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Abstract
Osteocytes, the most abundant cells in bone, have been long postulated to detect and respond to
mechanical and hormonal stimuli and to coordinate the function of osteoblasts and osteoclasts.
The discovery that the inhibitor of bone formation sclerostin is primarily expressed in osteocytes
in bone and it is downregulated by anabolic stimuli provided a mechanism by which osteocytes
influence the activity of osteoblasts. Advances of the last few years provided experimental
evidence demonstrating that osteocytes also participate in the recruitment of osteoclasts and the
initiation of bone remodeling. Apoptotic osteocytes trigger yet to be identified signals that attract
osteoclast precursors to specific areas of bone, which in turn differentiate to mature, bone
resorbing osteoclasts. Osteocytes are also the source of molecules that regulate generation and
activity of osteoclasts, such as OPG and RANKL; and genetic manipulations of the mouse genome
leading to loss or gain of function, or to altered expression of either molecule in osteocytes,
markedly affect bone resorption. This review highlights these investigations and discusses how the
novel concept of osteocyte-driven bone resorption and formation impacts our understanding of the
mechanisms by which current therapies control bone remodeling.
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1. Osteocytes and their functions in bone homeostasis
Osteocytes are former osteoblasts that become entombed during the process of bone
deposition and remain regularly distributed throughout the mineralized bone matrix.
Osteocytes comprise more than 90% of bone cells within the matrix or on the bone surfaces.
It has been long hypothesized that osteocytes are the primary cells responsible for the
adaptation of bone to mechanical force. Evidence accumulated in the last few years supports
this notion and demonstrates that osteocytes are also involved in the response of bone to
hormones. Few genes expressed in osteocytes have been identified as molecular mediators
of the osteocyte-driven changes in bone remodeling. However, the molecular mechanisms
by which osteocytes regulate the bone homeostasis are far from being understood.
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Osteocytogenesis and the relationship between osteocyte shape and function
Between 5 to 20% of mature osteoblasts become entombed in the matrix that they generate
and that subsequently mineralizes. The process of osteocyte formation was long thought to
be stochastic. However, some osteoblasts might be prompted to extend cytoplasmic
projections and to contact with already embedded cells, resulting in their differentiation into
osteocytes. The mechanisms that regulate osteocytogenesis and osteocyte maturation have
begun to be revealed. Expression of the membrane-associated proteins E11 and
metalloproteinase MMP14 (also known as MT1-MMP) is required for the formation of
osteocyte dendritic processes and canaliculi (1-3), suggesting that osteocytogenesis is an
active process driven by changes in gene expression. Osteocyte formation is one of the three
possible fates of mature osteoblasts, the other two being becoming lining cells or undergoing
apoptosis (Figure 1). It is then expected that stimuli that alter one of the fates of osteoblasts
would impact osteocyte formation. Consistent with this notion, inhibition of osteoblast
apoptosis by intermittent administration of parathyroid hormone (PTH) leads to increased
osteocyte density (4;5). However, it is still unknown whether this effect of the hormone is
accompanied by changes in the expression of genes required for the osteoblast-osteocyte
transition.

