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Abstract 

 

Encroachment of open woodlands by shrubs is a global phenomenon associated with 

marked changes in ecosystem structure and function. We measured sorptivity and 

steady-state infiltration at two supply potentials under shrubs and grasses and in their 

interspaces where shrubs were encroaching into grassland. Steady-state infiltration 

(ponded) and sorptivity were greater at the grassland than the shrubland site, and there 

was substantially greater infiltration under shrubs (48.2 mm h-1) and grasses (50.0 mm 

h-1) than the corresponding interspaces (17.0 and 32.3 mm h-1 for shrubland and 

grassland, respectively). The difference between grasses and their interspaces was 

substantially less (1.5-times) than that between shrubs and their interspaces (three-
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times). Shrub encroachment also affected the spatial patterns of infiltration. While the 

autocorrelation range for shrublands coincided almost exactly with the average width of 

shrub canopies (3.5 m), the range for grasslands was three-times greater (1.5 m) than the 

mean grass canopy, indicating a greater connectivity of infiltration in the grasslands 

than the shrublands. Our study indicates that encroachment by shrubs does not change 

infiltration under individual plants. Rather, it reduces the interspace infiltration 

rates significantly, resulting in lower estimated site-level infiltrationrates in 

shrublands. Our research suggests therefore that it is the shrubland interspaces that are 

the likely drivers of reduced infiltration rates when grasslands are encroached, rather 

than increase in the total cover of shrubs per se. Management strategies that result in 

greater retention of grass cover and minimise the level of interspace disturbances, are 

likely to result in increased infiltration. 

  

Keywords: infiltration, drylands, encroachment, thickening, spatial effects, water flow, 

woodland, macropores 

 

Introduction 

 

Run-off and infiltration are two fundamental processes responsible for redistributing the 

precipitation input in drylands (Wang et al., 2012). Soil hydraulic properties affect soil 

water holding capacity and plant available moisture (Noy-Meir, 1973), and therefore, 

plant productivity and diversity. This soil-water-vegetation interaction is most 

pronounced in resource-limited environments (Le Houerou et al., 1988). In woodlands 

and mixed savanna systems, infiltration is generally greatest close to the canopies of 

woody plants due to greater levels of nutrients and organic matter associated with plant 

litter cycling beneath the canopy (the ‘fertile island’ effect) (Schlesinger et al., 1990; 

Wilcox et al., 2003a, Ravi et al., 2008). Soils beneath the canopies of woody plants may 

also have a more extensive distribution of plant roots and a greater number of 

macropores; biologically-produced pores (Dunkerley 2000; Colloff et al., 2010). These 

macropores create a positive feedback on infiltration (Reid et al., 1999; Bhark and 

Small, 2003). Increases in the cover and density of woody plants, therefore, are likely to 

have substantial impacts on macropore-driven water flow in these systems (Turnbull et 

al., 2008).  
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 Over the past 150 years large areas of open semi-arid woodlands and savanna 

worldwide have become encroached by woody plants (Archer, 2010; Eldridge et al., 

2011). While some paleoecological studies from South Africa suggest a progressive 

recovery in grassland extent (Hoffman et al. 1995), an overwhelming number of studies 

indicate that encroachment or thickening is a more common phenomenon. This 

encroachment or thickening is a phenomenon of global significance due to its wide 

ranging effects on ecological processes as well as ecosystem goods and services. The 

impacts include altered spatial distribution of soil nutrients, reduced grass cover and 

therefore pastoral production, altered habitat for plants and animals, and changes in 

infiltration and soil water redistribution (Schlesinger et al., 1996; Bhark and Small, 

2003; Neff et al., 2005). Many of these changes reinforce the persistence of shrublands 

at the expense of grasslands by altering the flow of resources from source (inter-canopy) 

to sink (shrub hummocks), in many cases leading to ecosystem degradation, particularly 

when combined with overgrazing by domestic livestock (Schlesinger et al., 1996).  

 

 A number of common themes are thought to account for encroachment. These 

include interactions among factors such as overgrazing, recovery from anthropogenic 

disturbance, increases in CO2 and N deposition, reduced fire frequency and long-term 

climate change (Segoli et al., 2008; Archer, 2010; Eldridge et al., 2011b; Daryanto et 

al., 2013). While the causes of encroachment are relatively well-known, its effects on 

ecosystem processes are less clearly defined. Recent studies have questioned the view 

that encroachment is synonymous with degradation, with reports of positive or neutral 

effects of encroachment on a range of ecosystem response variables (Eldridge et al., 

2011). For example, a reassessment of 10 response variables associated with 

ecohydrology in shrub-encroached drylands soils globally (e.g. volumetric soil 

moisture, depth to wetting front and steady-state infiltration) indicates significant 

positive effects of encroachment on infiltration (Fisher’s Exact test: P = 0.003, n = 99, 

data from Eldridge et al., 2012). Counteracting this, however, is the perception that, 

although infiltration might increase at the level of individual woody (shrubs and trees) 

plants, the composite, ecosystem-level effect of woody encroachment may be a decline 

in water yield due to a combination of increased interception by plants and greater 

evapotranspiration in woodlands than in grasslands.  
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 We contend that, in order to manage grasslands and open woodlands encroached by 

woody plants, we need to better understand the apparent conundrum of a widely 

reported positive effects of shrubs at the individual plant scale with the apparent 

negative view of dense patches of woody plants at site, ecosystem or landscape scales. 

