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Abstract

An urgent unmet need exists for early-stage treatment of spinal cord injury (SCI). Currently 

methylprednisolone is the only therapeutic agent used in clinics, for which the efficacy is 

controversial and the side effect is well-known. We demonstrated functional restoration of injured 

spinal cord by self-assembled nanoparticles composed of ferulic acid modified glycol chitosan 

(FA-GC). Chitosan and ferulic acid are strong neuroprotective agents but their systemic delivery is 

difficult. Our data has shown a prolonged circulation time of the FA-GC nanoparticles allowing 

for effective delivery of both chitosan and ferulic acid to the injured site. Furthermore, the 

nanoparticles were found both in the gray matter and white matter. The in vitro tests demonstrated 

that nanoparticles protected primary neurons from glutamate-induced excitotoxicity. Using a 

spinal cord contusion injury model, significant recovery in locomotor function was observed in 

rats that were intravenously administered nanoparticles at 2 h post injury, as compared to non-

improvement by methylprednisolone administration. Histological analysis revealed that FA-GC 

treatment significantly preserved axons and myelin and also reduced cavity volume, astrogliosis, 

and inflammatory response at the lesion site. No obvious adverse effects of nanoparticles to other 

organs were found. The restorative effect of FA-GC presents a promising potential for treating 

human SCIs.
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Introduction

Few effective treatments exist for traumatic spinal cord injury (SCI) [1, 2]. Difficulties in 

therapeutic development derived from complex temporospatial profiles of the two 

pathological phases of SCI: a primary mechanical injury and a subsequent secondary 

damage instigated by the initial trauma [3]. The primary injury, which is inclined to insult 

gray matter, results in immediate ischemia and energy failure by disruption of blood vessels 

and cell membranes, while the secondary injury is mediated by multiple neurodegenerative 

processes that exacerbate the primary damage [4-6]. Therefore, early repair of SCI by 

neuroprotective agents is critical to prevent not only temporal progression, but also spatial 

spread of the primary injury. Currently, methylprednisolone (MP) is the only therapeutic 

agent used clinically for SCI, for which its efficacy and safety are controversial [7-10].

To date, neuroprotective medicine using various biomaterials has been proposed for early 

SCI treatment [11-13]. The implantation of methylprednisolone (MP)-loaded poly(lactic-co-

glycolic acid) (PLGA) nanoparticles embedded in an agarose hydrogel in an injured spinal 

cord allowed to sustainably and spatially release MP, resulting in decreased inflammation 

and lesion volume after a contusive SCI [14]. The neuroactive pentapeptide epitope, self-

assembled into cylindrical nanofibers after injection into an injured spinal cord, reduced 

astrogliosis and cell death, and increased the number of oligodendroglia at the injury site 

[15]. Also, the local injection of glial cell line-derived neurotrophic factor encapsulated in 

PLGA nanoparticles into the injured spinal cord after contusion in rats preserved neuronal 

fibers and led to increase in locomotor function [16]. Furthermore, synthetic nano-sized 

polymers themselves have been recently recognized as a new class of neuroprotective agents 

for early SCI therapy [17, 18]. Local application of a high-concentration of poly(ethylene 

glycol) protected spinal cord tissue from reactive oxygen species and lipid peroxidation-

induced damage, by repair of nerve membranes that led to restoration of compound action 

potential conduction and locomotor function after compression/contusion injury in adult 

guinea pigs [19, 20]. Poloxamer 188 (P188) micelles rescued neuron cells from glutamate 

toxicity [21], and also improved functional outcome from SCI through aortic cross-clamping 

by intercalating into neuronal membranes [22]. Self-assembled monomethoxy poly(ethylene 

glycol)-poly(D,L-lactic acid) di-block copolymer micelles not only repaired injured axonal 

membranes, but also reduced calcium influx into axons, resulting in significant improvement 

of locomotor function after traumatic SCI in adult rats [23]. Although SCI treatment using 

the synthetic nano-sized polymers has demonstrated some therapeutic effects, the polymers 

had to be administrated within a short period of time (~ 15 min) after the injury, or even 

before the injury, to become effective. Such time windows are not clinically relevant.

Here, we report a neuroprotective nanomedicine composed of ferulic acid modified glycol 

chitosan, represented by the acronym FA-GC, that can restore locomotor function following 

traumatic SCI within a clinically-relevant therapeutic time window. Ferulic acid (FA) and 

glycol chitosan (GC) are both recognized as natural neuroprotective compounds [24, 25]. 