Osteocytes express most of the genes expressed by osteoblasts, including osteoblast-specific
transcription factors and proteins, although the levels of expression may differ (Figure 2)
(6). Thus, alkaline phosphatase and type I collagen expression is lower whereas osteocalcin
expression is higher in osteocytes. Keratocan, an extracellular matrix protein that belongs to
the small leucine rich proteoglycan family, has emerged as an osteoblast marker because its
expression is greatly reduced in osteocytes compared to osteoblasts (6;7). Another gene that
appears to be expressed preferentially in osteoblasts is integrin binding sialoprotein (8;9).
Osteocytes, on the other hand, are richer than osteoblasts in genes related to mineralization
and phosphate metabolism, including phosphate-regulating neutral endopeptidase (Phex),
dentin matrix protein 1 (DMP1), matrix extracellular phosphoglycoprotein (MEPE) and
fibroblast growth factor 23 (FGF23) (6;10). Osteocytes also express molecules that affect
bone formation, including Dkk1, which also can be found in osteoblasts, and Sost, which is
primarily expressed in osteocytes, but not in osteoblasts (10;11). The product of the sost
gene sclerostin potently antagonizes several members of the bone morphogenetic protein
(BMP) family of proteins. In addition, both sclerostin and Dkk1 bind to LRP5 and LPR6
preventing activation of Wnt signaling. BMPs and Wnts are critical for osteoblast generation
and function as they induce commitment of multipotential mesenchymal progenitors
towards the osteoblast lineage, stimulate osteoblast differentiation, and regulate osteoblast
activity (Figure 1A). Thus, through the expression of Wnt and BMP antagonists, osteocytes
have the potential to regulate the formation and activity of osteoblasts.

Osteocyte bodies are individually encased in lacunae and exhibit cytoplasmic dendritic
processes that run along narrow canaliculi within the mineralized matrix (Figure 1) (10).
Osteocyte morphology is dictated by the expression of genes involved in dendrite formation
and branching, such as E11/gp38, CD44, and fimbrin (Figure 2), which are also expressed in
neurons and give osteocytes their characteristic morphology in vivo as well as in culture.
Numerous cytoplasmic projections (fifty in average in human bone) emerge from each
osteocyte body. Projections from neighboring osteocytes touch each other within the
canaliculi and establish intercellular communications through gap junctions. Osteocytic
projections running inside canaliculi also reach the periosteal and endocortical surfaces of
cortical bone as well as the surfaces adjacent to the bone marrow in cancellous bone. Thus,
there is potential for direct cell-to-cell interactions between osteocytes and other bone cells
(lining cells, osteoblasts and osteoclasts), and the marrow stroma. In turn, cells in the
marrow establish contact with endothelial cells of the blood vessels. It appears that
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osteocytes also establish direct contact with blood vessels within the marrow and with
capillaries derived from the Haversian canals in cortical bone (10). Nevertheless, it remains
uncertain how proteins expressed by osteocytes reach their cellular targets. The fluid
running in the lacunar-canalicular system could transport proteins secreted by osteocytes to
their sites of action, provided that the osteocyte products are proteins up to 70kDa and 7 nm
in diameter, as estimated by tracer experiments (9;12). However, it is less clear how and
whether high molecular size proteins move through the osteocytic lacunar-canalicular
system. Furthermore, in the case of membrane proteins which exert their effects through
cell-to-cell interactions, direct contact between the osteocytic dendritic processes and the
plasma membranes of the cellular targets must occur. The composition of the pericellular
matrix surrounding osteocytes adds another layer of control over diffusion of molecules
within the osteocyte network, as it will be discussed in section 2 latter in this review.

2. Modulation of bone formation and resorption by osteocyte-derived
molecules
Regulation of bone formation by osteocytes: role of sclerostin

Mature osteocytes embedded in the matrix selectively secrete sclerostin, the product of the
Sost gene, which antagonizes several members of the BMP family of proteins and also binds
to LRP5/LRP6 preventing canonical Wnt signaling (11;13;14). Sclerostin is a potent
inhibitor of bone formation (15). Genetic and pharmacologic evidence supports this
mechanism. Loss of SOST expression in humans causes the high bone mass disorders Van
Buchem's disease (16) and sclerosteosis (17). Mice with targeted deletion of the Sost gene
display progressive high bone mass and increased bone strength (18;19); whereas,
conversely, transgenic mice overexpressing human SOST exhibit low bone mass (15;20;21).
These findings demonstrate conservation throughout the species of the inhibitory effect of
sclerostin on bone formation. Pharmacologic inhibition of sclerostin with neutralizing
antibodies leads to marked anabolic effects in several preclinical osteopenic animal models
and it is currently in clinical trials for the treatment of postmenopausal osteoporosis,
validating the high potential of targeting osteocytes for increasing bone mass and strength
(22-25).

