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Autonomic nervous system activation can induce signifi-
cant and heterogeneous changes of atrial electrophysi-

ology and induce atrial tachyarrhythmias, including atrial 
tachycardia and atrial fibrillation (AF). The importance of the 
autonomic nervous system in atrial arrhythmogenesis is also 
supported by circadian variation in the incidence of symptom-
atic AF in humans.1 Methods that reduce autonomic innerva-
tion or outflow have been shown to reduce the incidence of 
spontaneous or induced atrial arrhythmias.2–6 The latter stud-
ies suggest that neuromodulation may be helpful in control-
ling AF. In this review, we focus on the relationship between 

the autonomic nervous system and the pathophysiology of AF 
and the potential benefit and limitations of neuromodulation 
in the management of this arrhythmia.

Cardiac Autonomic Innervation
The heart is richly innervated by the autonomic nerves. The 
ganglion cells of the autonomic nerves are located either out-
side the heart (extrinsic) or inside the heart (intrinsic). Both 
extrinsic and intrinsic nervous systems are important for car-
diac function and arrhythmogenesis.7–10 The vagal nerves in-
clude axons that come from various nuclei in the medulla. The 
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Abstract: Autonomic nervous system activation can induce significant and heterogeneous changes of atrial 
electrophysiology and induce atrial tachyarrhythmias, including atrial tachycardia and atrial fibrillation (AF). The 
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in the incidence of symptomatic AF in humans. Methods that reduce autonomic innervation or outflow have been 
shown to reduce the incidence of spontaneous or induced atrial arrhythmias, suggesting that neuromodulation may 
be helpful in controlling AF. In this review, we focus on the relationship between the autonomic nervous system and 
the pathophysiology of AF and the potential benefit and limitations of neuromodulation in the management of this 
arrhythmia. We conclude that autonomic nerve activity plays an important role in the initiation and maintenance 
of AF, and modulating autonomic nerve function may contribute to AF control. Potential therapeutic applications 
include ganglionated plexus ablation, renal sympathetic denervation, cervical vagal nerve stimulation, baroreflex 
stimulation, cutaneous stimulation, novel drug approaches, and biological therapies. Although the role of the 
autonomic nervous system has long been recognized, new science and new technologies promise exciting prospects 
for the future.    (Circ Res. 2014;114:1500-1515.)
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extrinsic sympathetic nerves come from the paravertebral gan-
glia, including the superior cervical ganglion, middle cervical 
ganglion, the cervicothoracic (stellate) ganglion, and the tho-
racic ganglia.11 The intrinsic cardiac nerves are found mostly 
in the atria and are intimately involved in atrial arrhythmo-
genesis. Figure 1 is a highly simplified illustration of the car-
diac autonomic innervation and sites reported to be relevant in 
neuromodulation to control atrial arrhythmia. Among them, 

the stellate ganglion is a major source of cardiac sympathetic 
innervation. The stellate ganglion connects with multiple in-
trathoracic nerves and structures, as well as skin.12–15 Figure 2 
shows immunohistochemical staining of the major autonomic 
structures that innervate the heart. The ganglion cells within 
the stellate ganglion mostly (>90%) stain positive for tyrosine 
hydroxylase, the rate-limiting enzyme responsible for the syn-
thesis of catecholamines (Figure 2A). However, there are also 
ganglion cells that are negative for that enzyme (Figure 2B). 
The negatively stained cells (Figure 2C) stain positively for 
choline acetyltransferase (Figure  2D),16 an enzyme respon-
sible for the synthesis of the neurotransmitter acetylcholine. 
Tyrosine hydroxylase–positive ganglion cells are also found in 
the cervical vagal nerve of dogs (Figure 2E) and humans.17,18 
These findings suggest that the sympathetic components in 
the vagal nerve may serve as a source of sympathetic tone. 
Because cells that stain positive for tyrosine hydroxylase may 
also stain positive for choline acetyltransferase (Figure 2E), 
ganglion cells in the autonomic nerve structures are not only 
dedicated to produce catecholamines.

Like the stellate ganglion, the vagal nerves also have a com-
plex structure containing mixed nerve types. A large portion 
of the vagus trunk contains sensory and motor nerves.20 In 
addition to the parasympathetic structure that sends fibers to 
various parts of the body,21 a sympathetic component is known 
to be present in the vagal nerves based on physiological obser-
vations.22–24 These findings were subsequently confirmed with 
immunohistochemical staining that documented the presence 
of tyrosine hydroxylase–positive nerve fibers in human and 
canine vagal nerves.17,18,25–27 As shown in Figure 3, the tyro-
sine hydroxylase–positive nerves are distributed mostly in the 
periphery of the vagal nerve (Figure 3A–3E), but occasion-
ally tyrosine hydroxylase–positive nerves can extend into the 
center of the vagal nerve (Figure  3F). Similar findings are 
found in the thoracic vagal nerves.26 Vagal nerve recordings 
in ambulatory dogs showed that in 3 dogs isolated vagal nerve 
activation induces tachycardia (Figure  3G), consistent with 
activation of the sympathetic component of the vagal nerves.

In addition to these extrinsic cardiac nerves, the heart is also 
well innervated by the intrinsic cardiac nerves.9,28 Histological 
study of human pulmonary vein (PV)–left atrium (LA) junc-
tion29 showed that numerous autonomic nerves are present. 
The nerve densities are the greatest in the LA within 5 mm 
of the PV–LA junction and are higher in the epicardium than 
endocardium. Adrenergic and cholinergic nerves are strongly 
colocated at tissue and cellular levels. A significant propor-
tion (30%) of ganglion cells expresses dual adrenocholinergic 
phenotypes (ie, stain positive for both tyrosine hydroxylase 
and cholineacetyltransferase). Because these nerve structures 
are highly colocalized, it is difficult to perform radiofrequency 
catheter ablation that selectively eliminates purely sympathet-
ic or parasympathetic arms of the autonomic nervous system.

