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Abstract

Poisson model is one of the fundamental discrete models used to model

count data in various fields. It assumes that the mean and variance of data

are approximately equal. In practice, the observed data often violates this

assumption because the variance can be larger than the mean commonly re-

ferred to as over-dispersion. Several models have been developed based on the

Poisson model to address the issue of dispersion occurred in data; general-

ized Poisson model, zero-inflated Poisson model, and zero-inflated generalized

Poisson model are examples of such distributions. In this thesis, I will fo-

cus on developing a method within the Bayesian framework to compare these

four models. This method is generic and can be readily generalized to the

comparison of any number of models. We will use non-informative prior and

importance sampling to calculate the posterior probability for each model.

We also use the same method to compare regression models, namely Poisson,

generalized Poisson and negative binomial regression models.
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Chapter 1

Introduction

1.1 Motivation

When modeling count data in practice, one often finds the frequency of

zero is higher than the one predicted by of the model being fitted. This

problem is very common, and it occurs in various fields, such as engineering,

manufacturing, economics, public health, epidemiology, psychology, sociology,

political science, agriculture, road safety, species abundance, etc.

Example (Fetal movement data): This data set was collected in a study of

breathing and body movements in fetal lambs designed to examine the possible

changes in the amount of pattern of fetal activity during the last two thirds

of the gestation period. The numbers of movements by a fetal lamb observed

through ultrasound were recorded.

Count N 0 1 2 3 4 7

Frequency 182 41 12 2 2 1
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Poisson distribution is a standard distribution which is used for fitting

count data. A unique property of the Poisson distribution is the equality of

its mean and variance. That implies the spread of the data is strictly lim-

ited for Poisson model. When this assumption fails and the data displays

overdispersion, i.e. the ratio of variance to mean is larger than one, and if this

phenomenon is not taken into account, Poisson distribution underestimates

the variability and makes incorrect explanation of data. For this case, several

distributions have been developed based on Poisson distribution to solve this

overdispersion problem. These are generalized Poisson, zero-inflated Poisson,

and zero-inflated generalized Poisson distributions. How to choose the appro-

priate distribution among these distributions is a important question widely

concerned in the past.

Suppose we are analyzing one count data and have belief that the data

arise from the Poisson Family. The problem of which model is appropriate

for the data turns out to be the model selection question in statistics. For a

given data, we want to know which model gives a better fit. In the Bayesian

perspective, posterior probability of a model is the Bayesian method used

for model comparison. Bayes factor is also equivalent measure for the model

comparison on the basis of the evidence.

The frequentist estimation of GP distribution based on maximum like-

lihood estiamtion (MLE) often encounters the convergence problem on the

expectation-maximization (EM) and the Newton-Raphson (NR) algorithms.

Bayesian Inference does have theoretic guarantee that MCMC algorithm will
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surely converge after the process run long enough. Hence Bayesian Inference

allows more complicated models and is computationally efficient.

1.2 Literature review

Poisson distribution is the fundamental and widely used discrete probabil-

ity distribution. It is commonly used for the count of events in a fixed interval

of time or space. However, in some applications, the observed data can not

be explained by the Poisson distribution due to the assumption of Poisson

distribution, that is, the equality of the mean and variance of the data.

This kind of violation of the assumption leads to inadequate model fitting

by the Poisson distribution which has only one parameter. In practice, the

count data is often observed overdispersion with greater variability in the data.

The underdispersion that the variance of a Poisson distribution is smaller than

its mean is rarely present in practice, thus we mainly focus on the overdisper-

sion situations. Zero-inflation is one special case of overdispersion such that

the number of zeros is more than expected.

The overdispersion was originally analyzed by a finite mixture of Poisson

models, but the number of parameters normally becomes quite large and the

analysis is complex. For that, several distributions are developed based on

Poisson distribution to allow the flexibility of variance, these are generalized

Poisson distribution, zero-inflated Poisson distribution, and zero-inflated gen-

eralized Poisson distribution.

Bayarri et al. (2008) uses the Bayes Factor based on objective priors to

3



compare the Poisson versus zero-inflated Poisson model. Bhattacharya et al.

(2008) presented a Bayesian method to test the zero-inflation of zero-inflated

Poisson model by computing a certain posterior probability of the alternative

hypothesis.

Gupta et al. (2005) tests the zero-inflation of zero-inflated generalized Pois-

son model using score test, the author developed the testing procedure both

with covariates and without covariates. In the paper of Xie et al. (2009),

score tests are presented for testing the zero-inflated Poisson mixed regression

model against the zero-inflated generalized Poisson mixed regression model,

and for testing the significance of regression coefficients in zero-inflation and

generalized Poisson portion.

The overdispersion of generalized Poisson regression model has been tested

using Score test byYang et al. (2007), and the authors also compared the gen-

eralized Poisson regression model versus Negative Binomial regression model

by Vuong test. Joe and Zhu (2005) compared probability mass functions and

skewnesses of the generalized Poisson and negative binomial distributions with

the first two moments fixed.

1.3 Poisson distribution

Poisson distribution is an essential probability distribution in statistics.

It is commonly used for fitting count data which means a number of events

occurring in a fixed interval of time or space given a constant occurrance

4



probability. The probability mass function for count Y = y is

f(y|λ) = Pr(Y = y) =
λye−λ

y!
y = 0, 1, 2, ...

where 0 < λ

It is a discrete probability distribution of the number of observed events of

interest. The event is assumed independent of time since the last event.

E(Y ) = Var(Y ) = λ

The parameter λ represents the expected value and variance of random vari-

able Y. Poisson distribution always hold the mean and variance equal. This

assumption makes the application of Poisson distribution restricted to spe-

cific data, but real data normally does not satisfy this condition. Other dis-

tributions are developed to include the control of variance by adding more

parameters.

1.4 Generalized Poisson distribution

The generalized Poisson (GP) distribution is of interest for modeling count

data because it control the over-dispersion and under-dispersion by one ad-

ditional parameter. Generalized Poisson distribution is introduced by Consul

and Jain (1973). The properties of the distribution has been well studied in

papers Consul (1989); Lerner et al. (1997); Tuenter (2000). The generalized

Poisson regression model is further discussed by Consul and Famoye (1992).

5



Similar to the Negative Binomial distribution, Joe and Zhu (2005) has proved

that the GP distribution is a mixture of Poisson distributions.

f(y|α, λ) =
(1 + αy)y−1(λe−αλ)y

y!eλ
y = 0, 1, 2, ...

where 0 ≤ α < 1/λ, 0 < λ. α is the parameter indicating the degree of

overdispersion. The larger the value α is, the thicker the tail will be.

The mean and variance are

E(Y ) =
λ

1− αλ

Var(Y ) =
λ

(1− αλ)3

Joe and Zhu (2005) studied the difference between GP and NB distribution,

and for a simple initial analysis, they did not use covariate information at that

time. In the paper, the author displayed the difference between GP and NB

distribution according to the dispersion index D (the ratio of variance to mean)

and the mean of distribution. They say that the difference is not significant

when the the mean of distribution is smaller than 5 even though the dispersion

index D is large. Otherwise, the difference between two distributions becomes

obvious when dispersion index D goes away from 1.

1.5 Zero-inflated Poisson distribution

A special type of count data is the zero-inflated data in which there is a

relatively large proportion of zero counts. Zero-inflated Poisson Model (ZIP)
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is especially useful for the analysis of count data with a large amount of ze-

ros (inflated). Zero-inflated Poisson regression model is derived by Lambert

(1992). To model such data, a binary mixture is employed to the zero-inflated

modification of Poisson model.

f(y|φ, λ) = φ× I[y=0] + (1− φ)× λye−λ

y!
y = 0, 1, 2, ...

where (1− eλ)−1 < φ < 1, 0 < λ.

The mean and variance are

E(Y ) = (1− φ)λ

Var(Y ) = (1− φ)(1 + λφ)

It allows the excess zeros present in the data. It does not provide good

estimates of the nonzero counts as generalized Poisson distribution, when the

variability of data is large.

1.6 Zero-inflated generalized Poisson distribution

Zero-inflated Generalized Poisson Model (ZIGP) improve the data fitting

and obtain more accurate results for both extreme zeros and overdispersion.

Zero-inflated generalized Poisson distribution combines the features of general-

ized Poisson distribution and zero-inflated Poisson distribution. It can involve

the over-dispersion and the zero-inflation effects both.

zero-inflated generalized Poisson regression model

7



f(y|φ, α, λ) = φ× I[y=0] + (1− φ)× (1 + αy)y−1(λe−αλ)y

y!eλ
y = 0, 1, 2, ...

where (1− eλ)−1 < φ ≤ 1, 0 ≤ α < 1/λ, 0 < λ.

The mean and variance are

E(Y ) = (1− φ)
λ

1− αλ

Var(Y ) = (1− φ)
λ

1− αλ

[(
1 +

αλ

1− αλ

)2

+ φ
λ

1− αλ

]

The maximum likelihood estimation is studied by Gupta et al. (1996), they

applied iterative solution to the estimators. The Posterior distribution of ZIGP

is studied with non-informative priors by Angers and Biswas (2003), within

which the integration is evaluated through importance sampling method.

For the ZIGP to be a valid probability distribution, all that required is

that φ satisfies the inequality given in the definition. Negative values of φ

are therefore allowed, in addition to the (conventional) values between 0 and

1. Positive values indicate zero-inflation and negative values indicate zero

deflation. In this dissertation we assume phi is in the range 0 to 1.

1.7 Negative binomial distribution

The first application of this characterization of the negative binomial dis-

tribution was presented by Greenwood and Yule (1920) to model accident

statistics. It has subsequently been used to model phenomena as diverse as

8



the purchasing of consumer packaged goods(Ehrenberg 1959), salesperson pro-

ductivity (Carroll, Lee, and Rao 1986), and library circulation (Burrell 1990).

Negative binomial distribution is similar to generalized Poisson distribution

that one additional parameter control the variance and make it flexible to be

different from the mean value, and it is also nested with Poisson distribution.

The probability mass function of the negative binomial (NB) distribution

is

f(y|τ, µ) =
Γ(y + 1/τ)

Γ(y + 1)Γ(1/τ)

(τµ)y

(1 + τµ)y+1/τ
y = 0, 1, 2, ...

τ > 0 controls the degree of overdispersion. µ > 0 is the parameter equal to

the mean. This NB distribution reduces to Poisson distribution as τ goes to

zero.

The mean and variance are

E(Y ) = µ

Var(Y ) = (1 + τµ)µ

The covariates are included through the log link function that µ = exp(xβ).

x = (x1, x2, ..., xp) is a covariate vector and β is a vector of unknown regression

parameters to be estimated. Since the parameter µ is the mean of both Poisson

and NB regression models, the meaning of µ are same in both models. Thus,

so do the covariate links for both models.

Therefore, the comparison of Poisson regression model against NB regres-

sion model becomes

H0 : τ = 0 vs. H1 : τ > 0

9



To test the hypothesis, Bayes Factor is selected as the bayesian comparison

method. The priors for parameters are required for all compared models. The

prior for the regression parameters β is same as Poisson regression model.

Joe and Zhu (2005) studied the fitting of data by the generalized Poisson

and negative binomial distribution and they show both of them are equally well

on explanation of count data in many cases, and their fits are quite similar to

each other. Generalized Poisson distribution includes the heavy tail property,

whereas negative binomial distribution is able to handle excess zeroes in the

data. When the mean of data and the ratio of variance to mean (dispersion

ratio) are both small, they are quite close to each other. Also, author says

that the zero-inflated GP distribution could fit better than the zero-inflated NB

distribution when there is a large zero fraction and a heavy tail. Because the

zero-inflated GP distribution contain the additional parameters control both

excess zeros and overdispersion of data, while zero-inflated NB distribution

does not include the overdispersion feature in the distribution.
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Chapter 2

Bayesian Inference and Bayes Factor

2.1 Bayesian inference

Bayesian Inference is the method of drawing conclusions from data on the

foundation of Bayes’ rule which is used to measure the probability of evidence

for a hypothesis. Bayes’ rule expresses the posterior probability through the

likelihood function and prior probability.

P (H|E) =
P (E|H)P (H)

P (E)

H is the hypothesis which is normally compared with others through the ob-

served data, E is the evidence from data.

P (H|E) is the posterior probability, the probability of H given evidence E.

P (H) is the prior probability of hypothesis before data is observed.

P (E|H) is the likelihood which is the probability of observing data given the

hypothesis H.
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P (E) is called marginal likelihood which is the same for all hypotheses being

considered.

In frequentist inference, model parameters are fixed constants. The param-

eters are estimated from the distribution of estimators. In Bayesian inference,

model parameters are regarded as random variables, and are estimated by its

posterior distribution updated from the data, that is, the distribution of the

parameters given data.

P (θ|y) =
P (y|θ)P (θ)

P (y)

P (θ|y) is the posterior distribution of the parameters θ given the data y

P (y|θ) is the likelihood conditional on parameters θ

P (θ) is the prior distribution of parameters before observing data

P (y) is the marginal likelihood which is the distribution of the data marginal-

ized over the parameters.

The posterior distribution contains all information of the parameters, and

it is straightforward to deliver credible intervals for parameters, while the fre-

quentist confidence intervals is difficult to understand. The posterior distribu-

tion yields more realistic information including the uncertainty of parameters

which is not included using frequentist inference. The variance provided in

frequentist estimation is only the sampling uncertainty. Since frequentist ap-

proach is established on the asymptotic normality assumption, the variance of

the MLE is not accurate when sample size is small. The mean and variance

of parameters obtained from posterior distributions are trustworthy and not
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affected by the size of data. For large data size, they both give similar results.

One big advantage of posterior distribution is that it can handle a large num-

ber of random variables in the model. Due to the numerical approximation

development, the computation of complex integration can be implemented it-

eratively by high-speed computer, i.e. Markov chain Monte Carlo method.

Thus, bayesian inference In contrast, frequentist inference

2.2 Prior probability

The prior probability distribution, normally called prior, expresses the in-

formation of an uncertain quantity θ before the data is taken into account.

The unknown quantity could be a parameter or latent variable. The prior

probability is totally subjective due to the selection of priors made by experts

before any knowledge from data. The prior distribution should be assigned

on a range covering all possilbe values for the unknown quantity θ. It is con-

venient of posterior distribution calculation to choose conjugate prior when

it is available, however the conjugate prior is not always easy to find. There

are two classes of priors, one is informative priors (or “subjective priors”) and

the other is called non-informative priors (also known as “non-informative” or

“objective” priors). The later term “non-informative” is sort of misleading,

as every prior includes some information actually, and it should be reasonable

to denote as “weakly informative prior” instead. The informative priors nor-

mally contain specific, definite information or belief on the quantity θ before

observing any data. The information might come from knowledge gained from
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previous experiments or experts. In contrast, the use of non-informative pri-

ors assigns equal probabilities to all possibilities. It has minimal impact on

the posterior distribution. The structure of priors is set up based on two key

issues:

• The information of the quantity θ wants to be included in the prior

distribution

• The properties of the posterior distribution

The information of the prior comes from either Expert opinions or the previous

experiments. The most widely used method for finding the non-informative

prior is the Jeffreys’s rule. Jeffreys priors are sometimes improper priors.

The improper prior is named for that the integral over the parameter space

diverges. For example, π(θ) = 1 over 0 to∞ is improper, since the area under

the prior density is infinite. In most instances, there are no big problem in

use of improper priors in bayesian analyses. Sometimes, the use of improper

priors can lead to improper posteriors. In model selection or hypothesis testing,

improper priors bring in the uncertainty to the results.

Flat priors are the densities with wide spread, such as a normal distribution

with large variance for infinite range, i.e. N(µ, 1002), or a uniform distribution

over a bounded range, i.e. Uniform(0, 1). Flat piror is one of the most common

priors and easy for approach. It is non-informative prior, since no specific

preference of the quantity is indicated from the flat prior distribution. Often

in bayesian analysis, three common choices of non-informative priors are the

uniform prior, Jeffreys Prior.
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2.2.1 Jeffreys Prior

The Jeffreys Prior is named after Harold Jeffreys. It is a non-informative

prior which is proportional to the square root of the determinant of the Fisher

information. The advantage of Jeffreys priors is that it is invariant under

reparameterization of parameter vector ~θ.

One-Parameter case First, let’s consider the simple situation with single

parameter θ. Jeffreys Prior is

π(θ) ∝
√

detI(θ)

where I(θ) is the Fisher information defined as

I(θ) = −E

[
∂2

∂θ2
lnL(θ|y)

∣∣∣∣ θ]

L(θ|y) = P(y|θ) =
∏
i

f(yi|θ) is likelihood probability of parameter θ.

For a alternative parameterization φ, the Jeffreys prior can be derived from

the change of variables theorem

π(φ) = π(θ)

∣∣∣∣dθdφ
∣∣∣∣ ∝√detI(φ)

that is, Jeffreys priors are independent to reparameterization.
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Multiple-Parameter case When there are more than one parameter in the

model, i.e. ~θ = (θ1, θ2, ..., θp)
T , the Fisher information will be a p× p matrix

I(~θ) = [I(θ)i,j]p×p

the elements of the Fisher information matrix are

I(θ)i,j = −E

[
∂2

∂θi∂θj
lnL(θ|y)

∣∣∣∣ θ]

the Jeffreys prior is

π(~θ) ∝
√

detI(~θ)

Also, the reparameterization is easy to conduct on Jeffreys priors. For the

alternative parameterization ~φ.

π(~φ) = π(~θ)

∣∣∣∣det
dθi
dφj

∣∣∣∣ ∝√detI(~φ)

Jeffreys prior is sometimes a improper prior which cause the arbitrary

constant of the normalizing constant, and this arise the hypothesis testing

problem by the arbitrary constant. One

2.3 Bayes factors

Bayes Factor is a broadly used bayesian alternative to frequentist hypoth-

esis testing. In frequentist statistics, the hypothesis testing is focus on the

probability of test statistic under null hypothesis. In bayesian framework,
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the probability of testing the hypothesis is to compute the probability of the

model given the true data. Bayes Factors relies on the posterior probability

odds which gives the alternative of hypothesis testing. Bayes Factors follows

from Bayes Theorem.

P (Mi|y) =
P (y|Mi)P (Mi)

P (y|M1)P (M1) + P (y|M2)P (M2)
for i = 1, 2

where y is the given data, Mi is the ith model of the proposed models to be

compared. P (Mi) is the prior belief in model Mi. so that,

P (M1|y)

P (M2|y)
=
P (y|M1)P (M1)

P (y|M2)P (M2)

thus, it means,

posterior odds = Bayes factor× prior odds

Bayes Factor:

BF12 =
P (y|M1)

P (y|M2)

Bayes Factor describes the transformation of posterior odds from prior odds

through consideration of the data. Without any prior knowledge, it normally

assumes the prior preference of model is same that P (M1) = P (M2) = 0.5.

Bayes factor is simply equal to the posterior odds in favor of model M1.
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The Marginal Likelihood is the Bayesian evidence and is defined as

mi = P (y|Mi) =

∫
P (y|Mi, θi)P (θi|Mi)dθi

θi is the vector of paramters in model Mi. P (y|Mi, θi) is the likelihood of model

Mi measuring the probability of observing data y under the assumption that

Mi is the true model. P (θi|Mi), or say π(θi|Mi), is the prior probability of the

parameter of model Mi. In contrast, P (θi|y,Mi) is the posterior distribution

of parameter of model Mi given data y. Briefly, Bayes Factor is expressed as

BF12 =
m1

m2

=

∫
P (y|M1, θ1)P (θ1|M1)dθ1∫
P (y|M2, θ2)P (θ2|M2)dθ2

Bayes Factor relies on the marginal likelihood which is the probability of

the data given the model. Prior of the interest parameter θ carries important

knowledge to Bayes Factor and should be spiked on the null hypothesis θ0.

Such very strong prior belief on parameter then will be modified by the ob-

served data. In contrast to Bayesian Inference, the prior plays an important

role in model selection such that the decision will be heavily affected by the

selected prior even for a large sample. For such case, the noninformative priors

are good choices for avoiding the difficulties of the dependence of Bayes Factor

on the priors.

Bayes Factor have ’Ockham’s razor’ done automatically, that is, the penalty

of including too much model structure is taken into account, and it will au-

tomatically prefer the simpler model. It is notorious that the marginal like-
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lihoods are computationally difficult. However, they are easy to approximate

with some numerical approach methods.

Interpretation of Bayes Factor:

Bayes Factor gives a measure of evidence between two models in terms of the

support of the data, it should be noticed that none of the models is necessarily

required to be true. In particular, Bayes Factor accesses two models based

on the data in favor of model M1. If the Bayes Factor is larger than 1, the

evidence of data shows stronger support to model M1 than M2. Because the

posterior odds is larger than the prior odds, in other words, the posterior

probability of model M1 is larger than its prior probability. If Bayes Factor is

smaller than 1, model M2 is more strongly supported by the data. Here is the

scale for interpretation:
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Bayes Factor Strength of Evidence

−∞ < BF ≤ 0.1 Strong against M1

0.1 < BF ≤ (1/3) Substantial against M1

(1/3) < BF < 1 Barely worth mentioning against M1

1 ≤ BF < 3 Barely worth mentioning for M1

3 ≤ BF < 10 Substantial for M1

10 ≤ BF <∞ Strong for M1

The frequentist method requires models to be nested for comparison anal-

ysis, and it is very difficult to do non-nested comparison in frequentist frame-

work. Bayes Factor can access nested or non-nested models.

2.4 Comparison of multiple models

Bayes Factor is not only used to compare paired models, but it can do

analysis of multiple models or hypotheses. Posterior Probability provides the

numerical summaries of the strength of evidence in favor of models. When

there are more than two candidate models for the data, it is more convenient
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to use the Posterior Probability to measure the evidence of data for each model.

The Posterior Probability P (Mi|y) for each model is given by

P (Mi|y) =
P (y|Mi)P (Mi)

P (y)
for i = 1, ..., n

where the number of total candidate models is n.

P (y) is the unconditional probability of observing y, that is

P (y) =
n∑
i=1

P (y|Mi)P (Mi)

Also, all models satisfy
n∑
i=1

P (Mi) = 1

The model with the greatest Posterior Probability will be the best prefer-

ence for the fitted data among the comparing models. When there is no prior

knowledge of all models, it is common to initiate P (Mi) = P (Mj) for all i, j.

Then the Posterior Probability P (Mi|y) becomes

P (Mi|y) =
P (y|Mi)
n∑
i=1

P (y|Mi)
=

mi
n∑
i=1

mi

Posterior probability of given model is quite useful in understanding the

difference among models for any given data. It simply provides the proba-

bility of each candidate model based on the information updated from the

given data. The interpretation of posterior probability of model is simple and

straightforward without any hidden confusing statistical concept which may

cause misunderstanding in statistical analysis. Also, it does not require any
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pre-knowledge about the model in order to calculate the test statistic. In gen-

eral, it provides the basic comparison of all candidate models rather than any

specific fitted ones.

2.5 Fractional Bayes factor

Fractional Bayes Factor (FBF) is developed, based on the Partial Bayes

Factor, by O’Hagan (1995). It aims to solve the problem of the improper prior

within the Bayes Factor via training the normalizing constant by part of data

or part of likelihood. It is similar to the intrinsic Bayes factor method, but we

only focus the fractional Bayes Factor here. It is known that the Bayes Factor

is the ratio of the marginal likelihoods of two models. The marginal likelihood

is

mi = P (y|Mi) =

∫
π(θi|Mi)P (y|Mi, θi)dθ

When the prior π(θi|Mi) is the improper probability, Bayes Factor is unable

to be calculated.

π(θ) ∝ h(θ)

where h(θ) diverges over the θ space. In this case, when we write the improper

prior probability

π(θ) = c h(θ)

the normalizing constant c actually does not exist, but let us regard it as an

unspecified constant here. The improper prior has no problem with analysis
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of the posterior distribution of the parameters in Bayesian Inference, since

p(θ|y) =
P (y|θ)π(θ)

P (y)
=

P (y|θ)h(θ)∫
P (y|θ)h(θ)dθ

the constant c cancels out from the existence in both numerator and denomi-

nator. Nevertheless, Bayes Factor can not handle in the same way for improper

priors. Assume the prior probability for model M1 is an improper prior, then

BF12 =
P (y|M1)

P (y|M2)
= c

∫
P (y|M1, θ1)h(θ1|M1)dθ∫
P (y|M2, θ2)π(θ2|M2)dθ

the unspecified constant c does not cancel out. Bayes Factor is uncertain due

to the unspecified c. If the paramter priors of both models are all improper,

then

BF12 =
P (y|M1)

P (y|M2)
=
c1

c2

∫
P (y|M1, θ1)h(θ1|M1)dθ∫
P (y|M2, θ2)h(θ2|M2)dθ

the ratio of unspecified constants c1
c2

causes the uncertainty. It causes the Bayes

Factor to take any value meaninglessly.

Let n be the number of observations in the data. The Fractional Bayes

Factor try to reduce this sensitivity of Bayes Factor to the prior with a training

sample of size m. b = m/n is the training fraction.

BF b
12 =

∫
P (y|M1, θ1)bπ(θ1|M1)dθ∫
P (y|M2, θ2)bπ(θ2|M2)dθ
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and defines the Fractional Bayes Factor as

FBF12 =
BF12

BF b
12

The main practical question is how to decide the training sample size. The

training fraction b should go to 0 as n → ∞ to retain consistency of model

choice. A minimal size m0 satisifies this condition. Although there are debates

over defining the minimal size m0, the purpose of the minimal size is to leave

as much data as possible to model comparison. Thus, the debates would not

hinder the construction of FBF. For instance, if there was a doubt about

whether two or three observations is appropriate as the minimal size, then the

size three would be used.

But the small training sample size m will sacrifice the robustness to the

misspecification of the prior. For these features of the FBF, the author suggests

two alternatives of training sample size, m = log n and m =
√
n. The first

increases very slowly with n, so it is keeping the training size very small while

achieving robustness. The sencond increases faster than the first, and attaches

more importance on robustness.

Therefore, here are three ways to set b:
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(a) b = m0

n
, no concern with robustness

(b) b = logn
n

, intermediate option

(c) b = 1√
n

, serious concern with robustness

Normally, the minimal size m0 is set up to be 2 or 3 in default. If there is

any concern about the minimal size at m0 = 2, it is recommended to simply

adopt m0 = 3. In our following study, the minimal size m0 = 3 is used to

calculate training fraction b.
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Chapter 3

Markov Chain Monte Carlo and Importance

Sampling

3.1 Markov chain Monte Carlo

In statistics, computation of integration is not always possible to obtain

the analytical result. The reason is that integrand tends to be complex most

of the time, or the integrand could be multivariate which causes the diffi-

culty of simplification. These problems occur often in both frequentist and

Bayesian studies, for instance, calculation of maximum likelihoods, Bayes fac-

tors, or bayesian inference, etc. Numerical solutions provide a direct and sim-

ple approach to these problems. A general solution is making use of computer

simulation of Markov chain over the parameters space.

