baseline mixing flow (b) Modal amplitude of forced mixing flow

(c) System energy of baseline mixing flow (d) System energy of forced mixing flow

(e) Frequency response of baseline mixing
flow

(f) Frequency response of forced mixing
flow

Figure 5.23: System characteristics for candidate models of the mixing layer.
Here a, cande represent model characteristic for the baseline mixing layer
flow, and b, d, and f represent the forced mixing layer flow.

Here, the two phantom modes become apparent as they shift from the
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origin in isolation from the other predicted modal amplitudes. Both models
show a near logarithmic decrease frequency response across the spectrum.
Also note that the forced model slightly under predicts the 60 Hz spike that
should be present in the first two POD basis functions.
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Chapter 6

Surrogate Markov Model
Validation

In this chapter evidence is presented in an attempt to validate the process
of scoring models via the SMM proposed in Chapter 3. First, observations
and discussion are presented about dynamics features of the model captured
by SMM and how it provides some insight into the underlying system. Next,
a brief discussion of ideal cluster number selection is presented. Afterwards,
the SMM is then compared to less universal validation measures, such as
the distribution of modal amplitude or energy, as well as, frequency peaks.
Scores for SMM will be calculated for each model as well as these three
factors. It is expected there will be some correlation between better scores
and better agreement between these factors, where, ideally there will be a
strong correlation. Additionally, a coupled property is explored, namely the
phase shift between two modal amplitudes of the mixing layer of known shift.
Finally, some discussion is made of the jet data and the SMM potential time
dependence.

Before diving into these aspects, a more intuitive explanation of clustering
is presented. A potentially good analogy to the clustering of flow snapshots,
by decomposing them using POD, would be to cluster an audio recording
after decomposing it using Fourier analysis. Imagine a digital representation
of a recording, for example the sound of three different instruments such
as a trumpet, saxophone, and a piano each in turn playing the same A#
note. Here, a Fourier fast transform could be repeatedly performed on small
durations of the recording, this would break down each time segment by
their frequency content. Clustering in this context, would ideally use this
frequency content to identify that three distinguished clumps were present
in the signal. These clumps, corresponding to each instrument, could then
be labeled and identified, with the end result being the proper identification
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of each instrument during the recording and the construction of the typical
frequency content of each instrument. The same general concept is applied
here. First, POD is used to generate a state vector of the system’s flow
snapshots. Then, the clustering algorithm will look for locations in the phase
space, where collections of samples are naturally clumped together. These
clumps, or clusters, would correspond to the timbre of the instruments in our
analogy. The flow data could then be identified by which cluster it belonged
to. From each cluster, the typical POD content could be determined that
best represents the constituents snapshots of that cluster.

To give a sense of what a set of representative clusters could look like, the
jet flow in the streamwise-normal plane is shown in Figure 6.1, with clusters
based on a k-means clustering of 10 clusters. Here, the clusters represents
‘typical’ flow configurations in different regions of the phase space, where
some level of grouping occurred. A few observations of the clustered results
show that some clusters such as states 1, 5 and 7 display a more extended
plume. States 3 and 10 show a more condensed configuration. In fact, for
this particular system moving from state 1→ 2→ ...→ 10 would constitute
the most probable path based on the estimated stochastic matrix.

While the surrogate Markov model will be tested against the traditional
means of validating a ROM, as discussed above, here an effort is made to
attempt to show that novel information is captured via the SMM. The first
and most obvious use of the SMM is the detection of both outliers and ‘holes’
in phase space with respect to the original data. Detecting outliers in two
dimensional data can be found in a fairly straight-forward manner using scat-
ter plots, or for higher dimensional outliers using the Mahalanobis distance,
shown in Eq. 3.45, if the data is fitted well by a joint distribution [39]. A
quick example of when neither of these conditions are met can be found by
using just 3 modal amplitudes of the forced mixing layer. Presented in Figure
3.1a, the forced mixing layer is shown in just 2D. This figure shows the first
two modal amplitudes forming a ring, which is not well fit by a typical joint
distribution and not suitable for detection via the Mahalanobis distance.
Additionally, if the 3rd or 4th modal amplitudes were included, graphical
methods for detecting outliers become impractical or nearly impossible for
what would still be a very small model. In fact finding multivariate outliers
is still an active area of research [33,64,65]. In GMM clustering, many mul-
tivariate normal distributions are fitted to the data. Here, the Mahalanobis
distance can be used more effectively for finding outlines when calculated
against each fitted component. This is due a to Gaussian mixture model
collectively fitting the data set better than a single joint distribution. Out-
liers can be detected for k-means by defining a maximum distance from each
of the cluster centroids, in effect defining a closed boundary in an Rn with
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Figure 6.1: Sample clustered states for the jet in the streamwise-normal plane
shown here as velocity magnitude. Clustering was performed using k-means
with plot produced from defined cluster centroid of 10 clusters.
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Figure 6.2: Sample stochastic matrix of the worst scoring baseline mixing
layer model. This model represents a POD-Galerkin model with linear aver-
aged modal eddy viscosity corrector, using the weak formulation of the NSE.
Transition probability are shown in the colorbar with circles draw for visual
aid.

points within this boundary valid and those outside, invalid.
Finding regions in phase space that are notably absent in the model’s

simulation, can be easily identified as well. Here these ‘holes’ are found by
observing how the simulation is classified into the empirical clusters. If the
simulation is never classified to a given cluster, this identifies flow phenom-
ena that are not captured by the simulation. Remember that clusters are
generated for the empirical data, at locations in phase space where the POD
modal amplitudes clump. Below, in figures 6.2, 6.4, and 6.5, are three models
shown as their estimated stochastic matrix for the baseline mixing layer flow
using 11 POD basis functions scored with 9 k-means clusters. Here it will be
shown, that the scoring methods capture aspects of the empirical data not
depicted by energy comparison.

First, the worst scoring model by both scoring methods in Eq. 3.46 and
Eq. 3.48 when clustered for both k-means and GMM is presented in Figure
6.2. This figure provides a graphical representation of Eq. 3.39, where color
and the size of the circle indicate transition probabilities.

