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Abstract

The evolutionarily conserved DNA topoisomerase II beta-binding protein 1 (TopBP1) functions in 

DNA replication, DNA damage response, and cell survival. We analyzed the role of TopBP1 in 

human and bovine papillomavirus genome replication. Consistent with prior reports, TopBP1 co-

localized in discrete nuclear foci and was in complex with papillomavirus E2 protein. Similar to 

E2, TopBP1 is recruited to the region of the viral origin of replication during G1/S and early S 

phase. TopBP1 knockdown increased, while over-expression decreased transient virus replication, 

without affecting cell cycle. Similarly, using cell lines harboring HPV-16 or HPV-31 genome, 

TopBP1 knockdown increased while over-expression reduced viral copy number relative to 

genomic DNA. We propose a model in which TopBP1 serves dual roles in viral replication: it is 

essential for initiation of replication yet it restricts viral copy number.
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Introduction

Papillomaviruses are approximately 8 kb double stranded DNA viruses that infect basal cells 

of stratified epithelia and productively amplify in differentiated suprabasal cells (Bedell et 

al., 1991; Howley, 1996). Human papillomavirus (HPV) genomes replicate as low copy 

number autonomous episomes. Similarly, bovine papillomavirus 1 (BPV-1) transforms 

murine cells and is maintained as a stable multicopy nuclear plasmid (Law et al., 1981). 

Virally encoded E1 and E2 proteins are essential for its replication during S phase (Chiang 

et al., 1992; Mohr et al., 1990; Ustav and Stenlund, 1991), which depends on multiple host 
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proteins such as DNA polymerase δ, Replication Protein A and Brd4 (Park et al., 1994; 

Wang et al., 2013). The E1 protein is a sequence specific DNA binding helicase (Hughes 

and Romanos, 1993; Yang et al., 1993). The E2 protein binds to specific DNA motifs in the 

viral regulatory region and is a transcriptional activator (Androphy et al., 1987; Phelps and 

Howley, 1987). E2 binds to E1; the transcriptional activity of E2 is not essential for viral 

replication (Grossel et al., 1996; Mohr et al., 1990). While metazoan origins typically span 

50–250 kb, viral origins are defined by short sequences of less than 100 bp. The E2–E1 

complex recognizes their respective adjacent motifs and this element acts as an origin of 

viral replication (ori). The subsequent ATP hydrolysis by E1 causes the E2 protein to 

dissociate and permits formation of hexameric E1 molecules on the ori (Abbate et al., 2004; 

Sanders and Stenlund, 1998).

Topoisomerase II- binding protein 1 (TopBP1), also known as Dpb11, Rad4, Cut5 (Yeast), 

Mus101 (Drosophila), is a functionally conserved protein with a BRCA1- C terminus 

(BRCT) domain [reviewed in (Garcia et al., 2005)]. Vertebrate TopBP1 participates in DNA 

replication and DNA damage repair processes (Balestrini et al., 2010; Kumagai et al., 2010; 

Makiniemi et al., 2001), is essential for cell survival (Yamane et al., 2002), and is required 

for embryonic development (Jeon et al., 2011). TopBP1 is also necessary for maintenance of 

genomic integrity (Kim et al., 2005) and has several roles in the G1/S transition such as 

loading of replication components and activation of CycE/Cdk2 (Jeon et al., 2007). Elevated 

expression of TopBP1 is believed to cause aggressive tumors by modulating the p53 

pathway (Liu et al., 2009). TopBP1 is capable of activating the DNA damage response 

pathway (DDR) protein ATR (Kumagai et al., 2006) and is known to interact with Claspin 

to promote Chk1 activity (Liu et al., 2006).