The Markov chain is a random process, a memoryless transition from one

state to another, with the Markov property defining the transition probabilities

for the next state which depends only on the current stage but not on the

previous states. Let Xi denote the random variable at state i, xi denote the
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observed value of Xi at state i, and the state space is the range of possible X

values.

P (Xn+1 = x|X1 = x1, X2 = x2, . . . , Xn = xn) = P (Xn+1 = x|Xn = xn)

The probability of a new observation Xn+1 = x given all observations X1 =

x1, X2 = x2, . . . , Xn = xn is same as the probability of observing the value

given only the previous one, that is, the draws of Markov chain are slightly

dependent on the previous one. The chain walks around the parameters space

and only remember the last place it has been.

The Monte Carlo method is based on the idea of drawing independent

identically distributed samples from a desired distribution. The target distri-

bution then can be approximated by the simulated samples. Once we have the

Markov chain converged to the stationary distribution, it seems like we should

be able to make use of Markov chain on finding the quantities of interest. Still,

the Markov chain is not independent, the Monte Carlo Integration solves the

dependence problem by strong law of large numbers (SLLN). Consequently,

these samples can be used to approach the integrals on the target distribution.

1

N

N∑
i=1

g(xi)
a.s.−−−→

N→∞

∫
χ

g(x)f(x)dx

where xi is the ith sample of total N draws from the target distribution f(x),

g(x) is a measurable function of X. This estimate is unbiased and almost surely

converges to the integral by SLLN.
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Markov chain Monte Carlo (MCMC) is the idea of sampling random sam-

ples from a probability distribution that is too complex to simulate directly.

MCMC is based on Markov chain to produce the next sample values using the

current sample values, and the produced samples all together is the Markov

Chain. The constructed Markov Chain’s stationary distribution is the tar-

get distribution. Therefore, for all the constructions of MCMC, the Markov

chains will definitely converge to the stationary distribution no matter where

the starting points are. The construction of MCMC is usually not difficult,

but we often do not know how many steps the Markov chain needs to reach

stationary status.

Burn-in Because the starting points are not the issue for MCMC sampling,

it is flexible to assign any values as the starting points. However, the cost-

ing time to convergence is related to the starting points. Since the MCMC

sampling takes time to reach stationary status, the steps walked before the sta-

tionary status do not represent the target distribution correctly. Those draws

before the stationary status are called Burn-in, and they are thrown out from

the overall draws in order to make the MCMC draws closer to the station-

ary distribution and less dependent on the starting points. A good chain will

have rapid mixing featurereaching the stationary distribution quickly from an

arbitrary position.

It is very difficult to check the convergence of MCMC chains, since all

draws are slightly dependent and no idea to when the chain converges to the

stationary distribution. One often takes heuristics to check the situation of
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convergence. For example, initiate the starting points at different values and

monitor whether the trace plots of each chain agree to each other.

3.2 The Metropolis-Hastings algorithm

Metropolis-Hastings algorithm is a Markov chain Monte Carlo method to

obtain samples from a complex probability distribution which is not possible

to draw samples directly. It is especially powerful at sampling from multi-

dimensional distribution with high dimension. The generated sequence of

samples can normally be used to approximate the target distribution or to

approach an integral.

Suppose P (x) is the desired distribution, q(x∗ → x) is the proposal distri-

bution that is used to change between any two states x to x*

the acceptance probability of Markov chain moving toward next state x∗ is

A(x→ x∗) = min(1,
(P (x∗)q(x∗ → x))

(P (x)q(x→ x∗))
)

this is also denoted as A(x, x∗), and it is a measure of the probability of

transition from x to x*. The range of it is between 0 and 1.

The Metropolis-Hastings algorithm is working in steps as follows:

1. initiate a arbitrary value as the start state x(0) ;

2. draw a random value u from uniform distribution U(0, 1);

3. draw a random value x∗ from proposal distribution q(x∗|x(i));
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4. accept the draw according to acceptance probability A(x(i), x∗).

If u < A(x(i), x∗), accepted x(i+1) = x∗. Else, it remains at x(i+1) = x(i)

and so the state is same as the previous one;

5. go to 2 until enough states were generated;

The number of states generated must be chosen according to the proposal

distribution. The variances of different proposals have a big impact on the

results. If the proposal distribution is too narrow, Markov chain may be stuck

at one mode of multimodal and can not walk over the entire region of the

target distribution. If the proposal distribution is too wide, it suffers high

rejection rate, and the Markov chain is highly correlated. A well mixing chain

is able to visit all modes of the target distribution and has a high acceptance

probability.

3.3 The Gibbs sampler

The Gibbs sampler is a special case of Metropolis-Hastings sampling such

that draws are always accepted. It is designed for multivariate distribution

simulation, the Gibbs sampler only consider univariate conditional distribu-

tions. Suppose the target distribution has n random variables and the full

conditional distributions are

f(xi|x1, ..., xi−1, xi+1, ..., xn) for i = 1, ..., n
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It is far easier to simulate n random variables sequentially from the full

conditionals than generating a n-dimensional vector from the complex joint

distribution one time.

The algorithm of the Gibbs sampler

1. initiate arbitrary values as the start state (x
(0)
1 , ..., x

(0)
n ) ;

2. for k=1 to N;

draw random values x(k) from full conditional distributions;

x
(k)
1 ∼ f(x1|x(k−1)

2 , ..., x
(k−1)
n );

x
(k)
2 ∼ f(x2|x(k)

1 , x
(k−1)
3 , ..., x

(k−1)
n );

...

x
(k)
i ∼ f(xi|x(k)

1 , ..., x
(k)
i−1, x

(k−1)
i+1 , ..., x

(k−1)
n );

...

x
(k)
n ∼ f(xn|x(k)

1 , ..., x
(k)
n−1);

that is, each random variable is sampling from the updated full conditional

distribution given the most recent values of the other random variables. It

is still only depends on the previous observations but partially updated with

the current state. One iteration of the sampling of all univariate distributions

is called a scan of the sampler. The collection of scans is called the Gibbs

sequence. After burn-in steps, the Gibbs sequence reaches the stationary dis-

tribution which is also our target distribution. Thus, the draws from the Gibbs

sampler represent the desired distribution we want to simulate.
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3.4 Simulation steps of multivariate distribution

For multivariate distribution simulation, Gibbs sampler method is able

to be extended with the use of Methopolis-Hastings algorithm when the full

conditional distributions of variables are not easy to sample from. Methopolis-

Hastings algorithm can be used to sample from variables which are not possible

to draw samples directly. Assume a multivariate distribution f(x1, x2, ..., xn)

of n variables in the model, the full conditional distribution of variable xi is

f(xi|x1, ..., xi−1, xi+1, ..., xn). In one iteration of simulation, the draw of vari-

able xi is sampling from a proposal distribution q(xi|x1, ..., xi−1, xi+1, ..., xn)

which is similar to the full conditional distribution of the variable, and the

draw is determined by acceptance probability of Metropolis-Hastings algo-

rithm.

The Simulation steps of multivariate distribution:

1. initiate arbitrary values as the start state (x
(0)
1 , ..., x

(0)
n ) ;

2. for k=1 to N, iterate;

3. draw one random value of variables from proposal distributions;

x∗1 ∼ q(x1|x(k−1)
2 , ..., x

(k−1)
n );

x∗2 ∼ q(x2|x(k)
1 , x

(k−1)
3 , ..., x

(k−1)
n );

...

x∗i ∼ q(xi|x(k)
1 , ..., x

(k)
i−1, x

(k−1)
i+1 , ..., x

(k−1)
n );

...
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x∗n ∼ q(xn|x(k)
1 , ..., x

(k)
n−1);

4. draw a random value u from uniform distribution U(0, 1);

5. accept the draw according to acceptance probability A(x
(k−1)
i , x∗i ). for

each variable xi, i = 1, ..., n.

If u < A(x
(k−1)
i , x∗i ), accepted x

(k)
i = x∗i . Else, it remains at x

(k)
i = x

(k−1)
i

and so the state is same as the previous one;

6. repeat from step 3, until obtain enough draws N;

In the simulation, it is assumed that full conditional distributions can not

be simulated directly from, therefore proposal distributions for the full condi-

tional distributions are defined to approximate a sequence of draws sampling

from the true distribution. The values of other variables in the condition

of proposal distribution are updated by the latest accepted values of those

variables. The acceptance probability is defined in the Methopolis-Hastings

algorithm.

This simulation method makes sampling possible for any multivariate dis-

tribution, and the proposal distribution of variable can be any known distri-

bution which simplifies the simulation process. The calculation of acceptance

probability may takes some computation time when the target distribution

is complex, and it could be a problem especially when the number of iter-

ations are huge. The mixing of simulation can be quick when the proposal

distribution is quite close to the desired distribution, but the number of iter-

ations necessarily needs to be large enough to make convergence to the true
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distribution.

3.5 Importance sampling

Importance sampling is an efficient method to approach the integration

which is too complicated to get the analytical solution. One advantage of

importance sampling is the capability of reducing the variance of estimators

such that it can greatly reduce the computation time by convergence with

fewer MCMC iterations. It is widely utilized in posterior densities, Bayes

factors, parameter estimation, bootstrap quantile problems, etc.

Importance sampling relies on importance functions generating samples

rather than the distribution of interest. Let X be a random variable, h is

a function of X, f is the distribtuion density of interest. Assume we want

to know the quantity of expected value of function h(x), but it would be

unable to obtain the closed-form expression and the density f(x) could be too

complicated to simulate. Importance sampling makes use of simple probability

densities in lieu of the complicated f(x) in calculation of the expectation.

V = Ef [h(X)] =

∫
χ

h(x)
f(x)

g(x)
g(x)dx = Eg[

h(x)f(x)

g(x)
]

that is, the expectation under the density g(x), also named as importance

function. f(x)
g(x)

is known as importance weight. The choice of the importance

function g(x) can be any probability density theoretically, but the purpose

of importance sampling is to solve the difficulty of calculation, thus common
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densities which are easy to simulate are the usual selections. In order to

approximate the integral, a sample X1, X2, ..., Xn of size n are generated from

the density g(x). By the law of large numbers,

V̂ =
1

n

n∑
j=1

h(Xj)
f(Xj)

g(Xj)
→ Ef [h(X)]

This is called the importance sampling estimator. It is easy to calculate the

mean of the function h(x)f(x)/g(x). The average will almost surely converge

to the desired expectation as the sample size n increases to infinity. Thus,

importance sampling redistributes the law of X by importance function g so

that its samples’ frequencies are sorted directly according to their weights

h(X)f(X)/g(X).

The selection of importance functions g plays a important role in the es-

timation. A poor choice of the importance function may yield very poor out-

comes. The performance of importance sampling is tested through the variance

of the importance estimators

var(V̂ ) =
1

n
σ2

where

σ2 = varg[h(x)
f(x)

g(x)
] =

∫
h2(x)f 2(x)

g(x)
dx− V 2

In order to estimate the expectation, we need to estimate the variance of the
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importance estimator for the confidence interval of V .

σ2 =

∫
h2(x)f 2(x)

g(x)
dx−V 2 =

∫
(h(x)f(x)− V g(x))2

g(x)
dx = Eg[

(h(x)f(x)− V g(x))2

g(x)2
]

so, the estimated

σ̂2 =
1

n

n∑
i=1

(
h(x)f(x)

g(x)
− V̂ )2

Then 99% confidence interval for V is V̂ ± 2.58σ̂/
√
n

Importance sampling is a variance reduction technique that can be used

in the Monte Carlo method. The idea behind importance sampling is that

certain values of the input random variables in a simulation have more impact

on the parameter being estimated than others. If these ”important” values are

emphasized by sampling more frequently, then the estimator variance can be

reduced. Hence, the basic methodology in importance sampling is to choose

a distribution which ”encourages” the important values. This use of ”biased”

distributions will result in a biased estimator if it is applied directly in the

simulation. However, the simulation outputs are weighted to correct for the use

of the biased distribution, and this ensures that the new importance sampling

estimator is unbiased. The weight is given by the likelihood ratio, that is, the

RadonNikodym derivative of the true underlying distribution with respect to

the biased simulation distribution.
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3.6 Method review

In the following studies, Markov chain Monte Carlo method will be applied

several times on different problems occurred due to the complexity of the

models. In the distribution selection section, Gibbs sampler is embedded of

Metropolis-Hastings algorithm for the purpose of simulation of all competing

distributions which are not standard distributions. Importance sampling is

implemented also in this section in order to solve the complex integrals of

the marginal distributions of the Bayes factors. In the Bayesian inference

of generalized Poisson distribution section, simulation of generalized Poisson

distribution is carried out through Gibbs plus Metropolis-Hastings algorithm.

The posterior distributions of parameters of generalized Poisson distribution

are also calculated by numerical approach of importance sampling.
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Chapter 4

Bayesian model selection of Poisson and

related models without covariates

4.1 Poisson and related distributions

Poisson related distributions are developed based on the fundamental Pois-

son distribution. The distribution with more parameters extends the flexibility

of modeling count data. However, more parameters means more complex the

distribution is. That costs unnecessarily effort of fitting the distribution and

losing the accuracy when the data actually is only from the simple distribu-

tion with fewer parameters. To avoid the problem of over fitting and to select

the appropriate distribution for the count data, here, we propose the Bayesian

method of distribution selection in Poisson related distributions.

The probability mass function of zero-inflated generalized Poisson distribution

is:

f(y|α, φ, λ) = Pr(N = y) = φ× I[y=0] + (1− φ)× (1 + αy)y−1

y!

(λe−αλ)
y

eλ
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where y = 0,1,2,..., (1− eλ)−1 < φ < 1, 0 < λ, 0 ≤ α < 1/λ

In the zero-inflated generalized Poisson (ZIGP) distribution, the term φ

plays the role of a zero-inflation factor, α controls the dispersion factor. Ob-

viously, when α = 0, the ZIGP distribution reduces to zero-inflated Poisson

(ZIP) distribution with parameters φ and λ. When φ = 0, the ZIGP distribu-

tion reduces to generalized Poisson (GP) distribution with parameters α and

λ. When α = 0 and φ = 0, the ZIGP distribution reduces to Poisson (Poi)

distribution with the parameter λ.

Reduced distributions:

When α = 0, ZIGP reduces to ZIP distribution:

f(y|φ, λ) = φ I[y=0] + (1− φ)
λy

y!eλ

When φ = 0, ZIGP reduces to GP distribution:

f(y|α, λ) =
(1 + αy)y−1(λe−αλ)

y

y!eλ

When α = 0 and φ = 0, ZIGP reduces to Poisson distribution:

f(y|λ) =
λy

y!eλ

Among all models, there is a common parameter λ. Nevertheless, it needs

to be cautious about the meaning of the parameter of the same symbol that

is not necessarily same throughout the nested distributions. For instance, the

39



parameter λ is present in all distributions as a common parameter, but the

meaning of it is different in each distribution. Within Poisson distribution, it

is same as the value of mean and variance. But, in the other distributions, it

does not indicate the mean of distribution any longer. Actually, the meaning

of the parameter is changing among these distributions.

4.2 Model selection with conditionally uniform priors

Likelihoods of distributions over (φ, α, λ):

LZIGP(φ, α, λ) =
n∏
i=1

f(yi|φ, α, λ)

= [φ+ (1− φ)e−λ]n0 [(1− φ)e−λ]n−n0λse−sαλ
n∏
i=1

(1 + αyi)
yi−1

yi!

LZIP(φ, λ) =
n∏
i=1

f(yi|φ, λ) = [φ+ (1− φ)e−λ]n0 [(1− φ)e−λ]n−n0
λs∏n
i=1 yi!

LGP(α, λ) =
n∏
i=1

f(yi|α, λ) = (λe−αλ)se−λn
n∏
i=1

(1 + αyi)
yi−1

yi!

LPoi(λ) =
n∏
i=1

f(yi|λ) =
λse−λn∏n
i=1 yi!

The Bayesian analysis requires the prior information on parameters in dis-

tributions, and the results somewhat depend on the prior distribution assump-

tion. If there is previous knowledge about the parameters, it is helpful to use

the informative priors. Non-informative priors have been widely used espe-

cially when there is no prior knowledge on parameters. Here, because of lack

of sufficient prior information, conditionally uniform priors are considered for
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candidate models. For Poisson distribution, the Jeffreys prior for λ is used.

For parameters of other distributions, the uniform priors are considered. These

selected priors are listed in the following table.

Table 4.1: Conditionally uniform priors for model selection

Poisson GP

π(λ) ∝ 1√
λ

0 < λ

π(λ) ∝ 1√
λ

α|λ ∼ Uniform(0, λ−1)

π(α, λ) ∝
√
λ

0 ≤ α < 1/λ, 0 < λ

ZIP ZIGP

π(λ) ∝ 1√
λ

η|λ ∼ Uniform(0, 1)

π(η, λ) ∝ 1√
λ

0 < η < 1, 0 < λ

π(λ) ∝ 1√
λ

η|λ ∼ Uniform(0, 1)

α|λ ∼ Uniform(0, λ−1)

π(η, α, λ) ∝
√
λ

0 < η < 1, 0 ≤ α < 1/λ, 0 < λ

In the Conditionally uniform priors, η is a reparameterization of φ by η =

(1−φ)(1−e−λ). Jeffreys prior for λ is not a proper prior, but other parameters

are proper priors given λ.

The priors of zero-inflated generalized Poisson distribution have been used

in Angers and Biswas (2003). The prior of λ that π(λ) ∝ 1√
λ

is Jeffreys
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prior for Poisson distribution which is developed from the square root of the

determinant of the Fisher information matrix.

First, we make some notation for the simplification of the next calculations.

Let n denote the number of observations in the data, n0 be the number of zeros

of the response variable Y , and s be the sum of the observed values of count

Y that is s =
∑n

i=1 yi.

Marginal likelihood is defined as

mi = P (y|Mi) =

∫
P (y|Mi, ~θ)P (~θ)d~θ

where ~θ is the vector of parameters in model Mi.

Due to the complexity of integration in computation of marginal likelihood,

a transformation of parameter α is made by letting θ = αλ. Then the range of

the parameter θ is 0 < θ < 1. Then the marginal likelihoods of Poisson family

distributions are as follows.

mZIGP =
n0!(n− n0)!

(n+ 1)!
∏n

i=1 yi!

∞∫
0

1∫
0

λn−0.5 e−sθ

(eλ − 1)n−n0

n∏
i=1

(λ+ θyi)
yi−1dθdλ

mZIP =
n0!(n− n0)!

(n+ 1)!
∏n

i=1 yi!

∞∫
0

λs−0.5

(eλ − 1)n−n0
dλ

mGP =
1∏n

i=1 yi!

∞∫
0

1∫
0

λn−0.5e−sθ−nλ
n∏
i=1

(λ+ θyi)
yi−1dθdλ

mPoi =
n−(s+0.5)Γ(s+ 0.5)∏n

i=1 yi!
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These integrals are too complex to simplify to a analytical solution except

Poisson distribution. However, the complex integral is approachable via the

application of numerical method which is called importance sampling method.

For the implementation of importance sampling, the quality of the process

relies on the choice of importance sampling density. To cover the whole do-

main of parameters and make it as close to the integrand as possible, the

following distributions are selected as the importance sampling densities for

the calculation of marginal likelihoods.

The importance sampling densities:

θ ∼ U(0, 1)

h(λ) =
1

c
, where λ ∈ (0,∞)

hZIGP(θ, λ) = h(θ)h(λ) =
1

c

hZIP(λ) = h(λ) =
1

c

These densities have the same range of parameters as the marginal integrals

and they are standard distributions which are straightforward to simulate.

Because the integrands in the marginal integrals are changing over different

data, it is difficult to detect the shape of the integrand so the flat density is

suitable to approach the sampling. The importance sampling estimate of one

integral
∫
f(x)dx given the importance density h(x) is

∫
f(x)dx ≈ 1

m

m∑
i=1

f(xi)

h(xi)
=

c

m

m∑
i=1

f(xi) for large m

43



It is based on central limit theory that the approximation requires a large

number of simulated values of variable X to converge to the target integral

by the law of large numbers. The approximation of the marginal likelihoods

based on importance sampling densities above are:

mZIGP ≈ n0!(n− n0)!

(n+ 1)!
∏n

i=1 yi!

c

m

m∑
j=1

λn−0.5
j

e−sθj

(eλj − 1)n−n0

n∏
i=1

(λj + θjyi)
yi−1

mZIP ≈ n0!(n− n0)!

(n+ 1)!
∏n

i=1 yi!

c

m

m∑
j=1

λs−0.5
j

(eλj − 1)n−n0

mGP ≈ 1∏n
i=1 yi!

c

m

m∑
j=1

λn−0.5
j e−sθj−nλj

n∏
i=1

(λj + θjyi)
yi−1

where the subscript j represents the jth step in the simulation. λj and θj

are the jth simulated values on the jth step. yi is the ith observation of

response variable Y . By applying importance sampling approach, the complex

integrals are turned into simple average math problem. The difficulty here is

the programming complexity, and there is loop-in-loop calculation caused by

the production part
∏n

i=1 (λj + θjyi)
yi−1 sitting in the summation on j.

The posterior probability of each distribution given data y is then computed

over the marginal likelihoods

P (Mi|y) =
P (y|Mi)
n∑
i=1

P (y|Mi)
=

mi
n∑
i=1

mi

where Mi is one of the competitive ZIGP, ZIP, GP, and Poisson distributions,

and the prior probability of each distribution is assumed to be equal. mi is
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the approximated marginal likelihood corresponding to the distribution Mi.

The largest value of the posterior probability implies the best choice among

the competitive distributions, and the sum of posterior probabilities of all

competitive distributions equals one. However, the large posterior probability,

ie. close to one, does not mean the appropriateness of the distribution, since

it is only considered with the other given distributions based on the prior

knowledge.

4.3 Simulation of data from model

Except Poisson distribution, the other distributions are not simple standard

distributions that can be directly simulated from any package of software. The

cumulative distribution function of a discrete distribution is easy to obtain by

the sum of probability mass function,

F (y) =

y∑
i=0

f(i)

In the quantile method(or inverse distribution transform method), we use

the quantile function QY of the random variable Y such that QY (p) is the pth

quantile value of Y . It is associated with the cumulative distribution function

F as follows

QY (FY (a)) = a, FY (QY (p)) = p

The cumulative distribution function is in the range of [0, 1], we generate

a uniform random number U ∼ Uniform(0, 1) and feed it as the argument to
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quantile function QY (U). Then, the function QY (U) is same as the variable

Y following the same cumulative distribution function.

Pr(QY (U) ≤ y) = Pr(FY (QY (U)) ≤ FY (y)) = Pr(U ≤ FY (y)) = FY (y)

To generate the random variable with these discrete distributions, we can

apply the uniform distribution to find the corresponding quantile value of the

desired distribution.

The process of simulation

1. fit the distribution with the initial values of parameters

2. initiate the start state y = 0

3. draw a random value u from uniform distribution U(0, 1)

4. accept the draw according to the probability F (Y = y)

5. If u ≤ F (Y = y), accepted and return the value of y

6. Else, let y = y + 1, repeat step 3 and 4

This process is to simulate one possible value from the distribution, in

order to simulate more than one value, run the same process multiple times

to obtain the desired number of simulated values.
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4.4 Simulation results using conditionally uniform pri-

ors

The simulation analysis of comparative distributions is studied for the dis-

tribution selection with conditionally uniform priors. Different values of pa-

rameters of each distribution are defined for simulation analysis and 100 data

points are randomly simulated from each defined distribution. Posterior prob-

ability of all candidate distributions are calculated over the simulated data

using the conditionally uniform prior.

The flat densities λ ∼ Uniform(0, 15) and θ ∼ Uniform(0, 1) are selected

as importance sampling densities in comparing distributions in Poisson family.

They are working well on approaching the marginal likelihoods of posterior

probability with just 2000 samples from importance sampling densities.

The overall posterior probability of each comparative distribution is con-

cluded from 100 iterations of simulation analysis over 100 simulated data sets

from the same distribution. The results of 100 iterations include the mean of

posterior probability and variance of posterior probability over 100 simulated

data.

First, Poisson model is studied based on simulation analysis of the posterior

probability of comparative models using conditionally uniform priors. The

simulation results are given in table 4.2. The first column of the table gives

the information of Poisson model parameter, where α and φ are set to be zero

because they are parameters of other models. From the outcome. it is seen

that the method is able to find the true model, Poisson distribution, for even
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small values of parameter λ. The probability of choosing the true model is

very high even when λ is small.

Table 4.2: Posterior probability of models using conditionally uniform priors
(α, φ, λ) P̄ (ZIGP |y) P̄ (ZIP |y) P̄ (GP |y) P̄ (Poi|y) SD[P (ZIGP |y)] SD[P (ZIP |y)] SD[P (GP |y)] SD[P (Poi|y)]

(0,0,1) 0.067038 0.195052 0.077599 0.66031 0.094287 0.087121 0.060059 0.142795

(0,0,2) 0.030922 0.147421 0.092679 0.728978 0.0542 0.115232 0.084049 0.152204

(0,0,3) 0.017801 0.08989 0.08799 0.80432 0.068511 0.078741 0.070929 0.134994

(0,0,4) 0.009425 0.055265 0.1218 0.813509 0.014067 0.061589 0.133794 0.159872

(0,0,5) 0.004727 0.03015 0.110382 0.854742 0.010115 0.021689 0.122598 0.132939

True model is Poisson distribution determined by λ. Each row contains posterior probabilities based on 100

simulations from a model defined by parameters given in the first column.

Next, generalized Poisson model is studied from simulation analysis using

conditionally uniform priors, for these cases, parameter φ is always zero. Since

the GP model parameter α is limited by the λ in the form of α < 1/λ, the

values of parameter α are studied depending on the value of parameter λ.

Basically, four different parameter values of α are studied for each given value

of λ. The results of simulated data are given in table 4.3, and from the results,

posterior probability works well on selecting GP model even for small value

of α. The probability of choosing true model is high except the case of small

values of both α and λ that is (α = 0.2, λ = 1).

