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Abstract

Family-based and genome-wide association studies (GWAS) of alcohol dependence (AD) have

reported numerous associated variants. The clinical validity of these variants for predicting AD

compared to family history information has not been reported. Using the Collaborative Study on

the Genetics of Alcoholism (COGA) and the Study of Addiction: Genes and Environment (SAGE)
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GWAS samples, we examined the aggregate impact of multiple single nucleotide polymorphisms

(SNPs) on risk prediction. We created genetic sum scores by adding risk alleles associated in

discovery samples, and then tested the scores for their ability to discriminate between cases and

controls in validation samples. Genetic sum scores were assessed separately for SNPs associated

with AD in candidate gene studies and SNPs from GWAS analyses that met varying p-value

thresholds. Candidate gene sum scores did not exhibit significant predictive accuracy. Family

history was a better classifier of case-control status, with a significant area under the receiver

operating characteristic curve (AUC) of 0.686 in COGA and 0.614 in SAGE. SNPs that met less

stringent p-value thresholds of 0.01 to 0.50 in GWAS analyses yielded significant AUC estimates,

ranging from mean estimates of 0.549 for SNPs with p < 0.01 to 0.565 for SNPs with p < 0.50.

This study suggests that SNPs currently have limited clinical utility, but there is potential for

enhanced predictive ability with better understanding of the large number of variants that might

contribute to risk.
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INTRODUCTION

Alcohol dependence (AD) is a complex psychiatric condition that is influenced by both

genetic and environmental factors. It has a lifetime prevalence of 12.5% and affects 4–5% of

individuals at any given time in the United States (Hasin et al., 2007). It also impacts other

diseases (Hasin et al., 2007). Based on twin studies, AD has an estimated heritability of

around 50–60% (Kendler et al., 1992; Heath et al., 1997). Survey studies suggest that there

may be interest in genetic counseling and testing to determine risk for AD (Gamm,

Nussbaum, and Biesecker, 2004). More than half of individuals surveyed who had at least

one first-degree relative with AD reported that they would undergo a genetic test to

determine their own risk for AD if one were available. Many of them believed that testing

would lead to better prevention or treatment and help assess their own children’s risk

(Gamm et al., 2004). Current risk assessment for AD does not include genetic testing for

common variants; the predictive value of genetic testing has yet to be determined. This

research reveals a need for the careful evaluation of the clinical utility of genetic information

for predicting AD.

There has been a recent emergence of direct-to-consumer (DTC) personal genomics testing

for many multifactorial disorders, including addiction, despite limited information about the

clinical validity and utility of genetic variants associated with these disorders (Mathews,

Hall, and Carter, 2012). Public interest in genetic testing may be due in part to a

misunderstanding of how predictive genetics can be for complex disorders (Lawrence and

Appelbaum, 2011). Genetic counseling for AD is designed to help individuals understand,

manage and cope with risk so that they have less anxiety and a greater sense of mastery over

this disorder, although the actual level of control may be modest (Peay et al., 2008). Current

assessment of risk for AD involves taking a detailed personal and family history of clinical
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and sub-clinical features for AD, possible co-occurring conditions in the family, and

environmental risk factors (Peay et al., 2008). Empiric risk estimates derived from

population-based family studies are also included as risk assessment tools for AD. However,

risk estimates from a population sample may not be applicable for a specific individual due

to differences in genetic and environmental backgrounds. Furthermore, empiric risk may not

be available for families with multiple psychiatric phenotypes or across all family

relationships (Austin and Peay, 2006). Genetic information specific to the individual may

therefore provide more accurate recurrence risk assessments than empiric risk estimates.