FA, which is abundant in cell wall of commelinid plants such as rice, wheat, or in seeds of 

coffee, apple, peanut, etc., has been shown to protect neurons after cerebral ischemic injury 

through its anti-inflammatory, anti-oxidative, and anti-excitotoxicity effects [26-28]. The 

phenolic hydroxyl group in FA can absorb a hydrogen atom to form a phenoxy radical, 
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protecting cells from oxidative stress [29, 30]. Chitosan, which is produced mainly from the 

exoskeleton of crustaceans (e.g. crabs and shrimps), has proven neuroprotective effects on 

membrane sealing, anti-inflammatory, anti-oxidative, and anti-excitotoxicity effects as well 

[31-34]. It was shown that primary amines, abundant in chitosan, may play a key role in 

neuroprotection [35, 36]. However, due to poor solubility of chitosan in an aqueous solution 

with neutral pH, we employed a water-soluble, glycol chitosan (GC) maintaining its 

neuroprotective effect derived from the primary amines in original chitosan [37].

By chemically conjugating FA to GC to form hydrophobically self-assembled nanoparticles 

composed of a hydrophobic FA core and a hydrophilic GC shell, our scheme significantly 

extends their half-life in the blood stream so that the neuroprotective effect is sufficiently 

realized. We determined the therapeutic effect of FA-GC nanoparticles via the Basso, 

Beattie and Bresnahan locomotor scale after spinal cord contusion in rats [38]. We 

characterized the distribution of FA-GC nanoparticles by fluorescence and stimulated 

Raman scattering microscopy imaging at cellular levels. We further performed histological 

analyses including astrogliosis, macrophage/microglia reaction, and spared axon and myelin 

analyses. Finally, we assessed in vivo toxicity of FA-GC nanoparticles via hematological 

and histological analyses.

Materials and Methods

Glycol chitosan (GC) (Mw = 250 KDa; degree of deacetylation = 82.7%), trans-ferulic acid 

(FA), N-hydroxysuccinimide (NHS), 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide 

hydrochloride (EDC), HEPES sodium salt, poly-L-lysine, cytosine-β-D-arabinofuranoside, 

Hoechst 33342, propidium iodide (PI), and glutamate were purchased from Sigma (St. 

Louis, MO). The monoreactive hydroxysuccinimide ester of Cy5.5 was from Amersham 

Biosciences (Piscataway, NJ). Anhydrous dimethyl sulfoxide (DMSO) and methanol were 

purchased from Merck (Darmstadt, Germany). All other chemicals were of analytical grade, 

and used without further purification.

Synthesis and characterization of ferulic acid (FA)-glycol chitosan (GC) nanoparticles

Ferulic acid (FA) was conjugated to glycol chitosan (GC) at three different molar ratios of 

FA to GC (45, 90, and 180). Glycol chitosan (0.1 g, 4 μM) was dissolved in HEPES buffer 

(pH 7.5) (20 ml), followed by dilution with DMSO (10 ml), and the different amounts of 

ferulic acid acid (3.5-14 mg, 180-720 μM) was added Chemical modification was initiated 

by adding equal amounts (1.5-fold molar excess of ferulic acid) of EDC and NHS. The 

resulting solutions were stirred for 1 day at room temperature, dialyzed (molecular cutoff = 

12 KDa) for 3 days against excess water/methanol (1:4 v/v), followed by dialysis against 

distill water, and products were lyophilized to obtain glycol chitosan conjugates with 

different molar ratio of ferulic acid. Synthesized conjugates were chemically analyzed 

using 1H NMR spectroscopy (ARX-400, Bruker, Germany) and FT-IR (Nicolet NEXUS 

470, Thermo). The degree of substitution, defined as the number of ferulic acid groups per 

one sugar residues of glycol chitosan, was determined by UV absorbance at 316 nm.

FA-GC conjugates were dispersed in PBS buffer (pH 7.4) by sonication to produce 

homogeneously nano-sized FA-GC nanoparticles. The sizes of FA-GC nanoparticles were 
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determined using dynamic light scattering (DLS) (DLS, 90Plus, Brookhaven Instruments 

Co., NY) at 633 nm and 25 °C. The morphologies of FA-GC nanoparticles in distilled water 

were observed using transmission electron microscopy (TEM) (CM 200 electron 

microscope, Philips). Nanoparticles deposited on the grid were negatively stained with 2 wt 

% uranyl acetate solution. The surface charges of FA-GC nanoparticles in distilled water 

were determined using a zeta potential analyzer (ZetaPlus, Brookhaven Instruments Co., 

NY).

Cy5.5-labeled FA-GC nanoparticles

To label Cy5.5 to FA-GC polymer or GC, 1 wt % hydroxysuccinimide ester of Cy5.5 was 

dissolved in DMSO and mixed with FA-GC or GC solution. The reaction was performed at 

room temperature in the dark for 6 h. Byproducts and unreacted Cy5.5 molecules were 

removed over a period of two days by dialysis (molecular weight = 12 KDa) against distilled 

water, and the resulting product was lyophilized. The amounts of Cy5.5 in the FA-GC and 

GC were similar as ~ 0.7 wt %, as determined by Cy5.5 absorbance at 690 nm in DMSO.