Zero-inflated Poisson model is also tested through the simulation process

using conditionally uniform priors. The model parameter φ is studied for

values ranged from 0.1 to 0.8. The results from simulation analysis in ta-

ble 4.4 indicate that the posterior probability always has high probability of

ZIP model when the parameter λ is larger than two. When λ is small, the
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Table 4.3: Posterior probability of models using conditionally uniform priors
(α, φ, λ) P̄ (ZIGP |y) P̄ (ZIP |y) P̄ (GP |y) P̄ (Poi|y) SD[P (ZIGP |y)] SD[P (ZIP |y)] SD[P (GP |y)] SD[P (Poi|y)]

(0.2,0,1) 0.247998 0.220556 0.389476 0.14197 0.179483 0.224408 0.202353 0.197698

(0.3,0,1) 0.320756 0.076561 0.590581 0.012102 0.131026 0.143602 0.157846 0.047159

(0.5,0,1) 0.353015 8.08E-05 0.646905 1.24E-08 0.130814 0.000448 0.130946 8.99E-08

(0.8,0,1) 0.377618 3.22E-36 0.622382 7.01E-60 0.179864 3.20E-35 0.179864 7.01E-59

(0.1,0,2) 0.143031 0.104033 0.621241 0.131695 0.085484 0.140927 0.213711 0.178933

(0.2,0,2) 0.209497 0.000281 0.790217 6.12E-06 0.144472 0.001757 0.144763 5.18E-05

(0.3,0,2) 0.216771 1.19E-15 0.783229 6.40E-21 0.160625 1.19E-14 0.160625 6.40E-20

(0.4,0,2) 0.195514 5.05E-66 0.804486 2.79E-101 0.09874 5.05E-65 0.09874 2.79E-100

(0.06,0,3) 0.089688 0.063248 0.624388 0.222676 0.098413 0.141266 0.288686 0.270051

(0.1,0,3) 0.111022 0.00392 0.877043 0.008015 0.096974 0.016265 0.101772 0.028958

(0.2,0,3) 0.131328 1.82E-21 0.868672 3.92E-34 0.117304 1.82E-20 0.117304 3.83E-33

(0.3,0,3) 0.137257 0 0.862743 0 0.153767 0 0.153767 0

(0.05,0,4) 0.060195 0.029542 0.745033 0.165229 0.07431 0.099143 0.264632 0.246322

(0.1,0,4) 0.070906 7.04E-07 0.929041 5.17E-05 0.063566 6.29E-06 0.063525 0.000512

(0.15,0,4) 0.085839 8.82E-28 0.914161 1.36E-28 0.132745 7.54E-27 0.132745 1.36E-27

(0.2,0,4) 0.063084 8.72E-153 0.936916 1.58E-158 0.049834 8.72E-152 0.049834 1.58E-157

(0.04,0,5) 0.032403 0.013482 0.776426 0.177688 0.064211 0.038852 0.259957 0.247574

(0.08,0,5) 0.03428 1.05E-05 0.964735 0.000975 0.032556 0.000103 0.033291 0.009682

(0.1,0,5) 0.046172 5.63E-14 0.953828 5.87E-12 0.065131 5.60E-13 0.065131 5.87E-11

(0.15,0,5) 0.040123 1.59E-116 0.959877 9.66E-111 0.04758 1.59E-115 0.04758 9.66E-110

True model is generalized Poisson distribution determined by λ and α. Each row contains posterior proba-

bilities based on 100 simulations from a model defined by parameters given in the first column.
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posterior probability prefer ZIP model when the model parameter φ is larger

than 0.2, otherwise the preference of posterior probability tends to vary be-

tween ZIP and Poisson model for small φ.

Table 4.4: Posterior probability of models using conditionally uniform priors
(α, φ, λ) P̄ (ZIGP |y) P̄ (ZIP |y) P̄ (GP |y) P̄ (Poi|y) V ar[P (ZIGP |y)] V ar[P (ZIP |y)] V ar[P (GP |y)] V ar[P (Poi|y)]

(0,0.1,1) 0.082236 0.217873 0.138614 0.561277 0.094289 0.108284 0.110117 0.202956

(0,0.2,1) 0.107777 0.317948 0.189809 0.384465 0.076689 0.184424 0.112745 0.246518

(0,0.5,1) 0.171548 0.537395 0.198211 0.092847 0.079088 0.204824 0.130097 0.150571

(0,0.8,1) 0.215555 0.472999 0.251621 0.059824 0.080208 0.194515 0.145345 0.124713

(0,0.1,2) 0.066435 0.372138 0.17795 0.383477 0.058589 0.241688 0.15529 0.271284

(0,0.2,2) 0.119115 0.585676 0.183726 0.111484 0.075643 0.253878 0.181019 0.169726

(0,0.5,2) 0.174026 0.797662 0.028294 1.71E-05 0.117632 0.171977 0.061875 8.19E-05

(0,0.8,2) 0.237883 0.713738 0.048377 1.86E-06 0.11183 0.167815 0.07017 1.21E-05

(0,0.1,3) 0.075748 0.594525 0.121042 0.208686 0.056656 0.298791 0.152541 0.262756

(0,0.2,3) 0.124213 0.8473 0.026973 0.001514 0.086474 0.136152 0.071252 0.004766

(0,0.5,3) 0.167577 0.831854 0.000568 6.51E-13 0.136797 0.138703 0.003621 5.56E-12

(0,0.8,3) 0.248959 0.734501 0.01654 1.14E-12 0.15278 0.186885 0.069469 1.13E-11

(0,0.1,4) 0.124645 0.765782 0.058782 0.050791 0.114179 0.245411 0.126876 0.142152

(0,0.2,4) 0.167475 0.829575 0.002936 1.48E-05 0.161519 0.168109 0.014387 0.000133

(0,0.5,4) 0.150368 0.849631 1.23E-06 1.31E-23 0.127526 0.12753 7.85E-06 9.41E-23

(0,0.8,4) 0.226854 0.772745 0.000401 1.42E-23 0.151529 0.152113 0.001422 1.18E-22

(0,0.1,5) 0.121404 0.85038 0.007079 0.021138 0.142444 0.170352 0.025924 0.093463

(0,0.2,5) 0.138268 0.86173 2.55E-06 1.14E-08 0.1254 0.125401 2.44E-05 9.15E-08

(0,0.5,5) 0.151525 0.848475 7.18E-11 1.29E-33 0.124996 0.124996 3.57E-10 1.24E-32

(0,0.8,5) 0.221124 0.778747 0.000129 4.03E-24 0.149818 0.149943 0.000678 4.03E-23

True model is zero-inflated Poisson distribution determined by λ and φ. Each row contains posterior

probabilities based on 100 simulations from a model defined by parameters given in the first column.

In the end, the full model zero-inflated generalized Poisson model is con-

sidered in simulation analysis using conditionally uniform priors. Simulation

study of ZIGP model is showed in the following tables 4.5, 4.6, 4.7. The re-
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sulst show our method is able to find true model when λ ≥ 3 even when model

paramters α and φ are both small. When λ = 1, our method is in favor of GP

model when zero-inflated parameter φ is small at 0.1 , and it finds ZIP model

better when φ is increased to 0.5 and α is smaller than 0.3, otherwise ZIGP,

ZIP and GP models all are candidate models but ZIGP has larger probability

of selection. For λ = 2, GP model has large probability when α and φ are

all close to 0. When φ increases but α is still small, the probability of ZIP is

larger compared with other models.

These simulation results demonstrate our method successfully chooses the

correct distribution every time when λ is larger than 2, even if the values

of distribution parameters are quite small. When λ is small, the shape of

these distributions are similar to each other as the distribution parameters

are close to zero. It is because Bayesian method automatically includes the

penalty of complexity of model, so it will choose simpler distribution when

comparative distributions are similar to each other, in this case, the parameters

are close to zero when λ is small. Therefore posterior probability tends to prefer

the distribution with less parameters when the difference between competing

distributions is not great. Meanwhile these distributions stay away from each

other even for small values of parameters when λ is large.
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Table 4.5:
Posterior probability of models using conditionally uniform priors:
λ = 1

(α, φ, λ) P̄ (ZIGP |y) P̄ (ZIP |y) P̄ (GP |y) P̄ (Poi|y) SD[P (ZIGP |y)] SD[P (ZIP |y)] SD[P (GP |y)] SD[P (Poi|y)]

(0.2,0.1,1) 0.263724 0.242179 0.426081 0.068015 0.136111 0.210464 0.168771 0.135549

(0.3,0.1,1) 0.366172 0.121541 0.510512 0.001775 0.123177 0.205803 0.205144 0.008749

(0.4,0.1,1) 0.397287 0.039518 0.563088 0.000108 0.136981 0.115414 0.1731 0.001021

(0.5,0.1,1) 0.428239 0.011019 0.560742 3.58E-10 0.151344 0.064013 0.169855 2.10E-09

(0.6,0.1,1) 0.447374 9.10E-07 0.552625 1.70E-23 0.168485 6.93E-06 0.168487 1.59E-22

(0.7,0.1,1) 0.466866 4.05E-11 0.533134 2.92E-33 0.198102 4.04E-10 0.198102 2.92E-32

(0.8,0.1,1) 0.427839 9.75E-29 0.572161 5.48E-61 0.154458 9.63E-28 0.154458 5.48E-60

(0.2,0.5,1) 0.320538 0.447504 0.23093 0.001029 0.148777 0.295002 0.199787 0.005119

(0.3,0.5,1) 0.434403 0.272507 0.292361 0.000729 0.146926 0.284255 0.203278 0.007271

(0.4,0.5,1) 0.572598 0.115986 0.311414 1.80E-06 0.175997 0.191489 0.203445 1.80E-05

(0.5,0.5,1) 0.60588 0.025784 0.368335 3.57E-14 0.185414 0.098235 0.200011 2.45E-13

(0.6,0.5,1) 0.629396 0.011259 0.359346 1.21E-20 0.195046 0.057445 0.205967 9.09E-20

(0.7,0.5,1) 0.670187 0.000153 0.32966 2.39E-17 0.193218 0.000984 0.193307 2.39E-16

(0.8,0.5,1) 0.646627 1.26E-06 0.353371 1.84E-38 0.219336 1.26E-05 0.219337 1.84E-37

(0.2,0.8,1) 0.30394 0.425318 0.257005 0.013737 0.105552 0.2031 0.151442 0.052541

(0.3,0.8,1) 0.334276 0.430333 0.232116 0.003275 0.132242 0.265407 0.18101 0.023452

(0.4,0.8,1) 0.431189 0.280043 0.287461 0.001307 0.149034 0.253937 0.197462 0.012938

(0.5,0.8,1) 0.521717 0.175605 0.302676 2.90E-06 0.156695 0.223965 0.185452 2.56E-05

(0.6,0.8,1) 0.543618 0.116726 0.33965 6.47E-06 0.196078 0.220348 0.217984 6.37E-05

(0.7,0.8,1) 0.632781 0.042544 0.324675 2.38E-11 0.196053 0.126126 0.201634 2.15E-10

(0.8,0.8,1) 0.636544 0.019238 0.344219 4.08E-15 0.201465 0.096324 0.202508 3.53E-14

True model is zero-inflated generalized Poisson distribution determined by λ,α and φ. Each row contains

posterior probabilities based on 100 simulations from a model defined by parameters given in the first

column.
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Table 4.6:
Posterior probability of models using conditionally uniform priors:
λ = 2, 3

(α, φ, λ) P̄ (ZIGP |y) P̄ (ZIP |y) P̄ (GP |y) P̄ (Poi|y) SD[P (ZIGP |y)] SD[P (ZIP |y)] SD[P (GP |y)] SD[P (Poi|y)]

(0.1,0.1,2) 0.255944 0.193998 0.529915 0.020143 0.134921 0.237401 0.253665 0.077564

(0.2,0.1,2) 0.406849 0.002096 0.591055 1.02E-09 0.25888 0.01838 0.262653 5.80E-09

(0.4,0.1,2) 0.411213 5.86E-61 0.588787 1.09E-125 0.264091 5.86E-60 0.264091 1.09E-124

(0.1,0.5,2) 0.478536 0.455196 0.066268 4.17E-10 0.271912 0.330622 0.116753 3.90E-09

(0.2,0.5,2) 0.884601 0.04039 0.07501 1.93E-21 0.150848 0.107653 0.130106 1.91E-20

(0.4,0.5,2) 0.923785 1.55E-18 0.076215 4.73E-91 0.124866 1.55E-17 0.124866 4.73E-90

(0.1,0.8,2) 0.386627 0.496111 0.117262 1.43E-07 0.176701 0.281005 0.1619 1.43E-06

(0.2,0.8,2) 0.627821 0.272305 0.099875 8.75E-13 0.254647 0.30383 0.125651 8.26E-12

(0.4,0.8,2) 0.90202 0.001343 0.096636 4.64E-45 0.125721 0.007451 0.126485 4.64E-44

(0.1,0.1,3) 0.609116 0.040794 0.35009 5.21E-07 0.281417 0.114313 0.303098 2.89E-06

(0.2,0.1,3) 0.615664 3.29E-16 0.384336 4.68E-36 0.312669 3.29E-15 0.312669 4.68E-35

(0.3,0.1,3) 0.676429 0 0.323571 0 0.320074 0 0.320074 0

(0.1,0.5,3) 0.825189 0.173851 0.00096 1.36E-24 0.26282 0.263347 0.007418 1.33E-23

(0.2,0.5,3) 0.999402 1.75E-09 0.000598 2.99E-73 0.002626 1.46E-08 0.002626 2.99E-72

(0.3,0.5,3) 0.998972 5.09E-131 0.001028 0 0.004525 5.09E-130 0.004525 0

(0.1,0.8,3) 0.621163 0.363059 0.015777 2.06E-16 0.281714 0.292762 0.051075 1.94E-15

(0.2,0.8,3) 0.949123 0.033324 0.017553 2.35E-36 0.113257 0.102189 0.059418 2.35E-35

(0.3,0.8,3) 0.978115 4.83E-07 0.021884 5.57E-65 0.054332 4.83E-06 0.054332 5.57E-64

True model is zero-inflated generalized Poisson distribution determined by λ,α and φ. Each row contains

posterior probabilities based on 100 simulations from a model defined by parameters given in the first

column.
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Table 4.7:
Posterior probability of models using conditionally uniform priors:
λ = 4, 5

(α, φ, λ) P̄ (ZIGP |y) P̄ (ZIP |y) P̄ (GP |y) P̄ (Poi|y) SD[P (ZIGP |y)] SD[P (ZIP |y)] SD[P (GP |y)] SD[P (Poi|y)]

(0.05,0.1,4) 0.635631 0.25506 0.108375 0.000934 0.284433 0.28054 0.20028 0.006501

(0.1,0.1,4) 0.899197 0.001043 0.099761 3.04E-15 0.19218 0.007196 0.192591 1.99E-14

(0.2,0.1,4) 0.908301 7.79E-161 0.091699 0 0.197559 7.79E-160 0.197559 0

(0.05,0.5,4) 0.664946 0.335053 5.60E-07 9.82E-29 0.303643 0.303644 1.87E-06 9.82E-28

(0.1,0.5,4) 0.982244 0.017755 1.28E-06 5.95E-58 0.08589 0.085891 7.82E-06 4.42E-57

(0.2,0.5,4) 0.999997 4.21E-35 3.22E-06 7.00E-216 2.31E-05 4.21E-34 2.31E-05 0

(0.05,0.8,4) 0.401427 0.598121 0.000452 4.42E-28 0.241045 0.241852 0.002498 3.60E-27

(0.1,0.8,4) 0.88189 0.115154 0.002956 2.01E-46 0.17289 0.17392 0.017866 1.34E-45

(0.2,0.8,4) 0.99867 6.83E-09 0.00133 4.97E-111 0.005957 4.18E-08 0.005957 4.93E-110

(0.05,0.1,5) 0.8978 0.069579 0.03262 3.72E-08 0.201158 0.171714 0.124322 3.29E-07

(0.1,0.1,5) 0.968515 1.58E-12 0.031485 5.15E-21 0.120996 1.55E-11 0.120996 5.15E-20

(0.15,0.1,5) 0.956565 4.46E-108 0.043435 1.66E-152 0.157401 4.46E-107 0.157401 1.66E-151

(0.05,0.5,5) 0.762383 0.237617 3.67E-10 2.20E-56 0.279402 0.279402 2.03E-09 1.94E-55

(0.1,0.5,5) 0.999999 1.10E-06 5.50E-11 1.69E-101 5.62E-06 5.61E-06 1.95E-10 1.69E-100

(0.15,0.5,5) 1 1.09E-55 3.81E-10 0 2.37E-09 1.09E-54 2.39E-09 0

(0.05,0.8,5) 0.565335 0.434644 2.09E-05 2.17E-32 0.300953 0.300973 8.29E-05 2.17E-31

(0.1,0.8,5) 0.951723 0.048261 1.63E-05 1.27E-67 0.124136 0.124142 8.72E-05 1.24E-66

(0.15,0.8,5) 0.999973 1.65E-07 2.72E-05 2.32E-161 0.000119 1.61E-06 0.000119 1.63E-160

True model is zero-inflated generalized Poisson distribution determined by λ,α and φ. Each row contains

posterior probabilities based on 100 simulations from a model defined by parameters given in the first

column.
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4.5 Derivation of Jeffreys priors

As before, the notation is defined that the number of observations in the

data n, the number of zeros n0, and the sum of the observations s. As the

reparameterization in Gupta et al. (1996), let η = (1 − φ)(1 − e−λ). Then

the parameters η and λ are orthogonal, and the prior density of η is uniform

on (0,1) independently of λ. P (Y = 0) = 1 − η and P (Y > 0) = η. The

likelihoods of models are then the following.

LZIGP(η, α, λ) =
n∏
i=1

f(yi|η, α, λ)

= (1− η)n0ηn−n0
e−sαλ

(eλ − 1)n−n0
λs

n∏
i=1

(1 + αyi)
yi−1

yi!

LZIP(η, λ) =
n∏
i=1

f(yi|η, λ) = (1− η)n0ηn−n0
1

(eλ − 1)n−n0

λs∏n
i=1 yi!

LGP(α, λ) =
n∏
i=1

f(yi|α, λ) = (λe−αλ)se−λn
n∏
i=1

(1 + αyi)
yi−1

yi!

LPoi(λ) =
n∏
i=1

f(yi|λ) =
λse−λn∏n
i=1 yi!

Only ZIGP and ZIP distributions contain the reparameterized parameter,

and GP and Poi likelihoods are the same as before. Then the fact that the

parameters η and other parameters are orthogonal is proved in the following

Fisher information matrix.
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The Fisher information for ZIP distribution over parameters (η, λ) is

IZIP(η, λ) =


−E[ d

2

dη2
lnLZIP(η, λ)] −E[ d2

dηdλ
lnLZIP(η, λ)]

−E[ d2

dηdλ
lnLZIP(η, λ)] −E[ d

2

dλ2
lnLZIP(η, λ)]



=


1

η(1−η)
0

0 η(1−e−λ−λe−λ)
λ(1−e−λ)2


The Jeffreys prior of ZIP distribution derived from Fisher information is

πZIP
J (η, λ) ∝

√
1− e−λ − λe−λ

(1− η)(1− e−λ)2λ

where 0 < η < 1, 0 < λ.

the Fisher information of ZIP distribution is diagonal that the parameter η

is orthogonal with λ. It is easy to see that the Jeffreys prior of λ in ZIP is

different with Poisson distribution πPoi
J (λ) ∝ 1√

λ
, and the relationship is

πZIP
J (λ) ∝ KZIP

J (λ)πPoi
J (λ)

where KZIP
J (λ) =

√
1− e−λ − λe−λ

1− e−λ

After the orthogonalization, the Jeffreys prior for the common parameter λ
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is different in ZIP and Poisson distribution which is quite rare. Bayarri et al.

(2008) discusses that the λ also enters into the definition of the nested model,

through η = 1− e−λ. There is no clear guidance of which of the Jeffreys priors

is the choice, in view of the indeterminacy issue in the Jeffreys priors.

Based on the fact that the Jeffreys prior of λ in ZIP is the Jeffreys prior

in Poisson multiplying a function of λ which is KZIP
J (λ), even though it is not

clear which Jeffreys prior should be the one used for the common parameter

λ, Bayarri et al. (2008) demonstrated Jeffreys prior of λ in ZIP is near the

Jeffreys prior of λ in Poisson and is approximating it as λ goes to infinity.

The ratio of these two Jeffreys priors, KZIP(λ), is strictly increasing over the

domain and bounded in a small range close to 1. By applying L’Hopital’s rule

to evaluate limits involving indeterminate forms.

lim
λ→0

1− e−λ − λe−λ

(1− e−λ)2
= lim

λ→0

λ

2(1− e−λ)
= lim

λ→0

1

2e−λ
=

1

2

lim
λ→∞

1− e−λ − λe−λ

(1− e−λ)2
= 1

Thus, the boundary of KZIP
J (λ) is

√
1

2
<

√
1− e−λ − λe−λ

1− e−λ
< 1

These two Jeffreys priors for the common parameter λ are quite close, therefore

we can take the Jeffreys prior of λ in Poisson model as an approximate Jeffreys

prior of the common parameter λ in ZIP model for comparing these two models

by means of Bayes factor. In this way, the approximate Jeffreys prior of ZIGP
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(A-J prior) can be written as

πZIP
A−J(η, λ) ∝ KZIP

A−J(η, λ)πPoi
J (λ)

where KZIP
A−J(η, λ) =

1√
1− η

Jeffreys had recommended to use Jeffreys prior for the common parameter

(λ), and proper prior for the parameter orthogonal with the remaining param-

eters. For the parameter η, because it is orthogonal to the common parameter

λ, it is reasonable to propose a proper prior for the extra parameter. Modifica-

tion of Jeffreys prior of η is considered by using uniform prior over its domain

(0, 1).

π(η|λ) = I(0<η<1)

Modified Jeffreys prior of ZIP becomes

πZIP
M−J(λ) ∝ KZIP

M−J(λ)πPoi
J (λ)

where KZIP
M−J(λ) = I(0<η<1)

Thus, the ratio K of Jeffreys priors in ZIP over Poisson being considered

is summarized as follows.

KZIP
l (η, λ) =



1√
1−η

√
1−e−λ−λe−λ

1−e−λ l = J

1√
1−η l = A-J

I(0<η<1) l = M-J
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where l denotes the choice among defined priors for ZIP model. The Jeffreys

prior for ZIP is now

πZIP
l (η, λ) ∝ KZIP

l (η, λ)πPoi
J (λ)

where 0 < η < 1, 0 < λ. l = J,A-J,M-J.

Generalized Poisson distribution is another distribution developed on the

basis of Poisson distribution with one more parameter to adjust the variance

independently with the mean. To find the Jeffreys prior in GP distribution,

the Fisher information for GP distribution is

I(α, λ) =


−E[ d

2

dα2 lnLGP(α, λ)] −E[ d2

dαdλ
lnLGP(α, λ)]

−E[ d2

dαdλ
lnLGP(α, λ)] −E[ d

2

dλ2
lnLGP(α, λ)]



=


nλ2(λ+2)

(1+2α)(1−αλ)
nλ

1−αλ

nλ
1−αλ

n
λ(1−αλ)


The Jeffreys prior for GP distribution is

πGP
J (α, λ) ∝

√
λ√

(1 + 2α)(1− αλ)

where 0 ≤ α < 1/λ, 0 < λ
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As the Jeffreys prior in ZIP, the relationship of GP and Poisson distribution

is studied and expressed in the following.

πGP
J (α, λ) ∝ KGP

J (α, λ)πPoi
J (λ)

where KGP
J (α, λ) ∝ λ√

(1 + 2α)(1− αλ)

The parameter α is related to the parameter λ, and the normalizing con-

stant is important to Bayes factor, because the normalizing constant can be

treated as the multiplicative constant to the Jeffreys prior in Poisson distribu-

tion. By transformation of x = α − 2−λ
4λ

, the integral of the conditional prior

turns out to be

1/λ∫
0

λ√
(1 + 2α)(1− αλ)

dα =

√
8λ3/2

λ+ 2
[arcsin(1)− arcsin(

λ− 2

λ+ 2
)]

The limit of the integral is easy to get as λ goes to zero, but the other limit

as λ goes to infinity contains indeterminate forms. Apply L’Hopital’s rule,

limλ→∞

√
8λ3/2[arcsin(1)− arcsin(λ−2

λ+2
)]

λ+ 2
= 8

limλ→0

√
8λ3/2[arcsin(1)− arcsin(λ−2

λ+2
)]

λ+ 2
= 0

The range of the normalizing constant of the conditional prior of param-

eter α given λ is from 0 to 8. The function KGP
J as a function of lambda is

integrable, but the normalizing constant is not equal to one, and so we can-

not consider KGP
J (α) as a conditional density of alpha given lambda. The
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normalizing constant also depends on lambda, and has a range that includes

the interval (0,8). This makes the Jeffreys prior not appropriate for testing

hypothesis, as it would cause an a priori bias in the Bayes factor. One way

to overcome this and still use the Jeffreys prior is to use partial Bayes factors

instead such as Intrinsic or Fractional Bayes factors.