Here the system never enters the outlier mode, described in Chapter 3,
but at the same time never transitions to states 1−4, 6 8, or 9, which can be
identified by the zero probabilities in those columns. Also, note that when
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Figure 6.3: Representation of the transition matrix in Figure 6.2. States are
shown as nodes and probable transitions shown as arrows.

the system enters state 5, it almost certainly stays in state 5. To help further
visualize this, Figure 6.3 is provided, showcasing potential state transitions
for this model.

Next, an intermediate scoring model is presented in Figure 6.4 with its
description in the caption. This model shows a better spread than the worst
scoring model. Here, at least initially, there is full coverage of all the states
by the presence of a transition probability in all 9 valid rows. After some
initial period, states 1, 5, and 7 − 9 are never visited again indicated by
the lack of any transition probabilities in these columns. The system then
typically follows the chains 2→ 3→ 4→ 2 with occasional visits to state 6
which then almost certainly returns to states 2 or state 4. Finally the best
scoring model is shown in Figure 6.5
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Figure 6.4: Sample stochastic matrix of a intermediate scoring baseline mix-
ing layer model. This model represents a POD-Galerkin model with non-
linear least squared modal eddy viscosity corrector, using a weak formation
of the NSE. Transition probabilities are shown in the colorbar with circles
draw for visual aid.

Figure 6.5: Example stochastic matrix of the best scoring baseline mixing
layer model. This model represents a POD-Galerkin model with non-linear
least squared modal eddy viscosity corrector using the standard formation
of the NSE. Transition probabilities are shown in the colorbar with circles
draw for visual aid.
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This final model again predicts the solution moves in phase space away
from modes 1, 5 and the outliers mode. Here, while it is less probable the
system visits states 8 and 9 they do occur. Next, plots of the modal ampli-
tudes and frequency response are shown for the three models shown above
in Figure 6.6. In this case, both the worst and intermediate scoring models
showed lower predicted energy compared to the best scoring model. The
worst scoring model quickly finds and comes to rest on a fixed point, while
the intermediate model appears to fall into a beating pattern. The best
scoring model maintains a more realistic prediction of the system.

6.1 Ideal Cluster Number

In both of the clustering methods presented previously, an important
unanswered question is how to select the appropriate number of clusters. In
k-means and GMM clustering, data is grouped based on a local solutions
of their objective functions, but neither specify how many clusters should
actually be present in the data. In addition to determining an optimal num-
ber of clusters, solely in the context of clustering, there needs to be some
consideration of the end goal of scoring the underlying models. Selecting too
few clusters may cast too wide a net, in which case too much of the phase
space will be defined as one state. This may falsely validate the underlying
model when the dynamics of the model are truly significantly different. On
the other end of the spectrum, selecting too many clusters runs into issues
with the experimentally collected data. When the number of clusters is large
there are simply not enough data points to achieve a good estimate of all the
transition probabilities. Additionally, as the number of clusters increases, the
argument that the Markov model represents an approximate stochastic pro-
cess breaks down, as the region represented by a single cluster is constricted
becomes smaller and smaller.

To begin to develop a guideline for the number of clusters to use, val-
idation methods specific to clustering are performed. While some metrics
of cluster selection rely on outside information, internal validation metrics,
based solely on the clusters themselves, are utilized to remain as a priori as
possible. A study in 2011 by Rendon et al. [47] investigated the relative ac-
curacy of many proposed measures for cluster evaluation and found that for
a collection of artificial data sets, internal validation metrics tended to per-
form better for data clustered using k-means. For this trial, two metric from
the Rendon et al. study, the silhouette index and Calinski-Harabaz index, as
well as the gap statistic, which is a formalization of the ‘elbow criteria’ dis-
cussed in Kaiser et al. [31], are performed. Each method defines a means of
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(a) Low scoring model : modal amplitude (b) Low scoring model : TKE

(c) Intermediate scoring model : modal am-
plitude

(d) Intermediate scoring model : TKE

(e) Highest scoring model : modal ampli-
tude

(f) Highest scoring model : TKE

Figure 6.6: Comparison of modal amplitudes to system TKE for the low,
intermediate and high scoring models.
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identifying how many clusters best fit the data. These methods identify the
best number of clusters to use by finding the maximum of some ‘goodness’
criteria. Detail descriptions are omitted and instead the formulating papers
are provided for reference [10,49,63].

To investigate the optimal cluster number, a data set was taken for each
of the 8 high level test conditions such as the baseline airfoil, streamwise-
normal plane jet, forced mixing, etc. described in Chapter 5, on which each
of the three metrics were performed. For this investigation the range of
clusters investigated are restricted in line with the arguments made earlier
in this section, therefore the tested range of clusters is set between 4 and
16 clusters. Based on the success of Kaiser et al. [31] 10 clusters was the
median, based on the success of using 10 clusters for their models. For the
cavity and the airfoil where many test cases exist, one data set was selected
for a baseline and a forced case. Here, tables 6.1 and 6.2 show each measures
predicted ideal cluster number. Plots of each of the three criteria are provided
in Appendix C.

Table 6.1: Selected ideal cluster number for silhouette index, Calinski-
Harabaz index, the gap statistic for each of the high level tested conditions.
These evaluations are performed using k-means clustering

Silh Gap CH
Jet stream-norm 15 15 16
Jet span-norm 6 6 4
Cavity base 5 6 4
Cavity forced 4 10 4
Airfoil base 4 12 4
Airfoil forced 4 10 4
Mixing base 4 4 4
Mixing forced 4 8 4
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Table 6.2: Selected ideal cluster number for silhouette index, Calinski-
Harabaz index, the gap statistic for each of the high level tested conditions.
These evaluations are performed using GMM clustering.

