University of Cincinnati

Date: 6/29/2015

. Kasun M Samarasinghe . hereby submit this original work as part of the requirements
for the degree of Doctor of Philosophy in Electrical Engineering.

It is entitled:

Sparse Signal Reconstruction Modeling for MEG Source Localization Using Non-
convex Regularizers

Student's name: Kasun M Samarasinghe

This work and its defense approved by:

Committee chair: H. Howard Fan, Ph.D.

=5 Committee member: Donald French, Ph.D.
UMNIVERSITY OF @
Cincinnati Committee member: William Wee, Ph.D.

Committee member: Jing Xiang, Ph.D.

Committee member: Xuefu Zhou, Ph.D.

16224

Last Printed:&7/2015 Document Of Defense Form




Sparse Signal Reconstruction Modeling for MEG Source Localization

using Non-convex Regularizers

A dissertation submitted to the

Division of Research and Advanced Students

of the University of Cincinnati

in partial fulfillment of the requirements

for the degree of
Doctor of Philosophy
in the Department of Electrical Engineering and Computing Systems

of the College of Engineering & Applied Science

University of Cincinnati

June 2015
by
Kasun Maduranga Samarasinghe
B.S. Electrical Engineering

University of Peradeniya, Peradeniya, Sri Lanka

April 2008

Thesis Advisor and Committee Chair: Prof. Howard H. Fan



ABSTRACT

This thesis introduces the usage of non-convex based regularizers to solve the
underdetermined MEG inverse problem. The signal to be reconstructed is considered to have a
structure which entails group-wise sparsity and within group sparsity among its covariates. We

discuss the usage of [, norm regularization and smoothed /; (SLO) norm regularization to

impose group-wise and within group sparsity respectively. In addition, we introduce a novel
criterion, which if satisfied, guarantees global optimality while solving this non-convex
optimization problem. We use proximal gradient descent as the method of optimization as it
promises faster convergence rates. Initially, we show that our algorithm successfully recovers

sparse signals with a smaller number of measurements than the conventional / regularization

framework. We also support this claim using MEG source localization simulations and extend

the reconstruction for both stationary and non-stationary signals.

Next, we formulate a global convergence analysis for the novel algorithm. Finally, we
incorporate novel information criteria techniques and concepts of duality to find the best set of
regularization parameters and a proper stopping criterion respectively. We were able to
successfully illustrate that the regularization parameters (models) with lower information
criteria performs better than the ones with higher information criteria. Also, concepts of duality
provides the necessary tools to determine when to stop the algorithm, which is an important

contribution considering the non- differentiability of the objective function.
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1 INTRODUCTION

1.1

Introduction to E/MEG - Brain Source Localization

Magneto-encephalography (MEG) and Electro-encephalography (EEG) are two of the
most commonly used non-invasive techniques to solve the “inverse problem” of brain
source localization from MEG measurement. MEG and EEG observe the magnetic and
electric fields near the scalp surface generated by the neuronal sources inside the brain,
respectively. Locating such neuron sources can aid MDs in diagnose and treatment of
certain neurological diseases. The advent of these techniques thus has helped
profoundly to analyze and prevent brain related diseases in clinical environments in
non-invasive ways. For example, epileptic patients suffer from recurrent seizures that
occur at unpredictable times without any warning. These seizures are transient
anomalies in the brain’s electrical activity. M/EEG can be used to early detect and
localize these epileptic loci, and therefore measures can be taken to help patients to
reduce the risk of sustaining physical injuries and potential result of death. Some of the
other useful applications of using M/EEG are diagnosing brain tumors, detecting
abnormal brain states or to classify sleep stages and understanding the functionality and

the brain responses related to languages, emotions and vision.
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A typical neuron, as shown in Figure 1.1, consists of three main parts: the cell body

(soma), dendrites and axon. Even though the cell body can have numerous dendrites,

it

will only give rise to one axon. “Synaptic signaling” is a structure in the nervous system

that allows a neuron to pass an electrical or chemical signal to another cell. These

synaptic signals are received by the cell body and the dendrites, and then transmitted to

a neighboring cell using the axon. Therefore, a typical synapse can be referred to as a
contact between the axon of one neuron and the cell body/dendrites of another. The
latter is called the post-synaptic neuron. If this synapse received at the post-synaptic
neuron is large enough during a short period of time, the neuron will generate an

electric pulse called an action potential. These synapses can be either excitatory (the
post-synaptic neuron is more likely to fire an action potential) or inhibitory (the post-

synaptic neuron is less likely to fire an action potential).

dendrites nucleus NEURON

axon

/ axon ending
myelin sheath

cell body

Figure 1.1: Structure of a typical Neuron [72]
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1.2

Usually, the apical dendrites in cortical pyramidal cells of the brain cortex are assumed
to generate the strongest signals [73]. However, one dendrite is far too weak to produce
a measurable signal. Therefore, for modeling purposes, a synchronous collection of
thousands of dendrites are collectively gathered as one measurement - “a dipole”.
These dipoles will act as current generators, and according to the Maxwell’s equations,
they would create an electric field and an orthogonal magnetic field which will be

captured by EEG and MEG sensors respectively with high temporal resolution.

Unfortunately, even though the number of active source locations could be only a few,
the number of potential source locations (positions for a potential current dipole) in the
entire area of interest can be relatively high. In MEG modeling, the number of sensors is
usually around two hundred, which is much less than the total number of potential
dipole locations in the brain. Therefore, this inverse problem of finding the position,
amplitude and the orientation of the unknown and active current dipoles becomes
underdetermined (we will explain more on the orientation properties of dipoles in
Chapter 5). The current dipoles are usually assumed to be positioned on the cortex of

the brain, and these positions are represented by vertices in the cortical mesh [1].

Previous Work

Existing approaches to solving this under-determined system can be categorized into
three classes: Dipole Fitting methods [2, 3, 4], Scanning methods [5, 6] and Imaging

14



methods. Even though Dipole Fitting is the most commonly used technique in the
clinical setting, it requires knowledge of the number of active dipoles in advance [7].
Examples of Scanning methods include Beamforming methods [6], Mutiple Signal
Classification method (MUSIC) [5], and Maximum Likelihood Estimation (MLE) methods
etc... Beamforming methods do not require this assumption; as a result, they give a
more impartial estimation. However, Beamforming methods are unable to distinguish
between two correlated source activations. Usually, there are two types of correlations
that can interfere with the beamforming estimation process: the correlation between
different dipoles and the correlation within a dipole component. The latter correlation is
caused by continuous rotation or wobbling of the dipole during the measurement. Due

to this drawback, Imaging methods were introduced as an alternative.

1.2.1 Imaging methods — Advantages and Drawbacks

Imaging methods assume that primary sources can be represented as linear
combinations of neuron (dipole) activities. Also, for a given task within a given time
period, it assumes that only a few dipoles are active at the same time. Examples of
Imaging methods include Minimum Norm Estimate (MNE) [8, 1, 9], LORETA/ sLORETA
[10], Minimum Current Estimate (MCE) [11], FOCUSS with the use of Iterative Weighted
Lease Squares algorithm (IRLS) [13] etc. All these methods include a norm minimization
procedure, which is referred to as a norm-prior. Imaging methods are not affected by

the correlation property of the sources, neither it requires the knowledge of the number

15



of active dipoles. Therefore imaging methods are the most practical methods, providing

the best solutions so far. From now on we will concentrate on imaging methods.

The MNE method uses [, norm as its norm-prior, which makes the minimization model
convex and differentiable. This makes the estimation extremely fast. However, /, norm

based methods have numerous limitations. They fail to recognize focal activities and
tend to smear the active dipole positions. For example, MNE results are often too
diffused for applications such as early detection of epileptic foci. Also, they tend to

misplace deeper sources onto the outermost cortex, causing increased ambiguity.

LORETA uses the regularization concept of ridge-regression, or otherwise referred to as
a special case of Elastic-net approach. This itself is similar to MNE such that the overall
cost function is convex, and hence a global optimum can be found quickly. However, just
like the MNE approach, the results are much more diffused and are not suitable for

focal-source localization.

Due to these drawbacks, researchers moved their focus more on methods that would
encourage spatially-sparse behavior, using the assumption that only a few source
locations are activated at a given time. As a result, MCE was introduced, which is also
referred to as LASSO (Least Absolute Shrinkage and Selection Operator) [13]. MCE/

LASSO uses /, as the norm-prior, inducing sparsity on the solution. Around the same
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time Gorodnitsky et al. [12] introduced FOCUSS, which uses the lp norm-prior

(O<p<).

These regularization methods can be expressed by the following inverse problem and its
corresponding solution as:

Y=AX+F
. 2
argmin,, [HY—AX”F +AQ(X)]
where Y € R s the sensor measurement matrix, X € R"” is the source matrix to

be solved, 4 € R isthe Lead-field/ Gain matrix, N is the number of sources, M is

the number of sensors (with N >> M ), T is the number of time samples, £ € R is

white Gaussian noise, A is the Regularization parameter and Q is the regularizer/
penalty function. Also, the Frobenius norm of X is defined as ||X||F = tr(XTX) .An

in-depth explanation about the definitions and the behaviors of norm functions are

provided in Chapter 2.

The Imaging methods will differ from each other on how they define the penalty

function €. For MNE and LORETA the penalty function can be generally defined as
Q= ||WX||i , where W is the weighting function . For MNE ¥ would be an identity

matrix, and for LORETA W would be the discrete spatial Laplacian operator. For MCE/

LASSO and FOCUSS the penalty function would be defined as Q = |X|p for p=1and

17



1.2.2

0 < p <1 respectively. As will be shown later in Chapters 2, usingan /, norm, p<1,

promotes sparsity in the solution.

However, MCE and FOCUSS methods promote sparsity at each time sample - penalizing
both spatially, and temporally. This may cause a failure in recovering the exact time-
courses of cortical sources since the time course of a cortical source may not be sparse.

Hence, in contrast to MNE, MCE will result in “spiky” discontinuities.

In the literature of Source Localization, it is collectively agreed that the neural
activations are spatially focal (sparse) and temporally smooth (not sparse) [14]. If we
look at the aforementioned methods, they tend to focus only on one aspect, sacrificing
the quality of the other. As a result, a great deal of research has been devoted to finding
novel spatio-temporal regularization methods, which would encourage sparsity while

preserving the temporal smoothness.

Mixed Norms

As a solution to the above problem, mixed norm sparsity-inducing priors were
introduced. Haufe et al. [15] introduced a method, which promotes spatial sparsity via

[, norm-prior, while [, norm-prior is used for the orientations. Similarly, Ou et al. [16],
used /, norm-prior for spatial sparsity while /, norm-prior was used on both

orientations and time samples. They also used SVD to compact the signal subspace —

significantly reducing the number of time samples. Therefore it is apparent that the
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underlying reason for the success of these solvers is their adaptation to the structure of
the sparsity of the problem. Similar methods were discussed by Friston et al. [17],

Aurannen et al. [18] and Jeffs et al. [19], where the latter used various lp norm-priors

with O<p<landl<p<2.

Despite their usefulness, most of the aforementioned solvers were computationally
slow in finding the estimates; hence a growing interest for faster minimization
algorithms arose. Novel minimization techniques for non-differentiable cost models like
Proximal Gradient Methods [65, 66, 20] outperform conventional Second Order Cone
Programming (SOCP) reduction techniques and interior-point methods in computational

speed.

Pioneering work in this regard was done by Gramfort et al. [20, 21], where they
introduced various types of mixed norms depending on the structure of the inverse
problem. They also introduced faster Proximal Splitting Methods during the
optimization process saving significant amount of computational time. Among those
mixed norms, two-level sparsity-inducing priors were used for both spatial and time
domains, while three-level sparsity-inducing priors were used for spatial, time and
“experimental conditions” domains. In their experiments, they considered a
somatosensory data-set, where the stimulus was delivered as a square-waved electrical
pulse on each finger [20]. Each finger stimulated was considered an experimental
condition. They demonstrated that by using the mixed norm approach, they were able
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to reconstruct similar size active sources for each finger in the somatosensory cortex,

while the [, norm priors gave different size active sources for each finger. Therefore,

they were able to successfully show the importance of using mixed norm priors as

opposed to individual priors.

Structured Sparsity in M/EEG Source Localization

Non-Stationary behavior of Neuronal brain sources
Most of the above methods, which obtain temporal smoothness via [, norm-prior, rely

heavily on the assumption that the source activation remains the same through-out the
time interval of interest [16, 22, 20]. For example, Ou et al. [16] obtains temporal
smoothness through temporal basis functions using SVD. The validity of this step

strongly relies on the assumption that sources are stationary.

Even though this assumption is valid for small time windows, in a realistic setting
multiple sources will be switching “ON” and “OFF” during the time window of interest.
Pioneering work combining sparsity-inducing methods and non-stationary focal source
localization was done by Gramfort et al. [21], where they enforced sparsity on time-
frequency decompositions of the sources. They used the assumption that each active
dipole is a linear combination of a limited number of Gabor atoms. Since a Gabor atom

is localized in time, user can now define the time window of interest depending on the
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functional behavior of the source. However, this algorithm needs to compute Gabor

transforms at every iteration, causing a high computational complexity.

Structure based on Regions of Interest (ROI’s)

Another issue that needs to be considered is ROI. In order to understand the functional
properties of the brain, it is important to be able to distinguish brain source activation
regions that depend on different tasks, i.e., there is a need to distinguish ROl’s for
different tasks. Unfortunately, conventional inverse solvers fail to distinguish ROI’s that
are in close proximity. For example, ROI’s for the visual system with retinotopic mapping
can be determined with fMRI [23,24]. These regions correspond to distinct visual areas
on the brain depending on the visionary function. However, due to their close proximity,
during M/EEG inversion some regions might be subjected to aliasing, which increases

ambiguity.

Group Sparsity concept for M/EEG Source Localization

Group sparsity concept was initially introduced by Yuan et al. [25] and it was referred to
as Group Lasso. While Lasso was able to zero-out single sources, Group Lasso could
force groups of sources to zero. Hence, Group Lasso was highly advantageous when the
structure of the problem can be modeled as groups. In other words, Group Lasso uses
the a-priori structure information of the problem at hand to improve the quality of the
estimation. Therefore, for non-stationary source activations and estimating ROI’s,

Group Lasso naturally provides a better solution as compared to the conventional mixed
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norm solutions. Also, it is observed [26] that when we have measurements from
different subjects (can be the same patient at a different time of measurement or
different patients), setting an a-priori Group structure helps to settle disputes about the

functional behavior of brain regions.

In addition, on a general basis, provided that the group structure is correctly guessed,
Group Lasso is more robust with stochastic noise as compared to standard Lasso.
Furthermore, it is proven [27] that Group Lasso requires a smaller sample size to satisfy
the sparse eigen-value condition required in sparsity analysis compared to standard
Lasso. A concise analysis of some of these claims is provided in Chapter 2, while a

detailed description can be found in [27].

It is important to note that Group Lasso shows superior reconstruction only when the
group structure is correctly guessed a-priori. In [27] Huang et al. demonstrated that
when the group structure is guessed incorrectly, Group Lasso showed inferior results to

Lasso.

In the M/EEG context, this a-priori structure can be obtained by using functional MRl
(fMRI) measurements [26]. For example, using fMRI [74, 75], topographic maps can be
obtained for the visual system, which correspond to distinct visual areas that have
different functionalities. This a-priori structure can then be used for Group Lasso

reconstruction.
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Our Contribution

This phenomenon of structure among brain source activities propelled us to introduce
group based sparsity into the M/EEG source localization paradigm. Our contribution in

this thesis is three-fold.

Firstly, we introduce the Group sparsity concept and its extensions as we believe it’s a
relatively novel idea in the M/EEG Source Localization framework. While this work was
carried out, we came across similar approaches by Jair Monotoya et al. [28] and the PhD

thesis work by Michale Kim [26]. However, we focus on more challenging non-convex |
- norm approximation based priors as opposed to the conventional and less robust /; -
norm-priors. To the best of our knowledge, Gaussian based /, norm approximations

have not been used for the M/EEG inverse problem in previous work. In Chapter 2 and

3 we provide a theoretical analysis of why “/; - norm” is preferred to its counterpart /,

norm methods.