Next, the ZIGP Jeffreys prior is going to be developed and the relationship

between Jeffreys priors of ZIGP and GP is studied. It shows that the relation-

ship of ZIGP and GP is similar with the one of ZIP and Poisson, and we can

rewrite the Jeffreys prior of ZIGP in the same way as ZIP to reduce the indeter-

minacy caused by the arbitrary normalizing constant. Let η = (1−φ)(1−e−λ),

then the parameter η is orthogonal with (α, λ). The Fisher information for

ZIGP distribution is

I(η, α, λ) =

 −E[ d
2

dη2
lnLZIGP(η,α,λ)] −E[ d2

dηdα
lnLZIGP(η,α,λ)] −E[ d2

dηdλ
lnLZIGP(η,α,λ)]

−E[ d2

dηdα
lnLZIGP(η,α,λ)] −E[ d

2

dα2
lnLZIGP(η,α,λ)] −E[ d2

dαdλ
lnLZIGP(η,α,λ)]

−E[ d2

dηdλ
lnLZIGP(η,α,λ)] −E[ d2

dαdλ
lnLZIGP(η,α,λ)] −E[ d

2

dλ2
lnLZIGP(η,α,λ)]


=

 n
(1−η)η 0 0

0
nηλ2(λ+2)

(1−e−λ)(1+2α)(1−αλ)
nηλ

(1−e−λ)(1−αλ)

0 nηλ

(1−e−λ)(1−αλ)
nηeλ(eλ+αλ2−λ−1)

λ(1−αλ)(eλ−1)2


From Fisher information matrix, since the Fisher information cells of pa-

rameter η with α, λ are all zeros, the parameter η is orthogonal with the other

two parameters (η, α).
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The Jeffreys prior for ZIGP distribution is

πZIGP
J (η, α, λ) ∝

√
ηλ(2eλ − λ2 − 2λ− 2)e2λ

(1− η)(1 + 2α)(1− αλ)(eλ − 1)3

where 0 < η < 1, 0 ≤ α < 1/λ, 0 < λ

Since the Jeffreys prior for GP distribution is

πGP
J (α, λ) ∝

√
λ√

(1 + 2α)(1− αλ)

where 0 ≤ α < 1/λ, 0 < λ

The ratio of Jeffreys priors ZIGP over GP is

πZIGP
J (η, α, λ)

πGP
J (α, λ)

∝

√
η

1− η
(2eλ − λ2 − 2λ− 2)e2λ

(eλ − 1)3

Since the parameter η is orthogonal to the common parameters α, λ of

ZIGP and GP model, the ratio of Jeffreys prior of the joint parameters α, λ

is a function of λ, KZIGP
J (α, λ) =

√
(2eλ−λ2−2λ−2)e2λ

(eλ−1)3
. Its range determined by

the domain of λ is 1√
3
< K(λ) <

√
2. Since K(λ) is bounded in a small range

around one, Jeffreys prior of α, λ in ZIGP model can be approximated by the

Jeffreys prior of GP model. This approximate Jeffreys prior can be written as

πZIGP
A−J (η, α, λ) ∝ KZIGP

A−J (η, α, λ)πGP
J (α, λ)

where KZIGP
A−J (η, α, λ) ∝

√
η

1− η

Due to the orthogonality of the parameter η with the other parameters (α, λ),
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a reasonable choice of proper prior on η is a uniform prior such that

πZIGP(η|α, λ) = I(0<η<1), 0 < η < 1

Therefore modified Jeffreys prior for parameters (η, α, λ) in ZIGP distri-

bution can be defined as

πZIGP
M−J(η, α, λ) ∝ KZIGP

M−J (η, α, λ)πGP
J (α, λ)

where KZIGP
M−J (η, α, λ) ∝ I(0<η<1)

Thus, the ratio K of Jeffreys priors in ZIGP over GP can be defined from

the following choices.

KZIGP
l (η, α, λ) =



√
η

1−η
(2eλ−λ2−2λ−2)e2λ

(eλ−1)3
l = J√

η
1−η l = A-J

I(0<η<1) l = M-J

where l denotes the choice among defined priors for ZIP model. The Jeffreys

prior for ZIP is now

πZIGP
l (η, α, λ) ∝ KZIGP

l (η, α, λ)πGP
J (α, λ)

where 0 < η < 1, 0 ≤ α < 1/λ, 0 < λ. l = J,A-J,M-J.

The modified Jeffreys priors (M-J priors) are considered in next section for

the model selection of Poisson-related models. Jeffreys prior is not necessarily
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Table 4.8: Jeffreys priors for distribution selection

Poisson

πPoi
J (λ) = 1√

λ

0 < λ

ZIP

πZIP
J (η, λ) = KZIP

l (η, λ)πPoiJ (λ)

0 ≤ η < 1, 0 < λ

KZIP
l (η, λ) =


1√
1−η

√
1−e−λ−λe−λ

1−e−λ l = J
1√
1−η l = A-J

I(0<η<1) l = M-J

GP

πGP
J (α, λ) = KGP

J (α, λ)πPoi
J (λ)

0 ≤ α < 1/λ, 0 < λ

KGP
J (α, λ) = λ√

(1+2α)(1−αλ)

ZIGP

πZIGP
J (η, α, λ) = KZIGP

1 (η, α, λ)πGPJ (α, λ)

0 < η < 1, 0 ≤ α < 1/λ, 0 < λ

KZIGP
l (η, α, λ) =


√

η
1−η

(2eλ−λ2−2λ−2)e2λ

(eλ−1)3
l = J√

η
1−η l = A-J

I(0<η<1) l = M-J
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proper priors, and the undefined normalizing constant does cause uncertainty

in Bayes factor ratio. Among four Poisson family models, the priors of the

common parameter are improper, but the normalizing constant cancels out in

Bayes factor, such that the parameter λ through all Poisson family models.

However, the Jeffreys prior for α is improper prior. The arbitrary constant in

the prior of uncommon parameter makes indeterminacy issues in calculation

Bayes factor, due to it only presents in either denominator or numerator of

Bayes factor. For such cases, when the Jeffreys priors of uncommon parameters

are improper, Bayes factor is biased in testing but several adjusted method

have been developed for such cases. These methods are called fractional Bayes

factor and Intrinsic Bayes Factors.

4.6 Model selection using modified Jeffreys priors

The modified Jeffreys priors (M-J priors) are selected for model selection

using posterior probability. Among all these models, the Jeffreys prior con-

taining parameter α in GP distribution is improper prior. The arbitrary nor-

malizing constant on parameter α given λ cause the indeterminacy trouble in

Bayes factor. Thus, the fractional Bayes factor method is applied in order to

train the Jeffreys prior into proper prior with partial data.

Fractional Bayes factor is in the form of

BF f
01(x) =

q0(b, x)

q1(b, x)
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where πi(θi) = cihi(θi), ci is the unspecified constant, i represents the ith

model.

qi(b, x) =

∫
πi(θi)fi(x|θi)dθi∫
πi(θi)fi(x|θi)bdθi

=

∫
hi(θi)fi(x|θi)dθi∫
hi(θi)fi(x|θi)bdθi

here b is the power and its value is b = n1

n
and n1 is partial of sample n that

n = n1 + n2. Let mb
i =

∫
πi(θi)fi(x|θi)bdθi, so qi(b, x) = mi

mbi

BF f
01(x) =

q0(b, x)

q1(b, x)
=
m0m

b
1

m1mb
0

Now the unspecified constants cancel out.

The posterior probability of each distribution given data y is then computed

over the marginal likelihoods

P (Mi|y) =
P (y|Mi)
n∑
i=1

P (y|Mi)
=

mi
n∑
i=1

mi

where Mi is one of the competitive ZIGP, ZIP, GP, and Poisson distributions,

and the prior probability of each distribution is assumed to be equal. mi is

the approximated marginal likelihood corresponding to the distribution Mi.

The largest value of the posterior probability implies the best choice among

the competitive distributions, and the sum of posterior probabilities of all

competitive distributions equals one. However, the large posterior probability,

ie. close to one, does not mean the appropriateness of the distribution, since

it is only considered with the other given distributions based on the prior
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knowledge.

For Multiple model comparison, test is implemented by approximate pos-

terior probability of model Mi.

P (Mi|y) =
mi
n∑
i=1

mi

=
BFi,Poi

4∑
i=1

BFi,Poi

≈
mi

mib
mPoi

mPoi
b

+ mGP

mGP
b

+ mZIP

mZIP
b

+ mZIGP

mZIGP
b

where i represents one of comparative distributions, i ∈ {ZIGP,ZIP,GP,Poi}.

Bayes factors of posterior probability are approached by fractional Bayes fac-

tors.

Marginal likelihood is defined as

mi = P (y|Mi) =

∫
P (y|Mi, θ)P (θ)dθ

where θ is the vector of parameters in model Mi.

Due to the complexity of integration in computation of marginal likelihood,

a transformation of parameter α is made by letting θ = αλ. Then the range of

the parameter θ is 0 < θ < 1. Then the marginal likelihoods of Poisson family

distributions are as follows.

67



mZIGP
M-J =

n0!(n− n0)!

(n+ 1)!
∏n

i=1 yi!

∞∫
0

1∫
0

λn−0.5 e−sθ

(eλ − 1)n−n0

n∏
i=1

(λ+ θyi)
yi−1dθdλ

mZIP
M-J =

n0!(n− n0)!

(n+ 1)!
∏n

i=1 yi!

∞∫
0

λs−0.5

(eλ − 1)n−n0
dλ

mGP
J =

1∏n
i=1 yi!

∞∫
0

1∫
0

λn−0.5e−sθ−nλ
n∏
i=1

(λ+ θyi)
yi−1dθdλ

mPoi
J =

n−(s+0.5)Γ(s+ 0.5)∏n
i=1 yi!

These integrals are too complex to simplify to a analytical solution except

Poisson distribution. Importance sampling is utilized to approach the value of

the integrals via numerical iteration. For the implementation of importance

sampling, the quality of the process relies on the choice of importance sampling

density. To cover the whole domain of parameters and make it as close to the

integrand as possible, the following distributions are selected as the importance

sampling densities for the calculation of marginal likelihoods.

The importance sampling densities:

θ ∼ U(0, 1)

h(λ) =
1

c
, where λ ∈ (0,∞)

hZIGP(θ, λ) = h(θ)h(λ) =
1

c

hZIP(λ) = h(λ) =
1

c
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These densities have the same range of parameters as the marginal integrals

and they are standard distributions which are straightforward to simulate.

Because the integrands in the marginal integrals are changing over different

data, it is difficult to detect the shape of the integrand so the flat density is

suitable to approach the sampling. The importance sampling estimate of one

integral
∫
f(x)dx given the importance density h(x) is

∫
f(x)dx ≈ 1

m

m∑
i=1

f(xi)

h(xi)
=

c

m

m∑
i=1

f(xi) for large m

The approximation requires a large number of simulated values of variableX to

converge to the target integral by the law of large numbers. The approximation

of the marginal likelihoods based on importance sampling densities above are:

mZIGP
M-J ≈

n0!(n− n0)!

(n+ 1)!
∏n

i=1 yi!

c

m

m∑
j=1

λn−0.5
j

e−sθj

(eλj − 1)n−n0

n∏
i=1

(λj + θjyi)
yi−1

mZIP
M-J ≈

n0!(n− n0)!

(n+ 1)!
∏n

i=1 yi!

c

m

m∑
j=1

λs−0.5
j

(eλj − 1)n−n0

mGP
J ≈

1∏n
i=1 yi!

c

m

m∑
j=1

λn−0.5
j e−sθj−nλj

n∏
i=1

(λj + θjyi)
yi−1

where the subscript j represents the jth step in the simulation. λj and θj

are the jth simulated values on the jth step. yi is the ith observation of

response variable Y . By applying importance sampling approach, the complex

integrals are turned into simple average math problem. The difficulty here is

the programming complexity, and there is loop-in-loop calculation caused by

the production part
∏n

i=1 (λj + θjyi)
yi−1 sitting in the summation on j.
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4.7 Simulation results using modified Jeffreys priors

The simulation is implemented in the same way as the distribution se-

lection method using conditionally uniform prior. For the same settings of

distribution parameters, 100 dataset are simulated for each defined distribu-

tion and the data size is 100. Importance sampling is also applied to help

computation of integration of marginal likelihoods with the importance sam-

pling densities λ ∼ Uniform(0, 15) and θ ∼ Uniform(0, 1). The convergence

of the approach reaches target value within 2000 sampling size. Overall results

from 100 iterations of each distribution are concluded in terms of mean and

variance of posterior probability.

First, Poisson model is studied based on simulation for the posterior prob-

ability of comparative models. The simulation results are given in table 4.9.

The first column of the table gives the information of ZIGP model parameters,

when α and φ are set to be zero, it reduces to Poisson distribution. From the

outcome. it is seen that the method is able to find the right model, that is

Poisson distribution, for even small values of parameter λ. The error variance

is quite small which means the estimation of posterior probability is accurate

and stable enough.

Generalized Poisson model and zero-inflated Poisson model are studied

over simulation analysis using modified Jeffreys priors. The corresponding

results are given in table 4.10 and 4.11. Simulation results of zero-inflated

generalized Poisson model are listed in the following tables 4.12, 4.13, 4.14.

With multiple settings of parameters in each model, the simulation results
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Table 4.9: Posterior probability of models using modified Jeffreys prior
(α, φ, λ) P̄ (ZIGP |y) P̄ (ZIP |y) P̄ (GP |y) P̄ (Poi|y) SD[P (ZIGP |y)] SD[P (ZIP |y)] SD[P (GP |y)] SD[P (Poi|y)]

(0,0,1) 0.074304 0.212412 0.098991 0.614293 0.09057 0.089097 0.074236 0.139961

(0,0,2) 0.047534 0.219295 0.11377 0.619402 0.066584 0.134178 0.088859 0.160124

(0,0,3) 0.032512 0.183361 0.102157 0.68197 0.084191 0.107151 0.06624 0.139076

(0,0,4) 0.025196 0.135783 0.14177 0.69725 0.030302 0.086485 0.12312 0.161289

(0,0,5) 0.014391 0.089281 0.131848 0.76448 0.021213 0.045868 0.113048 0.1316

True model is Poisson distribution determined by λ. Each row contains posterior probabilities based on 100

simulations from a model defined by parameters given in the first column.

give very reasonable probability of models. The probability of choosing the

true model is increasing when the model parameter becomes larger. For gen-

eralized Poisson model, posterior probability works well even for small values

of α, for example, posterior probability of GP is largest at (α=0.2,φ=0,λ=1).

As for zero-inflated Poisson model, our method is in favor of simple Poisson

model when parameters are close to 0, for instance, P (Poi|y) = 0.539175

when (α=0,φ=0.1,λ=1), but it works well on ZIP model, when λ > 1. For

zero-inflate generalized Poisson model, the outcome displays our method can

find the true model except small λ. These three models, ZIGP, ZIP and GP

model, are close to each other when λ = 1. GP model is a good choice when

zero-inflated parameter φ ≤ 0.1 and λ ≤ 2.

The values of posterior probabilities of distributions using modified Jeffreys

prior are similar to the results for conditionally uniform prior. For small value

of λ, the method choose the simpler distribution if competing distributions are

similar (distribution parameters are close to zero), otherwise posterior proba-

bility select the right one from which the tested data is simulated. For large
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Table 4.10: Posterior probability of models using modified Jeffreys prior
(α, φ, λ) P̄ (ZIGP |y) P̄ (ZIP |y) P̄ (GP |y) P̄ (Poi|y) SD[P (ZIGP |y)] SD[P (ZIP |y)] SD[P (GP |y)] SD[P (Poi|y)]

(0.2,0,1) 0.24363 0.231976 0.392459 0.131934 0.159125 0.220824 0.183115 0.179561

(0.3,0,1) 0.310726 0.083862 0.594553 0.010859 0.128795 0.145802 0.164995 0.042365

(0.5,0,1) 0.334554 0.000162 0.665283 2.29E-08 0.117391 0.000963 0.117767 1.78E-07

(0.8,0,1) 0.342977 3.90E-35 0.657023 3.45E-58 0.159974 3.88E-34 0.159974 3.45E-57

(0.1,0,2) 0.185847 0.140972 0.563272 0.109909 0.104477 0.17148 0.209871 0.150335

(0.2,0,2) 0.270507 0.000582 0.728904 6.76E-06 0.147847 0.003682 0.148584 5.59E-05

(0.3,0,2) 0.279067 5.62E-15 0.720933 1.99E-20 0.16129 5.62E-14 0.16129 1.99E-19

(0.4,0,2) 0.259647 3.82E-64 0.740353 1.60E-98 0.112204 3.82E-63 0.112204 1.60E-97

(0.06,0,3) 0.1514 0.098084 0.571349 0.179167 0.120192 0.157844 0.266485 0.224591

(0.1,0,3) 0.194434 0.007295 0.790961 0.00731 0.120488 0.027137 0.127048 0.026889

(0.2,0,3) 0.220339 1.11E-20 0.779661 2.76E-33 0.127252 1.11E-19 0.127252 2.66E-32

(0.3,0,3) 0.230834 0 0.769166 0 0.171585 0 0.171585 0

(0.05,0,4) 0.121616 0.052008 0.687535 0.138841 0.093524 0.116751 0.243192 0.214385

(0.1,0,4) 0.157729 2.77E-06 0.842208 6.01E-05 0.096987 2.45E-05 0.096923 0.000596

(0.15,0,4) 0.168621 8.63E-27 0.831379 5.23E-28 0.154066 7.33E-26 0.154066 5.23E-27

(0.2,0,4) 0.146708 1.87E-147 0.853292 7.00E-154 0.079378 1.87E-146 0.079378 7.00E-153

(0.04,0,5) 0.080011 0.029462 0.741094 0.149433 0.083617 0.06209 0.239376 0.212773

(0.08,0,5) 0.09386 2.97E-05 0.905354 0.000756 0.064901 0.000291 0.064679 0.00748

(0.1,0,5) 0.11488 4.31E-13 0.88512 1.02E-11 0.104944 4.29E-12 0.104944 1.02E-10

(0.15,0,5) 0.108208 5.35E-112 0.891792 2.53E-107 0.08292 5.35E-111 0.08292 2.53E-106

True model is generalized Poisson distribution determined by λ and α. Each row contains posterior proba-

bilities based on 100 simulations from a model defined by parameters given in the first column.
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Table 4.11: Posterior probability of models using modified Jeffreys prior
(α, φ, λ) P̄ (ZIGP |y) P̄ (ZIP |y) P̄ (GP |y) P̄ (Poi|y) SD[P (ZIGP |y)] SD[P (ZIP |y)] SD[P (GP |y)] SD[P (Poi|y)]

(0,0.1,1) 0.082496 0.221708 0.156622 0.539175 0.080745 0.101607 0.114373 0.194785

(0,0.2,1) 0.102064 0.325431 0.197164 0.375341 0.069117 0.191402 0.119799 0.234203

(0,0.5,1) 0.137178 0.538709 0.218351 0.105762 0.057369 0.205473 0.138573 0.160393

(0,0.8,1) 0.149464 0.499155 0.279496 0.071885 0.057069 0.196467 0.162555 0.134855

(0,0.1,2) 0.076089 0.414904 0.179442 0.329565 0.06386 0.227757 0.148923 0.245086

(0,0.2,2) 0.122289 0.608157 0.174845 0.094709 0.07115 0.237728 0.169771 0.145439

(0,0.5,2) 0.156028 0.814449 0.029499 2.45E-05 0.101609 0.160343 0.068408 0.000122

(0,0.8,2) 0.191275 0.753252 0.05547 3.68E-06 0.086495 0.148051 0.076973 2.47E-05

(0,0.1,3) 0.087236 0.651268 0.100689 0.160806 0.059413 0.25838 0.126073 0.220567

(0,0.2,3) 0.12501 0.852452 0.021456 0.001082 0.082606 0.122228 0.061823 0.003096

(0,0.5,3) 0.146184 0.85307 0.000746 1.30E-12 0.11239 0.11519 0.005664 1.10E-11

(0,0.8,3) 0.201157 0.777472 0.021371 3.06E-12 0.127884 0.17921 0.076154 3.03E-11

(0,0.1,4) 0.133983 0.78824 0.042028 0.035749 0.11276 0.204547 0.100762 0.110156

(0,0.2,4) 0.159598 0.838757 0.001636 8.85E-06 0.14257 0.146565 0.007181 7.74E-05

(0,0.5,4) 0.131593 0.868405 1.21E-06 5.01E-23 0.102057 0.102061 7.88E-06 3.52E-22

(0,0.8,4) 0.178861 0.820303 0.000837 7.87E-23 0.137927 0.139225 0.003389 6.36E-22

(0,0.1,5) 0.13409 0.849001 0.00489 0.012018 0.133754 0.14697 0.016825 0.060356

(0,0.2,5) 0.14313 0.856869 1.44E-06 7.89E-09 0.123196 0.123197 1.35E-05 6.10E-08

(0,0.5,5) 0.136275 0.863725 1.29E-10 8.93E-33 0.107583 0.107583 7.00E-10 8.55E-32

(0,0.8,5) 0.168056 0.831687 0.000257 2.07E-23 0.126782 0.127202 0.001034 2.07E-22

True model is zero-inflated Poisson distribution determined by λ and φ. Each row contains posterior

probabilities based on 100 simulations from a model defined by parameters given in the first column.
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Table 4.12:
Posterior probability of distributions using modified Jeffreys prior:
λ = 1

(α, φ, λ) P̄ (ZIGP |y) P̄ (ZIP |y) P̄ (GP |y) P̄ (Poi|y) SD[P (ZIGP |y)] SD[P (ZIP |y)] SD[P (GP |y)] SD[P (Poi|y)]

(0.2,0.1,1) 0.247358 0.253994 0.430546 0.068103 0.116364 0.213641 0.181875 0.131791

(0.3,0.1,1) 0.34537 0.132971 0.519845 0.001813 0.116221 0.215886 0.206182 0.008696

(0.4,0.1,1) 0.376597 0.044331 0.578916 0.000156 0.126981 0.129112 0.168538 0.001507

(0.5,0.1,1) 0.390124 0.013471 0.596405 6.27E-10 0.14551 0.074729 0.169641 3.44E-09

(0.6,0.1,1) 0.414193 1.98E-06 0.585805 1.04E-22 0.180502 1.57E-05 0.180506 9.88E-22

(0.7,0.1,1) 0.410015 9.76E-11 0.589985 2.63E-32 0.189258 9.71E-10 0.189258 2.63E-31

(0.8,0.1,1) 0.380722 4.94E-28 0.619278 2.74E-59 0.157058 4.85E-27 0.157058 2.74E-58

(0.2,0.5,1) 0.261838 0.472583 0.264309 0.001271 0.114115 0.292338 0.222823 0.006124

(0.3,0.5,1) 0.355478 0.298704 0.344953 0.000864 0.123204 0.29369 0.23777 0.008608

(0.4,0.5,1) 0.473918 0.133203 0.392877 2.02E-06 0.189188 0.211332 0.246859 2.02E-05

(0.5,0.5,1) 0.509385 0.030806 0.45981 1.17E-13 0.207635 0.109327 0.232238 8.00E-13

(0.6,0.5,1) 0.518404 0.013176 0.468419 5.92E-20 0.224792 0.063724 0.241054 4.45E-19

(0.7,0.5,1) 0.53504 0.000222 0.464737 7.43E-17 0.236807 0.001399 0.236926 7.43E-16

(0.8,0.5,1) 0.540638 1.89E-06 0.45936 3.69E-37 0.24214 1.89E-05 0.242142 3.69E-36

(0.2,0.8,1) 0.21901 0.457961 0.303873 0.019156 0.084148 0.212493 0.187471 0.069381

(0.3,0.8,1) 0.252743 0.46315 0.278976 0.005131 0.11402 0.270776 0.215096 0.036872

(0.4,0.8,1) 0.328385 0.314909 0.354283 0.002423 0.133597 0.269478 0.23923 0.023955

(0.5,0.8,1) 0.396905 0.206113 0.396975 7.73E-06 0.165008 0.252103 0.24879 6.69E-05

(0.6,0.8,1) 0.408287 0.13241 0.459294 8.61E-06 0.202708 0.24076 0.269577 8.40E-05

(0.7,0.8,1) 0.484702 0.052059 0.463239 7.21E-11 0.218266 0.145798 0.245623 6.37E-10

(0.8,0.8,1) 0.503577 0.02432 0.472102 2.64E-14 0.247136 0.112712 0.258991 2.34E-13

True model is zero-inflated generalized Poisson distribution determined by λ, α and φ. Each row contains

posterior probabilities based on 100 simulations from a model defined by parameters given in the first

column.
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Table 4.13:
Posterior probability of distributions using modified Jeffreys prior:
λ = 2, 3

(α, φ, λ) P̄ (ZIGP |y) P̄ (ZIP |y) P̄ (GP |y) P̄ (Poi|y) SD[P (ZIGP |y)] SD[P (ZIP |y)] SD[P (GP |y)] SD[P (Poi|y)]

(0.1,0.1,2) 0.285824 0.230492 0.467207 0.016477 0.143532 0.247498 0.247491 0.063551

(0.2,0.1,2) 0.440179 0.00199 0.557831 1.68E-09 0.241001 0.016277 0.244548 9.41E-09

(0.4,0.1,2) 0.431407 3.42E-59 0.568593 4.19E-122 0.256501 3.42E-58 0.256501 4.19E-121

(0.1,0.5,2) 0.445116 0.483716 0.071168 7.44E-10 0.26105 0.327863 0.122651 6.84E-09

(0.2,0.5,2) 0.85074 0.051155 0.098105 8.92E-21 0.185317 0.127039 0.166585 8.81E-20

(0.4,0.5,2) 0.894757 3.97E-18 0.105243 1.76E-88 0.160103 3.97E-17 0.160103 1.76E-87

(0.1,0.8,2) 0.314743 0.543415 0.141841 2.63E-07 0.154399 0.286071 0.185474 2.63E-06

(0.2,0.8,2) 0.547238 0.308563 0.144198 2.84E-12 0.258646 0.323091 0.173699 2.67E-11

(0.4,0.8,2) 0.828534 0.002136 0.16933 1.60E-43 0.191413 0.011665 0.192691 1.60E-42

(0.1,0.1,3) 0.664637 0.044996 0.290366 4.61E-07 0.247879 0.118599 0.266179 2.81E-06

(0.2,0.1,3) 0.659074 8.38E-16 0.340926 2.62E-35 0.278333 8.38E-15 0.278333 2.62E-34

(0.3,0.1,3) 0.722038 0 0.277962 0 0.286159 0 0.286159 0

(0.1,0.5,3) 0.807374 0.191422 0.001204 5.63E-24 0.273803 0.274516 0.007964 5.45E-23

(0.2,0.5,3) 0.998965 4.27E-09 0.001035 3.84E-71 0.004539 3.64E-08 0.004539 3.84E-70

(0.3,0.5,3) 0.998589 1.04E-126 0.001411 0 0.005623 1.04E-125 0.005623 0

(0.1,0.8,3) 0.553642 0.421991 0.024367 7.48E-16 0.293929 0.311036 0.072372 7.03E-15

(0.2,0.8,3) 0.919619 0.045671 0.03471 3.51E-35 0.153856 0.129087 0.10046 3.51E-34

(0.3,0.8,3) 0.960863 9.63E-07 0.039136 7.63E-63 0.092282 9.63E-06 0.092282 7.63E-62

True model is zero-inflated generalized Poisson distribution determined by λ, α and φ. Each row contains

posterior probabilities based on 100 simulations from a model defined by parameters given in the first

column.
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Table 4.14:
Posterior probability of distributions using modified Jeffreys prior:
λ = 4, 5

(α, φ, λ) P̄ (ZIGP |y) P̄ (ZIP |y) P̄ (GP |y) P̄ (Poi|y) SD[P (ZIGP |y)] SD[P (ZIP |y)] SD[P (GP |y)] SD[P (Poi|y)]

(0.05,0.1,4) 0.660103 0.264998 0.074258 0.000641 0.270329 0.276982 0.15246 0.0049

(0.1,0.1,4) 0.924933 0.000976 0.074091 3.75E-15 0.152623 0.006608 0.152957 2.38E-14

(0.2,0.1,4) 0.925346 0 0.074654 0 0.170969 0 0.170969 0

(0.05,0.5,4) 0.622405 0.377594 1.31E-06 4.97E-28 0.310464 0.310466 5.05E-06 4.97E-27

(0.1,0.5,4) 0.978441 0.021557 2.21E-06 3.14E-56 0.093896 0.093896 1.24E-05 2.23E-55

(0.2,0.5,4) 0.99999 1.11E-33 9.81E-06 1.38E-209 6.46E-05 1.11E-32 6.46E-05 0

(0.05,0.8,4) 0.335219 0.663664 0.001117 3.85E-27 0.231041 0.233354 0.007431 3.12E-26

(0.1,0.8,4) 0.837603 0.155983 0.006413 6.34E-45 0.21197 0.214179 0.031655 4.11E-44

(0.2,0.8,4) 0.998229 2.53E-08 0.001771 1.38E-107 0.006535 1.68E-07 0.006535 1.37E-106

(0.05,0.1,5) 0.905786 0.070998 0.023216 2.65E-08 0.183761 0.168139 0.09362 2.25E-07

(0.1,0.1,5) 0.977959 3.80E-12 0.022041 9.54E-21 0.093249 3.73E-11 0.093249 9.54E-20

(0.15,0.1,5) 0.968101 1.39E-104 0.031899 1.91E-148 0.129963 1.39E-103 0.129963 1.91E-147

(0.05,0.5,5) 0.732945 0.267055 1.60E-09 8.92E-55 0.291737 0.291737 1.01E-08 7.81E-54

(0.1,0.5,5) 0.999998 1.96E-06 1.79E-10 1.32E-98 8.78E-06 8.78E-06 5.51E-10 1.32E-97

(0.15,0.5,5) 1 7.24E-54 8.33E-10 0 3.84E-09 7.24E-53 3.90E-09 0

(0.05,0.8,5) 0.493888 0.506068 4.41E-05 2.21E-31 0.306366 0.306406 0.00014 2.21E-30

(0.1,0.8,5) 0.93065 0.069195 0.000155 1.71E-65 0.161849 0.16191 0.001194 1.67E-64

(0.15,0.8,5) 0.999883 6.32E-07 0.000117 2.00E-156 0.000457 6.18E-06 0.000457 1.43E-155

True model is zero-inflated generalized Poisson distribution determined by λ, α and φ. Each row contains

posterior probabilities based on 100 simulations from a model defined by parameters given in the first

column.
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value of λ, posterior probability is still sensitive to small value of distribution

parameters. Conditionally uniform prior and modified Jeffreys prior both work

well, posterior probabilities do not differ much based on simulation study.