Silh Gap CH
Jet stream-norm 16 14 16
Jet span-norm 7 8 15
Cavity base 7 7 4
Cavity forced 4 4 4
Airfoil base 4 4 4
Airfoil forced 4 5 4
Mixing base 6 4 5
Mixing forced 4 8 4

The predicted ideal cluster number tends towards the lower end of the
investigation range with the exception of the jet data. Here, the spike in val-
ues can partially be explained by the limited time integration of the jet data.
Because of the small simulation time it is unlikely that the jet’s snapshots
would have fully converged to the long run statistical quantities. Addition-
ally, while the empirical data inherently contains some noise related to PIV
itself, which is typically compensated with the application of a Gaussian fil-
ter to the raw data, the clean numeric data tends to capture more length
scales in the more energetic POD basis functions. To show why clustering of
the jet data produces such high predictions of optimal clusters, the first two
POD basis functions are shown clustered in Figure 6.7. It can be seen that
clustering via GMM produces Gaussian components that effectively sketch
an outline of the solution trajectory. Predictions for the ideal number of
clusters such as this may be ideal in terms of grouping the data, but such a
division would not be very useful for its application here. For the jet’s clus-
tering, solutions that didn’t fall almost exactly on numerical solution would
be classified as an outlier. While the ideal cluster number has been found
in the context of clustering alone, further investigation will be made to see
if cluster number has a notable effect on how well scores for SMM correlate
with the classical validation methods presented in the next section. To test
if these correlations are affected by cluster number, each model on the pro-
ceeding sections will be scored when using 4 different clusters numbers. First
they will be scored using 8, 10 and 12 clusters because of the success of the
group of Kaiser et al. when using 10 cluster. Additionally, the values found
in tables 6.1 and 6.2 will be tested as well.
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(a) 2D k-means clustering of Streamwise-
normal jet using 16 clusters

(b) 2D GMM clustering of Streamwise-
normal jet using 16 clusters

Figure 6.7: Clustering of the Jet data using 16 clusters recommended by the
3 cluster criteria.

6.2 Cross Validation

While the surrogate Markov Model provides useful information about how
empirical and simulated data occupies and moves through phase space, there
is a desire to know how traditional validation methods trend with model
scores. Ideally, producing and scoring a surrogate Markov Model will allow a
large number of candidate models to immediately be excluded from further
consideration and therefore further validation. In order to use this score as a
sufficient condition to eliminate candidate models from a pool of models, the
scores should tend to positively correlate with improved accuracy of other
classic validation measures such as energy or modal amplitude. To show
this, scores are compared to the discrepancy between the mean, median, and
standard deviation of turbulent kinetic energy, as well as, the first POD basis
function’s modal amplitude. Additionally, for a select number of data sets,
where strong frequency peaks are known to occur, the predicted response
will be compared for the three most energetic POD basis functions. Finally,
the mixing layer has been found to have a near constant phase shift of π/2
for the first two POD basis functions [14]. This shift which can be seen in
Figure 3.1 will also be investigated.

In order to explore all the factors that have been presented thus far, as
potential contributors to the resulting scores, a large number of models have
been generated. In total, approximately 6000 models were generated between
the 53 data sets tested. Models were generated utilizing Miami’s Redhawk
Cluster as well as two workstation computers. Each data set produced models
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for the base POD-Galerkin methods, linear and non-linear eddy viscosity
correctors, and basis transformation method using GM and GM1 models as
generating bases. From these model templates, specific instances of these
models were created for 4 − 6, 9 − 11 and 13 − 16 POD basis functions.
Each model derived from experimental data was simulated at 400 times the
experimental sampling frequency of 10Hz. This resulted in the interleaving
of 400 Markov chains for approximately ∼ 2.5 seconds, cumulatively giving
four times as many cluster transitions as were present in the experimental
data. Because of the very high sampling rate (250kHz) of the jet, simulations
were simply performed for, four times as long as the numerical data, to again
give one chain of four times as many transitions. Models that were not
able to produce bounded solutions for the requested integration period were
eliminated from consideration. All bounded models were collected, with
each model scored using the two clustering methods, k-means and GMM
clustering, as well as the two scoring method, σl and σd, described in Chapter
3. For the presented models, correlations are only shown for the optimally
predicted number of clusters shown in tables 6.1 and 6.2. For the quantity
of interest, the absolute difference between the value predicted by the model
and the empirical data is calculated and shown. Finally, if a given data set
was able to produce at least 10 bounded models, the scores were correlated
and a linear regression line fitted. Ideally, to at least partially confirm that
in addition to the information provided about where and how each model
moves through phase space, positive correlations will be present indicting a
general increase in model ‘goodness’.

In order to keep the figures more readable, legends have been omitted
from individual plots in Subsection 6.2.1 and instead will have readers refer
to Table 6.3 as the legend for these plots.

Table 6.3: Legend for figures in Subsection 6.2.1

GM GM1 GM2 GM3
Base model � � � �

Nonlinear Eddy Visocity - × × ×
Basis Transformation - ◦ ◦ ◦

6.2.1 Individual Comparisons

First, the most ubiquitous validation method for ROMs in the authors
view, the turbulent kinetic energy, is compared to the model scores. Because
the number of comparisons that can be made is still extremely large, one data
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set is shown for the four scoring methods. The data set presented here is for
a baseline 18◦ airfoil flow. Figure 6.8 shows scatter plots for the scores vs.
the mean TKE with calculated correlations shown in the title of each graph.
The same procedure was performed for median and standard deviation with
those figures to be found in Appendix D.

(a) Airfoil mean TKE : k-means σd. (b) Airfoil mean TKE : GMM σd.

(c) Airfoil mean TKE : k-means σl. (d) Airfoil mean TKE : GMM σl.

Figure 6.8: Scatter plots of the four score producing methods for the system’s
mean turbulent kinetic energy for a 18◦ baseline airfoil flow.

Looking at the calculated correlations a general trend is established for
this particular test case, with σl correlating more strongly to the system’s
TKE. Next, a comparison of just the first modal amplitude is made to the
scoring methods. For this comparison, a baseline cavity flow is selected,
with correlation to the mean again presented here with median and standard
deviations located in Appendix D.
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(a) Cavity mean modal amplitude a1 : k-
means σd.

(b) Cavity mean modal amplitude a1 :
GMM σd.

(c) Cavity mean modal amplitude a1 : k-
means σl.

(d) Cavity mean modal amplitude a1 :
GMM σl.

Figure 6.9: Scatter plots of the four score producing methods for the system’s
first modal amplitude of a baseline cavity flow.