The HPV-16 E2 protein is known to associate with TopBP1 and this interaction increases 

the transcriptional and replication activity of E2 protein (Boner et al., f). TopBP1 is believed 

to act as a chromatin receptor of E2 protein especially in late stages of mitosis (Donaldson et 

al., 2007). An HPV-31 genome with an E2 mutation crippled for TopBP1 binding exhibited 

reduced replicative ability (Donaldson et al., 2012). In U2OS cells transfected with HPV18 

genome, TopBP1 co-localized with E1 containing foci suggesting association of TopBP1 

with viral replication centers (Reinson et al., 2013). These results imply co-operation 

between HPV proteins and TopBP1 in facilitating viral replication. Although the DDR is 

activated by HPV E1 and E7 proteins (Banerjee et al., 2011; Fradet-Turcotte A, 2011; 

Sakakibara et al., 2011), chemical inhibitors of the DDR pathway did not alter HPV 

replication (King et al., 2010; Reinson et al., 2013). In this context we explored the role of 

TopBP1 in HPV and BPV replication by modulating the levels of TopBP1 in different cell 

types.

Materials and Methods

Cell culture, Plasmids, Chemicals

C127, BPV-A3 murine C127 cells with BPV-1 episomes (Voitenleitner and Botchan, 2002), 

C33A, and J2 3T3 cells were maintained in DMEM with 10% FBS and 1× Pen/Strep. 

H1299 cells were maintained in RPMI media with 10% FBS having 1× Pen/Strep. HPV-BP 

cells (Sprague et al., 2002) that maintain 10–50 copies of HPV-16 episomes were cultured in 
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Keratinocyte Serum Free media (K-SFM) supplemented with bovine pituitary extract, EGF 

(Invitrogen) and 1× Pen/Strep. CIN612-9E cells (De Geest et al., 1993) that retain HPV-31 

episomes were grown in E-Media on J2 3T3 feeders pre-treated with 5 μg/ml mitomycin C 

as described (Bedell et al., 1991). Cells were transfected with Lipofectamine 2000 (C33A, 

H1299, BPV-A3) or with FugeneHD (HPV-BP, CIN612) at 1:1 and at 4:1 ratio to DNA, 

respectively. We obtained plasmids HPV-31 E1, E2, pFLORI31 and pCI-Rluc (Fradet-

Turcotte et al., 2010a), pSUPER-siScramble (knockdown control), pSUPER-siTopBP1 and 

full length human Flag-TopBP1 (Liu et al., 2004). The TopBP1 knockdown constructs used 

are human specific. pCG-BPV-E2 has been reported (Grossel et al., 1996). We used empty 

pcDNA3 as vector control. Mimosine and nocodazole were procured from Sigma, and 

thymidine was obtained from Alfa Aesar (Ward Hill, MA).

Antibodies

BPV anti-E2 (B201, II–I), anti-EE antibodies (Wang et al., 2009), and rabbit anti-TopBP1 

(Donaldson et al., 2007) have been reported. Commercial antibodies used were anti-Actin, 

(Sigma Aldrich) and mouse anti-TopBP1 (BD Transduction Laboratories, 611875).

Luciferase assay for viral replication

Luciferase based replication protocols essentially followed as described (Fradet-Turcotte et 

al., 2010b). Briefly, 80 ng each of HPV-31 E1, E2 and pFLORI31 constructs were co-

transfected along with 1 μg of TopBP1 shRNA (pSuper-siTopBP1) or over-expression 

(Flag-TopBP1) vectors or their respective controls (pSUPER-siSCramble, or pCDNA3) in 

12 well plate. For normalization, pCI-RLuc construct was included at 16 ng per well. Cells 

were lysed in Dual-Glo luciferase reagent (Promega) and both firefly and renilla luciferase 

activities were determined using PHERAStar FS (BMG Labtech). Luciferase activities were 

measured 48 h and 72 h after transfection. Relative replication was expressed by the ratio of 

firefly to renilla luciferase activity normalized to vector control.

Viral genome copy number determination by real time PCR

Cells were transfected with 2 μg of TopBP1 over-expression or knockdown constructs or 

their respective controls. 72 h post-transfection, HPV-BP or CIN612 cells were lysed in 10 

mM Tris – 1 mM EDTA (pH 8.0) with 0.1% SDS and 1× protease inhibitor cocktail, DNA 

was isolated using standard phenol:chloroform (PCA) method (Sambrook and Russell, 

2006). Real time PCR was performed with a BioRad CFX using Sso Fast Evagreen 

mastermix (BioRad) according to manufacturer’s protocol. The PCR primer sets were 

HPV-16 LCR: forward 5′ GGGTGTGTGCAAACCGTTTTGGGTTA 3′ and reverse 5′ 

CCGATTTCGGTTACGCCCTTAGTTT 3′; HPV-31 LCR: forward 5′ 

CCTGCTCCTCCCAATAGTCAT 3′ and reverse 5′ AAACGGACCGGGTGTACA 3′. 