Secondly, as a part of our main contribution, we provide a thorough statistical analysis
of the algorithm we have introduced. Furthermore, we introduce the concepts of Group
Sparsity and Sparse Group Sparsity to the cost minimization model, making it more
robust for a wide-range of underdetermined problems. Within this cost minimization,

we introduce a novel criterion — a set of conditions, which if satisfied, guarantees global
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optimality. In addition to this criterion, in Chapter 6, we also present a thorough

convergence analysis for the novel algorithm we introduce. For this analysis, we follow

the findings and arguments mentioned in [47]. It is important to note that, we discuss

both stationary and non-stationary signal reconstruction in this section.

Finally, we complement this analysis by finding the best Regularization parameters out

of a candidate set of values using a Model Selection approach. Traditional model
selection criteria, such as Akaike Information Criteria (AIC) and Bayesian Information
Criteria (BIC) are most effective for models estimated by maximum likelihood
estimation, and therefore, cannot be directly applied for regularization parameter
selection. Hence, we follow an information-theoretic approach for model selection,
introduced by Shimamura et al. [76]. Their work is limited to the case of Group Lasso,

where we extend it to the case of Sparse Group Lasso with “/, norm” approximation

based regularization. Also, we introduce a novel basis for the stopping criterion of the

algorithm. This criterion is based on the duality gap, where a dual function is formulated

based on the primal cost function.

Since we are using an “/, norm” approximation model as the penalizer, we expect our

algorithm to provide better reconstruction results compared to the currently used /; -

norm methods, based on the required level of sparsity and the required level of
measurements. Also, since we are embedding a-priori information in the structure of

our algorithm, we expect the algorithm to perform well in a wide-range of problems
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that fit this structure. In addition, most of the conventional reconstruction procedures

use trial-and error to find the best set of Regularization parameters. We overcome this
problem using an information-theoretic approach, and yield the best set of parameters
among a set of candidate values. Finally, by the introduction of Duality and duality gap,

we obtain a better measure for the stopping criterion in our algorithm.
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2 COMPRESSIVE SAMPLING

2.1

In this chapter we initially introduce the idea behind Compressive Sampling, and then
we define the Compressive Sampling problem. Next we discuss the importance of

normed vector spaces and how it is related to defining the conditions for sparse

recovery. Finally, we perform a theoretical analysis of structural sparsity and analyze its

benefits.

Introduction to Compressive Sampling

Compressive Sampling or Compressive Sensing (CS) has gained much attention in the
last decade in the fields of Signal Processing, Statistics, Computer Science, Applied
Mathematics and Bio-Informatics. This is due to its ground-breaking ability to
reconstruct signals from a far fewer set of samples/measurements as compared to
conventional methods. Traditionally, the celebrated “Nyquist-Shannon Sampling

Theorem”, introduced by Nyquist and Shannon, shows that a signal can be exactly

recovered from a set of samples taken at the so-called Nyquist Rate (taken at twice the

maximum frequency of the signal).
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However, this stringent condition on sampling makes it impractical to cater to the ever-
increasing need for reliable and fast sensing systems. For example, when dealing with
signals with high bandwidths as in Radar or Ultra Wide Band signals, it is becoming
difficult to acquire data at a rate of several GHz. Applications like seismic explorations,
medical imaging applications such as Magnetic Resonance Imaging (MRI) and Functional
Magnetic Resonance Imaging (fMRI) have constraints on the amount of sensors that can
be used to acquire data. Also, to minimize the radiation exposure to patients, these real-
time medical applications must have time-constraints in data-acquisition. These
constraints would make data acquisition at the Nyquist rate very costly, time-

consuming, or even infeasible.

Upon further analysis, it was evident that most of these signals of scientific interest are
sparse/ compressible. In other words, it is possible that some or even most of the
obtained data can be discarded without much perceptual loss; the useful information
lies in @ much smaller subspace compared to the overall signal space. This phenomenon
brought the concept of transform coding to light and then later on the principle of

transform sparsity in CS. Transform Sparsity states that, for a given sparse signal of

interest x = (xl. )n € R", there exists an orthonormal basis i such that x =@ where

i=1
0 being sparse. In general, this assumed level of sparsity can be described as: for some

C>0and0<p<2.

lo

L =Claryr=sc (2.1)
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Therefore, when the signal is known to be sparse on its own or in a given basis, the
minimum number of measurements required for “perfect” reconstruction of the sparse
vector may become vastly reduced compared to that with the traditional Nyquist
Sampling Theorem. The underlying idea behind CS is to directly capture the datain a
compressed form rather than first sampling at a higher rate and then processing the
sampled data and throwing away most of it. This allows data to be captured at a much

lower sampling rate enabling a larger computational and sampling cost reduction.

The Compressive Sensing Problem

Let m, n represent the length of measurement vector and the length of the signal vector
respectively. Let AER™", yER", x ER" be the gain matrix/sensing matrix,

measurement/sensor vector and signal/source vector respectively. Due to the reduction
in dimensionality, the number of measurements will be much less than the number of
samples of the signal: m << n. Also, it is assumed that 4 does not include any zero
columns. The CS problem can be stated as solving the following underdetermined linear
system of equations to recover x, provided that x is sparse on its own or in a certain
domain:

y =Ax ory = Ay (2.2)
The pioneering work of Candes, Romberg, Tao [29-32] and Donoho [33] revealed in their
work that a sparsely represented signal can be recovered with a probability very close to

one using a small set of linear, non-adaptive measurements.
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2.3

This discovery enabled and encouraged the signal processing community to explore

novel methods to recover the original signal from the compressive measurements. As a

result, highly non-linear methods such as Convex Optimization, Combinatorial

Algorithms and Greedy Algorithms emerged in CS as opposed to the computationally

less demanding linear sinc interpolation signal recovery method used in the Nyquist-

Shannon framework.

The reason for this is, unlike in the Nyquist case where the linear operator 4 can (in

simple terms) be assumed as an nxn ldentity matrix, in CS the operator becomes a

highly “flat” matrix of mx n, making unique recovery of the vector x or 8 impossible.

In order to understand the aforementioned signal recovery algorithms in CS, it is

important to understand the key concepts in vector spaces and normed vector spaces.

Overview of Normed Vector Spaces and Justification for / norm

The /, norm of a vectorx € R" is defined as follows:

I, =
P

‘supp ()C)

- \
('z’|x,-|p)ﬂpe<o,oo>
i=1

, p=®

max |x,
i

,p=0

g (2.3)
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The usual /, norm where p =1 is a convex function, and holds the triangle inequality -
Fig. 2.1(a, b, c). However, when p is bounded such that 0 < p <1, lp norm becomes

highly non-convex as can be seen by the Astroid looking shape in Fig. 2.1(d). In other
words, a line segment connecting any two points on the curve will lie above the curve,

in a Euclidian space of at least two dimensions. Also, since the /, norm (0 < p <1) fails

to satisfy the triangle inequality, they are collectively referred to as Quasi-norms. “I,
norm”, which fails to satisfy many of the general norm properties like positive
homogeneity (hence the quotation mark), merely denotes the cardinality of its support

(number of non-zero ). It can be denoted as follows:

Hx” ‘supp ‘ (2.4)
Ligg”x”i =‘supp(x)‘ (2.5)

As mentioned earlier, the primary objective in CS is to obtain compressed data — m
measurements, and to reconstruct the original sparse data using them. Most signals of
scientific interest can be modeled as sparse signals, where they follow a power-law
distribution. In other words, there are only a few significant coefficients, and the others
can be equated to null without losing much information. To enforce sparsity onto the

signal while reconstruction, /, norm can be used. We can seek the sparsest solution of
the underdetermine system y = Ax as:

X=arg rnin||x||p st.y=Ax (2.6)
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2.4

where 0< p<1.
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Figure 2.1: Unit balls for 7, norm, p =1,2,%0,0.3,

Conditions for Sparse Recovery

The conditions for sparse recovery are twofold. They are: conditions that need to be

imposed on the sparsity of the original vector and the conditions on the sensing matrix

(d)

x”p =1




24.1

A . Let the minimization problems for /; and /; norm follow the equation (2.6) with

p =0 and I respectively. In this section we explain briefly the conditions for the
uniqueness of /, norm regularization, the sufficient conditions for /, norm regularization
solution to coincide with the /, norm solution, and the motivation, which propelled us
to use /, norm based regularizers as opposed to its counterpart the /, norm. The
necessary conditions for the /;, norm solution to coincide with the / norm solution are

out of the scope of this explanation, but the interested reader is referred to [34, 35 -

Chapter 7, 36, 37, 38] for detailed analysis and proof.

Uniqueness of /| norm based regularization
We first define the notion of “Spark”, which stems from the terms “Sparse” and “Rank”,
and was introduced in [39].

Definition 2.1: A vector x =(x, )’ | is called k - sparse if,

Hx”o = ‘Supp(x)‘ <k
Definition 2.2: Let A be an mxn (m < n) measurement matrix. spark(A) is defined as

the minimal number of linearly dependent columns of 4.

In other words, if the rank of 4 is ¢, then spark(A) =g +1. This is also referred to as

A being rank —g unambiguous [35].

32



2.4.2

Theorem 2.1: [39, 35 - Chapter 7] Let A€ R™", (m<n) be rank—g unambiguous. For
p =0, if a solution of x for (2.6) is k —sparse, then X is a unique solution if and only if

- spark (A)
2

k =(g+1)/2.

From the definition ofspark(A), we can say, spark(A)E[Z,m +l] . Also we know that

the maximum rank A could achieve is m . Therefore, Theorem 2.1 yields the

requirement on the number of measurements as: m = 2k .

Sufficient Conditions for "/ =/ "

a. Restricted Isometry Property (RIP ): [31,41,42]
RIP property ensures that when the higher dimension source vector is projected to a

lower dimension sensor vector using the flat A matrix, the information is still preserved.

Definition 2.3: Let A be an mxn (m < n) measurement matrix. Then A has the RIP of

orderk, if there exists an akE(O,l) s.t.

(l—ak )Hx”z < HAx”j < (1 +a, )Hx”j For all x&supp (x)

Theorem 2.2: [41, 42] Let 4 be a mxn (m < n) measurement matrix and satisfies the

RIP of order 2k with o, < \/5—1. If x* is the solution for (2.6) when p =1, then
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Hx - x*”2 < C—Ok (x)l

NG

In particular, if x is kK — sparse, the recovery is exact.

Where o, (x)1 denotes the /, error of the best k —term approximation and C denotes

a constant dependent on «,, . The k —term approximation is the vector x with all but

the k - largest entries set to zero.

Theorem 2.2 [42] states that the solution to the /, problem coincides with the solution

to the [, problem provided that, a,, < \/5—1. In other words, the convex relaxation is

exact. Also, using this theorem, the error estimates for recovery from noisy data can be
directly represented in terms of the best k£ — term approximation. In [43], they show the

best known RIP condition for sparse recovery using /; norm recovers all k - sparse

vectors provided that 4 satisfies «,, <0.473.

It is important to realize that even though spark and RIP provide guarantees to the
recovery of k — sparse signals, finding a matrix 4 which satisfies these properties is an
NP hard problem. Due to this combinatorial computational complexity, more easily

solvable property of Coherence of a matrix was introduced in [39].

b. Mutual Coherence:
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Definition 2.4: [40] For a given matrix 4 =(q, )7_1, where g, is the i” column of 4,
mutual coherence - u(A) measures the smallest angle between each pair of its

columns.

2

Theorem 2.3: Let A be a mxn (m < n) measurement matrix. For p =0, if a solution of

x for (2.6) satisfies,

I+, < (1+M 4)")

Then x is a unique solution of x for (2.6) forboth p=0 and p=1.
In other words, if the sparsity of the solution to (2.6) satisfies the above mutual

coherence condition of the measurement matrix, the solution for /, norm regularization

will coincide with the solution for /, norm, and it will also be a unique solution.

Definition 2.5: Let A be an mxn(m < n) measurement matrix with rank-¢

unambiguity. Let Null(A4) denote the null space of 4. Let §ENull( A

—1 and &
be a sorted permutation of the absolute values of the coordinates J, of J ina

descending order s.t. 51 = max‘él.‘and Sn = min‘él.‘ . Let S(A) be defined as

S(A)=min 5q+1 over all 0 € Null(A).
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From the above definition it is important to notice that 0 < S(A) <1 [35-Chapter7].

Theorem 2.4: [35] Suppose A is rank—g unambiguous, and x* is the unique solution

p
of x for (2.6) when p = 0. Let ||x*||0 =k.If k <W then the solution of x for
+

(2.6) forany p(0< p=<1)isthesameas x*.

The above theorem reveals a significant discovery — for a given p,0< p <1, the

restriction for exact recovery becomes stricter as p increases. For p =0, the above

condition approaches k < qT+l , Which is exactly the necessary and sufficient condition

for exact recover for [, norm regularization as stated in Theorem 2.1. Let us compare
the level of sparsity required to satisfy the above condition for p =0.3, p=0.5 and
p=1,with k ;, k5 and k; be the level of sparsity required to satisfy the above

condition for the three p values, respectively. Then,

S Mae) S a)
1+ 1+

)" g+1) o S {a+1)
S(A) 4 0.5

) , ky < ——————= . If we let §(4)=0.5, then
s(4)” 1+S(4)

ky; <0.448(q +1), ks <0.414(g +1) andk, <0.333(¢ +1). Hence, we can see that the

upper bound for the level of sparsity decreases (stricter) as p increases from 0 to 1.

However, finding the global minimum fora / norm (0 < p <1) regularization problem

is a difficult task. This is the key for our work, as we try to explore novel regularization
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2.5.1

conditions to find the global optimum for /, norm based regularizers where p is close

to 0.

Theoretical analysis of Structural Sparsity and its benefits

As highlighted in Chapter 1, the structure of the problem plays a key-role in improving
the quality of reconstruction. As mentioned previously, the popular Lasso method
proposed by Tibshirani et al. (1996) [13] minimizes the usual sum of errors (least
squares problem) with the /, norm regularization. In this section, we briefly introduce
the concepts of Group Lasso and Sparse Group Lasso, which are popular extensions of

Lasso that explore the structural sparsity of the problem. The Lasso cost function can be

written as follows:

. 1
mxlnL(x)=mx1n§Hy—Ax”§ +/1Hx”l (2.7)

Group Lasso

Group Lasso was introduced by the statisticians Ming Yaun et al. [25] in order to
improve the general factor selection of the input variables in the Lasso problem. Group
Lasso tends to make selection based on the strength of groups of input variables as
opposed to Lasso, which tends to make selection based on the strength of individual

input variables.
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Let x be divided into p non-overlapping groups such as:

T
! 11 !
...x"] X = [xl Xy ... X

ny

T
] where x! represents the it" element of group [ of

P
the x vector. Let the length of a given group x' be n,, and therefore, Eni =n.

i=1

Let A be divided into sub-matrices corresponding to the groups of x as follows:

A=[A'A*...A"], where A" isa m by n, matrix. Let /, represent the Identity matrix

with dimensions n, x n,. Therefore, the cost function for Group Lasso can be written as:

. . 1 mn l l
L(x)= —ly=-3Y4
min (x) min 2Hy ; x

2
+AS ], (28)

It is important to note that the sparse penalty for the Group Lasso is a summation of

2
’s. The latter penalty, also referred to as “Ridge Regression”, is the

/
|+
2

’s and not Hxl
2

[, norm of x and is everywhere differentiable. Therefore, it does not promote sparse
. . . . . 4 Z .
solutions as discussed in Section 2.3. On the other hand, since 2,/;11 Hx H is not an /,
2
/=1

norm of x , and is non-differentiable when x =0, it may act as a shrinkage operator
(ability to zero-out coefficients), making it a better sparse inducing penalty. From (2.8)

it is evident that when n, =1 for all / , Group Lasso will reduce to just Lasso. It is also
important to note that, Group Lasso uses the assumption that each A4’ is

orthonormalized, i.e. (Al )T A = [n,' This configuration of the penalty, having /, -norm
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within the group and /, norm among the groups, encourages sparsity at group level, and

hence has shown better results for group-like source reconstruction compared to Lasso.