Again a small positive correlation is established, with σd now showing
better correlation with these results. Note that one model that scored poorly
in all measures, remained bounded at an usually high energy. While it clearly
does not follow the linear regression line, it would be part of the pool of
models that will identified as invalid and would be eliminated from further
consideration. Continuing with the comparisons, a forced cavity flow will
now be shown using forcing at 1830Hz at 400 volts. In order to perform
frequency comparisons, the 10 largest peaks were found in the data for the
first 3 POD basis functions. Here, it is assumed that the system’s prominent
frequency components will manifest in the largest basis functions. Peaks were
detected for each of the three POD basis functions, with each peak given a
25Hz buffer on either side to avoid repeatedly detecting the same peak. From
this pool of detected peaks, the peak found to be the closest to the target
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peak of interest, was selected as representing the closest peak. In this case
the forcing frequency of 1830 Hz was selected as the target frequency. These
scatter plots are shown here in Figure 6.10.

(a) Cavity detected frequency peak differ-
ence : k-means σd.

(b) Cavity detected frequency peak differ-
ence : GMM σd.

(c) Cavity detected frequency peak differ-
ence : k-means σl.

(d) Cavity detected frequency peak differ-
ence : GMM σl.

Figure 6.10: Scatter plots of the four score producing methods for the sys-
tem’s frequency response discrepancy for a forced cavity flow.

Here, there is no longer consistency between the scores, it appears that
overall that SMM does not correlate with frequency response. Lastly, the
phase shift described at the beginning of the section for the mixing layer
is explored. In these plots, the mean phase shift for each model is com-
pared against the target value π/2 with the absolute difference taken as the
discrepancy.
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(a) Mixing layer mean phase discrepancy :
k-means σd.

(b) Mixing layer mean phase discrepancy :
GMM σd.

(c) Mixing layer mean phase discrepancy :
k-means σl.

(d) Mixing layer mean phase discrepancy :
GMM σl.

Figure 6.11: Scatter plots of the four score producing methods for the mixing
layers mean phase shift discrepancy.

Here, there is a very weak correlation towards the expected phase angle
with decreasing score. While this can not be taken by itself as much evidence
for the relations it is promising.

6.2.2 Bulk Comparisons

In order to give real credibility that scoring via a surrogate Markov model
is in fact reflective of the underlying system, care must be taken to remove
any bias in the selection of the shown results. In the previous subsection
weak correlations for the selected data sets were shown with the exception
of the frequency peak agreement. While these results consistently showed
the presence of a positive correlation, the individual correlations were not
strong. In order to show that the trend presented here, exist outside the
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Table 6.4: Averaged Correlations for TKE vs. Scoring method

k-means σd k-means σl GMM σd GMM σl
TKE mean 0.158 0.184 0.287 0.159

TKE median 0.176 0.219 0.304 0.182
TKE std 0.121 0.051 0.182 0.031

Table 6.5: Averaged Correlations for a1 vs. Scoring method

k-means σd k-means σl GMM σd GMM σl
a1 mean 0.169 0.219 0.304 0.241
a1 median 0.164 0.218 0.286 0.236
a1 std -0.041 -0.013 0.045 0.006

selected data sets, results were aggregated across all bounded models pro-
duced. As well as providing additional evidence to the trends established in
the last section, individual factors such as scoring method, or cluster number
can be compared against the global trends. This information can be used
to find which parameters and methods work best to produce the strongest
relations. Here, results for the turbulent kinetic energy, modal amplitudes,
and frequency peaks will be revisited.

Following the same pattern as with the previous section, the turbulent
kinetic energy is presented first, with correlations for the mean, median and
standard deviation lumped together for all cluster numbers tested. Here,
each data set producing at least 10 bounded models, was included as a valid
correlation and plotted on a histogram comparing the correlation value to
the number of observed correlations of that value shown in Figure 6.12. Af-
terwards, the lumped scores are presented in Table 6.4 showing the mean
value of the individual statistical components.

Figure 6.12 shows a peak in the number of correlations found moving
just into the positive range for each of the 4 scores. In addition to show-
ing the strongest composite mean, GMM σd shows the strongest component
correlations as well. In all four cases, standard deviation shows the weakest
overall relation as seen in Table 6.4. Moving to the next comparison point,
histograms in Figure 6.13 and component breakdowns in Table 6.5 for the
modal amplitude relations to the first POD basis function are presented.

A similar but weaker trend is again observed for the first POD basis
function, with GMM σd showing the strongest correlation. One possible
explanation for the overall stronger correlations for the TKE and a1 is related
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(a) TKE statistics for k-means σd. (b) TKE statistics for GMM σd.

(c) TKE statistics for k-means σl. (d) TKE statistics for GMM σl.

Figure 6.12: Histogram of the occurrence correlations of a given value for
each score compared to the TKE measures
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(a) Modal amplitude statistics for k-means
σd.

(b) Modal amplitude statistics for GMM
σd.

(c) Modal amplitude statistics for k-means
σl.

(d) Modal amplitude statistics for GMM σl.

Figure 6.13: Histogram of the occurrence correlations of a given value for
each score compared to the modal amplitude measures.
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to how the clusters are generated. Because POD decomposes the flow into a
set of principle flow features, each feature is centered about the origin. This
would naturally lead to clusters grouped in the vicinity of the origin. A shift
in the solution trajectory away from the origin will be repeatedly penalized
during the scoring, for predicting low probability of improbable transitions.
Such a shift naturally raises the systems TKE. Similarly, the modal amplitude
by definition should be centered on or near the origin. On the other hand,
models predicting solutions closely centered on the origin, inherently allow
classification of a range of points to the same cluster. This would allow
models to range to some degree in amplitude, and be viewed effectively as
the same to the SMM. While changes to the standard deviation of the TKE
more broadly shift solution trajectory, a small change in one component will
likely have little effect on how the model is classified. This is one possible
explanation for why there is some correlation for the TKE standard deviation
compared to the negligible trend for a1 standard deviation.

Lastly, the frequency peak prediction will again be revisited with the
bulk results shown as a histogram in Figure 6.14. This figure shows quite
definitively, that for the methodology of peak detection used in this work,
there is virtually no relation with SMM scoring.