DNA primer set #23 (Mendoza-Maldonado et al., 2010) was used for genomic DNA copy 

number determination. Results were analyzed using CFX manager software (BioRad).

Chromatin Immunoprecipitation (ChIP) assay

BPV-A3 or HPV-BP cells were synchronized as follows. For double thymidine block, cells 

were kept in 2.0 mM thymidine overnight, released in the morning and again blocked 
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overnight with 2.0 mM thymidine. For the mimosine block, cells were treated at 2 μM 

overnight. For G2 arrest, cells were treated at 100 nM of nocodazole overnight. After 

treatment, ChIP was performed as described in (Yu et al., 2007). Primer sets used for BPV-

LCR were forward 5′ GCCTTCTCAGCCAAAATGAA 3′ and reverse 5′ 

TGAGGTTTTGATCCGCCTAC 3′

Flow cytometry

Synchronized cells were fixed in 90% ethanol and stored in 4°C. The following day, cells 

were washed in PBS, treated with 50 μg/ml of RNase A- 50 μg/ml Propidium iodide for 20 

min, run on FACS Caliber and analyzed with FlowJo software. To test the effect of TopBP1 

protein levels on cell cycle, C33A or H1299 cells were transfected with either over-

expression or knockdown plasmids. After 48 h, cells were harvested and processed for flow 

cytometry.

Western blot of TopBP1

H1299 or C33A cells were transfected with pSUPER-siTopBP1 or pSUPER-siScramble at 3 

μg per well of a six well plate. After 48 h, cells were lysed in urea buffer (6 M urea, 100 mM 

NaH2PO4, and 20 mM Tris pH-6.8). 20 μg of total protein were run on a 4–15% gradient gel 

(BioRad) and transferred onto PVDF membranes. Rabbit anti-TopBP1 (R1180) antibody 

was used at 1:2000, and anti-Actin antibody at 1:1000 dilutions. For over-expression studies, 

H1299 cells were transfected with vector control or Flag-TopBP1 plasmids at 3 μg per well 

of a six well plate.

In situ proximity ligation assay (PLA)

In situ PLA was performed using the PLA Red kit (Olink Biosciences). BPV-A3 cells were 

first blocked in S phase by double thymidine treatment, fixed in 4% para-formaldehyde for 

10 min, permeabilized for 15 min in 0.5% Triton-X 100/PBS, washed in PBS, blocked with 

5% goat serum in 0.2% Triton- X 100/PBS, then incubated overnight with primary antibody 

combinations (E2-TopBP1 or E1-E2) at 4°C . The PLA then followed the manufacturer’s 

protocol. Briefly, cover slips were washed in buffer A, incubated with PLA probe PLUS and 

MINUS for one hour at 37°C, washed twice and the probes were ligated for 30 min. 

Amplification was performed for 100 min at 37°C, washed twice in buffer A and B. Cover 

slips were mounted in Duolink in situ mounting media. Cells were analyzed with a Nikon 

microscope. In case of C127 cells, eGFP was co-transfected with or without pCG-E2. PLA 

signals were counted only from green fluorescent cells. Two independent transfections were 

carried out, the counts were averaged and calculated as percentage of transfected cells 

displaying PLA foci.