4.8 Model selection using approximate Jeffreys priors

The approximate Jeffreys priors (A-J priors) are used in posterior proba-

bility comparison for Poisson-related model selection. Still, the Jeffreys prior

containing parameter α in GP distribution is improper. The arbitrary nor-

malizing constant on parameter α given λ cause the indeterminacy trouble in

Bayes factor. Thus, the fractional Bayes factor method is applied in order to

train the Jeffreys prior into proper prior with partial data.

The posterior probability of model Mi which is approached by fractional

Bayes factor is

P (Mi|y) =
mi

4∑
i=1

mi

=
BFi,Poi

4∑
i=1

BFi,Poi

≈
mi

mib
mPoi

mPoi
b

+ mGP

mGP
b

+ mZIP

mZIP
b

+ mZIGP

mZIGP
b

where i represents one of comparative distributions, i ∈ {ZIGP,ZIP,GP,Poi}.

Bayes factors of posterior probability are approached by fractional Bayes fac-

tors.

Marginal likelihood is defined as

mi = P (y|Mi) =

∫
P (y|Mi, θ)P (θ)dθ
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where θ is the vector of parameters in model Mi.

Due to the complexity of integration in computation of marginal likelihood,

a transformation of parameter α is made by letting θ = αλ. Then the range of

the parameter θ is 0 < θ < 1. Then the marginal likelihoods of Poisson family

distributions are as follows.

mZIGP
A-J =

Γ(n0 + 0.5)Γ(n− n0 + 1.5)

Γ(n+ 2)
∏n

i=1 yi!

∞∫
0

1∫
0

λn−0.5 e−sθ

(eλ − 1)n−n0

n∏
i=1

(λ+ θyi)
yi−1dθdλ

mZIP
A-J =

Γ(n0 + 0.5)Γ(n− n0 + 1)

Γ(n+ 1.5)
∏n

i=1 yi!

∞∫
0

λs−0.5

(eλ − 1)n−n0
dλ

mGP
J =

1∏n
i=1 yi!

∞∫
0

1∫
0

λn−0.5e−sθ−nλ
n∏
i=1

(λ+ θyi)
yi−1dθdλ

mPoi
J =

n−(s+0.5)Γ(s+ 0.5)∏n
i=1 yi!

Importance sampling is utilized to approach the value of the integrals

via numerical iteration. Since the integrands of marginal likelihoods are not

changed, the same importance sampling densities are used for these approxi-

mate Jeffreys priors.
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The importance sampling densities:

θ ∼ U(0, 1)

h(λ) =
1

c
, where λ ∈ (0,∞)

hZIGP(θ, λ) = h(θ)h(λ) =
1

c

hZIP(λ) = h(λ) =
1

c

The approximation requires a large number of simulated values of variableX to

converge to the target integral by the law of large numbers. The approximation

of the marginal likelihoods based on importance sampling densities above are:

mZIGP
A-J ≈

Γ(n0 + 0.5)Γ(n− n0 + 1.5)

Γ(n+ 2)
∏n

i=1 yi!

c

m

m∑
j=1

λn−0.5
j

e−sθj

(eλj − 1)n−n0

n∏
i=1

(λj + θjyi)
yi−1

mZIP
A-J ≈

Γ(n0 + 0.5)Γ(n− n0 + 1)

Γ(n+ 1.5)
∏n

i=1 yi!

c

m

m∑
j=1

λs−0.5
j

(eλj − 1)n−n0

mGP
J ≈ 1∏n

i=1 yi!

c

m

m∑
j=1

λn−0.5
j e−sθj−nλj

n∏
i=1

(λj + θjyi)
yi−1

where the subscript j represents the jth step in the simulation. λj and θj are

the jth simulated values on the jth step. yi is the ith observation of response

variable Y .
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4.9 Simulation results using approximate Jeffreys pri-

ors

The simulation is implemented in the same way as the distribution selection

method using conditionally uniform priors and modified Jeffreys priors. For

the same settings of distribution parameters, 100 dataset are simulated for

each defined distribution and the data size is 100. Importance sampling is also

applied to help computation of integration of marginal likelihoods with the

importance sampling densities λ ∼ Uniform(0, 15) and θ ∼ Uniform(0, 1).

The convergence of the approach reaches target value within 2000 sampling

size. Overall results from 100 iterations of each distribution are concluded in

terms of mean and variance of posterior probability.

Table 4.15: Posterior probability of models using approximate Jeffreys prior
(α, φ, λ) P̄ (ZIGP |y) P̄ (ZIP |y) P̄ (GP |y) P̄ (Poi|y) SD[P (ZIGP |y)] SD[P (ZIP |y)] SD[P (GP |y)] SD[P (Poi|y)]

(0,0,1) 0.064398 0.206482 0.089659 0.639461 0.070849 0.087594 0.05933 0.1218

(0,0,2) 0.053969 0.2132 0.108763 0.624068 0.065363 0.10899 0.078755 0.145865

(0,0,3) 0.043927 0.26128 0.108749 0.586045 0.038803 0.142831 0.087767 0.161186

(0,0,4) 0.036825 0.254936 0.100155 0.608083 0.038364 0.13215 0.0778 0.150839

(0,0,5) 0.039392 0.229348 0.124529 0.606731 0.036021 0.075503 0.132268 0.135229

True model is Poisson distribution determined by λ. Each row contains posterior probabilities based on 100

simulations from a model defined by parameters given in the first column.

Generalized Poisson model and zero-inflated Poisson model are studied

over simulation analysis using approximate Jeffreys priors. The corresponding

results are given in table 4.16 and 4.17. Simulation results of zero-inflated

generalized Poisson model are listed in the following tables 4.18, 4.19, 4.20.

The probability of choosing the true model is increasing when the value of the
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model parameter increases. The values of posterior probabilities of distribu-

tions using approximate Jeffreys prior are similar to the results of conditionally

uniform prior and modified Jeffreys prior. For small value of λ, the method

choose the simpler distribution if competing distributions are similar (distri-

bution parameters are close to zero), otherwise posterior probability select

the right one from which the tested data is simulated. For large value of λ,

posterior probability is still sensitive to small value of distribution parameters.

These three types of priors perform equivalently well based on simulation study

and they are all good choices for Poisson-related model selection.
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Table 4.16: Posterior probability of models using approximate Jeffreys prior
(α, φ, λ) P̄ (ZIGP |y) P̄ (ZIP |y) P̄ (GP |y) P̄ (Poi|y) SD[P (ZIGP |y)] SD[P (ZIP |y)] SD[P (GP |y)] SD[P (Poi|y)]

(0.2,0,1) 0.217422 0.179535 0.476598 0.126444 0.104091 0.182529 0.199207 0.186184

(0.3,0,1) 0.276309 0.144817 0.565116 0.013758 0.120146 0.228058 0.215167 0.046109

(0.5,0,1) 0.350152 0.000439 0.649409 2.23E-09 0.151395 0.002716 0.1514 1.70E-08

(0.8,0,1) 0.345976 7.13E-39 0.654024 5.70E-78 0.150612 7.13E-38 0.150612 5.70E-77

(0.1,0,2) 0.21428 0.122555 0.525202 0.137963 0.141479 0.183483 0.243633 0.204064

(0.2,0,2) 0.298874 0.00113 0.699992 4.30E-06 0.151302 0.006626 0.152078 3.77E-05

(0.3,0,2) 0.298279 3.65E-18 0.701721 5.86E-26 0.133984 3.56E-17 0.133984 5.06E-25

(0.4,0,2) 0.307104 1.58E-53 0.692896 7.98E-71 0.15467 1.58E-52 0.15467 7.98E-70

(0.06,0,3) 0.221663 0.10053 0.524778 0.153029 0.170395 0.12651 0.214751 0.180977

(0.1,0,3) 0.265592 0.009953 0.718178 0.006276 0.142643 0.050792 0.157795 0.02916

(0.2,0,3) 0.287448 8.53E-25 0.712552 1.34E-30 0.145749 8.39E-24 0.145749 9.79E-30

(0.3,0,3) 0.284935 0 0.715065 0 0.144897 0 0.144897 0

(0.05,0,4) 0.234818 0.045781 0.633489 0.085912 0.114843 0.066996 0.173281 0.144747

(0.1,0,4) 0.264855 1.66E-06 0.735143 8.37E-07 0.112269 1.45E-05 0.112268 7.58E-06

(0.15,0,4) 0.315986 2.63E-27 0.684014 9.87E-33 0.181414 2.62E-26 0.181414 9.86E-32

(0.2,0,4) 0.314677 0 0.685323 0 0.148645 0 0.148645 0

(0.04,0,5) 0.21432 0.045398 0.618663 0.121619 0.093688 0.063714 0.173138 0.167225

(0.08,0,5) 0.281518 8.67E-07 0.718481 4.45E-07 0.112542 7.95E-06 0.112541 3.22E-06

(0.1,0,5) 0.262607 2.04E-15 0.737393 7.55E-15 0.078526 1.43E-14 0.078526 6.67E-14

(0.15,0,5) 0.287767 1.50E-107 0.712233 9.51E-112 0.122184 1.50E-106 0.122184 9.51E-111

True model is generalized Poisson distribution determined by λ and α. Each row contains posterior proba-

bilities based on 100 simulations from a model defined by parameters given in the first column.
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Table 4.17: Posterior probability of models using approximate Jeffreys prior
(α, φ, λ) P̄ (ZIGP |y) P̄ (ZIP |y) P̄ (GP |y) P̄ (Poi|y) SD[P (ZIGP |y)] SD[P (ZIP |y)] SD[P (GP |y)] SD[P (Poi|y)]

(0,0.1,1) 0.07514 0.248084 0.144089 0.532687 0.076888 0.150561 0.0897 0.197399

(0,0.2,1) 0.078481 0.298156 0.197617 0.425746 0.045394 0.162682 0.116361 0.213801

(0,0.5,1) 0.132795 0.530745 0.245054 0.091407 0.046931 0.200599 0.145372 0.148268

(0,0.8,1) 0.104082 0.528168 0.314177 0.053573 0.033782 0.197253 0.174184 0.130492

(0,0.1,2) 0.071851 0.416015 0.171186 0.340949 0.051903 0.239963 0.134931 0.239739

(0,0.2,2) 0.10797 0.646121 0.135759 0.11015 0.062382 0.239324 0.152266 0.164137

(0,0.5,2) 0.162994 0.790013 0.046978 1.50E-05 0.109035 0.19203 0.104561 8.79E-05

(0,0.8,2) 0.158494 0.762348 0.079158 3.87E-07 0.061395 0.156035 0.113594 1.67E-06

(0,0.1,3) 0.110426 0.657009 0.105574 0.12699 0.077885 0.234204 0.12418 0.195613

(0,0.2,3) 0.132989 0.845355 0.020814 0.000842 0.08918 0.148006 0.074233 0.005386

(0,0.5,3) 0.154303 0.845368 0.000329 4.06E-13 0.133119 0.133916 0.001407 3.69E-12

(0,0.8,3) 0.179152 0.783857 0.036991 3.99E-09 0.131352 0.194374 0.102432 3.95E-08

(0,0.1,4) 0.130112 0.810115 0.025575 0.034198 0.088554 0.150922 0.053192 0.092689

(0,0.2,4) 0.149374 0.850399 0.000226 8.90E-07 0.133352 0.133753 0.000772 4.32E-06

(0,0.5,4) 0.150614 0.849383 2.71E-06 6.21E-23 0.11748 0.117489 1.59E-05 5.00E-22

(0,0.8,4) 0.160643 0.837181 0.002176 8.45E-19 0.133667 0.137421 0.007676 8.45E-18

(0,0.1,5) 0.117311 0.869918 0.009092 0.003679 0.06972 0.1106 0.051478 0.029998

(0,0.2,5) 0.117447 0.882552 1.43E-06 4.06E-09 0.074566 0.074569 9.31E-06 3.67E-08

(0,0.5,5) 0.138213 0.861787 1.85E-09 1.05E-30 0.133627 0.133627 1.07E-08 1.04E-29

(0,0.8,5) 0.123355 0.876476 0.000169 7.32E-23 0.091941 0.092319 0.000886 7.32E-22

True model is zero-inflated Poisson distribution determined by λ and φ. Each row contains posterior

probabilities based on 100 simulations from a model defined by parameters given in the first column.
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Table 4.18:
Posterior probability of distributions using approximate Jeffreys
prior: λ = 1

(α, φ, λ) P̄ (ZIGP |y) P̄ (ZIP |y) P̄ (GP |y) P̄ (Poi|y) SD[P (ZIGP |y)] SD[P (ZIP |y)] SD[P (GP |y)] SD[P (Poi|y)]

(0.2,0.1,1) 0.224204 0.278074 0.422852 0.07487 0.108803 0.247579 0.213377 0.148125

(0.3,0.1,1) 0.305201 0.140731 0.547073 0.006995 0.107334 0.219081 0.203565 0.034205

(0.4,0.1,1) 0.369822 0.03144 0.598674 6.41E-05 0.156884 0.107344 0.195013 0.000405

(0.5,0.1,1) 0.369777 0.002767 0.627456 5.32E-10 0.143488 0.018651 0.148852 5.27E-09

(0.6,0.1,1) 0.348338 6.60E-05 0.651596 7.04E-15 0.143009 0.000656 0.143112 7.04E-14

(0.7,0.1,1) 0.337288 1.26E-14 0.662712 4.85E-27 0.161605 1.06E-13 0.161605 4.85E-26

(0.8,0.1,1) 0.346317 2.38E-29 0.653683 1.90E-72 0.151377 2.37E-28 0.151377 1.90E-71

(0.2,0.5,1) 0.260786 0.372321 0.365323 0.00157 0.0997 0.297266 0.249909 0.010012

(0.3,0.5,1) 0.34498 0.287154 0.367828 3.85E-05 0.144693 0.280781 0.247322 0.000353

(0.4,0.5,1) 0.416204 0.191622 0.392175 5.18E-09 0.15929 0.254156 0.263456 4.21E-08

(0.5,0.5,1) 0.414869 0.056874 0.528257 2.64E-09 0.206061 0.152379 0.25231 2.28E-08

(0.6,0.5,1) 0.517727 0.004597 0.477676 1.42E-15 0.234523 0.03212 0.239288 1.42E-14

(0.7,0.5,1) 0.496657 0.003172 0.500171 3.41E-25 0.245356 0.023956 0.249986 3.40E-24

(0.8,0.5,1) 0.497904 1.43E-09 0.502096 1.02E-29 0.238946 1.08E-08 0.238946 1.02E-28

(0.2,0.8,1) 0.162497 0.487158 0.344359 0.005986 0.064653 0.247705 0.223073 0.033934

(0.3,0.8,1) 0.216879 0.402664 0.376011 0.004446 0.113708 0.266009 0.248594 0.03357

(0.4,0.8,1) 0.245209 0.345906 0.405076 0.003809 0.113177 0.296739 0.271744 0.037135

(0.5,0.8,1) 0.315577 0.258042 0.42603 0.000352 0.174785 0.297207 0.287742 0.003516

(0.6,0.8,1) 0.332804 0.134217 0.532978 1.46E-06 0.214386 0.239525 0.293904 9.21E-06

(0.7,0.8,1) 0.44016 0.053106 0.506733 3.83E-07 0.246001 0.165514 0.272962 3.83E-06

(0.8,0.8,1) 0.408226 0.027511 0.564262 2.14E-10 0.234854 0.107285 0.253419 2.14E-09

True model is zero-inflated generalized Poisson distribution determined by λ, α and φ. Each row contains

posterior probabilities based on 100 simulations from a model defined by parameters given in the first

column.
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Table 4.19:
Posterior probability of distributions using approximate Jeffreys
prior: λ = 2, 3

(α, φ, λ) P̄ (ZIGP |y) P̄ (ZIP |y) P̄ (GP |y) P̄ (Poi|y) SD[P (ZIGP |y)] SD[P (ZIP |y)] SD[P (GP |y)] SD[P (Poi|y)]

(0.1,0.1,2) 0.256285 0.199196 0.525681 0.018838 0.112942 0.2596 0.249697 0.057879

(0.2,0.1,2) 0.451382 0.0031 0.545517 4.33E-07 0.221421 0.014831 0.226015 2.97E-06

(0.4,0.1,2) 0.449808 6.39E-71 0.550192 1.40E-121 0.235453 6.39E-70 0.235453 1.40E-120

(0.1,0.5,2) 0.447884 0.446292 0.105824 6.68E-09 0.215789 0.299886 0.156775 5.87E-08

(0.2,0.5,2) 0.868956 0.040503 0.090541 6.46E-22 0.181735 0.135071 0.147477 4.69E-21

(0.4,0.5,2) 0.900457 6.05E-27 0.099543 6.31E-100 0.165449 5.75E-26 0.165449 6.30E-99

(0.1,0.8,2) 0.277164 0.595478 0.127358 2.01E-09 0.155362 0.281429 0.191199 1.63E-08

(0.2,0.8,2) 0.540112 0.266831 0.193057 2.01E-09 0.252244 0.299619 0.210197 2.00E-08

(0.4,0.8,2) 0.735328 0.000674 0.263998 8.19E-43 0.245551 0.006741 0.245643 8.19E-42

(0.1,0.1,3) 0.647574 0.059964 0.292455 6.35E-06 0.248348 0.157055 0.259624 3.35E-05

(0.2,0.1,3) 0.722163 6.55E-13 0.277837 1.11E-27 0.25831 6.55E-12 0.25831 1.11E-26

(0.3,0.1,3) 0.759983 0 0.240017 0 0.241708 0 0.241708 0

(0.1,0.5,3) 0.846294 0.150751 0.002954 1.10E-27 0.229508 0.23083 0.016732 8.90E-27

(0.2,0.5,3) 0.998246 3.19E-11 0.001754 8.74E-73 0.007877 1.88E-10 0.007877 8.74E-72

(0.3,0.5,3) 0.998608 1.13E-99 0.001392 0 0.005403 1.13E-98 0.005403 0

(0.1,0.8,3) 0.539062 0.42673 0.034207 1.54E-20 0.299297 0.328114 0.084565 1.54E-19

(0.2,0.8,3) 0.928764 0.039575 0.031661 3.64E-39 0.145884 0.12472 0.087789 3.63E-38

(0.3,0.8,3) 0.980083 4.16E-14 0.019917 1.25E-124 0.055437 4.15E-13 0.055437 1.25E-123

True model is zero-inflated generalized Poisson distribution determined by λ, α and φ. Each row contains

posterior probabilities based on 100 simulations from a model defined by parameters given in the first

column.
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Table 4.20:
Posterior probability of distributions using approximate Jeffreys
prior: λ = 4, 5

(α, φ, λ) P̄ (ZIGP |y) P̄ (ZIP |y) P̄ (GP |y) P̄ (Poi|y) SD[P (ZIGP |y)] SD[P (ZIP |y)] SD[P (GP |y)] SD[P (Poi|y)]

(0.05,0.1,4) 0.696007 0.248439 0.055544 9.27E-06 0.250273 0.268376 0.121914 3.81E-05

(0.1,0.1,4) 0.928379 0.000149 0.071472 1.82E-15 0.142883 0.000949 0.142956 1.75E-14

(0.2,0.1,4) 0.92089 7.71E-130 0.07911 0 0.152697 7.60E-129 0.152697 0

(0.05,0.5,4) 0.610686 0.389304 9.91E-06 4.73E-35 0.31879 0.318802 8.57E-05 4.35E-34

(0.1,0.5,4) 0.987153 0.012846 1.61E-06 1.42E-53 0.060353 0.060353 8.88E-06 1.37E-52

(0.2,0.5,4) 0.999997 3.12E-57 2.53E-06 0 1.73E-05 3.12E-56 1.73E-05 0

(0.05,0.8,4) 0.34866 0.64413 0.00721 6.94E-21 0.273483 0.285459 0.047446 6.94E-20

(0.1,0.8,4) 0.750207 0.247154 0.002639 9.46E-40 0.300987 0.302772 0.012384 9.46E-39

(0.2,0.8,4) 0.995993 2.16E-09 0.004007 1.99E-124 0.020654 1.63E-08 0.020654 1.99E-123

(0.05,0.1,5) 0.912581 0.072478 0.014937 4.83E-06 0.172928 0.162418 0.072575 4.82E-05

(0.1,0.1,5) 0.996178 1.66E-11 0.003822 2.92E-26 0.014222 1.35E-10 0.014222 2.92E-25

(0.15,0.1,5) 0.985236 3.28E-102 0.014764 1.51E-144 0.073889 4.27E-101 0.073889 1.43E-143

(0.05,0.5,5) 0.727632 0.272368 1.96E-09 2.05E-51 0.287658 0.287658 1.72E-08 2.04E-50

(0.1,0.5,5) 0.999593 0.000407 3.27E-09 2.57E-92 0.004676 0.004676 1.77E-08 3.63E-91

(0.15,0.5,5) 1 3.59E-46 1.32E-09 0 1.11E-08 3.59E-45 1.11E-08 0

(0.05,0.8,5) 0.4415 0.558357 0.000142 6.68E-37 0.312248 0.312412 0.000684 6.68E-36

(0.1,0.8,5) 0.93437 0.065087 0.000544 4.48E-67 0.176442 0.176612 0.003255 6.34E-66

(0.15,0.8,5) 0.999598 6.29E-06 0.000396 6.58E-161 0.00263 6.16E-05 0.00263 6.53E-160

True model is zero-inflated generalized Poisson distribution determined by λ, α and φ. Each row contains

posterior probabilities based on 100 simulations from a model defined by parameters given in the first

column.
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4.10 Comparison of conditionally uniform prior, modi-

fied Jeffreys prior and approximate Jeffreys prior

The posterior probabilities using conditionally uniform priors with Bayes

factor, modified Jeffreys priors with Bayes factor, modified Jeffreys priors with

fractional Bayes factor approach, approximate Jeffreys priors with Bayes factor

and modified Jeffreys priors with fractional Bayes factor are plotted together

to compare the difference among these priors. The comparison of these three

types of prior for Poisson model is displayed on figure 4.1. There are multiple

plots on the figure, and each is the mean and standard deviation plot for

Poisson model of certain λ value which is denoted above each plot. It is easy

to see the posterior probability for Poisson model is always very high, thus

posterior probability is able to choose Poisson model no matter how small λ

is.

The difference among conditionally uniform priors, modified Jeffreys priors

and approximate Jeffreys priors for GP model is plotted on figure 4.2. Each

row represents a specific number of λ ranged from 1 to 5. Columns are ranked

in ascending order of α, and each column has different values of α which is

depending on the value λ in each row. The exact values of parameter λ and

α are given above plots, while φ is always zero for GP model. From the

figure, posterior probability prefer GP model as the right model for all values

of parameters.

The comparison of these priors for ZIP model is given on figure 4.3. Columns

give the value of φ, while rows are about the value of λ. Posterior probabil-
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ity choose Poisson model for three sets of ZIP parameters, (φ = 0.1, λ = 1),

(φ = 0.1, λ = 2) and (φ = 0.2, λ = 1). Except small parameters, posterior

probability gives very high probability in support of ZIP model.

For ZIGP model, the results of posterior probability using these priors are

provided in regard with the value of λ, the figures are 4.4, 4.5, 4.6, 4.7, 4.8.

The columns are about zero-inflated parameter φ and rows are the values of

over-dispersion parameter α. When λ = 1, these four comparative models are

not outstanding from each other, therefore posterior probability is sensitive to

the value of parameters. When λ = 2, posterior probability tends to support

ZIGP model as both values of α and λ parameters increase. For λ ≥ 3,

posterior probability chooses ZIGP model except parameters are close to zero.

