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ABSTRACT OF THE DISSERTATION 

MICROSPHERES FOR LIVER RADIOMICROSPHERE THERAPY AND  

PLANNING 

by 

Alejandro Amor Coarasa 

Florida International University, 2013 

Miami, Florida 

Professor Anthony J. McGoron, Major Professor 

Liver cancer accounts for nearly 10% of all cancers in the US. Intrahepatic Arterial 

Radiomicrosphere Therapy (RMT), also known as Selective Internal Radiation Treatment (SIRT), 

is one of the evolving treatment modalities. Successful patient clinical outcomes require suitable 

treatment planning followed by delivery of the microspheres for therapy. The production and in 

vitro evaluation of various polymers (PGCD, CHS and CHSg) microspheres for a RMT and RMT 

planning are described. Microparticles with a 30±10 µm size distribution were prepared by 

emulsion method. The in vitro half-life of the particles was determined in PBS buffer and porcine 

plasma and their potential application (treatment or treatment planning) established. Further, the 

fast degrading microspheres (≤ 48 hours in vitro half-life) were labeled with 68Ga and/or 99mTc as 

they are suitable for the imaging component of treatment planning, which is the primary emphasis 

of this dissertation. Labeling kinetics demonstrated that 68Ga-PGCD, 68Ga-CHSg and 68Ga-

NOTA-CHSg can be labeled with more than 95% yield in 15 minutes; 99mTc-PGCD and 99mTc-

CHSg can also be labeled with high yield within 15-30 minutes. In vitro stability after four hours 

was more than 90% in saline and PBS buffer for all of them. Experiments in reconstituted 

hemoglobin lysate were also performed. Two successful imaging (RMT planning) agents were 

found: 99mTc-CHSg and 68Ga-NOTA-CHSg. For the 99mTc-PGCD a successful perfusion image 

was obtained after 10 minutes, however the in vivo degradation was very fast (<30 min half-life), 
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releasing the 99mTc from the lungs. Slow degrading CHS microparticles (> 21 days half-life) were 

modified with p-SCN-b-DOTA and labeled with 90Y for production of 90Y-DOTA-CHS. 

Radiochemical purity was evaluated in vitro and in vivo showing more than 90% stability after 72 

and 24 hours respectively.  All agents were compared to their respective gold standards (99mTc-

MAA for 68Ga-NOTA-CHSg and 99mTc-CHSg; 90Y-SirTEX for 90Y-DOTA-CHS) showing 

superior in vivo stability. RMT and RMT planning agents (Therapy, PET and SPECT imaging) 

were designed and successfully evaluated in vitro and in vivo. 
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CHAPTER 1 INTRODUCTION 

Radiomicrosphere Therapy (RMT), via hepatic arterial administration is a treatment for patients 

with primary and metastatic liver cancer (figure 1). Because the primary blood supply to liver 

tumors is from the hepatic artery while the majority of the blood supply to the normal liver is 

from the portal vein, this procedure offers selectivity to tumor.  

 

Fig 1. Liver and Tumor Vasculature (1) 

The micro-vascular density of liver tumors is 3-200 times greater than the surrounding liver 

parenchyma, further improving the selectivity of the therapy to the tumor (2). In this treatment, 30 

µm diameter spheres labeled with the radioactive isotope 90Y (yttrium-90, a high-energy beta 

particle–emitting radioisotope) become lodged in the arterioles within the tumor and destroy the 

tumor while leaving the normal liver tissue mostly unharmed. A randomized trial in 2001 with 74 

patients showed that combining SirSpheres (one of the available products in the market) with 

chemotherapy had a 44 % response versus a 17.6 % with chemotherapy alone (3).  

The 90Y disintegration within glass microspheres occurs without any chemical release because the 

radioisotope is completely trapped inside the microsphere and is part of the crystalline structure. 
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In other words, there is no surface degradation of the particles. Resin microspheres are basically 

ionic exchange matrices that bind the yttrium by means of strong non-specific ionic interactions. 

The earliest device of this kind (resin microspheres) was shown to release the isotope once in 

contact with blood (4) and also showed some other complications (5; 6). Although there is no 

report of leaching of 90Y for the commercial SirSpheres product, such behavior is a possibility, 

even if not significant, because of the ionic nature of the radioisotope attachment to the particles. 

SirSpheres are prescribed to be injected using pure water instead of saline solution to avoid any 

ionic exchange before injection. The main advantage of the resin spheres is that the radiation dose 

and concentration of spheres can be manipulated in situ to provide a patient specific treatment. In 

contrast the glass spheres need to be allowed to decay in order to achieve the proper dose. 

The possibility of injury to gastrointestinal tract and lungs are complications that can be evaluated 

(predicted), to a certain extent, using a hepatic arterial flow imaging study with 99mTc labeled 

macroaggregated albumin (99mTc-MAA) prior to treatment (6). For treatment planning 99mTc-

MAA is infused into the proper hepatic artery and a perfusion scintigraphy is performed. 

However, the significant differences in size, shape, and other properties between the MAA and 

90Y microspheres (Fig 2) complicates the treatment planning because the MAA particles cannot 

be expected to distribute exactly like the 90Y microspheres. 

 

Fig 2. Comparison of A: MAA microparticles and B: Resin microspheres 
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The present dissertation addresses the development and use of a new biodegradable sphere for 

accurate RMT planning/treatment. Several polymers: Chitosan, Chitosan Glycol and a new 

synthetic biodegradable elastomer Poly(glycerol-citric-dodecanedioate)) are evaluated employing 

different emulsion techniques to produce approximately 30 µm size biodegradable microspheres 

that match the size and shape of the 90Y microspheres commercial products. The obtained 

particles were submitted to in vitro degradation studies and characterized with respect to size, 

shape, and size distribution.  

Different radiolabeling techniques were evaluated for labeling yields, radiochemical purity and 

stability of the final product. The in vivo evaluation of the particles was performed in Sprague 

Dawley rats. The animals were imaged using full body autoradiography/X-Ray techniques and 

later euthanized at different times. Several organ samples were collected for measuring of 

radioactive content in a Cobra 5000 NaI(Tl) well detector [Perkin Elmer, USA]. Numerical 

dosimetry calculations were done using MCNPx to evaluate the radiation field and dose 

distributions and to assure radioprotection standards were met. 

1.1 Objective and Specific Aims and hypotheses 

The overall objective is to design and evaluate a complete RMT package with fast (12 to 48 

hours, planning) and slow (>21 days, therapy) degradation half-life 30 ± 10 µm 

biodegradable microspheres to be labeled with 68Ga or 99mTc for RMT planning and with 

90Y for RMT (respectively) with high yield and >90% radiochemical purity.  

This objective was accomplished by addressing the following specific aims: 
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1.1.1 Specific Aim #1 

Develop and implement appropriate emulsion and purification methods for the creation of 30±10 

µm polymer particles.  

The outcome of this aim provided the necessary raw materials for the subsequent experiments. 

1.1.2 Specific Aim #2 

Perform radiolabeling of the particles with more than 90% 68Ga, 99mTc or 90Y labeling yield and in 

vitro radiochemical purity for the studied periods. 

The outcome of this aim was to demonstrate that the created particles were capable of trapping 

and retaining the radioisotopes. This aim includes the surface modification of the particle with 

specific chelating agents to improve in vitro and ultimately in vivo stability. 

1.1.3 Specific Aim #3  

Perform in vitro stability studies of the particles in saline, PBS buffer and animal plasma to 

determine their degradation half-lives. 

The outcome of this aim was to assess the possibility of using different particles as a RMT 

planning (as a prospective replacement for MAA) with a degradation half-life of 12 to 48 hours 

and treatment agent as a potential replacement for resin or glass microspheres with a degradation 

half-life of more than 21 days. 

1.1.4 Specific Aim #4 

Conduct in vivo lung perfusion studies in Sprague Dawley rats to evaluate the stability and bio-

distribution of the particles and the radioactive labels. 
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The outcome of this aim was to assess the feasibility of translating our microsphere design to a 

clinical setting for RMT. 

The following hypotheses will be tested in the specific aims of research. 

 #1  Particles measuring 30±10 µm diameter can be created from biocompatible 

polymers using emulsion and purification methods. 

 #2 The particles can be radiolabeled with 68Ga or 99mTc for RMT planning and 90Y 

for RMT with ≥ 90% in vitro radiochemical purity. 

 #3 The radiolabeled particles can have 12-48 hours in vitro half-life for RMT 

planning and >21 days in vitro half-life for RMT. 

 #4 The radiolabeled particles can have > 90% in vivo stability for proper lung 

perfusion imaging studies. 
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CHAPTER 2 BACKGROUND 

2.1 Nuclear Medical Imaging 

There are five basic modalities of nuclear medical imaging: Planar Scintigraphy, SPECT, PET, 

nMR and X-Ray (CT). X-Ray emission in medical imaging is almost entirely due to electronic 

excitation, however it is considered “nuclear imaging” because of the high energy of the emitted 

quantum. These five basic modalities can be separated into two subcategories: Functional 

Medical Imaging (Planar Scintigraphy, SPECT and PET) and Anatomical Medical Imaging (CT 

and nMR). Though these subcategories are not set in stone since contrast CT and functional nMR 

are also performed. The current review will concentrate on the functional imaging subcategory 

and their combination with the nMR and CT considered for their importance attenuation 

correction and anatomical registration purposes. 

2.1.1 Planar Scintigraphy. The Anger Camera. 

Since George de Hevesy (considered the father of nuclear medicine) devised the term radiotracer 

in the 1920s a new age started. The main advantage of radiotracers was that since they could be 

injected in very small amounts, the system could easily be studied without being disturbed. The 

first nuclear imaging camera, called Scintigraphy Camera, was designed in 1957 by Hal Anger 

(also called Anger Camera), still widely used today (7). It consist of a single NaI(Tl) (sodium 

iodide, thallium activated) crystal, coupled to several photomultipliers for detection and 

amplification. The thickness of the crystal is between 6-25 mm and it is optimized at 10 mm for 

detection of 120-200 keV gamma energy. Thinner crystals provide better spatial resolution but 

decreased sensitivity (8). A collimator is also used in front of the scintillation crystal to allow 

only perpendicular (or near perpendicular) photons to interact with the crystal (Fig 3). 
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Fig 3 Basic components of the Anger Camera (7). 

The interaction of the gamma quantum with the crystal produces excitation with subsequent 

emission of light. The light interacts with a photocathode emitting electrons, later amplified in the 

photomultipliers. Since only perpendicular gamma was allowed to enter the crystal, the location 

of the amplification is aligned with the location of emission in the patient. With all the 

independent intensities and coordinates, a planar image is formed. 

2.1.2 Single Photon Emission Tomography 

Single photon emission tomography is just an application of the anger camera to obtain tri-

dimensional (3D) images of the radioisotope distribution. Most Clinical SPECT systems are 
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based on a dual planar camera system that rotates on the patient axis to obtain different 

projections for image reconstruction.  

 

Fig 4 Some commercially available SPECT/CT systems: A: Philips Medical Systems BrightView 
XCT, B: GE Healthcare Infinia-Hawkeye and C: Siemens Healthcare Systems Symbia (9). 