Neuroplasticity
In addition to the complex anatomic and physiological inter-
actions between various nerve structures, cardiac autonomic 
innervation is also constantly remodeling, especially during 
disease states. Pathological examinations of diseased hearts 
by Vracko et  al30,31 showed findings consistent with cardiac 

Nonstandard Abbreviations and Acronyms

AF	 atrial fibrillation

APD	 action potential duration

CaMKII	 Ca2+/calmodulin-dependent protein kinase type II

EAD	 early afterdepolarization

LA	 left atrium

PAT	 paroxysmal atrial tachycardia

PKA	 protein kinase A

PV	 pulmonary vein

SGNA	 stellate ganglion nerve activity

SR	 sarcoplasmic reticulum

VNA	 vagal nerve activity

VNS	 vagal nerve stimulation

Figure 1. Autonomic innervation and neuromodulation. 
Neiguan P6 is an acupoint used in a clinical trial of atrial 
fibrillation (AF).19 The black dots indicate sites used by 
various investigators for neuromodulation to control AF. See 
Neuromodulation section for details. VLCCN indicates ventral 
lateral cervical cardiac nerve; and VMCCN, ventromedial cervical 
cardiac nerve. Illustration Credit: Ben Smith.
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neural remodeling. Cao et  al32 injected nerve growth factor 
into the left stellate ganglion and induced robust cardiac nerve 
sprouting in normal canine hearts. The same effects are 

observed with low-amplitude electric stimulation of the left 
stellate ganglion.33 Zhou et al34 performed a study of the mech-
anisms of nerve sprouting using a canine model of myocardial 

Figure 2. Presence of both adrenergic 
and cholinergic nerves structures in the 
extrinsic cardiac nervous system. A, Low-
power view of the left stellate ganglion, 
showing numerous ganglion cells and 
nerve fibers stained positively for tyrosine 
hydroxylase (TH). Although most of the 
ganglion cells are TH positive, some 
ganglion cells were negative (B). C, TH 
staining of a different stellate ganglion, 
showing TH-negative cells (arrows). 
These same cells stained positive for 
cholineacetyltransferase (ChAT, arrows 
in D). Some cells stain positive for both 
markers. Reprinted from Shen et al16 
with permission of the publisher. E and 
F, TH and cholineacetylesterase stains, 
respectively, of the canine left cervical 
vagal nerve. Arrows point to cells that 
stained positive for both markers. 
Reprinted from Onkka et al17 with 
permission of the publisher.

Figure 3. Tyrosine hydroxylase and cholineacetyltransferase staining of the cervical vagal nerves. A, A low-power view of the right 
cervical vagal nerve stained with tyrosine hydroxylase. There are 2 distinct nerve bundles in this nerve. The tyrosine hydroxylase stain of the 
smaller (B) and the larger (D) bundles in A. The brown color identifies the positively stained nerves. Note that tyrosine hydroxylase–positive 
nerves are located in the periphery of the nerve bundle. C and E, Cholineacetyltransferase staining of the same structures as in B and D, 
respectively. Note that cholineacetyltransferase-positive components are widely distributed in the cervical vagal nerve. F, The tyrosine 
hydroxylase–positive nerve structure (red arrow) in the middle of the cervical vagal nerve. The objective lens used in A was ×4, with a 
calibration bar of 0.2 mm in length. The objective lens used in B–F was ×20, with a calibration bar of 0.2 mm in length. G, Activation of vagal 
nerve alone is associated increased heart rate, a finding consistent with the activation of the sympathetic component of the vagal nerve. 
SGNA indicates stellate ganglion nerve activity; and VNA, vagal nerve activity. Reprinted from Onkka et al17 with permission of the publisher.

 by guest on D
ecem

ber 23, 2016
http://circres.ahajournals.org/

D
ow

nloaded from
 

http://circres.ahajournals.org/


Chen et al    Autonomic Nervous System and AF    1503

infarction. The results show a persistent elevation of nerve 
growth factor levels in aorta and coronary sinus within 1 
month after myocardial infarction. Nerve growth factor and 
growth-associated protein 43 are transported retrogradely to 
the left stellate ganglion through retrograde axonal transport. 
The increased nerve growth factor then triggers nerve sprout-
ing at the noninfarcted ventricles and atria.35 Increased atrial 
sympathetic innervation is associated with increased incidence 
and duration of AF in those animals. These studies show that, 
although cardiac injury is limited to the ventricle, neural re-
modeling may occur throughout the heart. Cardiac diseases, 
such as myocardial infarction, can potentially increase nerve 
activities and promote the development of both atrial and ven-
tricular arrhythmias.

Autonomic Remodeling and AF
There is an association between abnormal autonomic inner-
vation and AF in both animal models and in humans. The 
abnormal autonomic innervation may be important in the 
mechanisms of AF.36–40 Jayachandran et al41 used [C-11] hy-
droxyephedrine to label sympathetic nerve terminals in dogs 
with pacing-induced AF and documented heterogeneously 
increased atrial sympathetic innervation. The increased sym-
pathetic nerve densities were later confirmed by immunohisto-
chemical staining using antibody against tyrosine hydroxylase 
in dogs with pacing-induced AF.42 Atrial nerve sprouting and 
sympathetic hyperinnervation also occur after ventricular 
myocardial infarction and are associated with increased inci-
dence and duration of AF.35 Consistent with these results, atri-
al sympathetic nerve densities are also significantly increased 
in patients with chronic AF.43 Multiple other studies have also 
documented the pathophysiological importance of autonomic 
remodeling in various animal models and in humans.44–47 In 
addition to atrial sympathetic hyperinnervation, diseases also 
cause remodeling of extracardiac nerve structures in both ex-
perimental animals and in humans.48–50

Cellular Mechanisms of Cardiac Autonomic 
Neurotransmission and Signaling
Sympathetic neurotransmission results from the excitation 
of sympathetic nerve terminals via electric impulses travel-
ing down the efferent postsynaptic sympathetic nerves, which 
originate in sympathetic ganglia like the stellates. The produc-
tion, release, reuptake, and degradation of sympathetic neu-
rotransmitters are an extremely complex and highly regulated 
process.51 This regulation is essential to ensure that the criti-
cally important function of adrenergic control is well tuned 
to physiological needs under a wide range of conditions. In 
brief, the principal neurotransmitter norepinephrine is synthe-
sized in neural cell bodies and transported and concentrated in 
vesicles in nerve varicosities adjacent to adrenergic receptors, 
where it is released by nerve depolarization through a Ca2+-
dependent process. In addition to norepinephrine, these vesi-
cles contain smaller amounts of a variety of other biologically 
active substances such as opioids, chromogranin, and other 
neuropeptides.51 Rapid uptake mechanisms limit the amount 
of norepinephrine that can access adrenergic receptors, and 
norepinephrine is also rapidly degraded by a variety of en-
zymes such as monoamine oxidase. In addition to reuptake 

and enzymatic degradation, norepinephrine action is controlled 
by negative feedback through presynaptic receptors, particu-
larly α

2
-adrenergic, dopamine, and muscarinic receptors.51 

Systemically circulating epinephrine released from the adre-
nal medulla also contributes to cardiac sympathetic activation, 
especially in conditions of generalized sympathetic activation.