A number of authors have noted the scale-dependency of hydrological processes in 

drylands (e.g. Reid et al., 1999; Wilcox et al., 2003a,b; Ludwig et al., 2005) and 

demonstrated substantially greater infiltration at larger spatial scales than would be 

accounted for by a direct up-scaling from the plant scale. This scale dependency is 

thought to relate to the connectivity of highly conductive patches such as coarse woody 

debris mounds, grass tussocks and soil hummocks (Wilcox et al., 2003b). The extent to 

which site-level infiltration changes with encroachment is thought to depend largely on 

the characteristics of the interspaces in relation to these conductive patches, their 

sinuosity (Ludwig and Tongway, 1995), and whether they are dominated by herbaceous 

material or bare soil. 

 In this study we examine differences in the magnitude and spatial distribution of 

infiltration across a grassland-shrubland encroachment front where the grassland has 

been subjected to ongoing encroachment by shrubs for more than 50 years. We achieve 

this by measuring a large number of sampling locations at a grassland site into which 

shrubs are encroaching, to determine the effects of encroachment on infiltration at both 

the plant (shrub, grass) and the site scale, and to understand the quantitative 

relationships between the spatial distribution of infiltration and plant size, litter and 

cryptogam cover. The context of our system is one where rainfall is low and evenly 

distributed throughout the year, differing from previous studies of more mesic systems 

where rainfall is predominantly driven by summer monsoons (e.g., Wilcox et al., 2003a; 

Turnbull et al., 2010).  In many parts of eastern Australia, shrub patches are associated 

with interspaces that are bare or degraded, and with high levels of runoff (Muñoz-

Robles et al., 2010), particularly where current grazing rates are high.  Our system 

therefore is characterised by inter-canopy areas that are dominated by large patches of 

bare soil and biological soil crusts, a consequence of recovery from previous 

degradation events in the first part of the 20th century (Booth et al., 1996; Muñoz-

Robles et al., 2010).  

 

We measured infiltration using permeameters, allowing us to tease apart the 

mechanisms responsible for any differences in relation to shrubs and/or grasses and 
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their interspaces. Disc permeameters also allowed us to vary the supply pressures to the 

soil to create (1) a negative pressure (under tension), which restricted water flow to 

matrix or micro-pores, and (2) a positive pressure (ponding), which allowed us to 

determine infiltration over the full range of pore sizes. In addition, the disc 

permeameters allow measurements to be made of different stages of infiltration: (i) 

sorptivity, the early phase of infiltration during which water enters the soil in response 

to gradients in water potential influenced by soil dryness and capillary (pore) structure 

(White, 1988), and (ii) steady-state infiltration, when the flow rate, which is governed 

by capillarity, gravity and the area of the disc permeameter in contact with the soil, 

stabilises over time. Infiltration theory suggests that the ratio of sorptivity under 

ponding (+10 mm pressure) to sorptivity under tension (-40 mm pressure) provides an 

index of the relative contribution of macropores to total water flow (White 1988). This 

is an extremely informative measure, as this enables us to determine whether changes in 

macroporosity (Bouma, 1992) are responsible for potential differences between our two 

vegetation types or in relation to distance from individual plants.  

 

 We expected that infiltration would be greater under shrub canopies and adjacent to 

perennial grass tussocks than in their respective interspaces, and hypothesised that any 

canopy effects would wane with increasing distance from the canopy. We also predicted 

that site levels of infiltration would be unaffected by encroachment, largely because a 

more sparsely-distributed pattern of shrubs, with less connected litter cover in the 

shrublands, would compensate for the greater number of closely-spaced grasses in the 

grassland. 

 

Methods 

 

Study site 

 

The study was conducted at Yathong Nature Reserve, 140 km south-west of Cobar in 

western New South Wales, Australia (145o35'E, 32o56'S). Although the Reserve has not 

been grazed by domestic livestock since 1977, it currently carries large populations of 

kangaroos (Macropus spp.), European rabbits (Oryctolagus cuniculus) and feral goats 

(Capra hircus).  
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 The study site focussed on two areas typical of an encroachment gradient; 1) the 

grassland community ahead of the encroachment front, which is dominated by grasses 