Based on these figures, we would say our method works well on model se-

lection of ZIGP, ZIP, GP and Poisson distributions. It is able to give strong

evidence to true model when its parameters are not very small. When the

model parameters are too small to be distinguished from others, our method

will choose simple model as the better model. Meanwhile, conditionally uni-

form priors, modified Jeffreys priors and approximate Jeffreys priors are all

good choice for comparison of Poisson related distributions, and there is no

big difference of selection results among them.
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Figure 4.1:
Comparison of posterior probability among cond-uniform priors,
M-J priors and A-J priors, true model:Poisson
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λ given on the title of plots. λ = 1, 2, 3, 4, 5. Uniform prior represents conditionally uniform

priors; M-J prior represents modified Jeffreys priors using Bayes factor; M-J prior(FBF)

represents modified Jeffreys priors using fractional Bayes factor. A-J prior represents ap-

proximate Jeffreys priors using Bayes factor; A-J prior(FBF) represents approximate Jeffreys

priors using fractional Bayes factor.
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Figure 4.2:
Comparison of posterior probability among cond-uniform priors,
M-J priors and A-J priors, true model:GP
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Figure 4.3:
Comparison of posterior probability among cond-uniform priors,
M-J priors and A-J priors, true model:ZIP
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and φ = 0.1, 0.2, 0.5, 0.8. Uniform prior represents conditionally uniform priors; M-J prior

represents modified Jeffreys priors using Bayes factor; M-J prior(FBF) represents modified

Jeffreys priors using fractional Bayes factor. A-J prior represents approximate Jeffreys priors

using Bayes factor; A-J prior(FBF) represents approximate Jeffreys priors using fractional
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Figure 4.4:
Comparison of posterior probability among cond-uniform priors,
M-J priors and A-J priors, true model:ZIGP(λ = 1)
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ally uniform priors; M-J prior represents modified Jeffreys priors using Bayes factor; M-J

prior(FBF) represents modified Jeffreys priors using fractional Bayes factor. A-J prior repre-

sents approximate Jeffreys priors using Bayes factor; A-J prior(FBF) represents approximate

Jeffreys priors using fractional Bayes factor.92



Figure 4.5:
Comparison of posterior probability among cond-uniform priors,
M-J priors and A-J priors, true model:ZIGP(λ = 2)
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respectively. φ = 0.1, 0.5, 0.8 and α = 0.1, 0.2, 0.4. Uniform prior represents condition-

ally uniform priors; M-J prior represents modified Jeffreys priors using Bayes factor; M-J

prior(FBF) represents modified Jeffreys priors using fractional Bayes factor. A-J prior repre-

sents approximate Jeffreys priors using Bayes factor; A-J prior(FBF) represents approximate

Jeffreys priors using fractional Bayes factor.93



Figure 4.6:
Comparison of posterior probability among cond-uniform priors,
M-J priors and A-J priors, true model:ZIGP(λ = 3)
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prior(FBF) represents modified Jeffreys priors using fractional Bayes factor. A-J prior repre-

sents approximate Jeffreys priors using Bayes factor; A-J prior(FBF) represents approximate

Jeffreys priors using fractional Bayes factor.94



Figure 4.7:
Comparison of posterior probability among cond-uniform priors,
M-J priors and A-J priors, true model:ZIGP(λ = 4)
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sents approximate Jeffreys priors using Bayes factor; A-J prior(FBF) represents approximate

Jeffreys priors using fractional Bayes factor.95



Figure 4.8:
Comparison of posterior probability among cond-uniform priors,
M-J priors and A-J priors, true model:ZIGP(λ = 5)
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4.11 Real data analysis

Several real data projects are analyzed by our method and the results are

examined with previous studies. The results from our method always give the

same conclusion with other methods. The tested real data are Urinary tract

infection data obtained from Bayarri et al. (2008), Micro-propagated shoots

data from Gupta et al. (2005), Fetal movement data from Gupta et al. (1996).

4.11.1 Urinary tract infection data

This data has been studied by Bayarri et al. (2008) for testing Pois-

son against zero-inflated Poisson distribution by Bayes factor. The data are

collected from 98 HIV-infected men treated at the Department of Internal

Medicine at the Utrecht University hospital. The number of times they had a

urinary tract infection was recorded in Table 4.21.

Table 4.21: Urinary tract infection data

Count 0 1 2 3

Frequency 81 9 7 1

Table 4.22: Summary of urinary tract infection data

Sum of Y Number of obs Number of zeros Mean Variance

26 98 81 0.2653 0.4031
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The summary of urinary tract infection data is given in Table 4.22. Since

the zero fraction value is 0.8265, it is apparent that zero-inflation is present in

the observed data. The dispersion index is 1.5194, which is not a significant

evidence for over-dispersion. Since the number of zeros is a large portion

of data compared with the total number of observations, it is reasonable to

assume that it might follow the zero-inflated Poisson distribution.

Bayarri et al. (2008) used the Bayes Factor to compare the Poisson(H0)

and ZIP(H1) models, and the Bayes factor is

B10 =
mZIP

mPoi
= 223.13

Also, The observed value of the score statistic is 15.34 and a pvalue 0.0001.

The corresponding posterior probabilities for comparing only these two models

are calculated. The results are listed in the following.

P (ZIP |y) = 0.9955383

P (Poi|y) = 0.0044617

The posterior probabilities give a strong evidence for supporting ZIP model

in comparison with Poisson model. We take all Poisson-related models in

comparison, the posterior probability of each model is given below.

The posterior probability of ZIP model is quite large compared with other

models. Thus, it suggests ZIP model as the best model in comparison of

Poisson-related models. Compared to previous results, our results give the

same decision for comparing ZIP and Poisson distribution with the score statis-
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Posterior probability of model for urinary tract infection data

Prior P (ZIGP|y) P (ZIP|y) P (GP|y) P (Poi|y)

Cond-uniform prior 0.154738 0.652959 0.187632 0.004669

M-J prior(FBF) 0.143587 0.700653 0.147410 0.008348

A-J prior(FBF) 0.119226 0.660690 0.210777 0.009306

tic. Meanwhile, from the overall testing on ZIGP, ZIP, GP and Poisson distri-

bution, posterior probability shows that ZIP distribution still is the best one

for the observed data.

4.11.2 Micro-propagated shoots data

The data consist of the number of roots produced by 270 micro-propogated

shoots of the columnar apple cultivar Trajan. The roots had been produced

under an 8- or 16-h photoperiod in culture systems that utilized one of four

different concentrations of the cytokinin BAP in culture medium. Table 4.23

lists the detail of this data. Gupta et al. (2005) analyze this data to test zero-

inflated generalized Poisson distribution, and their score test rejected zero-

inflated Poisson distribution in favor of the zero inflated generalized Poisson

distribution.

From the summary of data in table 4.24, the zero fraction is 0.2370, and

dispersion index value is D = 3.1045. Since they are not outstanding compared

with each other, no preference would be made on either ZIP or GP distribution.

Posterior probability of model is calculated on Micro-propagated shoots data,
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Table 4.23: Micro-propagated shoots data

Count 0 1 2 3 4 5 6 7

Frequency 64 10 13 15 21 18 24 21

Count 8 9 10 11 12 13 14 17

Frequency 23 21 17 12 5 2 3 1

Table 4.24: Summary of Micro-propagated shoots data

Sum of Y Number of obs Number of zeros Mean Variance

1366 270 64 5.0592 15.7065

and the results are given in the following table. It suggests ZIGP model with

the posterior probability at 0.999942.

Table 4.25: Posterior probability of model for Micro-propagated data

Prior P (ZIGP|y) P (ZIP|y) P (GP|y) P (Poi|y)

Cond-uniform prior 0.999952 4.800551e-05 0 0

M-J prior(FBF) 0.999942 5.804387e-05 0 0

A-J prior(FBF) 0.999954 4.560269e-05 0 0

Gupta et al. (2005) tests the overdispersion and the zero-inflated factor of

ZIGP distribution through score test method. The score statistic is 16.821 and

a pvalue is 0.000041 for ZIP versus ZIGP distribution, thus ZIP distribution

is rejected in favor of ZIGP distribution. Our posterior probabilities based on
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only ZIP and ZIGP candidate distributions show that the posterior probability

of ZIGP is almost 1 and the posterior probability of ZIP is close to 0. The score

statistic is 159.669 and a pvalue is < 0.00001 for GP versus ZIGP distribution,

thus GP distribution is rejected in favor of ZIGP distribution. Our posterior

probabilities based on only GP and ZIGP candidate distributions show that

P (ZIGP|y) ≈ 1 and P (GP|y) ≈ 0. The results are quite similar with the score

test, but posterior probability gives a direct measure of the distribution and

the meaning of the measure is straightforward.

4.11.3 Fetal movement data

This data includes numbers of body movements in fetal lambs observed

through ultra sound. It is designed for a study of breathing and body move-

ments in fetal lambs to examine the possible changes in the amount of move-

ment pattern of fetal activity during the last two thirds of the gestation period.

Gupta et al. (1996) analyzed one particular sequence of counts of the number of

movements in 240 consecutive 5-s intervals. This data set is given in table 4.26

In the paper, the author provides the confidence interval of parameters based

on the maximum likelihood estimation.

Table 4.26: Fetal movement data

Count 0 1 2 3 4 7

Frequency 182 41 12 2 2 1

The sequence of counts of the number of movements is a measurement in
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240 consecutive 5-s intervals. There are 240 observations in the data set. Zero

fraction is high at 0.7583, so it is highly zero-inflated. The dispersion index is

D = 1.835361. The summary of the count data is in Table 4.27

Table 4.27: Summary of Fetal movement data

Sum of Y Number of obs Number of zeros Mean Variance

86 240 182 0.3583 0.6576

After running Bayesian method on distribution selection of Poisson, GP,

ZIP, ZIGP distribution, the posterior probability of distribution is given in

Table 4.28.

Table 4.28: Posterior probabilities of distribution for Fetal movement data

Prior P (ZIGP|y) P (ZIP|y) P (GP|y) P (Poi|y)

Cond-uniform prior 0.237391 7.988690e-03 0.754618 1.201905e-06

M-J prior(FBF) 0.207035 2.556833e-02 0.76739 4.742733e-06

A-J prior(FBF) 0.152251 2.119160e-02 0.826552 4.551867e-06

Gupta et al. (1996) estimates the parameters of ZIGP distribution in the

frequentist way, the maximum likelihood estimation is used to test the signif-

icance of distribution parameters. The results of MLE and 95% CI are given

in the following table.

Because the 95% confidence intervals of parameters λ and α all exclude

zero, these two parameters are nonzero that they remain in the distribution.
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Estimation of parameters by Gupta et al. (1996)

Parameters φ α λ

MLE - 0.3143 1.1254 0.2032

95% CI (- 0.92433, 0.29578) (0.83644, 1.67197) (0.11161, 0.29478)

φ including zero in its 95% confidence interval and its asymptotic variance is

small, but it is not clear enough to conclude the value of φ. Our results give

the straightforward conclusion about the most proper distribution that is GP

distribution with posterior probability at 0.754618 of conditionally uniform

prior and 0.76739 using modified Jeffreys priors. This is a strong support for

GP distribution.

4.12 Discussion

Bayesian method of model selection has its advantage of comparing models

in complex form, it does not require any prior knowledge about models but up-

dates belief through observed data. We developed the posterior probability for

each candidate model. Posterior probability is based on Bayes factors but pro-

vides more straightforward interpretation compared with Bayes factor, while

Bayes factor only allow to compare two models a one time, it can compare more

than two models simultaneously. Non-informative prior, such as uniform prior

and Jeffreys prior, is selected in the computation of the posterior probability,

because little prior knowledge about models is normally available in practice.

We derived Jeffreys priors for ZIGP, ZIP, GP and Poisson models, and further
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modified Jeffreys priors of the models for model comparison, since the derived

Jeffreys priors of GP and ZIGP models are not suitable priors in Bayes factors

testing due to the uncertainty that improper prior brings in. For this reason,

Fractional Bayes factors are introduced to replace Bayes factors for the purpose

of removing the uncertainty of improper priors. The derived Jeffreys priors

of ZIGP, ZIP, and GP models are approximated by modified Jeffreys prior

and approximate Jeffreys prior which are defined to simplify the computation.

The simulation studies are carried out by using conditionally uniform prior,

modified Jeffreys prior and approximate Jeffreys prior separately, and Bayes

factors and Fractional Bayes factors are implemented respectively to compare

the results of the posterior probability of candidate models.

Our simulation demonstrates that the Bayesian method is very stable and

accurate in finding the correct model. When the four models are different

enough (e.g., when ZIP model with λ ≥ 3 and φ ≥ 0.1 in Fig. 4.3), all three

priors consistently pick out the correct model by a large margin in poste-

rior probability. When the differences among the models are small, priors

may favor either true model or a simpler one by a small margin in posterior

probability. Such a discrepancy is not unreasonable, because under this cir-

cumstance, the simpler model characterize the data almost equally well as the

true model, i.e. they have the same predictive power, hence a simpler model

is better in the sense of Occams razor.

Uniform prior is easier to use than Jeffreys prior in calculation of posterior

probabilities, therefore the conditionally uniform prior is recommended for the
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use in comparison of Poisson-related models. Meanwhile, Jeffreys prior is a

good choice when its feature of invariance under reparameterization is needed.

Posterior probability method gives clear and straightforward explanation of

results compared to other test methods for model comparison. Moreover,

Bayesian approach to model comparison using the non-informative prior does

not require prior information of model and can be used as an automatic or

default method in any context.
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Chapter 5

Bayesian model selection of Poisson and

related regression models

In this chapter, distributions selection considers inclusion of covariates.

The testing of generalized Poisson regression model versus Poisson regression

model is addressed, and the comparison is extended to take the negative bino-

mial regression model into consideration which is quite close to the generalized

Poisson model.

5.1 Poisson, Generalized Poisson and Negative Bino-

mial regression models

In some papers, the common parameter λ within GP regression model is

treated in the same way with the one from Poisson regression model, but

λ parameter is not the model mean in GP regression model. In fact, the

meaning of λ changes among models, and the same log link assigned to the

parameter λ of all models is not quite meaningful to carry over the effect of
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covariate. To compare GP regression model versus Poisson regression model,

the reparameterization of λ to the model mean µ in GP regression model is

studied here.

Possion regression model

The Poisson model is written in the parameter notation of µ take the place

of orginal λ.

The probability mass function of the Poisson Regression is

f(yi|µi) =
µyii e

−µi

yi!
yi = 0, 1, 2, ...

where µi > 0, it represents the value of the mean and variance of yi. The

covariates are included through the log link function that µi = exp(xiβ). β =

(β1, β2, ..., βp) is a p-dimensional vector of unknown regression parameters to

be estimated, and xi = (xi1, xi2, ..., xip) is the covariate vector having an effect

on the population mean µi. In general, the log link function of covariate

can be represented by µ = exp(Xβ), and X is a n by p covariate matrix,

xi = (xi1, xi2, ..., xip) is the ith row of the covariate matrix X.

Likelihood of Poisson regression model:

LPR(µ) =
n∏
i=1

f(yi|µi) =
n∏
i=1

µyii e
−µi

yi!

=
1∏n

i=1 yi!
exp

(
n∑
i=1

yixiβ −
n∑
i=1

exiβ

)
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Generalized Poisson regression model

The probability mass function of the generalized Poisson (GP) regression is

f(yi|θ, µi) =
µi(1− θ)(µi(1− θ) + θyi)

(yi−1)e−((1−θ)µi+θyi)

yi!
yi = 0, 1, 2, ...

where µi > 0, it is the mean of yi. The variance of yi is µi
(1−θ)2 , 0 ≤ θ <

1. Since the parameter µ represents mean of both Poisson regression model

and generalized Poisson regression model, the meaning of µ is same for both

models. Therefore, the covariate link function can be defined in the same way

in both models, commonly it is log link function µi = exp(xiβ).

Likelihood of generalized Poisson regression model:

LGPR(θ, µ) =
n∏
i=1

f(yi|θ, µi) =
n∏
i=1

µi(1− θ)(µi(1− θ) + θyi)
(yi−1)e−((1−θ)µi+θyi)

yi!

=
(1− θ)n∏n

i=1 yi!
exp

(
n∑
i=1

xiβ − (1− θ)
n∑
i=1

exiβ − θs

)
n∏
i=1

(
(1− θ)exiβ + θyi

)yi−1

The GP model reduces to Poisson model as parameter θ goes to 0. There-

fore, testing overdispersion for GP against Poi regression model comparison

becomes a test of the hypothesis

H0 : θ = 0 vs. H1 : 0 < θ < 1

Bayes factor or posterior probability can be applied for the hypothesis

testing. Importance sampling helps calculate marginal likelihoods of models.
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Negative binomial regression model

The probability mass function of the Negative Binomail (NB) Regression is

f(yi|τ, µi) =
Γ(yi + 1/τ)

Γ(yi + 1)Γ(1/τ)

(τµi)
yi

(1 + τµi)yi+1/τ
yi = 0, 1, 2, ...

τ > 0 controls the degree of overdispersion. µi > 0 is the parameter equal to

the mean. Variance of yi is (1 + τµi)µi. Since the parameter µ is the mean of

both Poisson and NB regression models, the meaning of µ are same in both

models. Therefore, The covariates are included through the log link function

that µi = exp(xiβ).

Likelihood of NB Regression Model

LNBR(τ, µ) =
n∏
i=1

f(yi|τ, µi) =
n∏
i=1

Γ(yi + 1/τ)

Γ(yi + 1)Γ(1/τ)

(τµi)
yi

(1 + τµi)yi+1/τ

=
n∏
i=1

Γ(yi + 1/τ)

Γ(yi + 1)Γ(1/τ)

(τexiβ)yi

(1 + τexiβ)yi+1/τ

This NB model reduces to Poisson model as τ goes to zero. Hence, testing

Poisson regression model against NB regression model is equivalent to testing

the hypothesis:

H0 : τ = 0 vs. H1 : τ > 0
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5.2 Generalized Poisson vs. Poisson regression model

The bayesian approach to model comparison is based on Bayes Factor B10

of model M1 to M0 given by

B10 =
m1(y)

m0(y)
=

∫
f1(y|θ1)π(θ1)dθ1∫
f0(y|θ0)π(θ0)dθ0

It is common to make non-informative priors as the parameter priors π(θ0)

and π(θ1) for the sake of the lack of pre-knowledge about the parameters.

The model Comparison of GP against Poisson Regression model is equiv-

alent to testing the over-dispersion through the hypothesis:

H0 : θ = 0 vs. H1 : 0 < θ < 1

Assume equal prior probability of model: P (MGPR) = P (MPR) = 1
2
. The test

statistic of Bayes factor is

BFGPR,PR =
mGPR

mPR

Because covariate parameter vector β is a unknown vector of reals. The

flat prior of multi-Normal distribution with large variance over all real domain

is a reasonable prior for β.

β ∼ N(0, 100× Ip)
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For the overdispersion parameter θ, its range is over (0, 1), a suitable prior

is simply the flat prior that is Uniform distribtuion over (0, 1).

θ ∼ Uniform(0, 1)

The marginal likelihoods of Poisson and GP models are

mPR =

∫
LPR(β)π(β)dβ

=
1

σβ(2π)p/2
∏n

i=1 yi!

∫
exp

(
n∑
i=1

yixiβ −
n∑
i=1

exiβ − 1

2σ2
β

β′β

)
dβ

mGPR =

∫
LGPR(θ, β)π(θ, β)dθdβ

=
1

σβ(2π)p/2
∏n

i=1 yi!

∫ ∫
(1− θ)nexp

(
n∑
i=1

xiβ − (1− θ)
n∑
i=1

exiβ

−θs− 1

2σ2
β

β′β

)
n∏
i=1

(
(1− θ)exiβ + θyi

)(yi−1)
dθdβ

The integration of marginal likelihoods of both models contain multiple

variables that increase the complexity of the integrand, so it is impossible to

obtain the analytical expression for the marginal likelihood. Thus, Impor-

tance sampling is utilized to approach the value of the integrals via numerical

iteration.

Importance Sampling Approach of Marginal Likelihoods

While the number of variables present in the integral of marginal likeli-
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hoods increases, the speed of convergence of importance sampling approach is

dramatically increased. To reduce the dimension of variables in importance

sampling method, the importance sampling density of β is possible to be es-

timated from the data in the first place. The estimated importance density

concentrates on the true value of β with a small variance. It helps the Markov

chain of importance sampling approach reach stationary status quickly.

The reason of that the coefficient β is able to adapt the given data to

get knowledge about it is because β is associated with model mean µ, and

model mean is same for all models given the data set. Therefore, the simple

model, Poisson regression model, can be utilized to draw information about the

estimated mean and variance of the coefficient β. Denote the estimated mean

and variance as µ̂β and σ̂2
β respectively. The importance sampling density for

β is

β ∼ N(µ̂β, σ̂
2
β × Ip)

where µ̂β and σ̂2
β are estimated values obtained from Poisson regression model

(glm function) to increase the accuracy and efficiency of Importance Sampling.

The importance density of θ of GP model chooses the flat prior Uni-

112



form(0,1). Now, the importance sampling approach is

mPR ≈ 1

m
∏n

i=1 yi!

m∑
j=1

σ̂β
σβ
exp

(
1

2σ̂2
β

(βj − µ̂β)T (βj − µ̂β)− 1

2σ2
β

βTj βj+

n∑
i=1

yixiβj −
n∑
i=1

exiβj

)

mGPR ≈ 1

m
∏n

i=1 yi!

m∑
j=1

σ̂β
σβ

(1− θj)nexp

(
1

2σ̂2
β

(βj − µ̂β)T (βj − µ̂β)− 1

2σ2
β

βTj βj

+
n∑
i=1

xiβj − (1− θj)
n∑
i=1

exiβj − θjs

)
n∏
i=1

(
exiβj(1− θj) + θjyi

)(yi−1)

The Importance Sampling converges quickly after adopting the estimated beta

parameter from Poisson Regression Model (glm), the number of iterations

needed is more than 3000.

5.3 Negative Binomial vs. Poisson regression model

To test the hypothsis

H0 : τ = 0 vs. H1 : τ > 0

Assume equal prior probability of model: P (MNBR) = P (MPR) = 1
2
. The

test statistic of Bayes factor is

BFNBR,PR =
mNBR

mPR
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The prior for the regression parameters β is same as Poisson regression

model.

β ∼ N(0, 100× Ip)

The NB regression parameter τ blongs to (0,+∞). Without any pre-

knowledge of τ , it is common to have a simple flat prior over the domain.

π(τ) = 1 for τ ∈ [0,+∞)

However, the flat prior over the infinity domian is a improper prior. The Bayes

factor is inappropriate for the improper prior on the uncommon parameter of

competitive models. The uncertainty of improper prior in Bayes factor can

cancel out through fractional Bayes factor.

The marginal likelihood of negative binomial model is

mNBR =

∫
LNBR(τ, β)π(τ, β)dτdβ

=

∫ n∏
i=1

(
Γ(yi + 1/τ)(τexiβ)yi

Γ(yi + 1)Γ(1/τ)(1 + τexiβ)yi+1/τ

)
· 1

σβ(2π)p/2
e
− 1

2σ2
β

β′β
dτdβ

Let the training fraction of FBF be b = n1

n
, where n = n1 + n2. The

minimum size of training sample is n1 = 2 by default. The fractional marginal
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likelihoods of negative binomial and Poisson models are

mPR
b =

∫
LPR(β)bπ(β)dβ

=
1

σβ(2π)p/2 (
∏n

i=1 yi!)
b

∫
exp

(
b

n∑
i=1

yixiβ − b
n∑
i=1

exiβ − 1

2σ2
β

β′β

)
dβ

mNBR
b =

∫
LNBR(τ, β)bπ(τ, β)dτdβ

=

∫ [ n∏
i=1

Γ(yi + 1/τ)(τexiβ)yi

Γ(yi + 1)Γ(1/τ)(1 + τexiβ)yi+1/τ

]b
· 1

σβ(2π)p/2
e
− 1

2σ2
β

β′β
dτdβ

The fractional Bayes factor is in the form of

FBFNBR,PR =
mNBRmPR

b

mPRmNBR
b

The unspecified constant cancels out in the fractional Bayes factor through

the training sample. The elements in computation of FBF are too complex to

obtain the integral. As before, the importance sampling approach work again

in approximation of the integration of these four marginal likelihoods. First in

all, the importance sampling density is required to perform the algorithm. To

reduce the variance of sampling in high dimension, the estimated distribution

is applied to coefficient parameter β from the Poisson regression inference.

The NB regression parameter τ has its range over (0,∞), but our interest is

focus on the null hypothesis which is locate at origin point 0. In the context

of testing purpose, a decreasing distribution from origin point to infinity is

a proper choice for the importance density of τ . In this case, half-Cauchy
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distribution is selected with large variance that is half-Cauchy(0,25). The

distribution is peak at the origin zero, and right skewed to infinity. The shape

of half-Cauchy(0,25) distribution is on figure 5.1.
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Figure 5.1: The half-Cauchy(0,25) distribution

The importance sampling densities for FBFNBR,PR

β ∼N(µ̂β, σ̂
2
β × Ip)

τ ∼half-Cauchy(0, 25)

where µ̂β and σ̂2
β are estimated values obtained from Poisson regression

model (glm function) to increase the accuracy and efficiency of Importance

Sampling.
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Now, the importance sampling approach is

mPR ≈ 1

m
∏n

i=1 yi!

m∑
j=1

σ̂β
σβ
exp

(
1

2σ̂2
β

(βj − µ̂β)T (βj − µ̂β)− 1

2σ2
β

βTj βj+

n∑
i=1

yixiβj −
n∑
i=1

exiβj

)

mPR
b ≈

1

m (
∏n

i=1 yi!)
b

m∑
j=1

σ̂β
σβ
exp

(
1

2σ̂2
β

(βj − µ̂β)T (βj − µ̂β)− 1

2σ2
β

βTj βj+

b
n∑
i=1

yixiβj − b
n∑
i=1

exiβj

)

mNBR ≈ 1

m

m∑
j=1

σ̂β
σβ
exp

(
1

2σ̂2
β

(βj − µ̂β)T (βj − µ̂β)− 1

2σ2
β

βTj βj

)
·

n∏
i=1

(
Γ(yi + 1/τj)(τje

xiβj)yi

Γ(yi + 1)Γ(1/τj)(1 + τjexiβj)yi+1/τj

)
·
π(τ 2

j + 252)

50

mNBR
b ≈ 1

m

m∑
j=1

σ̂β
σβ
exp

(
1

2σ̂2
β

(βj − µ̂β)T (βj − µ̂β)− 1

2σ2
β

βTj βj

)
·

n∏
i=1

(
Γ(yi + 1/τj)(τje

xiβj)yi

Γ(yi + 1)Γ(1/τj)(1 + τjexiβj)yi+1/τj

)b
·
π(τ 2

j + 252)

50

5.4 Posterior probability of model using flat priors

Until now, we have discussed the Bayes factor method on how to do paired

test. It is well known that generalized Poisson model is quite similar to negative

binomial model, which implies a common question of how to differentiate these
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models simultaneously. Here, the posterior probability of model given data is

used for comparison. The prior probability of model is assumed equal in

default.