Norepinephrine interacts with a variety of adrenergic re-
ceptors on cardiomyocytes to execute adrenergic actions. The 
detailed biochemistry of adrenergic receptor pharmacology is 
complex, and the interested reader is referred to an excellent re-
cent review.52 Here, we will focus primarily on the β-adrenergic 
receptor and its downstream signaling relevant to AF (Figure 4). 
The β-adrenergic receptor is a member of the enormous family 
of 7-transmembrane domain G-protein–coupled receptors and 
includes 3 subtypes, β

1–3
, of which β

1
-receptors are most rele-

vant to atrial arrhythmias. The G-protein system includes 3 sub-
units: α, β, and γ. The Gβ and Gγ subunits bind to each other 
and are often referred to together as the Gβγ subunit. A variety 
of Gα subunits exist, but the principal adrenergic Gα subunit is 
the Gα

s
 or stimulatory subunit. When the β-receptor is unoc-

cupied, most Gα
s
 is bound to Gβγ. Norepinephrine binding to 

the β-receptor leads to GTP binding of the Gα
s
 subunit, lower-

ing its affinity to Gβγ, which dissociates and allows the free 
Gα

s
 subunit to activate adenylate cyclase, which converts ATP 

to cAMP, the primary β-adrenergic second messenger. cAMP 
activates protein kinase A (PKA), which exerts a wide range of 
effects by phosphorylating membrane proteins, including Ca2+-
handling proteins and ion channels.

Acetylcholine is synthesized from choline and 
acetylcoenzyme-A via choline acetyltransferase, primarily in 
cholinergic nerve terminals where it is concentrated in synap-
tic vesicles. Like sympathetic neurotransmitter production and 
release, acetylcholine biology is highly regulated and subject 
to feedback inhibition via presynaptic muscarinic receptors.53 
Released acetylcholine is rapidly broken down by acetylcho-
linesterase. Acetylcholinesterase is remarkably efficient at 
breaking down acetylcholine and greatly limits the spread of 
acetylcholine from its release site. Consequently, the effects of 
acetylcholine are localized, allowing for spatial heterogeneity 
of acetylcholine effects under vagal activation, a property that 
is important in AF.

The cardiac cholinergic receptor is an M
2
 type-2 muscarinic 

subtype. M
2
-acetylcholine receptors are also G-coupled, with 

the inhibitory G-protein Gα
i
 being the principal subtype bound 

to Gβγ. When acetylcholine interacts with the M
2
-receptor, 

Gα
i
–GTP interaction occurs, and as for adrenergic receptors, 

this causes dissociation of Gβγ subunits from Gα
i
 (Figure 4). 

However, unlike adrenergic activation, which uses Gα
s
 as the 

main signaling G-protein, cholinergic effects result predomi-
nantly from Gβγ activation of the ligand-gated K+ channel 
I

KACh
, composed of Kir3.1 and Kir3.4 subunits.54 I

KACh
 activa-

tion produces an outward K+ current that flows throughout the 
depolarized phases of the cardiac action potential, resulting in 
substantial reduction in action potential duration (APD).

Autonomic Regulation of Atrial Cardiomyocyte 
Electrophysiology
The principal molecular mechanisms by which autonomic in-
fluences affect AF likelihood are illustrated in Figure 4. Please 
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note that another article in this compendium deals in detail 
with the cellular machinery underlying AF.55 In this article, 
we will limit ourselves to the specific mechanisms underlying 
autonomic AF promotion. The principal arrhythmogenic tar-
gets of β-adrenergic stimulation relate to cardiomyocyte Ca2+ 
handling. The main business of β-adrenergic activation in the 
heart is to enhance cardiac output during fight-or-flight reac-
tions. Accordingly, β-adrenergic stimulation enhances virtu-
ally all process controlling Ca2+ entry, storage, and release in 
the heart. These effects are initiated by PKA and amplified by 
Ca2+/calmodulin-dependent protein kinase type II (CaMKII). 
PKA and CaMKII phosphorylate many of the same proteins 
(albeit at different sites): the L-type Ca2+ channel (I

CaL
), the 

sarcoplasmic reticulum (SR) Ca2+ release channel ryano-
dine receptor 2, and phospholamban.56 I

CaL
 phosphorylation 

increases voltage-dependent Ca2+ entry through the plasma 
membrane. Ryanodine receptor 2 phosphorylation amplifies 
Ca2+-dependent Ca2+ release from the SR. Together, these ac-
tions greatly augment the systolic Ca2+ transient and thereby 
contraction strength. Phospholamban binds to and inhibits 
the SR Ca2+ transporter, SR Ca2+ ATPase, the principal mech-
anism responsible for maintaining SR Ca2+ stores and restor-
ing low diastolic Ca2+ levels after the systolic Ca2+ transient 
to allow diastolic relaxation/filling. Adrenergically induced 
phospholamban phosphorylation by PKA and CaMKII dis-
sociates phospholamban from SR Ca2+ ATPase, disinhibiting 
SR Ca2+ ATPase Ca2+ pumping into the SR. Under acute stress 
conditions, adrenergic activation provides an essential boost 
to Ca2+-dependent cardiac function. However, under condi-
tions predisposing to Ca2+-dependent triggered activity,57,58 

Figure 4. Molecular basis for autonomic contributions to atrial fibrillation substrate. β-adrenergic receptor (β-AR) activation causes 
GTP binding to the Gαs subunit, allowing it to dissociate from Gβ and γ subunits and activate adenylate cyclase (AC), which converts 
ATP to cAMP. cAMP activates protein kinase A (PKA), which phosphorylates a range of Ca2+-handling proteins including the L-type Ca2+ 
channel (LTCC), ryanodine receptor (RyR2), and phospholamban (PLB). PLB phosphorylation causes it to dissociate from the sarcoplasmic 
reticulum (SR) Ca2+ ATPase (SERCA2a), removing SERCA2a from PLB inhibition and activating SR Ca2+ uptake. RyR2 phosphorylation 
increases RyR2 open probability, enhancing the systolic Ca2+ transient but also enhancing diastolic Ca2+ leak. Adrenergic stimulation 
also increases Ca2+ binding to calmodulin (CaM), activating Ca2+/CaM-dependent kinase type II (CaMKII), which phosphorylates many of 
the same proteins as PKA. Ca2+/CaM also activates calcineurin (Cn), which dephosphorylates nuclear factor of activated T cells (NFAT), 
allowing it to translocate to the nucleus and activate hypertrophic and profibrotic gene programs. LTCC phosphorylation increases ICaL 
and shifts its voltage dependence to cause larger window currents. Adrenergic stimulation also inhibits inward rectifier K+ current (IK1) and 
enhances slow delayed rectifier K+ current (IKs). Cholinergic activation of muscarinic type-2 (M2) acetylcholine receptors (AChRs) causing 
GTP binding to Gαi, releasing Gβγ, and allowing it to activate the acetylcholine-dependent K+ current (IKACh). CICR indicates calcium-
induced calcium release; HDAC, histone deacetylases; MEF2, myocyte enhancer factor-2; and NCX1, sodium calcium exchanger.
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the enhanced Ca2+-loading/release conditions produced by 
adrenergic stimulation strongly promote arrhythmogenesis. 
In a canine model of chronic atrial ischemia, aberrant Ca2+ 
release responsible for ectopic activity requires adrenergic 
drive to manifest.59