(9.6% basal cover) and their interspaces (87.4%), and sparse shrubs (1.5%), and 2) a 

dense shrubland behind the front, which is dominated by a high cover of shrubs (37.5%) 

and their interspace (58.8%) and sparse grass cover (2.2%).  Tree cover is low (1.5%) 

and constant across the encroachment gradient. The exact age of the shrubs is unknown, 

but based on comparison with shrubs of known age from similar environments, we 

believe that they germinated during the prolonged La Niña rainfall events in 1953, and 

more recently, 1973-1974. The exact causal mechanisms underlying widespread shrub 

recruitment across eastern Australia are unknown, but probably relate to a long history 

of overgrazing by both livestock and rabbits, resulting in reduced grass cover and 

therefore little competition with grass seedlings, combined with a low frequency of fire 

and hence, little large-scale control of episodic recruitment events (Booth et al., 1996; 

Noble 1997). Our shrubland was dominated by turpentine (Eremophila sturtii) and emu 

bush (Eremophila longifolia), with individual shrubs spaced at intervals ranging from 5 

to 10 m, and separated by interspaces with a sparse cover of vascular plants, but an 

extensive cover of biological soil crusts dominated by lichens and mosses (Eldridge and 

Greene 1994). The grassland into which the shrubs were encroaching was dominated by 

the perennial bunchgrasses Aristida jerichoensis, Austrostipa scabra, Austrodanthonia 

caespitosa and Monochather subparadoxus. Grass tussocks were about 40 cm high, and 

had an average projected foliage diameter of 48 cm. The grass interspaces were 

characterised by litter and assorted biological soil crusts. Shrublands at Yathong tended 

to be occupied by large populations of kangaroos (Macropus spp.) and feral goats 

(Capra hircus). Thus strong interactions between herbivores and shrubs have probably 

lead to the persistence of the encroached state by maintaining low levels of plant cover 

in the shrub interspaces. 

 

 The study site was located within the extensive colluvial and alluvial plains of 

Taringa Landsystem, which is characterised by level to slightly undulating erosional 

slopes and plains (slopes < 2%) with poorly-defined drainage lines (Walker, 1991). The 

soils have been classified as deep calcareous loams (Typic Haplargids; Soil Survey 

Staff, 2010), with surface textures ranging from loams to clay loams. Soil pH averages 

6.7 (standard deviation = 0.53), electrical conductivity 0.32-0.36 dSm-1, organic carbon 

0.87% at 10 cm to 0.59% at 40 cm, and surface soil aggregates are moderately stable 
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(37% >2.0 mm; Eldridge and Greene, 1994). The mean maximum temperature for 

January is 33.1˚C and the mean minimum temperature is 18.2˚C. The mean January 

rainfall is 35.5 mm, and the average annual rainfall is 384 mm (Eldridge and Greene, 

1994).  

 

Measurements of soil hydrological properties and vegetation cover 

 

We established a 100 m long transect in both the grassland and shrubland, and randomly 

generated 100 locations within each vegetation community.  Distances between adjacent 

locations varied from 0.5 m to 3.6 m (grassland) and 0.5 to 4.6 m (shrubland). The 

smallest interval of 0.5 m was considered to be the closest that two CSIRO disc 

permeameters (20 cm in diameter) could be run side-by-side without violating the 

independence of the measurements. Because of the 0.5 m resolution in permeameter 

spacing, any variance appearing at a spatial scale smaller than 50 cm would not be 

captured by the semivariogram models discussed below. For each location we assessed 

the cover of litter, bare soil and biocrusts, and measured the distance to the nearest grass 

butt or shrub trunk. Locations beneath the canopy of shrubs or adjacent to grass 

tussocks were classified as vegetated while other locations were classified as open. 

 

We measured both sorptivity (mm h-0.5) and steady-state infiltration (mm h-1) at the 200 

locations using disk permeameters at two supply potentials: -40 mm tension, which 

measures flow only through matrix pores, and +10 mm tension, which measures flow 

through both matrix pores and macropores (Perroux and White, 1988). At each of the 

200 locations, we placed the two permemeters about 40 cm apart, perpendicular to the 

direction of the transect. The permeameter under tension (-40 mm tension) was placed 

on a thin bed of sand to provide satisfactory surface contact. The ponded permeameter 

(+10 mm tension) was placed on a steel ring and sealed to support a pond of water. The 

permeameters were run for approximately 20 minutes by which time steady-state had 

been achieved. At each supply potential, sorptivity was calculated according to the 

method of Cook and Broeren (1994), and steady-state infiltration according to White 

(1988). The main aim of our study was to determine intrinsic differences in infiltration 

capacity between an extant grassland and an area of grassland being encroached by 

shrubs.  The saturated (ponded) permeameter tests we made provide information on 

saturated hydraulic conductivity, which is independent of antecedent soil moisture 
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condition, thus providing us with a meaningful comparison between different microsites 

within grassland and shrubland.  Any litter or organic material present on the surface 

was retained prior to measurements.  We estimated site-level values of steady-state 

infiltration by measuring the relative cover of grasses, shrubs and their respective 

interspaces within six 200 m2 plots (50 m by 4 m belt transects) placed within the 

grassland and shrubland. 