Previous efforts to study risk prediction for complex disorders have assessed the predictive

ability of genetic sum scores based on number of risk alleles that have been associated with

a particular disorder. The ability of a test to distinguish between individuals with and

without a disease is typically assessed based on the test’s sensitivity, or the proportion of

individuals with the condition who have a positive result on the test, and specificity, or the

proportion of individuals without the condition who test negative. A frequent measure of

clinical validity is the receiver operating characteristic (ROC) curve, which plots the

sensitivity vs. 1-specificity for every cut-off of a continuous predictor to distinguish between

presence and absence of a disease diagnosis. The area under the ROC curve (AUC) for a

continuous predictor corresponds to the probability that an individual with the disease would

have a higher predictor score than an individual without the disease, and therefore reflects

the proportion of individuals classified correctly as cases or controls. An AUC of 0.5 means

that the predictor can accurately classify 50% of individuals, or no greater than chance,

whereas an AUC of 1.0 means that the predictor can correctly classify 100% of individuals.

An AUC of 0.80 is generally accepted as a target cut-off for screening and 0.99 for

diagnosis (Janssens et al., 2006). Simulation studies that we have conducted suggest that if

all genetic contributions are included in a prediction model for AD, given AD’s heritability

of around 50%, there is the potential for AUCs approaching 0.80 to be reached with genetic

information alone (Maher et al., in preparation).

ROC curve analyses of prior complex diseases have shown modest predictive ability of

genetic sum scores, with AUCs of 0.54 for diabetes for a genetic risk score created based on

previously associated variants (Talmud et al., 2010) to 0.65 corresponding to the 3% of

variance in schizophrenia risk explained by a risk score created based on a large number of

SNPs that met less stringent p-value thresholds in GWAS (Purcell et al., 2009; Jostins and

Barrett, 2011). Most of the genetic variants contributing to AD have small effect sizes. This,

along with the fact that AD has both genetic and environmental risk factors, means that any

one SNP alone is not expected to be a good predictor of AD. This study aims to explore the

aggregate impact of multiple genetic variants with small effect sizes on risk prediction in

order to test whether known genetic contributions to AD can be an effective predictor.

The Collaborative Study on the Genetics of Alcoholism (COGA) is a National Institutes of

Health-sponsored project aimed at identifying genes that contribute to alcohol-related

outcomes. In COGA, we have conducted a series of analyses aimed at understanding the

underlying genetic architecture of alcohol dependence (Zlojutro et al., 2011). Here, we

couple this knowledge with a clinical evaluation of the information captured by currently

available genetic information in risk prediction for alcohol dependence. COGA has
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previously reported positive family-based association results for AD using a high-density

family sample. Many of these genes have also been associated with AD in other studies

(Table 1). We created additive genetic sum scores based on risk alleles of associated SNPs

in these genes. We then compared the sum score with family history in its ability to

discriminate between cases and controls for AD in a subset of the COGA sample that is

independent of the gene-finding family sample and in a subset of independent individuals in

the Study of Addiction: Genes and Environment (SAGE) genome-wide association study

(GWAS) sample. Finally, we explored the clinical validity of results from genome-wide

association analyses.

MATERIALS AND METHODS

Sample and measures

COGA family-based association analysis sample—COGA is a large-scale multi-

center family study with 10 collaborative sites across the United States. The sample consists

of families containing probands meeting both DSM-IIIR and Feighner criteria for AD

ascertained since 1989 from outpatient and inpatient alcohol treatment centers at six sites

across the United States: Indiana University, State University of New York Health Science

Center, University of Connecticut, University of Iowa, University of California/San Diego

and Washington University in St Louis. Families were interviewed using a poly-diagnostic

instrument, the Semi-Structured Assessment for the Genetics of Alcoholism (SSAGA),

which assesses Feighner, DSM-IIIR, DSM-IV, and ICD-10 criteria for major psychiatric

disorders. More than 1300 probands with AD have been recruited. Unaffected subjects were

defined as individuals who drank but did not meet criteria for AD or illicit substance

dependence. A subset of the COGA sample was identified as a group of high-density

families with 3 or more first-degree relatives who met lifetime criteria for AD. The

institutional review boards from all of the participating institutions approved the study

(Edenberg et al., 2008; Wang et al., 2009).