From the bulk data, results were filtered to look at how the optimally
selected number of clusters fared compared to the full aggregate. Here simple
percentage changes, are shown in Table 6.6

Table 6.6: Change in correlations using optimal cluster compared to aggre-
gate

k-means σd k-means σl GMM σd GMM σl
TKE 54.3% 15.5% 30.4% 24.1%
a1 16.4% 21.8% 28.6% 23.6%

frequency −4.1% −1.3 4.5% 0.6%

For TKE and the modal amplitude of a1 using the optimally selected
cluster in tables 6.1 and 6.2 it appears to have a notable improvement in
relations. On the other hand the frequency peak agreement was not partic-
ularly affected by using the optimal cluster number.

Throughout this section, it has been shown that when looked at collec-
tively, better scores produced from σd or σl and clustering from k-means or
GMM show either increased agreement or no relation to the three alternative
validation methods. To reiterate, the goal of SMM is not to try predict these
three validation methods with one alternative validation method, instead it
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(a) Peak detection for k-means σd. (b) Peak detection for GMM σd.

(c) Peak detection for k-means σl. (d) Peak detection for GMM σl.

Figure 6.14: Histogram of the occurrence correlations of a given value for
each score compared to the detected peak
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is meant to indicate how closely a simulation’s dynamics replicate the origi-
nal data’s dynamics, as outlined in the beginning of this chapter. Here, this
cross-validation is provided to show that in addition identifying missing or
incorrectly predicted dynamics, that better scores tend to indirectly indicate
improved agreement with validation methods currently used in the field.

6.3 Time Step Dependence

The last point of investigation in this work, probes the argument made
in Chapter 3 for approximating the system as a stochastic process. This
is the underlying assumption that makes this approach viable. Here, it is
known that the three experimentally collected data sets have sampling rates
that make each image in the ensemble time uncorrelated. On the other
hand, the numerically generated jet data has time steps that makes a single
image time correlated to many images following and preceding the image
of interest. While modeling the jet with the incompressible Navier-Stokes
equations will introduce some inaccuracies, the correlations scores indicate
if the characteristics in question simply trend together. Here similar to the
previous section, histograms aggregating the correlations are presented for
the jet and the cavity for comparison. The TKE of the jet is shown in Figure
6.15 with the cavity’s TKE shown in Figure 6.16, immediately followed by
the modal amplitude of the first POD basis function jet seen in Figure 6.17
and cavity in Figure 6.18. Because the original jet data did not look at
predicted frequencies no comparison will be made there.

While there are not as many correlations to draw from, there does not
appear to be any trend present for the jet data. Compare this to the cavity
data, which shows essentially the same trends as the aggregate over all the
data sets shown previously in Subsection 6.2.2. Here, the estimated stochas-
tic matrix of a sample baseline cavity data set and the streamwise-normal
plane jet are provided in figures 6.19 and 6.20, to give further insight into the
histograms presented. For these two data sets, 10 clusters were generated by
k-means to estimate the stochastic matrix.

The cavity’s stochastic matrix shows that from a given state there is
some possibility of transitioning to any other state. While every transition is
possible, some transitions are more probable with some examples including
6 → 2, 4 → 3, or 9 → 10. From an intuitive standpoint, such a stochastic
matrix should be expected. Collecting a velocity field sample and then tak-
ing another sample such that the two samples are time uncorrelated should
be unpredictable without additional knowledge. Because each time step is
classified to a cluster, some knowledge is retained about the models current
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(a) TKE statistic for the jet data using k-
means σd.

(b) TKE statistic for the jet data using
GMM σd.

(c) TKE statistic for the jet data using k-
means σl.

(d) TKE statistic for the jet data using
GMM σl.

Figure 6.15: Histogram of the occurrence of correlations of a given value for
each score compared to the TKE measures of the jet data.
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(a) TKE statistic for the cavity data using
k-means σd.

(b) TKE statistic for the cavity data using
GMM σd.

(c) TKE statistic for the cavity data using
k-means σl.

(d) TKE statistic for the cavity data using
GMM σl.

Figure 6.16: Histogram of the occurrence of correlations of a given value for
each score compared to the TKE measures of the cavity data.
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(a) Modal amplitude a1 statistic for the jet
data using k-means σd.

(b) Modal amplitude a1 statistic for the jet
data using GMM σd.

(c) Modal amplitude a1 statistic for the jet
data using k-means σl.

(d) Modal amplitude a1 statistic for the jet
data using GMM σl.

Figure 6.17: Histogram of the occurrence of correlations of a given value for
each score compared to the modal amplitude a1 measures of the jet data.
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(a) Modal amplitude a1 statistic for the
cavity data using k-means σd.

(b) Modal amplitude a1 statistic for the
cavity data using GMM σd.

(c) Modal amplitude a1 statistic for the
cavity data using k-means σl.

(d) Modal amplitude a1 statistic for the
cavity data using GMM σl.

Figure 6.18: Histogram of the occurrence of correlations of a given value for
each score compared to the modal amplitude a1 measures of the cavity data.
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Figure 6.19: Estimated stochastic matrix from a baseline cavity data set
using k-means for 10 clusters

location in the model or phase space. Imagine now, simulating a model from
every possible initial condition within that cluster. After integrating each
initial condition for one time step, individual solutions may land anywhere
in the phase space, but because initial conditions were clumped, it would be
expected that some clumping would occur in the results of the integration.
Here, the variability of the transition probabilities shown in Figure 6.19 are
the realization of this clumping.

In the case of the jet, the correlated data quickly stands out as compared
to the cavity data. Looking back at Figure 6.7, each time step is typically so
short that it remains within a single cluster. In this case the argument that
this system can be approximated as a stochastic process breaks down. Given
knowledge that the system is in a particular state dictates that it will almost
certainly remain in that state, or move to a state that it borders. Because of
this, SMM does not appear effective for time correlated data.
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Figure 6.20: Estimated stochastic matrix from a streamwise-normal plane
jet data set using k-means for 10 clusters
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Chapter 7

Conclusions and Future Work

This work presents the framework for a data driven, ROM validation pro-
cedure for steady flow by use of the surrogate Markov model. In principle,
validation is performed by generating a simplified, but representative model
from both the empirical and simulated data. The empirical data source is
first clustered to attempt to find the most typical flow formations. Next,
simulated data is assigned to a clustered or outlier state, based on which
state it is most similar to. Given that the data is time uncorrelated, argu-
ments are made that the system can be approximately modeled as a Markov
process. Matrices representing the probability of moving between states are
then estimated, for both empirical and simulated data. These matrices are
then used to compare the underlying data sets.