  

Geostatistical calculations  

 

Geostatistical analysis was used to estimate the spatial patterns of the measured 

infiltration rates (Rossi et al., 1993).  Semivariograms were used to explain the 

semivariance (γ) found in comparison among samples taken at increasing distance (h) 

along the two transects. The semivariance γ at each h is defined as: 

γ(h) = )(2/)]()([
)(

1

2 hNhiziz
hN

i
∑
=

+−                                                                     (1) 

 

where N(h) is the number of sample pairs separated by the lag distance h, z(i) is a value 

measured at location i and z(i+h) is a value measured at location i+h. 

 

 For patterned data, the semivariogram first rises from a comparison of neighbouring 

samples that are similar and autocorrelated and then reaches an asymptote, namely the 

sill (C0+C), suggesting the distance beyond which samples are independent.  Nugget 

variance (C0) is the variance that occurs at a scale finer than field sampling. If a large-

scale trend in the distribution is found, there is no local pattern within the sampling 

scale, and therefore the semivariogram is linear (Schlesinger et al., 1996).  

 

 Parameters derived from the model were used to quantify two key aspects of 

patchiness in a variable distribution: (i) the magnitude of spatial dependence (i.e., the 

degree to which patches are differentiated from the surrounding area by their distinct, 

within-patch homogeneity), (ii) the mean diameter of those patches.  The magnitude of 

spatial structure was obtained using the index of C/(C0+C). A greater proportion of the 

total sample is spatially structured if the index approaches 1.  The mean diameter of 

patches and the arrangement of patches across the plot are determined by the distance 
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separating sampling points at which semivariance reaches an asymptote or the 

autocorrelation range (A0).   

 

Data analysis 

 

For both transects, descriptive statistics (i.e., mean, median, standard deviation and 

coefficient of variation) were calculated to indicate the overall variability for each 

observed variable (i.e., litter and biocrust cover). A correlation matrix for those 

variables was also calculated using the modified t-test (PASSAGE software; 

http://www.passagesoftware.net), which corrects the degrees of freedom based on the 

amount of auto-correlation in the data (Wang et al., 2007).  

 

 In the present study, semivariograms were modeled using GS+ software version 9. 

There are several commonly used semivariogram models. In most cases, however, 

semivariograms fitted well with spherical models, which has been proven useful in the 

interpretation of two-dimensional spatial data (e.g., Wang et al., 2007, 2009). We used 

the spherical model to compare the observed variables under different treatments. This 

model was chosen because of its suitable fit with the distribution of those variables 

based on two criteria: high r2 and fitted model shape (e.g., Wang et al., 2007, 2009).  

 

 We compared isotropic and corresponding anisotropic semivariograms at 0º, 45º, 

90º and 135º and did not find any significant directional pattern. Therefore, isotropic 

variograms were used in all analyses. We also ensured that all data had a normal 

distribution, which is a prerequisite in hypothesis testing using geostatistic theory, by 

conducting the normal-score transformation prior to analysis (Rossi et al., 1993). 

 

 We used non-parametric Analysis of Variance (Kruskal-Wallis test) to test for 

differences in hydrological responses between open and vegetated locations for 

shrubland and grassland communities separately, and for open areas only, between 

grassland and shrubland. Relationships between infiltration rates and distance to shrub 

or grass were examined using exponential decay models in Sigmaplot (Systat Software, 

Inc. CA, USA). We used Structural Equation Modelling (SEM) to test the relationships 

among litter cover, biocrust cover, sorptivity and steady-state infiltration under both 

tension and ponding, for grassland and shrubland separately. Structural Equation 
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Modelling allowed us to examine the direct and indirect effects of each variable on the 

response variable and estimate the strength of these effects (Grace, 2006). We used a 

maximum likelihood based goodness-of-fit test to assess the degree of fit between 

observed and predicted covariance structures. Because our models were saturated, i.e., 

all possible pathways between all variables were accounted for, we could not test the 

significance of our models. The relative strengths of the pathways are based on the 

amount of variance explained in our three response variables (Grace, 2006). All SEM 

models were performed in AMOS 20 (SPSS Inc. 2009) software.  

 

Results 

 

Canopy effects on infiltration  

 

Relationships between distance from shrub or grass canopy, and sorptivity and steady-

state infiltration under ponding, were best described by negative exponential curves 

(Figure 1). There was about a four-fold greater decline in sorptivity and steady-state 

infiltration in the grassland than the shrubland, as indicated by the exponent of the 

negative exponential curves (Figure 1). In the shrubland, distance from the plant 

explained 18 and 22% of the variance in sorptivity and steady-state infiltration, 

respectively. However, the relationship was much stronger (sorptivity: R2=0.32; steady-

state infiltration: R2=0.36) for distances up to 2 m from the plant stems, which is similar 

to the average shrub canopy radius (1.7 m). At distances > 2 m from the shrubs, 

sorptivity and steady-state infiltration were largely independent of distance. For 

grasslands, the relationships between distance from grass tussocks and 

sorptivity/steady-state infiltration were similar to that of shrubs (R2=0.16 and 0.18 for 

sorptivity and steady-state infiltration, respectively). Grassland sorptivity and steady-

state infiltration were independent of distance after 0.5 m, which was the maximum 

distance we recorded for grass tussocks, and which is equivalent to the average foliage 

diameter of grasses (0.48 m). 