Attenuation effects are more severe in body imaging than in brain imaging since the photon 

carries a shorter path in the latter. Additionally, attenuation is not uniform throughout the patient, 

so attenuation correction becomes a major limitation of SPECT, hence quantification of the tracer 

is very difficult. Several approaches have been taken to correct attenuation with some level of 

success. A 153Gd source is sometimes used to generate transmission scans while obtaining the 

image projections (10), combined CT scans (Fig 4) are also used for correction (11). All these 

methods remain under evaluation. Nevertheless SPECT and SPECT/CT images have excellent 

medical diagnostic value (e.g. Fig 5). 
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Fig 5 131I scan of thyroid cancer (red arrow) A: Planar Scintigraphy and B: SPECT/CT (12) 

2.1.3 Positron Emission Tomography 

Positron emission tomography is a medical imaging technique that is not based on positron 

emission detection (as its name indicated) but rather on the detection of the result of the positron 

annihilation (Fig 6). 

 

Fig 6 Radioactive disintegration for A: single photon emission and B: positron emission. 

As can be seen in Fig 6, the positron travels some distance before annihilation, and this is directly 

proportional to the maximum energy of the beta disintegration. The linear distance traveled is 

referred to as the positron range (Fig 6 B). The annihilation produces two perpendicular photons 
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(180±0.25º) that are identified by opposing detectors (arranged circularly) in coincidence mode 

(only two detection events happening within 1 nanosecond are registered). The line of detection 

of the photons is registered and intercepted with other detected paths to conform the image (Fig 

7). 

Compared to those used in SPECT, PET detectors need to be thicker. Annihilation emission has 

an energy of 511 keV (compare to the regular 100-200 keV in SPECT) hence the detector needs 

greater stopping power. Crystals normally used in PET are made of Bismuth Germanium Oxide 

(BGO, also Bismuth Germanate, Bi4Ge3O12) and Cerium-doped lutetium oxyorthosilicate (LSO). 

These have a relatively good light output and a short time constant (80% more efficient than 

NaI(Tl) for the 511 keV energy). The electronics of PET cameras are rather complicated and 

further detail can be found in several publications (13; 14). 

 

Fig 7 Positron Emission Tomography image and registration (15) 

Resolution of PET cameras has increased significantly over time. Starting at 10 mm spatial 

resolution in the 1980’s to the current 4 mm (1.2 mm in micro-PET) (16). The theoretical spatial 

resolution of PET is limited by the positron range while spatial resolution is limited primarily by 
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the collimator design. Thus, the election of proper radionuclides (based on its physical 

characteristics) to be used in the development of future drugs becomes important (Table 1). 

Table 1 Physical Properties of Positron Emitting Radionuclides Most Commonly Used. Isotopes 
with particular importance in PET are bolded. (16) 

Radionuclide T ½ % β+ 
Emission 

Max β E 
(MeV) 

Max 
Range 
Water 
(mm) 

 

Ave Range 
Water 
(mm) 

Produced 

11C 20.4 min 99 0.96 3.9 0.4 Cyclotron 

13N 9.96 min 100 1.2 5.1 0.6 Cyclotron 

15O 2.05 min 100 1.7 8.0 0.9 Cyclotron 

18F 1.83 h 97 0.64 2.3 0.2 Cyclotron 

62Cu 9.74 min 98 2.9 15 1.6 62Zn/62Cu 

64Cu 12.7 h 19 0.58 2.0 0.2 Cyclotron 

66Ga 9.49 h 56 3.8 20 3.3 Cyclotron 

68Ga 1.14 h 88 1.9 9.0 1.2 68Ge/68Ga 

76Br 16.1 h 54 3.7 19 3.2 Cyclotron 

82Rb 1.3 min 95 3.4 18 2.6 82Sr/82Rb 

86Y 14.7 h 32 1.4 6.0 0.7 Cyclotron 

124I 4.18 d 22 1.5 7.0 0.8 Cyclotron 

 2.2 Radioisotope Production.  

There are two basic nuclear installations to produce radioisotopes: nuclear reactors (to include 

neutron sources) and particle accelerators. With different designs and working principles, both 

nuclear installations are capable of producing radioisotopes for nuclear medicine applications. 
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2.2.1 Nuclear Reactor Produced Radioisotopes. 

Nuclear reactors were most commonly used in the past 50 years of nuclear medicine history. 

Whether the radionuclides are produced by fission of heavier nuclides or by neutron irradiation 

they both yield radioisotopes with excess neutrons, which indistinctively decay by electron 

emission (β-, excluding some rare exceptions). This production was aligned with the needs of 

nuclear medicine since β- emitting nuclides are still used for therapy and the gamma emitting 

daughters for SPECT imaging (e. g. 99Mo/99mTc) (Fig 8). 

 

Fig 8 Fission of 235U (17) with neutron generation and yield of fragments (18). 

Fission is not a desired production method, since a full distribution of both long and short lived 

isotopes is obtained. Radiochemical separation of the products is a lengthy process not yielding 

enough purity for medical applications. Neutron irradiation of defined, pure targets is a better 

approach to production, however high neutron flux is needed to yield sufficient radioisotope 

amounts. Neutron activation of cold targets is explained by the following equation: 

ܣ = ൫1∅ߪܰ − ݁ିఒ௧೔ೝೝೌ೏೔ೌ೟೔೚೙൯ (2.2.1.1) 

Where N is the number of target atoms present in the initial material; Φ is the neutron flux; λ is 

the decay constant of the product and σ is the cross section. The cross section is given in barns (1 
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barn=10-24 cm2), which intuitively represents the cross sectional area of the nuclei in question. 

However it is much more complex, including the efficiency of neutron capture, reaction yield, 

and incident neutron energy among others. Regardless of the complexity of the cross section 

concept, a bigger value of Φ aids the radionuclide production. Some isotopic productions benefit 

from thermal (low energy) neutrons and others from higher energy (Table 2). 

Table 2 Neutron Energy Ranges needed to produce several medical isotopes (19). 

Neutron Energy Isotope Production 

Thermal Epithermal (0.01 eV – 10 keV) 75Se, 89Sr, 90Y, 103Pd, 125I, 131I, 127Xe, 131Cs, 
153Gd, 153Sm, 165Dy, 166Ho, 177Lu, 186Re, 188W, 
192Ir, 198Au, 223Ra, 225Ac 

Fast (10 keV - 1.0 MeV) 99Mo, 117mSn 

High Energy (1.0 MeV – 10 MeV) 32P, 33P, 57Co, 62Cu, 64Cu, 67Cu, 89Sr 

14 MeV 99Mo, 225Ac 

The recent shortages in the production of radioisotopes have evidenced a crude reality: Reactors 

are getting old, production yields are decreasing and no new facilities are being built (20). 

Alternatives are being used, research reactors are included in production, new low enriched 

uranium neutron sources are being used and finally new production reactions (especially of 99Mo) 

are being studies in particle accelerators (21). 

2.2.2 Cyclotron Produced Radioisotopes 

With the advent of the PET camera, positron emitters to be used in medical imaging were needed 

(18F, 11C, 13N, 15O, etc.). These radioisotopes are, in contrast to β- emitters, neutron deficient 

isotopes. Thus they cannot be produced in nuclear reactors or with neutron sources. The last 

statement does not preclude the production of radioisotopes with excess neutrons in cyclotrons, 

since it only depends on the initial target material used and the energy of the incident proton 
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beam. In contrast with nuclear reactors that cannot be shut down once built and keep producing 

high level nuclear waste until the fuel is spent, cyclotron are started and stopped at will (Fig 9). 

 

Fig 9 Cyclotron working principle; A and B: Dees; yellow dots: perpendicular magnetic field 
(22). 

With a constant perpendicular magnetic field (yellow dots in Fig 9), a charged particle is 

generated in the center (normally a proton, an ionized H+ atom). Dees charge is change 

sequentially to accelerate the proton and increase its energy. The particle is finally release 

through a port to irradiate the targets. The maximum kinetic energy obtained is: 

௠௔௫ܧ = ௤మ∙஻మ∙௥మଶ∙௠   (2.2.2.1) 

Where q is the charge of the particle, B is the incident magnetic field and r is the maximum radius 

before release (radius of the cyclotron). For every day clinical use (especially for production of 

18F) high energy cyclotrons are not needed. Since the energy is proportional to the square of the 

cyclotron radius, smaller cyclotrons can be built. For these reasons and to reduce initial 

investment and running costs, small cyclotrons are currently produced and commercialized.  
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Fig 10 Siemens Eclipse™ series cyclotron produces high quantities of 18F, 11C, 13N, 64Cu and 15O 
(Width: 95 in. (240 cm), Depth: 73 in. (184 cm), Height: 90 in. (230 cm)) (23) 

Higher energies (translated into bigger machines and costs) are needed for the production of other 

positron emitters and positron emitter parent for the production of radioisotopic generators (Table 

3). 

Table 3 Positronic radionuclides production vs. incident proton energy 

Proton Energy (MeV) Radionuclides Produced (usable quantities) 

0-10 18F, 15O 

11-16 11C, 18F, 13N, 15O, 22Na, 48V 

17-30 124I, 123I, 67Ga, 111In, 11C, 18F, 13N, 15O, 
22Na, 48V, 201Tl 

30 + 124I, 123I, 67Ga, 111In, 11C, 18F, 13N, 15O, 82Sr, 
68Ge, 22Na, 48V 

 

2.2.3 Radioisotopic Generators 

A radioisotopic generator is a radiochemical separation system in which quasi stable decay 

equilibrium is reached between a parent and a daughter nuclide (half-life (t1/2) of parent has to be 
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at least a 10 fold greater that the half-life of the daughter). The system should allow the effective 

separation of the daughter nuclide from its parent nuclide with high radiochemical and 

radionuclidical purity. It is goverened by the exponential disintegration and accumulation laws 

formulated by Rutherford and Soddy in 1902 (24).  

2.2.3.1 Nuclear Physics of Radioisotopic Generators 

Given the disintegration scheme: 

ଵܺ ఒభ→ ܺଶ ఒమ→ ܺଷ(௦௧௔௕௟௘)  
The number of daughter nuclides (N2) formed by disintegration of the parent nuclide (N1) is given 

by the following equation:  

ଶܰ = ఒభఒమିఒభ ଵܰ൫݁ିఒభ௧ − ݁ିఒమ௧൯ + ଶܰ݁ିఒమ௧ (1.1) 

Substituting ܣ௜ = ௜ܰߣ௜ the Activity is expressed as: 

ଶܣ = ఒమఒమିఒభ ଵ൫݁ିఒభ௧ܣ − ݁ିఒమ௧൯ +  ଶ݁ିఒమ௧ (1.2)ܣ

where ߣ௜ = ୪୬ଶ௧భ/మ(೔) is the disintegration constant of the particular radioisotope (i). 

The first part of the equation represents the activity of the daughter nuclide while being formed 

by decay of the parent. The second part corresponds to the decay of the daughter nuclides existing 

at initial time (t=0). After complete extraction (elution) of the daughter nuclide, the second part 

nullifies, thus the first part describes the daughter nuclide accumulation in the system. To obtain 

the maximum accumulation time equation (1.2) is derived and equated to cero: 

୫ୟ୶୧୫୳୫௔௖௖௨௠௨௟௔௧௜௢௡ݐ = ୪୬ഊమഊభఒమିఒభ (1.3) 

The equation (1.3) is used to calculate the optimum elution time for the system. 

