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Abstract 

 Intramedullary stabilization is frequently used to treat long bone fractures. Implants 

usually remain unless complications arise. Since implant removal can become 

technically very challenging with the potential to cause further tissue damage, 

biodegradable materials are emerging as alternative options. Magnesium (Mg)-based 

biodegradable implants have a controllable degradation rate and good tissue 

compatibility, which makes them attractive for musculoskeletal research. Here we 

report for the first time the implantation of intramedullary nails made of an Mg alloy 

containing 2% silver (Mg2Ag) into intact and fractured femora of mice. Prior in vitro 

analyses revealed an inhibitory effect of Mg2Ag degradation products on osteoclast 

differentiation and function with no impair of osteoblast function. In vivo, Mg2Ag 

implants degraded under non-fracture and fracture conditions within 210 days and 

133 days, respectively. During fracture repair, osteoblast function and subsequent 

bone formation were enhanced, while osteoclast activity and bone resorption were 

decreased, leading to an augmented callus formation. We observed a widening of 

the femoral shaft under steady state and regenerating conditions, which was at least 

in part due to an uncoupled bone remodeling. However, Mg2Ag implants did not 

cause any systemic adverse effects. These data suggest that Mg2Ag implants might 

be promising for intramedullary fixation of long bone fractures, a novel concept that 

has to be further investigated in future studies. 

 

Keywords: Mg2Ag alloy, Biodegradation, Intramedullary fracture fixation, Bone 

healing, Callus formation 
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1. Introduction 

 Fractures of the femoral and tibia shaft often occur in response to high energy 

trauma and are preferentially treated by an intramedullary nail that supports the 

fracture zone and facilitates bone healing [1–3]. The intramedullary stabilization 

usually remains since implant removal in general and extraction of a nail in particular 

can be very time-consuming, cumbersome and may cause further tissue damage, re-

fracture and other subsequent problems [4–6]. Thus, the second surgery imposes a 

potential risk to the patient and causes additional costs. However, pain, dysesthesia, 

a broken nail, infection, pseudarthrosis or the need for implanting a hip or knee 

prosthesis later in life may require removal of the intramedullary nail [5,6]. Thus, 

biodegradable implants represent an attractive alternative to replace conventional 

implants. Among the various biodegradable materials, magnesium (Mg) and Mg-

containing alloys have a long history in the musculoskeletal field [7]. Based on their 

high biocompatibility, biodegradability, and similar mechanical properties to bone, 

many studies investigated the use of Mg and its alloys for applications in orthopedic 

surgery [8–17]. In addition to its favorable mechanical properties, Mg has been 

shown to increase osteoblast differentiation in vitro [18,19] and to induce new bone 

formation in vivo [13], demonstrating a high osteogenic potential. Furthermore, as 

screws for hallux valgus surgery, Mg-based implants are already in use for clinical 

applications [10,20]. However, these implants are much smaller than intramedullary 

nails and are not entirely surrounded by bone marrow, an environment that might 

affect implant degradation and tissue response. 

 Among the challenges with Mg implants are the degradation rate and the 

biocompatibility [13–15]. For instance, Mg-Calcium alloys are biocompatible but 

degrade quite rapidly [21,22]. Mg-Fluoride coating has been reported to reduce the in 

vivo degradation rate of Mg implants and rare earth metals that are frequently used 

https://www.researchgate.net/publication/7307597_Hardware_Removal_Indications_and_Expectations?el=1_x_8&enrichId=rgreq-9096efd0e9d23964aca2d79fe29d15e3-XXX&enrichSource=Y292ZXJQYWdlOzI5OTU2NjY4NTtBUzozNDg1Mzc0NzM3ODE3NjFAMTQ2MDEwOTIxNzg1MQ==
https://www.researchgate.net/publication/266029232_Biomechanical_characteristics_of_bioabsorbable_magnesium-based_MgYREZr-alloy_interference_screws_with_different_threads?el=1_x_8&enrichId=rgreq-9096efd0e9d23964aca2d79fe29d15e3-XXX&enrichSource=Y292ZXJQYWdlOzI5OTU2NjY4NTtBUzozNDg1Mzc0NzM3ODE3NjFAMTQ2MDEwOTIxNzg1MQ==
https://www.researchgate.net/publication/266029232_Biomechanical_characteristics_of_bioabsorbable_magnesium-based_MgYREZr-alloy_interference_screws_with_different_threads?el=1_x_8&enrichId=rgreq-9096efd0e9d23964aca2d79fe29d15e3-XXX&enrichSource=Y292ZXJQYWdlOzI5OTU2NjY4NTtBUzozNDg1Mzc0NzM3ODE3NjFAMTQ2MDEwOTIxNzg1MQ==
https://www.researchgate.net/publication/240308562_Low-modulus_MgPCL_hybrid_bone_substitute_for_osteoporotic_fracture_fixation?el=1_x_8&enrichId=rgreq-9096efd0e9d23964aca2d79fe29d15e3-XXX&enrichSource=Y292ZXJQYWdlOzI5OTU2NjY4NTtBUzozNDg1Mzc0NzM3ODE3NjFAMTQ2MDEwOTIxNzg1MQ==
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https://www.researchgate.net/publication/8109943_In_vivo_corrosion_of_four_magnesium_alloys_and_the_associated_bone_response?el=1_x_8&enrichId=rgreq-9096efd0e9d23964aca2d79fe29d15e3-XXX&enrichSource=Y292ZXJQYWdlOzI5OTU2NjY4NTtBUzozNDg1Mzc0NzM3ODE3NjFAMTQ2MDEwOTIxNzg1MQ==
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https://www.researchgate.net/publication/232745725_Biocompatibility_and_strength_retention_of_biodegradable_Mg-Ca-Zn_alloy_bone_implants?el=1_x_8&enrichId=rgreq-9096efd0e9d23964aca2d79fe29d15e3-XXX&enrichSource=Y292ZXJQYWdlOzI5OTU2NjY4NTtBUzozNDg1Mzc0NzM3ODE3NjFAMTQ2MDEwOTIxNzg1MQ==
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as alloy materials for Mg can cause cytotoxic effects [23,24]. Recently, members of 

our consortium reported a novel Mg alloy containing 2% silver (Mg2Ag), which was 

cast and treated by a solidification cooling process, resulting in appropriate 

mechanical properties and a rather low degradation rate. Furthermore, in vitro 

investigations of this alloy showed favorable antibacterial effects and no cytotoxicity 

to human osteoblasts [25]. 