Statistical analysis

Unless specifically mentioned, all experiments were repeated thrice and results were 

averaged. Error bars denote the standard deviation. Statistical significance was determined 

using Student’s t-test.
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Results

TopBP1 co-localizes with BPV E2 in nuclear foci

As it was previously reported that TopBP1 co-immunoprecipitates with E2, we sought to 

further characterize this interaction in vivo. To confirm the protein-protein interaction 

between TopBP1 and E2, in situ proximity ligation assays (PLA) were performed 

(Leuchowius et al., 2011). PLA is a modified immunofluorescence assay in which secondary 

antibody is conjugated to specific DNA sequences. When two secondary antibodies are in 

close proximity (~ 40 nm), DNA can be ligated, amplified and detected by hybridization 

with specific fluorescent probes. In BPV-A3 cells, we detected the in vivo interaction 

between the E2 protein and endogenous TopBP1 as demonstrated by formation of 

fluorescent spots inside the nucleus. We also observed similar interaction between E1 and 

E2 (Figure 1A). These cells harbor hundreds of copies of BPV genome due to high levels of 

an E2 protein with three serine to alanine mutations (McBride and Howley, 1991). We also 

repeated the assay in C127 cells transfected with (or without) BPV-E2. C127 cells 

transfected with BPV-E2 became positive in PLA reactions with TopBP1 (Figure 1B). 

Transfection efficiency was normalized to GFP expression and PLA signals were counted in 

transfected cells. As shown in the graph, not all C127 cells showed the PLA signal, possibly 

because of low level or a transient interaction between E2-TopBP1. More than 30% of the 

cells with PLA signal had more than one such fluorescent puncta.

TopBP1 is localized near the BPV and HPV ori in G1/S and early S phase

We next investigated whether TopBP1 is recruited to the viral genome. BPV-A3 cells 

harboring replicating BPV genomes were synchronized in different stages of cell cycle using 

mimosine, double thymidine or nocodazole. Cell cycle profiles were analyzed by flow 

cytometry. As shown in the inset of Figure 2A, cells accumulated in G1/S, early S and G2 

after mimosine, double thymidine and nocodazole treatment respectively. Since 

papillomavirus oncoproteins are known to abrogate cell-cycle checkpoints (Heilman et al., 

2009; Liu et al., 2007), we observed that BPV-A3 cells were not completely arrested and a 

small portion of cells progressed through cell cycle. ChIP was performed using BPV E2, 

TopBP1 or control EE antibodies. As expected (Melanson and Androphy, 2009), BPV E2 

was present at the LCR region at very high levels in mimosine and double thymidine 

synchronized cells. Compared to the EE antibody control, TopBP1 ChIP was increased by 

40 fold in mimosine treated G1/S cells and by 12 fold in double thymidine treated early S 

phase cells. Levels slightly above background (EE antibody) were detected in nocodazole 

treated mitotic arrested cells (Figure 2A). These results confirm enrichment of TopBP1 near 

the viral origin in G1/S or early S phases. TopBP1 is similarly localized to the LCR region 

in HPV-BP cells harboring episomal HPV-16 genome (Figure 2B) in a cell cycle dependent 

manner. The fold change in HPV-BP was not as high as that of BPV, likely due to antibody 

affinity and/or copy number difference. Our results also reaffirm that the virus replication is 

in synchrony with cell cycle and initiated in S phase during episomal maintenance. We 

could not detect the endogenous HPV-16 E2 protein in HPV-BP cells due to lack of a 

specific antibody.

Kanginakudru et al. Page 5

Virology. Author manuscript; available in PMC 2016 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Over-expression of TopBP1 inhibits while its depletion promotes viral replication

We sought to understand the role TopBP1 might play in viral replication. We used two 

human cell lines to examine the effect of TopBP1 in transient replication assays: H1299, a 

non-small cell lung carcinoma cell line that has been successfully used for stable knockdown 

of TopBP1 (Liu et al., 2011) as well as for understanding HPV E6 and E7 functions 

(Mesplede et al., 2012; Todorovic et al., 2012) and C33A, a cervical carcinoma cell line 

often used in HPV replication assays. HPV-31 E1, E2 and the pFLORI31 reporter plasmids 

were co-transfected with either TopBP1 over-expression or knockdown constructs. There 

was significant reduction in protein level with the pSUPER-siTopBP1 construct compared to 

pSUPER-siScramble while over expression resulted in two to three fold increased TopBP1 