As stated before the condition ܴ௧ = ௧భమ೛ೌೝ೐೙೟௧భమ೏ೌೠ೒೓೟೐ೝ ≥ 10 is needed for an effective generator. Taking 

Rt into consideration three different conditions can be defined: ܴ௧ <  ,݉ݑ݅ݎܾ݈݅݅ݑݍ݁	݋݊	10
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10 < ܴ௧ < and ܴ௧ ݉ݑ݅ݎܾ݈݅݅ݑݍ݁	ݐ݊݁݅ݏ݊ܽݎݐ	100 >  In transient .݉ݑ݅ݎܾ݈݅݅ݑݍܧ	ݎ݈ܽݑܿ݁ܵ	100

equilibrium the process is governed by equation (1.2) and no approximation is possible. Daughter 

nuclide is initially accumulated and then decays with the half-life of the parent nuclide (Fig 11 

A). However in secular equilibrium the parent nuclide can be considered almost stable compared 

to the decay of the daughter so only apparent accumulation is observed (Fig 11 B). 

 

Fig 11 Decay and accumulation representation of A: the 99Mo/99mTc generator and B: the 
68Ge/68Ga generator. 

The useful life of a radioisotopic generator is given mainly by the half-life of the parent nuclide. 

However, other factors like the chemical, radiochemical and radionuclidical purity of the elution, 

the elution yield and radiolytic damage to the supporting material also affect the effective life of a 

system. Based only on nuclear properties, some examples of parent/daughter couples for 

generator production are shown on Table 4. 
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Table 4 Some Parent/Daughter couples with transient and secular equilibrium 

Pair Parent t½ Daughter t½ 

28Mg/28Al 20.9 h 2.24 min 

42Ar/42K 32.9 y 12.36 h 

47Ca/47Sc 4.54 d 3.35 d 

90Sr/90Y 28.8 y 64 h 

99Mo/99mTc 66.02 h 6.02 h 

113Sn/113mIn 115.1 d 99.5 min 

115Cd/115mIn 53.5 h 4.5 h 

125Sb/125mTe 2.77 y 58 d 

132Te/132I 78.2 h 2.3 h 

137Cs/137mBa 30.1 y 2.55 min 

188W/188Re 69.4 d 17.0 h 

44Ti/44Sc 60.0 y 3.93 h 

68Ge/68Ga 278 d 67.7 min 

2.2.3.2 Radiochemistry of Radioisotopic Generators 

Once a parent/daughter system is identified as idoneous according to its nuclear properties for 

generator construction, a new set of challenges is faced.  There is a need for an effective 

radionuclidical separation that allows both: potential use of the daughter nuclide in the desired 

application and conservation of the parent nuclide for further daughter production. Further, the 

designed system has to be simple, reliable, and easy to use.  

Liquid-liquid extraction was one of the first approaches and it is still used to date (e. g. 72Se/72As, 

(25)). However, simplicity is not one of the virtues of these generators. Long manipulation times 
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of open radiation sources (resulting in high radiation exposure) are never desired for general use. 

Chromatographic columns are the best chemical separation systems to produce radioisotopic 

generators. The parent nuclide has to be trapped with high specificity in the column material 

while no (or very low) attachment must be shown for the daughter nuclide. Thus, eluting the 

column with a given solution will yield pure daughter ready for applications. The column 

material is also preferred to be inorganic, to minimize a radiolytical effect (Fig 12). 

 

Fig 12 Schematics of the 99Mo/99mTc generator’s chromatographic column (26). 

However, sometimes it is virtually impossible to achieve ideal conditions. So it’s the case of the 

90Sr/90Y generator, in which 90Sr is absorbed in an organic cation exchanger and the daughter 

(90Y) is eluted or “milked” from the column using a diluted (0.005 M) EDTA solution. The 

EDTA chelation of 90Y severely limits the applications of the radioisotope; therefore extended 

post-elution treatment has to be made in order to obtain pure, ionic 90Y for medical applications 

(27). Some of the available radioisotopic generators for medical applications are shown on Table 

5. 
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Table 5 Some commercially available radioisotopic generators for medical use 

Pair Separation 
Technology 

Use Drugs Available Nuclear 
Imaging 

90Sr/90Y Cation 
Exchanger 

Therapy TheraSpheres, 
RMTSpheres. 

PET-double 
scape, pure beta 

emitter 

188W/188Re Alumina Therapy HDD/lipiodol, 
phase II 

Planar Scan, 
SPECT 

99Mo/99mTc Alumina Diagnostic Sestamibi, Sulfur 
Colloids, MAA, 

others 

Planar Scan, 
SPECT 

44Ti/44Sc AG-1x8 Diagnostic None Approved PET 

68Ge/68Ga TiO2, SnO2 Diagnostic DOTATOC,  
phase III 

PET 

2.2.3.3 The 68Ge/68Ga generator. 

Several inorganic matrices have been used to construct the 68Ge/68Ga generator: Al2O3 (28), TiO2 

(29), α-Fe2O3 (30) and SnO2 (31). Lately, attempts to use organic resins have been made (32). 

These generators benefit from the fact that there should be no metallic impurities in the eluate, 

thus producing better labeling. However concerns about radiolysis and the insertion of other 

organic contaminants are still present. These organic generators are still under evaluation. Table 6 

resumes the technology currently available for production of 68Ge/68Ga generators.  
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Table 6 Available 68Ge/68Ga Generator Systems 

Generator 
matrix 

68Ga elution 
yield (%) 

Eluent 68Ge content in 
the eluate 

Other 
Contaminants 

Al2O3 - 

Not 
Commercialized 

60-70% initially, 
decreasing to 
under 40%. 

0.005 % EDTA More than 
0.001% of the 
generator 
activity 

Contains Al3+ in 
huge amounts 

Al2O3 - 

Not 
Commercialized 

50% for more 
than a year 

NaOH solution 
(pH=12) 

0.0001% of the 
total activity 
when combined 
with a second 
Al2O3 column. 

Around 20 ppm 
of Al3+ 

TiO2 (Second 
Generation, 
IGG-100) -  
Eckert & Ziegler 

60-80% for two 
years 

0.1 N HCl < 0.00001% Low amounts of 
Ti and others 

SnO2 - iThemba 
Labs 

75-80% for two 
years. 

1N HCl 0.0002% Low amounts of 
Sn and others 

Liq-Liq  Not 
Commercialized 

60%, huge 
losses in 68Ge in 
reextraction. 

8-
hydroxyquinoline 

0.003% No metal 
impurities 

SiO2 ITG GmbH 80 % for 6 
month 

0.05 M HCl 0.005% No metal 
impurities 

Organic Matrix -  
Not 
Commercialized 

70-80% stable 
for 2 years (with 
very low 68Ge 
initial activity). 

0.1 N HCl 0.0001% No metal 
impurities 

 

From the two commercially available generators, iThemba Labs’s SnO2 and Eckert and Ziegler’s 

TiO2, the one with the best results (already with FDA’s manufacturing authorization (33)) is the 

later (Fig 13). SnO2 generators have the additional complication of high HCl content in the eluate, 

making it harder to buffer for labeling. However, the iThemba Labs generator is nearly 7 

thousand dollars cheaper than the TiO2 (Eckert and Ziegler). The iThemba Labs generator could 
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benefit from a 68Ga pre-labeling concentration/ purification method which would ease the use of 

the eluted 68Ga. 

 

Fig 13 Eckert & Ziegler IGG 100 Gallium-68 radioisotopic generator 

2.3 Lung Perfusion Agents 

Lung perfusion scintigraphy with 99mTc-MAA is the current medical gold standard for the 

diagnosis of pulmonary embolism (34). The principle is that intravenously injected labeled 

microparticles (99mTc-MAA, > 10 µm) will be trapped in the lung’s capillaries (or pre-capillaries 

with diameter of 7-10 µm (Fig 14) (35)) causing temporary micro-embolisms (36). The number 

of these embolisms is proportional to the local rate of blood flow (37). After elimination from the 

lungs (biological half-life of 1-24 h (38; 39)) 99mTc is excreted to the urine (40). The radioactivity 

allocation in the lungs is used to detect areas of poor or absent blood perfusion and to localize the 

embolism.  
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Fig 14 A: Lung corrosion cast showing vasculature (41), and B: Lung perfusion SPECT with 
99mTc-MAA (42) 

Although the use of MAA as a perfusion agent is extensive, it has been acknowledged to not be 

“ideal” (43). The presented size distribution (10-90 µm) did not comply with optimal 

specifications (20-40 µm) to allocate in precapillary arterioles. Orientation of macroaggregates 

(seldom spherical) in the blood flow becomes important to determine “effective size”, making it 

difficult to predict the in vivo behavior. Aggregate degeneration is another component making the 

size distribution variable and unreliable (43). The ideal (theoretical) perfusion particle should be 

spherical (size not to be dependent on particle orientation) with a size distribution of 13.5±1.5 

µm, to allow distribution only in capillaries (estimated 2.8•1011 available in lungs) and not 

precapillary arterioles (estimated 3•108 available in lungs) (43). However, for practical 

preparation purposes a size distribution of 30±10 µm is also considered safe since only about 105 

particles are injected (43). The highly anastomotic nature of pulmonary circulation assured no 

disruption in blood flow or pressure during lung perfusion imaging. Human Serum Albumin 

(HSA) microspheres (also called HAM) were identified early as potentially ideal perfusion 

agents. The first lyophilized kit was produced in 1970 (44) but needed a boiling water bath for 

high labeling yield. It also had thiosulfate (reducing agent) and detergent as part of the excipients, 
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due to the strong aggregation of the HAM. Aggregation and easiness of preparation are probably 

the main reasons why MAA prevailed over HAM as a lung perfusion agent. 

Human albumin (MAA and HSA) has other known side effects ranging from nausea to cardiac 

arrest (45). Although these adverse reactions are extremely rare since the blood has a high human 

albumin concentration, there is always a risk for disease transmission (e.g. hepatitis C). Despite 

differences in MAA from the “ideal perfusion particle” (with respect to size distribution and 

morphology), there are no reports in the literature of failed studies or inconsistent distribution. 

Therefore 99mTc-MAA must be considered a satisfactory lung perfusion agent. 

However, more to the point of this dissertation, another important application of 99mTc-MAA is in 

the Radiomicrosphere Therapy (RMT) planning (46). Non-spherical macroaggregates (MAA, 10-

90 µm) are used to predict the distribution behavior of perfectly spherical spheres (SirTEX and 

TheraSpheres ≈ 30±5 µm) (Fig 2) used for RMT. Despite the differences in size and morphology, 

MAA prediction of particle allocation is a valuable tool in RMT planning; however, whether a 

better planning agent can ultimately produce a better outcome is still an open question. 