A thorough theoretical analysis for Group Sparsity was done by J Huang et al. [27],

where they introduced the definition of “Strong Group Sparsity - K ”. They proved

GLasso

that for Group Lasso to be beneficial, the ratio M should be small. Also, they
‘supp(x)‘

proved that under certain conditions, Group Lasso is more stable with respect to
stochastic noise compared to Lasso. Most importantly, they showed that Group Lasso

requires fewer number of measurement samples compared to Lasso for reconstruction.

Even though, Group Lasso sparsify among groups, it does not however yield sparsity
within each group. In most applications, one would like to have both, sparsity among
the groups as well as among the whole source vector. A similar example would be, as
mentioned in the first chapter, the brain activations for different event related
responses (ROI’s), can be categorized as groups. This corresponds to the sparsity among
the groups. But, during each event related response the brain might still not be fully
“ON”, and this corresponds to sparsity within each group. So for this kind of an
experiment, the solution should be able to exploit both, sparsity within the group and

among the groups.
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2.5.2 Sparse Group Lasso

As a solution to the within group sparsity drawback in Group Lasso, Friedman et al. [58]

introduced another /, norm penalty to the Group Lasso problem, which sparsify the

whole source vector.

X

2
minL(x)=min%Hy_§A1xl +A,Ii\/n7[Hx1H2 .M,ZH)C”1 (2.9)
X =1 ) =1

The above solution has shown to give superior reconstruction compared to Group Lasso,

where both group-wise and within-group sparsity is present.
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3.1

NON-CONVEX APPROACHES FOR “/ - norm”

REGULARIZATION

Introduction to “/ - norm” based Regularization methods

As we mentioned earlier, “/;- norm” would be the best and the most natural choice for

the sparsity inducing function - F(x) because it imposes the least requirement on the
sparsity k and therefore the least requirement on the size m of the samples to be

collected. Using Lagrangian methods, we can re-write equation (2.6) as follows:

fc=min[”y—Ax”§ +ﬂF(x)] (3.1)
Where A is the Regularization parameter
F(x) = Hx”o (3.2)

Given that x is a k- sparse vector (|supp(x)| < k), in order to find an optimum x, one
has to do combinatorial search over all possible k- sparse vectors satisfying y = Ax. This
is an NP-Hard problem, where the computation cost will increase exponentially as the

dimension of x increases.

41



Alternatively, as we discussed before, we can use /, norm (0 < p <1) methods or

continuous functions which mimic the behavior of the /, norm. Even though these

continuous functions are highly non-convex in nature, convex relaxation forms of them
[44-46] need a considerably less amount of measurements and computation to exactly

recover the sparse signal than the /- norm. Some popular /;- norm minimization
methods include the Basis Pursuit (BP) [48-50], while the /, norm (0 < p <1)methods

include FOCUSS [12].

3.1.1 Non-convex sparsity inducing functions

The sparsity inducing objective functions can be generally expressed as follows:

F,(x)=n- if(,(x[), XER (3.3)

Most non-convex functions that approximate the “/,- norm” are collectively non-

decreasing functions, which enjoy the following properties [46, 47, 51]:

a. }}nga(xi)=05xi =0

b. £,(0)=1
c. f, (xl.) has a continuous and bounded derivative for x; E(O,OO)

d. Its derivative fa'(xi) satisfies,

f(;(xA)—>O for x>0

1

fa (xl.) is a large value for x, < o
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Function Name 1 (xi)
SLO
6202
atan |x|
atan(—’)
o
log-sum
N | ,
log(l +0) 0g(|xl| ¥ 0)
log-exp Llo 2
log2 s ( 1+ )
1 if |xl.| =20
triangular O+ x
L if —o=<x <0
p if —o=<x, =<
g% if0=sx, <o
o
truncated hyperbolic 1 if |x,|z 0
2
if |xi| <0

Table 3.1: Some of the well-known Non-convex Sparsity inducing functions [46, 47, 51]

In other words, (1- f, (x;)) is a uni-variate function which approximates the Kronecker

Delta function - §_, and o determines the quality of the approximation. Therefore

n- 2 f..(x,) approximates Hx

The following figures demonstrate the behavior of some of the functions in Table 3.1.

,» and approaches HxHO when o approaches 0.
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Figure 3.1: Non-convex Sparsity inducing functions for different o values

3.1.2 Introduction to the ‘SLO’ method

In this work we use the Gaussian based function — SLO, due to its simplicity, and the
abundance of previous literature [46, 47, 54, 55] pertaining to it. The advent of the SLO

method provided a faster algorithm compared to the basis pursuit (BP) method and an
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improved quality of estimation compared to the BP, FOCUSS and Matching Pursuit (MP)
[52, 53] methods.

The SLO Minimization model:

2

1 n L
Ly, (x)=§Hy—Ax”§ +A (n—zlew ) (3.4)

X = argmin %Hy—Ax”i +A (n—ieﬁ) (3.5)
X i=1

As seen from Figure 3.1(b), o plays an important role in the approximation function. It

determines the convexity of the function. It is evident that for small values of o, F (x)
tend to be highly peaky, well approximates”x”(]. However, in such a case it is also highly

non-smooth, and the function could potentially contain many local minima. The
convexity of this function depends on both the signal values and the value foro . We will

explain this in more detail in Section 3.2.

Having many minima adversely affects the global optimality of the minimization model
using a gradient based algorithm. To circumvent this problem, the authors of SLO
introduced a clever method of using the idea of Graduated Non-Convexity (GNC) —a
deterministic form of Simulated Annealing [56]. The non-randomness will save much
computational time during the minimization process. The idea is to start the
minimization (3.5) with a large o, and find the optimal point using a gradient based

method. Next, using the previous optimal point as the initial condition, with a reduced o
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, @ new optimal point is found again. In general, an outer loop will decrement the o
value, while the inner loop will use the gradient descent to find the optimal solution for

the given o value.

When o — o, from (3.5), X admits a closed-form solution because the sparsity

inducing term F (x) becomes zero. In fact, this solution is the least squares solution,

which can be written as follows:

limi=(4"4) Ay (3.6)

o—0

Since the cost function L,  is convex when g — ®, there will only be one minimum,

which can be demonstrated by the lowermost curve in the Figure 3.2. This solution will
be used as the initial approximation for all the SLO based algorithms [46, 47].
Subsequently, o is reduced by a small amount and the solution for equation (3.5) is
solved again, taking the previous global minimum as the initial condition (as shown in
Figure 3.2). Following the concept of GNC [46, 47, 56 — Chapter 3,7], this procedure is
repeated until a stopping criterion is satisfied (This stopping criterion will be explained
later in Chapter 6). As illustrated in Figure 3.2, it is expected that the minimization of the
corresponding cost functions for decreasing o will eventually end up at the global

minimum.
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The concept of GNC is vastly used in the literature pertaining to non-convex based “I,

norm” approximation models to avoid the solution to be trapped in local minima [46,
51]. Even though Blake et al. [56] proved the global convergence properties for GNC for
an Energy function based on weak-string and membrane, the global convergence for a
general and an arbitrary non-convex function has not yet been proven. In our work
(described in Chapter 4), we introduce a novel criteria for the case of “SLO based Sparse
Group penalization”, which if satisfied, will guarantee the cost function to be convex,
therefore yielding a global minimum. This criterion is checked for the smallest o,
therefore, if satisfied, the global optimum can be found without having to iterate over a

sequence of o’'s.

v

o2
=

Figure 3.2 Concept of Graduated Non-Convexity

From the work carried out in [46], Mohimanni et al. has shown that the SLO method
recovers the sparse signal exactly with faster convergence and comparably less amount

of measurements. If f (x,) is chosen such that it follows the properties stated in
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3.2

Section 3.1.1, then Theorem 1 in [46] states that, for a Measurement matrix 4, which
satisfies the Unique Representation Property (URP) [78],

limx =x* (3.7)

o—0
Here x represents the reconstructed SLO solution, while x* represents the actual

unique sparse solution. (The URP property states that for a given matrix 4 € R™",

every mxm sub-matrix is invertible, i.e. 4 is rank-m unambiguous)

Later works of Mohimani et al. in [47] provides a detailed convergence analysis for the
GNC?. Even though this work gives a thorough analysis of the behavior of o, and
provides a global optimality criterion, to satisfy this criterion, it requires finding the
Asymmetric Restricted Isometry Constants (ARIC) of the dictionary A . Precise

calculation of ARIC involves enumerating through all possible 7r, column sub-matrices of
the dictionary 4, and then computing their smallest singular values (Definition for n,

can be found in [47]). Hence, when the dimensions of the problem increase, the

complexity grows exponentially making it intractable to find the ARIC’s.

Theoretical analysis of the non-convexity of ‘SLO’ method

In order to guarantee a globally optimal solution, a sufficient condition is that the cost
function in the minimization model should be convex. One popular method of proving

convexity of a function is to show that its Hessian is positive definite. The conditions for
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a positive definite matrix H can be found using the Gershgorin’s circle theorem [57],
the Sylvester’s Criterion or checking the positivity of z’ Hz (where z is any non-zero

real vector and z” being its transpose).

Upon careful analysis, we found that in-order to force positive definiteness using the
first two methods; we would have to assume diagonal dominance in the Hessian of the

cost function—H

s0 Since this is not a valid assumption, we used the criteria on

g s T .
positivity for z" H, ,z in our approach.

Let’'s assume x ER",y ER™ and 4 € R™" to be the sparse signal vector,
measurement vector, and the measurement matrix, respectively. From equation (3.4),

the gradient of L, , can be written as follows,

SLO

3.8)
oLy, . )LW(x)x (
Psto g7 (- ax) e 017
dx (y ) 2
2 0 0
where ¥ (x) = 0 . 0 |isan nxn diagonal matrix.
0 0 e’

Therefore, the Hessian can be written as:
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9> . 2 W(X)X'(x) ? (3.9)
ﬁ=14 A+? W(X)—T =HSLO> 0
xl2 0
where )?(x)= 0 . 0 isan nxn diagonal matrix.
0 0 x>

If HSL0 is positive definite, the cost function LSLO would have only one local minimum to

converge to. Since n>m, A will not be full column rank. Therefore, A" 4 is a singular

matrix. In other words, if we check the positive definiteness of 4’ 4:

27 (A7 4)z>"0 (3.10)

2
2" (47 4)z = |4z} =0
It is obvious that the norm of a vector is non-negative, and hence the fidelity term

1 2, o e . L
EHy - Ax”2 is positive-semi definite. This is unfortunate, since it doesn’t render us the

opportunity to force the Hessian to be positive at all times.

Therefore, now we look at the positive definiteness of the sparsity inducing term:

Since 4,0 > 0, we can check the positivity of the following,
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W(x)f((x) (3.11)

W (x) is a diagonal matrix with exponential entries —i.e. it’s a diagonal matrix with
positive entries. Therefore, we can re-write the above requirement as,

T ?
z ]n— z>0

Where [, is an nxn |dentity matrix.

Since )?(x) is also a diagonal matrix with positive entries, if all the Eigen values in

[ln - X(f)} are positive, then the Hessian of the sparsity inducing term will be positive
o

definite. Therefore, for the cost function LSLO to be strictly convex, for all
i(i€[1,n]), 1> x> / 0. This gives us the relationship between the signal and the value o
in order to guarantee a global minimum for L, . Aslongas o’ > x, for all (i€[l,n)),

the cost function will be guaranteed to converge to a global minimum. But, it is obvious
that when o is decreased gradually, this condition would eventually be violated. This
asserts us that the cost function may eventually be subjected to many local minima as

O is decreased.
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4 METHODOLOGY

With the background presented in the previous two chapters, this chapter is devoted to
finding algorithms to solve the source location problem using the GNC method to
minimize some SLO based cost functions. We pay particular attention to the important

and yet difficult global convergence issue.

In Section 4.1, as a part of our contribution, we will initially introduce a novel method to
solve the non-convex optimization problem of SLO using a quadratic majorizer approach.
Next, in Section 4.2, we will extend the problem to the Sparse Group version of SLO. We
name it as “Sparse Group SLO — SGSLO”, which to our knowledge is an original
contribution. Also, in this section, we introduce a novel Global Optimality criterion using
the positive definite properties of the Hessian function of the cost model in SGSLO. If this
criterion is satisfied, the cost function in SGSLO will be convex, and therefore, would
guarantee a global minimum. Section 4.3 discusses the method of optimization and the

development of the novel algorithm SGSLO.

Finally, Section 4.4 is devoted to the time varying signal reconstruction case. This will

extend the sensor and source vectors to the corresponding sensor and source matrices

where the columns will represent each time sample.
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4.1

Method of Optimization for SLO

The method used in this section is convex relaxation using a quadratic majorizer. The
idea of using a quadratic model as the majorizer is to replace the gradient descent by a
2" order Taylor approximation. This can also be interpreted as iteratively minimizing
the cost function locally using the 2" order Taylor approximation. This procedure can be
considered as a special case of majorizer-minimzation technique, which will be
explained in more detail in Section 4.3.1. A similar approach was used by Monetefusco
et al. [51], where they used a local linear approximation function (1* order Taylor
approximation) for the same purpose. This type of a minimization procedure is
synonymous with the proximal gradient method. Since the 2" order Taylor
approximation is used instead of the first order approximation as in the normal gradient
descent method, the approximation is improved during the descending process, and

therefore it will have a faster convergence rate.

Let’s re-write the SLO cost model as follows:
1 2 Q2207
Ly, (x)=5||y—Ax||2 +A (n—;e /2 ) @)
Let h(x)= %“y - Ax||z andg(x)=(n- ie""z/z"z ). Therefore, minimization model of
1

i=

Equation (4.1) can be written as,
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min L, = min [h(x)+ﬂg(x)]

As we previously discussed in Chapter 3, in order to obtain the global convergence we
will be using the Graduated Non-Convexity method (refer to Section 3.1.2), where we
would use a decrementing sequence of g values throughout the minimization process.

Let’s assume that for a large enough o, g(x) is convex. Assuming that the current

iterate for x: x“*7" lies in close proximity to the next iterate x*, we use the Quadratic

approximation - g(x) to iteratively minimize g(x) as follows:

q(x(k) ) _ g(x(k—l) ) +Vg (x(k—l) )‘(x(k) _ (&) ) + %Hx(k) NS (4.2)

2
2

where Vg(x) represents the gradient of the g(x) function. It is important to note that,
the constant L(L = 0) can be chosen such that, g(x"’) will act as a surrogate function

to g(x)) (See Section 4.3.1 for a detailed discussion on surrogate functions). This

constant L will be chosen using a backtracking line search at every iteration of &, i.e.,

the smallest L will be chosen which will satisfy the following criterion:

q(x(k))z g(x(k)) (4.3)

Now let’s consider the minimization of q(x®)) with respect to x(*). We can include the

gradient term inside the quadratic term and re-write equation (4.2) as:
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2
m&)ﬂq(x(k)) _ (1)n g RO Vg (z(k—l))‘ Vg(x(k‘l))

2

After removing the constant terms we get,

rg&)nq(x(k))= Ii]in— X (4.4)

From equation (3.8) we can get, Vg(x(k_l)) S VY AR

Therefore from equation (4.1), the total cost function can be minimized by

P AL e ] (k-1)
2+(7) X —(X —ng(x ))
aL

; ?i;) =-A" (y—Ax(k))+ )LL[x(k) - x(k_l) +%Vg(x(k_l))] =0
X

. k . k
min Lg, , (x( ))zmm ( )‘
2 20

lp-s

1

Therefore, the update equation can be written as,
A = (4" 4+ ALL) (222" - avg ()4 4" ] (4.5)

Here I, represents the nxn identity matrix.