Sclerostin is also regulated by stimuli with anabolic effects on the skeleton. In particular,
elevation of parathyroid hormone (PTH), either in an intermittent or a continuous mode,
downregulates sclerostin expression in osteocytes in mice and decreases the circulating
levels of the protein in humans (11;26-29) (Figure 3). Furthermore, changes in sclerostin
expression are responsible for the adaptive responses of the skeleton to mechanical
stimulation. Thus, cortical bone areas exposed to high mechanical strain exhibit a reduction
in sclerostin-positive osteocytes that is associated with higher bone formation on adjacent
periosteal surfaces (30). Conversely, sost/sclerostin expression is high in unloaded bones
(30). Taken together, these findings suggest that osteocytes coordinate the osteogenic
response to mechanical force by downregulating sclerostin, thereby locally unleashing Wnt
signaling. In fact, mice overexpressing a human SOST transgene in osteocytes, which
cannot be downregulated by loading, failed to exhibit activation of the Wnt pathway and the
anabolic response to mechanical stimulation (31). Therefore, Sost downregulation is an
obligatory step for mechanotransduction.

Regulation of bone resorption by osteocytes: RANKL and OPG
The cues that signal bone resorption are not completely understood. One important event in
the regulation of remodeling appears to be the apoptosis of osteocytes, which might prompt
lining cells to form the bone remodeling compartment (BRC) (Figure 3 and Figure 4) and
could also signal to neighboring cells (osteocytes or other osteoblast lineage cells) to change

Bellido Page 3

Calcif Tissue Int. Author manuscript; available in PMC 2015 January 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



the expression of pro- and anti-osteoclastogenic genes. Apoptotic osteocytes could regulate
the recruitment of osteoclast precursors and their differentiation in two ways. Osteocyte
apoptosis may indirectly stimulate osteoclastogenesis by inducing stromal/osteoblastic cells
to secrete RANKL. In addition, osteocytes can directly produce and potentially secrete
RANKL. Indeed, in vitro, purified osteocytes express higher levels of RANKL than
osteoblasts and bone marrow stromal cells (32). The osteopetrotic phenotype observed in
mice lacking RANKL in osteocytes supports the notion that osteocytes are a major source of
RANKL in remodeling bone (32;33). As it will be discussed below, these conditional
knockout mice are resistant to bone loss induced by tail suspension demonstrating that
osteocytic RANKL contributes to disuse osteopenia (33). It remains unknown however
whether osteocytic membrane-bound or soluble RANKL is involved in osteocyte-driven
bone resorption. The decreased bone resorption exhibited by mice lacking RANKL in
osteocytes was accompanied by lower expression of RANKL in bone but no decreased
soluble RANKL in the circulation (33).

Moreover, no changes in circulating soluble RANKL were found in tail suspended mice
[(34) and Bellido et al, unpublished]. Furthermore, the contribution of soluble RANKL to
osteoclastogenesis in a novel, 3D-coculture system between osteocytes and osteoclast
precursors was found minimal. Instead, direct contact between membrane-bound RANKL
expressed in the osteocytic dendrites and RANK expressed in osteoclast precursors appears
to be required to initiate osteoclast development (35). Resorption induced by exclusive
activation of the PTH receptor in osteocytes in transgenic mice is also associated to
increased RANKL (36-38); and the bone loss induced during lactation, which is
accompanied by increased PTHrP, is dependent on the expression of osteocytic PTH
receptor (36;39) (Figure 3). In the latter case, it was shown that osteocytes can remove bone
matrix by remodeling their perilacunar/canalicular matrix. Osteocytes from lactating animals
exhibit elevated expression of genes known to be utilized by osteoclasts to remove bone,
including tartrate-resistant acid phosphatase (TRAP) and cathepsin K, suggesting that
osteocytes remove mineralized matrix through molecular mechanisms similar to those
utilized by osteoclasts (39). Considering that the matrix surrounding osteocytes is a likely
sieve regulating the diffusion of cellular products, control by osteocytes of their own
pericellular matrix might have implications for the molecular transport within the lacunar-
canalicular system. Thus, changes in matrix composition or mineral deposition surrounding
osteocytes due to altered osteocyte function or decreased osteocyte viability might add an
additional level of regulation to the movement of osteocytic products within the lacunae-
canalicular system.