 To investigate the in vivo degradation of this novel material as well as its impact on 

bone remodeling and fracture healing, we implanted Mg2Ag intramedullary nails into 

mice with and without a femoral shaft fracture, followed by an analysis of in vivo 

degradation and tissue response under steady-state and bone healing conditions. 

Degradation of Mg2Ag alloys in vivo occurred without adverse effects but faster than 

in vitro. Mice were overall healthy and no adverse effects on body weight or kidney, 

liver, muscle, or spleen were observed. Radiographs and bone histomorphometry 

revealed that in comparison to steel implants, fractures supported by Mg2Ag 

intramedullary nails demonstrated a decreased bone resorption while bone formation 

was increased, leading to a significantly bigger callus during the first 21 days of 

fracture healing. These results demonstrate that fixation of long bone shaft fractures 

by intramedullary Mg2Ag nails might be a promising concept for further investigation. 

 

2. Materials and methods 

2.1. Mg2Ag implant preparation 

 Production of the Mg2Ag (2% Ag, wt/wt) alloy was performed by permanent mold 

casting using pure (99.99%) Mg and pure (99.99%) Ag granules. Briefly, molten Mg 

was maintained at 720°C and pre-heated Ag (150°C) was added under continuous 

stirring (200 rpm) for 15 min. The melt was poured into a mild steel mold pre-heated 

to 550°C. For better separation of castings from the mold, hexagonal boron nitride 

https://www.researchgate.net/publication/26887914_In_vivo_corrosion_and_corrosion_protection_of_magnesium_alloy_LAE442?el=1_x_8&enrichId=rgreq-9096efd0e9d23964aca2d79fe29d15e3-XXX&enrichSource=Y292ZXJQYWdlOzI5OTU2NjY4NTtBUzozNDg1Mzc0NzM3ODE3NjFAMTQ2MDEwOTIxNzg1MQ==
https://www.researchgate.net/publication/26866744_Evaluation_of_short-term_effects_of_rare_earth_and_other_elements_used_in_magnesium_alloys_on_primary_cells_and_cell_lines?el=1_x_8&enrichId=rgreq-9096efd0e9d23964aca2d79fe29d15e3-XXX&enrichSource=Y292ZXJQYWdlOzI5OTU2NjY4NTtBUzozNDg1Mzc0NzM3ODE3NjFAMTQ2MDEwOTIxNzg1MQ==
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was used as mold release agent. In one casting, 6 ingots with a diameter of 30 mm 

and a length of >170 mm were produced. During the casting process cover gas (Ar + 

0.5% SF6) was applied. Ingots were cut to a length of 80 mm and trimmed to a 

diameter of 28 mm. Next, the alloy was homogenized in Ar (6 h at 420°C), followed 

by an extrusion at 370°C with an extrusion ratio of 1/16 from a diameter of 28 mm to 

3 mm. The extrusion speed was 4.5 mm/s. For wire production, the extruded rods 

were cut to 90 mm length and drawn by hand from a diameter of 3 mm to the final 

diameter of 0.8 mm in 0.05 mm increments. Prior to each drawing step, wires were 

heated to 300°C for 45 min until a diameter of 1.6 mm was reached. At smaller 

diameters the heating time was reduced to 15 min. Standard drawing dies, pliers, 

and draw wax as lubricant were used on a drawing bench. 

 

2.2. Implant characterization 

 Composition of the alloy was determined by energy-dispersive X-ray spectroscopy 

analysis (XRF) (Bruker Explorer S4, Bruker AXS GmbH, Karlsruhe, Germany). 

 

2.3. In vitro degradation of Mg2Ag implants and quantification of osmolality and pH 

 Mg2Ag wires of a diameter of 0.8 mm and a length of 20 mm were incubated in 3 

ml DMEM containing 10% fetal bovine serum (FBS) at cell culture conditions (37°C, 

5% CO2, 95% humidity). Initial weight was determined and compared to the weight 

after 7 days of incubation. The average in vitro degradation rate was calculated using 

the weight differences of 6 independent samples. During the 7 days of incubation, 

changes in pH and osmolality of the supernatant were determined using a pH meter 

and a Gonotec 030D cryoscopic osmometer (Gonotec, Berlin, Germany), 

respectively. 
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2.4. Preparation of medium conditioned with Mg2Ag implant degradation products 

 Mg2Ag degradation products were prepared as described previously [26]. Briefly, 

Mg2Ag disks of 1 cm in diameter were immersed for 24 h in α-MEM containing 10% 

FBS and maintained under cell culture conditions (37°C, 5% CO2, 95% humidity). 

Conditioned medium (CM) enriched with Mg2Ag degradation products was added to 

osteoblast and osteoclast cultures at a final concentration of 20%, 10% or 3.3%. Mg 

concentration in the CM was determined by the xylidylblue-I chromogenic method 

according to the manufacturers instructions (Mg Assay Kit, Biomol GmbH, Hamburg, 

Germany). The effect of the CM on cell differentiation and function was compared to 

normal differentiation medium as control. 

 

2.5. Osteoblast and osteoclast cultures 

 Long bone osteoblasts and bone marrow-derived osteoclast precursors were 

isolated from ten-week old C57Bl/6J wild type mice according to standard protocols 

[27,28]. Briefly, tibiae and femora were harvested and cleaned with a forceps and 

scalpel to remove adjacent soft tissues. Epiphyses were cut and bone marrow was 

flushed to obtain osteoclast precursor cells. Cells were then seeded into 10 cm² 

dishes with α-MEM containing 10% FBS and 1% Penicillin/Streptomycin (P/S). After 

incubation for 3 h, non-adherent osteoclast precursors were transferred into a new 10 

cm² dish and cultured in α-MEM supplemented with 10% FBS and 1% P/S for 2 days 

in the presence of 100 ng/ml macrophage colony stimulating factor (M-CSF, 

PeproTech, INC, Rocky Hill, NJ, USA). Next, osteoclast precursors were transferred 

into 96-well plates at a density of 45.000 cells/cm2 and were cultured in α-MEM with 