P (Mi|y) =
P (y|Mi)P (Mi)∑

j∈all P (y|Mj)P (Mj)
=

mi

mPR +mGPR +mNBR

=
BFi

1 +BFGPR,PR +BFNBR,PR

≈ BFi
1 +BFGPR,PR + FBFNBR,PR

where mi and BFi are the marginal likelihood and Bayes factor of model

from the competitive models, i ∈ {PR,GPR,NBR}. FBFNBR,PR is used to

approximate BFNBR,PR to reduce the uncertainty of improper prior. Poste-

rior probability of model is convenient to compare more than two models in

the frame of Bayesian method. It provides the probability of each model in

selection, and the value of probability has explicit meaning and is easy for

explanation.

5.5 Simulation of data from regression model

To simulate the data from a model with known values of parameters and co-

variate matrix in the model, the quantile method is applied for the multivariate

regression model simulation. First, a set of parameter values β∗ = (β∗1 , ..., β
∗
p)
T

is given to define the model from which the simulated data comes. Second,

a set of covariate value {xi(1), ..., xi(p)} is required for each simulated value

yi, i = 1, ..., n. Let n be the number of desired simulation data, the covariate
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matrix Xn×p consists of n rows of covariate values. The first column of the

covariate matrix x·(1) represents the index l of the intercept, and the other

columns x·(j), j = 2, ..., p are measure of the covariate variables respectively.

The covariate matrix is supposed to be able to contain both fixed effects and

random effects. For the mixed effects, the binary variable and continuous vari-

able are combined to create the covariate matrix. Here, the continuous variable

is assumed from the normal distribution with different mean and variance.

For example, the covariate matrix of two fixed effects and one random

effect, where the random effect is composed of two categories which are from

different normal distributions, is in the form that

X =



1 0 0 x1
...

...
...

1 0 0
...

1 1 0
...

...
... xk

1 1 0 x(k+1)

1 0 1
...

...
...

...
1 0 1 xn


where the xi ∼ N(µ1, σ

2
1) for i = 1, ..., k and xi ∼ N(µ2, σ

2
2) for i = k +

1, ..., n. The first column of the matrix is the index for intercept variable β0

which is always equal to one. The second and third columns of the matrix

are the qualitative variables identifying the the category for each subject. The

last column is the quantitative random variable, each one of which is from a

population.

Generally, the covariate matrix for multiple covariates can be written in
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the convenient way of

X = {X·(1), X·(2), ..., X·(p)}n×p

where the X·(i) is the ith covariate associated with the coefficient βi. The

first column vector X·(1) = 1 is always a vector of all ones in default. X·(i) =

(x1(i), x2(i), ..., xn(i))
T , and the variable can be either binary variable for the

fixed effect or continuous variable for the random effect, meanwhile, there

could be multiple different continuous distribution presenting in one covariate

column data.

The process of simulation of quantile method:

1. fit the model with the initial values of parameters and covariate vector

2. initiate the start state y = 0 ;

3. draw a random value u from uniform distribution U(0, 1);

4. accept the draw according to the probability F (Y = y).

5. If u ≤ F (Y = y), accepted and return the value of y.

6. Else, let y = y + 1, repeat step 3 and 4.

Run the same process multiple times with the same setting of parameters

and covariate values to obtain the desired number of simulated numbers from

one model.
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5.6 Simulation results of Fractional Bayes Factor

Simulation analysis is implemented to evaluate the Bayesian model se-

lection method for Poisson regression model, generalized Poisson regression

model, and negative binomial regression model. Posterior probability of model

is the test statistic for model selection of these three models. For this sim-

ple initial analysis, we only learn the data simulated from negative binomial

regression model.

Simulation analysis of two regression coefficients β is studied first. Assume

there is only one covariate x, then regression coefficient β is 2-dimensional.

The covariate matrix can be written as follows:

X =


1 x1
...

...
1 xk
1 x(k+1)

...
...

1 xn


where xi ∼ N(µ1, σ

2
1) for i = 1, ..., k and xi ∼ N(µ2, σ

2
2) for i = k + 1, ..., n.

First, we just consider one set of coefficients (1,0.1), and make NBR model

parameter τ change values as 0.1, 1, 5 and let GPR model parameter θ vary

from 0 to 0.5 increasing by 0.1 unit. The covariate matrix simulated randomly

from xi ∼ N(3, 1) for i = 1, ..., k and xi ∼ N(10, 2) for i = k + 1, ..., n.

For each setting of parameters and coefficients, 100 datasets of size 100 are

simulated from the negative binomial regression model. Importance sampling

iterate 5000 times for each simulated data to draw conclusion of posterior

probabilities of models. The mean value of posterior probability in each it-
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eration of importance sampling is the final estimate of posterior probability.

The results are displayed in table 5.1. Based on the simulation analysis, the

fractional Bayes factor does not work well in approximation of Bayes factor in

calculation of posterior probability of model. The results show the preference

to GPR model even when the NBR model parameter τ is quite large at 5.

Table 5.1: Simulation results of one covariate using FBF

β θ τ P̄ (PR|y) P̄ (GPR|y) P̄ (NBR|y) SD[P (PR|y)] SD[P (GPR|y)] SD[P (NBR|y)]

(1,0.1) 0 na 0.826267 0.105379 0.068354 0.150765 0.092883 0.072922

(1,0.1) 0.1 na 0.494499 0.325749 0.179752 0.285439 0.196095 0.152314

(1,0.1) 0.2 na 0.149856 0.590846 0.259298 0.237879 0.226067 0.152471

(1,0.1) 0.3 na 0.004331 0.756727 0.238942 0.021468 0.202605 0.199938

(1,0.1) 0.5 na 6.61E-13 0.902208 0.097792 4.34E-12 0.15681 0.15681

(1,0.1) na 0.1 0.149192 0.490464 0.360344 0.21794 0.21497 0.208682

(1,0.1) na 1 1.96E-40 0.851846 0.148154 1.67E-39 0.23015 0.23015

(1,0.1) na 5 4.67E-127 0.995 0.005 4.59E-126 0.029043 0.029043

Each row contains posterior probabilities based on 100 simulations from a model defined by parameters

β, θ, τ and covariate matrix X. True model is determined by θ and τ , where τ = na means true model is

GPR model, and θ = na says data is simulated from NBR model. Poisson model has parameter θ = 0, τ = na

particularly.

Joe and Zhu (2005) says GP and NB distributions are quite close to each

other, when population mean is smaller than 5 or dispersion rate is small (close

to 1). From this point of view, the testing of GP and NB models becomes

sensitive to any approximation in the process. For this reason, FBF is not

good approximation for the simulated data, because the mean of these data

are all less than 5.
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When the mean of data incrases greatly, the results of model selection do

improve with application of FBF. For example, covariate matrix is in a form

of

X =


1 0 x31
...

...
...

1 0 x3k
1 1 x3(k+1)

...
...

...
1 1 x3n


where x3i ∼ N(µ1, σ

2
1) for i = 1, ..., k and x3i ∼ N(µ2, σ

2
2) for i = k+ 1, ..., n.

These three covariates are all binary variables. The covariate matrix sim-

ulated randomly from xi ∼ N(3, 1) for i = 1, ..., k and xi ∼ N(10, 2) for i =

k+1, ..., n. The initial value set for covariate coefficient vector is β = (1, 0.5, 0.1)T ,

of which the mean of the model is greater than 5. Based on Joe and Zhu (2005),

it means the difference of GP and NB models is large enough to detect. Simu-

lation is based on the simulated data from all candidate models with different

model parameters. The statistics of simulation study is concluded from 100

simulated data for each setup model, and results are listed in the table 5.2.

The results of three covariate variables illustrate the same problem occurred

in the first simulation study. The posterior probability is not able to find the

correct NBR model when NBR model parameter τ is truly far away from zero.

The application of FBF approach makes the posterior probability in favor of

GPR model. When true model is GPR model, the posterior probability gives

larger value for true model as the GPR parameter θ increases.

More complex covariate is studied to further understand the performance

of our model testing method. One additional covariate is added and treated
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Table 5.2: Simulation results of two covariates using FBF

β θ τ P̄ (PR|y) P̄ (GPR|y) P̄ (NBR|y) SD[P (PR|y)] SD[P (GPR|y)] SD[P (NBR|y)]

(1,0.5,0.1) 0 na 0.833559 0.098388 0.068053 0.11641 0.067369 0.073498

(1,0.5,0.1) 0.1 na 0.543488 0.312299 0.144213 0.280417 0.233034 0.157737

(1,0.5,0.1) 0.2 na 0.14348 0.658715 0.197804 0.211086 0.271381 0.207179

(1,0.5,0.1) 0.3 na 0.011178 0.878624 0.110199 0.061531 0.171926 0.160382

(1,0.5,0.1) 0.5 na 1.10E-09 0.938159 0.061841 1.10E-08 0.182948 0.182948

(1,0.5,0.1) na 0.1 0.036628 0.425312 0.538061 0.127258 0.264881 0.286114

(1,0.5,0.1) na 1 3.87E-52 0.684282 0.315718 2.95E-51 0.349251 0.349251

(1,0.5,0.1) na 5 3.38E-181 0.998228 0.001772 0 0.010019 0.010019

Each row contains posterior probabilities based on 100 simulations from a model defined by parameters

β, θ, τ and covariate matrix X. True model is determined by θ and τ , where τ = na means true model is

GPR model, and θ = na says data is simulated from NBR model. Poisson model has parameter θ = 0, τ = na

particularly.
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as binary variable. The covariate matrix is generated in the following way

X = {X·(1), X·(2), X·(3), X·(4)}n×3

where the X·(i) is the ith covariate vector associated with the coefficient βi. For

the simulation analysis, let X·(1) = [1]n×1 be the identity vector for intercept.

X·(2) = (0, ..., 0, 1, ..., 1)T andX·(3) = (0, ..., 0, 1, ..., 1, 0..., 0)T . X·(4) is a random

vector with xi(4) ∼ N(µ1, σ
2
1) for i = 1, ..., k and xi(4) ∼ N(µ2, σ

2
2) for i =

k + 1, ..., n.

Testing values of model parameters θ and τ are kept same as before. The

results from simualtion study are given in table 5.3.

Table 5.3: Simulation results of three covariates using FBF

β θ τ P̄ (PR|y) P̄ (GPR|y) P̄ (NBR|y) SD[P (PR|y)] SD[P (GPR|y)] SD[P (NBR|y)]

(1,-0.5,1.4,0.1) 0 na 0.868192 0.09586 0.035947 0.111117 0.101186 0.043802

(1,-0.5,1.4,0.1) 0.1 na 0.50672 0.395764 0.097516 0.328551 0.307577 0.174752

(1,-0.5,1.4,0.1) 0.2 na 0.060035 0.878138 0.061827 0.152163 0.198809 0.128984

(1,-0.5,1.4,0.1) 0.3 na 0.001005 0.990331 0.008664 0.006478 0.039912 0.037884

(1,-0.5,1.4,0.1) 0.5 na 4.04E-17 0.999855 0.000145 3.98E-16 0.000839 0.000839

(1,-0.5,1.4,0.1) na 0.1 3.40E-06 0.047342 0.952655 2.53E-05 0.171269 0.171273

(1,-0.5,1.4,0.1) na 1 2.29E-137 0.092536 0.907464 2.19E-136 0.247901 0.247901

(1,-0.5,1.4,0.1) na 5 0 0.861579 0.138421 0 0.306651 0.306651

Each row contains posterior probabilities based on 100 simulations from a model defined by parameters

β, θ, τ and covariate matrix X. True model is determined by θ and τ , where τ = na means true model is

GPR model, and θ = na says data is simulated from NBR model. Poisson model has parameter θ = 0, τ = na

particularly.
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From the simulation analysis, the posterior probability does not give the

right choice when true model is negative binomial regression model. The

problem may be caused by the error introduced by fractional Bayes factor.

FBF can not be used to take place of BF in posterior probability for this case.

Graphic comparison is given by figure 5.2 and figure 5.3, and it is a more

convenient way to summarize the overall performance of posterior probability

with adjustment by fractional Bayes factor for improper prior.

The convergence of the importance sampling is verified by iterating mul-

tiple times of importance sampling method over one simulated dataset. The

iterated results of posterior probability of models are given in table 5.4.
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Figure 5.2:
Comparison of posterior probability using uniform priors, true
model:PR and GPR
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coefficient vector β is given on the title of columns.
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Figure 5.3:
Comparison of posterior probability using uniform priors, true
model:NBR
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Table 5.4: Importance sampling convergence: FBF

β θ τ P (PR|y) P (GPR|y) P (NBR|y)

(1,0.1) na 1 3.93E-69 0.982643 0.017357

(1,0.1) na 1 4.41E-69 0.978277 0.021723

(1,0.1) na 1 5.18E-69 0.978094 0.021906

(1,0.1) na 1 4.28E-69 0.97742 0.02258

(1,0.1) na 1 5.26E-69 0.976435 0.023565

(1,0.1) na 1 5.16E-69 0.968112 0.031888

(1,0.5,0.1) na 1 3.98E-122 0.975604 0.024396

(1,0.5,0.1) na 1 1.66E-122 0.991139 0.008861

(1,0.5,0.1) na 1 2.33E-122 0.968493 0.031507

(1,0.5,0.1) na 1 6.65E-122 0.959337 0.040663

(1,0.5,0.1) na 1 7.72E-123 0.990032 0.009968

(1,0.5,0.1) na 1 4.34E-122 0.983729 0.016271

(1,-0.5,1.4,0.1) na 1 2.40E-226 2.86E-07 1

(1,-0.5,1.4,0.1) na 1 5.13E-226 5.74E-07 0.999999

(1,-0.5,1.4,0.1) na 1 2.07E-226 1.40E-07 1

(1,-0.5,1.4,0.1) na 1 1.02E-226 6.57E-08 1

(1,-0.5,1.4,0.1) na 1 8.33E-226 4.97E-07 1

(1,-0.5,1.4,0.1) na 1 1.18E-226 7.13E-05 0.999929

True model is NBR model. Each row contains posterior probabilities based on one simulation of data size

100 from a model defined by parameters β, θ, τ and covariate matrix X corresponding to β.
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5.7 Posterior probability of model using proper non-

informative priors

The application of fractional Bayes factor in order to approximate Bayes

factor in negative binomial model using improper prior is not accurate enough

based on the simulation results. Therefore, a proper non-informative prior

for the negative binomial regression model is used to avoid the application of

fractional Bayes factor.

The alternative prior for τ of NB regression model is a mixture half-normal

distribution, which is a proper prior over the domain. The mixture half-normal

prior for τ is defined as

τ ∼Half-Normal(0, σ2
τ )

σ ∼Inverse-Gamma(0.5, 0.5)

The density of this mixture half-normal prior is

π(τ) =
2√

πΓ(0.5)(τ 2 + 1)

refer to figure 5.4 for how the mixture half-normal distribution. It is more like

flat prior with large spread shape and low density over the domain.

130



0 10 20 30 40 50

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

x

de
ns

ity

Mixture half−Normal distribution

Figure 5.4: The mixture half-normal distribution

The marginal likelihood of NB model using mixture half-normal prior is

mNBR =

∫
LNBR(τ, β)π(τ, β)dτdβ

=

∫ n∏
i=1

(
Γ(yi + 1/τ)(τexiβ)yi

Γ(yi + 1)Γ(1/τ)(1 + τexiβ)yi+1/τ

)
·

2√
πΓ(0.5)(τ 2 + 1)

1

σβ(2π)p/2
e
− 1

2σ2
β

β′β
dτdβ

To approach this complex integral, the importance sampling densities are

β ∼N(µ̂β, σ̂
2
β × Ip)

τ ∼half-Cauchy(0, 25)

where µ̂β and σ̂2
β are estimated values obtained from Poisson regression

model (glm function) to increase the accuracy and efficiency of Importance

Sampling.
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Now, the importance sampling approach is

mNBR ≈ 1

m

m∑
j=1

σ̂β
σβ
exp

(
1

2σ̂2
β

(βj − µ̂β)T (βj − µ̂β)− 1

2σ2
β

βTj βj

)
·

n∏
i=1

(
Γ(yi + 1/τj)(τje

xiβj)yi

Γ(yi + 1)Γ(1/τj)(1 + τjexiβj)yi+1/τj

)
· 2√

πΓ(0.5)(τ 2
j + 1)

π(τ 2
j + 252)

50

The marginal likelihoods of Poisson and GP model are same as before.

Now, Bayes factor is appropriate for testing negative binomial vs. Poisson

regression model. To test the hypothsis in NB model,

H0 : τ = 0 vs. H1 : τ > 0

The Bayes factor is

BFNBR,PR =
mNBR

mPR

In the evaluation of fitting among Poisson, GP, NB regression models,

the only change is the marginal likelihood of NB model compared with the

fractional Bayes factor method. So the posterior probability of model can be

directly computed through the marginal likelihoods given the assumption of

equal prior probability of models.

P (Mi|y) =
P (y|Mi)P (Mi)∑

j∈all P (y|Mj)P (Mj)
=

mi

mPR +mGPR +mNBR

where i ∈ {PR,GPR,NBR}
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5.8 Simulation results of Bayes Factor

Several simulated data from one of these competitive models are tested

by means of the posterior probabilities. The random covariate is taken into

consideration for the cases of real world problems. Each model of fixed values of

covariate matrix and parameters simulates 100 data sets, and each simulation

contains 100 draws. Based on the simulated data sets, the posterior probability

of each candidate model is estimated by importance sampling method. The

number of iterations of importance sampling is 5000.

The simple condition of two regression coefficients is first studied. Assume

there is only one covariate x, which is random variable, and the associated re-

gression coefficient β is 2-dimensional. The covariate matrix X can be written

as follows:

X =


1 x1
...

...
1 xk
1 x(k+1)

...
...

1 xn


where xi ∼ N(µ1, σ

2
1) for i = 1, ..., k and xi ∼ N(µ2, σ

2
2) for i = k + 1, ..., n.

Let µ1 = 3, σ2
1 = 1 and µ2 = 10, σ2

2 = 2. The results of posterior probability

of model are given in the table 5.5.

The posterior probability makes the right choice for the simulated data

when it is coming from the Poisson model. For GP and NB regression model,

the probability of the right model is high when the model parameter is not

close to 0. Because the models are quite close to each other when the model

parameter is small, Bayesian method tends to prefer a simple model when the
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Table 5.5: Simulation results of one covariate

β θ τ P̄ (PR|y) P̄ (GPR|y) P̄ (NBR|y) SD[P (PR|y)] SD[P (GPR|y)] SD[P (NBR|y)]

(1, 0.1) 0 na 0.830869 0.125648 0.043483 0.162043 0.114135 0.053154

(1, 0.1) 0.1 na 0.585887 0.318706 0.095407 0.281781 0.219571 0.091966

(1, 0.1) 0.2 na 0.138739 0.6317 0.229561 0.234575 0.230603 0.182202

(1, 0.1) 0.3 na 0.024038 0.719057 0.256905 0.094837 0.194309 0.183607

(1, 0.1) 0.5 na 9.74E-14 0.763703 0.236297 8.09E-13 0.229019 0.229019

(1, 0.1) na 0.01 0.820604 0.138167 0.041229 0.126106 0.09309 0.04091

(1, 0.1) na 0.1 0.123514 0.487383 0.389103 0.224898 0.220002 0.240793

(1, 0.1) na 1 4.50E-34 0.149191 0.850809 4.50E-33 0.212914 0.212914

(1, 0.1) na 5 1.78E-144 0.093891 0.906109 1.78E-143 0.180153 0.180153

(1, 0.1) na 10 1.32E-95 0.077869 0.922131 1.32E-94 0.1491 0.1491

Each row contains posterior probabilities based on 100 simulations from a model defined by parameters

β, θ, τ and covariate matrix X. True model is determined by θ and τ , where τ = na means true model is

GPR model, and θ = na says data is simulated from NBR model. Poisson model has parameter θ = 0, τ = na

particularly.
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performance over the given data of competing models have quite similar effect.

Consider adding one more binary covariate to the model, the covariate

matrix X becomes

X =


1 0 x31
...

...
...

1 0 x3k
1 1 x3(k+1)

...
...

...
1 1 x3n


where xi ∼ N(µ1, σ

2
1) for i = 1, ..., k and xi ∼ N(µ2, σ

2
2) for i = k + 1, ..., n.

Let µ1 = 3, σ2
1 = 1 and µ2 = 10, σ2

2 = 2. The results of various models

are given in the table 5.6. The posterior probability correctly choose the right

model even for the small value of τ , because GP and NB model are departing

away from each other when the mean µ is larger than 5. For this case, the

simulated data has a mean value larger than 5, so it is not affected by the

approximation error.

Now, we add one more binary covariate to the model. The covariate matrix

becomes 4 by n. In general, it can be expressed in the way of

X = {X·(1), X·(2), X·(3), X·(4)}n×3

where the X·(i) is the ith covariate vector associated with the coefficient βi. For

the simulation analysis, let X·(1) = [1]n×1 be the identity vector for intercept.

X·(2) = (0, ..., 0, 1, ..., 1)T andX·(3) = (0, ..., 0, 1, ..., 1, 0..., 0)T . X·(4) is a random

vector with xi(4) ∼ N(µ1, σ
2
1) for i = 1, ..., k and xi(4) ∼ N(µ2, σ

2
2) for i =

k + 1, ..., n.
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Table 5.6: Simulation results of two covariates

β θ τ P̄ (PR|y) P̄ (GPR|y) P̄ (NBR|y) SD[P (PR|y)] SD[P (GPR|y)] SD[P (NBR|y)]

(1, 0.5, 0.1) 0 na 0.858807 0.121077 0.020116 0.147187 0.13217 0.024475

(1, 0.5, 0.1) 0.1 na 0.603894 0.33187 0.064237 0.292562 0.252913 0.08637

(1, 0.5, 0.1) 0.2 na 0.155875 0.689751 0.154374 0.221149 0.257588 0.168836

(1, 0.5, 0.1) 0.3 na 0.006046 0.883086 0.110868 0.027004 0.139508 0.136915

(1, 0.5, 0.1) 0.5 na 1.53E-09 0.896272 0.103728 1.53E-08 0.189968 0.189968

(1, 0.5, 0.1) na 0.01 0.793132 0.17051 0.036358 0.198191 0.1711 0.04145

(1, 0.5, 0.1) na 0.1 0.048434 0.39943 0.552136 0.135747 0.266953 0.298271

(1, 0.5, 0.1) na 1 7.37E-55 0.068647 0.931353 7.31E-54 0.164047 0.164047

(1, 0.5, 0.1) na 5 1.22E-111 0.026392 0.973608 1.22E-110 0.093787 0.093787

(1, 0.5, 0.1) na 10 3.32E-131 0.019126 0.980874 3.32E-130 0.062631 0.062631

Each row contains posterior probabilities based on 100 simulations from a model defined by parameters

β, θ, τ and covariate matrix X. True model is determined by θ and τ , where τ = na means true model is

GPR model, and θ = na says data is simulated from NBR model. Poisson model has parameter θ = 0, τ = na

particularly.
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Table 5.7: Simulation results of three covariates

β θ τ P̄ (PR|y) P̄ (GPR|y) P̄ (NBR|y) SD[P (PR|y)] SD[P (GPR|y)] SD[P (NBR|y)]

(1, -0.5, 1.4, 0.1) 0 na 0.892932 0.096774 0.010294 0.092092 0.085991 0.017055

(1, -0.5, 1.4, 0.1) 0.1 na 0.504146 0.458505 0.037349 0.29606 0.280313 0.084906

(1, -0.5, 1.4, 0.1) 0.2 na 0.096259 0.870742 0.032998 0.188906 0.213272 0.107843

(1, -0.5, 1.4, 0.1) 0.3 na 0.00478 0.96844 0.026779 0.042008 0.102596 0.091589

(1, -0.5, 1.4, 0.1) 0.5 na 3.32E-19 0.99365 0.00635 3.31E-18 0.058994 0.058994

(1, -0.5, 1.4, 0.1) na 0.01 0.666889 0.241965 0.091146 0.316791 0.250287 0.160703

(1, -0.5, 1.4, 0.1) na 0.1 5.65E-06 0.043726 0.956268 5.42E-05 0.156761 0.156763

(1, -0.5, 1.4, 0.1) na 1 1.06E-138 0.000127 0.999873 1.06E-137 0.000674 0.000674

(1, -0.5, 1.4, 0.1) na 5 0 3.89E-05 0.999961 0 0.000274 0.000274

(1, -0.5, 1.4, 0.1) na 10 0 0.000209 0.999791 0 0.001737 0.001737

Each row contains posterior probabilities based on 100 simulations from a model defined by parameters

β, θ, τ and covariate matrix X. True model is determined by θ and τ , where τ = na means true model is

GPR model, and θ = na says data is simulated from NBR model. Poisson model has parameter θ = 0, τ = na

particularly.
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The simulation results of 100 data sets are displayed in table 5.7. The

posterior probability shows strong evidence for Poisson model when the data

is exactly simulated from it. As the GP parameter θ larger than 0.1, the

posterior probability provides strong evidence in favor of GP model. When

simulated data coming from NB model, the posterior probability works well

for very small value of τ that our method is able to choose the right model

with high certainty. Generally speaking, the posterior probability is capable to

capture the difference among GPR, NBR and PR models even if the difference

is small. It is also accurate about the probability for each model with small

variance on the estimation. The comparison of simulation results is also plotted

by true model, which refer to figure 5.5 and figure 5.6.

The convergence of importance sampling is verified through multiple it-

erations of importance sampling approach with different simulation from im-

portance sampling density for one single dataset. Part of the iterations is

displayed in table 5.8. It is easy to see the method converges pretty good with

small variance for all models.