(Figure 3A). At 48 h, knockdown of TopBP1 in both H1299 and C33A increased viral 

replication by 48% and 26% respectively. In contrast, its over-expression resulted in a nearly 

two fold decrease in HPV-31 replication in H1299 and 21% reduction in C33A cells. At 72 

h post transfection, the effects were more pronounced with knockdown causing 60% and 

40% increase in H1299 and C33A respectively, while over-expression decreased the viral 

replication by 60% and 46% in H1299 and C33A respectively (Figure 3B). As shown in 

Figures 4 A and B, modulation of TopBP1 protein levels did not significantly affect cell 

cycle compared to respective controls. We did observe that the pSUPER vector backbone 

slightly altered the “S” phase (as shown by pSUPER-siSCramble) in C33A cells, but the cell 

cycle patterns were similar for both pSUPER-siTopBP1 and pSUPERsi-Scrambled samples. 

Using trypan blue staining, we did not detect any significant cell death associated with 

TopBP1 manipulations in C33A or H1299, as treatments showed similar (94 ± 4 %) cell 

survival.

Although we normalized the firefly luciferase (replication related) activity to renilla 

luciferase (transcription related) activity, we wished to confirm that the observed result was 

a result of genome replication. We repeated this assay by excluding HPV-31-E1 or E2 in 

this assay. As shown in Figure 5, the absence of E1 or E2 resulted in nearly 20 fold decrease 

in luciferase activity. In the absence of viral proteins, there was no significant difference in 

luciferase activity, suggesting an influential role of TopBP1 on E1-E2 dependent replication.

To demonstrate the consequences of TopBP1 manipulation on a stable HPV replicon, HPV-

BP cells were transfected with either over-expression or shRNA constructs of TopBP1. 

After 48 or 72 h post transfection, total DNA was isolated and viral copy number was 

determined by real time PCR using primers specific for the HPV-16 LCR region. A genomic 

DNA amplicon was included for normalization. Viral copy number increased to 150% at 48 

h post-transfection and nearly threefold in TopBP1 knockdown cells at 72 h (Figure 6A and 

B). On the other-hand, over-expression of TopBP1 resulted in 20% and 50% reduction in 

copy number at 48 and 72 h respectively. We also tested whether analogous observations 

would hold in CIN612 cells. As shown in Figure 6B, heterologous expression of TopBP1 

significantly decreased viral copy number relative to genomic DNA while knockdown 

increased viral content. Therefore, TopBP1 not only effects viral replication in transient 

assays, but also reduces viral copy number in cells maintaining HPV episomes.
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Discussion

Papillomavirus genomes are maintained as low copy number episomes in basal epithelial 

cells and are amplified to thousands of copies in nuclei of upper level differentiating cells. 

While activation of the DDR pathway is known to stimulate the amplification stage, a role 

for DDR factors in the genome maintenance phase has not been observed. In the present 

study, we investigated the role of TopBP1 protein in HPV and BPV replication. TopBP1 

plays an essential role during genomic DNA replication by facilitating loading of CDC45 at 

the origin (Kumagai et al., 2010). After replication initiates, TopBP1 is no longer necessary 

for continued DNA synthesis (Makiniemi et al., 2001). We demonstrate that the TopBP1 

protein is present at the HPV and BPV origins of replication in G1/S phases of cell cycle 

(Figs. 2 A, B). This is presumably facilitated by its binding to the HPV E2 protein in vivo as 

shown here by in-situ PLA. We also observed interaction between BPV E1 and E2 by PLA 

in a murine cell line that stably maintains viral episomes (Figure 1A). In addition to strong 

signals, E1–E2 PLA showed a few faint signals, which were not observed in E2-TopBP1 

interactions, possibly because of different affinities of proteins to each other and/or to the 

specific antibodies. The cell cycle specific localization of TopBP1 to the viral origin in G1/S 

implicates its role in the initiation of viral DNA replication. This is supported by a previous 

study wherein an HPV-16 genome encoding an E2 mutant crippled for TopBP1 failed to be 

maintained episomally in cultured keratinocytes (Donaldson et al., 2012). As the cells 

progressed through mitosis, the presence of TopBP1 near the viral ori decreased, indicating 

its displacement at this stage (Figure 2 A, B). It has been reported that the E2 binding 

protein Brd4 is also necessary for initiation of HPV replication and subsequently displaced 

from viral DNA foci (Sakakibara et al., 2013; Wang et al., 2013). Our results suggest a 

similar role for TopBP1.