2.4 Radiomicrosphere Therapy (RMT) 

In 2010 new cases of primary liver and intrahepatic bile duct cancer in the US reached 24120, 

with 18910 deaths, and colorectal cancer new cases reached 142570 with 51370 deaths, which 

nearly half of the latter becoming metastatic liver cancer (47). Liver cancer (primary or 

metastatic) accounts for nearly 10% of all cancers in the US alone with incidence being even 

greater in eastern countries. Treatment modalities involve surgery (48), chemotherapy (49), 

chemoembolization (50), thermal ablation using radiofrequency or microwave probes (51; 52) 

and Radiomicrosphere Therapy (RMT) (53; 54). The current RMT, also called Selective Internal 

Radiomicrosphere Treatment (SIRT) is indicated for patients with unresectable liver cancer, 
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especially hepatic cell carcinoma and metastatic liver cancer (54). RMT in combination with 

chemotherapy, also known as chemo-RMT, has been proposed to improve patient outcome (3; 2). 

The sphere size (≈30 µm) is slightly larger than the smallest blood vessels (≈10 µm), which 

assures the deposition of these particles as the arterial branches decrease in size. The narrow size 

distribution is necessary so that no particles escape and pass into the venous circuit. Further, the 

micro-vascular density of liver tumors is 3-200 times greater than the surrounding liver 

parenchyma (Fig 15), making the tumor allocation preferential with respect to normal tissue. The 

treatment undergoes several stages, as will be described next. 

  

Fig 15. Anatomy of the Liver (55) and corrosion cast of the venous and arterial system (56) 

When the patient is admitted several studies are performed including a 18F-fluorodexoxy glucose 

or (18F)FDG. A PET-CT scan is performed to assess tumor viability and to evaluate lesion 

(cancer) extent. A biopsy is also recommended to determine the nature of the cancer. If RMT or 

chemo-RMT is indicated as the proper treatment option, the patient is then prepared for treatment 

planning. The patient is put under local anesthesia and a catheter is inserted through the patient’s 

groin and guided towards the hepatic artery under fluoroscopic imaging (Fig 16). Dyes are 

injected (hepatic angiogram) to identify the branches that go to the stomach and other organs. 
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These branches are properly coil embolized to prevent the particles from moving to these areas 

(Fig 16). The angiogram also provides valuable information about the main branches feeding the 

tumor, this information is used for the treatment planning as well (57). 

 

Fig 16. Hepatic Artery Angiography with preferential flow to tumors and coil embolization 
example (58). 

Once all the steps are completed, macroaggregated albumin particles labeled with 99mTc are 

injected into the site. A planar scintigraphy to visualized lung, gastrointestinal (GI) and liver 

allocations is performed after injection (Fig 17). The tumor to liver ratio is also calculated to 

evaluate the potential effectiveness of the future treatment. The greater the tumor/liver ratio, the 

greater the potential effect of RMT while reducing the damage to healthy liver. The liver to lung 

ratio is used to evaluate if some of the therapeutic particles will allocate in the lungs after 

injection and produce radiation pneumonitis. If 20% or more of the particles go to the lung then 

the patient is no longer a candidate for RMT or a different approach must be followed (2). If any 

GI allocation is observed, the conducing vessels need to be coil-embolized before the treatment is 

administered. 
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Once the planning is complete, radiomicrospheres are injected into the different branches as 

planned and follow up PET and CT scans are performed to assess the effectiveness. Response to 

this treatment varies and over a third of all patients do not respond at all (59). The advantage of 

RMT plus chemo vs. chemo alone has been observed. In a double arm controlled phase II clinical 

trial RMT was selectively administered to half of the liver along with chemotherapy to the entire 

organ.  This highly selective injection protocol allowed for half of the liver to be treated with 

Chemo-RMT while the other half with chemo alone (figure 7) (59) so that each patient could 

serve as their own control. The results clearly demonstrated the advantage of adding RMT to 

chemotherapy. 

 

Fig 19. (18F)FDG PET-CT before and after treatment in three patients, lower half of the liver (left 
of green line) treated with Chemo-RMT, other half (right of line) treated with Chemo only (59) 
demonstrating improved response of RMT combined with chemotherapy and the potential for 

“highly” RMT. 
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2.4.1 Limitations of RMT 

The greatest limitation of RMT is the difficulty of dosimetric quantifications during the treatment 

planning. This is due to the fact that the 99mTc-MAA scintigraphy (Fig 20) is a single photon 

emission tomography technique (SPECT) and the difficulty in obtaining proper attenuation 

correction as compared to positron emission tomography (PET).  

 

Fig 20. Anterior and Posterior 99mTc-MAA Planar Scintigraphy (58) 

From the 99mTc-MAA planar image above (Fig 20) it is clearly impossible to determine what is 

lung and liver and how much overlapping exists. However better visualization is achieved when 

SPECT/CT is used (Fig 21) but as discussed previously quantification is very difficult. 
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Fig 21 Duodenal accumulation (arrow) in a patient with colorectal cancer, not definable on planar 
images. A: planar scan, B:SPECT/CT coronal view (60) 

The RMT planning will be greatly benefited by the inclusion of a PET isotope, since the 

technique is generally considered better than SPECT because of the ability for absolute 

attenuation correction and potentially superior resolution. Important advances were made in early 

years by labeling MAA with the PET isotope 68Ga (61), obtaining an 80 % labeling yield and 

purity > 95% for the Pulmolite MAA kit. However the potential of 68Ga-MAA was forgotten until 

recently, when new lung perfusion studies were made using this drug, partially due to availability 

of a reliable 68Ge/68Ga generator with minimal breakthrough impurities and high 68Ga yield (62) 

(Fig 22).  
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Fig 22 Results for 68Ga-MAA lung perfusion studies showing areas of low perfusion not seen 
with 99mTc-MAA SPECT (62). 

Similarly to 99mTc-MAA, 68Ga-MAA use was quickly extrapolated to RMT planning (63). 

Preliminary results show some advantages of a PET tracer over the common 99mTc-MAA for 

SPECT in tumor/liver ratio calculations and lung shunting localization (Fig 23).  

 

Fig 23 PET/CT image of 68Ga-MAA used for RMT planning (63) 
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The 68Ga-MAA used for both: the lung perfusion and RMT in planning studies; was prepared 

using the original MAA kit for 99mTc. This kit needs to be modified (washed) to obtain high 68Ga 

labeling yields which increase manipulation and therefore the risk of product contamination (61). 

A 68Ga specific lyophilized kit for labeling is not available in the market. Further, the MAA 

particles are supposed to act as surrogates for the 90Y labeled spheres and thus serve to predict the 

volume distribution of the 90Y. Imaging is mainly utilized for determination of lung-shunt 

fraction, and detection of extra-hepatic gastrointestinal uptake, both of which could be restrictive 

for safe administration of the treatment. Thus an accurate measurement is dependent on the 

distribution of the MAA particles and the assumption that its distribution will be identical to that 

of the 90Y microspheres. However, the size (10 to 90 µm with no particle over 150 µm) and the 

very irregular shape of the MAA do not at all resemble spheres. Hence the MAA used for 

imaging and treatment planning is actually a poor surrogate for the 90Y microspheres used for the 

actual therapy (Fig 2). Therefore, new biodegradable particles are needed for treatment planning.
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CHAPTER 3 68Ga PURIFICATION SYSTEM 

3.1 Abstract 

Purification of 68Ga obtained from the existing 68Ge/68Ga generators is a must.  With great 

potential for radiopharmaceutical use, the long half-life of the parent nuclide (68Ge, 278 days) 

demands absolute 68Ga radionuclidical purity. Metal impurities (Ti, Sn, Fe and Zn mainly) also 

interfere in the radiopharmaceutical labeling process. A combination of chromatographic 

exchange resins was used and a full system was designed to be used in four simple steps: elution - 

cleaning - purification - extraction. The solutions concentrations and volumes were optimized. 

With low cost and less than 10 minutes processing, the final 68Ga solution is easily buffered with 

Sodium Acetate for labeling. The disposable system can easily be recycled and re-sterilized to 

reduce cost even more. It is also an alternative for 68Ga research laboratories since it can be used 

for over 100 elutions for more than 3 months without reconditioning for non-human applications 

and still provide reliable purification and labeling. 

3.2 Introduction 

Positron Emission Tomography (PET) is a medical imaging technique with high resolution and 

sensitivity. It can use the so called “biogenic” radioisotopes (11C, 13N and 15O) produced in a 

cyclotron; however their short half-life (20.3 min, 9.97 min and 2.03 min, respectively) (64). The 

most used cyclotron produced radioisotope is 18F (half-life 109.7 min) in its 18FDG form. Another 

cyclotron produced radioisotope is 68Ga, which can also be obtained from the 68Ge/68Ga 

generator. 68Ga (half-life 68 min) presents great potential for radiolabeling of several imaging 

agents, especially peptides for theranostic applications. Whether it is cyclotron or generator 

produced, the product needs purification before labeling (65; 66). Existing systems employ either 
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acetone as elution media (65) which poses a patient risk or high HCl volumes that complicate 

handling (29) (Fig 24).  

 

Fig 24 Schematic representation of available systems for 68Ga post-elution processing (29). 1: 
Direct Elution; 2: Purification with HCl/Acetone mix after Cation absorption; 3: Elution to Conc. 

HCl; 4: Absorption into anion exchanger; 5: Desorption with water; 6: Fractionated elution. 

Fractioning is a safer method than using acetone or high HCl volumes, however only around 60% 

of the eluted activity (already around 60 % of the activity of the generator) can be used (29). A 

new, cGMP capable, single use and low cost 68Ga purification system is needed for 

radiopharmaceutical applications. 

3.3 Materials and Methods 

A combination of chromatographic exchange resins was used to build the purification system 

(67). Two luer-fitting column beds were prepared. First, 40±10 mg of AG-50Wx8 cation 

exchange (Eichrom, USA) column is connected to a three-way stopcock. Next, 15±5 mg of 

UTEVA® anion exchange (Eichrom, USA) resin in a column is positioned. Finally, another 

three-way stopcock is located at the end (Fig 25 Purification System setup). The purification of 

the 68Ge/68Ga eluent takes place in four simple steps: elution (from the generator, 5 ml of 0.1 M 
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HCl) - cleaning (1 ml of 0.1 M HCl) - purification (1 ml of 5 M HCl) – extraction (1 ml of 

Millipore Water). 

3.4 Results and Discussion 

The assembly of the purification system is simple and easy to use (figure 2).   

 

Fig 25 Purification System setup 

The optimized and simple four-step purification process is as follows: 1. Elution of the generator 

using a 0.1 M HCl solution. During this step the gallium is trapped with most of the metal 

impurities in the cation exchanger. Most of the 68Ge contamination is removed in this step. 2. 

Cleaning is performed with one extra mL of 0.1 M HCl through the syringe dock to remove the 

excess solution coming from the generator. One mL of air is then vented to the system. 3. 

Purification is performed with slow elution using 1 mL of 5 M HCl. The Ga3+ forms a GaCl4
- 

complex so it is released from the cation exchanger and absorbed onto the anion exchanger. One 

mL of air is also used to vent the system. All the metal impurities are eliminated in this step 

(especially Fe, Ti, and Zn). 4. Extraction is done using 1 mL of Millipore water in which the 

gallium complex is destroyed and released from the anion exchanger into the labeling vial. One 

mL of air is pushed through the system to remove most of the 68Ga (figure 3). The purification 
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system retrieves approximately 85% of the eluted gallium activity after 10 minutes of processing. 