SNPs included in this analysis were selected from 9 COGA papers reporting family-based

association analyses for AD using individuals from the high-density subset (Table 1). The

number of individuals included varied across studies: association analyses that encompassed

all ancestries ranged from 2139 to 2310 individuals from 262 families; 35 of these families,

comprising a total of 298 individuals, are of African American (AA) ancestry. Analyses

conducted in the European American (EA) subset ranged from 1172 to 1923 individuals

from 217–219 families. Genotyping for these individuals is described in detail in the original

COGA papers. Briefly, SNPs within and flanking candidate genes were selected from public

databases including dbSNP (http://www.ncbi.nlm.nih.gov/SNP), HapMap (http://

www.hapmap.org), and LocusLink (http://www.ncbi.nlm.nih.gov/gene). Genotyping was

done using a modified single nucleotide extension reaction, with allele detection by mass

spectrometry (Sequenom MassArray system; Sequenom, San Diego, CA, USA). SNPs were

in Hardy Weinberg Equilibrium. Genotypes were checked for Mendelian inheritance using

programs including PEDCHECK. USERM13 was used to calculate marker allele

frequencies and heterozygosities (Edenberg et al., 2008).
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COGA GWAS sample—A case-control sample of 1945 phenotyped subjects was selected

from the larger COGA sample for genome-wide association studies. Cases had a lifetime

diagnosis of AD by DSM-IV criteria. Controls reported consuming alcohol but did not have

a diagnosis of AD or alcohol abuse by any of the diagnostic criteria assessed by SSAGA and

did not meet diagnostic criteria for dependence on cocaine, marijuana, opioids, sedatives, or

stimulants. Controls could not share a known common ancestor with a case and were

preferentially selected to be above the age of 25 years.

Genotyping was completed using the Illumina Human 1M DNA Analysis BeadChip at the

Center for Inherited Disease Research. Additional details on the COGA GWAS sample can

be found in Edenberg et al. (2010).

SAGE GWAS sample—The Study of Addiction: Genes and Environment (SAGE) is part

of the Gene Environment Association Studies initiative of the National Human Genome

Research Institute to identify genetic contributions to addiction through large-scale genome-

wide association studies. The entire SAGE sample consists of 4,121 cases and unrelated

controls from subsets of three large studies on addiction: the Family Study of Cocaine

Dependence (FSCD), the Collaborative Genetic Study of Nicotine Dependence (COGEND),

and COGA. All cases in SAGE have a DSM-IV lifetime diagnosis of AD. Controls were

exposed to alcohol. Some controls met criteria for nicotine dependence based on the

Fagerström Test for nicotine dependence, but none met criteria for a DSM-IV lifetime

dependence diagnosis for alcohol, marijuana, cocaine, opiates or other drug. Genotyping for

the SAGE GWAS sample was completed using the Illumina Human 1M DNA Analysis

BeadChip. The institutional review boards at all participating sites granted approval for data

collection in COGA, COGEND and FSCD in the SAGE sample. Additional details on the

SAGE GWAS sample can be found in Bierut et al. (2010).

Family history measures—Family history information for the COGA GWAS sample

was obtained for both cases and controls as a dichotomous “yes” / “no” variable for any

existence of a family history of AD, as reported by the subject. The SAGE GWAS sample

included a “yes” / “no” variable about history of AD in specifically the proband’s mother

and father. The presence or absence of family history was used as a binary variable in order

to reflect clinical scenarios in which an individual is asked whether or not she or he has a

family history of alcohol dependence.