Autonomic modulation has significant effects on cardiac 
ion channels. In addition to the acetylcholine-induced activa-
tion of I

KACh
, a host of ion channels are affected by adrenergic 

tone.60 The most important of these are I
CaL

, already discussed, 
the slow delayed rectifier K+ current I

Ks
, and the inward rectifier  

I
K1

. I
Ks

 is strongly enhanced by adrenergically induced PKA 
phosphorylation,61 allowing it to offset the increased inward 
current resulting from adrenergic enhancement of I

CaL
 and pre-

vent early afterdepolarizations (EADs).62 I
K1

 is important in 
setting the resting potential, contributing to repolarization re-
serve63 and governing AF dynamics.64 I

K1
 is typically inhibited 

via α-adrenergic receptor stimulation.65

Autonomic Effects on Mechanisms Governing AF 
Occurrence
The potential basis for autonomic nervous system promotion 
of AF is summarized in Figure 5. AF can result from focal or 
re-entrant mechanisms.66,67 Focal mechanisms are important in 
2 ways: they may act as a trigger on a susceptible substrate or 
by firing rapidly provide an AF-maintaining driver. Adrenergic 
activation may promote focal activity via each of the princi-
pal cellular mechanisms: enhanced automaticity (Figure 5A), 
EADs (dashed tracings; Figure  5B), or delayed afterdepo-
larization–associated triggered activity (red dashed tracings; 
Figure 5C). I

K1
 provides a diastolic outward current that pre-

vents spontaneous phase-4 depolarization to the threshold 
potential by the pacemaker funny current that underlies spon-
taneous automaticity. Automaticity is enhanced by reduced I

K1
, 

which can result from α-adrenergic stimulation, or increased 
funny current, produced by β-adrenergic activation.68 Phase-2 
EAD-induced ectopic activity (red dashed tracings; Figure 5B) 
likely underlies the increased risk of AF in patients with con-
genital long-QT syndrome.69 β-adrenergic activation enhances 
plateau I

CaL
 (via PKA/CaMKII phosphorylation), increasing 

EAD likelihood, particularly when adrenergic augmentation 
of I

Ks
 is deficient (eg, in long-QT syndrome type 1). Phase-3 

EADs can be associated with APD prolongation (blue tracing; 
Figure 5B). It may occur as the result of electrotonic current 
across steep repolarization gradients between phase-2 EAD 
and the adjacent repolarized tissues or occur as the result of 
low I

K1
.70 In comparison, a late phase-3 EAD (green tracings; 

Figure 5B) is associated with shortened rather than prolonged 
APD.71 If there is simultaneous activation of the sympathetic 
nervous system that increases the intracellular Ca2+ transient 
and parasympathetic nervous system that activates I

KAch
, then 

APD is shortened while the Ca2+ transient is large and long. A 
short APD and a large Ca2+ transient create a condition for late 
phase-3 EADs, which can induce triggered activity and AF 
(solid green tracing; Figure  5B).71,72 Because PVs naturally 
have short APDs, they are particularly prone to develop these 
Ca2+ transient–triggered arrhythmias.38,40,73 Delayed afterdepo-
larizations (Figure 5C) result from diastolic ryanodine recep-
tor 2 Ca2+ leak, favored by β-adrenergic enhancement of cell 

Ca2+ loading and increased ryanodine receptor 2 open prob-
ability because of PKA/CaMKII phosphorylation.

The precise details of mechanisms maintaining re-entry 
(Figures 5D), such as the structure and number of circuits, role 
of rotors, remain controversial.74 However, shortened refracto-
riness promotes functional re-entry in all conceptual models. 
Vagal stimulation strongly abbreviates atrial refractoriness by 
augmenting I

KACh
. Furthermore, the refractoriness-abbreviating 

effects of vagal activation show strong regional variation, much 
more so than adrenergic effects; this regional variability under-
lies particularly strong AF-promoting effects of vagal tone.75

Finally, structural remodeling is known to be an important 
contributor to AF persistence.66 Increased Ca2+/calmodulin 
binding caused by β-adrenergic stimulation activates the pro-
tein phosphatase calcineurin (Figure 4). Calcineurin dephos-
phorylates the transcription factor nuclear factor of activated 
T cells, allowing it to translocate into the nucleus and alter 
gene transcription, inducing hypertrophic and profibrotic gene 
expression programs. Adrenergic stimulation also promotes 
structural remodeling via other actions, including actions me-
diated by CaMKII, oxidative stress, and signaling via an alter-
nate Gα subunit, Gα

q
.52

Autonomic Nerve Activity and Atrial Arrhythmias
Direct recording of autonomic nerve activity can provide in-
sight into its role in atrial arrhythmogenesis in animal mod-
els. Long-term recording of nerve activity in ambulatory 
animals was first successfully performed by Barrett et  al.76 
Stable cardiac nerve activity was then recorded in the heart, 
allowing for the relationships between neural activity and 
arrhythmogenesis.77

Stellate ganglion nerve activity (SGNA) and vagal nerve 
activity (VNA) increase after the induction of heart failure 
by ventricular tachypacing.26 Increased nerve activity was di-
rectly associated with paroxysmal atrial tachycardias (PAT) in 
these dogs. A canine model of intermittent atrial tachypacing 
was then developed, with rapid atrial pacing for 6 to 7 days, 
followed by 1 nonpaced day to observe PAT and paroxysmal 
atrial fibrillation (PAF) without pacing artifacts. Intermittent 
LA tachypacing causes sympathetic hyperinnervation, PAF, 
and PAT.4 Simultaneous sympathovagal discharges commonly 
precede arrhythmias, implicating them as triggers. Figure 6A 
shows a typical example of PAF, with sinus arrhythmia in the 
first 20 seconds, followed by an abrupt increase in SGNA and 
VNA and PAF. Figure 6B shows an example of PAT to PAF 
transition that occurs frequently both in this animal model 
and in humans. Figure 6C is a 6-second close-up of the same 
episode shown in Figure 6B, straddling the initiation of PAF. 
An initial increase in VNA (1) followed by increased SGNA 
(2) is followed by an acceleration of PAT from 521 bpm to 
562 bpm. A second increase in VNA (3) followed closely by 
a massive burst of SGNA (4) precedes the onset of PAF by ≈3 
seconds. About 73% of PAT and PAF episodes were preceded 
by simultaneous sympathovagal discharges. Optical mapping 
data implicate Ca2+-initiated triggered activity in atrial ar-
rhythmogenesis resulting from parasympathetic activation in 
transgenic mice that develop a fibrotic AF substrate because of 
overexpression of constitutively activated transforming growth 
factor-β1. These findings are consistent with a previous study78 
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that showed AF induction by simultaneous acetylcholine and 
isoproterenol infusion into the sinus node artery of anesthe-
tized dogs.