It provides pure, pre-concentrated 68Ga in slightly acidic solution that is easily buffered by adding 

0.3 mL of 3 N ultrapure sodium acetate (67). All the 68Ge is eliminated in the process, 

consequently radio-nuclide impurities are eliminated from the labeling process. 

 

Fig 26 68Ga recovery and 68Ge elimination during the purification process 

The purification system can be reused for 100+ times without altering its performance. However 

to maintain sterility it is recommended to be used once and disposed of or reconditioned. 

3.5 Conclusions 

An inexpensive, simple to use and cGMP capable purification and preconcentration method for 

the 68Ga generator elution was created and optimized. Labeling yields obtained for different 

products are high (90 - 99.9 % depending on the application) and consistent. Great repeatability 

was shown in all purifications. The system is used but not limited to the Eckert and Ziegler IGG-
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100 68Ge/68Ga generator. It has also been used for purification of cyclotron produced 68Ge and it 

is a good candidate for use with the iThemba 68Ge/68Ga generator.  
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CHAPTER 4 68Ga-MAA 

4.1 Abstract 

Rapid developments in the field of medical imaging have opened new avenues for the use of 

positron emitting labeled microparticles. The radioisotope used in our research was 68Ga, which is 

easy to obtain from a generator and has good nuclear properties for PET imaging. METHODS: 

Commercially available macroaggregated albumin (MAA) microparticles were suspended in 

sterile saline, centrifuged to remove the free albumin and stannous chloride, re-lyophilized, and 

stored for later labeling with 68Ga. Labeling was performed at different temperatures and times. 

68Ga purification settings were also tested and optimized. Labeling yield and purity of re-

lyophilized MAA microparticles were compared with those that were not re-lyophilized. 

RESULTS: MAA particles kept their original size distribution after re-lyophilization. Labeling 

yield was 98% at 75 ºC when a 68Ga purification system was used, compared to 80% with 

unpurified 68Ga. Radiochemical purity was over 97% up to 4 hours after the labeling. The re-

lyophilized MAA and labeling method eliminates the need for purification and simplifies the 

labeling process. Animal experiments demonstrated the high in vivo stability of the obtained PET 

agent with more than 95% of the activity remaining in the lungs after 4 hours. 

4.2 Introduction 

Starting in 1964, several efforts have been made to find an agent for perfusion and embolization 

(68; 69). A lyophilized kit for the preparation of 99mTc-MAA was created in 1974 for Single 

Photon Emission Tomography (SPECT) imaging. With the arrival of Positron Emission 

Tomography (PET) the formulation of an analogue drug with a positron emitter was needed. 

Among the available PET isotopes 68Ga is easily obtained from its parent nuclide 68Ge by 

chromatographic column separation with different inorganic exchangers. The long lived parent 
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allows the construction of a generator that can last up to two years (70) compare to a 99mTc/99Mo 

generator which lasts only for 1-2 weeks. MAA was first successfully labeled with 68Ga in 1989 

(61), but never used, probably due to unreliability of the existing 68Ge/68Ga generators and low 

availability of PET imaging cameras. Revived interest has been shown recently (71), and the first 

PET lung perfusion studies in humans have been performed (Fig 27) (62).  

 

Fig 27 Comparison of A: Coronal and sagittal SPECT perfusion; B: Coronal and sagittal PET 
perfusion and C: axial PET/CT perfusion WITH 68Ga-MAA 

Radiomicrosphere Therapy (RMT), a technique used to treat metastatic liver cancer, could also 

benefit from a PET perfusion tracer. During the planning stage, a 99mTc-MAA perfusion scan is 

performed to assess the allocation in lung and gastrointestinal tract. It is also used to calculate 

tumor to normal liver allocation ratio (46). The distribution acts as a predictor of the treatment 

safety and effectiveness. A PET perfusion agent (e.g. 68Ga-MAA) could provide valuable, 

quantifiable information to calculate precise doses, which could potentially improve the treatment 

outcome. Initial work with 68Ga-MAA for RMT planning has already been performed (72). 

All reported 68Ga labeling of MAA has been done using a commercial MAA kit for 99mTc. The 

original kit contains 100 µg of stannous chloride and free albumin; hence the particles need to be 

washed with saline before 68Ga labeling. The maximum reported labeling yield using this kit is 

around 80% (71). Elimination of the free 68Ga via centrifugation is therefore necessary. The 

purification process is also required to eliminate traces of the long half-life 68Ge that are eluted 
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from the generator. A new 68Ga specific MAA lyophilized kit is needed for labeling. Further, it 

needs to be combined with a pre-purification system that assures prior elimination of 68Ge traces 

and provides pure, pre-concentrated 68Ga for labeling. 

4.3 Materials and Methods 

 4.3.1 MAA lyophilized kit preparation 

Macroaggregated Albumin (MAA) was obtained from Triad Isotopes® (DraxImage® Kit). The 

content was reconstituted with 0.9% saline solution, separated into two 15 ml centrifuge tubes, 

centrifuged (Eppendorf, Germany) and the supernatant discarded (“Washed MAA”) (61). The 

particles were then re-lyophilized overnight and stored for labeling (“Re-Lyophilized MAA”). 

Size and morphology analysis was performed on the reconstituted MAA using an optical 

microscope (Micromaster, Fisher-Sci, USA) and a hemacytometer (Reichert, USA) before and 

after re-lyophilization. The 68Ge/68Ga generator used was the 50 mCi IGG-100 (Eckert & Ziegler, 

Germany), based on the TiO2 resin technology, eluted with 5 ml of 0.1 M ultrapure HCl (Sigma-

Aldrich, USA) solution. 

 4.3.2 MAA Labeling  

Both, washed MAA and re-lyophilized MAA, were labeled (using the original Green’s method 

(61; 71)) with either purified or unpurified 68Ga solution. The unpurified 68Ga solution was 

obtained directly from the generator (5 ml, pH=1). The purified 68Ga elution (1 mL with pH=0.6) 

was obtained from the purification system. Both were buffered using 0.3 ml of 3N ultrapure 

sodium acetate (Sigma-Aldrich, USA). The solution was added to the 15 ml centrifuge tube 

containing the MAA. Labeling was performed using a thermomixer with a heating block for 15ml 

centrifuge tubes and stirring at 750 rpm (Eppendorf, Germany). Labeling temperature was 25 

(room temperature), 50, 75 and 95 degrees Celsius. Labeling time was set at 15 minutes based on 
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previous reports of 68Ga-MAA labeling kinetics (61; 71). Particles were separated from the 

supernatant by centrifugation. The particles and supernatant were measured separately using an 

Atomlab 100 dose calibrator (Biodex, USA). Final particles were re-suspended in 5mL saline 

solution with a vortex mixer (Fisher-Sci, USA). 

4.3.3 Lung Perfusion Experiments: 

Sprague Dawley rats (200-225 grams, 2 per time point) were obtained from Harlan Laboratories 

(Harlan, USA). Animals were weighed before the procedure and anesthetized using an Ohmeda 

Isotec 3 isolfurane vaporizer (GE Healthcare, USA). Isolfurane levels were kept ≤3 % at all 

times. Once completely anesthetized, animals were restrained in the supine position and a torso 

X-Ray was obtained (Belmont Acuray 071A, USA). Later, 100 µL of the labeled MAA (8,000-

10,000 particles) with an activity ranging from 50 to 100 µCi (1.85-3.7 MBq) was injected 

through the lateral tail vein. Animals were euthanized at 2 or 4 hours. For either time points their 

lungs, liver, spleen, heart, kidneys, ribs and 0.2 ml of blood and urine were collected, weighed 

and activity measured using a Cobra 5000 well counter (Packard, USA). Un-collimated 

autoradiography images (in the unaltered supine position the X-Ray was obtained) were also 

taken at 1, 2, 3 and 4 hours (Packard Phosphorimager, Perkin Elmer, USA). Free 68Ga was 

injected as a control. Additionally, imaging and organ collection were performed following 

99mTc-MAA and free 99mTc injection for comparison purposes. 99mTc-MAA and Na99mTcO4 were 

purchased from a local pharmacy (Triad Isotopes®, USA). Pertechnetate was reduced with 100 

µg of Stannous Chloride (Sigma-Aldrich, USA) before injection. The obtained X-Rays and the 

autoradiography images were superimposed to provide anatomical and functional data. 
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4.4 Results and Discussion 

 4.4.1 MAA re-lyophilization 

The elimination of the excess free albumin is a necessary step prior to successful labeling with 

68Ga (“washed MAA”) [4, 5]. Re-suspension of the particles was fast using a vortex mixer; 

manual shaking of the vial was also efficient. Re-lyophilization of the MAA did not change either 

the particle’s size distribution or morphology (figure 1). 

 

Fig 28 MAA microscope images; A: From original un-modified MAA kit and B: From re-
lyophilized MAA. 

4.4.2 MAA Labeling 

Labeling yield of MAA with unpurified 68Ga was 78.3±3.1 % after 15 minutes at 75 ºC, similar to 

that reported by other investigators [4]. A labeling yield of 72.1±6.2 % was obtained at 50 ºC 

(Figure 4). Better labeling yield (96.9±2.1 %) was obtained at 95 ºC, however the particle 

morphology was considerably changed. Smaller particles were detected and in higher 

concentration, apparently due to the rupture of bigger macroaggregates. The labeling yield at 

room temperature was 50±4 %. Radiochemical purity tests were conducted for all the products 

showing more than 97% in vitro stability in all cases after 4 hours. 
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Fig 29 68Ga-MAA labeling yield results. 

The introduction of the 68Ga purification system improved the labeling yield significantly 

(p<0.003). An 84.1±3.1 % labeling yield was obtained at room temperature (25ºC). This yield is 

higher than the maximum yield obtained at 75 ºC with unpurified 68Ga. However, if room 

temperature labeling is performed, post-labeling purification is still needed to assure a final 

radiochemical purity >90 %. In the particular case of MAA, labeling at up to 75ºC has been 

proven to not damage the particles. Nevertheless, synthesis near room temperature or elimination 

of the heating step all together is obviously desirable. Good labeling yield of 92.8±2.6 % was 

obtained at 50 ºC. However, when labeling at this temperature, purification is still recommended 

since nearly 10 % of free 68Ga will be present in the final product. 

The labeling of MAA with purified 68Ga yielded the best results at 75 ºC (figure 4). A labeling 

yield of 97.6±1.5 % was obtained after 15 minutes of reaction. Particle distribution and 

morphology remained well within specifications and a >95% radiochemical purity was obtained. 
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Labeling at this temperature eliminates the need for a final purification of the product, rendering 

the radiopharmaceutical ready for injection immediately. Experiments with purified 68Ga-MAA at 

95 ºC were not performed because of the previously observed particle change at that temperature. 