10% FBS and 1% P/S containing 25 ng/ml M-CSF and 100 ng/ml recombinant 

human receptor activator of NF-κB Ligand (RANKL, PeproTech, INC, Rocky Hill, NJ, 

USA). Mature, multinucleated osteoclasts formed after 4 days in culture and were 

https://www.researchgate.net/publication/260218425_Effects_of_extracellular_magnesium_on_the_differentiation_and_function_of_human_osteoclasts?el=1_x_8&enrichId=rgreq-9096efd0e9d23964aca2d79fe29d15e3-XXX&enrichSource=Y292ZXJQYWdlOzI5OTU2NjY4NTtBUzozNDg1Mzc0NzM3ODE3NjFAMTQ2MDEwOTIxNzg1MQ==
https://www.researchgate.net/publication/10775973_Osteoblast_isolation_from_murine_calvariae_and_long_bones?el=1_x_8&enrichId=rgreq-9096efd0e9d23964aca2d79fe29d15e3-XXX&enrichSource=Y292ZXJQYWdlOzI5OTU2NjY4NTtBUzozNDg1Mzc0NzM3ODE3NjFAMTQ2MDEwOTIxNzg1MQ==
https://www.researchgate.net/publication/10775981_Generating_murine_osteoclasts_from_bone_marrow?el=1_x_8&enrichId=rgreq-9096efd0e9d23964aca2d79fe29d15e3-XXX&enrichSource=Y292ZXJQYWdlOzI5OTU2NjY4NTtBUzozNDg1Mzc0NzM3ODE3NjFAMTQ2MDEwOTIxNzg1MQ==
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visualized by staining for tartrate resistant acid phosphatase (TRAP) activity. TRAP 

activity was detected in osteoclasts fixed by 4% neutral buffered formalin. For the 

staining, a sodium acetate buffer containing sodium tartrate (pH=5) and naphthol-

ASMX-phosphate as well as fast red violet as substrates was used. The number and 

the size of the osteoclasts were quantified using the Osteomeasure system 

(OsteoMetrics, Decatur, GA, USA). Pit formation, a measure of osteoclast function, 

was determined by seeding 45.000 osteoclast precursors/cm2 into 96-well plates 

containing dentin slices. Cells were differentiated in α-MEM containing 10% FBS, 1% 

P/S, 25 ng/ml M-CSF and 100 ng/ml RANKL. After 6 days of differentiation, cells 

were removed from dentin slices by incubation in 20% bleach for 5 min. Resorption 

pits were stained with 1% toluidine blue at pH 4.5. The area and the number of 

resorption pits were quantified using the Osteomeasure system. 

 Long bone envelopes remaining after flushing of the bone marrow were used for 

osteoblast outgrow cultures. Briefly, bones were cut into 1-2 mm2 pieces and 

digested in 1 ml α-MEM containing 2 mg/ml collagenase A (Roche Diagnostics, 

Indianapolis, IN, USA) for 2 h at 37°C for fibroblast removal. Bone pieces were then 

placed in α-MEM supplemented with 10% FBS and 1% P/S for 7 days to allow 

osteoblasts to outgrow onto tissue culture plastic. Next, osteoblasts were seeded at a 

density of 10.000 cells/cm2 into 96-well plates. Osteoblasts were then differentiated in 

the presence of 50 µg/mL L-ascorbic acid (Sigma Aldrich, St. Louis, MO, USA) and 5 

mM β-glycerol phosphate (EMD Millipore Corp., Billerica, MA, USA). Next, CM was 

added at a relative concentration of 3.3%, 10% or 20%. Non-supplemented culture 

medium served as control. Medium was changed every 2 days. Osteoblast 

differentiation was determined by staining of alkaline phosphatase (ALP) activity on 

day 7. For this purpose, cells were fixed with 4% neutral buffered formalin and 

stained in Tris-HCl buffer containing naphthol AS-MX and fast blue at 37°C. 
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2.6. Implantation of Mg2Ag pins and femoral fractures 

 All animal work was conducted at the University Medical Center Hamburg-

Eppendorf according to the German law after approval by the local authorities 

(animal protocol number: 102/14). Ten-week old male C57Bl/6J wild type mice were 

used for in vivo studies. To determine the in vivo degradation of Mg2Ag implants, we 

implanted Mg2Ag pins into the non-fractured right femur of mice. These mice were 

compared to mice that received a steel implant or no implant as controls. All implants 

were inserted into the right femur in a minimally invasive manner after skin excision 

over the knee joint and perforation of the cortical bone at the inter-condylar notch 

using a 21-gauge needle. The implants had a diameter of 0.8 mm and were cut to a 

length that allowed the implant to be located fully underneath the surface of the 

articular cartilage. The skin was closed using a surgical suture. Mice were placed on 

a warm pad with access to pain relieve medication while recovering from anesthesia. 

Animals were examined by day 30, 60 and 210 after implantation with 4 mice per 

group and time point. 

 In order to investigate the degradation of Mg2Ag pins under fracture repair 

conditions and to determine the effects of the implants on bone remodeling during 

bone healing, a model of an open femoral shaft fracture was used. Briefly, animals 

were anesthetized using a combination of ketamine (120 mg/kg body weight) and 

xylazine in saline (16 mg/kg body weight). At the lateral side of the right femur, an 

incision of 8 mm length was placed along the femoral shaft and muscles were gently 

pushed aside to expose the femur. Next, an incision was placed over the right knee 

joint and the cortical bone was perforated at the inter-condylar notch using a 21-

gauge needle, followed by the insertion of a Mg2Ag or steel pin into the distal femur. 

The femur was then fractured in the mid-shaft region using a bone cutter. Implants 
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were moved forward over the fracture into the proximal femur. Skin incisions were 

then sutured. Animals were recovered from anesthesia on a warm pad with access to 

pain relieve medication. Mice were injected with calcein and demeclocycline (each at 

40 mg/kg body weight) 5 days and 2 days prior to sacrifice, respectively, to label 

active surfaces of bone formation as a surrogate of osteoblast activity. By day 7, 14, 

21 and 133 after fracture, mice were analyzed with 6 to 11 animals per group and 

time point. 

 

2.7. X-ray and micro-computed tomography 

 Degradation of the Mg2Ag implants and fracture healing were followed by X-ray 

imaging with life animals under anesthesia at the indicated time points using a X-ray 

imager (Faxitron Xray corporation, Tucson, USA). Images were obtained at 36 kV 

with 4 s exposure time. 