Data analysis

Analysis for this study was broken down into two parts, distinguished by whether SNPs

were selected from family-based candidate gene association studies or from case-control

GWAS analyses (Fig. 1). In the first part of this study, SNPs that were previously associated

with AD in candidate gene studies in the COGA high-density family-based association

sample were used to create a genetic risk score to assess prediction of AD in independent

individuals from the COGA and SAGE GWAS samples. The second part of the study

assessed the discriminatory, or predictive, accuracy of SNP panels selected from GWAS

results using varying “significance” criteria. We controlled for allele frequency and linkage

disequilibrium (LD) pattern differences across ethnicities by assessing risk scores in just the
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EA subsets in both parts of the study. In order to select independent discovery and validation

samples, individuals from the COGA GWAS EA sample independent of the COGA family-

based association sample were used to assess predictive accuracy of candidate gene sum

scores. The FSCD and COGEND portions of the SAGE GWAS EA sample were extracted

for use as a sample independent of COGA. Table 2 summarizes characteristics of the

samples used in both study parts. Discriminatory accuracy of genetic sum scores and family

history was measured using ROC curve analysis in SPSS/PASW v17.0 (SPSS Inc., Chicago

IL) and the caTools package (Tuszynski, 2011) in R v2.12.2 (R Foundation, Vienna,

Austria).

Part I: Family-based SNP panel

SNP selection—Several criteria were used to select SNPs for the genetic sum score. An

initial list of 114 SNPs across 21 genes was generated based on prior association with AD

(Table 1). SNPs associated only with early onset AD were not included in the list so that

SNPs in the candidate gene panel would be applicable to the wide range of ages of

individuals in the COGA and SAGE validation samples. Because assessment of clinical

validity was to be performed in EA individuals, SNPs that were associated only in the AA

subset were removed from the list. Forty-two of the SNPs showing association in the

original papers (Table 1) were present on the Illumina Human 1M DNA Analysis BeadChip.

Because we wanted to include SNPs that were captured on the current GWAS arrays, we

used proxy SNPs for SNPs that were not genotyped on the arrays rather than use imputed

SNPs or remove the SNPs altogether. Proxy SNPs on the Illumina chip with an r2 > 0.70

were found for 32 additional SNPs based on LD calculations in the HapMap CEU data using

Haploview (Barrett et al., 2005) and PLINK v1.07. An additional 32 SNPs did not have

proxies. Seven of these SNPs had proxies in the list of COGA family sample SNPs for

which proxy SNPs existed on the Illumina chip, based on LD calculations using Haploview.

The final list contained 81 SNPs.

SNP Pruning—In order that genes with a large number of associated SNPs in high LD

were not disproportionately represented in the risk panel, we generated a list of semi-

independent SNPs for the panel and removed SNPs with an r2 greater than 0.50. LD

estimations used for pruning the SNPs were based on the HapMap Phase 3 CEU data using

the PLINK v1.07 LD function. Selection of which SNP of a pair of correlated SNPs to

remove depended on a ranked list of SNPs based on the level of significance from the

family-based association results and how closely the SNP on the Illumina chip matched the

original family-based SNP. Table 3 summarizes the list of SNPs after pruning. Pruning

resulted in a set of 22 SNPs in 15 genes, with several genes pruned out primarily due to

correlations among the ADH SNPs.

Genetic Risk Scores—Sum scores were created using the --score option in PLINK v1.07

(Purcell et al., 2007). The number of risk alleles was added and then divided by the number

of non-missing genotypes to create a normalized allele count for each individual. Because

odds ratios associated with the risk alleles varied across family-based analyses in COGA and

replication studies, an additive score was created without weighting alleles by effect size.
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The risk allele in the SAGE and COGA samples was determined by matching by frequency

with alleles that were associated with AD in the family sample.

Association analysis of panel SNPs with AD—Sum scores were tested for

association with DSM-IV AD in the case-control COGA and SAGE samples using logistic

regression with sex as a covariate in COGA and sex, age quartiles, and study site as

covariates in SAGE. The models were selected to follow the methods used in the previously

reported primary COGA and SAGE GWAS analyses (Bierut et al., 2010; Edenberg et al.,

2010). In addition to testing the sum scores, the individual SNPs contributing to the scores

were also tested for association with AD in the sample used for prediction. All association

analyses were completed in the case-control samples using logistic regression using an

additive model in PLINK v1.07 for both the EA subset of the sample and the entire sample,

including individuals of non-EA ancestry. Association analyses in the entire GWAS samples

that included individuals of non-EA ancestry included molecularly derived principal

components factor covariates, PC1 and PC2, distinguishing primarily between European and

African ancestry.