Osteocytes also secrete OPG, which competes with RANKL for its receptor RANK on
osteoclast precursors. In osteocytes, as in osteoblasts, OPG secretion is regulated by the
Wnt/β-catenin pathway and mice lacking β-catenin in osteocytes are osteoporotic due to
increased osteoclast numbers and bone resorption (9). In addition, emerging evidence also
points to osteocytes as an additional source of secreted M-CSF in bone (40). Together, these
novel findings suggest that osteocytes have the potential to control bone resorption through
direct and indirect regulation of osteoclast differentiation and function under physiological
and pathological conditions.

3. Osteocyte apoptosis: Regulation and consequences
That osteocytes perceive changes in the level of both physical stimuli as well as circulating
factors is evidenced by studies on the regulation of their life span (41-43). Osteocytes are
long-lived cells. However, like osteoblasts and osteoclasts, they die by apoptosis. The early
work of Noble and colleagues showed an association between osteocyte apoptosis and
estrogen withdrawal (44). Subsequent studies by this and other research groups
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demonstrated the role of estrogen and SERMS preserving osteocyte viability (45-49). It is
now recognized that decreased osteocyte viability accompanies not only the bone fragility
syndrome that characterizes estrogen withdrawal, but also glucocorticoid excess, mechanical
disuse, and aging (34;50;51). Conversely, preservation of osteocyte viability might result
from physiological levels of mechanical stimulation (34;52) and is associated with the anti-
fracture effects of treatment with sex steroids (48;49) or bisphosphonates (53).

Inhibition of osteocyte apoptosis by mechanical stimulation and activation of Wnt
signaling

Mechanical stimulation of osteocytic cells or authentic osteocytes protects them from the
pro-apoptotic action of death inducers including glucocorticoids (54;55).
Mechanotransduction is accomplished by a signalsome assembled at caveolin-rich domains
of the plasma membrane and composed of integrins, cytoskeletal proteins, the focal
adhesion kinase FAK, and the Src kinase. Downstream activation of the ERK pathway
results in preservation of osteocyte viability (54). Activation of Wnt signaling is an early
response of osteocytes (and osteoblasts) to mechanical loading (5;56-58) that also promotes
osteocyte survival by activating ERKs (59). Moreover, there is interaction between the
caveolin-1/ERK and Wnt/β-catenin signaling pathways in osteocytes (60). ERK nuclear
translocation and anti-apoptosis induced by mechanical stretching or fluid flow is abolished
by the Wnt antagonist DKK1 and the stimulator of β-catenin degradation Axin2.
Conversely, glycogen synthase kinase 3β (GSK3β) phosphorylation and β-catenin
accumulation induced by mechanical stimulation are abolished either by pharmacologic
inhibition of ERKs or by silencing caveolin-1. The simultaneous requirement of β-catenin
for ERK activation and of ERK activation for β-catenin accumulation suggests a
bidirectional crosstalk between the caveolin-1/ERKs and the Wnt/β-catenin pathways in
mechanotransduction leading to osteocyte survival (60). Remarkably, the inhibitor of
transcription induced by canonical Wnt signaling dominant negative T cell factor (TCF)
does not alter ERK nuclear translocation or survival induced by mechanical stimulation.
Thus, β-catenin accumulation is an essential component of the mechanotransduction
machinery in osteocytes, albeit β-catenin/TCF-mediated transcription is not required.