Primary spinal neuron culture

Primary spinal cord neurons were obtained from Sprague Dawley rat E15 embryo spinal 

cords according an established protocol [39]. In brief, E15 rat spinal cords were isolated and 

placed in Leibovitz's L-15 medium. Meninges were carefully removed, the spinal cords were 

cut into small pieces and dissociated with 0.05 % trypsin/EDTA for 15-20 min at 37 °C and 

gently triturated. After adhering at 37 °C for 30 min to eliminate glial cells and fibroblasts, 

neurons were plated on poly-L-lysine pre-coated 48-well plates. Neurons were incubated in 

a humidified atmosphere containing 5 % CO2 at 37 °C with DMEM including 10 % heat-

inactivated fetal calf serum, 5 % heat-inactivated horse serum, and 2 mM glutamine. After 

16 h, the medium was replaced with Neurobasal medium with 2 % B27, 1 % N2, and 2 mM 

glutamine. On day 3 in vitro, 5 μM cytosine-β-D-arabinofuranoside was added for 24 h to 

inhibit glia cell proliferation. Cells in 48-well plates were cultured with 200 L medium until 

experimentation. With this culture protocol, a purity of greater than 87 % spinal cord neuron 

population was obtained by 7 DIV. All experiments were performed between 7-10 days 

following initial plating.

Neuroprotective effect of FA-GC nanoparticles for in vitro glutamate-induced exitotoxicity 
model

The neurons were incubated with GC (0.1mg/ml, n=3) and FA-GC nanoparticles (0.1 

mg/ml, n=3) for 30 min, following treatment of 100 μM glutamate for 24 h. Hoechst 33342 

(10 μM) was added to the culture at 37 °C for 15 min to label all cell nuclei, followed by 

incubation with PI (5 μg/ml) at room temperature for 10 min to stain dead cell nuclei. After 

staining, the medium was removed and cells were washed with 10 mM PBS, following by 

10 min treatment with 4% PFA for cell fixation. The fixed cells were then washed 3 times 

with PBS and were ready for imaging. Images were taken by phase microscope (Olympus 

CK2, Japan) at 20x and 40x magnification. The cell viability was determined by counting 

the number of total and PI stained neuron.
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Contusive spinal cord injury model

All protocols were approved by the Purdue University Animal Care and Use Committee. 

Adult Long-Evans rats (~ 300 g) were anesthetized by 90 mg/kg ketamine and 5 mg/kg 

xylazine. A T10 laminectomy was performed to expose the underlying thoracic spinal cord 

segment(s). Spinal cord contusion injury was produced using a weight-drop device 

developed at New York University [40]. The exposed dorsal surface of the cord was 

subjected to weight-drop impact using a 10 g rod (2.5 mm in diameter) dropped from a 

height of 12.5 mm. After the injury, the muscles and skin were closed in layers, and rats 

were placed on a heating pad to maintain the body temperature of the rats until they awoke. 

The analgestic buprenorphine (0.05-0.10 mg/kg) was administered every 12 h through 

subcutaneous injection for the first 3 days post-surgery for post-operation pain management.

Pharmacokinetics and tissue distribution of FA-GC nanoparticles

The pharmacokinetics of FA-GC nanoparticles and GC were determined by Cy5.5 

fluorescence. FA-GC(−Cy5.5) and GC(−Cy5.5) (16 mg/kg, 1 ml in saline) were 

intravenously administrated to SCI rats (n=3 for each group) through a jugular vein at 2 h 

post contusive injury (n=3). Blood samples (50 μl) were drawn through another jugular vein 

at determined times. The fluorescence intensities of Cy5.5 labeled to FA-GC nanoparticles 

and GC in blood were measured by a fluorescence spectrometer (SpectraMax M5, 

Molecular Devices, CA) with excitation at 675 nm and emission at 695 nm. The dataset was 

fit to a one-compartment pharmacokinetic model:

The fluorescence imaging of FA-GC(−Cy5.5) in blood samples drawn at different time 

points was performed using IVIS Lumina (Caliper Life Sciences, Inc., MA) with excitation 

at 640 nm and emission at 695-770 nm. For biodistribution study, FA-GC(−Cy5.5) 

nanoparticles was intravenously injected at 2 h post injury. At 1 day after the injection, the 

rats were sacrificed via transcardial perfusion with saline and the tissues were harvested. 

Cy5.5 in the tissues was imaged by IVIS Lumina. Quantitative analysis for the tissue 

distribution of FA-GC nanoparticles was performed using the Living Imaging Software 

(Caliper Life Sciences, Inc., MA).