Using the machine learning tools of clustering and classification, affords
a holistic view of the system without being hung up on whether the simula-
tion produced an identical reconstruction or not. Instead of attempting to
compare the whole system at each time step, or simply looking at a small set
of value such as energy or frequency content that summarized some aspect
of the flow, this procedure looks to identify the models that are most similar.
Estimation of the systems stochastic matrix can quickly identify if the model
is missing entire regions of phase space occupied by the empirical data.

It has been shown that lower scores for both clustering schemes and scor-
ing methods indicate increasing agreement in both center and spread of the
system’s TKE and individual modal amplitudes. Key frequency peaks were
shown to be uncorrelated to the SMM scorings for the data sets and models
tested in this work. It was also found that using a smaller set of clusters pre-
dicted by the optimal cluster criteria, strengthen the relation between scores
predicted for the SMMs and TKE and modal amplitudes. Finally, out of the
clustering procedures, k-means and GMM, and the two scoring procedures,
σl and σd it was found that scores for σd produced from GMM clusters were
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most strongly correlated to the TKE and modal amplitude. Given informa-
tion about the phase space and it’s transitions, and that, lower scores for
the SMM indicate that model aspects are either improving or were unre-
lated, it is believed that lower scores for the SMM generally indicates better
models. It is believed that the SMM provides sufficient information for a
selection of models, those models scoring the worst can be excluded from
further validation consideration.

7.1 Future Work

There are a few interesting questions that can be explored based off this
work. The most obvious continuation of this work would be to simply in-
vestigate additional models or test cases. While POD-Galerkin models were
used and provided the smallest possible state vector to cluster, it would be
worth an investigation into the growingly popular Dynamics Mode Decom-
position [50, 54], to identify if this framework can be applied there. More
broadly this scheme may be applicable to validation of models outside of
reduced order models. For example, LES or DNS simulations with experi-
mentally gathered PIV data could potentially be compared in this framework.
First, the PIV data could be decomposed using POD, with the LES or DNS
data projected onto this basis. Given that a small projection residual was
found, transition matrices could again be estimated and the described score
methodologies applied.

Beyond further testing, one area of ambiguity existing in this work is
the best procedure for defining an outliers state. In this thesis, a critical
distance was used to define the maximum distance any data point could be
from a cluster, before it was assigned to the outlier cluster. This distance was
found by taking an arbitrary multiple of the largest distance between any two
cluster centroids when k-means clustering was used. Similarly, an arbitrary
Mahalanobis distance was used as critical distance in GMM clustering. While
these definitions worked well enough for this work a more logically deduced
procedure could be defined. One procedure that was researched but not
implemented for GMM clustering, would give a value to each simulated data
point analogous to a z-score for standard deviation of normal distribution [1].
The key to any outlier definition in this context would be to define the
boundary based on properties of generated clusters, while also remaining
computationally cheap.

Finally while it was shown that highly time correlated data such as the
jet, completely breaks down the arguments for a stochastic process, the time
scales that it does hold for, are not well defined. On one end, there is data
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that is effectively deterministic in this framework such as the jet data, where
many time steps occur within the same cluster. At the other end of the
spectrum, given very large time steps; knowledge about the current state
and its approximate location in phase space become meaningless. As was
described in Section 6.3, because some information is retained about where
in phase space a state of the system is currently located, the next transition
will most likely have one or two transitions that are much more probable than
the others. As the time step between samples increases eventually each states
transition probabilities will converge to those of the stationary distribution
described in Appendix B. Here, a well defined set of bounds would be valuable
to decide, before scoring, if the assumptions made in this work will remain
valid.
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Appendix A

Basis Transformation
Algorithm

The numerical procedure proposed by Balajewicz et al. [5] can be thought
of as a post-processing technique to produce a basis that has natural energy
balancing properties. As shown in Chapter 3 this energy balance is found by
a root finding procedure based on a critical transfer term ε. Presenting the
equation for this balance is shown below:

r(ε) :=
n∑

i=1

Λ̃ii − 〈
n∑

i=1

ã2
i (t)〉 (A.1)

ε =
n∑
ij

LijΛij (A.2)

Where both Λ̃ and ã are found through numerical processes. First, the
basis is ‘minimally rotated’ using the following optimization formulation.

argmin
X∈RN×n

n∑
i=1

(
λi −

(
XT 〈aiaj〉X

)
ii

)
s.t XTX = In×n

n∑
i,j=1

(
XT lX

)
ij

(
XTΛX

)
ij

= ε

(A.3)

Here the objective function seen in Eq. A.3 first constrains the transfor-
mation to rotations only, while the second constraint is intended to produce
a transformation that conforms to a target free transfer term. Using the
produced transformation matrix, a new set of system coefficients shown in
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Chapter 3 Eq. 3.36 are used to produce a time integration of the trans-
formed model. All three numerical processes are unfortunately effectively
unconstrained. Following the recommendation of Balajewicz et al. [5] the di-
mension of the optimization problem scales by 2n4 with no additional struc-
ture on X. Likewise the root finding procedure is unbounded.
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Appendix B

Maximum Likelihood Estimate

This appendix provides a derivation of the analytical maximum likelihood
estimate of a stochastic matrix for an observed sequence of one, or many
Markov chains of the same length. This derivation should prove what appears
intuitively in Eq. 3.41. First the probability of observing a Markov chain is
shown.

P{XT = iT} = P{X1 = i1}
n∏

t=2

P{Xt = it | Xt−1 = it−1} (B.1)

Next, replacing the conditional probability with the elements of the esti-
mated transition matrix pij, the likelihood function L is:

L(p|X) = P{X1 = i1}
T∏
t=2

pij(Xt) (B.2)

The initial probability will be easier to represent for multiple Markov
chains if the quantity known as the stationary distribution π is introduced.