Dying osteocytes: primary culprits for the bone loss induced by physical inactivity
Mechanical forces also regulate osteocyte life span in vivo. Apoptotic osteocytes are found
in unloaded bones (34) or in bones exposed to high levels of mechanical strain (41;61;62).
In both cases, increased osteocyte apoptosis precedes osteoclastic resorption; and apoptotic
osteocytes accumulate in areas subsequently removed by osteoclasts (34). These findings
suggest that dying osteocytes become the beacons for osteoclast recruitment to the vicinity
and the resulting increase in bone resorption (63) (Figure 4). Indeed, targeted ablation of
osteocytes by genetic means is sufficient to induce osteoclast recruitment and resorption
leading to bone loss (64). It is possible that osteocytes produce molecules that restrain
osteoclast recruitment and/or formation; thereby when osteocytes die, there is a spontaneous
increase in osteoclast genesis. A potential candidate mediating this phenomenon is OPG, the
decoy receptor for RANKL, which is expressed in osteocytes at least at similar levels than in
osteoblasts (9). Alternatively, in the process of undergoing apoptosis, osteocytes might
produce molecular signals that attract osteoclast precursors and/or factors that stimulate
osteoclast development. A potential molecular mediator in this case is the osteoclast
chemotactic factor high mobility group box 1 (HMGB1) protein (65), which is released by
osteocytes undergoing apoptosis and that upregulates the expression of RANKL, TNF and,
IL6, and also decreases OPG expression. Apoptotic bodies released from dying osteocytes
are another potential signal leading to changes in gene expression in surrounding cells (66).
Apoptotic bodies produced by osteocytic cells, but not by osteoblastic cells, have been
shown to stimulate osteoclast differentiation and to initiate localized bone resorption,
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although RANKL was apparently not involved (67). Furthermore, in overloaded rat bones,
dead osteocytes are surrounded by still-living osteocytes in which the expression of VEGF
and RANKL is elevated (68), suggesting that signals emanated from apoptotic cells alter the
expression of molecules that influence angiogenesis and potentially osteoclast precursor
recruitment, as well as osteoclast differentiation.

In contrast to the increasing knowledge about the role of osteocyte apoptosis in remodeling
bone, whether osteocyte apoptosis plays any role in bone modeling remains unknown.
Future studies specifically designed to answer this question are still warranted.

Mechanical loading is critical for the maintenance of bone mass; and skeletal unloading as
with reduced physical activity with old age, immobilization of bed rest, and total or partial
motor paralyses, causes bone loss leading to disuse osteoporosis (69). Furthermore, the bone
loss that ensues under microgravity conditions represents the most significant hindrance for
long-term space flying (70). The rapid decrease in osteocyte viability with unloading had
suggested that osteocytes are the first responders to the change in mechanical forces (34).
Consistent with this notion, mice depleted from osteocytes are protected from the bone loss
induced by tail suspension indicating that in the absence of osteocytes the skeleton is unable
to elicit the normal osteoclastogenic response (64). Mice with conditional deletion of
RANKL in osteocytes are also protected from unloading-induced elevation in osteoclasts
and bone loss (33), suggesting that osteocytes provide the required RANKL for osteoclast
formation during skeletal disuse. These findings confirm that osteocytes are the primary
culprit of the negative bone balance that ensues with weightlessness.

Regulation of osteocyte survival by sex steroids and bisphosphonates
Loss of sex steroids leads to increased prevalence of osteocyte apoptosis; and conversely,
estrogens and androgens inhibit apoptosis of osteocytes as well as osteoblasts (5;48). This
anti-apoptotic effect is due to rapid activation of the Src/Shc/ERK and PI3K signaling
pathways through non-genotropic actions of the classical receptors for sex steroids (48;71).
Bisphosphonates also preserve viability of osteocytes (and osteoblasts) in vitro and in vivo,
by a mechanism that in this case involves opening of connexin (Cx) 43 hemichannels and
ERK activation (42;53;72;73). The fact that apoptotic osteocytes trigger bone resorption,
taken together with the evidence that osteocyte apoptosis is inhibited by estrogens and
bisphosphonates, raises the possibility that preservation of osteocyte viability contributes to
the anti-remodeling properties of these agents.