Progression of a replication fork may stall upon collision with other DNA bound complexes, 

or when the template is damaged as occurs with nucleotide depletion or from chemical 

agents. Induction of DNA damage following HPV-18 E1 over-expression has been shown 

by comet assay (Reinson et al., 2013). This implies that E1 or an associated factor is capable 

of inducing genomic damage and the DDR. TopBP1 is recruited to the replisome by DDR 

mediators of the Mre11-Nbs1-Rad50 complex (Duursma et al., 2013; Makiniemi et al., 

2001). Phosphorylated TopBP1 is necessary for a cascade of downstream protein 

phosphorylations that result in activation of Chk1, which restricts further origin firing 

(Feijoo et al., 2001). We observed that partial knockdown of TopBP1 consistently increased 

transient viral replication and viral episomes (Figures 3 and 6). The opposite outcome was 

observed following over-expression of TopBP1, which resulted in reduced viral replication 

in luciferase based reporter assays. We confirmed that the change in replication is a 

consequence of TopBP1 level on replication unrelated to cell cycle (Figure 4 A and B). 

Moreover, heterologous expression of TopBP1 consistently decreased viral copy number in 

keratinocytes stably carrying episomal HPV-16 or HPV-31 genomes (Figure 6). In the 

absence of E1 or E2, replication was not observed irrespective of TopBP1 protein level 

(Figure 5). We conclude that the sustained presence of TopBP1 hindered virus replication.

Targeting the TopBP1 pathway is not unprecedented in viral replication. Certain adenovirus 

serotypes inhibit ATR activation by targeting the TopBP1 protein for degradation, inferring 
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that the DDR restricts adenoviral replication (Blackford et al., 2010). Another indirect link 

between TopBP1 and HPV replication may lie in the Fanconi Anemia (FA) pathway. FA is 

associated with increased susceptibility to HPV induced carcinogenesis (Kutler et al., 2003; 

Park et al., 2010). The viral E7 oncoprotein was reported to activate the FA pathway and 

accelerated chromosomal instability has been attributed to a defective FA pathway (Spardy 

et al., 2007). The FA pathway is believed to restrict the HPV life cycle as loss of FANCD2 

component accelerates HPV amplification (Hoskins et al., 2012). Defective FANCM is also 

known to displace TopBP1 from chromatin (Schwab et al., 2010). Whether there is any link 

between HPV amplification and failure to retain TopBP1 on chromatin in FA is not very 

clear, but our results do indicate that after replication is initiated, removal of TopBP1 would 

facilitate HPV replication during episomal maintenance.

The experiments presented here suggest differential roles of TopBP1 in PV replication. 

Chromatin immunoprecipitation (ChIP) results support the essential role of TopBP1 for 

replication initiation, while over-expression of TopBP1 exerts a negative regulatory role. We 

believe that, as a key regulator of the DDR pathway, TopBP1 plays a critical role in fork 

stability during episomal replication. Since PV replication is presumed to occur by 

bidirectional DNA synthesis, the replication fork will converge on each episome. This poses 

the problem of colliding replisomes that require resolution. The DDR may be critical to 

appropriately resolve this possible fork collapse. A collapsed fork is likely to affect 

episomes more severely than the genomic DNA since the latter have multiple origins and 

thus could restart more efficiently. Alternatively, manipulation of the DDR by modulating 

the levels of TopBP1 may cause a replication block from which the episomal DNA cannot 

be rescued. A previous study using chemicals to alter HPV DNA structure showed that 

mounting of a DDR eliminated HPV episomes, possibly by activating Rad9-Hus1-Rad1 (9–