Definition [15] 1. A vector π = (π1, π2, . . . , πk)T is said to be a stationary
distribution of a finite Markov chain if it satisfies:

πi ≥ 0 and
k∑

i=1

πi = 1 (B.3a)

Pπ = π (B.3b)

Here π represent the long run proportion of time X spends in state i. In
this case π(X) = P{X1 = i1} leading to:
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L(p, π|X) = π(X)
T∏
t=2

pij(X) (B.4)

Two useful quantities to define are the number of transitions from i→ j
and the number starts in state i shown below:

nij :=
T∑
t=2

I(Xt = i,Xt−1 = j) (B.5a)

n1
i := I(X1 = i) (B.5b)

Where I is the indicator function. Equation B.4 can now be represented
as:

L(p, π|X) =
n∏

i=1

π
n1
i

i

n∏
i,j=1

p
nij

ij (B.6)

This expression can now be generalized for set of M Markov chains X =
{X1, . . . , XM}, by taking the product of all the likelihoods.

L(p, π, |X ) =
M∏

m=1

( n∏
i=1

π
I(Xm,1=i)
i

n∏
i,j=1

p
I(Xm,t=i,Xm,t−1=j)
ij

)
(B.7a)

L(p, π|X ) =
n∏

i=1

π
n1
i

i

n∏
i,j=1

p
nij

ij (B.7b)

nij :=
M∑

m=1

T∑
t=2

I(Xt = i,Xt−1 = j) (B.7c)

n1
i :=

M∑
m=1

I(X1 = i) (B.7d)

With an equation for the likelihood of a set of Markov chains in place, the
MLE of the transition matrix pij can now be determined. First, Eq. B.7b is
transformed into the log domain to simplify the calculation.

L(p, π|X ) =
n∑

i=1

n1
i ln(πi) +

n∑
i,j=1

nijln(pij) (B.8)

The application of the MLE in this work has a known initial state exactly,
as it will be determined by the initial conditions set for the ROM. In this
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case the summation of the stationary distribution of Eq. B.8 will reduce to
a constant and won’t affect the location of the maximum reducing Eq. B.8
to:

L(p|X ) =
n∑

i,j=1

nijln(pij) (B.9)

At this point Lagrange multipliers, an optimization technique for enforc-
ing constraints, are introduce to enforce the constraints of Eq. B.10. For
a quick introduction to Lagrange multipliers the reader can refer to almost
any introductory optimization text or the cited text [59]. Referring back to
Subsection 3.4.1 we can rewrite a property of Markov chains in terms of the
stochastic matrix’s as:

n∑
j=1

pij = 1 (B.10)

Instead of simply looking for the maximum of L(p), the incorporation n
Lagrange multiplier, λ1, λ2 . . . λn, constrains the objective function.

L(p|X)−
j∑

i=1

λi

( n∑
j=1

pij − 1

)
(B.11)

A key property of Lagrange multipliers, is that when you take the deriva-
tive with respect to one of the multipliers you recover the constraint that it is
enforcing. This simply increases the dimension of the optimization problem
from n2 to n2 +n. Now taking the derivative of Eq. B.11 with respect to pij:

0 =
nij

pij
− λi (B.12)

pij =
nij

λi
(B.13)

Using Eq. B.10 and plugging back into Eq. B.13 we now have.

n∑
j=1

nij

λi
= 1 =

n∑
j=1

pij (B.14)

n∑
j=1

nij = λi (B.15)

Plugging this results for λi back into Eq. B.13 and rearranging, gives the
results presented in Chapter 3 Eq. 3.41.
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p̂ij =
nij∑n
j=1 nij

(B.16)
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Appendix C

Cluster Evaluation

Here, the results of cluster number evaluation are presented. These are
from a sample data set for each test conditions reported in Chapter 5. Here
plots are presented in the order they appear in tables 6.1 and 6.2.
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(a) silhouette index : k-means (b) silhouette index : gmm

(c) gap statistic : k-means (d) gap statistic : gmm

(e) calinski-harabasz index : k-means (f) calinski-harabasz index : gmm

Figure C.1: Cluster evaluation for the jet in the streamwise-normal plane.
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(a) silhouette index : k-means (b) silhouette index : gmm

(c) gap statistic : k-means (d) gap statistic : gmm

(e) calinski-harabasz index : k-means (f) calinski-harabasz index : gmm

Figure C.2: Cluster evaluation for the jet in the spanwise-normal plane
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(a) silhouette index : k-means (b) silhouette index : gmm

(c) gap statistic : k-means (d) gap statistic : gmm

(e) calinski-harabasz index : k-means (f) calinski-harabasz index : gmm

Figure C.3: Cluster evaluation for a baseline cavity flow.
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(a) silhouette index : k-means (b) silhouette index : gmm

(c) gap statistic : k-means (d) gap statistic : gmm

(e) calinski-harabasz index : k-means (f) calinski-harabasz index : gmm

Figure C.4: Cluster evaluation for a force cavity flow.
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(a) silhouette index : k-means (b) silhouette index : gmm

(c) gap statistic : k-means (d) gap statistic : gmm

(e) calinski-harabasz index : k-means (f) calinski-harabasz index : gmm

Figure C.5: Cluster evaluation for a baseline airfoil flow.
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(a) silhouette index : k-means (b) silhouette index : gmm

(c) gap statistic : k-means (d) gap statistic : gmm

(e) calinski-harabasz index : k-means (f) calinski-harabasz index : gmm

Figure C.6: Cluster evaluation for a forced airfoil flow.
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(a) silhouette index : k-means (b) silhouette index : gmm

(c) gap statistic : k-means (d) gap statistic : gmm

(e) calinski-harabasz index : k-means (f) calinski-harabasz index : gmm

Figure C.7: Cluster evaluation for the baseline mixing layer flow.
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(a) silhouette index : k-means (b) silhouette index : gmm

(c) gap statistic : k-means (d) gap statistic : gmm

(e) calinski-harabasz index : k-means (f) calinski-harabasz index : gmm

Figure C.8: Cluster evaluation for the forced mixing layer flow.
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Appendix D

SMM Correlations

Plots that were not included in Chapter 6 Section 6.2 are presented.
First the correlations between the 4 scores for the 18◦ baseline airfoil flow.
Here the discrepancy between the empirical median and std deviation are
shown. Next, a baseline cavity flow is presented where the first POD basis
function’s modal amplitude is the characteristic of choice. Following the last
set of correlations observed, standard deviation of phase shift is shown. The
system would show no oscillation and have a deviation close to zero.
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(a) Baseline 18◦ Airfoil flow : median TKE
: k-means σd.