 

Infiltration among microsites 

 

In the shrubland we recorded 2.6-times greater ponded sorptivity (Kruskal-Wallis H = 

39.8, df = 1, P < 0.001) and 2.9-times greater ponded steady-state infiltration (H = 40.2, 
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df = 1, P < 0.001) under the shrubs than in the open (Table 1). The trend was the same 

in the grassland, where both sorptivity (H = 12.0, df = 1, P = 0.001) and steady-state 

infiltration (H = 12.7, df = 1, P < 0.001) were 1.6-times greater adjacent to the grasses 

than in the open. Similarly, the macropore ratio was 2.6-times greater under shrubs (H = 

37.6, df = 1, P < 0.001) and 1.8-times greater under grasses (H = 11.7, df = 1, P = 

0.001) than in the open, in the shrubland and grassland, respectively. Thus, the 

difference between grass and open was smaller than that between shrubs and open, with 

values from shrub areas being more than twice the values in open areas. We detected no 

differences in sorptivity nor steady-state infiltration under tension between shrub and 

open, or between grass and open microsites (P > 0.21).  When we compared the open 

sites between grassland and shrubland (Table 2), we detected approximately twice the 

levels of sorptivity (H = 29.3) and steady-state infiltration (H = 30.1) under ponded 

conditions (P < 0.001) in the grassland than the shrubland, and a similar trend for the 

macropore ratio (H = 21.2) but no effects under tension (P > 0.13).   

 

Spatial patterns in infiltration  

 

The autocorrelation range for sorptivity, steady-state infiltration under ponding and the 

macropore index in the shrubland ranged from 3.4 to 4.4 m, which corresponded to the 

average distance between the centre of individual shrubs (3.78 m; Figure 2b, Table 3). 

The autocorrelation range under tension, however, was substantially larger (5.9 to 9.5 m 

for sorptivity and steady-state infiltration, respectively), which was mainly independent 

of average inter-shrub distance. For the grassland, however, values of the 

autocorrelation range for sorptivity, steady-state infiltration and macropore ratio under 

ponding were substantially smaller (1.4 to 1.6 m), which was equal to approximately 

2.5-times the average distance between individual grass butts. The autocorrelation range 

for litter cover was substantially greater in the grassland (62.8 m) than the shrubland 

(5.1 m; Table 3), which highlights the greater connectivity among plant patches in the 

grassland than shrubland. At the same time, the shrubland was characterized by a 

substantially greater autocorrelation distance for cryptogram cover (16.5 m) than the 

grassland (3.4 m).  

 

Grasslands and shrublands as a system 
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Averaged over the open and grass/shrub patches, and based on the corresponding cover, 

water flow under ponded (sorptivity and steady-state infiltration) conditions was greater 

in the grasslands than the shrublands (P < 0.018), but there were no differences for 

measurements under tension (P > 0.28). The estimated sit-level infiltration was 33.0 and 

28.4 mm h-1 in the grasslands and shrubland, respectively. The results indicate a 14% 

decline in steady-state infiltration with a conversion from grassland to shrubland. 

 

The structural equation models were reasonably successful at predicting infiltration 

in the shrublands (R2 = 0.50) and grasslands (R2 = 0.22; Figures 3a and 3b). For the 

shrublands, shrub cover had strong positive effects on steady-state infiltration and litter 

cover, but a suppressive effect on biocrust cover (Figure 3a). For the grasslands, 

however, the effect of grasses was substantially diminished, though litter cover had a 

stronger suppressive effect on biocrust cover. Surprisingly, there was no effect of 

biocrust cover on steady-state infiltration at in either shrubland and grassland (Table 4).  

 

Discussion  

 

Consistent with a large number of studies worldwide (e.g., Bhark and Small, 2003; 

Casmereiro et al., 2003; Wilcox et al., 2003a,b; Eldridge and Freudenberger, 2006; 

Eldridge et al., 2010; Pierson et al., 2010), we recorded greater depths of ponded 

infiltration adjacent to both shrubs and grasses than in their interspaces. Our data are 

also consistent with field observations of the rapid declines in infiltration with 

increasing distance from the stems of Dodonaea and Eremophila shrubs in shrub-

encroached woodland (Daryanto et al., 2013). Overall, our results support the notion 

that the hydrological impact of encroaching shrubs will depend on the relative 

proportion of canopy (both grass and shrub) and interspace (Reid et al., 1999; Pierson et 

al., 2010; Petersen and Stringham, 2008). 