Nonlinear optical imaging of injured spinal cord tissue

The injured spinal cord tissue harvested in the tissue distribution study of FA-GC 

nanoparticles was cross-sectioned at 200 m thickness using an oscillating tissue slicer 

(Electron Microscopy Sciences, Inc., PA). For simulated Raman loss (SRL) imaging, a 

Ti:sapphire laser (Chameleon Vision, Coherent) of 140 fs pulse duration, 80 MHz repetition 

rate was tuned at 830 nm to pump an optical parametric oscillator (OPO, APE compact 

OPO, Coherent) [41]. Based on the C-H molecular vibration, the OPO provided the Stokes 

beam at ~1090 nm, and then collinearly combined with the pump beam and sent to a laser 

scanning microscope (BX51, Olympus). The pump and Stokes beam were then focused into 

the sample using a water immersion objective lens (XLPlan N 25X, NA 1.05, Olympus). 

The forward SRL signal was collected by an oil condenser (U-AAC, NA 1.4, Olympus) and 
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detected by a photodiode (S3994-01, Hamamatsu). The fluorescence signal was collected 

backward with a photomultiplier tube (H7422P-40, Hamamatsu) after an optical filter 

(715/60, Chroma). Pixel dwell time was 4 μs for each image.

Locomotor scoring after FA-GC nanoparticle treatment

Rats were randomly divided into 3 groups according to the treatments received: 1 ml FA-GC 

nanoparticles (16 mg/kg in saline; n=12), 1 ml methylprednisolone sodium succinate (MP, 

30 mg/kg; n=5), and isovolumetric dose of saline (n=12). Treatments were administrated at 

2 h post injury by intravenous jugular vein injection. Bladder expression was manually 

carried out 3 times daily until reflex bladder emptying was established. The locomotor 

recovery was assessed using the Basso Beattie Bresnahan (BBB) locomotor rating score 

[38]. Two lab members conducted the test independently and agreement on the score was 

reached before the scores were finalized. The scores were recorded at day 1, 7, 14, 21, and 

28. The locomotor behaviors were recorded via a video camera.

Immunofluorescence analysis of spinal cord tissue

At 28 days after the injury, the rats were anesthetized and transcardially exsanguinated with 

150 ml physiological saline followed by fixation with 300 ml of ice-cold 4 % 

paraformaldehyde in PBS (PH 7.4). A 1.5 cm thoracic spinal cord segment at the lesion 

center was dissected and then fixed 4 h by 4 % paraformaldehyde in PBS (pH 7.4), and 

transferred to 30 % sucrose in PBS (pH 7.4). The cord segments were embedded in tissue-

embedding medium, and 30 m sagittal sections were cut on a cryotome and mounted onto 

glass slides.

For immunofluorescence staining, the sections were permeabilized and blocked with 0.3 % 

Triton X-100/10% normal goat serum (NGS) in PBS (pH 7.4) for 30 min. Primary 

antibodies were then applied to the sections overnight at 4 °C. Glia fibrillary acidic protein 

(GFAP, diluted 1:220, Abcam, Cambridge, MA, USA), ED-1 (diluted 1:50; Millipore, St. 

Charles, MO, USA) and SMI31 (diluted 1:500, Abcam, Cambridge, MA, USA) were used 

as the primary antibody to identify astrocyte and macrophage/activated microglia and axons, 

respectively. The sections were incubated the following day for 2 h at room temperature 

with secondary antibodies (Alexa Fluor 488, Invitrogen; Cy3, Invitrogen), washed, mounted, 

and then examined using an Olympus IX70 confocal microscope equipped with a FluoView 

program. The cavity volume measurement and 3D construction were conducted by a 

Neurolucida program, GFAP+ and ED-1+ fluorescence intensity were measured by Image J. 

The SMI31+ axon number was counted manually by image J.

Luxol fast blue (LFB) staining was used to observe the spared myelin, the protocols has 

been described before [42]. The slides were dehydrated with 70% and 95% alcohol for 2 

min each, and then they were immersed with 0.1% LFB solution at 37°C for 4h. After 

cooling at 4°C for 20 min, the slides were dipped in 95% alcohol 5 times and dH2O for 1 

min, then they were cleared and sealed. To calculate the percentage of spared myelin, we 

firstly transferred the image to black, then we selected all the LFB stained area and 

measured it. After measuring the whole spinal cord area, we calculate the ratio of selected 

black area to the whole section area, which represent the percentage of spared myelin.
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To define the cavity area, we performed hematoxylin and eosin (H&E) staining. Briefly, 

after drying the section, we stained the tissue in 50 ml conical tube filling with 0.1% 

hematoxylin, then the section was rinsed in cool running ddH2O for 5 min. After dipping the 

section in 0.5% Eosin, we put the section in distilled H2O, 50% alcohol, 70% alcohol, 95% 

alcohol, and 100% alcohol, then we dip the section in xylene several times, clean the slide, 

and seals it.