Aging and osteocyte apoptosis
One of the functions of the osteocyte network is to detect microdamage and trigger its repair
(74;75). During aging, there is accumulation of microdamage and a decline in osteocyte
density accompanied by decreased prevalence of osteocyte-occupied lacunae, an index of
premature osteocyte death (76). Reduced osteocyte density might be a direct consequence of
increased osteoblast apoptosis; whereas increase in the prevalence of apoptotic osteocytes
might result from the decline in physical activity with old age leading to reduced skeletal
loading, accumulation of reactive oxygen species (ROS) in bone (77) and/or increased levels
of endogenous glucocorticoids with age (78). Age-related loss of osteocytes could be then at
least partially responsible for the disparity between bone quantity and quality that occurs
with aging.

Connexin-43 and osteocyte survival
Osteocytic expression of the gap junction channel/hemichannel protein C×43 is required in a
cell autonomous fashion to preserve the viability of osteocytes, as well as to control in
osteocytes the levels of proteins that regulate the generation and activity of osteoclast and
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osteoblasts (79;80). C×43 deficiency causes an intrinsic reduction in OPG expression and
loss of viable osteocytes, with the consequent decrease in local levels of the bone formation
inhibitor sclerostin. Anatomical mapping of apoptotic osteocytes, osteocytic protein
expression, and resorption and formation suggests that C×43 controls osteoclast and
osteoblast activity by regulating OPG and sclerostin levels, respectively, in osteocytes
located in specific areas of cortical bone. Whereas empty lacunae and living osteocytes
lacking OPG are distributed throughout cortical bone of mice lacking osteocytic C×43,
apoptotic osteocytes preferentially locate in areas containing osteoclasts, suggesting that
osteoclast recruitment requires active signaling from dying osteocytes. Furthermore,
cultured osteocytic cells lacking C×43 exhibit increased rate of apoptosis, decreased OPG
and increased RANKL expression (79;81). Similar molecular changes are observed in bones
of mice lacking C×43 in osteocytes. Moreover, these conditional knockout mice display
increased endocortical resorption and exaggerated periosteal bone apposition resulting in
altered cortical bone geometry. As a consequence, long bones from mice deficient in C×43
in osteocytes exhibit enlarged bone marrow cavities and increased cross sectional diameter
(79;81;82). Accumulation of apoptotic osteocytes and empty lacunae, increased endocortical
resorption and periosteal expansion of the long bones resemble bones from aging rodents
and humans (51;83). C×43 is a Wnt target gene (84) and Wnt signaling as well as C×43
expression decrease with age in bone [(51) and Plotkin et al, unpublished]. Therefore,
reduced C×43 expression might mediate at least some of the changes induced by aging in
the skeleton.