138



Figure 5.5:
Comparison of posterior probability using flat priors, true
model:PR and GPR
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coefficient vector β is given on the title of columns.
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Figure 5.6:
Comparison of posterior probability using flat priors, true
model:NBR
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Posterior probability is computed from 100 simulations from a negative binomial model

defined by parameters τ and covariate coefficient β. Parameters τ is given on the title of

rows and coefficient vector β is given on the title of columns.
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Table 5.8: Importance sampling convergence: BF

β θ τ P (PR|y) P (GPR|y) P (NBR|y)

(1,0.1) na 0.1 0.8403 0.134647 0.025052

(1,0.1) na 0.1 0.841722 0.127793 0.030484

(1,0.1) na 0.1 0.846044 0.130527 0.023429

(1,0.1) na 0.1 0.838877 0.127948 0.033175

(1,0.1) na 0.1 0.846603 0.128514 0.024883

(1,0.1) na 0.1 0.843717 0.129717 0.026566

(1,0.5,0.1) na 0.1 0.128297 0.804894 0.066809

(1,0.5,0.1) na 0.1 0.130277 0.735939 0.133784

(1,0.5,0.1) na 0.1 0.124268 0.736742 0.13899

(1,0.5,0.1) na 0.1 0.119484 0.749205 0.13131

(1,0.5,0.1) na 0.1 0.123536 0.772598 0.103866

(1,0.5,0.1) na 0.1 0.116158 0.750493 0.133349

(1,-0.5,1.4,0.1) na 0.1 4.79E-12 0.000424 0.999576

(1,-0.5,1.4,0.1) na 0.1 4.78E-12 0.000638 0.999362

(1,-0.5,1.4,0.1) na 0.1 2.71E-12 0.000222 0.999778

(1,-0.5,1.4,0.1) na 0.1 4.17E-12 0.000615 0.999385

(1,-0.5,1.4,0.1) na 0.1 2.85E-12 0.000254 0.999746

(1,-0.5,1.4,0.1) na 0.1 2.02E-12 0.000192 0.999808

True model is NBR model. Each row contains posterior probabilities based on one simulation of data size

100 from a model defined by parameters β, θ, τ and covariate matrix X corresponding to β.
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5.9 Real data analysis

5.9.1 Nurofibromatosis-2 (NF2) data

A spinal tumor count data for patients with the disease neurofibromatosis

2 (NF2) has been studied by Joe and Zhu (2005) and Yang et al. (2007) for

model selection. The data contains 158 observations of tumor counts from

patients. These data are heavily right skewed and have excess zeros at the

same time. This data is summarized in Table 5.9.

Table 5.9: Nurofibromatosis-2 (NF2) dataset

Tumor Count 0 1 2 3 4 5 6 7 8 9 10

Frequency 70 13 15 6 7 5 9 9 1 2 5

Tumor Count 11 13 14 15 16 20 21 24 26 30 50

Frequency 1 1 1 1 1 3 1 3 1 1 2

The dispersion index (the ratio of variance to mean) is D = 14.34792,

so the data are quite dispersed. The zero fraction (the proportion of zeros) is

0.443038, also the data is zero-inflated to great extent. The choice between GP

and NB model is not straightforward based on the property of data set. Joe

and Zhu (2005) studied this data set to show the difference between GP and

NB distribution, and for a simple initial analysis, they did not use covariate

information at that time. Yang et al. (2007) also studied this NF2 count data

for testing Poisson, GP and NB regression model with only intercept coefficient

in the covariate information. The author uses Vuong statistic to compare the
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difference between GP and NB model. They all conclude that NB model is

better than GP model for this observed data.

Bayesian posterior probability method is applied to this data, and the

covairate X = [1]n×1 is defined for including just intercept coefficient in the

model. Our method is then able to perform on the NF2 data. Results are

given in Table 5.10.

Table 5.10: Posterior probability for Nurofibromatosis-2 (NF2) data

P (PR|y) P (GPR|y) P (NBR|y)

0 0.1588155 0.8411845

From the results, the posterior probability of NB model is 0.8411845 which

is a strong evidence in favor of it. It is consistent with the previous studies,

whereas they did not provide the strong evidence. Joe and Zhu (2005) cal-

culated AIC of comparative models as AICZIGP = 743, AICNB = 744 and

AICGP = 752.8, which indicates that NB fits the data better than GP model,

but zero-inflated GP is better than NB model. Whereas Yang et al. (2007)

used the Vuong test for making a choice between the NB2 and GP model,

and the Vuong test statistic is -2.218 which is less than -1.96 (95% confidence

level), indicating the NB2 fits the data better than the GP. Joe and Zhu

(2005) discussed that zero-inflated generalized Poisson would give a better fit-

ting according to the presence of both over-dispersion and zero-inflation. Our

posterior probability gives consistent conclusion with P (ZIGP|y) = 0.762480,

P (GP|y) = 0.228028 and P (NB|y) = 0.009490.
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5.9.2 Los Angeles school data

The Los Angeles school dataset is selected from two senior high school in

the Los Angeles area. It includes several variables, our interest is focus on

variables of gender, language NCE test scores, mathematics NCE test scores

and days absent. Yang et al. (2007) analyzed the relation of days absent with

the other variables. The summary of these variables are given in table 5.11.

The dependent variable is days absent, others are used as indicator variable.

Covariate matrix is a mixture of fixed and random values, where gender is

binary variable, and others are continuous variables. The data includes 316

observations with 162 female and 154 male, and the mean of days absent is

5.810127 with variance equal 55.48764. The dispersion index is D = 9.55, thus

the data are quite dispersed. The zero fraction is 0.1962025, so the data is

zero-inflated too.

Table 5.11: Summary statistics for some variables in Los Angeles school data

Variable Min Max Median Mean Standard deviation

Absent days 0 45 3 5.8 7.45

Langnce 1.0 99 50.0 50.1 17.94

Mathnce 1.0 99 48.9 48.8 17.88

There are 316 observations with 162 female and 154 male identified by gender. Dispersion

index of absent days is D = 9.55 and zero fraction of absent days is 0.1962025.

Posterior probability results suggest GP regression model fits this data

better than Poisson and NB regression model. Yang et al. (2007) compared
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Table 5.12: Posterior probability of Los Angeles school data

P (PR|y) P (GPR|y) P (NBR|y)

3.708740e-292 0.927237 0.072762

GP against Poisson regression model, they have the score statistic as 97.8164,

the Wald statistic as 29.54 and their corresponding p-values are p < 0.0001.

All the statistics suggest GP regression model is better than Poisson regression

model. They tested NB versus Poisson regression model by the score statistic

as 95.5677 and the Wald statistic as 10.47, which indicates NB regression

model is better than Poisson regression model. They also found the better

fitting of GP model with week evidence of Vuong test as 1.415 against NB

model, since the score of Vuong test is not larger than 1.96 (95% confidence

level), they suggest both models for fitting the data as a matter of similar

prediction for the data. Since Vuong test depends on the maximum likelihoods,

and the maximum likelihood needs the estimation of model parameters which

maximizing the likelihood, it has restriction on the model comparison. Our

method does not require any prior information about the comparative models,

and it is only based on the basic structure of models with normally non-

informative prior on model parameters. Overall, it is more basic and general

testing method toward NB, GP, and Poisson regression model.
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5.10 Discussion

The method of Bayes factor is limited to the comparison of two models at a

time. When there are more than two candidate models, one has to go through

all pairwise comparisons which is time consuming. To overcome this limitation,

we developed a general Bayesian testing method in this chapter, so that more

than two models can be compared simultaneously. Specifically, we sort all

candidate models by their respective posterior probabilities computed from the

input data, assuming priors are drawn from a non-informative distribution.

Our method serves as a direct guidance in model selection by providing

a probability score for each candidate model. When the score of the leading

candidate is higher than other candidates by a large margin, we verified that

it is always the correct model. When several candidate models have very close

scores, the models themselves turn out to be very close (in the sense that NBR

and GPR models in Fig. 5.6), and the correct model is always one of them.

Since this subset of candidates have almost equal predictive power, picking

out a best one becomes a technicality and a matter of taste instead of the

highest score model, for example, Occam would choose the one with the least

number of parameters in favor of simplicity.

Compared with the frequentist approach, our method is more advanta-

geous because it does not rely on the accuracy of the fitting procedure. In

the frequentist approach, one has to compute, for each model, a set of optimal

parameters from the input data. When comparing models using these param-

eters, it is difficult to quantify the effect of their deviation from the true values
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(due to user or systematic errors, etc.) on the final result. In the Bayesian

method, we allow each parameter of the candidate models to be drawn from a

distribution, hence in effect average out such uncertainties. In this sense the

Bayesian comparison method is more suitable for finding the proper model

with little knowledge about the actual data.
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Chapter 6

Bayesian estimation of parameters in

generalized Poisson distribution

6.1 Introduction

In this chapter, we consider fitting the generalized Poisson distribution in

Bayesian framework with interest in the Jeffreys priors for model parameters.

Generalized Poisson distribution

f(y|α, λ) =
(1 + αy)y−1(λe−αλ)y

eλy!

where 0 ≤ α < 1/λ, 0 < λ

First, change the parameters of the distribution by the transformation of

θ = αλ. Then GP distribution becomes

f(y|θ, λ) =
λ(λ+ θy)y−1e−θy−λ

y!
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where 0 ≤ θ < 1, 0 < λ

Posterior density of joint parameters (θ, λ) of GP distribution is

p(θ, λ|y) =
p(y|θ, λ)p(θ, λ)

p(y)
=
L(θ, λ)π(θλ)

m(y)

The marginal likelihood m(y) is constant, we can simplify the calculation of

posterior distribution by only focus on the form of density.

p(α, λ|y) ∝ L(α, λ)π(α, λ)

The likelihood of GP distribution is

LGP(θ, λ) =
n∏
i=1

f(yi|θ, λ) =
λne−sθ−nλ

∏n
i=1(λ+ θyi)

yi−1∏n
i=1 yi!

The prior distribution of parameters is a key part of Bayesian inference,

though a reasonable prior should have minor effect on posterior distribution

with large sample size. Without any knowledge of parameters in the model,

a non-informative prior is a appropriate choice. We will first discuss posterior

inference with a simple set of priors and then Jeffreys priors.

6.2 Posterior distribution using conditionally uniform

prior

It is quite common to select non-informative prior as the prior distribution

for parameters in a model. As it does not require any information about the
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parameter, and also it brings nearly none information to the inference of it. It

is also convenient to implement, so let us first try simple conditionally uniform

prior. The prior distributions for the parameters in GP distribution are defined

as

θ|λ ∼ Uniform(0, 1)

π(λ) ∼ 1/
√
λ λ > 0

where α is dependent on λ from the definition of its domain in the distribution.

The prior for θ is the uniform prior over its domain from 0 to 1, while the

prior for λ is the Jeffreys prior derived from the Poisson distribution. The

conditionally uniform prior (C-U) for the joint parameters of GP model is

πC-U(θ, λ) = 1/
√
λ

Posterior density of joint parameters in GP distribution

pC-U(θ, λ|y) ∝ L(θ, λ)πC-U(θ, λ)

=
λn−1/2e−sθ−nλ

∏n
i=1(λ+ θyi)

yi−1∏n
i=1 yi!

The joint distribution is not explicitly tell what we want to know for the pa-

rameters. Due to the dependence between two parameters, we can not derive

the posterior density for each parameter alone. But the full conditional poste-

rior is available for further analysis which means inference based on simulation

study. For each parameter, the full conditional distribution is the distribution

of the parameter conditional on all the other parameters and the given data:

150



p(θj|θ−j, y)

The full conditional posteriors of GP distribution are

pC-U(θ|λ, y) =
pC-U(θ, λ|y)

pC-U(λ|y)
∝

λn−1/2e−sθ−nλ
∏n
i=1(λ+θyi)

yi−1∏n
i=1 yi!∫ λn−1/2e−sθ−nλ
∏n
i=1(λ+θyi)yi−1∏n

i=1 yi!
dθ

∝ e−sθ
n∏
i=1

(λ+ θyi)
yi−1

pC-U(λ|θ, y) =
pC-U(θ, λ|y)

pC-U(θ|y)
∝

λn−1/2e−sθ−nλ
∏n
i=1(λ+θyi)

yi−1∏n
i=1 yi!∫ λn−1/2e−sθ−nλ
∏n
i=1(λ+θyi)yi−1∏n

i=1 yi!
dλ

∝ λn−1/2e−nλ
n∏
i=1

(λ+ θyi)
yi−1

The full conditional posteriors are not any simple distribution. Metropolis-

Hastings algorithm is applied to achieve simulation of posteriors in use of

simulated values of other standard distributions. The proposal density of

Metropolis-Hastings algorithm becomes effective with high acceptance rate

when it is as close as possible to the target density. Proposal densities for full

conditional posteriors using flat prior are defined below

λj ∼ Gamma(shape = s, scale =
λj−1

s
)

θj ∼ Uniform(θj−1 − 0.05, θj−1 + 0.05)

The proposal densities are dependent on the previous draw of the parameter,

as the purpose of dependence is to improve the acceptance rate in simulation.

The mean of proposal density is supposed to be the previous simulated value.
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It ensures that the markov chain will quickly converge to the stationary status.

6.3 Posterior distribution using Jeffreys priors

The Jeffreys prior for parameters (α, λ) is

πGP
J (α, λ) = πJ(α|λ)πPoi

J (λ)

∝ λ√
(1 + 2α)(1− αλ)

1√
λ

where 0 ≤ α < 1/λ, 0 < λ. Since Jeffreys prior is invariant under reparame-

terization of parameters θ = αλ

The Jeffreys prior for parameters (θ, λ) is

πGP
J (θ, λ) = πGP

J (α, λ)

∣∣∣∣dαdθ
∣∣∣∣

∝ 1√
(λ+ 2θ)(1− θ)

where 0 ≤ θ < 1, 0 < λ.

Posterior density of joint parameters using Jeffreys priors are

pJ(θ, λ|y) ∝ L(θ, λ)πJ(θ, λ)

=
λne−sθ−nλ

∏n
i=1(λ+ θyi)

yi−1√
(λ+ 2θ)(1− θ)

∏n
i=1 yi!

The posterior density is too complex to draw statistical inference directly from

the equation. Simulation is needed to carry out for obtaining the property of

parameters. The full conditional posteriors are derived below for simulation
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using Gibbs sampler method.

The full conditional posteriors of GP distribution are

pJ(θ|λ, y) =
pJ(θ, λ|y)

pJ(λ|y)
∝

λne−sθ−nλ
∏n
i=1(λ+θyi)

yi−1√
(λ+2θ)(1−θ)

∏n
i=1 yi!∫ λne−sθ−nλ

∏n
i=1(λ+θyi)yi−1√

(λ+2θ)(1−θ)
∏n
i=1 yi!

dθ

∝ e−sθ
∏n

i=1(λ+ θyi)
yi−1√

(λ+ 2θ)(1− θ)

pJ(λ|θ, y) =
pJ(θ, λ|y)

pJ(θ|y)
∝

λne−sθ−nλ
∏n
i=1(λ+θyi)

yi−1√
(λ+2θ)(1−θ)

∏n
i=1 yi!∫ λne−sθ−nλ

∏n
i=1(λ+θyi)yi−1√

(λ+2θ)(1−θ)
∏n
i=1 yi!

dλ

∝ λne−nλ
∏n

i=1(λ+ θyi)
yi−1√

(λ+ 2θ)(1− θ)

Proposal densities for full conditional posteriors of GP distribution are de-

fined to draw random numbers on the basis of Metropolis-Hastings algorithm.

λj ∼ Gamma(shape = n, scale =
λj−1

n
)

θj ∼ Uniform(θj−1 − 0.05, θj−1 + 0.05)

The proposal densities are dependent on the previous draw of the parameter,

as the purpose of dependence is to improve the acceptance rate in simulation.

6.4 Simulation of data from posterior distribution

The simulation of the joint posterior distribution is based on the full con-

ditional posterior densities through the Gibbs sampler. Sampling from the
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full conditional posterior is accepting draws from a proposal distribution by

means of Metropolis-Hastings algorithm. The simulated values are assessed

by a acceptance probability.

The acceptance probability of Metropolis-Hastings algorithm is

A(x, x∗) = min(1,
p(x∗|y)q(x|x∗)
p(x|y)q(x∗|x)

)

It is a measure of the probability of transition from x to x∗. Here x and x∗

respectively denote the recently accepted value and new simulated value from

the proposal density. p(x∗|y) and p(x|y) are the posterior density of interest

at points x and x∗. q(x∗|x) is the proposal density at x∗ conditional on x.

The algorithm of sampling from joint posterior distribution

1. Initiate arbitrary values as the start state, for example (λ0 = 1, θ0 = 0.5);

2. for j=1 to m, iterate;

3. draw a random value of both λ and θ variables from proposal distribu-

tions;

θ∗ ∼ q(θ|θj−1);

λ∗ ∼ q(λ|λj−1);

4. draw a random value from uniform distribution: U ∼ Uniform(0, 1)

5. accept the draw according to acceptance probability A(x, x∗);

let θj = θ∗ if A(θj−1, θ
∗|λj−1) ≥ U , or θj = θj−1, otherwise;

let λj = λ∗ if A(λj−1, λ
∗|θj) ≥ U , or λj = λj−1, otherwise;
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6. repeat the steps, until reach m draws.

The markov chain should converge quickly to a stationary status, normally

burn-in having 500-1000 steps, after that sampling could be treated as the

simulated data from the target distribution for analysis purpose. The accep-

tance probability also relies on the other parameter, so the most recent draw

of the other parameter is a good choice for it.

6.5 Simulation results

Simulation is implemented with different settings of parameters in GP dis-

tribution. Each simualtion result is based on one simulated data from the

same setting, and total number of simulation loops for each setting is N = 100

loops. Each loop consists of burn-in stage and stationary stage. Statistical

results are then drawn from the stationary data.

For example, given a simulated data from the setting of GP(θ = 0.5, λ =

1). It is shown in table 6.1. There are 100 simulated numbers in the data,

and the data is over-dispersed with large variance. Based on this data, we

want to estimate parameters in the GP distribution. By applying Bayesian

method, we can get the posterior densities for the parameters with proper

prior assumptions.

First, choose flat prior for θ and Jeffreys prior for λ. We have the full

conditional posteriors of parameters, and then Markov chain Monte Carlo

method can be used to obtain the simulated values from the posterior density.
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Table 6.1: Simulated data of size 100 from GP(θ = 0.5, λ = 1)

Y 0 1 2 3 4 5 6 8 9 10 13 19

Frequency 33 24 15 6 8 4 2 3 1 2 1 1

Trace plot of Markov chain is plotted for each parameter in the figure 6.1.

From the trace plot, it is easy to see that the chain reaches stationary quickly,

and the size of 5000 iterations is enough for the MCMC simulation.

Figure 6.1: MC trace plot of lambda
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The ACF plots show autocorrelation which is reasonable because of the

dependence of the proposal densities used in Markov chain. The improvement

of using dependent proposal densities is significant in increasing the acceptance

rate of Markov chain in Metropolis-Hastings algorithm. The acceptance rate

is calculated by the equation of

ρ =
Number of acceptance of draws

Total number of draws

The acceptance rate is the percentage of accepted draws in the Markov chain.

A high value of acceptance rate indicates a good proposal density and a quick

mixing in Markov chain. In this case, the acceptance rates are ρ(θ) ≈ 0.80965

and ρ(λ) ≈ 0.69885.

Figure 6.2: Histogram of MCMC
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Histogram plot shows the frequency of the values of parameter in the trace-

plot, basically it stands for the posterior distribution of the parameter which
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we want to know. The center of the histogram of parameter θ is close to 0.5

which is the true value of θ in the GP distribution, whereas the center of the

histogram of parameter λ looks a litte bigger than 1. The actual results for

parameters are

Table 6.2: Bayesian inference of flat prior

Parameter True value Estimate 95% CI

θ 0.5 0.5156234 (0.4084328, 0.6343092 )

λ 1 1.084807 (0.8458981, 1.3584917)

However, the bias in the simulated values from MCMC is appropriate,

because the simulated data from the GP distribution could contain bias during

the process of simulation. The 95% credible interval correctly capture the

true value of target parameters. Based on the results, the MCMC method

works well on estimation of GP distribution given the flat prior and proposal

densities.

Now, let us adopt Jeffreys priors for both λ and θ parameters. The Markov

chain reaches stationary status quickly within 500 steps, the trace plot of

parameters λ and θ are displayed in figure 6.3. The trace plot shows the

values the parameter took during the runtime of the chain. From the trace

plots and ACF plots, the simulated values of parameters are less autoregressive

than the chain of flat prior.

Histogram of the simulated values of parameter, given in 6.4, indicates the

posterior density of the parameter. From these plots, the results show better
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Figure 6.3: MC trace plot of lambda
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Figure 6.4: Histogram of MCMC
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estimation of parameters compared with using flat prior for θ. The center of

histogram of θ locates at 0.5. Although the center of λ is still a bit bigger

than 1, the variance of the simulated values of λ is smaller than the one of flat

prior. The actual results for parameters are

Table 6.3: Bayesian inference of Jeffreys priors

Parameter True value Estimate 95% CI

θ 0.5 0.5139565 (0.4295281, 0.6088664 )

λ 1 1.077347 (0.8415542, 1.3358935)

The results show 95% CI correctly catch the true value of parameter. Also,

the consistency of the center location of λ demonstrate that the bias is most

likely intrinsic to the given data. Therefore, using Jeffreys priors give a better

estimation of GP distribution. Next, we will implement this MCMC process

for a set of 100 data simulated from the same setting of parameters in GP
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distribution.

6.5.1 Validation of method

Several sets of parameter values in GP distribution are defined for the pur-

pose of validation of our Bayesian inference method. For instance, (0.2, 1.0),

(0.5, 1.0), (0.8, 1.0), (0.2, 2.0), etc. Validation is based on 100 data simulated

from each set of parameters, Bayesian inference is drawn from the MCMC

method for each simulated data set. The probability of the credible interval

covering the true value of parameter is treated as a measure of the accuracy of

our method, and it is called coverage probability. The higher the probability

of coverage, the more accurate the method is. The variance of estimates is

able to be estimated through a series of estimated values of parameter. Also,

bias is given for use in comparison with variance. The bias is the difference be-

tween expectations of an estimator and the true value of the parameter being

estimated. It is calculated by the way of

bias(θ̂) = E(θ̂ − θ)

The coverage probability (CProb) is a measure of accuracy of estimation of

parameters. It is calculated by the percentage of estimated 95% CI contain-

ing the true parameter value over all 100 simulated data from the same GP

distribution.

The results of estimation by Bayesian posterior probability method for a set

of parameter values is listed in the table 6.4 for Jeffreys prior and table 6.5.
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Each row is the result for one set of parameter values (θ, λ). The result of

each row is concluded from Bayesian inference on 100 data simulated from

the GP distribution with parameter values given by (Trueθ, Trueλ). The ’Est

θ’ and ’Est λ’ are the mean of estimated values of 100 simulated data. 95%

CI is calculated by taking average of 2.5th quantile and 97.5th quantile of

estimator over all data. Variance, bias and coverage probability of estimator

are computed by their definition over estimates of all simulated data.

The results display that both flat prior and Jeffreys prior work well on

Bayesian inference of GP distribution. The coverage probability is high for all

sets of parameter values, and variance and bias of the estimators are all low.

It is quite accurate of using flat prior with very high coverage probability for

each set of parameters.
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6.6 Real data analysis

6.6.1 Nurofibromatosis-2 (NF2) data

A spinal tumor count data for patients with the disease neurofibromatosis

2 (NF2) has been studied by Joe and Zhu (2005) for distribution selection of

Poisson-related distributions. The data contains 158 observations of tumor

counts from patients. The detail about NF2 tumor count data is given in

table 6.6

Table 6.6: Nurofibromatosis-2 (NF2) dataset

Tumor Count 0 1 2 3 4 5 6 7 8 9 10

Frequency 70 13 15 6 7 5 9 9 1 2 5

Tumor Count 11 13 14 15 16 20 21 24 26 30 50

Frequency 1 1 1 1 1 3 1 3 1 1 2

This data is summarized in Table 6.7. These data are heavily right skewed

and have excess zeros at the same time. This is data has been tested over

generalized Poisson regression model, negative binomial regression model, and

Poisson regression model. Our testing shows the negative binomial regression

model fits NF2 data more properly.

Now, this data is going to be used to demonstrate the accuracy of our

Bayesian method. Joe and Zhu (2005) studied the distribution testing with-

out covariate information, and also suggests negative binomial distribution is

better than generalized Poisson distribution. In the paper, the author provided
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Table 6.7: Summary statistics for Nurofibromatosis-2 (NF2)

Min Max Median Mean Variance

0 50 1 4.34 62.4

the values of estimation of fitted generalized Poisson distribution by maximum

likelihood estimation method.

Table 6.8: Estimation of GP distribution for Nurofibromatosis-2 (NF2)

Prior θ̂ λ̂ SE of θ̂ SE of λ̂

Jeffreys prior 0.7888138 0.9183445 0.02595482 0.09603467

non-informative prior 0.7879164 0.938116 0.0360353 0.09041671

MLE 0.789 0.913 0.036 0.095

Bayesian method for model estimation is implemented on the observed NF2

tumor data. The results based on Jeffreys prior and non-informative prior are

listed in table 6.8, whereas, in the table, the maximum likelihood estimation is

obtained from paper Joe and Zhu (2005). From the results, it is obvious that

Bayesian method gives similar estimation compared to maximum likelihood

estimation. In this case, Jeffreys prior works slightly better than flat prior in

accuracy aspect, but they perform equivalently well in general.
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6.7 Discussion

We present the Bayesian inference using Jeffreys prior for generalized Pois-

son distribution. Our interest is on the effect of Jeffreys prior on Bayesian

estimation of generalized Poisson distribution. The Bayesian inference based

on Jeffreys prior is compared with the Bayesian inference using conditionally

uniform prior through simulation study. The study shows they both provide

accurate estimates with high coverage probability for distribution parameters,

but conditionally uniform prior has slightly higher coverage probability of true

parameters than Jeffreys prior. A real data is studied to evaluate the Bayesian

method by comparing the estimation with maximum likelihood estimation. In

the real data case, GP distribution is fitted through our Bayesian method and

the parameter estimation gives a evidence that Bayesian inference using either

Jeffreys prior or conditionally uniform prior provides the results consistent

with the frequentist inference by the maximum likelihood estimation.

Our Bayesian inference of generalized Poisson distribution help understand

the difference between Jeffreys prior and conditionally uniform prior. Both

provide accurate estimation of model parameters. Conditionally uniform prior

is simple and easy to understand, while Jeffreys prior has its benefit of invari-

ance under reparameterization of the parameter. The choice of prior between

Jeffreys prior and conditionally uniform prior is made up to researcher’s inter-

est.
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