 

Mechanisms accounting for greater water flow under shrubs and grasses  

 

We attribute the greater infiltration adjacent to shrubs and grasses to the greater number 

of macropores (biopores > 0.84 mm in diameter), as indicated by our macropore ratios. 

Support for a macropore-driven mechanism is the observation that no differences in 

water flow were recorded when macropores were prevented from conducting water, i.e., 
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when infiltration was measured under a negative tension. The macropore ratio was 

consistently larger for shrub and grass soils than for interspace soils. The 

autocorrelation range of the macropore ratio and infiltration rates were similar (Table 

3), indicating that the spatial distribution of the macropores and therefore the ratio, 

plays an important role in the spatial distribution of infiltration rates.  

 

 Macropore ratios exceeding 10 have been reported for similar encroached 

woodland on Haplargid soils in eastern Australia (Eldridge, 1994). Large macropore 

ratios suggest that the preferential pathways for water movement are voids and channels 

associated with plant roots and root channels close to shrubs and grasses, as well as nest 

entrances and burrows constructed by surface-active arthropods such as ants and 

termites.  

 

Encroachment alters the amount and spatial patterns of infiltration 

 

Infiltration rates in the grassland interspaces were greater than the shrub interspaces, 

indicating that the effects of encroachment are largely tied to how shrubs influence the 

spatial distribution of interspaces and therefore their capacity to infiltrate water. 

Infiltration rates under individual shrubs were comparable to those under individual 

grasses. Overall, therefore, we found higher rates of infiltration and sorptivity (under 

ponded conditions) in the grassland than the shrubland. Our research therefore points to 

activity associated with shrub interspaces as the likely driver of reduced rates of 

infiltration when grasslands are encroached, rather than increase in the total cover of 

shrubs per se.  

 

 Litter cover appears to play an important role, given the marked differences in their 

cover between shrub and grass interspaces. We did not remove litter prior to running 

our infiltration measurements as greater litter cover could enhance infiltration rates 

beneath the canopies of both grasses and shrubs as litter has higher porosity than soil. 

Apart from direct effects, litter could also alter the density and size of macropores by 

moderating soil moisture, soil surface temperature and therefore maintain soil moisture 

in the surface layers (Whitford, 2002), as well as increasing water stable aggregation 

(Pressland and Lehane, 1982). The combination of more stable temperature and greater 

surface moisture provided by litter cover would also be expected have positive feedback 
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on the activity of subterranean and surface-active termites (Whitford, 2002), which are 

the main macropore-producing agents in these soils (Eldridge, 1994). Litter also 

influences overland flow processes by forming micro-dams and terraces (Eddy et al., 

1999), extending the period over which water ponds on the surface, contributing to the 

discontinuity of runoff, potentially increasing the hydraulic head (Boeken and 

Orenstein, 2001) and reducing soil particle detachment (Wainwright et al., 1999). 

 

 Shrub encroachment changed not only the total amount of infiltration, but also the 

spatial patterns of infiltration and the spatial arrangement of unvegetated interspaces. 

Our spatial analysis of infiltration rates revealed two interesting effects. Firstly, the 

range (A0) of steady-state infiltration under ponding was markedly different between 

grassland (A0 = 1.5 m) and shrubland (A0 = 3.5m). Secondly, there were marked 

differences in the area of influence of each plant in relation to their range. For example, 

the statistical range (A0) for individual grasses and shrubs was very different. The range 

for grasses indicates that grasses have an effect on infiltration far beyond the edge of 

their canopy, whereas the shrub effect is limited to the area directly beneath the canopy 

(Figure 2c,d). Thus, even though infiltration rates for individual grasses were 

comparable with those of shrubs, estimated site-level rates are likely to be higher 

because of the greater cover of grasses than shrubs. We attribute the greater estimated 

site-level infiltration in the grassland to the greater connectivity of grasses. The 

autocorrelation range for grass occurrence was 0.9 m, indicating that the grasses 

themselves were unconnected. However, litter was highly connected in the grassland 

(autocorrelation range is 62.8 m), and such connectivity reduced the area of bare soil 

and thus enhanced the maintenance of higher infiltration rates at the ecosystem-level in 

the grassland. Litter is known to have a substantial effect on soil and ecological 

processes (Facelli and Pickett, 1991) and may account for a large proportion of the 

variance in infiltration (Meeuwig,1970).  