Part II: GWAS results from varying p-value thresholds

Sample selection—The FSCD and COGEND subset of the SAGE EA sample was

combined with the COGA GWAS EA sample, and then split randomly in half so that each

half contained 50% of cases and 50% of controls. In order to account for chance effects, this

subsetting procedure was performed 100 times to obtain 100 subsamples in which analyses

were completed. The combined sample included 2951 individuals, comprising of 1456 cases

and 1495 controls. Controls who endorsed 3 or more symptoms for DSM-IV AD, but did not

cluster within a 12-month period, were removed from the combined sample, as these

individuals may still represent genetic risk (N = 49).

SNP pruning—The LD-based pruning function in PLINK v1.07 was used to prune the

1,041,983 SNPs genotyped in the combined sample before association analyses were

performed. The SNPs were pruned at r2 < 0.50 using a sliding window of 50 base pairs

shifted by 5 base pairs following each pruning step.

Association analyses—Association was performed using logistic regression with sex

and site covariates distinguishing between the three study sites using an additive model in

PLINK v1.07. Figure 1 shows the p-value thresholds used to select SNPs from association

results in the first half of the sample.

Genetic sum scores—Because both GWAS samples had the same SNPs genotyped, and

were confirmed to share the direction of the genotyped strand, GWAS results were matched

directly by allele. Genetic sum scores were created for autosomal SNPs composed of the

total number of minor alleles for each SNP carried by each individual, so that homozygotes

for the risk allele had a score of 2. Each SNP allele count was weighted by the natural log of

the odds ratio for each minor allele, and then the sum of the weighted allele count was

divided by the number of non-missing genotypes for each individual using PLINK v1.07.
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The p-values associated with the AUCs for these sum scores were calculated based on the

Wilcoxon rank-sum test using R v2.12.2.

RESULTS

I. Family-based SNP panel

Association of candidate gene sum scores and individual SNPs from
candidate genes with AD—The sum scores for the panel of SNPs were not associated

with AD in the COGA or SAGE samples. Logistic regression results for individual SNPs

within the panels from the COGA family-based study are shown in Table 4. Logistic

regression p-values of the expanded panel of SNPs prior to LD-based pruning resulted in a

greater number of SNPs that met nominal association levels for AD, and is summarized in

Supporting Information Table S1.

ROC curve analysis—The distribution of genetic sum scores was similar in cases and

controls in COGA and SAGE (Fig. 2). Neither of the genetic sum scores had an AUC

estimate that reached statistical significance at p < 0.05 for COGA or SAGE. Because of the

lack of replication for individual SNPs and sum score associations with AD, AUC estimates

were not significant. Family history, however, did produce a statistically significant AUC.

ROC curve analysis results for family history compared with the sum scores are summarized

in Table 5.

II. GWAS results from varying p-value thresholds

Table 6 summarizes mean AUC estimates and median p-values for each set of SNPs

meeting p-value thresholds across the 100 random divisions of the SAGE-COGA combined

sample. AUC estimates were significant at p < 0.05 for subsets of SNPs meeting p-value

thresholds of 0.01 and greater. Figure 3 illustrates the AUC estimates of genetic sum scores

created based on varying p-value thresholds. Although the p-value threshold at which AUC

value peaked varied across subsets, AUC point estimates showed an increasing trend across

the subsets as the p-value threshold used for SNP selection became less stringent.

DISCUSSION

This study aimed to evaluate the clinical validity of genetic variants that have been

associated with AD by exploring the aggregate effect of associated SNPs on risk prediction

for AD. Prior studies on the clinical use of genetic information in predicting risk for other

complex disorders have investigated the effect of genetic sum scores in risk assessment and

shown significant, but small, AUCs. In our study, genetic sum scores were created based on

results from two different sources: SNPs that were associated with AD in family-based

candidate gene studies and SNPs from GWAS analyses that met varying p-value thresholds.