Re-lyophilized MAA labeling with purified 68Ga showed no significant difference from the 

results obtained with the Washed MAA (but not lyophilized, p>0.8). The elimination of the free 

albumin and the stannous chloride from the original formulation followed by re-lyophilization of 

the MAA does not compromise either re-suspension or morphology (and size distribution) of the 

particles. The re-lyophilized MAA (or MAA prepared without SnCl2 and free albumin), in 

combination with the 68Ga purification system, allows for the preparation of a single-use 

lyophilized kit for the preparation of 68Ga-MAA. This kit can be used for Positron Emission 

Tomography in lung perfusion studies, radiomicrosphere therapy (for liver cancer) planning and 

other applications requiring perfusion imaging. 

4.4.3 Lung Perfusion Experiments: 

More than 97% of the injected dose per gram of (ID/g) 68Ga-MAA activity was detected in the 

lungs after tail vein injection (seen in the image taken after 10 minutes, not shown) and until at 

least 4 hours after injection (Fig 30). Less than 2 % of ID/g activity was measured in any organ 

other than lungs after 2 and 4 hours. In contrast, most of the injected free 68Ga (> 60 %) remains 

in the blood after 4 hours (presumably as 68Ga-native transferrin complex). The remaining 

activity was extracted by the kidneys to the bladder (13 %) or absorbed by the liver (15 %).  

The behavior and “in vivo” radiochemical purity of 99mTc-MAA was different than that of 68Ga-

MAA. 99mTc was slowly released from the MAA and extracted by the kidneys into the urine 

(7.6±1.3 after 2 hours and 12.3±1.2 after 4 hours). Only 86.6±0.7 % of the decay corrected 

activity was found in the lungs after 2 hours, decreasing to 79.2±1.5 % at 4 hours. 
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Fig 30 Decay Corrected Organ Biodistribution of 68Ga-MAA, free 68Ga, 99mTc-MAA and free 
99mTc. 

Free 99mTc (reduced with SnCl2) allocates mainly in the lungs and liver. The % ID/g did not 

change over the study period. 68Ga-MAA exhibited better in vivo stability than 99mTc-MAA (Fig 

30). The autoradiography images clearly showed the preferential allocation of 68Ga-MAA in the 

lungs over the period studied (Fig 32). The drug-product in-vivo half-life was determined using 

regions of interest in the autoradiography images. A square cell of 40x40 mm was used to count 

the activity in the lung region for each time point. For 99mTc-MAA biological half-live was found 

to be T½=11.4±1.7 hours. This is consistent with the previously reported value of 11.5±4 hour 

biological half-life (73). The biological half-life of 99mTc-MAA is not to be confused with the 

MAA biological half-life. These are equal only if 100% in vivo radiochemical purity of 99mTc-

MAA is assumed. The assumption was reinforced by the fact that injected free 99mTc behaves 
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differently than that released from the MAA (Fig 30 and Fig 32). The only feasible explanation is 

that when free 99mTc is injected it forms nanocolloids with the SnCl2, being absorbed by the liver 

and lungs. While 99mTc released from the MAA is quickly absorbed by the kidneys. Furthermore, 

it is very unlikely that some form of degraded 99mTc-Albumin will be absorbed by the kidneys for 

excretion rather than be degraded in the liver. For over 40 years MAA half-life was considered to 

be in the 6-12 hour range (68; 73). However if MAA half-life happened to be so short, 

degradation would have been observed in the 68Ga-MAA experiments. The stronger 68Ga-MAA 

binding, with superior in vivo stability, proves that MAA half-life is much longer than previously 

assumed (46) and the shorter half-life can be attributed to the poorer stability of 99mTc-MAA. 

 

Fig 31 Normalized and radio-decay-corrected lung allocation for 68Ga-MAA and 99mTc-MAA at 
1, 2, 3 and 4 hours (n=2 per time point). 

The assumption of a shorter MAA half-life has little or no implication in lung perfusion studies or 

probe guided surgery. However a greater implication is present when using the radiolabeled 

MAA in planning for liver cancer RMT. The radio-microsphere technique is based on several 
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planning steps. One of them is a particle distribution assessment using 99mTc-MAA, mainly to 

determine lung and gastrointestinal (GI) allocation after hepatic artery injection. If only liver 

allocation is found (less than 20% lung allocation and no GI allocation), then the radio-

microsphere treatment is administered after 48 hours since the MAA is assumed to have been 

cleared from the vessels (assuming a MAA half-life of 6-12 hours). Despite the wrong MAA half-

life assumption, the treatment is successful. Therefore, it must be concluded that the effectiveness 

of the treatment does not require the complete decay of the treatment planning microparticles. 

Because they are injected in small numbers, enough arterioles seem to still be available for the 

allocation of the therapy particles. However, whether or not the treatment could benefit from the 

use of faster degrading planning particles (faster than MAA), remains an open question. 

Nevertheless, a precise determination of MAA half-life is needed, and can probably be measured 

by combining the strong gallium binding with an isotope with a longer radioactive half-life (e.g. 

67Ga-MAA, t½(67Ga)= 3.26 days). 
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Fig 32 Non decay-corrected, un-collimated full body autoradiography for free 68Ga (T½= 68 
min), 68Ga-MAA, 99mTc-MAA and free 99mTc (T½= 6.02 h) at 1, 2, 3 and 4 hours. Labeling of 

68Ga-MAA was performed with re-lyophilized MAA and purified 68Ga at 75 ºC for 15 minutes. 
The autoradiograph is superimposed on an X-ray image of the same animal in the unaltered 

supine position. 

The re-lyophilization of washed MAA was a first approach to show the feasibility of a 

lyophilized kit specifically for 68Ga-MAA. In a production facility the pharmaceutical 

development would need to be different from that of the 99mTc-MAA kit. Free albumin and SnCl2 

would not need to be added to the final product. The high labeling yield obtained during the 

preparation of 68Ga-MAA eliminates the need for final centrifugation for purification. What 

seems to be the apparent elimination of a single step has major implications. In these conditions 

the purification/labeling scheme can be easily automated using one of the available modular labs 
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for PET synthesis (e.g. Modular-Lab PharmTracer, Eckert and Ziegler, Germany), or it could 

easily be accomplished in a nuclear medicine hot-lab in a hospital. 

4.5 Conclusions. 

A Gallium specific lyophilized kit for 68Ga-MAA production was created. The kit is comprised of 

a vial containing MAA (re-lyophilized DraxImage® Kit), a 68Ga purification system and working 

solutions in the following syringes: 5 mL of 0.1 M HCl (elution), 1 mL 0.1 of M HCl (cleaning), 

1 mL of 5 M HCl (purification), 1 mL of Millipore Water (extraction) and 0.3 mL of 3 N NaAc 

solution (buffer). Labeling at 75 ºC for 15 minutes is recommended for labeling yields higher 

than 95% with no further purification necessary. Room temperature labeling is possible for 

producing 80% labeling yield, but post-labeling purification is needed. The in vivo stability of the 

obtained 68Ga-MAA drug product is superior to that of 99mTc-MAA. Use of 68Ga-MAA in RMT 

planning is potentially possible and likely to benefit from superior imaging/quantification and 

more accurate dosimetric calculations.  
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CHAPTER 5 99mTc Labeled Microspheres 

5.1 Abstract 

Chitosan Glycol (CHSg) and poly(glycerol-citric-dodecanediooate) (PGCD) microspheres are 

labeled with 99mTc as an alternative for MAA in perfusion SPECT studies. Microspheres are 

created and characterized. Labeling study and in vitro radiochemical stability were performed. 

Particle degradation in PBS buffer was also performed over 48 hours. A feasible particle size 

distribution of ≈30±10 µm was obtained for both compositions. High in vitro radiochemical 

purity was found for the labeled particles in the 4 hours study. Particle degradation was 24 hours 

for PGCD and 48 hours for CHSg in PBS buffer. Labeled microspheres were injected into 

Sprague Dawley Rats and biodistribution was determined after 2 and 4 hours. Both 99mTc-PGCD 

and 99mTc-CHSg were quickly allocated in the lungs after injection. PGCD microspheres 

degraded at a fast rate and most of the injected 99mTc activity was released from the lungs after 1 

hour. CHSg microspheres were proven useful for lung perfusion studies with 91 % and 83 % of 

the injected activity remaining in the lungs after 2 and 4 hours respectively. 

5.2 Introduction 

Since 1974 the use of 99mTc-MAA (macroaggregated albumin) has been established as the gold 

standard for lung perfusion studies (73). The availability of a MAA lyophilized kit (73) and the 

99Mo/99mTc radioisotopic generator (74) facilitated the use of 99mTc-MAA as a lung perfusion 

agent. As discussed previously, orientation of macroaggregates (seldom spherical) in the blood 

flow becomes important to determine “effective size”, making it difficult to predict the in vivo 

behavior. Aggregate degeneration is another component making the size distribution variable and 

unreliable (43). The ideal (theoretical) perfusion particle should be spherical (size not to be 

dependent on particle orientation) with a practical size distribution of 30±10 µm. Polymeric 
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spherical microparticles with narrow size distributions have been previously obtained (75). As 

stated before, RMT planning will most likely benefit from particles with shape and size 

distribution similar to that of the therapy microspheres. It will also decrease the risk of disease 

transmission due to human derived materials (MAA).  

Many of the available biocompatible polymers have been labeled with 99mTc. Some examples are 

99mTc-PLGA (poly(DL-lactide-co-glycolide)) nanoparticles (76), 99mTc-PLA (poly lactic acid) 

(77) and 99mTc-CHS (Chitosan) (78) among others. PLGA and PLA have known long (months) 

degradation times. CHS has been found to have an in vitro half-life greater than 21 days (79). 

This characteristic is relatively undesired when performing lung perfusion studies or for RMT 

planning, as the particles need to degrade fast (maximum 48 hour half-life) and restore blood 

flow. 

There are some alternatives of CHS in the market with both high and low solubility in water (80). 

Solubility of the polymer is directly related to particle degradation half-life. There is a 

compromise in the ideal particle degradation: it has to be slow enough to allow allocation in the 

lungs and imaging, but fast enough to clear the vessels and restore blood flow afterwards (half-

life 12-48 hours). One of the best candidates is found in Chitosan Glycol (CHSg), with only 2 

mg/ml solubility in water, well characterized and commercially available (Sigma-Aldrich, CHSg 

≥60%). Degradation can be manipulated using glutaraldehyde as crosslinking agent. Another 

potential polymer for microparticle preparation is our “in-house” poly(glycerol-citric-

dodecanediooate) (PGCD), since it degrades fast by hydrolysis and all the possible degradation 

products are biocompatible. Also, the speed of degradation can be manipulated by changing the 

C/D ratio, the greater the ratio, the faster it degrades. 
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5.3 Materials and Methods 

5.3.1 Particle Preparation and Characterization 

Chitosan glycol (Sigma-Aldrich, USA) particles were prepared using water in oil (w/o) emulsion 

technique. One ml of CHSg solution (2% w/v solution in 2% v/v Acetic Acid) was added drop 

wise to a round bottom flask containing an egg shaped magnetic stirrer, 20 ml of Toluene and 100 

µl of Tween® 80 (surfactant). Stirring rate was set at 1150 rpm (Corning-Cole Palmer, USA). The 

emulsion was stabilized for 15 minutes and 100 µl of glutaraldehyde (25 % in water, FisherSci, 

USA) was added. Stirring was continued for another 105 minutes. Later, toluene was decanted. 