For assessment of axons, microphages, astrocyte, and myelin, four sections from FA-GC 

treated tissue and 3 sections from saline treated control group at epicenter were selected. For 

each section, three perilesion areas were chosen randomly to do the statistical analysis. 

Fluorescence intensity was used to represent the astrocyte, macrophages reaction, the axon 

number was counted to measure the spared axon, and the percentage of myelin stained area 

indicate the spared myelin. For the measurement of cavity volume percentage, 1 cm segment 

of thoracic spinal cord (n=3 for each group) including the lesion epicenter was dissected and 

sectioned by transversely at 20 μm thickness by cryotome and mounted to glasses. 60 

sections per each 1 cm length spinal cord were used to calculate the cavity volume, the 

whole spinal cord volume, and 3-dimentional reconstruction by Neurolucida software 

(MicroBrightfield, Inc.). The percentage of cavity volume to spinal cord volume was use to 

assess the neuroprotective effect of FA-GC nanoparticles.

In vivo toxicity analysis

Long-Evans adult male rats were randomized into the GC-FA nanoparticle-treated group 

(n=3) or the saline-treated group (n=3). Each rat (~300 g by weight) received 1 ml FA-GC 

nanoparticles (16 mg/kg in saline) or 1 ml saline solution through jugular vein injection. 

Blood samples (1 ml) were drawn through the jugular vein at day 1 and day 28 post 

treatment. Haematology and serum analysis were performed by Antech Diagnostics, Inc. in 

a blinded manner. The rats were then sacrificed and tissues including liver, lung, spleen, and 

kidneys were fixed in 10 % neutral buffered formalin for at least 48 h, embedded into 

paraffin. Sections of 5 m thickness were stained with haematoxylin and eosin in Purdue 

University Histopathology Lab. The slides were then examined on a Nikon microscope 

equipped with a charge-coupled device camera.

Statistical analysis

Values are expressed as mean ± SEM, and statistical comparisons between groups were 

made using the Student's t-test and a P value of <0.05 was considered significant.

Results

Physicochemical characteristics of FA-GC nanoparticles

Different amounts of FA (feed molar ratio of 45-180 mol FA to 1.0 mol GC) were 

conjugated to GC (Mw = 250 KDa) (Fig. 1a). With three different feed ratios of FA, FA-GC 

polymers with different degree of substitutions of FA were obtained, as listed in Table S1. 

The presence of FA in FA-GC polymer was confirmed by characteristic peaks at 6-8 ppm 

in 1H-NMR spectra (data not shown), and the amide linkage between GC and FA was 

confirmed by an increase in the amide peak at 1656 cm−1 in FT-IR spectra (Fig. 1b). Self-
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assembled FA-GC nanoparticles were generated by sonication in aqueous conditions. The 

zeta-potentials and average diameters of FA-GC nanoparticles were measured using a zeta-

potential dynamic light scattering analyzer, respectively (Table S1). FA-GC nanoparticles 

showed similar positive zeta-potentials, implying the GC shell composes the nanoparticle 

surface. On the other hand, FA-GC nanoparticles with a degree of substitution of 12.8 had 

smaller diameter (236 nm) compared to other nanoparticles, and their spherical morphology 

was confirmed by transmission electron microscopy (Fig. 1c). Since smaller FA-GC 

nanoparticle size may allow more nanoparticles to accumulate at the injured spinal cord 

tissue, it was decided to use FA-GC nanoparticles with a degree of substitution of 12.8 in the 

following studies unless otherwise noted.

Neuroprotective effect of FA-GC nanoparticles against glutamate-induced excitotoxicity

Since glutamate level increase is the most significant pathological feature of SCI, we first 

confirmed the neuroprotective effect of FA-GC nanoparticles on primary spinal cord 

neuronal culture using a glutamate-induced excitotoxicity model. In the control group, spinal 

cord neurons showed clear neuronal cell bodies and extended neurites (Fig. 2a, control, 

yellow arrow). After exposure to glutamate (Glu) for 24 h, neuronal loss and breakdown of 

neurites were clearly seen (Fig. 2a, Glu, red arrow). Pre-treatment by GC partially reduced 

neuronal loss and suppressed neurite degeneration (Fig. 2a, Glu+GC, yellow arrow). Pre-

treatment by FA-GC nanoparticles showed greater effect on prevention of neuronal loss and 

neurite disintegration as compared to the use of GC alone (Fig. 2a, Glu+FA-GC, yellow 

arrow). Neuron viability percentage (%) was quantified using Hoechst/propidium iodide (PI) 

staining (Fig. 2a, right column). Administration of glutamate for 24 h led to massive 

neuronal loss and only 48 % survived the glutamate insult. Pre-treatments by GC polymer or 

FA-GC nanoparticles significantly increased neuronal survival by 81% and 98%, 

respectively (Fig. 2b). These results demonstrate the neuroprotective effect of both GC and 

FA-GC nanoparticles. The better survival of neurons after FA-GC nanoparticle treatment 

than with the GC polymer treatment alone indicated the added neuroprotective effect of FA 

conjugation.