-1
It is important to note that the matrix inversion term (ATA +ﬂL[n) is only required to

compute once through-out the iterative process, hence saving computing time.
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4.2

Algorithm 1 — Quadratic majorizer based SLO (QSLO)

1. Input:A, [o ..o ],AER”’X", yeR”

2. Initialization: Using Minimum Norm Solution:

X, = (A" 4" ATy

3. foro .o do

4. fork=1:k__

5. Find L whichsatisfies(4.3)usinga backtracking line search algorithm
6. Update x using the following:

7. f =" axann y | ALt - avg (Y4 ATy

8. end for

9. end for

(The simulation results for this algorithm is included in Section 5.1 in Chapter 5)

Global Optimality conditions for “Sparse Group SLO — SGSL0O”

We now turn out attention to the concept of group LASSO, in particular the sparse
group LASSO as we discussed earlier. We first investigate a novel global optimality

condition for SGSLO. We follow the same notations described in Section 2.5.1. The
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Sparse Group Lasso replaced by the “/; - norm” approximation will be developed as

follows:

2
min Ly, (x) = min %H y- lpzl AR+ 2 ZPED/;’ szuz + Ao lx], } (4.6)
&, F
P
But, x”o =;Hxluo
Therefore,
(4.7)

min Ly, (x) = min
X X

P
1 |y - EAlxl
2 =

2
P P
mw\xwmzuxfuo]
2 [=1 =1

Substituting the “I, norm” approximation g(x) and also for simplicity letting each

group to have an equal length of n; (i.e. to merge \/nj into 4, in the 2" term), the

above can be re-written as:

-(%)

ot A i n, - HE[e 207 (4.8)
= =1

2
P
+ 4 ||
2 [=1

‘y_ZAlxl

min, LSGSLO(x) = ?

Here, 4,,4,,4, =0 are the corresponding regularization/ tuning parameters for each

term. Let’s consider the behavior of the three terms of the above minimization problem,

respectively, minimized with respect to x (and x').

2

1‘ »
—ly=3A'x'
AL

2
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This is called the data fidelity term, and will be used to define the solution domain
irrespective of sparsity. This function is a convex function, but since the Gain matrix 4
has more columns than rows: m << n; at most it can only be a full row rank matrix.
Therefore, it will only be convex but not strictly convex. Hence, its Hessian will be
positive semi-definite and not positive definite when minimized with respect to x.

In other words, the Hessian of the fidelity term will be (A)TA, which is an nxn matrix,
and therefore, it is singular.

Now let us consider minimizing the above fidelity term with respect to x'. We will
assume that the 4 matrix is full row-rank and that the maximum length for a group

does not exceed the number of rows: m = max(n,).

Correspondingly, the Hessian for the fidelity term with respect to x* would be,

1
vyl 3a

v () ()

2] _ (AI)T Al (49)

T
Since (A’) A' is a matrix of dimension n, xn,, it has full rank and is non-singular.
T
Therefore, we can conclude that (A’) A' is a positive definite matrix. In other words,

all of (A’ )T A"’s Eigenvalues will be positive.
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The minimization of this with respect to x' would be the sub-gradient of the /, norm of

for x' =0

l
<]
2

{ Z: HZH2 sl} for x' =0

It is important to note here that Z can be any real vector where ||Z||2 <1. The reason

for this kind of a behavior for the gradient of Hx’”2 is its discontinuity at x' =0.

Now let us consider the Hessian of Hx’” for x' =0
2

(4.10)

62 HXIH 1 2
syl o Sl

2

Here, ]n[ represents the ldentity matrix with dimensions n, xn, .

The Hessian, for x’ =0 will be a matrix of 1, x 1, with all the elements being 0.
1 %

12
n =(x)

2 n-Ye * | (As o —0):

This quasi-convex function will have the following gradient with respect to x':
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Likewise, the Hessian would be:

)
V? Ee 20°
= W(xl))?

R

(xl) (4.11)

Now using (4.9), (4.10) and (4.11), the Hessian for the total cost function with respect to

x! can be written as follows:

aZLSGSLO(x) _ 2 (AI)TA1+ L[ X
3

o))

In (4.12), the first term is the Gram Matrix of 4’, and is positive definite as discussed

2

earlier. In other words, all its Eigenvalues are positive. For the worst case scenario let us

. .. . ] T i . 1 T /
consider the minimum Eigenvalue of (A ) A tobe g, i.e. (A ) A =zql,.
The 2" term is the Hessian for , norm, and its positive definiteness can be checked as
follows:

For a given column vector vER™:

i

2 "M

Hz_x(x)]v 270
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2 T
T T ! ?
v le Inv—vxl(x) v >0
2 M

2
1

2 M

2 2 T
/ ? /
T > <) e

T
T 1 ?
v Hx v—<(xl) v>2 S0

But, the above inequality is the same as the Cauchy-Schwarz inequality which is always

true. Therefore, we can conclude that

VT[

In other words, the 2" term of equation (4.12) is a positive semi-definite matrix. In the

!
]

zln, —xl(xl)T]sz

worst case scenario, the Eigenvalues of this Hessian can be zero. Hence, this term

cannot be used to guarantee convexity on the overall cost function Ly, .

Now let us consider the 3" term of (4.12). Since W (x') is a positive definite matrix, the
3" term is an addition of a convex and a concave term. The convexity or concavity is

determined by the parameter ¢*. The worst case scenario is when ¢? is small enough

that it forces the following entire term to be a negative value.

w(x") X (x'
V! W(x’)— M % (4.13)
o
This can be expanded as,
e 0 0 1 (x)e2r 0 0
vl 0 0 -— 0 0 %
—X, a XI
0 0 e’ 0 0 (xi])Zezal
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Therefore the above term can be re-written as,

(G A
vTW(x’) I, -— 0 : 0 v
[ o [ \2
0 0 (x,)

Let the maximum value of x' be x' _ therefore,
max

a.

(x)* 0 0
(X,)° 1, = 0 : 0
0 0 (x,,)’

Hence, for the worst case scenario, Hessian for the convex-concave part in equation

(4.12) can be written as,

The largest Eigen value of W(xl)is 1, when xl.l =0.

Therefore, considering all of the above, for the worst case scenario (when concavity is at
its maximum effect on the overall Hessian), the positive definiteness of the overall

Hessian can be checked by,

/ 2
V! [Aoqlln +ﬁ2(1-—("m‘g) )In ]vz" 0
1 0- 1

g

Therefore, if
A+ | 1-—25— |20 (4.14)
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4.3

4.3.1

is satisfied, the overall cost function with respect to x’ will be convex, and therefore the
minimization will guarantee the global minimum. This is our global optimality condition,
and it is dependent on the regularization parameters, the ¢ value, and also a maximum
possible value for x'. In the next section we will present a strategy to guarantee global
convergence iteratively by verifying against this Global Optimality condition. (Verify if

this statement is true or not)

Method of Optimization for SGSLO

In this section we present a method of optimization and its associated algorithm for the
sparse group LASSO. As discussed earlier, due to the non-differentiability of the SGSLO
cost function, we cannot use a simple gradient search method. Instead, the method

presented here is based on the proximal gradient method.

Proximal Gradient method

Proximal Gradient method [65, 67] is specifically tailored to optimize a cost function,
which has a combination of a differentiable-smooth function with L Lipschitz constant
and a non-smooth function. Lipschitz condition is an important property for smooth

functions, which assures continuity of the function. For a given smooth function u(x),

the Lipschitz constant is defined as the smallest L = 0 for all x,,x, in x which satisfies,
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HVu(x1 ) -Vu (x2 )H = L||xl —x2||

This is also referred to as Vu(x) being Lipschitz continuous with constant L.

Proximal Gradient method has gained much attention in the recent years, due to its
faster convergence rates, and the ability to work with large number of data. Since itis a
first-order method, which uses only the gradient information, it is significantly more
scalable than the conventional Interior point methods for the conventional Second
Order Cone Programming (SOCP) techniques. An accelerated version of this method

(discussed in the Fast Iterative Shrinkage-Thresholding Algorithm —FISTA [66]) has a
£

1 . i
convergence rate of 0(—) for a desired accuracy ¢, which is much faster than a rate of

O(LZ) for the standard sub-gradient method. Computing the exact proximal operator
£

efficiently is the key to enjoying these perks using this method.

Let us consider the minimization problem given below:

minh(x)=min[u(x)+v(x)] (4.15)

X X

where, u(x) and v(x) are differentiable and non-differentiable functions respectively.

The proximal gradient method using the above minimization model can be defined as,
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k) prox, (x(k) -tVu (x(k) )) (4.16)

where the proximal operator - prox, () is defined as,

. 1 2 4.17
proxt(z)=m}n{v(y)+5‘|y—z” } (4.17)

z=x" —tVu(x(k))
The derivation of this method can be found in [65], where they used the concept of
Majorizer- Minimzation algorithm (MM algorithm) along with the Quadratic
approximation to model the differentiable u(x). Therefore, proximal gradient method
can also be interpreted as an instance of the Majorizer-Minimization algorithm. A large
class of algorithms that includes gradient method, Newton’s method and Expectation-
Maximization algorithm are some of the other special cases of Majorizer-Minimization

algorithm.

In our problem, due to the existence of both differentiable and non-differentiable
components in the cost function, we employ the Majorizer-Minimization scheme in our
optimization model (this development will be explained in Section 4.3.3). Majorizer-
Minimization algorithm uses a surrogate function that minimizes (or maximizes for a
Minorize-Maximization model) the objective function, where the surrogate function will

drive the objective function to a local minimum at each iteration.
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4.3.2

Let L(x) be the objective function, and A (x) be its surrogate function. The surrogate
function should include the following properties:

M(x,x) = L(x) for every xEFE
M(x,y) > L(x) forevery x,yEFE
Let y =x, ,, where x, Emin (M (x,x,_,)). This implies that M(xk,xk_1 ) < M(xk_l,xk_1 )

Therefore, considering all of the above properties, we can write the following

conclusion:

L(xk)sM(xk’xk—l)SM(xk—l’xk—1)=L(xk 1)

Therefore,

L(xk)s L(xk—l)

Hence, this can be used as a minimization scheme for L(x).

Block-Coordinate Descent (BCD) Method

BCD algorithm is based on the idea that an n-dimensional problem can be decomposed
into p sub-problems, and the objective function is optimized over one such
segment/block at each sub-iteration, while keeping all the other segments/blocks fixed.
Even though the BCD algorithm finds the global optimum for all differentiable functions
optimized by each group while keeping the other groups fixed, it does not however
realize the global optimum for all non-differentiable functions. The condition to be

satisfied for a non-differentiable function to attain the global optimum using BCD is that
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4.3.3

it should be separable [64, 63]. The separability for the case of addition can be defined

as follows:

Suppose there is a function £ with pvariables x,x,,...x,. We say that F is additively

seperable if there exist functions f, f,,... f, such that,
F(xl,xz,...,xn)=f1(xl)+f2(x2)+...+fn(xn)

Let us consider the overall cost function used for the SGSLO algorithm (4.8). We can see

III

that the quadratic fidelity term and the exponential “, norm” penalty operator are
both differentiable. Even though the “/, norm” penalty is non-differentiable, it is

separable among the groups /. Therefore, BCD algorithm can be used to find the global
minimum of the overall cost function, as long as the penalty functions are convex and
the optimization is performed group/block-wise. The proof for the global convergence
using the BCD method for a function with differentiable and non-differentiable (yet

separable) components can be found in [63].

Optimization Algorithm

Let us re-write the overall cost function for our problem (using equation (4.7)):

2
A p p
Logoro (x) = > Hy - IEIAle +2 ;1: Hxl‘
= , F

P i
) + A 2 n, —Ee
[=1 i=1

()
20 (4.18)
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Using the above criteria on separability we now optimize the above cost function using
the BCD algorithm. It is important to note that the novel global optimality criterion
(mentioned in (4.14)) is based on this ability to optimize for each block, while keeping

the other blocks fixed.

We now decompose the overall cost function into the following sub-problems:

1\2
n =(x;)

St m = Ye (4.19)

i=1

! AO -1 1.1 2 !
LSGSLO(X )= ?Hy -A'x ‘2 +A Hx ‘
The above minimization problem is solved for each group [, while keeping all the other
groups fixed. Here, y™' is the segment of y that does not contain 4'x’ and it is defined

as:

y! =y_§Akxk

k=l
It is important to note that the direct application of the proximal gradient method to
solve the cost function in (4.19) forces us to solve another non-linear equation,
increasing computational complexity. This is caused by the exponential (“/, - norm”
penalty) term in the cost function. Therefore, we propose to conduct the optimization

by locally approximating the exponential “/; - norm” penalty by a quadratic function (as

previously discussed in Section 4.1).
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Now let us consider the minimization of LSGSLO(xl) with respect to x'. From (4.19), we

can write the gradient of L., , with respect to x' as:

aLSG;LOz(XI) =~ (AI)T (y_l - A’x’) + )L2W(fl)xz +148=0 (420
X o

LN
where, § = HxIHZ and Z €R" can be any vector.

Z|Z|| =1 or x' =0
A e

Again, as we discussed before, the reason for this kind of a behavior for the gradient of

Hxluz is its discontinuity at x'=0. We use this as a thresholding function during our

optimization process as follows:

When x' =0 , from (4.20),

Taking the /, - norm from both sides of the equation,

=<1

12, =%H(Al ) ) (4.21)

-

. N\ . . I _
Therefore, if 4, = A, (A ) 7| , the solutionis x" =0,
2
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For the case where x' #(), let’s define d, (x’), d, (x’) and c(xl) as follows:

0 ()2 - 4]

(4.22)
=t
d, (xl) =1, [nl —Ee 20* } (4.23)
e(x') =[], (424)
Leooo (xl)=dl(xl>+/11c(xl)+a’2 (xl) (4.25)

Here, d,(x") represents the convex and differentiable fidelity component, d,(x")
represents the convex “/, -norm” penalty term and c(x') represents the convex non-

differentiable component, which promotes group sparsity.

Proximal gradient method will linearize d,(x") and d,(x")around it’s current iterate

(current point x,) using the quadratic (Q) approximation models as follows:

O (%) =, (3, )+ V! (% )(x' = x, )+ %fo x| (4.26)

0, (¥ x,) = ds (%) + Vel (x,)( _x0)+%uxz —xf (4.27)
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Using the concept of Majorizer-Minimization, Q,(x',x,)+Q,(x',x,) + Ac(x') acts as a
surrogate function to the cost function L, ,(x"). A line-search method is used to find

the constants L, and L, such that it sufficiently satisfies the following conditions:
o) (xl,xo)zdl (xl) (4.28)

0, (xl,xo)za’2 (xl) (4.29)

Let the surrogate function be M(xl,xo ):

M(xl,xo) =0, (xl,x0 ) +0, (xl,x0>+ Alc(xl ) =Lo.go (xl ) (4.30)
Now if we let x, = xl’(k_l) and x' = xl’(k) , Which are the current and next iterates for x'

respectively, we can say,

¥ = argmin M (x, XD ) (4.31)

X

Minimization of Q,(x"®,x"*") and Q,(x""®,x"*)with respect to x' can be reduced

to the following:

L (4.32)

2
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2

After removing constants we get,

L0\
L) e, V4
2 L
2
v, () ’
minM(xl (k) x[’(k"))=min +£ (HR) ) 2
) ’ < ) L
2
+A1c(xl’(k))

Since c(xl’(k))=Hxl () o we have
L) aw gy Vo ()
2 L,
2
_ 2
minM(xl () xl,(k-l)) _min JLo| e, vd, (xl,(k 1))
b ’ o
2
A

Let us now take the gradient of M(xl’(k),xl’(k'l)) with respect to x',

(4.33)

(4.34)

(4.35)
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(4.36)

where,

R(50) = (£, + 1, )50~ (x04)) v, (59) (4.37)

Let x’ to be the next iterate x"® in equation (4.36) and let us consider the case for

xl’(k) =0

’

But we know that HZHz <1,

Therefore, if,

(4.38)

I
then we get a solution X

.5,

T
Now let us consider the case for X ' #0,

(L, +L)x" R(xl’(k_l)) A
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Lo+ L+ |0 _ R(x"4) (4.39)

Taking the 12 - norm from both sides,

Hxl,(k)H2 L+L, + Hxlf’l‘) = HR(xl,(k_l)) 2
2
o )
Hxl (k)Hz B (L, +L22)

In other words, using the knowledge from equation (4.38), we can define
(X)+ = maX(X,O) and incorporate it in our optimization model as follows,

)
|

L1+L2)

-A
, ! (4.40)

x[,(k)

+

) . .. QA I . a
The above equation combines the two cases for X X = 0 and x' #0.