ROC curve analysis was used to assess the ability of the sum scores to classify cases and

controls for AD.

Results did not show significant AUCs for the candidate gene sum scores, suggesting that

sum scores of this limited set of SNPs are not predicting better than chance. The individual

variants contributing to the sum scores did not yield significant results in the independent

Yan et al. Page 8

Addict Biol. Author manuscript; available in PMC 2015 July 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



samples in which discriminative ability was assessed. Results from the GWAS analyses

resulted in significant, albeit small, AUC estimates for p-value thresholds of 0.01 to 0.50.

These results support a polygenic model involving hundreds of variants of small effect

contributing to risk for AD that is consistent with previous findings on schizophrenia and

bipolar disorder (Purcell et al., 2009). Less stringent thresholds allowed for the selection of

more true findings with effect sizes that would not otherwise have reached genome-wide

significance. Combining nominally associated SNPs in aggregate improved clinical validity

because these true loci could outweigh noise from null loci.

This assessment of discriminatory accuracy shows that these panels of SNPs currently have

limited clinical utility. One reason that many of the candidate gene SNPs did not replicate in

the independent samples used to assess for clinical validity could be due to heterogeneity

across samples; different genetic variants may contribute to risk in different populations

containing varying subsets of alcohol-dependent individuals. Therefore, genetic risk could

be unique to the samples used in these association analyses. For example, several variants

have been found to have stronger association with AD in individuals with co-occurring drug

dependence. Dick et al. showed that CHRM2 is associated with a form of AD that is

comorbid with drug dependence, but not with AD alone (Dick et al., 2007a). In another case,

Foroud et al. found that SNPs in TACR3 that were associated with AD in EA COGA

families had the strongest association in individuals with more severe AD and comorbid

cocaine dependence (Foroud et al., 2008). Furthermore, Agrawal et al. showed that GABRA2

is associated with AD only in individuals with comorbid drug dependence. When these

individuals were removed from the analysis, no association remained (Agrawal et al., 2006).

A future step in developing genetic risk models for AD would be to assess for prediction for

different subtypes of AD.

SNPs from primary analyses in the family-based portion of the study may not have

replicated in independent COGA and SAGE GWAS individuals due to sampling differences

between the GWAS samples and the family-based association sample. One possibility is that

the high-density family-based sample may be more severely affected than a case-control

sample and therefore show differences in underlying genetic etiology. Mean DSM-IV

symptom counts for AD were similar across the COGA high-density family-based sample,

(mean = 5.26, SD = 1.48), and the SAGE (mean = 4.87, SD = 1.51) and COGA GWAS

samples (mean = 5.56, SD = 1.43); however, severity of alcohol dependence may differ in

ways beyond criterion count, such as the severity of the symptoms themselves, including the

extent of tolerance and withdrawal, duration of symptoms, and number of episodes. We

combined the COGA and SAGE samples before performing subsampling in order to create

samples with similar population structure across discovery and validation sets.

We also created discovery and replication samples by splitting just the FSCD and COGEND

portion of the SAGE GWAS sample in half, and then assessing for clinical validity in the

COGA GWAS sample. Of the list of SNPs that met nominal significance criteria in both

halves of the SAGE sample, the majority of SNPs did not share the same direction of effect,

suggesting that many of these results could be false positives. This study also explored the

effect of using a more stringent r2 threshold of 0.25 to prune the list of candidate gene SNPs

before creating sum scores; results were similar.
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These results show that family history is a better classifier than current conceptualizations of

SNP panels, based on candidate gene and GWAS for AD. Family history is likely a better

predictor than this panel of SNPs because it accounts for more of the latent genetic factors

contributing to AD, whereas the contribution to risk of the panel of SNPs is less clear.