 Micro-computed tomography (µCT) imaging was performed as a more sensitive 

approach to determine implant degradation and fracture healing. Briefly, femora were 

harvested and fixed in 4% neutrally buffered formalin for 48 h prior to storage in 70% 

ethanol. Scans were obtained using a Scanco VivaCT 80 scanner (Scanco Medical 

AG, Brüttisellen, Switzerland) at 70 kV, 114 µA, 16.5 µm/voxel resolution, 400 ms 

integration time and a threshold of 326 mg HA/ccm. Three-dimensional images were 

reconstructed using Imaris software 8.0 (Bitplane, Concord, MA, USA). 

 

2.8. Histological analysis 

 At the indicated time points of analysis, femora and several organs including liver, 

spleen, kidney, and rectus femoris muscle adjacent to the surgical site were 

harvested. All samples were fixed in 4% neutral buffered formalin for 48 h. Soft 
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tissues were dehydrated and embedded in paraffin. Sections of 5 µm thickness were 

prepared and stained with haematoxylin and eosin. 

 Bones were prepared for histology as described previously [29]. Briefly, bones 

were cleaned from surrounding soft tissue and steel implants were removed. Next, 

bones were dehydrated to absolute ethanol, followed by infiltration and embedding in 

methyl methacrylate. Longitudinal sections of 5 µm thickness were prepared at the 

central plane and stained by von Kossa/van Gieson, Toluidine blue, Masson Goldner 

trichrome, or mounted unstained. Histomorphometry of bone sections was performed 

using ImageJ and the Osteomeasure system. The particle analysis function of 

ImageJ was applied to determine the amount of bone in the callus using von 

Kossa/van Gieson-stained sections. For all other quantifications, the Osteomeasure 

system was used according to ASBMR guidelines where applicable [30]. Toluidine 

blue-stained sections were used to quantify the callus area and the amount of 

cartilage within the callus. Furthermore, Toluidine blue and Masson Goldner-stained 

sections were used to determine cellular parameters at the periosteal elevation site 

of the callus. In addition, unstained sections were subjected to dynamic 

histomorphometry to quantify bone formation rates at the periosteal elevation site of 

the callus. 

 

2.9. Statistics 

 IBM SPSS statistics software 21 was used for statistical analysis. Student’s t-test 

was applied to compare two independent experimental groups. Multiple groups were 

analyzed by one-way ANOVA with Tukey's post-hoc test. For all statistical 

comparisons, p-values ≤ 0.05 were considered statistically significant. 

 

 

https://www.researchgate.net/publication/262868532_Standardized_Nomenclature_Symbols_and_Units_for_Bone_Histomorphometry_A_2012_Update_of_the_Report_of_the_ASBMR_Histomorphometry_Nomenclature_Committee?el=1_x_8&enrichId=rgreq-9096efd0e9d23964aca2d79fe29d15e3-XXX&enrichSource=Y292ZXJQYWdlOzI5OTU2NjY4NTtBUzozNDg1Mzc0NzM3ODE3NjFAMTQ2MDEwOTIxNzg1MQ==
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3. Results 

3.1. Alloy composition and in vitro degradation 

 

3.1.1. Analysis of Mg2Ag implants 

 Implant characterization by XRF revealed a content of 1.94 ± 0.05% (wt/wt) Ag. 

Impurities due to the natural composition of Mg, Ag and the alloying process were 

minor with 22.3 ± 2.4 ppm Fe, 20 ± 2.2 ppm Cu, 14.5 ± 1.1 ppm Ni, and 0.43 ± 0.03 

ppm Be. 

 

3.1.2. In vitro degradation, osmolality and pH 

 In vitro degradation of Mg2Ag implants was investigated during a time course of 7 

days. The surface of the implant was smooth by day 0 (Fig. 1a, upper panel) and 

became rough within 7 days (Fig. 1b, lower panel). The corrosion rate was 

determined as 0.473 ± 0.038 mm/year. During the 7 days of degradation, the 

osmolality of the medium increased only very modestly from 0.328 osmol/kg to 0.359 

± 0.003 osmol/kg, without reaching statistical significance (Fig. 1b). No significant 

changes in pH were detected, which remained stable during the course of the 

experiment (Fig. 1c). 

 

3.2. Effect of degradation products on bone cell differentiation and function 

 

3.2.1. Osteoblast differentiation 

 To determine the effect of Mg2Ag implant degradation products on osteoblast 

differentiation, mouse long bone osteoblasts were cultured with 3.3%, 10% and 20% 

medium conditioned with Mg2Ag implant degradation products, which corresponds to 

Mg concentrations of 0.22 mg/ml, 0.64 mg/ml and 1.28 mg/ml. Analysis of osteoblast 
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differentiation was determined after 7 days in culture by staining for ALP activity. The 

increasing amount of CM did not affect ALP activity, demonstrating that Mg2Ag 

degradation products had no influence on osteoblast differentiation in vitro (Fig. 1d). 

 

3.2.2. Osteoclast differentiation and function 

 Differentiation of murine osteoclast precursors into mature osteoclasts was 

investigated by quantifying the number and the size of tartrate-resistant acid 

phosphatase (TRAP)-positive cells that had more than three nuclei. These assays 

revealed that the numbers of TRAP-positive multinucleated osteoclasts as well as the 

size of these cells were reduced by an increasing amount of CM (Fig. 1e, f). 

Furthermore, osteoclast function was determined by dentin resorption assays. 

Quantification of the area and the number of the pits revealed an antagonistic effect 

of the CM at higher concentration (Fig. 1g, h). These findings provide strong 

evidence that Mg2Ag degradation products inhibit osteoclast differentiation and 

function in vitro. 

 

3.3. Degradation of Mg2Ag implants in vivo 

 

3.3.1. Analysis of side effects 

 To determine if Mg2Ag implants cause adverse effects in vivo, Mg2Ag and steel 

pins were implanted into the right femur of mice. Compared to age matched mice that 

had no implant, mice that were implanted with Mg2Ag or steel pins did not show any 

abnormal activity or behavior (data not shown), or any difference in body weight over 

a period of 210 days (Fig. 2a). Various organs including liver, spleen, kidney and 

muscle were harvested for histological analysis 30 and 210 days after implantation. 

Consistent with the overall well being of all animals, no histological abnormalities 
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were observed in these organs of mice implanted with Mg2Ag pins compared to mice 

that received a steel pin or no implant (Fig. 2b). Taken together, these data indicate 

that the implantation of Mg2Ag pins into the medullary canal of the right femur does 

not cause measurable side effects on the growth rate or on inner organs morphology. 