Pharmacokinetics and bioavailability of FA-GC nanoparticles in SCI animals

Next, we characterized the blood retention time and bioavailability of FA-GC nanoparticles 

for SCI using fluorescence labeling. As shown in Fig. 3a, FA-GC nanoparticles exhibited a 

long retention time in blood with a half-life of 20 h determined by a one-compartment 

model. In comparison, the non-modified GC polymer showed a half-life of 6 h. We also 

examined the bioavailability of FA-GC nanoparticles in injured and uninjured rat spinal 

cords at 1 day post injection. The fluorescence of Cy5.5 conjugated FA-GC nanoparticles 

was detected only at the lesion site of the injured spinal cord (Fig. 3b, insert). The non-

injured spinal cord showed a background autofluorescence that was 15 times weaker 

compared to the FA-GC fluorescence in the injured cord.

To investigate cellular level localization of FA-GC nanoparticles in the injured spinal cord, 

we used two-photon excitation fluorescence and stimulated Raman loss microscopic 

imaging technology (Fig. 3c). FA-GC nanoparticles were highly accumulated in the gray 

matter compared to the white matter at 1 d post injury (Fig. 3c-1). In the gray matter, 
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aggregation of red blood cells and blood clots was observed, indicating blood vessel 

damages induced by contusive impact (Fig. 3c-2). FA-GC was present in the ventral portion 

of the dorsal funiculus, close to the central canal (Fig. 3c-4). The white matter was not 

seriously damaged as compare to gray matter (Fig. 3c-3, 5). In fact, the ventral white matter 

remained morphologically intact with the absence of fluorescence of Cy5.5 conjugated FA-

GC nanoparticles (Fig. 3c-5). Together, these results demonstrated selective accumulation of 

FA-GC nanoparticles at the lesion site.

Functional restoration of FA-GC nanoparticles in contusive SCI rats

To determine the effectiveness of FA-GC in functional recovery, we employed the Basso 

Beattie Bresnahan (BBB) locomotor rating scale to assess locomotor recovery in rats 

received intravenous injection of FA-GC nanoparticles. The control rats received either 

saline or MP injection. All injections were carried out at 2 h after contusive SCI, as shown 

schematically in Fig. 4a. The BBB scores were recorded at days 1, 7, 14, 21, and 28 after 

SCI in a blinded manner for all three groups (Fig. 4b). On day 28, an increase of 4.9 points 

in the BBB scale was seen in the FA-GC treated group compared to the saline treated group, 

and an increase of 5.7 points in the FA-GC treated group compared to the MP treated group 

(FA-GC: 14.9±0.7, saline: 10.0±0.7; MP: 9.2±0.2). The score of 14.9 in the FA-GC treated 

group indicates consistent weight-supported plantar steps and frequent forelimb-hindlimb 

coordination, whereas the BBB scores of 9 to 10 in the MP and saline groups mean that the 

rats were only able to achieve weight support in stance and there was no coordination 

between fore- and hindlimbs (Videos S1, S2).

Histological improvement of injured spinal cord by FA-GC treatment

To determine the anatomical basis of observed functional recovery, we examined several 

key parameters that were associated with tissue damage and repair. These parameters 

included densities of axons, astrocytes, macrophages, myelin, and volumes of cavity at day 

28 post injury. Astrocytes, which play a major role in the formation of gliosis after SCI [43], 

were visualized using glial fibrillary acidic protein (GFAP) antibodies. The 

immunoreactivity of GFAP in the FA-GC group was 50% of that in the saline group (Fig. 
5a), indicating that FA-GC treatment reduced astrogliosis at the lesion site. The 

macrophages play a major role in inflammatory responses including modulating axon 

degeneration and myelin clearance after SCI [44]. Measured by ED1 immunofluorescence, 

FA-GC treatment decreased the density of macrophages by 24% compared to the saline 

treated group (Fig. 5b). To determine whether the reduced immunoreactivity of astrocytes 

and macrophages benefit the survival of axons and myelin, we quantified their densities 

using SMI31 immunofluorescence and luxol fast blue staining, respectively. Compared to 

the saline treated group, FA-GC treatment increased the number of spared axons in the 

epicenter of the spinal cord by 6.6 times (Fig. 5c) and enlarged the luxol fast blue stained 

area by 2 times (Fig. 5d). These results collectively show that FA-GC treatment not only 

suppressed astrogliosis and inflammation, but also protected axons and myelin.