Family history also contains non-genetic predictors, which could account for a significant

proportion of the risk as well, as family history could influence to some extent the

environment that an individual is exposed to during development. Furthermore, the etiology

of AD may be different for one family versus another. Therefore, risk prediction based on an

individual’s family history may encompass genetic factors that are more specific to that

individual than a general panel of SNPs, which may not explain risk for the particular

subgroup to which that individual belongs. We assessed the value of combining information

from the candidate gene panel with family history, as family history and the candidate gene

sum score were not correlated (r = 0.021, n = 1081 p = 0.490). We found that the AUC for

family history increased nominally from 0.686 to 0.690 in COGA after adding the candidate

gene sum score. This suggests that there was negligible additional information when the

candidate gene panel is added to family history information.

Importantly, before assessment of clinical validity is made, the contribution of genetic sum

scores, rather than individual associated SNPs, must be determined. The finding that genetic

sum scores created from SNPs meeting less stringent p-value thresholds were significantly

associated with AD and had significant discriminative ability suggests that varying p-value

thresholds could better detect variants of small effect. However, it is difficult to distinguish

true alleles of vanishingly small effect from alleles in LD with causal alleles. Because

variants contributing to AD have small effect sizes, and the outcome used in the association

studies is a dichotomous diagnosis rather than a continuous outcome, larger sample sizes are

needed for increased power to detect causal variants that replicate across studies (Bierut et

al., 2010). The samples used in this study did not have enough power to detect the entire

range of small effect sizes for individual variants assessed in these analyses at a genome-

wide significance level. Splitting the COGA-SAGE combined sample further reduced

power.

GWA studies have shown replication of SNPs associated with AD in the COGA candidate

gene studies (Bierut et al., 2010; Edenberg et al., 2010); however, in an effort to create SNPs

that captured unique information by pruning them based on LD, some of the replicated SNPs

were not included in the model. An expanded candidate gene sum score incorporated more

SNPs that met nominal significance levels in the COGA and SAGE GWAS samples

(Supporting Information Table S1), but did not have a significantly different AUC compared

with the candidate gene sum score composed of pruned SNPs. In these data, we have

previously demonstrated that the missense SNP rs1229984 is associated with AD at p <

5×10−8 (Bierut et al., 2012). This variant, previously well-recognized for its protective

influence on alcoholism in Asians, has also been found to exert an influence on alcoholism

risk in Caucasians and African-Americans. However, it is fairly uncommon in non-Asian

samples (< 5%) and is poorly captured by content on commercially available GWAS

platforms, due to lack of LD with neighboring SNPs. We assessed the discriminatory

accuracy of this ADH1B SNP for AD and found that it alone has an AUC of 0.538 (p = 7.58
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× 10−4) in COGA. The inclusion of this SNP in the candidate gene sum score increased the

AUC from 0.498 to 0.503, but this AUC was not significant (p = 0.885), presumably due to

the very low allele frequency in this population. This suggests that including known variants

that replicate in the validation sample used for prediction could have a greater AUC.

Expanding the panel to include additional replicated variants could increase the AUC

further.

A prediction model that consists primarily of genetic variants has a maximum AUC

constrained by the heritability of the trait, as well as the disease prevalence in a population

(Wray et al., 2010). As heritability of a disease goes down and as prevalence goes up, the

maximum AUC goes down (Wray et al., 2010). This stresses the importance of taking into

account other factors contributing to the variability in AD for risk prediction, particularly

since AD is a fairly prevalent disorder. Additional measures to increase power may include

reducing heterogeneity by refining the phenotype used as the outcome in the association

study (Bierut et al., 2010). Large-scale meta-analysis, along with expanded individual

association studies for AD, may improve the detection of disease variants.