 

3.3.2. Implant degradation in vivo 

 Next we sought to investigate the in vivo degradation of Mg2Ag pins after 

implantation into non-fractured femora of mice using X-ray and µCT analysis. 

Imaging by X-ray was performed immediately after surgery to confirm the correct 

positioning of the implant and after 30, 60 and 210 days to follow implant 

degradation. While all implants remained in their initial position without signs of 

loosening or displacement, a considerable degradation of Mg2Ag implants was 

appreciated 210 days after implantation (Fig. 3a). These data were then confirmed 

and further investigated by a higher resolution ex vivo µCT analysis 30, 60 and 210 

days after insertion of the implant. Degradation of the Mg2Ag implant was detectable 

already by day 30, continued by day 60 (Fig. 3b) and was almost completed by day 

210 (Fig. 3b, c). Interestingly, while the almost complete degradation of a Mg2Ag pin 

of 0.8 mm implanted into the medullary canal of a mouse femur takes approximately 

210 days, the time for the same implant to degrade in vitro was predicted to be 617 

days (see 3.1.2.) and therefore almost three times longer. We also noted that femora 

of animals of the Mg2Ag group appeared to have a widening of the femoral shaft 

compared to mice that received an intramedullary steel pin or no implant (Fig. 3b, c). 

To further investigate this interesting observation, femoral diameters at the midshaft 

were measured by µCT analysis. Indeed, intramedullary Mg2Ag pins significantly 

increased the femoral diameter compared to both control groups by about 40% (Fig. 

3c). 
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3.4. Effect of intramedullary Mg2Ag implants on fracture healing 

 

3.4.1. Exclusion of systemic adverse effects 

 First we wanted to test the hypothesis that Mg2Ag implants do not cause side 

effects during fracture healing. We therefore analyzed the body weight and the 

microscopic structure of liver, spleen, kidney and muscle obtained from mice that 

received a fracture fixation using an intramedullary Mg2Ag pin compared to control 

animals in which the fracture was stabilized by a steel implant. Quantification of the 

body weight showed an age-related increase 133 days after fracture without 

difference between groups, suggesting that intramedullary Mg2Ag implants do not 

affect animal growth under fracture conditions (Fig. 4a). This notion was further 

confirmed by histological analysis of various organs including liver, spleen, kidney 

and muscle at post-fracture day 7 and 133, which showed no histological abnormality 

of any organ of mice implanted with a Mg2Ag pin (Fig. 4b). These data confirm, that 

like under non-fracture conditions, intramedullary Mg2Ag pins do not cause acute or 

long-term systemic adverse effects. 

 

3.4.2. Imaging of implant position, degradation and fracture healing 

 Confirmation of the correct position of the intramedullary implant was performed by 

X-ray analysis immediately after implantation and on day 14, 21 and 133 (Fig. 5a). 

Using the same technique, mice were followed for up to 133 days after fracture, 

demonstrating the formation and remodeling of the callus in both groups and the 

degradation of the Mg2Ag implant during the course of the experiment (Fig. 5a). 

Next, we applied ex vivo µCT imaging as a method of higher sensitivity and 

resolution and found that the callus was fully developed already by day 14 in mice in 
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which the fracture was stabilized by a Mg2Ag pin, a time point at which callus 

formation just started to begin in the control group (Fig. 5b). Furthermore, callus 

formation was considerably stronger in response to Mg2Ag implants by day 21 while 

a complete fracture healing was observed in both groups (Fig. 5b). Interestingly, µCT 

imaging revealed an increase of the femoral midshaft diameter of 73 ± 6% in animals 

implanted with Mg2Ag pins compared to control animals at day 133 (Fig. 5c), 

suggesting that bone remodeling might be affected by Mg2Ag implants during 

fracture healing compared to steel pins. This increase in diameter of the femoral 

midshaft is consistent with the observation of a widening of the femoral shaft in 

response to Mg2Ag implants in non-fractured mice (Fig. 3c). However, the relative 

increase in diameter is greater in fractured compared to non-fractured bones. This 

indicates that intramedullary Mg2Ag implants might affect bone remodeling by 

influencing the activity of osteoclasts and osteoblasts and that this effect is 

augmented in the context of an activated bone remodeling during fracture healing. 

 

3.4.3. Analysis of callus formation, cartilage turnover and mineralization 

 Consistent with the finding made by µCT, histological analysis of mineralized 

tissue by day 14 and 21 after fracture confirmed the formation of a callus that was 

normally mineralized but augmented in mice, in which the long bone fracture had 

been stabilized by an intramedullary Mg2Ag implant compared to control animals 

(Fig. 6a). In both groups, fracture healing was completed successfully with a full 

removal of the callus by day 133 (Fig. 6a). To further characterize the influence of 

Mg2Ag implants on fracture repair, bones were investigated at early time points 

during fracture healing by dedicated histomorphometry. Fracture stabilization using a 

steel implant led to a significant increase in callus size between day 7 and day 14, 

followed by a decrease of the callus size between day 14 and day 21 (Fig. 6b). In 
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contrast, Mg2Ag implants led to a callus that was significantly larger compared to the 

control group as early as day 7 and at all subsequent points of analysis. Furthermore, 

the size of the callus did not decrease 14 days after fracture, demonstrating an 

augmented callus formation due to intramedullary Mg2Ag implants (Fig. 6b). 

 Fracture repair resembles endochondral ossification, a process during which 

cartilage tissue is formed and subsequently replaced by mineralized bone. To 

determine abnormalities in endochondral ossification in response to Mg2Ag implants, 

we quantified both the relative amount of cartilage and the relative amount of 

mineralized bone within the callus. In both groups, the amount of cartilage per callus 

was around 50% by day 7 and decreased during the following 2 weeks of fracture 

repair without major differences except for a greater decrease in cartilage by day 21 

in the group of mice that received Mg2Ag implants, suggesting a slightly increased 

turnover rate (Fig. 6c). Indicating an accelerated mineralization, by day 7 the relative 

amount of mineralized bone within the callus was significantly higher in mice in which 

fractures were stabilized by Mg2Ag implants compared to control animals (Fig. 6d). 

By day 14 and day 21, the amount of mineralized bone within the callus was 

significantly increased compared to day 7 with no differences among groups (Fig. 