Direct recordings from both the extrinsic nervous system 
(left stellate ganglion and left thoracic vagal nerve) and the 
intrinsic cardiac nervous system (including superior left gan-
glionated plexi and ligament of Marshall) were performed to 
distinguish their relative role in AF development.75 After inter-
mittent rapid atrial pacing, ambulatory dogs displayed spon-
taneous PATs before the development of persistent AF. Atrial 
tachyarrhythmias were invariably preceded by intrinsic cardiac 
nerve activity. These findings further support the importance of 
autonomic ganglia in the pathogenesis of AF associated with 
atrial tachycardia remodeling.79 Because histological studies 
show extensive colocalization of adrenergic and cholinergic 
nerve structures in the intrinsic cardiac nerves,29 it is possible 
that the simultaneous activation of these 2 arms of autonomic 
nervous system may be involved in arrhythmia initiation.

Autonomic Nerve Activity and Persistent AF
In most patients with AF, rate control is not inferior to rhythm 
control as a management strategy.80 It is known that the inferior 
vena cava–inferior atrial ganglionated plexus (also known as 
the inferior right or right inferior ganglionated plexi)81 is im-
portant in modulating atrioventricular node conduction. Direct 
electric stimulation of these ganglionated plexi may slow ven-
tricular rate during AF in human patients.82 Ambulatory record-
ings of bilateral cervical VNA and inferior vena cava–inferior 
atrial ganglionated plexus nerve activity during persistent AF 
show that in most but not all dogs, the left vagal nerve con-
trols the atrioventricular node, whereas the right vagal nerve 
controls the sinus node.18 The only nerve structure that consis-
tently controls atrioventricular nodal conduction is the inferior 
vena cava–inferior atrial ganglionated plexus. Figure 7 shows 
an example in which inferior vena cava–inferior atrial gangli-
onated plexus nerve activity is associated with abrupt reduc-
tion of ventricular rate during persistent atrial fibrillation. VNA 
may sometimes be associated with acceleration of heart rate, 

Figure 5. Mechanisms by which autonomic tone can promote atrial fibrillation (AF). Top, Action potential changes showing 
cellular mechanisms by which adrenergic activation can lead to focal ectopic firing. Black dotted tracings represent normal reference 
action potentials in each panel. A, Enhanced automaticity. B, Early afterdepolarizations (EADs). C, Delayed afterdepolarization (DADs). 
Contributions from adrenergic activation alone are shown by red tracings, whereas that from cholinergic activation (combined with 
adrenergic activation) by green tracings. Adrenergic stimulation in the setting of impaired repolarization reserve can cause phase-2 EADs 
(red dashed tracings in B). Most phase-3 EADs are also associated with prolonged action potential duration (APD; blue dashed tracings 
in B). Combined adrenergic/vagal discharge can produce late phase-3 EADs (green dashed tracings in B) because of a prolonged 
and enhanced Ca2+ transient that outlasts IKACh-induced accelerated repolarization. D, Tissue-level arrhythmia mechanisms, with focal 
ectopic activity maintaining AF as a driver or acting on vulnerable re-entrant substrates. Parasympathetic firing discharges acetylcholine, 
producing spatially heterogeneous action potential and refractory period abbreviation that promotes the occurrence and maintenance 
of re-entrant activity. CaT indicates calcium transient; LA, left atrium; NCX, sodium calcium exchanger; RA, right atrium; RyR, ryanodine 
receptor; and SR, sarcoplasmic reticulum.
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probably because of activation of the sympathetic component 
within the vagal nerves.17,27 Thus, the ventricular rate during 
sustained AF is controlled by collaboration among different 
nerve structures.

Coordination Among Nerve Structures and the 
Development of AF
Detailed analysis and integration of nerve activity over time 
have revealed several previously unappreciated patterns of 
nerve activation.18,83–85 First, the correlation between SGNA 
and VNA was found to fall into 2 different basic patterns. In 
a minority of dogs, the 2 nerve structures would fire simul-
taneously (group 1). In the remaining dogs, the SGNA and 
VNA fired separately (ie, one would activate, whereas the 
other was quiescent; group 2). The group 1 dogs, which tend 
to have simultaneous sympathovagal discharges, have more 
PAT episodes at baseline and faster induction of sustained AF 
by rapid pacing than the remaining (group 2) dogs that had 
an L-shaped correlation, indicating temporally separate sym-
pathetic and vagal activity. Perhaps because these dogs were 
followed for relatively short periods of time (weeks), each 
dog continued to show a consistent pattern of nerve firing. 
However, in a subsequent study when 1 dog was followed for 
≈6 months, a switch from group 1 to group 2 was observed.85 
If sympathovagal correlation is important in the development 
of atrial tachyarrhythmias and AF, the changing patterns of 
sympathovagal correlation suggest the possibility of dynami-
cally varying arrhythmia susceptibility.

In addition to SGNA and VNA, both linear and L-shaped 
correlations have been observed between cervical VNA and 
the inferior vena cava–inferior atrial ganglionated plexus.18 In 
5 of the 6 dogs studied, an L-shaped relationship was present 
between right VNA and left VNA during AF. In the remaining 
1 dog, a linear correlation was noted between right and left 
VNA. These findings indicate that right and left cervical vagal 
nerves do not randomly activate relative to each other. Rather, 
most typically one would activate when the other is quiescent. 
In a small minority of dogs, they almost always activate to-
gether. Coactivation of these 2 nerves may be associated with 
rapid ventricular rate, suggesting that there might be coacti-
vation of the sympathetic nervous system. Another important 
finding is that the intrinsic nerves (inferior vena cava–inferior 
atrial ganglionated plexus nerve activity) show a linear cor-
relation with left VNA in a dog with L-shaped correlation be-
tween left and right VNA. This indicates that the left VNA 
almost always fires together with inferior vena cava–inferior 
atrial ganglionated plexus, whereas the right VNA fires at a 
different time and does not control the inferior vena cava–
inferior atrial ganglionated plexus. Observations such as these 
clearly indicate that extrinsic and intrinsic nervous systems do 
not activate randomly in ambulatory dogs. Rather, a high de-
gree of coordination is present among these nerve structures.