In accordance with the cellular responses described above, administration of FA-GC 

nanoparticles reduced the volume of the lesion cavity (Fig. 6a) as compared to the saline 

treated group. By hematoxylin and eosin (H&E) staining and employing the Neurolucida 
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system, we reconstructed the spinal cord sections into 3D images and determined the cavity 

volume (Fig. 6b). The cavity volume of the FA-GC treated group was 2.3 times smaller than 

that of the saline treated group (Fig. 6c). The reduced cavitation further supports the 

neuroprotective effect of FA-GC nanoparticles.

In vivo toxicity analysis

We have evaluated both acute and chronic toxicity of FA-GC nanoparticle administration to 

Long-Evans rats through blood and histological analyses. After saline and FA-GC 

administrations to rats, blood samples were collected at day 1 and day 28 for acute and 

chronic toxicity evaluation, respectively. The results of hematology and serum analyses 

between the FA-GC group and saline treated group were not significantly different (Fig. 7a). 

The levels of creatinine and alanine transaminase for the FA-GC group were the same as 

that of the saline group, indicating no damage to the kidney and the liver. The morphology 

of vital organs was also assessed using H&E staining. No morphological difference was 

observed between the groups treated with saline and FA-GC at day 28 post treatment (Fig. 
7b). Together, these results revealed no adverse effects of FA-GC nanoparticles in the rat 

model.

Discussion

After primary SCI, protection of neurons and glial cells from secondary degeneration is 

crucial for functional recovery. Currently, methylprednisolone (MP), a steroid drug, is the 

only option for early pharmacological treatment of SCI, although its therapeutic effect is 

controversial. Using non-cytotoxic and neuroprotective nanoparticles reported here opens a 

new opportunity for effective treatment of SCI. Systemic administration of the FA-GC 

nanoparticles at 2 h-post SCI significantly restored locomotor function compared to MP 

administration. Theses outcomes demonstrated superior therapeutic effects and increased 

time window of FA-GC nanoparticles for SCI treatment as compared to other nanomaterials 

using non-functional and synthetic polymers such as PEG and Poloxamer [19, 45].

FA conjugation to GC polymer enhanced not only the neuroprotective effect, but also 

modified the pharmacological properties. The FA-GC polymer formed self-assembled 

nanoparticles, and the nanoparticles demonstrated a long retention time in the blood stream 

by intravenously administration, compared to GC polymer alone. Moreover, the FA-GC 

nanoparticles efficiently accumulated to the injury site particularly in the gray matter region 

which is highly vulnerable to an injury insult. The FA-GC nanoparticles reached the lesion 

site likely through the ruptured blood capillaries and interrupted brain-spinal cord-barriers. 

Gray matter in the spinal cord, consisting of neuronal cell bodies, glial cells, and capillaries, 

routes sensory or motor stimulus to interneurons of the central nervous system [46]. Strong-

impact force to the spinal cord can easily break small blood vessels and damage the blood-

spinal cord barrier in the gray matter that may cause ischemia and neuronal cell apoptosis 

[47]. Consequently, secondary degeneration spreads from the gray matter to the white matter 

[48, 49]. This pathological progression damages not only neurons and glial cells in the gray 

matter, but also axons and myelin in the white matter. Targeted delivery of FA-GC 

nanoparticles into injured gray matter prevented such progression at an early stage, thereby 

Wu et al. Page 10

Biomaterials. Author manuscript; available in PMC 2015 March 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



protecting axons and myelin in the white matter that transmit locomotor signaling. This 

mechanism could account for the significant locomotor functional recovery enabled by FA-

GC treatment.

Although various polymers or nanomaterials have been used for early SCI treatment, they 

had to be administrated within a short period (less than 15 min) after SCI or even before SCI 

to achieve distinct therapeutic effect [23, 50-52]. Such time windows are not clinically 

relevant for clinical SCI treatment because it generally requires at least 1 or 2 hours for 

patient transfer to an emergency department and diagnostic assessment before initial 

treatment. In this study, we demonstrated a marked therapeutic effect of FA-GC 

nanoparticles, both histologically and behaviorally, by systemic administration of FA-GC 

nanoparticle at 2 h post injury. Our results indicate the promising potential of FA-GC 

nanoparticles for treating SCI in clinical settings. Moreover, because intravenous 

administration is simple to implement, our approach is applicable to treat SCI in the field. 

Notably, we only treated SCI rats at fixed dose of FA-GC nanoparticles at 2 h post the injury 

in this pilot study. Further work is needed to validate the effectiveness by assessing 

preclinical outcomes in terms of animal species, dosage, therapeutic time window, and 

severity of injuries.