Equation (4.39) can be re-written as,

L+L + A (Ll "'Lz) ) R(xl,(k—l))

R(xl,(k—l)) 2 -
Therefore,
O HR(xl’(k_l)) 2 A R(xlv(k—l))
HR(xl’(k"l) ) L (L +L,)
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The final iterative update equation for both x! = 0 andx! # 0 can be combined

together as,

X o L h R(x4) (4.41)

where, using Equation (4.22) and Equation (4.23),

vd, (x/,(k—l)) A (Al )T (y_/ _ A/xl,(k—l)) (4_42)

AW (xl,(k—l) ) xl,(k—l)

vd, (x") = = (4.43)

The value for 0, is chosen using a-priori knowledge about the strength of the signal to
be reconstructed and using experimental results. From both experimental results and
using the criterion given in [46], we choose 0.01 as the most suitable value for 0, . Itis

important to note that, for a case where the global criterion is initially not satisfied for

O,in» We utilize a sequence of O’s in a descending order. This careful selection is

expected to avoid any local minima and end up with the global minimum.
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4.4

Algorithm 2 — SGSLO Algorithm overview

1 Input:A, A, A€ER™, yER" ,n,p,q,

2. Initialization : Using MinimumNorm Solution
3. x,= (A"4)' A"y

4. fork=1tok_  do

5. forl=1to p do

6. if A = HR(W-”)H2 then

7. X" =0

8. elseif (4.14)satisfied for o then

9. Find L, L, and execute (4.41) to find x"*)
10. else

11. Jforo_ too . do

12. Find L , L, and execute (4.41) to find x"*
13. end for

14. endif

15. end for

16.  end for

Non-Stationary Signal Reconstruction

In the earlier works of this Chapter, we assume the active brain sources to be temporally

smooth. This assumption helps us to formulate the ill-posed problem as a vector
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reconstruction problem as opposed to a matrix reconstruction problem. In other words,
we recover the unknown source vector x € R” instead of recovering a spatio-temporal

source matrix X € R™, where ! is the number of time samples.

In some cases, we can observe the brain sources to depict non-stationary and transient-
like behavior [21] during the time interval of interest. This section is devoted to discuss
how mathematically we can include those physiologically motivated priors in our novel

source localization algorithm.

We first define the underdetermined problem for the spatio-temporal case as follows:

Y=AX+E (4.44)

min [||Y—Ax||j +;LQ(X)] a.a5)

where Y ER™ AER™", X ER™,EER™ ,Q(X) are the Sensor matrix, Gain matrix,

Source Matrix, Noise Matrix and the prior inducing function, respectively. As we
discussed before, since SGSLO captures both group-wise and feature level sparsity, we
can extend it to capture both stationary and non-stationary activations while recovering

the signal matrix X

The four possible cases of sparsity for a given matrix X can be categorized as: spatially

group-wise sparse activations, spatially focal/ feature level sparse activations,
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temporally group-wise (stationary) sparse activations and temporally feature level

sparse activations. These four cases are depicted in Figure 4.1.

X =
A
c
Qo
©
[S)
8 I TT1]
A
_>
Time (5)
Spatially group-wise Spatially and temporally feature
sparse activation level sparse activation Temporally group-wise
Both temporally and spatially (stationary) sparse activation

group-wise sparse activation

Figure 4.1: Spatio-Temporal source matrix

Figure 4.2: Super vector of the source matrix
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By observing the columns in the above X matrix, we notice that both spatial and
temporal group-wise and feature-level sparsity can be addressed using the SGSLO

optimiation model given in (4.7). In order to apply the SGSLO algorthm, we convert the
X matrix into a super vector X eRrR™ (Figure 4.2), which is formed by stacking each
column of X on top of each other. Similarly, we convert the sensor matrix Y into a

super vector ) ER™ and replace the gain matrix A by its Kronecker product with

the identity matrix [; ER™ . The regression model in (4.44) can now be written as:

y, =Ax (4.46)

s

where ;1=A®[[ .

Thereafter, we use the a-priori knowledge about the structure of both spatial activation

and temporal activation to define corresponding groups and group lengths (7, ) to

recover the super vector X, using the SGSLO algorithm. We include the simulations of

this non-stationary signal recovery case in Section 5.5.
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5 SIMULATION STUDIES

5.1

In order to assess the performance of the proposed algorithms, we carried out some
experiments to be presented in this chapter. The performance of a sparse
reconstruction method mainly relies on two factors: the sparsity of the signal (i.e., the
number of active sources) and the ratio between the number of (potential) sources
against the number of sensors. We based our experiments mainly on these two factors

which are also used as performance measures.

In Section 5.1 we simulate the algorithm introduced in Section 4.1 (Algorithm 1), which
is for no grouping and is part of our original contribution. We refer to it as the Quadratic

majorizer based SLO. We compare these results with currently used models such as
LASSO (ll— norm regularization) [llmagic— [41]] and m-FOCUSS (lp -norm (0 < p <1)

[68]). In Section 5.2 we simulate Algorithm 2 developed in Chapter 4 — Sparse Group
SLO. Finally, in Section 5.4, we use the same SGSLO algorithm to solve the inverse

problem of a simulated MEG problem.

Quadratic majorizer based SLO (QSLO)
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For the following experiments, the Gain matrix A is chosen as a Random Gaussian matrix
with mean 0 and standard deviation 1. The signal to be reconstructed - x* is chosen to
have values 0, 1, 2 and 4. The locations of the non-zero entries are selected such that
five entries of the same non-zero values are adjacent to each other. Such locations are

selected randomly as shown in Figure 5.1(a). The observation vector y isthen

generated using the model y = A4x*.

First, as seen in Figures 5.1 and 5.2, we compare the QSLO reconstruction with the

original signhal model, as we change the level of sparsity (k). We referred to the original

experiments done by [46] when selecting the parameters, where QSLO showed
comparably better reconstruction for a selected set of regularization parameters. As
seen from Figure 5.1 to Figure 5.2, increment in the level of sparsity deteriorates the

reconstruction substantially.

Next, we compare the QSLO method with the current standard ll norm method along
with the FOCUSS method. We use the publicly available ll -magic [41] package to derive
the ll norm based solution, and we use the publicly available [68] m-FOCUSS algorithm

to derive the lp norm (0 < p <1)based solution for two different p values. In these

experiments, we use the Peak Signal-to-Noise Ratio (PSNR), defined below, to assess the

guality of the reconstruction.
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Given x € R” and its estimation v € R",

where, rmse =

PSNR(v)=20log,, (

and X, =max

x|

i=l...n

xmax
rmse

As seen from Figures 5.3 (a) — 5.3 (c), the only time QSLO is out performed by ll— norm is

when M <380 and A& =120. For all the other cases, QSLO appears to be the superior

model for reconstruction.

Signal Strength

Signal Strength

0
0

0
0

Quadratic SLO Reconstruction - m=1000, N=380, k=75

L

L

T L 1y

T

I

T

{ —— Original Signal {

‘ r

1000

Source Location

c S ‘ Al
100 200 300 400 500 600 700 800 900
|8 L L |8 L U |5 hil U L
Reconstructed Signal {
oy L Il L L L. L ]
100 200 300 400 500 600 700 800 900 10

00

Figure 5.1 (a): Perfect Reconstruction using QSLO, k& =75
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Quadratic SLO Reconstruction - m=1000, N=380, k=120
L‘ T T T T T T Tt T
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Figure 5.2: Deteriorated Reconstruction using QSLO, k =120

Number of Sources(n) = 1000, Sparsity(k) = 50
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Figure 5.3 (a) PSNR Value comparisons with & =50
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Figure 5.3 (b) PSNR Value comparisons with £ =70
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Figure 5.3 (c) PSNR Value comparisons with £k =120
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5.2

Sparse Group SLO (SGSLO)

During the following experiments, the Gain matrix A is chosen as a Random Gaussian
matrix with mean 0 and standard deviation 1. We consider the original signal x* being a
k -sparse vector with values 1 and 0. The location of the 1’s are randomly chosen such
that they show group-wise sparsity and within group sparsity. The observation vector y
is generated using the model yy = 4x*. In experiments depicted from Figures 5.4 to 5.6,
we initially increased the number of sensors, while keeping the sparsity fixed (This can
be seen from the corresponding sub-figures (a), (b) and (c) for each figure numbered 5.4
—5.6). Then, we increased the sparsity level &, and observed the behavior of the
algorithm (This can be seen from comparing the corresponding sub-figures from 5.4 -

5.6). The group size selected for these experiments is fixed at 100 sources per each

group.

From the following figures, it is obvious that the algorithm gives better solutions when

the sparsity is low, and the number of sensors is high.
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Figure 5.4 (a) SGSLO with sensors = 140, sparsity level (k)=46
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Figure 5.4 (b) SGSLO with sensors = 180, sparsity level (&)= 46
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Figure 5.4 (c) SGSLO with sensors = 200, sparsity level (k)= 46
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Figure 5.5 (a) SGSLO with sensors = 150, sparsity level (k)= 64
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Figure 5.5 (b) SGSLO with sensors = 180, sparsity level (&)= 64
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Figure 5.5 (c) SGSLO with sensors = 200, sparsity level (k)= 64
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Figure 5.6 (a) SGSLO with sensors = 160, sparsity level (k)= 84
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Figure 5.6 (b) SGSLO with sensors = 180, sparsity level (&)= 84
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Figure 5.6 (c) SGSLO with sensors = 200, sparsity level (k)= 84

5.2.1 Comparison between SGSLO and Sparse Group Lasso (SGL)

We compare the performance of SGSLO method with the currently used SGL method
[12]. For this comparison we use publicly available Matlab package SLEP 4.1 [88]. To
assess the quality of reconstruction, we use the following measures: the number of
groups misclassified and the number of features misclassified. A misclassified group is
defined to have at least one non-zero coefficient in a group whose estimated
coefficients are all zero, or vice versa. Similarly, a misclassified feature is an individual

coefficient estimated to be non-zero when the true coefficient is zero, or vice versa.
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The gain matrix A4 is chosen as a Random Gaussian matrix with mean 0 and standard
deviation 1. We perform two experiments using two different numbers of sensors (#):
n =800and 71 =1000. Then we observe the performance w.r.t different

number of observations, i.e., different number of sensors (). We consider the original
signal x* being a k& -sparse vector with values 2, 1 and 0. The cardinality of the support
of vector x* is & =170. The non-zero values are chosen such that they exhibit both
group-wise sparsity and feature level sparsity. A fully activated group would have 40
non-zero values together, while other non-zero values will be more spread-out. The
locations of the nonzero values are randomly chosen such that they show group-wise
and within group sparsity. The observation vector y is generated using the model in
(2.2), and Guassian noise with standard deviation 4.0 is added to each observation. As

for the descending O parameters (when the (4.14) condition is not satisfied) we use
O =15,1,0.7,0.5,0.3,0.1]. We use Ao =1, /11 =1 and A’z = 10 for all our experiments as

they showed comparatively the best results.

Following are the results obtained after averaging 50 trials of the above experiment.
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Figure 5.7: Performance Comparison when n =800 for group lengths 50,80 and 100
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Figure 5.8: Performance Comparison when n =1000 for group lengths 50 and 100

As we can see from Figures 5.7 and 5.8, the novel SGSLO method shows superior

performance compared to the SGL method.
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5.3

Effect of the Regularization parameters

It is important to realize that the tuning of the regularizing parameter/s is vital to
achieving a good solution. As seen in Figure 5.9, if we do not use an acceptable
sequence of regularization parameters, the solution becomes deteriorated. Due to this
reason, we introduce a Model Selection criterion in Chapter 7 which facilitates finding
the best regularization parameters from a candidate set of parameters. In order to
demonstrate the effects of the regularization parameter/s selected towards the final
reconstruction, we refer the best regularization parameters chosen via trial and error as
a “refined” sequence of parameters, while a set of randomly selected parameters as

“unrefined” in the figure below.

Refined sequence of Regularization parameters

T T T T T T T

SGSLO
——— Original Source Signal [

[

r r r r r r
0 50 100 150 200 250 300 350 400
Source Location
Unrefined sequence of Regularization parameters

T T T T T

Signal Strength
1

T
SGSLO
—— Original Source Signal 1

Bk

r r r r r r
0 50 100 150 200 250 300 350 400
Source Location

Signal Strength

Figure 5.9 Importance of the correct selection of Regularization parameters
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54

MEG Simulation

For MEG simulation experiments, we mainly focused on the lead-field matrix. We used
the publicly available Matlab toolbox — Fieldtrip [69] in order to perform the source
reconstruction using SGSLO. The source reconstruction pipeline, or in other words the

inverse solution requires the following steps using fieldtrip:

A) Processing of Anatomical data — This involves the pre-processing of the Anatomical
data, computing the volume conduction model, and computing the source model. We
use the dataset provided by the fieldtrip toolbox

[ftp://ftp.fcdonders.nl/pub/fieldtrip/tutorial/Subject01.zip], which has the necessary

MRI data to compute the volume conduction model and the source model. We used the
“singleshell” method to prepare the head model. Figure 5.8 depicts the skin of the head

model and the sensors co-registered on the skin.

B) Processing of Functional data — This involves the pre-processing of the MEG data,
averaging and noise covariance estimation. We use the functions ft_timelockanalysis
and ft_preprocessing provided in the Fieldtrip toolbox to do the averaging and noise

covariance estimation.
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Figure 5.8: Co-registration of the MEG sensors on the head-model
Computation of the Forward Solution — Once the source space, the volume conduction
model, and the position of the sensors are computed, the lead-field matrix can be
computed using the ft_prepare_leadfield function. The lead-field matrix is computed as
a tensor, where the dimensions are: Number of Sensors () xNumber of Sources (n)x
Orientation of the Source (3). For the computation of the lead-field we use the

“Boundary Element Model” [70]. It is also important to note that, we use the concept of

“free orientation” [16, 71], where we find the 12 - norm average of the 3 orientations to

make it one scalar representation. This will make the inverse solution independent from
the dipole orientations as we now have one single value representing the strength of

the dipole signal. This will reduce the lead-field into an M X7 matrix.

Inverse Solution and Visualization — We use the SGSLO method to reconstruct the source

model. We select the original source distribution to comprise two group-wise
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activations and one focal like activation (Figure 5.9 (c)). We use the function

ft_plot_mesh to visualize the 3-D source model as depicted in Figures 5.9 (a) and (b).

Figure 5.9 (a): Original Source Model

Figure 5.9 (b): Estimated Source Model
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Figure 5.9 (c) : Source reconstruction using SGSLO for a given Lead-field matrix

Non-stationary Signal Reconstruction

For this experiment, we use the mathematical construction described in Section 4.4. The

dimensions of the sensor and source matrices are Y € R and X € R*>!°

respectively, where the number of time samplesis 1 =10.
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The gain matrix A€ R0 is chosen to be a Random Gaussian matrix with mean 0 and
standard deviation 1. We design the source matrix (Figure 5.11(a)) to exhibit group-wise
sparsity, focal sparsity and non-stationary behaviors. Then the sensor vector Y is
obtained by using the relationship ¥ = AX . Following the matrix to super vector

transition described in Section 4.4, we compute y € R and 4 € R0

accordingly. Then we reconstruct the signal X, using the SGSLO algorithm using the

same O values described in Section 5.2.1. The resulting super vector X is then

converted back into a matrix X and compared against the original source matrix as

shown in Figure 5.11(b).
Therefore, by observing the results in Figure 5.11, we can conclude that as long as we

have good a-priori knowledge about the structure of the signal, SGSLO algorithm can be

used to reconstruct both stationary and non-stationary signals.
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6 GLOBAL CONVERGENCE ANALYSIS FOR SPARSE

GROUP SLO

Global convergence analysis is a difficult and a challenging problem when the cost

function to be optimized has many local optima. In SGSLO algorithm, when the Global

Optimality condition (4.14) is not satisfied during the initial verification for 0, , the

in 1
optimization process has to be done for a sequence of O ’s in a descending order.
During this process, for each g the Global Optimality condition will be checked to avoid
any local minima. Unfortunately, there is no guarantee that the selected set of O ’s will
eventually lead to the global optimum in this scenario. Therefore, we devote this
chapter to give a comprehensive theoretical foundation for this problem, and ultimately

discuss on how to find the selection criterion for a set of O ’s which guarantees global

optimum.