Neuromodulation as a Therapeutic Approach
Because different autonomic nerve structures coordinate their 
activation with each other, interruption or modification of the 

A

B

C

Figure 6. Two examples of paroxysmal atrial fibrillation (PAF). A, Sinus rhythm to AF conversion. B, Atrial tachycardia to AF conversion. 
C, Magnified from the center of B (line segment above ECG), showing that the elevated vagal nerve activity (VNA) accelerated atrial rate, 
leading to paroxysmal reduction of ventricular rate (prolonged RR interval) before conversion from paroxysmal atrial tachycardia (PAT) to 
PAF. LA indicates left atrium; and SGNA, stellate ganglion nerve activity. Reprinted from Tan et al4 with permission of the publisher. AVN 
indicates atrioventricular node.
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activity in one structure may change the pattern of activation 
of another. These changes may convey therapeutic effects, in-
cluding arrhythmia control. Some methods of neuromodula-
tion are already in place in clinical use. Others are still being 
tested in the animal laboratory or clinical trials. Common sites 
for neuromodulation are labeled by black dots in Figure 1.

Sympathetic and Vagal Denervation
Because autonomic nerve activity can act as a direct trigger 
of PAF,4,86 it is logical to test the hypothesis that stellate gan-
glion ablation can reduce the incidence of AF. Accordingly, 
cryoablation of the lower portion of both left and right stel-
late ganglia, sparing the upper portion of the stellate ganglia 
to prevent Horner syndrome,87 along with the T2 to T4 tho-
racic sympathetic ganglia, was performed in dogs. The vagi 
were denervated by ablating the superior cardiac branch of the 
left thoracic vagal nerve. The locations of these structures are 
shown in Figure 1. One major consequence of cryoablation 
was a lack of heart rate response to SGNA and VNA. A second 
major consequence was a delay in the development of sus-
tained AF in response to atrial tachypacing. Whereas control 
dogs developed sustained AF in 2 to 4 weeks, the group sub-
jected to cryoablation required 3 to 12 weeks of atrial pacing 
to sustain AF.4 A third effect of cryoablation was a suppression 
of premature atrial contractions and elimination of episodes 
of PAT and PAF typically associated with intermittent rapid 
atrial pacing. These findings support the notion that simul-
taneous sympathovagal discharges contribute importantly to 
atrial arrhythmogenesis. Because cryoablation only delayed 
but did not prevent sustained AF, autonomic nerve activity is 
not the only factor determining AF maintenance. Dogs with 
pacing-induced heart failure develop both prolonged sinus 
pauses and PAT.26 Cryoablation of bilateral stellate and T2 to 
T4 thoracic ganglia significantly reduces PAT and prolonged 
sinus pause episodes induced by sympathetic discharges in 
dogs with pacing-induced heart failure.88

The above studies suggest that cardiac sympathetic de-
nervation might be useful in controlling PAT and PAF by 
reducing sympathetic outflow to the heart. However, these 
studies have multiple limitations. One limitation is that in the 
canine model PAT and PAF were induced by rapid pacing of 

either the atria or the ventricles. In contrast, the established 
risk factors for AF in humans include age, male sex, systolic 
and diastolic heart failure, valvular heart disease, myocardial 
infarction, hypertension, diabetes mellitus, obesity, and ciga-
rette smoking.89 The canine model of PAT and PAF may not 
be applicable to humans. A second limitation is that the stel-
late ganglion and T2 to T4 sympathetic ganglia are not easily 
accessible in humans. However, the invention of videoscopic 
left cardiac denervation90 may reduce the procedural com-
plexity of this approach. A third limitation is that the nervous 
system is highly plastic. It is possible that reinnervation can 
occur after the denervation procedures and negate the effects 
of denervation. A fourth limitation is that surgical removal 
of the stellate ganglion causes irreversible changes of the 
sympathetic nervous system. The long-term effects of sym-
pathetic denervation in patients with AF are unknown.

Vagal Nerve Stimulation
Because of the above limitations, it is highly desirable to de-
velop a neuromodulation method that can be easily terminated, 
without causing permanent damage to the autonomic struc-
tures. Transvenous parasympathetic nerve stimulation can 
be used as a method of ventricular rate control during AF.91 
However, vagal nerve stimulation (VNS) can also be used in 
the animal laboratory as a method to induce or maintain sus-
tained AF.92,93 Many studies have documented the effects of 
neural stimulation or ablation in inducing or controlling car-
diac arrhythmias.94–97 The effects of neural stimulation may not 
be limited to the area directly innervated by the modified nerve 
structures. For example, stimulating the afferent cervical va-
gal nerve in cats suppresses sympathetic discharges.98 Because 
cervical vagal nerves are accessible through surgical approach-
es, they are the prime target for neural modulation with the 
hope that their stimulation will achieve therapeutic effects dis-
tant beyond the nerves stimulated. A documented success is 
the use of left cervical VNS to suppress epilepsy in humans.99 
Vanoli et al100 showed that chronic VNS can prevent ventricu-
lar fibrillation and sudden cardiac death in conscious dogs 
with a healed myocardial infarction. Others showed that VNS 
might be used to attenuate heart failure development in dogs,101 
rats102 and humans.103–105 Although most of these studies used 

Figure 7. Local control of atrioventricular node conduction during persistent atrial fibrillation. Slowing of ventricular rate (VR) was 
associated with inferior vena cava–inferior atrial ganglionated plexus nerve activity (IVC–IAGPNA) without either right vagal nerve activity 
(RVNA) or left vagal nerve activity (LVNA). Subsequent simultaneous activation of right vagal nerve activity and left vagal nerve activity 
resulted in a rapid ventricular rate. Because of the presence of abundant sympathetic nerves within the vagus,17 these observations 
suggest that sympathetic component within the vagal nerves have accelerated the ventricular rate. LEGM is the local bipolar electrogram. 
Reprinted from Park et al18 with permission of the publisher.
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stimulus strength sufficient to reduce heart rate, low-level VNS, 
defined by a stimulus strength 1 V below the threshold needed 
to reduce heart rate, is effective in suppressing AF induction 
in open-chest–anesthetized dogs.106,107 Because VNS opposes 
sympathetic actions at both pre- and postjunctional levels,108,109 
VNS may achieve the therapeutic effects by suppressing sym-
pathetic outflow to the heart. To test this hypothesis, Shen et al5 
performed continuous low-level VNS in a canine model of 
PAF while continuing to record SGNA and VNA. Consistent 
with the observations of Schwartz et al,98 VNS may immediate-
ly suppress SGNA when the stimulator is turned on. However, 
chronic VNS is associated with further reduction of SGNA. 
The effects of VNS are most apparent in the morning when the 
SGNA is most active. The VNS reduced the number of sym-
pathetic discharge episodes and shortened the average duration 
of discharges. Because of the reduced duration of sympathetic 
discharges, the SGNA caused less heart rate acceleration dur-
ing VNS than at baseline. The effects of VNS are not perma-
nent. Rather, SGNA normalizes at the cessation of low-level 
VNS. In addition to its effects on SGNA, low-level VNS also 
significantly reduces the number of PAT episodes.