6d). In summary, these data suggest that intramedullary Mg2Ag implants augment 

callus formation with an accelerated mineralization at the beginning of the fracture 

healing and an increased cartilage turnover towards the end of the remodeling 

phase. 

 

3.4.4. Quantification of bone formation and bone resorption 

 Next we sought to determine osteoblast activity on trabeculae of the fracture callus 

and at the periosteal elevation site after labeling of bone surfaces with calcein and 

demeclocycline at a defined time interval. Compared to fractures that were stabilized 
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with steel implants, the distance between the labels was greatly increased at the 

periosteal elevation site 21 days after fracture fixation using Mg2Ag pins and the 

newly produced bone matrix appeared as less organized woven bone, suggesting a 

highly activated osteoblast activity (Fig. 7a). Indeed, the mineral apposition rate 

(MAR), a parameter calculated from the distance of the labeled bone surfaces, was 

significantly increased in response to fracture stabilization by Mg2Ag implants 

compared to steel control pins at all time points investigated during 21 days of 

fracture healing (Fig. 7b). Analysis of bone formation on trabecular bone surfaces 

within the callus by day 21 after fracture also revealed an increased distance 

between fluorescent labels (Fig. 7c), representing a significantly increased bone 

formation rate per bone surface in response to Mg2Ag implants compared to control 

animals receiving steel implants (Fig. 7d). These data demonstrate that 

intramedullary Mg2Ag implants activate bone formation, leading to an increased 

callus formation. 

 Since Mg2Ag implants accelerated the mineralization of the newly formed callus at 

early stages (Fig. 6d), we speculated that despite the increased bone formation rate 

the amount of osteoid per bone surface might be unchanged, due to the rapid 

mineralization of the new matrix. Indeed, there was no difference in the amount of 

osteoid between both groups (Fig. 7e), demonstrating the fast incorporation of 

minerals into the matrix in response to Mg2Ag implants. Furthermore, the number of 

osteoblasts was unaffected by Mg2Ag pins compared to control (Fig. 7f), further 

supporting the notion of an increased rate of bone-matrix production that undergoes 

rapid mineralization. 

 Bone resorption is an integral component of bone remodeling during fracture 

repair. Since in vitro analyses revealed that Mg2Ag degradation products inhibited 

osteoclast differentiation and function (Fig. 1e-f), we hypothesized that bone 



  

 18

resorption could be compromised in vivo during fracture healing in response to 

intramedullary Mg2Ag implants. To address this question we quantified the amount of 

eroded surface per bone surface and determined the number of osteoclasts per bone 

surface. Consistent with the in vitro findings, we observed that intramedullary Mg2Ag 

implants significantly decreased both bone resorption (Fig. 7g) reflecting osteoclast 

activity and the number of osteoclasts (Fig 7h). The reduction in bone resorption 

therefore contributes to the augmented callus formation by intramedullary Mg2Ag 

implants during fracture healing in mice. 

 

4. Discussion 

 Intramedullary nailing is frequently used to stabilize long bone fractures [2]. After 

fracture healing, the nail usually remains but under certain circumstances such as 

pain or the need for another implant, removal of the intramedullary nail might become 

necessary [4,5]. Thus, biodegradable materials, including Mg-alloys, are promising 

alternatives that could obviate the need for implant removal [8,9,13,20]. Although Mg-

based implants have a long history in musculoskeletal research [7], degradation, 

biocompatibility and the influence on bone tissue of intramedullary Mg2Ag nails 

under steady state and fracture conditions has not yet been investigated. To address 

these questions, we used intact, i.e. non-fractured, mouse femora and an open 

midshaft bi-cortical femoral fracture model in mice. Prior to analyzing this in vivo 

system, we performed in vitro experiments to determine the degradation of the 

Mg2Ag alloy, which was calculated to require about 1.7 years for the implant to fully 

degrade without affecting the osmolality or the pH of the environment. Compared to 

other Mg-based alloys, this degradation rate is rather slow and favorable for a 

potential use as bone implants [21,22]. As a prerequisite for bone implants, the 

Mg2Ag alloy should not cause any effects on bone cells that could compromise 

https://www.researchgate.net/publication/7307597_Hardware_Removal_Indications_and_Expectations?el=1_x_8&enrichId=rgreq-9096efd0e9d23964aca2d79fe29d15e3-XXX&enrichSource=Y292ZXJQYWdlOzI5OTU2NjY4NTtBUzozNDg1Mzc0NzM3ODE3NjFAMTQ2MDEwOTIxNzg1MQ==
https://www.researchgate.net/publication/8109943_In_vivo_corrosion_of_four_magnesium_alloys_and_the_associated_bone_response?el=1_x_8&enrichId=rgreq-9096efd0e9d23964aca2d79fe29d15e3-XXX&enrichSource=Y292ZXJQYWdlOzI5OTU2NjY4NTtBUzozNDg1Mzc0NzM3ODE3NjFAMTQ2MDEwOTIxNzg1MQ==
https://www.researchgate.net/publication/244990673_Biodegradable_magnesium-based_screw_clinically_equivalent_to_titanium_screw_in_hallux_valgus_surgery_Short_term_results_of_the_first_prospective_randomized_controlled_clinical_pilot_study?el=1_x_8&enrichId=rgreq-9096efd0e9d23964aca2d79fe29d15e3-XXX&enrichSource=Y292ZXJQYWdlOzI5OTU2NjY4NTtBUzozNDg1Mzc0NzM3ODE3NjFAMTQ2MDEwOTIxNzg1MQ==
https://www.researchgate.net/publication/5660709_The_development_of_binary_Mg-Ca_alloys_for_use_as_biodegradable_materials_within_bone?el=1_x_8&enrichId=rgreq-9096efd0e9d23964aca2d79fe29d15e3-XXX&enrichSource=Y292ZXJQYWdlOzI5OTU2NjY4NTtBUzozNDg1Mzc0NzM3ODE3NjFAMTQ2MDEwOTIxNzg1MQ==
https://www.researchgate.net/publication/258683886_Biodegradable_Orthopedic_Magnesium-Calcium_MgCa_Alloys_Processing_and_Corrosion_Performance?el=1_x_8&enrichId=rgreq-9096efd0e9d23964aca2d79fe29d15e3-XXX&enrichSource=Y292ZXJQYWdlOzI5OTU2NjY4NTtBUzozNDg1Mzc0NzM3ODE3NjFAMTQ2MDEwOTIxNzg1MQ==
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fracture healing. We therefore investigated the influence of medium enriched with 

products resulting from the degradation of Mg2Ag on osteoblasts and osteoclasts. 