In order to tackle the problem of Global Convergence Analysis of the SGSLO method, we
primarily started researching from two leads. First approach was to follow the workings

in [47] as mentioned in Section 6.1 and 6.2. The second approach was to follow the

works of Negabhan et al. [77], [78] to find bounds on the quantity Hx—x*”z for the

algorithm SGSLO as O moves from O, to O, . One of the main challenges we faced
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during the second approach was to find a corresponding regularization parameter for
the SGSLO case which satisfies the Equation (16) of Lemma 1 in [77]. In order to derive
this condition, the authors in [77] used the Holder’s Inequality in their proof [78]. They

were able to use Holder’s Inequality in their derivation since they were only interested

about the l] norm regularizer case. But since we are using an approximated Zo norm

regularizer, which is more similar to an lp norm regularizer with 0 < p <1we would not
be able to use the Holder’s Inequality as it reverses itself for the case of 0 < p <1 .

Therefore, we followed the convergence analysis described in [47] (first approach

mentioned above) which is less ambiguous and more relevant.

In almost all the literature pertaining to SLO based methods [46, 87]; the selection of the
sequence of O’s has been through experimental a-priori knowledge. In [47], Mohimani
et al. provides a complete convergence analysis including the selection criterion of a set
of O’s which will guarantee a global minimum. This criterion was based on Asymmetric
Restricted Isometry Constants (ARIC’s), which are hard to find in a practical sense
(ARIC’s depend on the gain matrix A4, and when the scale of the system increases the
computational complexity of finding ARIC’s grows exponentially). But, they were able to
show that when the gain matrix is a random Guassian matrix, the bounds for the ARIC’s
could be found with a high probability. We use similar arguments as described in [47]

for our global convergence analysis in SGSLO as well.
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6.1

Convergence Analysis for Smoothed /, (SLO) method

In this section, we explain the essential theory components behind the global
convergence analysis for the SLO method mainly extracted from the work in [47]. This
would set the basis for the subsequent explanation on SGSLO’s global convergence. The

SLO minimization model can be described as follows:
o1 2 (6.1)
min, = x[} + A, -
In this section, we approximate HxHO by the continuous function 7 — Fa(x) where
F (x)= ifa(xi), and focus on maximizingFU(x), which is essentially the same as
i=1

minimizing 1 — Fa(x). The SLO algorithm will try to maximize FO,(X) using the steepest

ascent method while decreasing the O value at each outer-most iteration (refer the
SGSLO Algorithm in Section 4.3.3). The theoretical development in [47] is based on the

Definition 2.3 and Theorem 2.2 discussed in Section 2.4.2, where it discusses the

satisfaction of the Restricted Isometry Property in order for the ll— norm solution to

coincide with the Zo - norm solution. In [47], the authors proved that if

cua[“;,?wﬁ | A=< w (6.2)

is satisfied for any w > 1, where HAHZ represents the Euclidean norm of 4 and |'2ka)'|
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6.1.1

represents the nearest integer greater than or equal to 2kw, then SLO recovers the

actual solution x* for the Zo -norm problem, provided that Hx *HO =k . As mentioned

in Definition 2.3, Ot;{mn represents the asymmetric k& -restricted constant, which is the

smallest non-negative number that satisfies the expression in Definition 2.3.

Furthermore, [47] tries to investigate the conditions with respect to y = 4x where

Fa(x) is concave near the global maximum. Therefore, by starting the steepest ascent
from any point in this region will guarantee convergence to the global maximum.
Initially, the parameters Y, (no) and 71, are introduced which depend on the design
matrix 4 and the sparsity level of X, respectively. Thereafter, a relationship is found

between }, (no)and ¢, which facilitates finding the conditions to guarantee finding the

sequence of O that forces SLO to converge to the global maximum.

Relationship between 7,(1,)and o,

We will define the term ,, (5, )as described in [47] by considering a matrix 4 €R™".
Let us first define JTI.(X) as the i element of X and idx as an ascending set of indices
from a subset of X . In other words, idx = {i, <i, <...<i } ©{,2,...,n} and its

complement idx" ={1,2,...,n} —idx.
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Definition 6.1: For a given matrix A4,

|7

Ya(ny) = max,; <, MaX 1o 2
e 0,

(6.3)

2
e B e )

= rnaX|idx\snU maXAx=0
7 )
2
= max max ﬂ -1
- |idx|<n, Ax=0 2
e !

where ‘idx‘ is the cardinality of idx.

If we let null(A) ={x ER" | 4x =0}, then any X that belongs to nui/(A4) would satisfy

the following relationship:

Ax =0

(6.4)
Aidx”idx + Aidxcﬂidxf =0

||Aifj-‘fﬂidx ||2 = HAidxC”idxC

where 4., and Al.dxcare sub-matrices of 4 with columns corresponding to idx and

2

idx* respectively. Let us also refer 0, (4,,) and 0, (4 .) to be the smallest and the

largest singular values of the sub-matrices Al.d}C and Al,dxc respectively. Then from (6.3)

[47] derives the following two relationships:

” Ay T

2 = Umin (Aidx) ”z’dx

2

<
HAidx" ”idxc Hz - Gmax (Aidx“ ) H”idx' 2

Then by using Definition 6.1, (6.3) and (6.4), [47] derives the following:

(6.5)
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Ozmax (Aidx")
azmin (Aidx)
Using the above arguments [47] also proves the following:

7//1 (nO) = maX\idx\sno

O (A) |41, (6.6)
Uzmin (Aidx ) min\idx\sno azmin (Aidx)

v ,(n,)+1=max

[idx|<mq

Finally, assuming that matrix A satisfies the Unique Representation Property (URP),

using (6.2) and (6.6), [47] deduces the following relationship between }, (no)and a,

Al 6.7
}’A(no)'*lsl”imm 67)

gy

The URP property assures that any mXm sub-matrix of A is invertible. In other words,

if the URP property is satisfied for A, given that ‘idx‘ =m, Al.d}C will have linearly

. . 2

independent columns. Therefore, as long as ‘ldx‘ <m, 0. (4,)>0 and

Uzmax (A4,,) <. Hence, from (6.5) we can say that ¥ (1, )is finite and is an increasing

function of 17,

Mohimani et al. in [47], then derive the following two main theorems which discuss the

global convergence criterion for a general case. Theorem 6.1, which is first introduced in
[46] states that if O is chosen such that Fa(xo.) is greater than or equalto n-m+k,

then using the Graduated Non-convexity method the sequence of these points will

converge to the sparsest solutionas o —= 0.
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Theorem 6.1: Consider a family of uni-variate functions

£, :0=f (x)=<;Vo ER",x ER, which follows the properties described in Section

3.1.1. LetF (x) = ifa(xi) , A satisfies the URP property, actual sparsest solution

x*E€S (S, ={xER"|y=4x}) satisfies Hx*”o =k=<m/2and F (x,)=2n-m+k, then

limx, =x*.
o—0

The above theorem highlights the importance of the condition m ~k=n —Fa(xa), and

since k=m/2,aslongas m/2=n-F (x,)is satisfied for all values of O, global
maximum can be attained. Before moving on to Theorem 6.2, which discusses the
selection procedure for the sequence of O, we need to include the following Lemma
from [47], which computes the bounds between two points X; and X, in the sense of

Euclidean distance.

1 .

Lemma 6.1: Given that F, (x)zn-————;
| 2+2y,(n,)

i=12, for two points X, and X, of

Sy, the Euclidean distance between X;and X, is ||x1 —x2||2 <20m(y ,(n,)+1).

It is evident that when Fa,m(no)(xi) surpasses a certain threshold for the given two

12,1

points, the distance of the two points are bounded by O(m"“y /20) . This relationship is
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used as the basis to construct the theory and proofs by the authors in [47] for Theorem

6.2, which shows how to find a sequence of decreasing O ’s such that

1y

is continually satisfied.
2+2y ,(n,)

Foy i (X) 21 =

Theorem 6.2: Let us assume that A satisfies the URP and fa follows the properties

ny

————, and using the
2+2y,(ny)

described in Section 3.1.1. Also, let us assume that k = ||x||O <

)=

- , 0 T g\-1yT - .
minimum norm solution X' (A A)” A"y to be the initial solution for X . Let us also

=1, 2
denote o, = and ¢ = <1.If the sequence of O
k(1+7 ,(n,)) 2n+ny/(2+2y,(ny)) -k

is chosen such that 0, =C0, and the optimization is carried out using the steepest

ascent method starting from x, then at each step: F,, (x;)zn-kand limx, = x*.
J Jj—®

Theorem 6.2 is for the noiseless case where y = Ax is satisfied. For the noisy case

where S, = {x| HAx—yH < &},and € isan arbitrary small positive number, the

selection criteria for the sequence of O ’s which guarantee global optimality is included

in Theorem 6.3 as follows:
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Theorem 6.3: Assume that 4 and fa satisfy the conditions in Theorem 6.2. Also, let

* . . n, .
X ESE to be a sparse solution and assume the condition k < is met. Let us
2+2y,(ny)
. <]
choose any k' which satisfies k <k'< —0, o, = 2 , the scale
2+2y,(n) k'(1+y (ny))
27’1 j-1 . . .
factor ¢ = p <1, and set 0, =0 , 1= j=<J,where J is the index
2n+— 0 k'
(2+2y,(ny))

2n || 4], ¢

of the smallest term of the O satisfying o, = ' >0,
(I+7,(n )k~ k)

=co,.

Then, following the steepest ascent direction and terminating at step ./, we would

obtain a solution that would be Cé& Euclidean distance away from the sparsest

4n
+1
c(l+y,(n))(k'- k)

solution, where C =

4],

Observing the behavior of &' from Theorem 6.2 and Theorem 6.3, it is evident that

1y

then ¢ —1,
2+2y,(ny)

choosing a suitable value for k' is of high importance. If k' —

and since 0, = ¢0; (from Theorem 6.2) this will result in a large number of iterations

before 0; would converge, and therefore a high computational cost. At the same time,

if k'—k then C — © , which makes the error bound to go to infinity. The authors in

[47] provided a method to find a suitable &' in their final algorithm.
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6.2

Even though the above convergence analysis is comprehensive in its making, finding
}/(I’lo) which depends on the matrix 4 becomes difficult as the dimensions of the A

increases. As a solution to this problem, [47] introduced almost sure upper-bounds on

}/(no) for large random Gaussian matrices. We will use the same concept for the
convergence analysis for SGSLO, which will be discussed in the next section.

Convergence Analysis for Sparse Grouped Smoothed /, (SGSLO)

method

As we mentioned in Section 4.3.3 in Chapter 4, the overall cost function to be minimized
in (4.18) will be decomposed into sub-problems for each group /, and then each sub-
problem will be minimized sequentially while keeping all the other groups fixed. We can

re-write the minimization for each group / as:

= .
LSGSLO(xl) = minx/ %Hy_l - Alxluz +4 Hxlu2 +A,[n, - 21 e ] (68)

It is important to note that, in Algorithm 2, finding the set of O ’s which guarantees
-
global convergence applies to the case whereX # (. The reason for this is that the case

-
for X =0 is already dealt with prior to this aforementioned step.
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In order to emulate the convergence analysis described above for the SLO case to the
SGSLO case, we combine the completely convex components of (6.8) together to form a

single quadratic component. In other words, we combine the convex and differentiable

fidelity component ||,/ _ 4'5!|" together with a quadratic approximation of A |x'|| to
| . Al

form a single quadratic component. It is important to note here that since we are
dealing with a quadratic approximation, which is inherently convex, we are not violating
the global convergence criterion discussed in [47] (two convex functions added together

will result in a convex function).

. 1 . .
Let us refer the current iterate for x’ as X,. Let us also make the important assumption

here that X, will lie within close proximity to the global optimality point x’ *, thereby

not violating the condition mentioned in Theorem 6.1.

Now we can write the quadratic approximation for 4 Hxl H as follows:
2

() 69

L
AL~ ol s =g e s S | <[],

n,

where Ax' = x' —xé, x'ER ,g € R",BER"" and L is found using a line-search

method as described in Section 4.3.3.

We can expand (6.9) and find g and B as follows:
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!
L
-G0S 3, 2<0)“ o Gy |t Sy - 6.10)

x0 , X,
g'g-2¢"Bx' +(x") B"Bx'
A
INT
X xn 2
If we let 1= Q—L(xé)r ER' "then ——gTB =7 and B = Eln[ . Therefore,
. A 2
__ A
g 2L’7 .

Now we can combine ||y-l _Afx/"Z and ||g _Bx/”i to a single quadratic form as follows:
2

y_ Al I (611)
- =|y" —Ax g-Bx
¢ s [°L |y - '], + |-,
If welet y = v e R™" ™ and M = A e R then we can re-write the SGSLO
g B
cost function for a given group [ as:
min, ¥ - fo||z + 2 |||, (6.12)

which is similar to (6.1).

It is also important to note that now the cost minimization model is an over determined

system since M is a tall matrix. Therefore, since the above system is inconsistent, we

use Theorem 6.3 to find the sequence of O ’s which will guarantee global convergence.
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Additionally, as described above, finding }/(I”lo) for a given matrix would be
computationally infeasible if the dimensions of the matrix is relatively large.
Nevertheless, }/(I”lo) can be derived from the ARIC’s which can be found using the

exhaustive process of Johnson Lindenstrauss (JL) Lemma described in [89].

As an alternative to this tedious computational process, [47] introduced upper bounds

for the term }/(I”lo) for a random matrix 4 € R™" where M <<1, i.e., a flat matrix.

Following a similar criteria, we derive the upper bounds of }/(I’lo) for the matrix M which

is a tall matrix.

In [47] it is proven that for a given random matrix Ge° #*where n1>m,and O_ (.),
max

0., (.)denote the largest and smallest singular values of a given matrix:

i

P{amax(\/ﬁ/nﬁG)>1+\/ﬁ/ﬁ1 +r}se( EX (6.13)
P{omm(\/ﬁ/m G)<1-~ii/ i+ r} <e 2

Using (6.13), we derive the upper bounds of }/(I’lo)for the problem in (6.12) as follows:

Let idx be a subset of {1,...,11,}, idx‘ =1, and M, e R pe a sub-matrix of M

with columns corresponding to idx . Using (6.13) and [47] we can write the following
probabilities:
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P{Gmax(‘/(m+nl)/nl M) > 1+,/(m+nl)/nl +s} = e(_7) (6.14)

(_”0.1 r )

P{Gmin( (m+n1)/nOJMidx)<1—,/(m+nl)/n0’l—r}se 2

n,

For any subset idx where ‘idx‘ =n,, , there can be a total of ( ) such subsets.

oy

Following the same justifications in [47] and using the second inequality of (6.14), we

can say,

P{\/ (m+n)/ny, ming,, 0. (M) <1=\[(m+mn)/ny, - r} =

2
n nogr
1 e( —y )
Ny,

Now using (6.6), (6.14) and (6.15) we can write the following relation:

(6.15)

n 1+ (m+n)/n +¢) no\ ur, e (6.16)

P{ﬂy(n01)>( (m+n)/n +e) Y| ' le 2 4e 2
(= n) Ing, -\,

(The derivation of (6.16) is included in the Appendix section)

n ne o (”OIIOg(E))
Then as shown in [47], using the relation ( ! ) < (1—] <e "1 where €is the

Euler’s number, we can obtain the following relation:

2 2
n l+/(m+n)/n +¢)’ (no,log(1%) (_ModTy e
P L’l}/(n(”)>( ( 1) ! )2 < e Mo e 2 +e 2
n, ’ (1—4/(m+nl)/n0’, -r)

(6.17)

2 me, 1’ 2
P Ny, y(n )> (I+(m+n)/n, +¢) - e("°”(l°g(no.1) ;) +e<—%>
0,/ 2 -
n, (I1-(m+n)/ny, —r)
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6.2.1

Therefore, by observing the R.H.S of (6.17) we can see that if I'is chosen such that

> /zlog(”l €y, then when 1, = ® R.H.S of (6.17) goes to 0. Therefore, when 7, is a
ny,

large number, we can compute the upper bound for )/(nOJ) as

o\ (L+yJ(m+n)/n, +¢&)’
(no,l)(l_\/(m‘*'nl)/”o,z _’”)2.