Because VNS has chronic effects on SGNA, VNS 
might have caused the remodeling of the stellate ganglion. 
Immunostaining of the left stellate ganglion in dogs with and 
without VNS showed that low-level VNS decreased the density 
of nerve structures (presumably sympathetic) staining positive 
for tyrosine hydroxylase. Although a majority (>90%) of the 
ganglion cells normally stain positive for tyrosine hydroxylase, 
a small minority of cells show no tyrosine hydroxylase stain-
ing (Figure 2). There was a 3-fold increase in the prevalence of 
tyrosine hydroxylase–negative cells in VNS group compared 
with controls. In a different group of dogs, small-conductance 
calcium-activated K channel subtype 2 protein expression in 
the VNS group was found to be ≈50% higher than in the control 
group.16 Immunostaining also showed that the density of nerve 
structures stained with small-conductance calcium-activated K 
channel subtype 2 antibody was higher in the VNS group than 
in the control group. There was significantly increased small-
conductance calcium-activated K channel subtype 2 protein 
staining in the periphery of ganglion cells compared with the 
cell center. This was not observed in normal control dogs. In 
addition, there were significantly more ganglion cells without 
immunoreactivity to tyrosine hydroxylase in dogs with VNS 
(average, 11.4%) than in control (4.9%), again showing an ≈2- 
to 3-fold increase of the tyrosine hydroxylase–negative cells 
in the VNS group. Furthermore, a high percentage of tyrosine 
hydroxylase–negative cells stained positive for choline acetyl-
transferase. The increased percentage of these cells suggests 
that VNS might cause phenotypic switching between adrener-
gic and cholinergic nerves. Figure 8 shows a summary of the 
stellate ganglion remodeling induced by VNS. The chronic ef-
fects of VNS can be partially explained by stellate ganglion 
remodeling, including increased small-conductance calcium-
activated K channel subtype 2 proteins and the reduction of 
tyrosine hydroxylase–positive ganglion cells.

Baroreflex Stimulation and Exercise
Exercise training results in functional modulation of autonomic 
balance. Exercise may activate parasympathetic nervous system 

through changes of plasma volume (baroreflex stimulation)110 
or via augmented baroreflex responsiveness and increased 
cardiomyocyte sensitivity to cholinergic stimulation.111 In the 
case of exercise training, enhanced sensitivity to acetylcholine 
seems to be because of reduced expression of a family of pro-
teins called regulators of G-protein signaling,110 which have 
GTPase activity and terminate acetylcholine-induced I

KACh
 ac-

tivation by breaking down Gα
s
-associated GTP. Endurance ex-

ercise training increases AF susceptibility in rats via increased 
parasympathetic tone accompanied by atrial dilation and mild 
fibrosis.111 These observations parallel clinical observations of 
an importantly increased prevalence of AF in endurance ath-
letes.112 However, chronic exercise training may be beneficial 
for the management of AF by improving rate control.113 It is 
possible to use implantable devices to stimulate the carotid si-
nus directly and activate the baroreflex.114,115 Similar to VNS, 
baroreflex stimulators can sharply decrease sympathetic nerve 
activity and lower blood pressure among responders.116 The re-
duced sympathetic nerve activity may be, in part, responsible 
for the improved rate control during AF. Although strong baro-
reflex stimulation may reduce atrial effective refractory period 
and promote AF, low-level baroreflex stimulation only causes 
moderate shortening of atrial effective refractory period.117,118 
Additional studies are needed to determine whether low-level 
baroreflex stimulation can be used to control cardiac arrhyth-
mias by reducing sympathetic tone without massively shorten-
ing the atrial effective refractory period.

Ganglionated Plexus Ablation
Intrinsic cardiac nerve activity invariably precedes the onset 
of AF in ambulatory dogs.86 If these findings are applicable to 
humans, then ablation of the ganglionated plexi of the intrin-
sic cardiac nervous system with surgical or catheter ablation 
techniques may be effective in controlling AF. Earlier non-
randomized observational studies showed that PV denerva-
tion may enhance the long-term outcome of circumferential 
ablation of PAF.119 These findings enhanced the theory that 
hyperactivity of local cardiac ganglionated plexi plays a role 
in the generation and maintenance of AF.39 One approach to 
ganglionated plexus ablation is to use high-frequency stimula-
tion to identify ganglionated plexi before ablation.120 Others 
used an anatomically based approach without high-frequency 
stimulation.121,122 Because ganglionated plexus ablation is 
a new procedure, it is possible that there is a bias in favor 
of reporting positive results. Katritsis et  al123 performed a 
prospective randomized clinical trial, exposing 242 patients 
with PAF to PV isolation alone, ganglionated plexus ablation 
alone (anatomic approach), and PV isolation plus ganglion-
ated plexus ablation. After 2 years of follow-up, freedom from 
AF or atrial tachycardia was achieved in 56%, 48%, and 74% 
of patients in the PV isolation, ganglionated plexus ablation, 
and PV isolation+ganglionated plexus ablation groups, re-
spectively (P=0.0036). The authors concluded that the addi-
tion of ganglionated plexus ablation to PV isolation confers 
a significantly higher success rate compared with either PV 
isolation or ganglionated plexus ablation alone in patients 
with PAF. In addition to catheter ablation, minimally invasive 
surgical procedures have been used for PV isolation and gan-
glionated plexus ablation, with significant improvement in the 
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outcome.124 The clinical evidence to date seems to support the 
use of ganglionated plexus ablation as an adjunctive proce-
dure in AF ablation.