4. Therapeutic implications of osteocyte-driven bone remodeling and
closing remarks

In closing, research from the last decade greatly increased our understanding of the biology
of osteocytes and revealed previously unrecognized mechanisms by which bone acting
stimuli regulate the skeleton through effects on these cells. We now know that some of the
most profound effects that hormones, such as PTH or glucocorticoids, exert on bone are
mediated by actions on osteocytes. The fact that osteocyte apoptosis underlies osteocyte-
driven bone resorption raises the possibility that bisphosphonates and estrogens, which
prevent osteocyte apoptosis, exert part of their anti-remodeling effects acting on osteocytes.
Moreover, the discovery that osteocytes are the major source of RANKL in remodeling bone
strongly suggest that the potent antiresorptive effects of the anti-RANKL antibody are
exerted by inhibiting osteolytic RANKL. Our current knowledge of the molecular events by
which osteocytes influence the function of osteoblasts and osteoclasts has opened new
opportunities for developing therapeutic strategies to regulate bone remodeling targeting
osteocytes. The neutralizing antibody against sclerostin is the best example of an approach
that positively impacts the skeleton by controlling an osteocytic product. It is expected that
future investigations will identify new genes expressed in osteocytes, thereby increasing the
number of potential targets of pharmacological intervention towards an improved
management of bone diseases.
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Figure 1. Osteocytogenesis and osteocyte maturation
(A) Stages of osteocytogenesis and main transcription factors involved in differentiation of
osteoblast precursors towards mature osteocytes. (B) Row of osteoblasts (bottom red
arrows); an osteocyte recently embedded (top red arrow); two osteocytes completely
embedded in osteoid (bottom white arrows); an osteocyte fully embedded in mineralized
bone matrix (top white arrow). Picture was contributed by Keith Condon, Indiana University
School of Medicine, IN, USA. (C) Morphology of an early osteocyte being embedded in
bone; with part of the cell surface partially embedded (left) and the other part totally
embedded (right) in mineralized matrix, 10,000 ×, rat bone. Picture was contributed by
Stephen B. Doty, Hospital for Special Surgery, New York, NY, USA. (Reprinted with kind
permission of Elsevier, Basic and Applied Bone Biology, Chapter 2 Bone Cells, Bellido,
Plotkin and Bruzzaniti).
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Figure 2. Gene expression at different stages of osteocyte development and maturation
The osteocyte phenotype is characterized by the expression of groups of genes closely
related to their morphology and function. Expression of some of these genes changes at
different stages of osteocyte development and maturation. Boxes group four main
categories: 1) Genes related to dendritic morphology and canaliculi formation; 2) genes
related to phosphate metabolism and matrix mineralization; 3) genes that regulate bone
formation; and 4) genes that regulate bone resorption. Please, note that several of these
genes are also expressed in other cell types, besides cells of the osteoblastic lineage.
(Reprinted with kind permission of Elsevier, Basic and Applied Bone Biology, Chapter 2
Bone Cells, Bellido, Plotkin and Bruzzaniti).
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Figure 3. Regulation of osteoblast and osteoclast production and function by osteocytes
Osteocytes regulate bone formation through sost/sclerostin. Thus, bone formation induced
by systemic elevation of PTH or local mechanical loading is associated with decreased
expression of sclerostin. Osteocytes regulate bone resorption through pro- and anti-
osteoclastogenic cytokines. Resorption under basal conditions, induced by PTH elevation or
by PTHrP increased during lactation is regulated by RANKL through the PTH receptor
(PTHR) expressed in osteocytes. Activation of Wnt signaling in osteocytes increases OPG
expression leading to inhibition of resorption. Osteocyte apoptosis induced by
immobilization, fatigue loading, sex steroid deficiency, or genetically induced by activating
diphtheria toxin receptor signaling, is sufficient to recruit osteoclasts to specific bone areas
and increase resorption; likely through a mechanism that increases RANKL expression in
still-living osteocytes surrounding dead osteocytes. (Reprinted with kind permission of
Elsevier, Basic and Applied Bone Biology, Chapter 2 Bone Cells, Bellido, Plotkin and
Bruzzaniti).
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Figure 4. Osteocytes and the bone remodeling compartment (BRC)
Apoptotic osteocytes might initiate bone remodeling by sending signals to lining cells,
which retract from the bone surface to form a structure named the bone remodeling
compartment (BRC). Osteoclast precursors are transported to the BRC by marrow
capillaries, differentiate to mature osteoclasts under the influence of pro- and anti-
osteoclastogenic cytokines (RANKL, M-CSF and OPG) derived from osteocytes, and
initiate bone remodeling. Osteoblast precursors from the bone marrow or the circulation
differentiate into mature, bone synthesizing cells in response to factors released from the
bone matrix by resorption. Differentiation and function of osteoblasts is controlled by
molecules derived from osteocytes, including sclerostin and Dkk1. (Reprinted with kind
permission of Elsevier, Basic and Applied Bone Biology, Chapter 2 Bone Cells, Bellido,
Plotkin and Bruzzaniti).
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