Having the knowledge of upper bounds for the term )/(noﬁ,) will enable us to find the

conditions which satisfy (6.2) using (6.5).

Simulation Results

We continue to follow exactly the same steps described in part B, Section VI in [47] for
the case of unknown (1, ) to find the sequence of O ’s that guarantee global
convergence. We carry out the algorithms described in Figure 3 and then Figure 2 in

[47] sequentially to find the sequence of O ’s, while changing )/(noﬁl)to the value we

n[ _ nO,l

had computed for the SGSLO case. We choose o = and found

(m+nl)’ B (m+n,))

£ *, which is the maximizer of /3’/(2 +2y(n0,,))on 0 =< 8 = « . For our simulation, we

choose m = 400,71, =1000. In order to satisfy the & < __ " condition (Theorem
2(1+y(ny,))
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6.3), we set the sparsity & as k =80 . Due to the complexity of the problem, in order to

find B*we had to resort to a numerical method using the “vpasolve” function in

Matlab. We used an initial guess of g =0.3in this computation and achieved g* = 0.55,
which is between 0 and & ; « = 0.714 . Finally, we attain the O values as 0, = 3.4138

and 0, =5.61x10™* where of =0, (1= j<J),J =2633,c=0.9924. In other words,

the initial O to begin the outer iteration is 3.4138 and the final value for O is

5.61x107*, where in between there will be 2631 other O values, which are found using

g
o, =0c".

By comparing this result with the experiments performed using QSLO and SGSLO
methods in Chapter 4 and Chapter 5, we can see that the “working” values for O in

those chapters fall within the range found here. We repeated the above computations
for O with different M and 7, values, and found that the number of O ’s (value for J')

to be iterated for global convergence is in the range of 10° : 10*. This is a substantial

amount of O ’s to iterate. As mentioned in [47], the aforementioned sequence of O ’s
are too overbearing on the algorithm and induces unnecessary slowness. Even though
these values provide a theoretical support, they are excessively pessimistic and affect

the overall algorithm adversely.
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Instead of using all the O ’s , we chose 20 values from .J which would reasonably cover

the whole span of total O values. These O values are as follows:
[2.93, 2.51, 2.15, 1.85, 1.59, 1.36, 1.00, 0.63, 0.54, 0.34, 0.21, 0.18, 0.16, 0.13,

0.10, 0.07, 0.05, 0.03, 0.02 and 0.01]

The results were very much similar to what we obtained in Chapter 5 (Figure 5.4 (c))

where we used the set of O’sas O = [5,1,0.7,0.5,0.3,0.1] _Therefore, we can conclude

that since the order and the magnitude of the “working” O values from Chapter 5 are
very similar to the theoretically obtained values here (even though the final result has
negligible improvement for very small O values), it justifies the use of a few selected O

‘s instead of iterating in its entirety.
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7 REGULARIZATION PARAMETER SELECTION IN SPARSE

GROUP SLO (SGSLO) USING MODEL SELECTION

Finding appropriate regularization parameters is important since they largely affect the
performance of the predicted model. The regularization parameters determine the level
of impact each term has on the overall cost function and it differs from one solution to
another. For this purpose, we expect to follow a model selection criterion based on the
Generalized Information Criteria (GIC) [81], which was formulated by Shimamura et al.
in [76]. This criterion was used to select the best regularization parameter from a set of

candidate values, for the Group Lasso framework.

For a given set of models with different regularization parameters each, the best model
will be the one with the least Kullback-Leibler information [82]. Kullback-Leibler
information measures the divergence between a probability density function of an
unknown distribution and its predictive density function for a future observation. Using
this formulation as our basis, we plan to extend Shimamura et al.’s work[76] to find the
Information Criterion to select the best set of regularization parameters from a set of
candidate values for the case of Sparse Group SLO (SGSLO) method. This criterion can be
especially useful for selecting the free parameters when we have limited a-priori

knowledge about the original signal to be reconstructed.
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7.1

In this section we plan to briefly introduce the formulation of the theory introduced by
Shimamura et al. in [76]. We have omitted the intermediate steps of most of the theory,

which can be referred to [76, 81].

Generalized Information criteria in model selection

Suppose Ym is a random sample of size M from an unknown distribution G(y) having a

probability density function g(y). The parametric family of distributions used for

predictions are represented by {f(y | 9),06@}, which may or may not contain g .

Here & is an unknown vector of parameters of length 71 and the predictive density

f(z]8) for a future observation Z can be constructed by using an estimation vector

o . Suppose that G represents an empirical distribution substituting the unknown

distribution G .

Using the above notations, the Information Criteria mentioned in [76] can be written as

follows: (refer [76] and [81] for intermediate steps)

1C=—2210gf(yi|é)+25((?) (7.1)

where I;(G) represents the approximation for the bias term given by

b(G)=E,, Ulogf(z | é)dé(z)—flogf(z | é)dG(z)] (7.2)
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with the expectation taken over the joint distribution of y, : 1_[:=1>dG(yi)'

For a general statistical functional estimator @ = T(G), where 7(.) is a functional

vector on the space of distribution functions with dimension 72, b(G) is derived as

[81]:

- 1 . At z|6 .
()= e 0 (:0) ML acte) | 73

where TV (z;G) is defined with respect to the influence functions 7;(1) (z;G) as

follows:

T(l)(z;G)=(ﬂ(l)(z;G),...,T,,(l)(z;G))T (7.4)
T1(1- -T
0ot T1-00 40170 .
e—0 £
o (90 90 (7.6)
96" |96, "6,

Here ]: is the ;" component of 7" and (52 is a point mass at Z .Therefore, by replacing

A

b(G) with [5(@) we can obtain the information criterion in (7.1).

Let us overview the works of [76] by considering the objective function for the Group

Lasso model as follows:

| (7.7)
[

2 J
+ /'LE
2 J=1

J. ..
y_;AJxJ

2

1
2
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7.2

where VER", xer" = [xl,,,,,xJ]T . Let the length of a given group (all groups are

J
non-overlapping) x’ be 7;, and therefore, Eni =n.Let A€ R™ be divided into sub-
7=l

matrices corresponding to the groups of X as follows: 4 = [A' Az...AJ], where 4’ is an
m by n; matrix.

Thenin [76], b(G) is computed using the following Gaussian model:

1 (7, -a's) (7.8)
expl-~——F—
27K? 2K

£(310)=
where K is the standard deviation, a,.T is the i row of A and 0 = ()eT,IQZ)T. Once the

information criterion is computed for each model with a specific 4, the model with the

least information is then selected to have the best regularization parameter.

Regularization parameter selection for SGSLO method

We will use similar arguments to the SGSLO model where the minimization of the

objective function is defined as:

0, ) (7.9)

2+ﬂ7j[n, - e 2 ]

i=l1

1

2

x.l

2
min L (x) = min
X 5 =

SGSLO
X

J
_Ajj
ny
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where ﬂ.l,/‘l-z >0 are the regularization parameters. We can consider I such candidate

models with I' different pairs of(ﬁl,/‘g), and compute the /C for each model

accordingly. The hypothesis would be that the lowest /C would yield the best

reconstruction.

Now using (7.8) we can write the “penalized log-likelihood function” as:

K

m J i J n; LI/Z)Z (710)
o i3 -35h5

= J=1 = =
where o — 0.

We can also write the log likelihood function itself as:

m 1 n mK-z (711)
Kzzlog(f(yl.|0))=—52||y—Ax||§—Tlog(2m(2)
Therefore, if we multiply (7.10) by * and then substitute (7.11) in (7.10), we get
K1 ( |¢9)-_l|| -Ax||2—mK2 log(27K>) = A, S /|
i (210) = == [ly = A, - =—Tog 21, (7.12)

i \2
n;  =(x/)

— Az i[nf _Ee?]

i=1

It is obvious that the maximization of (7.12) w.r.t X is the same as the minimization

problem in (7.9).

Once we obtain the estimated solution X using the SGSLO algorithm, next task is to
obtain the estimated standard deviation & . This can be obtained by finding the

solution to the following [76]:
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1 2 m AT
_F”y - Ax —Elog(Zﬂﬁ) _PJZI“XI‘Z - (7.13)

0K J n, =(x)
ﬁz [nj —26 207 ]
| K~ A =

J

Once we have @ found as described above, our next step is to find the influence

function T(l) (y;G) for 0. Unfortunately, (7.9) is not differentiable in terms of & when

some group-wise components of & are exactly zero in the solution. To overcome this

difficulty, we make the same assumption that is being made by the authors in [76]. Let

us first index the groups of X as {1, 2,...,J} and denote the subset of the non-zero
groups as gk = {j = {1,2,...,] X 9’ #()}} for the %" (ﬂ.l,/g)pair; k=12,..,r. Weassume

that §k is locally convergent w.r.t ¥ . In other words, it is assumed that the zero group-

wise components stay the same when a small perturbation of £ isimposed on the

observation vector y . As described in [76], this enables the penalized log-likelihood

function to be twice differentiable w.r.t f; where 0, =(x; k) x, € R™ .
=k 3 K /3

Also, let us denote Agk to be the sub matrix of 4 with columns corresponding to §k.

Following the definitions in [76], we will define the functional vector T, (G) € R as:

fngk (, ng) ]H_EﬁTgk(G)dG =0 (7.14)
where
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L( a’x)’ Lo (27>) iké\xf\
) 5 e Yi—4a; g P 4 5 (7.15)
Valrta) =g Mg om
» -5 -Ye ]
K ja i=1

with G being the true distribution of ) and a,.T being the i row of A.

Let us now replace G by the empirical distribution G based on the observations v,
and then using (7.14) we can have

-3 (7.16)
; zlpfk (yia H‘Ek ) |é¢/¢ =T§/{(GA) = 0

Now following the procedure in [81], we replace G in (7.14) by (1-£)G+€d,  where

5}, is a point of mass at y . Then we can re-write (7.14) as,

J e 0.1, (1-6)G+£d)|, ; ,d(1-€)G+£d,) =0 (7.17)
E F
Now we employ the product and chain rules to differentiate the above w.r.t € and set

e=0:

_d(EF) - (d_E)F+E(d_F) - d_EﬁFJrE(d_F)
de de de dl de de

Therefore, by substituting the above with (7.17) we get,

d d
f@w@ (y’ egk) |49§k =T, (G)dG(y)g{Tfk ((1 - 5)G + &Sy)} |g=0 (7.18)

+ [y (1T (G)d{6,(»)-G(»)} =0

But we know that from (7.6) that the influence function can be written as

7 (5,G) =%{T§k ((1-£)G+5,)} ., (7.19)

S

Hence using (7.18) [76][81],
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-1

d
Té:(:) (y, G) = _{ glpgk (ya egk ) |H§k =T5k (G)dG(y)} 7)05 (y: ﬁgk )
& ’

Therefore, now substituting (7.20) into (7.3) we get,

b(G)= %tr {1616}

where,

0
J(G)=- { Jq s 00 (G)dG(w}

and
dlog f (16, )
0,

Now using (7.1) we can re-write /C as [81],

1G)= Y. (1T, (G)AG(y)

alog f 1,/0)

m A 2 L -
IC=—2;10gf(yi|9)+;;” Ti(l)(yf;G) 00 -0

and therefore,

2 ”y B Ax”2 A An-1
Cooqy = mog(2m) 41—+ 2 {I(G)J(G)‘ }

Let us now find J(G)and 7(G). From (7.15) we can write ¥/ (yl.,Hgk)as

1 ‘d Mc
) -l - A -
1//5 (ymﬁgk) =
J 7 n ~()
, . =
| I EL VIS ISV
2 (; _afr x)z St ]=1A4 = A41=1
| 2K ‘ 2K K K

(7.20)

(7.21)

(7.22)

(7.23)

(7.24)

(7.25)

J(ng+D)x1
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where aé ER

Ixn. 7 7 ne xI — X
% is a row of Agk ,d =(df')f€§k ER™ d, =

(7.26)

J

-— and
x]

2

c= %W(x x, € R"™ and Wi(x.)= diag(e™ ) where t =1: n. . Also, the 1% and 2™

9()

X £,

terms of Y/, (yl,l9 )represent —Z
oK’

and 90) respectively.

Now let us differentiate (7.26) again w.r.t t‘)gkwhere the resulting matrix would have the

() 40)

terms: = .
oxg (0x ) Oxg 0K

respectively,

>as the first row and

IO
K (9 Ak (ax. ) aR?oR>

()

as the second row

/11D AQC -1 ;o Ad o Ae]
‘fk( & 4 (aé’k’i)(yi_aka)-i- 4 + P
KT A
, =|— (v, -alx)(a.)" + -
849 (%k(yl gk)) K4 (y g X §k) P
J ‘(x/z
k i o?
; L AL S5
— Z 2+ — J=
P R Y z
(7.27)
6 (nsk+1)x(n§k+1)
where WE(%" (yi,QEk))E]R ,
I 7 (T
néAxné.]( = n (x)
D = blockdiag(D. )]€§ D) =1 —
x| ¥/
2
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C= SLeR™ 5

Sk

W (x, )[

S
O'

Ngk = diag((x;k )2) where 7 =1: n, -

Note that here

n; is the length of group 5, Ng is the length of the set §k and 7 represents the

Identity matrix.

Therefore, using (7.27) and following the workings of [76] we can obtain

[ D AcC 1 d Me]
—ATA JAD AC S AL - Ad A
K K2 s
A 3T k=T
J(G) =L ierA A“ff _A¢
m|&* K K (7.28)
J . N
! . 1 ’HkZIHX’H %E[n —Ee ]
L Sy z*
where J(G)ER"* %™ A=diag(y -x"a)ER™ i=1:m, 1 =(L1,..,1) €R™
Likewise, using (7.11) and (7.23) we can find ](é) as follows:
(7.29)

alog f (10, )

T

lm
>

1(G) =

from (7.11) we get,

(G)

1
10gf(y,»|9)=—7( ag x)’ ——log(Zm( ) and
T
dlog f(y,160) |i-x"ag Jac, 1 G —x )_L
8(9T K‘2 2 4 y Ekl 2](2 :
Therefore,
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7.3

1(G) =

2

! 1"A2 =
2k

[ 1 Ald1l - Aker”
ATN-Z

K

11T+

~2
K

AN,

Jj=1

2k "

S,

’2_4

i\2
n; -(x/)

_ Ee 207
i=1

T
L, +

]

Simulation Studies

12_4

1T

AA

i (n§k +1)xm

1
2"

A1, -

1
2’2_2 m

1

dmx(ng +1)

(7.30)

In order to find the best (4, 4,)pair among a set of ' candidate set of pairs, we choose a

suitable range of 4,’s and 4,’s and tabulate the corresponding [Cy  values

accordingly. The best pair should be having the lowest [Cy; value.

For this experiment we used the SGSLO algorithm with the sparsity level £ =80, the

number of sensors n =380, the number of sources m =800, and the number of groups

J =8 where each group will be having an equal length of 7, =100 j =1:J. The non-

zero groups were placed such that they belong to the set

§ ={Jj€E l...,J 1 x/ #()} ={x",x’,x*,x°} where x’represents the j[hgroup of X .In

order to compare the [Cy  values with the performance, we plot the reconstructed
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signal against the original signal. The [Cy, values for a range of (11,/‘[2) pairs are as

follows:

/‘Ll A’z Cygq x10*
0.001 15 4.12
0.01 7 3.87

0.1 5 2.79
1 5 2.85
5 5 3.61
0.1 0.5 9.05
1 0.5 9.43
5 0.5 12.29
0.1 0.05 23.65
1 0.05 31.56
5 0.05 39.02

Table 7.1: IC,, values for different (11,/‘[2) pairs

Now for visual comparison we plot the corresponding reconstructed signals as follows:
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Figure7.2: Reconstructed Signal for 4, =0.01,4, =7,1C,.,, (XIO4 ) =3.87
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Figure7.4: Reconstructed Signal for 4 =1,4, =5,1C¢,, (xlO“) =2.85
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Therefore, as we can see when the [Cy increases, the signal reconstruction becomes
deteriorated. From observing the behavior of /11 and iz , we can say that the best

combination of regularization parameters for this experiment would be /‘l] =0. 1,/‘12 =3,
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8 STOPPING CRITERION AND OPTIMALITY

CONDITIONS

Usually, when the cost function needed to be optimized is smooth/ differentiable, a

natural stopping criterion can be admitted based on the gradient of the cost function.