We do not yet have enough information about the specific variants contributing to AD to use

genetic data for clinical risk prediction. These findings conclude that despite interest in

genetic testing, and availability of testing through direct-to-consumer avenues, genetic

testing for AD is not yet ready to be applied in a clinical setting. This study suggests that

expanding the number of replicated variants associated with AD would account for a greater

portion of the genetic variance for AD and therefore improve risk prediction. Because AD

also has a substantial unique environmental etiology in addition to genetic, a prediction tool

based on genetic information alone would not have the highest AUC; the addition of

environmental factors would account for more of the variability in AD and therefore a

model that takes into consideration both could have better predictive ability. Data

simulations in our study show that adding environmental effects could potentially raise the

predictive accuracy to 0.95 (Maher et al., in preparation). While genetic information may be

of limited clinical validity at the moment, as we continue to identify genes successfully, and

incorporate information from both genetic and environmental risk factors, there is potential

for future clinical utility.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Study overview. Gray boxes show samples used for each step of analyses. White boxes

display the selection criteria for SNPs at each step.
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Figure 2.
Distribution of genetic sum scores based on candidate gene SNPs pruned at r2<0.50 in cases

and controls for AD. Left panel: scores in the COGA GWAS sample independent of the

COGA high-density family-based association sample. Right panel: scores in the FSCD and

COGEND portion of the SAGE GWAS sample. The figure shows the frequency of

normalized allele counts in bins separately for cases and controls. Allele counts were created

by adding the number of risk alleles of SNPs associated with AD in candidate gene studies,

and then dividing by the number of non-missing genotypes for each individual. The table

summarizes the mean and range for the sum score in cases and controls.
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Figure 3.
Mean AUC estimates for varying p-value thresholds. The mean of all 100 AUC estimates

for sum scores created using SNPs that meet different p-value thresholds in discovery

samples is plotted here in the solid line. Dashed lines represent the upper and lower bounds

of the 95% confidence interval of the mean AUC estimate.
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Table 1

Genes associated with alcohol dependence in COGA

Study Gene Replication

Edenberg et al., 2004 GABRA2 Covault et al., 2004; Fehr et al., 2006; Lappalainen et al., 2005; Soyka et al.,
2008; Enoch et al., 2006; Drgon et al., 2006

Dick et al., 2004 GABRB3 and GABRG3 Noble et al., 1998; Song et al., 2003 GABRB3

Wang et al., 2004 CHRM2 Luo et al., 2005a

Hinrichs et al., 2006 TAS2R16

Wang et al., 2009 CHRNA5 Saccone et al., 2007

Xuei et al., 2006 PDYN and OPRK1 Williams et al., 2007; Gerra et al., 2007

Edenberg et al., 2006 ADH genes: ADH4, ADH1A, ADH1B Luo et al., 2005b; Guindalini et al., 2005

Edenberg et al., 2008 NFKB1

Foroud et al., 2008 TACR3

Dick et al., 2008 ACN9

Dick et al., 2007b ANKK1/DRD2
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Table 6

Results of SNP subsets from varying P-value thresholds

P-value threshold Mean AUC

95% Confidence Interval

Median p-value for AUCLower Upper

Pt < 0.50 0.565 0.562 0.568 1.37E-05

Pt < 0.40 0.565 0.562 0.568 1.42E-05

Pt < 0.30 0.564 0.561 0.567 1.82E-05

Pt < 0.20 0.564 0.561 0.567 2.62E-05

Pt < 0.10 0.562 0.559 0.565 4.81E-05

Pt < 0.05 0.559 0.556 0.562 1.04E-04

Pt < 0.01 0.549 0.546 0.552 0.00166

Pt < 0.001 0.528 0.526 0.531 0.0631

Pt < 0.0001 0.517 0.515 0.519 0.29

Summary statistics for 100 random 50% splits of the combined COGA-SAGE sample into discovery samples and validation samples. Sum scores
were created based on SNPs meeting each p-value threshold, by adding minor alleles weighted by the log of the odds ratio for AD. Confidence
intervals are based on 100 AUC estimates from 100 separate sum score calculations at each p-value threshold. Median p-value threshold was
calculated because distributions of p-values were skewed.
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