1–1) (Edwards et al., 2013). It was suggested that the 9–1–1 complex may recruit enzymatic 

complexes that destroyed the HPV genomes. Our study also suggests that unscheduled or 

uncontrolled activation of TopBP1 is not conducive for PV replication, reconfirming the fine 

balance of host proteins for successful replication and episome maintenance. We also cannot 

rule out the possibility of TopBP1 playing a role during DNA segregation that affects 

episomal copy number. In differentiating cells where HPV undergoes rapid amplification, 

the DDR is a critical factor for promoting virus replication and the potential role of TopBP1 

might be altogether different. Further studies are necessary to uncover the exact mechanism 

by which TopBP1 leads to episomal loss and/or replication block during HPV maintenance 

and how and when exactly TopBP1 is displaced during replication.
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Research highlight

• Protein interaction study confirmed In situ interaction between TopBP1 and E2

• TopBP1 present at papillomavirus ori in G1/S and early S phase of cell cycle

• TopBP1 knockdown increased, over-expression reduced virus replication

• TopBP1 protein level change did not influence cell survival or cell cycle

• ToPBP1 displaced from papillomavirus ori after initiation of replication
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Figure 1. 
In vivo co-localization of BPV-E2 with TopBP1. (A) In situ proximity ligation assay (PLA) 

between E1 – E2 (left) and TopBP1 – E2 (right) in BPV-A3 cells synchronized by double-

thymidine block. Fluorescent spots indicate interaction based PCR amplification occurring 

in the nucleus (stained blue). (B) PLA of transfected BPV E2 and endogenous TopBP1 in 

C127 cells synchronized by double thymidine. Fluorescent spot indicates interaction based 

PCR amplification. Graph shows the percentage distribution of PLA signals in GFP 

expressing transfected C127 cells.
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Figure 2. 
Both E2 and TopBP1 ChIP to the LCR region at G1/S and early S stages. (A) BPV-A3 cells 

were treated with mimosine, thymidine or nocodazole to arrest in different cell cycle stages. 

Inset diagram shows flow cytometry based cell cycle analysis. Bar indicates standard 

deviation, * p < 0.05 between TopBP1 antibody and control antibody. (B) TopBP1 is 

localized to HPV-16 LCR of HPV-BP cell line. Bar indicates standard deviation, * p < 0.05 

between TopBP1 antibody and control antibody.
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Figure 3. 
Transient HPV-31 replication was altered by modulating TopBP1 levels. (A) Western blot 

of TopBP1 in H1299 and C33A cells. Left panels show the western blot from H1299 and 

C33A cells transfected with pSUPER-siTopBP1 or its vector control. Right panel shows the 
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western blot from H1299 cells transfected with vector or Flag-TopBP1 constructs. Actin was 

used as a loading control. Legend – V – vector controls, sh – pSUPER-siTopBP1, FT – 

Flag-TopBP1. (B) HPV-31 luciferase based assays in H1299 (upper) and C33A (lower) cells 

having either Knockdown or over-expression constructs of TopBP1. p < 0.05 between 

control and over-expression/knockdown at both time points for H1299, while it was 

significant at 72 hours for C33A.
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Figure 4. 
TopBP1 level does not alter cell cycle. C33A (A) and H1299 (B) cells were transfected with 

either over-expression or knockdown constructs (or respective controls). Flow analysis was 

carried out 48 h post-transfection.
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Figure 5. 
TopBP1 effect on HPV-31 replication depends on both E1 and E2. HPV-31 luciferase based 

assays in C33A cells with or without HPV-31 E1/E2 in TopBP1 knockdown or over-

expressing cells. * p < 0.05.
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Figure 6. 
Episomal HPV replication is altered by changing TopBP1 levels. (A) Quantitative PCR of 

HPV-16 LCR in TopBP1 protein knockdown or over-expressing HPV-BP cells. HPV-16 

LCR DNA values were normalized to PCR of genomic locus 23. * p < 0.05. (B) 
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Quantitative PCR of HPV-31 LCR in TopBP1 protein knockdown or over-expressing 

CIN612 cells. HPV-31 LCR values were normalized to PCR of genomic locus 23. * p < 

0.05.
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