Particles were washed three times with 200-proof ethanol (Sigma-Aldrich, USA) and lyophilized 

(Lyophilizer). PGCD was dissolved in 1 ml dichloromethane and added dropwise to a round 

bottom flask containing 20 ml of 0.5 Pluronic (F-127, BASF, Germany) solution stir at 850 rpm 

(Corning-Cole Palmer, USA). The emulsion was stirred for 2 hours until total evaporation of the 

CH2Cl2. Obtained particles were washed 3 times with water and lyophilized (Lab-Conco, USA). 

Size distribution, concentration and particle morphology were obtained with a hemacytometer 

(Reichert, USA) using an optical microscope (Micromaster, FisherSci, USA). 

5.3.2 99mTc-PGCD and 99mTc-CHSg labeling and stability  

Na99mTcO4 was obtained from a local pharmacy (Triad Isotopes, Miami, USA). One mCi was 

used to label approximately 100,000 particles in a 15 ml centrifuge vial containing the lyophilized 

particles after addition of 100 µl of 1 mg/ml SnCl2 stock solution (Sigma-Aldrich, USA). 

Labeling was performed during 30 minutes at 25 ºC and 750 rpm in a Thermomixer (Eppendorf, 

Germany). Particles were centrifuged, decanted from the supernatant and both measured for 

labeling yield.  
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Labeled particles (n=4) were resuspended in reconstituted (1% w/v) bovine hemoglobin lysate 

(FisherSci, USA). Particles were stirred for 4 hours at 37 ºC in a thermomixer (Eppendorf, 

Germany). Every hour the particles were centrifuged, decanted and measured together with the 

supernatant to assess radiochemical purity. 

Unlabeled particles were suspended in PBS buffer (pH≈7) and incubated at 37 °Celsius for a 

period of 48 hours. Samples were taken at 4, 12, 24 and 48 hours, gravity filtered through a 20 

µm nylon filter [Spectrumlabs, USA], recovered and counted in a hemacytometer to establish the 

remaining concentration. Decay profiles are shown in figure 22 demonstrating the potential for 

CHSg and PGCD for RMT planning (imaging). Therefore, these particles were further evaluated 

in vivo for lung perfusion studies. Thus, preliminary experiments were performed to evaluate in 

vivo degradation of CHSg in mouse (ND4 Swiss Webster, Harlan, USA) 

Lyophilized CHSg microparticles were re-suspended in carbonate buffer (pH=9.34). NHS-

Fluorescein (Thermo Scientific, USA) was dissolved in Dimethyl Sulfoxide (DMSO, Thermo 

Scientific, USA) with a concentration of 10 mg/ml. A total 1 mg of NHS-Fluorescein (100 µl of 

the stock solution) was added to the vial containing the particles and stirred for 2 hours (Fig 33). 

At the end of the reaction particles were centrifuged, washed three times with water and finally 

lyophilized (Lyophilized CHSg-Fluorescein).  

 

Fig 33 CHSg + NHS-Fluorescein reaction 
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For these preliminary experiments in mice, particles were re-suspended in saline solution for 

injection (FisherSci, USA) and ≈5000 particles were injected to each animal in the lateral tail 

vein. Animals were euthanized at 12 and 24 hours (n=2 per time point). Before extraction of the 

lungs, the trachea was isolated and a V cut was made. A syringe containing Optimal Cutting 

Temperature (OCT, Tissue-Tek, USA) liquid was inserted in the trachea and the lungs were filled 

with 0.5 ml. Lungs were finally extracted and frozen in a plastic mold filled with OCT and dipped 

in cyclopentane cooled to -80 ºC with dry ice. Specimens were obtained by cryosectioning the 

frozen samples in a Microtome (Leica, Japan). Sections were analyzed in a florescent microscope 

(Olympus IX81 with a Q Imaging Retiga 1300 Camera, USA). 

5.3.3 Lung Perfusion Experiments 

Animals (Sprague Dawley rats 200-225 grams, 2 per time point, Harlan, USA) were weighed 

before the procedure and anesthetized using an Ohmeda Isotec 3 isolfurane vaporizer (GE 

Healthcare, USA). Animals were restrained in the supine position (completely anesthetized) and a 

torso X-Ray was obtained (Belmont Acuray 071A, USA). Later, 100 µL of the labeled 99mTc-

PGCD or 99mTc-CHSg (8,000-10,000 particles) with an activity ranging from 1.85-3.7 MBq (50 

to 100 µCi) was injected through the lateral tail vein. Animals were euthanized at 2 or 4 hours. 

For both time points lungs, liver, spleen, heart, kidneys, ribs and 0.2 ml of blood and urine were 

collected, weighed and measured for activity using a Cobra 5000 well counter (Packard, USA). 

Non-collimated autoradiography images (in the unaltered supine position the X-Ray was 

obtained) were also taken at 1, 2, 3 and 4 hours (Packard Phosphorimager, Perkin Elmer, USA). 

In one group 68Ga was injected as a control. Additionally, imaging and organ collection were also 

performed with 99mTc-MAA and free 99mTc for comparison purposes. 99mTc-MAA was purchased 

from a local pharmacy (Triad Isotopes®, USA). Pertechnetate (obtained as Sodium Pertechnetate 

from Triad Isotopes, USA) was reduced with 100 µg of Stannous Chloride (Sigma-Aldrich, USA) 
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before injection. The obtained X-Rays and the autoradiography images were superimposed to 

provide anatomical and functional data. 

5.4 Results and Discussion 

5.4.1 Particle Preparation and Characterization 

The emulsion method used created spherical particles with a size distribution of approximately 

30±10 µm (figure 2). 

 

Fig 34 Obtained particles A: PGCD and B: CHSg. 

Lyophilization and labeling of the particles did not affect their size and morphology. Chitosan 

microparticles swelled 20-25% when placed in contact with water, a feature that was taken into 

consideration when producing these particles (Fig 35). The produced PGCD microparticles 

needed to be filtered through a 20 µm nylon filter (Spectra/Mesh, Cole Palmer, USA) to assure 

proper distribution (Fig 35). 
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Fig 35 Size distribution for: A: PGCD size distribution before and after filtration and B: CHSg 
size distribution in saline solution. 

5.4.2 99mTc-PGCD and 99mTc-CHSg Labeling and stability 

Particles were labeled obtaining 87.5±4.1 % and 94.7±0.2 % labeling for PGCD and CHSg 

respectively (Fig 36). PGCD microspheres showed better in vitro stability with over 97 % 

radiochemical purity at all times during the 4 hour study. CHSg microparticles quickly decreased 

the radiochemical purity to 82% remaining fairly constant afterwards (80% after 4 hours) (Fig 

36). 
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Fig 36 Labeling yield and in vitro radiochemical purity of 99mTc-CHSg and 99mTc-PGCD. 

Even though the in vitro radiochemical purity of 99mTc-CHSg decreased rapidly to 80% after 

labeling, the particles were tested in animal experiments. Lung perfusion studies are performed 

with particles allocating in the vessels and the vessel occlusion locally reduces the fluid in contact 

with the particles increasing the chances of a successful image. Because of the high labeling yield 

obtained for 99mTc-CHSg (96.1±0.3 %) the particles did not need post-labeling purification. The 

87.5% labeling yield obtained for the PGCD microspheres was high enough for imaging studies 

but post-labeling purification is required. This was performed by centrifuging the particles (1000 

rcf, 30 seconds) and removing the supernatant using a 5” spinal needle. Particles were later 

resuspended in saline for injection.  

Microsphere in vitro degradation showed an approximated half-life of 24 hours for PGCD and 48 

hours for CHSg (Fig 37). Chitosan (CHS) is shown as a control since its degradation is known to 

be longer. In vivo degradation (for both CHSg and PGCD microparticles) is expected to be faster. 
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number of images were necessary to quantify the particles half-life. Extended lung crysectioning 

experiments were performed and are described in Chapter 6. 

 

Fig 39 Cryosection Images. A and C: bright field and fluorescence images of a 12 hour sample; B 
and D: bright field and fluorescence images of a 24 hour sample. 

5.4.3 Lung Perfusion Experiments 

Following tail vein injection, most of the injected 99mTc-CHSg activity was allocated in the lungs 

within the first 30 seconds (checked with Geiger counter, Victoreen ASM-990, Fluke, USA). 

After 2 hours 91.6±6.5% of the injected activity (decay corrected) was allocated in the lungs 

(Cobra 5000 well counter, Packard, USA). After 4 hours 83.2±4.1% was still found in the lungs 

(Fig 40).  
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Fig 40 Decay Corrected Biodistribution of 99mTc-CHSg compared to 99mTc-MAA 

The activity released from the lungs was almost exclusively excreted to the urine accounting for 

4.9±2.5% and 10.0±2.1% decay corrected injected dose per gram (DC-ID/g) after 2 hours and 4 

hours respectively. Less than 3% DC-ID/g was detected in all the other organs at any given time 

point (Fig 40). Lung perfusion images were obtained at several time points confirming the 

preferential lung allocation (Fig 41). Lung perfusion performance of the 99mTc-CHSg particles is 

slightly better than that of 99mTc-MAA. 
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Fig 41 Un-collimated, non-decay-corrected full body X-Ray/Autoradiography of 99mTc-CHSg, 
99mTc-MAA and free 99mTc. 

Injected 99mTc-PGCD was also allocated in the lungs within the first 30 seconds (checked with 

Geiger counter, Victoreen ASM-990, Fluke, USA), and confirmed with a 10 minutes image (Fig 

43). However, the 2 and 4 hour biodistribution (Fig 42) shows strong degradation of these 

particles.  
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Fig 42 Decay Corrected Biodistribution of 99mTc-PGCD Biodistribution compared to 99mTc-MAA 

A significant 56.4±2.9% DC-ID/g was found in the lungs after 2 hours, decreasing to 29.9±1.1% 

DC-ID/g after 4 hours (Fig 42). The behavior of 99mTc when injected free and as 99mTc-PGCD is 

fairly different. The first 99mTc-PGCD degradation products are eliminated to the bladder 

(27.1±4.1% DC-ID/g after 2 hours, increasing to 31.4±5.3 % DC-ID/g at 4 hours). Contrary to 

free 99mTc (44.6±2.8 % DC-ID/g in liver after 2 hours), only 2.8±0.5 % DC-ID/g is found in the 

liver after 2 hours. However the liver allocation is increased to 19.8±1.9 DC-ID/g after 4 hours. 

The blood concentration did not vary during the study (7.3±0.1 and 7.6±1.2 % DC-ID/g after 2 

and 4 hours). The in vivo biodistribution of 99mTc-PGCD was similar to that of 99mTc-MAA but 

with a much faster degradation and larger liver allocation after 4 hours. 
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Fig 43 Un-collimated, non-decay-corrected full body X-Ray/Autoradiography of A: 99mTc-PGCD 
compared to B: free 99mTc after 10 minutes. 

Even when strong lung allocation is observed in the 10 minutes image, some free 99mTc is already 

observed in the blood stream at this time point (Fig 43). Nevertheless, 99mTc-PGCD remains a 

potential perfusion agent, however more experiments varying the D:C ratio in the polymer are 

needed. The greater the D:C ratio, the more hydrophobic the polymer. However, with a greater 

the D:C ratio the polymer becomes more positively charged decreasing the labeling yield for 

radiometals. Therefore, in order to have proper degradation half-life and maximize labeling yield, 

the D:C ratio needs to be optimized. 