Conclusions

We have shown high neuroprotective effects of ferulic acid (FA)-glycol chitosan (GC) 

nanoparticles against spinal cord injury (SCI) with a clinically relevant therapeutic time 

window. The systemic administration of FA-GC nanoparticles significantly rescued axons 

and neuron cells at the lesion site, while the number of activated astrocytes and macrophages 

decreased. These neuroprotective effects consequently led functional recovery following 

SCI.
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Figure 1. FA-GC nanoparticles
(a) Chemical structure and schematic illustration of FA-GC nanoparticles. (b) FT-IR 

spectrum of FA-GC polymer. (c) Size distribution and TEM image of FA-GC nanoparticles 

(Scale bar: 300 nm).
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Figure 2. Neuroprotective effect of FA-GC on primary spinal cord neurons after glutamate-
induced excitotoxicity
(a, left column) Bright field images showed morphological changes of primary spinal cord 

neurons in treatment conditions of control, glutamate (Glu, 100 μM), Glu + GC (0.1 mg/ml) 

or Glu + FA-GC (0.1 mg/ml) for 24 h. Yellow and red arrows indicate intact and 

degenerated axons in the neurons, respectively. (a, right column) Fluorescence images of 

propidium iodide (PI, red, marker of dead cells) and/or Hoechst (blue, nuclear marker for 

both survival and dead cells) stained neurons. (b) Quantitative results of percent viability of 

neurons (Scale bar: 20 μm). *, P < 0.05, **, P < 0.001
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Figure 3. FA-GC nanoparticles exhibited long blood retention time and targeted delivery to 
injured spinal cord
(a) Blood retention kinetics of FA-GC(−Cy5.5) and GC(−Cy5.5) in SCI rats. FA-

GC(−Cy5.5) and GC(−Cy5.5) (both at 16 mg/kg, 1 ml in saline) were intravenously injected 

at 2 h post SCI. The data were fitted with a one-compartment model (y = Ae(−x/t) + y0). The 

Fluorescence of FA-GC(−Cy5.5) in blood samples, drawn at different time points, were 

visualized (top). (b) Fluorescence imaging and quantification of FA-GC(−Cy5.5) in normal 

and injured spinal cords. (c) Distribution of FA-GC(−Cy5.5) in injured spinal cord. FA-GC 

and cord were visualized using two-photon fluorescence for Cy5.5 (red) and stimulated 
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Raman loss signal from C-H vibration (green), respectively. A cross section through the 

injury epicenter shows the distribution of FA-GC (c1). Dotted squares represent high 

magnified images of the distribution of FA-GC (red) in the gray matter (c2), the dorsal 

funicular white matter (c3), the ventral portion of the dorsal funiculus (c4), and the ventral 

funiculus (c5). White arrows in c2 indicate packed red blood cells (Scale bar: 100 μm for C1 

and 5 μm for c2-5).
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Figure 4. FA-GC treatment promoted locomotor recovery after SCI
(a) Schematic diagram of experimental design. (b) BBB locomotor rating scale performed in 

rats that received saline (n=9), methylprednisolone (MP, n=5), and FA-GC (n=10) at 2 h 

post SCI. Scores were recorded at day 1, 7, 14, and 28 post injury in a blinded manner. *, P 

< 0.05, **, P <0.01.
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Figure 5. FA-GC treatment improved histological outcomes
(a-b) Florescence images of GFAP+ and ED1+ cells in injured spinal cord at 28 day after 

saline and FA-GC treatments. The graphs right beside the image are the quantitative analysis 

of fluorescence intensity, showing FA-GC is capable of reduce the astrocyte and 

macrophage/microglia reaction. (c) Comparison of spared axons between two groups 

indicated by SMI31 stained axons, and the graph right beside the images is the quantitative 

number counting results, indicating an increased number of spared axons. (d) Luxol fast blue 

(LFB) staining of injured spinal cord for saline and FA-GC treated groups. The graph beside 
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the images is the percentage of LFB staining area in the whole spinal cord. **, P <0.001; 

n=3-4. (Scale bar: 100 μm).
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Figure 6. FA-GC nanoparticles reduces cavitation following T10 contusion SCI
(a) Spinal cord harvest 4 weeks post-SCI showed reduced cavitation through hematoxylin 

and eosin (H&E) staining with FA-GC treatment compare to saline treated animals. (b) 3D 

reconstruction of cavity volume from representative cases indicating the neuroprotective 

effects of FA-GC nanoparticles. (c) Quantification of cavity volume, illustrating the 

significantly decreased cavity volume in FA-GC treated animals compare to saline control. 

*, P <0.05. n=3. (Scale bar: 100 μm).
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Figure 7. in vivo toxicity analysis
(a) Complete blood count and serum analysis of Long-Evans rats at day 1 and day 28 

following injection of saline solution (1 ml) or d FA-GC nanoparticles (16 mg/kg, 1 ml in 

saline). White column: saline. Gray column: FA-GC nanoparticles. (b) Histological analysis 

of explanted liver, lung, spleen, and kidney stained with hematoxylin and eosin. (Scale bar: 

50 μm).
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