For a given smooth cost function L(x), for a given threshold £ the stopping criterion

could be defined as:
[VLGE)| <& (8.1)

The algorithm can be terminated at the k" iteration which satisfies the above condition.

Unfortunately, this criterion is not valid when the cost function has a non-differentiable

component. The reason is the existence of a sub-differential gL(x) at the non-
differentiable point of the function. The elements of gL(x)are referred to as the sub-
gradients of L at X . Therefore, if L is a convex function, the condition: 0€L(x)
satisfies the global optimality condition at point X . If the function L is differentiable at
the global optimality point X , the set 9L(x) is actually the singleton {VL(x)}. Hence,
the condition 0€dL(x) reduces to the aforementioned condition in (8.1) to VL(x) = 0.

As we know, when the function L is differentiable or when there is a singleton gradient

(VL(x)), we can use the criterion VL(x) = 0 as the stopping criterion for an
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8.1

optimization problem. But, when there is a non-differentiable cost function to be
optimized, the above criterion would not work, as there will be multiple sub-gradients at

the non-differentiable point to consider.

In our cost function to be minimized for the Sparse Group SLO (SGSLO) method ((4.18)),

since it is not smooth atx' =0 ,

le component imposes non-differentiability. In order
2

to find the stopping criterion for such problems, the concept of “Duality Gap” can be

used.

Duality

III

For a given minimization problem, which is referenced as the “primal” problem, a “dual”
problem can be formed. The tools and the basics of Duality can be found in classical
books on Convex Optimization [83, 84]. Usually a dual problem refers to the Lagrangian

dual problem, which will be initially explained here to define the concepts of weak

Duality, strong Duality and the Duality gap.

Let us consider the optimization problem in the standard form [83]:

minimize f(x)
(8.2)

subjectto f,(x)<0, i=1..,m
h(x)=0, i=1..,p
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with the variable x € R" where f, ER" =R, f ER" =R, 1 ER" =R are the

objective, inequality constrains and equality constraints respectively.

The associated Lagrangian (LP R'xR"xR” — R) cost function for this problem can

be defined as follows:

L,(x,A,v)=f,(x)+ i&fl(x) + ivihi (x) (8:3)

For this primal function, the dual function (Lagrangian dual function) can be defined as

follows:

g(i,V)=ir§f [fo(x)+§iifl_(x)+ivih[(x)l (8.4)

Therefore, for a given primal function LP(X,A,V), the dual function can be defined as:

g(A,v)=inf L, (x,A,v) (8.5)

A dual function is always concave because it is the point-wise infimum of a family of

affine functions of (4, v). If we define the optimal value of fO(X)to be p *, then the
dual problem (dual problem provides a lower bound to the solution of the primal

(minimization) problem) will always give lower bounds on that value. In other words, if

X is primal feasible and (A, v) is dual feasible, then,

fo(x)=p*= fi(x)-g(4,v) (8.6)

The solution of the dual problem gives a lower bound to the solution of the primal

(minimization) problem. Strong Duality is defined for convex problems (optimizing
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8.2

convex functions over convex sets) when both the primal and dual optimal values
coincide. If we denote the optimal value of the dual function to be d *, then the

property of strong Duality will hold when p* = g *. Weak Duality property will hold for
the cases where g* < p*. The Duality gap () is defined to be the difference between

primal and dual objectives associated with the primal feasible point X and dual feasible
point (A,v): /5 =f0(x) —g(l,v). If the Duality gap is zero (when strong duality holds),

then X is said to be primal optimal and (A4,v) is dual optimal.

Suppose an algorithm generates a set of primal feasible points x> and dual feasible

points (/l(k),v(k)) with k& =1,2,.... Since we know from equation (8.6) that the lower

bound for ﬂ(k) is £)(x)- p*, for any upper bound for ﬂ(k), 19(x) - p*will always be
less than (or equal to) the upper bound. Therefore, if /)’(k) <e,(e>0), fP(x)-p*<e
will also be satisfied, i.e., ;" (X)will be close to p * within a range of € . This criterion

can be used as the stopping condition where if /)’(k) < &, the algorithm can be

terminated, and the final solution is said to be & —optimal.

Legendre-Fenchel Transform

From a general perspective, a dual function can be recognized as a transformation/

mapping of the primal function to a different space. Among these transformations, we
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use Legendre-Fenchel transforms to derive the dual function for our algorithm. This

transform maps the space (x, f(x)) tothe space(y, f*(y)), where £ *(y) is referred to
as the Fenchel conjugate of f(x).Under the assumption that this transform is

reversible, one form can be regarded as the dual of the other.

For a given vector x € R", the Fenchel conjugate of £ (x) is defined as:
£*)=sup{y - f(0)} (®.7)
.XEO n

In order to find the dual function for our original cost function LSGSLO(XI) (4.19) using

the Fenchel conjugates, we use the following Fenchel-Rockafellar Duality Theorem [85].

Theorem 8.1 [85]
Let [ RY U{+°°} — R be a convex function and g: R" U{+°°} — R be a concave

function (i.e. —g is proper convex). Also, let ' * and g * be the fenchel conjugates of
f and g respectively. Then,

inf {f(x)= g(¥)} =sup {g*(»)- f*()} (8.8)
Using Theorem 8.1, the aforementioned Legendre-Fenchel Transformation function and
the Karush-Kuhn-Tucker (KKT) conditions (KKT conditions are the first order necessary
conditions for a solution in non-linear programming to be optimal), we hope to find the

dual function for the primal problem stated in (4.19). This will enable us to find a

suitable stopping criterion which can be used in our algorithm.
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8.3 Dual Function of the SGSLO Primal Function

Let us first re-write the overall cost function to be minimized for the SGSLO model as

follows:

1
— +
2 2

2
J J

y= 3| +7 3]

m}n Lygsio (x) = min 7 2 /o (8.9)

2
x n, =)

A E[n - Ze 0 ]

As discussed in Chapter 4, we use the Block Coordinate Descent method to minimize the

above objective function where each block is minimized iteratively while keeping the
other blocks fixed. Due to the group optimization behavior, we find the duality gap for

each block minimization at each iteration & and observe the behavior of the Duality

gap ﬂ(l’k) where [ is the group index. We can stop the iteration process if the Duality

gaps for all the groups are below a certain threshold ¢ > 0.

Let us now consider the minimization for each group as found in (4.35) in Section 4.3.3

and refer to it as the Primal cost function - M :

2

L
2

o Vd (x"EY
K0 kD) ( )
L

2

vd, (xl,(k—l)) 2 (8.10)

L, )
o4 5],

. B . I )
mlnMP(xL(k),xh(k 1))= mij i | (RCORERWACE I

xl.(k) X )
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i Vd xl,(k—l) ) Vd xl,(k—l)
xl,(k n _ 1(L )’ a, = xl,(k n _ 2( )

1 2

Let us refero, = and re-write (8.10) for

our convenience as

. - : L 2 L 2
min M (x"®, x"*D) = min _IHXL(k) —aIH + _ZHx”(k) -a, H + A Hx[’(k) H (8.11)
N0 LED 22 ? ’ .

We will now try to find the Dual function to A7, which we would refer to as A7”. Let us

denote £(x"") = 4 Hx”k) H2 to be the convex function and

L

L 2 2
1,(k) 1||,.45(k) 1,(k) )
g(x ) - [_HX - Hz + 7”)6 B 0{2H2

. 1,(k
) to be the concave function. If y ( ,

f*(yl’(k))and g*(yl’(k))represent the dual variable, fenchel conjugates of s and g

respectively, using Theorem 8.1 we can say,

inf {/(") - g(<")} = sup {g*(0" )= 1M (8.12)
Using (8.7),
g*(y) =sup,[y'x-g(®)]
— sup, [ Vxr2r-af + 2 - (8.13)
% =y+L(x-a)+L,(x-a,)=0

The X which satisfies the KKT conditions as described in [20] is the solution of the
above equation

Lo +La, -y (8.14)
(Li+L,)

x*

Substituting this x* into (8.13), we can now write the dual for g(xl’(k)) as
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_Hylv(")Hz +("N (L + Lay)
(8.15)
1 L
g*(y") = (L +L,) +muLz (a, —al)—y”(“Hi
A

To find the dual for f(xl’(k)) we use the dual norm property proved in [83]. It states

that if ||||p isanormon © ”, with dual norm ||||q where L . 1 _ |, thenthe

conjugate of A(x) = ||x||p is

b, =1 (8.16)

e ow

0
h*(y)={

Also, if a function I;(x) = ih(x), then its dual can be written as f_l*(y) = /lh*(y/ﬂ.).

Therefore, the dual for f(xl’(k))can be written as

e (8.17)
1,(k) O 24 =<1
* (b0 =
SHOO) = A,
e ow
Now using (8.12) we can write the dual problem of maximizing M ”w.r.t yl’(k) as
max ., MP (0 = max {g * (YR _ (yl,(k))} (8.18)

Therefore, now we can observe the duality gap ( 3 ) between Af” and M ”to

determine the iteration number k which gives the desired stopping criterion.

143



Simulation Studies

During the minimization of the primal cost function A7”, we compute and plot the
corresponding dual cost function M ” for each group for every iteration. We can
observe that when the iteration count A& increases, the distance between the primal

and dual cost functions gradually decrease.

For this experiment we used the SGSLO algorithm with the sparsity level £ =80, the

number of sensors n =380, and the number of sources m =800 . We used 16 groups
with each having a group length of 7, = 50 for simplicity and kept the regularization

terms fixed. It is important to note that, by observing (8.17) and (8.18), when the

1(k)

condition <l is not satisfied for a given iteration & , the dual function would

q
become =% . This behavior is discussed in [92] and [20]. During our experiments we too
experienced this behavior where for certain iterations there would not be a dual
feasible point for the primal. But after considering the overall set of iterations for all the
groups, it was evident that the dual function exhibits concavity. For clarity, we plot both
primal and dual together and the dual separately, as they show a substantial difference
in the beginning. We also replace the =% values in the dual function by 0’s to preserve
clarity in the plots. The following are the plots of the Primal and Dual functions against

the number of iterations (k).
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We can see from comparing Figures 8.1 and 8.4 that the reconstruction improves when
we increase the number of iterations from 18 to 36. This is justified by observing the

decrease in the duality gap from iterations 18 to 36. Therefore, we can use this criterion
to help us determine when to stop the optimization process, especially when we do not

have a-priori knowledge about the original signal.

It is also important to note that, we tried randomizing the sequence of the groups being
iterated, hoping that the stopping criterion would reach faster in some instances than
the other. We used the randperm() function in Matlab to randomly shuffle the 16
groups during this process. But we were not able to witness a significant improvement
by randomizing the sequence of groups against iterating them from 1 to 16 sequentially.

The multiple lines in Figures 8.2 and 8.3 represent these group minimizations.
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9 CONCLUSION AND FUTURE WORK

9.1 Conclusion

We believe the work carried out in this thesis addresses the “sparse signal

reconstruction using non-convex regularizers” problem in a holistic manner from a more

theoretical perspective. Our initial attempt was to theoretically prove that the Zo -norm

(or Zo -norm based) regularizers produce better reconstruction than the ll—norm based

regularizers with respect to the number of measurements needed. Once we had
discussed the importance and advantages of using such non-convex regularizers, we
attempt to tackle the challenging task of achieving global convergence in the

optimization step.

Furthermore, we introduce a novel algorithm which reconstructs signals having both
group-wise and within group sparsity behavior. The motivation for this was the

structure of the MEG signals generated by the active brain sources. We term this

algorithm as the Sparse Group Smoothed Zo (SGSLO) algorithm, which is flexible enough

to handle any level of group/ within group sparsity by changing its corresponding

regularization parameters accordingly. An important novel contribution related to this
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algorithm is the introduction of the global convergence criterion. This can be verified to

avoid unnecessary iterations through-out the algorithm.

In Chapter 5, we were able to show that this novel algorithm performs better than the

conventional ll -norm counterpart using a wide-range of simulations. As an extension to

the source signal recovery for a given time point, we also show how to recover a non-

stationary signal by stacking the source matrix into a super vector. Additionally, in
Chapter 6 we discuss the theory related to the Smoothed Zo -norm regularization and its

global convergence. This enabled us to formalize a theoretical basis for a more

comprehensive global convergence criterion for the SGSLO algorithm.

Finally, we incorporate novel Information criteria techniques and concepts of Duality to
find the best set of regularization parameters and a proper stopping criterion
respectively, for a given signal reconstruction problem. In Chapter 7, we were able to
successfully illustrate that the regularization parameters (models) with lower
information criteria performs better than the ones with higher information criteria. We
believe this will benefit profoundly when we have limited a-priori knowledge about the
signal being reconstructed. Also, Chapter 8 provides the necessary tools to determine
when to stop the algorithm, which is an important contribution considering the non-

differentiability of the objective function.
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9.2

Future Work:

As we have mentioned before, we assume the groups to be non-overlapping when
devising our novel algorithm. As a future extension, SGSLO can be modified to cater for
the overlapping groups case as well. Pioneering work related to the overlapping groups
case was carried out by Yuan et. al [93] and Jacob et. al [94], where we believe that

similar constructions can be emulated for the SGSLO algorithm as well.

In particular, Jacob et al. [94] modifies the group lasso [25] penalty, which we would

briefly explain in this section.

Let us consider the vector to be reconstructed as w & R” . Let us also define g tobea
subset of the entries of W. In other words, a group g can take any subset from the
power set P([1, p]). A power set P(S) isdefined to be the set of all subsets of .S'. We

also define G to be a group of such subsets, usually given as a-prior information for a

given problem. Two overlapping groups would have at least one coefficient in common.
For weR” andg C G, W, € R’ is defined as the vector whose entries are the same

as W for the coefficients in g, and are 0’s for the rest of the coefficients. Also,
V. € R is defined as the set of ‘G‘ tuples of vectors v =(V,); where each v, ER”

satisfies supp (Vg) C g for each g€ G. Thereby, Jacob et al. [94] replaces the group lasso

(non-overlapping) penalty (9.1) by the group lasso (overlapping) penalty (9.2) as follows:
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Group Lasso (Non-overlapping) Penalty [25]:
group(w) 2 HW H (91)
Group Lasso (overlapping) Penalty [94]:

overlap( )— i EH H (9.2)

V =W

It can be seen that, when the groups do not overlap, W= E Vv, with supp (vg) Cg.ln
g€G

other words, V, =W, forall g&G and (9.2) degenerates to (9.1).

Therefore, following the above modification, we can extend SGSLO for the non-

overlapping case as well.

Another future extension would be to incorporate Bayesian inference in the
reconstruction model and to better estimate the initial approximation of the solution.
Unprecedented work related to Bayesian related reconstruction modeling can be seen
in [95-98]. Using these literatures, one can explore the possibility of pairing Bayesian

inference with the SGSLO algorithm as future work.

Finally, one could improve the convergence rate of the SGSLO algorithm by replacing the
initial approximation with a solution from an Orthogonal Matching Pursuit (OMP) based
method like Group OMP [91]. Although these methods are less reliable, they inherit

faster convergence rates.
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APPENDIX

Using (6.6), (6.14) and (6.15), we show that (6.16) is true.
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Using events 4 and B we can write the following:

Event B can also be written as:
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Figure A.1: Probability range description

We will now explain a probability relationship that will be used for subsequent analysis.

For independent events Y <a and X =5, letus say P(Y <a)=1-¢, and

P(% < %) 2l-e,=P(Xzb)zl-e,- The probability range description for these two
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events is illustrated in Figure A.1. Since the probability range for (l—el)(l —ez)is included
inthe range Y < %X, we can say the following holds true:

P(%s%)z(l—el)(l—e» -

Therefore, using the same arguments on (A.1) and (A.2) we can say the following would

hold:
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”1(1+W+5)2
”0,1(1_\/m_7’)2

Ply,(ny)>

. o (1) o .
Since e e > () the following inequality holds:
o,

Ply,(ny)> <e ?

n,(l+,/(m+n,)/nl+,s)2 (’”fz)_l_(n, ) (_M)
e
no,l(l—ﬂl(m+nl)/no,, —r)2 !
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