Our results demonstrate that osteoblast differentiation was unaffected by medium 

containing Mg2Ag degradation products, while osteoclast differentiation and function 

was greatly inhibited in a dose-dependent manner. These findings are consistent with 

those reported by others and are in support of further investigating this novel material 

in musculoskeletal research [25,26,31]. 

 Next, we implanted custom-made intramedullary Mg2Ag nails of 0.8 mm diameter 

into non-fractured femora of adult mice. Imaging analysis using x-ray and µCT 

revealed that the implants were almost entirely degraded after 210 days, which is 

about three times faster than the degradation rate determined in vitro. Discrepancies 

between in vitro and in vivo degradation rates have been reported previously and 

emphasize the importance of in vivo degradation studies since a plethora of 

environmental cues including cell-based influences of the bone marrow environment, 

mechanical stimulation or continuous exchange of the liquids surrounding the implant 

may affect the degradation of the implant [32]. Nevertheless, the in vivo degradation 

of Mg2Ag intramedullary nails reported here occurs at a rate that provides sufficient 

mechanical stability while supporting fracture healing. 

 Neither under non-fracture nor under fracture conditions systemic adverse effects 

caused by Mg2Ag implants were observed based on a stable body weight of the 

experimental animals and a normal histological appearance of various inner organs 

at different time points. Consistent with our observations, others reported that the 

implantation of a Mg-Y-Zn alloy into pigs did not result in any systemic side effects, 

demonstrating high biocompatibility of the material [33]. In addition, implantation of a 

Mg-Y-Nd alloy containing heavy rare-earth elements into rats showed no systemic 

inflammatory reactions in blood smears of operated animals [34]. Thus, the findings 

https://www.researchgate.net/publication/260218425_Effects_of_extracellular_magnesium_on_the_differentiation_and_function_of_human_osteoclasts?el=1_x_8&enrichId=rgreq-9096efd0e9d23964aca2d79fe29d15e3-XXX&enrichSource=Y292ZXJQYWdlOzI5OTU2NjY4NTtBUzozNDg1Mzc0NzM3ODE3NjFAMTQ2MDEwOTIxNzg1MQ==
https://www.researchgate.net/publication/281364149_Effects_of_extracellular_magnesium_extract_on_the_proliferation_and_differentiation_of_human_osteoblasts_and_osteoclasts_in_coculture?el=1_x_8&enrichId=rgreq-9096efd0e9d23964aca2d79fe29d15e3-XXX&enrichSource=Y292ZXJQYWdlOzI5OTU2NjY4NTtBUzozNDg1Mzc0NzM3ODE3NjFAMTQ2MDEwOTIxNzg1MQ==
https://www.researchgate.net/publication/269282309_Mg_and_Mg_alloys_How_comparable_are_in_vitro_and_in_vivo_corrosion_rates_-_A_Review?el=1_x_8&enrichId=rgreq-9096efd0e9d23964aca2d79fe29d15e3-XXX&enrichSource=Y292ZXJQYWdlOzI5OTU2NjY4NTtBUzozNDg1Mzc0NzM3ODE3NjFAMTQ2MDEwOTIxNzg1MQ==
https://www.researchgate.net/publication/223255529_On_the_in_vitro_and_in_vivo_degradation_performance_and_biological_response_of_new_biodegradable_Mg-Y-Zn_alloysJ?el=1_x_8&enrichId=rgreq-9096efd0e9d23964aca2d79fe29d15e3-XXX&enrichSource=Y292ZXJQYWdlOzI5OTU2NjY4NTtBUzozNDg1Mzc0NzM3ODE3NjFAMTQ2MDEwOTIxNzg1MQ==
https://www.researchgate.net/publication/46094835_Bone-implant_interface_strength_and_osseointegration_Biodegradable_magnesium_alloy_versus_standard_titanium_control?el=1_x_8&enrichId=rgreq-9096efd0e9d23964aca2d79fe29d15e3-XXX&enrichSource=Y292ZXJQYWdlOzI5OTU2NjY4NTtBUzozNDg1Mzc0NzM3ODE3NjFAMTQ2MDEwOTIxNzg1MQ==
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reported by others and the results shown here support the notion that Mg-based 

implants do not cause deleterious effects on animal growth or on inner organs. 

 Dedicated histomorphometric analysis of fracture healing revealed an increase in 

osteoblast activity, which led to an augmented bone formation rate and subsequent 

enhanced callus production. Early mineralization of the callus was enhanced and 

then continued normally. Furthermore, the Mg2Ag alloy reduced the number and 

activity of osteoclasts, a finding that is consistent with our in vitro observations and 

with the results reported by others [26,31,35]. Thus, the increased callus formation 

mediated by intramedullary Mg2Ag implants during fracture healing in mice is 

probably due to both an increase in bone formation and a decrease in bone 

resorption. These findings therefore strongly suggest the suitability of degradable 

Mg2Ag implants to promote long bone fracture healing in mice and are consistent 

with studies reporting positive effects of Mg implants on osteoblasts and bone 

formation [12–14,31,36,37]. However, we also noticed that Mg2Ag implants caused 

alterations of the shape of long bones under non-fracture and fracture conditions. 

Mg2Ag nails induced a widening of the femoral shaft without an obvious effect on the 

thickness of the cortical bone. We assume that these changes in bone shape are, at 

least in part, a consequence of the disturbed bone remodeling with an enhanced 

bone formation and an attenuated bone resorption, leading to an unbalanced 

turnover of the entire bone. Nevertheless, these findings require continued 

investigations in subsequent studies to further determine the suitability of 

biodegradable Mg2Ag alloys as material for intramedullary nails to treat long bone 

fractures. 
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5. Conclusions 

 Our study demonstrates that Mg2Ag-based intramedullary nails are suitable 

implants for the fixation of femoral fractures in mice. The material stimulated bone 

formation while inhibiting bone resorption, leading to an augmented callus formation 

during fracture healing. Mg2Ag implants degraded within a reasonable period of time 

without causing systemic adverse effects. Thus, Mg2Ag might be a promising 

material to be further investigated for potential applications in musculoskeletal 

medicine. 
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Figure Legends 

Fig. 1. (a) Surface analysis of Mg2Ag implant prior to degradation (day 0, upper 

panel) and during degradation (day 7, lower panel) in cell culture medium (scale bar 

= 0.8 mm). Change of osmolality (b) and pH (c) of the medium during degradation. 