 

 Given that the positive effect of litter on infiltration was similar for shrubs (path 

coefficient = 0.37) and grasses (0.38), litter alone cannot explain differences in the 

canopy influence between grasses and shrubs. Part of the difference, which we are 

unable to account for, may be idiosyncratic soil effects such as subtle changes in texture 

and structure (Young et al., 2004), or differences in microtopography, which would be 

expected to alter the connectivity of sites of enhanced infiltration (Turnbull et al., 2010). 
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These idiosyncratic soil effects may also explain the observed variance in steady-state 

infiltration rates along the distance away from shrub/grass centre. The similar 

autocorrelation range of litter cover (5 m) and shrub canopy size (3.4 m) is consistent 

with the notion of a fertile island phenomenon of higher levels of resources under the 

canopies of woody species (e.g., Bhark and Small, 2003; Casmereiro et al., 2003; Wang 

et al., 2009, 2012). The current results show that, at least in our system, which has 

probably been shaped by more than 150 years of grazing, the fertile island effect also 

applies to infiltration (A0 = 3.5 m), with shrub encroachment localising infiltration, and 

inhibiting rates in the interspaces.  We acknowledge, however, that our effect is 

probably also due to grazing history and management, with recent research showing that 

the fertile island effect may be due more to grazing than to the singular effect of woody 

plants per se (Allington and Valone, 2013).  

 

 Water availability is a major driver of vegetation dynamics in arid and semi-arid 

regions (Wang et al., 2012), and shrub encroachment could potentially alter ecosystem 

water balances. Although our current study only quantifies the amount and spatial 

pattern of infiltration rates, our point-scale based measurements may not easily be 

translated into landscape-scale phenomena. Our results offer some insights into 

hydrological processes such us runoff at larger scales. The site has a low slope (1-2%), 

and substantial runoff is generated on these soils when rainfall intensity exceeds about 

30-40 mm h-1 over a period of 5-7 minutes, the time taken for runoff to commence 

(Eldridge and Koen, 1993; Eldridge, 2013). We have not measured runoff within shrub 

patches at Yathong, but runoff studies on similar encroached soils about 150 km north 

of Yathong indicate that runoff coefficients under a 35 mm h-1 of simulated rainfall are 

about 40% for shrub interspaces (Munoz Robles et al., 2010), which is similar to our 

own data. It appears therefore, that while shrubs themselves have levels of infiltration 

not dissimilar to grasses, their interspaces have substantially reduced infiltration (and 

thus substantially greater levels of runoff), which potentially leads to reduced soil water 

storage and negative effects of water movement downslope.  

 

 We acknowledge that there are limitations when up-scaling point-scale methods to 

estimate ecosystem-level infiltration.  For example, we did not quantify differences in 

soil texture nor microtopography between sub-canopy soils. Although we would expect 

a long transect of 100 m to capture any location variation in soil texture, the lack of 
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such information may affect the estimation of site-level infiltration rates. We note that 

grazing could also have a strong mediating effect on infiltration.  For example, a study 

of the effects of shrubs and grazing on ecosystem functions in a similar system indicates 

that grazing can dampen the positive effect of shrubs on infiltrability, a surrogate for 

infiltration (Eldridge et al., 2013).  In fact, the effects of encroachment are very difficult 

to separate from those of historic grazing because encroachment and the reduced 

interspace infiltration may both be associated with grazing. There is a need therefore to 

more adequately address the relative effects of grazing and shrub encroachment on these 

and other functions within the semi-arid woodlands. 

 

Conclusions 

 

In our study, both grasses and shrubs had substantial positive effects on water flow. 

Steady-state infiltration was greater under shrubs and grasses than in the interspaces, 

and the clearly-defined gradient of decline in infiltration with increasing distance from 

the plants was stronger for grasses than shrubs. Furthermore, our data on spatial 

patterning indicate a greater connectivity among grass patches than shrub patches, 

suggesting that while the shrub effect on infiltration is largely restricted to the 

environment of the canopy, grass effects extends to neighbouring grass tussocks. The 

higher connectivity in grasslands explains why infiltration rates were higher under 

individual shrubs but lower at the ecosystem level in the shrublands. Overall, our study 

suggests that encroachment of grasslands by shrubs will result in substantial changes in 

the volume of water infiltrating into the soil, and in the spatial arrangement of 

infiltration. Management practices should concentrate on retaining patches of water-

capturing vegetation in the interspaces, such as perennial tussock grasses, in order to 

maximize the capture of water and increase infiltration 
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Table 1. Mean and standard error (SE) of infiltration parameters for shrub and open areas in shrubland, and grass and open areas in grassland. 1 

Different superscripts indicate a significant difference between the same microsite at a given level of habitat at P <0.05; # infiltration under 2 

steady-state. The units of sorptivity are mm h-0.5, and steady-state infiltration, mm h-1.   3 

 4 

Parameter Shrubland Grassland 

Shrub Open P-

value 

Grass Open P-

value Mean SE Mean SE Mean SE Mean SE 

Sorptivity under tension (-40 mm) 7.08a 0.57 7.52a 0.34 0.21 6.02a 0.51 7.94a 0.94 0.15 

Infiltration under tension (-40 mm)# 1.10a 0.10 1.10a 0.10 0.72 1.20a 0.10 3.53a 2.46 0.62 