(b) Baseline 18◦ Airfoil flow : median TKE
: GMM σd.

(c) Baseline 18◦ Airfoil flow : median TKE
: k-means σl.

(d) Baseline 18◦ Airfoil flow : medain TKE
: GMM σl.

Figure D.1: Scatter plots of the four scoring methods for a baseline Airfoil
flow at 18◦ for median TKE.
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(a) Baseline 18◦ Airfoil flow : TKE stan-
dard deviation : k-means σd.

(b) Baseline 18◦ Airfoil flow : TKE stan-
dard deviation : GMM σd.

(c) Baseline 18◦ Airfoil flow : TKE stan-
dard deviation : k-means σl.

(d) Baseline 18◦ Airfoil flow : TKE stan-
dard deviation : GMM σl.

Figure D.2: Scatter plots of the four scoring methods for a baseline Airfoil
flow at 18◦ for standard deviation TKE.
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(a) Baseline Cavity flow : median modal
amplitude a1 : k-means σd.

(b) Baseline Cavity flow : median modal
amplitude a1 : GMM σd.

(c) Baseline Cavity flow : median modal
amplitude a1 : k-means σl.

(d) Baseline Cavity flow : median modal
amplitude a1 : GMM σl.

Figure D.3: Scatter plots of the four scoring methods for a baseline airfoil
flow at 18◦ for modal amplitude a1.
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(a) Baseline Cavity flow : modal amplitude
a1 standard deviation : k-means σd.

(b) Baseline Cavity flow : modal amplitude
a1 standard deviation : GMM σd.

(c) Baseline Cavity flow : modal amplitude
a1 standard deviation : k-means σl.

(d) Baseline Cavity flow : modal amplitude
a1 standard deviation : GMM σl.

Figure D.4: Scatter plots of the four scoring methods for a baseline cavity
flow at 18◦ for modal amplitude a1 standard deviation.
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(a) Forced Mixing Layer : phase descrep-
ancy standard deviation : k-means σd.

(b) Forced Mixing Layer : phase descrep-
ancy standard deviation : GMM σd.

(c) Forced Mixing Layer : phase descrep-
ancy standard deviation : k-means σl.

(d) Forced Mixing Layer : phase descrep-
ancy standard deviation : GMM σl.

Figure D.5: Scatter plots of the four scoring methods for the forced mixing
layer of the phase discrepancy standard deviation.
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[10] Tadeusz Caliński and Jerzy Harabasz. A dendrite method for cluster
analysis. Communications in Statistics-theory and Methods, 3(1):1–27,
1974.

[11] Edgar Caraballo, Cosku Kasnakoglu, Andrea Serrani, and Mo Samimy.
Control input separation methods for reduced-order model-based feed-
back flow control. AIAA journal, 46(9):2306–2322, 2008.

[12] Edgar J Caraballo. Reduced Order Model Development for Feedback
Control of Cavity Flows. PhD thesis, The Ohio State University, 2008.

[13] Edgar Javier Caraballo. An application of the proper orthogonal decom-
position to an axisymmetric supersonic jet. PhD thesis, The Ohio State
University, 2001.

[14] John Chabot, Edgar Caraballo, and Jesse Little. Reduced order model-
ing of a dielectric barrier discharge controlled shear layer using minimum
basis rotations. In Proceeings of the 45TH AIAA Fluid Dynamic Con-
ference, June 2015.

[15] Wai-Ki Ching and Micheal Ng. Markov Chains: Models, Algorithms and
Applications. Springer, 2006.

[16] Laurent Cordier, El Majd, B Abou, and J Favier. Calibration of pod
reduced-order models using tikhonov regularization. International Jour-
nal for Numerical Methods in Fluids, 63(2):269–296, 2010.

[17] Laurent Cordier, Bernd R Noack, Gilles Tissot, Guillaume Lehnasch,
Joel Delville, Maciej Balajewicz, Guillaume Daviller, and Robert K
Niven. Identification strategies for model-based control. Experiments
in fluids, 54(8):1–21, 2013.

[18] M Couplet, P Sagaut, and C Basdevant. Intermodal energy transfers in a
proper orthogonal decomposition–galerkin representation of a turbulent
separated flow. Journal of Fluid Mechanics, 491:275–284, 2003.

[19] Marco Debiasi and Mo Samimy. Logic-based active control of subsonic
cavity flow resonance. AIAA journal, 42(9):1901–1909, 2004.

[20] James R DeBonis. The numerical analysis of a turbulent compressible
jet. PhD thesis, Ohio State University, 2001.

[21] Richard Ely and Jesse Little. The mixing layer perturbed by dielectric
barrier discharge. In In proceedings of the 43rd AIAA Flow Control
Conference, San Diego, CA, USA. AIAA, 2013.

117



[22] Clive AJ Fletcher. Computational galerkin methods. Springer, 1984.

[23] Ari Glezer, Zafer Kadioglu, and Arne J Pearlstein. Development of
an extended proper orthogonal decomposition and its application to a
time periodically forced plane mixing layer. Physics of Fluids A: Fluid
Dynamics (1989-1993), 1(8):1363–1373, 1989.

[24] Andreas Gross and Hermann F Fasel. Control-oriented proper orthogo-
nal decomposition models for unsteady flows. AIAA journal, 45(4):814–
827, 2007.

[25] Hasan Gunes and Ulrich Rist. Proper orthogonal decomposition re-
construction of a transitional boundary layer with and without control.
Physics of Fluids (1994-present), 16(8):2763–2784, 2004.

[26] Trevor Hastie, Robert Tibshirani, Jerome Friedman, and James
Franklin. The elements of statistical learning: data mining, inference
and prediction. The Mathematical Intelligencer, 27(2):83–85, 2005.

[27] Leonhard Held and Daniel Sabanés Bové. Applied Statistical Inference:
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