Graphs show mean values ± SEM, n = 6. Analysis of osteoblast and osteoclast 

differentiation in the presence of conditioned medium (CM) containing an increasing 

concentration of Mg2Ag degradation products. (d) Alkaline phosphatase staining of 

osteoblasts on day 7 (scale bar = 100 µm). (e) Tartrate-resistant acid phosphatase 

(TRAP) staining of osteoclasts on day 4 (scale bar = 100 µm), blue arrows: mono-

nucleated TRAP-positive osteoclast precursors, black arrows: multi-nucleated TRAP-

positive mature osteoclasts. (f) Quantification of the number and the size of 

osteoclasts. (g) Resorption pits on dentin 6 days after plating of osteoclast precursors 

(scale bar = 50 µm). (h) Quantification of the area and the number of the resorption 

pits. (d, e, g) Representative images of 4 independent experiments. (f, h) Graphs 

show mean ± SEM, n = 9 samples per group, * = p ≤ 0.05, ** = p ≤ 0.001, significant 

compared to the groups that were treated with control medium. 

 

Fig. 2. (a) Quantification of body weight of mice after implantation of Mg2Ag pins 

compared to mice receiving a steel implant or no implant as control. Graph shows 

mean values ± SEM, n = 4 animals per group. (b) Representative images of 

hematoxylin & eosin-stained sections of liver, spleen, kidney and muscle at day 30 

and day 210 after implantation of a Mg2Ag pin compared to mice that received a 

steel pin or no implant as control, 20x magnification (scale bar = 100 µm), small 

boxes = area of digital magnification, large boxes: 13.5x digital zoom. 
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Fig. 3. Bone morphology and implant degradation of mice implanted with Mg2Ag pins 

without fracture compared to steel pins and no implant control. Representative (a) X-

ray images (scale bar = 5 mm), (b) µCT images of femora over time in animals with 

steel or Mg2Ag implants compared to no implant control (scale bar = 2 mm), white 

arrow indicates degradation of the Mg2Ag pin, (c) µCT images of femoral midshaft 

cross sections at day 210 (scale bar = 0.5 mm), numbers indicate the width of the 

shaft diameter relative to no implant control ± SEM. N = 4 animals per group, p ≤ 

0.05, *significant compared to the group that received steel implants. 

 

Fig. 4. (a) Quantification of body weight during 133 days after fracture fixation using 

an intramedullary Mg2Ag pin or a steel implant as control. Graph shows mean values 

± SEM, n = 6-11 animals per group. (b) Representative images of hematoxylin & 

eosin-stained sections of liver, spleen, kidney and muscle at day 7 and day 133 after 

fracture and implantation of a Mg2Ag pin compared to mice that received a steel pin 

as control, 20x magnification (scale bar = 100µm), small boxes = area of digital 

magnification, large boxes: 13.5x digital zoom. 

 

Fig. 5. Representative (a) X-ray images to determine implant positioning, callus 

formation and degradation of intramedullary Mg2Ag pins (scale bar = 5 mm), (b) µCT 

images of callus formation and fracture healing during 133 days in mice after fracture 

stabilization using a Mg2Ag implant compared to a steel pin as control (scale bar = 2 

mm), (c) µCT images of cross sections of the femoral mid-shaft at day 133 post 

fracture (scale bar = 0.5 mm), numbers indicate the width of the shaft diameter 

relative to the control group that received steel implants ± SEM. N = 7-14 animals per 

group, p ≤ 0.05, *significant compared to the group that received steel implants. 
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Fig. 6. (a) Representative images of mineralized bones on day 14, day 21 and day 

133 after fracture stabilization using an intramedullary Mg2Ag pin or a steel implant, 

von Kossa/van Gieson staining (scale bar = 2 mm). (b) Quantification of the callus 

area, (c) relative amount of cartilage within the callus and (d) relative amount of 

mineralized bone within the callus during a time-course of 21 days after fracture 

stabilization using an intramedullary Mg2Ag pin or a steel implant. Graphs show 

mean ± SEM, n = 6-11 animals per group, p ≤ 0.05, *significant compared to mice 

that received steel implants, 
#
significant compared to day 7, 

+
significant compared to 

day 14. 

 

Fig. 7. (a) Representative images of calcein/demeclocycline labeling at the periosteal 

elevation site on day 21 after fracture stabilization using an intramedullary Mg2Ag pin 

or a steel implant (scale bar = 20 µm). (b) Quantification of the periosteal mineral 

apposition rate (Ps MAR) at the same site on day 7, day 14 and day 21 after fracture 

stabilization. (c) Representative images of double labeling of trabecular bone 

surfaces within the callus by day 21 after fracture stabilization (scale bar = 20 µm). 

Quantification of (d) the bone formation rate / bone surface (BFR/BS), (e) the osteoid 

surface / bone surface (OS/BS), (f) the number of osteoblasts / bone surface 

(N.Ob/BS), (g) the eroded surface / bone surface (ES/BS), and (h) the number of 

osteoclasts / bone surface (N.Oc/BS) at the same site on day 21 after fracture 

stabilization using Mg2Ag pins or steel implants. Graphs show mean ± SEM, n = 6-11 

animals per group, p ≤ 0.05, *significant compared to the group that received steel 

implants.  
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Statement of Significance 

Biodegradable implants are promising alternatives to standard steel or titanium implants 

to avoid implant removal after fracture healing. We therefore developed an intramedullary 

nail using a novel biodegradable magnesium-silver-alloy (Mg2Ag) and investigated the in 

vitro and in vivo effects of the implants on bone remodeling under steady state and 

fracture healing conditions in mice. Our results demonstrate that intramedullary Mg2Ag 

nails degrade in vivo over time without causing adverse effects. Importantly, radiographs, 

μCT and bone histomorphometry revealed a significant increase in callus size due to an 

augmented bone formation rate and a reduced bone resorption in fractures supported by 

Mg2Ag nails, thereby improving bone healing. Thus, intramedullary Mg2Ag nails are 

promising biomaterials for fracture healing to circumvent implant removal. 

All in-text references underlined in blue are linked to publications on ResearchGate, letting you access and read them immediately.