Sorptivity under ponding (+ 10 mm) 186.61a 19.60 72.91b 7.93 <0.001 206.44a 19.73 131.48b 12.39 0.001 

Infiltration under ponding (+ 10 mm)# 48.21a 4.82 16.97b 2.10 <0.001 50.00a 5.08 32.30b 2.93 <0.001 

Macropore ratio 28.7a 2.63 10.9b 1.21 <0.001 42.2a 5.89 23.4b 2.73 0.001 

 5 

  6 
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Table 2. Mean and standard error (SE) of infiltration parameters for open areas in grassland and shrubland.  Different superscripts indicate a 7 

significant difference between the two habitats at P <0.05; # infiltration under steady-state. The units of sorptivity are mm h-0.5, and steady-state 8 

infiltration, mm h-1.   9 

 10 

Response variable Grassland Shrubland P-

value Mean SE Mean SE 

Sorptivity under tension (-40 mm) 7.9a 0.86 7.5a 0.34 0.65 

Infiltration under tension (-40 mm)# 3.5a 2.30 1.1a 0.10 0.29 

Sorptivity under ponding (+ 10 mm) 131.0a 11.00 72.9b 7.93 <0.001 

Infiltration under ponding (+ 10 mm)# 32.3a 2.72 17.0b 2.10 <0.001 

Macropore ratio 23.4a 2.50 10.9b 1.21 <0.001 

 11 

12 
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Table 3. Model parameters for the semivariograms for a range of soil hydrological response variables for shrubland and grassland communities 13 

 14 

Response variables Shrubland Grassland 

C0 C+C0 A0 C/(C+C0) R2 C0 C+C0 A0 C/(C+C0) R2 

Sorptivity under tension 0.04 0.22 5.9 0.69 0.19 0.05 0.27 4.4 0.82 0.16 

Steady-state infiltration under tension 0.12 0.30 9.5 0.59 0.27 0.11 0.43 17.4 0.75 0.22 

Sorptivity under ponding 0.17 0.69 3.7 0.75 0.21 0.02 0.45 1.4 0.95 0.12 

Steady-state infiltration under ponding 0.10 0.91 3.5 0.89 0.21 0.01 0.47 1.5 0.97 0.11 

Macropore ratio 0.24 0.85 4.4 0.72 0.19 0.01 0.81 1.6 1.00 0.16 

Shrub and grass occurrence  0.02 0.24 2.8 0.90 0.25 0.01 0.17 0.9 0.91 0.02 

Biocrust cover (%) 0.25 0.51 16.5 0.50 0.24 0.01 0.48 3.4 0.99 0.20 

Litter cover (%) 0.08 0.32 5.1 0.81 0.27 0.11 0.55 62.8 0.80 0.81 

 15 
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Table 4. Path coefficients and model R2 values for the eight water infiltration models. 16 

The model structure is identical to that presented in Figure 3, but with different path 17 

coefficient estimates. The three columns list the path coefficients corresponding to three 18 

paths in the models. Asterisks reflect probabilities that the path coefficients are equal to 19 

zero; *** P < 0.001, ** P < 0.01.  R2 is proportion of variance explained in the response 20 

variable listed on the left. All models are saturated, so the χ2 goodness of fit test cannot 21 

be calculated. # indicates steady-state infiltration. 22 

 23 

 24 

Response variable Plant to 

infiltration 

Biocrust to 

infiltration 

Litter to 

infiltration 

Model 

R2 

Shrubland     

Sorptivity under ponding -0.49*** 0.06 0.29*** 0.46 

Infiltration under ponding# 0.47*** -0.03 0.37*** 0.50 

Sorptivity under tension  -0.22 -0.29** 0.03 0.10 

Infiltration under tension# 0.01 -0.30** -0.12 0.09 

Grassland     

Sorptivity under ponding 0.26** 0.12 0.36*** 0.21 

Infiltration under ponding# 0.25** 0.09 0.38 0.22 

Sorptivity under tension  -0.11 -0.14 -0.11 0.04 

Infiltration under tension# -0.02 -0.09 -0.06 0.01 

 25 

  26 

26 
 



 27 

 28 

 29 

 30 

 31 

 32 

Figure 1. Relationship between sorptivity (mm h-0.5) and steady-state infiltration (mm h-33 
1) under ponding and distance to the nearest shrub or grass. Note the different scales on 34 

the y-axis for shrubland and grassland   35 

 36 
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 38 

 39 

 40 
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 42 

 43 

 44 

Figure 2. Semivariograms for steady-state infiltration for (a) grasslands and (b) 45 

shrublands, presence of (c) grassland and (d) shrubland. Diagrammatic representation of 46 

the size of the nugget (A0) for grassland and shrubland.  The grey area indicates the area 47 

of coverage of infiltrated water for grasslands and shrublands. 48 
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 52 

Figure 3. Structural Equation Models for shrubland (a) and grassland (b). 53 
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