Renal Sympathetic Denervation
Preliminary clinical trials conducted by various investigators 
suggest that renal sympathetic denervation through an endo-
vascular approach is effective in controlling drug-resistant 
hypertension.125,126 Other work showed that renal sympathetic 
denervation can reduce sympathetic nerve activity.127 Because 
sympathetic nerve activity is important in blood pressure con-
trol,76,85 reduction of sympathetic outflow may, in part, explain 
the reduction of blood pressure in some patients. The same 
effects may also be useful in controlling AF. There are on-
going clinical studies testing the hypothesis that concomitant 
renal denervation may improve the outcomes from catheter 
ablation of AF.128,129 Renal sympathetic denervation has also 
been used for ventricular rate control in AF and for reduction 
of AF episodes in patients with sleep apnea.128–130 Preclinical 
studies suggest that long-term renal denervation may be ben-
eficial in treating rats with heart failure induced by myocardial 

infarction.131 It is possible that renal sympathetic denervation 
may benefit cardiac arrhythmic control by improving myocar-
dial function in heart failure. The latter hypothesis is being 
tested by several studies listed in clinicaltrials.org. The results 
of those studies should advance the field by defining the ben-
efits and risks of renal sympathetic denervation. It remains to 
be seen if successful treatment of heart failure can also result 
in reduced incidence of AF in those trials. Recently, the first 
large-scale randomized sham controlled clinical trial132 failed 
to document the efficacy of renal denervation in patients with 
resistant hypertension.133 The implications of this outcome for 
the concept and application of renal sympathetic denervation 
are certainly major and will undoubtedly motivate careful 
reflection and additional investigation.134

Somatic Sensory Stimulation for Neuromodulation
Various forms of somatic sensory stimulation can produce au-
tonomic reflex responses, depending on the visceral organs and 
somatic afferents that are stimulated.135 Yu et al136 developed 
a noninvasive transcutaneous approach to deliver low-level 
VNS to the tragus of the ear to treat cardiac arrhythmias such 

Figure 8. Changes of type 2 small-conductance calcium-activated K (SK2) protein in the left stellate ganglion (LSG) with low-level 
vagal nerve stimulation. A, Representative Western blots show that the signal ratio of SK2 protein to GAPDH of vagal nerve stimulation 
dogs (group 1) was significantly higher than that of control (group 2). B, There is an upregulation of SK2 protein level in the LSG in group 1 
dogs after being normalized to GAPDH. C and D, Representative immunostaining of SK2 protein in the left stellate ganglion. The density of 
SK2-positive nerve structures (as pointed by a black arrowhead) is significantly higher in group 1 dogs (C) compared with group 2 dogs (D). 
E and F, Representative low-power view of immunostaining of SK2 protein in the LSG that clearly demonstrates higher SK2 density in group 
1 dogs (E) compared with group 2 dogs (F). G and H, Immunofluorescence confocal microscope images of the LSG from group 1 and group 
2 dogs, respectively. Blue colored dots show the nuclei stained with 4′,6-diamidino-2-phenylindole. Red color marks the SK2 protein. Note a 
significantly increased SK2 staining in the periphery of ganglion cells but decrease in the cytosol of group 1 (G). In contrast, in group 2 LSG, 
the SK2 staining was homogeneous (H). AU indicates arbitrary units. Calibration bar, 50 µm for C–F and 20 µmol/L for G and H.
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as AF. The authors found that low-level tragus stimulation 
can reverse pacing-induced atrial remodeling and suppress 
AF inducibility, suggesting possible value in treatment of AF. 
An alternative approach to neuromodulation is acupuncture, 
which is widely practiced for pain control, although the clini-
cal efficacy remains unproven.137,138 Lomuscio et al19 showed 
that acupuncture using Neiguan, Shenmen, and Xinshu spots 
might prevent arrhythmia recurrences in patients with persis-
tent AF after electric cardioversion. These 2 studies applying 
cutaneous stimulation raise the possibility of using somatic 
sensory stimulation to achieve neuromodulation. A possible 
mechanistic rationale is that the somata of the skin sympa-
thetic nerves originate from the middle cervical and stellate 
ganglion, the same ganglia that innervate the heart.13 However, 
the limitations of these studies are considerable, and extensive 
further investigations and clinical trials will be needed to op-
timize and test the efficacy of cutaneous neuromodulation in 
the management of AF.

Effects of Neuromodulation on the Structure and 
Function of the Heart
In addition to changes in the structure and function of the ner-
vous systems, neuromodulation may also exert direct effects on 
the structure and function of the heart. Chronic norepinephrine 
infusion in dogs can reduce cardiac sympathetic nerve den-
sity, decrease myocardial norepinephrine uptake activity, and 
downregulate cardiac β adrenoceptors, reproducing that which 
occurs in heart failure.139,140 Successful treatment of heart 
failure may result in the improvement of cardiac norepineph-
rine uptake and attenuate sympathetic nerve terminal abnor-
malities.141,142 Because neuromodulation methods may reduce 
sympathetic outflow, it may help normalize the cardiac sym-
pathetic innervation and improve receptor function in diseased 
hearts. In addition to suppressing sympathetic outflow, vagal 
nerve and epicardial ganglionated plexi stimulations may be 
anti-inflammatory101,143,144 and may improve LA function and 
suppress the development of LA fibrosis.145 Renal sympathetic 
denervation may control AF through modification of the atrial 
substrates.6 These findings suggest that neuromodulation may 
achieve its therapeutic effects, in part, by causing beneficial 
structural and functional remodeling in the heart.

Autonomic Nervous System Targets for 
Antiarrhythmic Drug Therapy
Given the apparent importance of the autonomic nervous sys-
tem in AF, it should be possible to identify autonomic targets 
for drug therapy. β-Blockade has moderate but statistically 
significant effects to prevent AF recurrence after electric car-
dioversion.146 With more research, it may be possible to identi-
fy patients to target based on particularly important autonomic 
contributions to their AF. One such group is patients undergo-
ing cardiac surgery, for which there is evidence of an impor-
tant role of Ca2+ homeostasis abnormalities in postoperative 
AF.147 Prophylactic β-blockers are particularly effective in 
preventing postoperative AF,148 illustrating the applicability of 
the concept. Based on the importance of I

KACh
 in AF, selective 

blockers are being developed, with some success in preclini-
cal studies.149 Biological therapies targeting G-proteins have 
been applied to modulate atrioventricular nodal function and 

control the ventricular response in AF,150 as well as to prevent 
AF induction in a vagal model.151 These studies offer a proof 
of principle for biological therapies targeting specific compo-
nents of G-protein autonomic effectors, with possible greater 
specificity and efficacy in the future.

Conclusions
Autonomic nerve activity plays an important role in the initia-
tion and maintenance of AF, and modulating autonomic nerve 
function may contribute to AF control. Potential therapeutic 
applications include ganglionated plexus ablation, renal sym-
pathetic denervation, cervical VNS, baroreflex stimulation, 
cutaneous stimulation, novel drug approaches, and biological 
therapies. Although the role of the autonomic nervous system 
has long been recognized, new science and new technologies 
promise exciting prospects for the future.
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