5.5 Conclusions 

Microspheres within the desired 30±10 µm size range were successfully obtained for PGCD and 

CHSg.  Labeling was performed with >90% yield and in vitro radiochemical stability after 4 

hours. Particle in vitro degradation half-life in PBS showed a faster degradation speed for PGCD 

(half-life ≈ 24 h) compared to that of CHSg (half-life ≈ 48 h). In vivo studies with 99mTc-PGCD 

labeled microspheres show strong initial allocation in the lungs, however fast degradation of 

PGCD was observed releasing 99mTc into the blood stream.  Much better results were found for 

99mTc-CHSg labeled microparticles. Two hours post injection 91.6±6.5% of the injected activity 
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(decay corrected) was allocated to the lungs with 83.2±4.1% after 4 hours. It can be concluded 

that 99mTc-CHSg is a feasible microsphere lung perfusion agent that has the potential to be used 

as surrogate during RMT planning. 
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CHAPTER 6 68Ga Labeled Microspheres 

6.1 Abstract 

Fast biodegradable microspheres (12 h < half-life < 48 h) labeled with a positron emitter are 

needed for PET lung perfusion and RMT planning. An emulsion method was used to create 

30±10 µm size range microspheres with biodegradable polymers (PGCD and CHSg). The surface 

of CHSg microspheres was modified with NOTA for higher in vivo stability. 68Ga labeling of all 

the microspheres was performed with >90% yield and in vitro radiochemical stability after 4 

hours. Particle in vitro degradation half-life in porcine plasma showed a fast <30 minutes half-life 

for PGCD and approximately 24 hours for CHSg and CHSg-NOTA. In vivo studies with 68Ga-

PGCD labeled microspheres show fast release of 68Ga.  Similar results were found for the 68Ga-

CHSg labeled microparticles demonstrating the need for surface decoration of CHSg 

micropsheres with p-SCN-Bn-NOTA. For the obtained 68Ga-NOTA-CHSg microspheres, lung 

allocation was very high with 98.9±0.2 % and 95.6±0.9 % after 2 and 4 hours respectively. Even 

when remarkable lung allocation was obtained another important result is that the addition of p-

SCN-Bn-NOTA acts as a radioprotectant quickly eliminating the released activity from the lungs 

to the bladder. 

6.2 Introduction 

The greatest limitation of RMT is the impossibility of quantifying the dosimetry during the 

treatment planning. This is due to the fact that the 99mTc-MAA scintigraphy is a single photon 

emission tomography technique (SPECT) and the difficulty in obtaining proper attenuation 

correction as compared to positron emission tomography (PET). The RMT planning will be 

greatly benefited by the inclusion of a positron emitter radioisotope; since absolute attenuation 

correction and potentially superior resolution is present in PET. Important advances were made in 

early years by labeling the Pulmolite MAA kit with 68Ga (61), obtaining an 80 % labeling yield 
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and purity > 95% for. The advantages of spherical microspheres for perfusion studies, with a 

practical size distribution of 30±10 µm have been discussed extensively in previous chapters 

(Chapter 1, 2 and 5). There is a need for fast biodegradable (12 h < half-life < 48 h) microspheres 

that can be labeled with a PET isotope for proper RMT planning. 

6.3 Materials and Methods 

6.3.1 Particle Preparation and Surface Modification 

PGCD (75:25 and 50:50 D:C ratio) was prepared similarly to that used for 99mTc labeling. 

Approximately 150 µg were dissolved in 1 ml dichloromethane and added drop wise to a flask 

containing 20 ml of 0.5 Pluronic (F-127, BASF, Germany) solution while stirring at 850 rpm 

(Corning-Cole Palmer, USA). The emulsion was stirred for 2 hours until total evaporation of the 

CH2Cl2. Obtained particles were washed 3 times with water, filtered through a 20 µm filter 

(Spectra/Mesh, Cole Palmer, USA) and lyophilized (Lab-Conco, USA).  

Chitosan glycol (Sigma-Aldrich, USA) was dissolved in a 2% w/v, 2% v/v acetic acid solution. 

Microspheres were prepared in a w/o emulsion adding dropwise 1 ml of CHSg stock solution to a 

flask containing 20 ml of Toluene and 100 µl of Tween® 80 (surfactant) while stirring at 1150 

rpm. After 15 minutes 100 µl of glutaraldehyde (25 % in water, FisherSci, USA) was added. 

After 2 hours (total time since CHSg stock solution was added) toluene was decanted, and 

spheres were washed three times with 200-proof ethanol (Sigma-Aldrich, USA) and lyophilized 

(Lyophilizer). Size distribution, concentration and particle morphology were obtained with a 

hemacytometer (Reichert, USA) using an optical microscope (Micromaster, FisherSci, USA). 

A stock solution of p-SCN-Bn-NOTA (Macrocyclics, USA) with concentration 1 mg/ml in 

Na2HCO3/NaH2CO3 (pH 9.3-9.4, Sigma-Aldrich, USA), was prepared. Microspheres were 

resuspended in 1 ml of the p-SCN-Bn-NOTA Stock solution. The suspension was stirred at room 
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temperature for 4, 12, 24 and 48 hours (n=3 per time point) to form the NOTA-CHSg particles 

(81). The reaction yield was evaluated using a UV/Visible spectrophotometer (Varian/Agilent 

Technologies, Switzerland) at the 224 nm absorption peak of the p-SCN-Bn-NOTA (Fig 44). 

 

Fig 44 Surface decoration of CHSg microparticles with p-SCN-Bn-NOTA 

6.3.2 68Ga Labeling and CHSg Microspheres Degradation 

Labeling of 68Ga-NOTA-CHSg (pH=4), 68Ga-CHSg (pH=5.5) and 68Ga-PGCD (pH=5.5) was 

performed at room temperature in acetate buffer. A labeling kinetics study was done using four 

different reaction times: 5, 10, 15 and 60 minutes. In vitro radiochemical stability studies were 

performed in PBS buffer (pH=7) measuring the activity of centrifuged particles (Eppendorf, 

Germany) and the supernatant in a dose calibrator (Biodex, USA) at 1, 2, 3 and 4 hours after 

resuspension. 

For the in vitro degradation studies of the particles porcine blood was obtained from Mataderos 

Cabrera (Miami, USA), and centrifuged at 3000 rcf for 30 minutes. Plasma was later decanted 

and used for microsphere degradation experiments. Lyophilized CHSg, NOTA-CHSg and PGCD 

(both 50:50 and 75:25 D:C ratio) microspheres were resuspended in the plasma. CHSg and 
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NOTA-CHSg microspheres samples were extracted at 1, 2, 4, 12, 24, 48 and 72 hours. PGCD 

microspheres were also extracted but at 5, 10, 30 and 60 minutes. All samples (n=3 per time 

point) were analyzed for size distribution and particle concentration using a hemacytometer 

(Reichert, USA) and an optical microscope (Micromaster, FisherSci, USA). 

For in vivo particle degradation studies, lyophilized CHSg microparticles were re-suspended in 

carbonate buffer (pH=9.34). NHS-Fluorescein (Thermo Scientific, USA) was dissolved in 

Dimethyl Sulfoxide (DMSO, Thermo Scientific, USA) with a concentration of 10 mg/ml. A total 

1 mg of NHS-Fluorescein (100 µl of the stock solution) was added to the vial containing the 

particles and stirred for 2 hours (Fig 33). At the end of the reaction particles were centrifuged, 

washed three times with water and finally lyophilized (Lyophilized CHSg-Fluorescein).  

The mouse experiments described above were used to optimize the cryosectioning experiments in 

rats. Particles were re-suspended in saline solution for injection (FisherSci, USA) and ≈10000 

particles were injected to each Sprague Dawley Rat (200-225 grams, Harlan, USA) in the lateral 

tail vein. Animals were euthanized at 2, 6, 12 and 24 hours (n=2 per time point). Before 

extraction of the lungs, the trachea was isolated and a V cut was made. A syringe containing 

Optimal Cutting Temperature (OCT, Tissue-Tek, USA) cryoembedding media was inserted in the 

trachea and the lungs were filled with 2 ml. Lungs were finally extracted and frozen in a plastic 

mold filled with OCT and dipped in liquid nitrogen. Specimens were obtained by cryosectioning 

the frozen samples (14 µm slices) in a Microtome (Leica, Japan). Lung cryo-specimens (4 lung 

sections per animal) were analyzed with a florescence microscope (Olympus IX81 with a Q 

Imaging Retiga 1300 Camera, USA). The entire area of each specimen was imaged using a 4x 

objective. Obtained images were analyzed using in-house software and particles were measured 

and counted. 
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6.3.3 Lung Perfusion Experiments 

Sprague Dawley rats (2 per time point, Harlan, USA) were purchased and weighed (200-225 

grams). Animals were anesthetized using an Ohmeda Isotec 3 isolfurane vaporizer (GE 

Healthcare, USA). After surgical plane anesthesia was reached, animals were restrained in the 

supine position. A torso X-Ray was then obtained (Belmont Acuray 071A, USA). Immediately 

after, 100 µL of the labeled 68Ga-PGCD, 68Ga-CHSg or 68Ga-NOTA-CHSg (8,000-10,000 

particles) with a 68Ga activity range going from 1.85 to 3.7 MBq (50 to 100 µCi) were injected 

through the lateral tail vein. Animals were euthanized at 2 or 4 hours. Lungs, liver, spleen, heart, 

kidneys, ribs and 0.2 ml of blood and urine were collected for either time point. Organs were 

weighed and measured for activity using a Cobra 5000 well counter (Packard, USA). Non-

collimated autoradiography images (in the unaltered supine position the X-Ray was obtained) 

were also taken at 10 minutes for initial assessment and 1, 2, 3 and 4 hours (Packard 

Phosphorimager, Perkin Elmer, USA). In one group free 68Ga was injected as a control. The 

obtained X-Rays and the autoradiography images were superimposed to provide anatomical and 

functional data. 

6.4 Results and Discussion 

6.4.1 Particle Preparation and Surface Modification 

Over 95% of the obtained CHSg microspheres are in the 30±10 size range (Fig 35) and did not 

change after the 12 hour reaction with p-SCN-Bn-NOTA (Fig 45). 
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Fig 45 CHSg size distribution before and after p-SCN-Bn-NOTA surface decoration. 

However size distribution and size concentration was mildly and severely altered for the 24 and 

48 hours p-SCN-Bn-NOTA reactions respectively. Better p-SCN-Bn-NOTA attachment was 

obtained at these later time points compared to the 12 hours reaction, but it was due to rupture of 

the CHSg microspheres and exposure of new available free amine groups for the reaction (Fig 

44). 

Around 260±15 µg of p-SCN-Bn-NOTA (of the total 1 mg added) were covalently attached to the 

surface of the CHSg microspheres after 12 hours reaction. The net p-SCN-Bn-NOTA amount that 

bonded to the microspheres surface was increased to 297±25 and 347±40 µg after 24 and 48 

hours of reaction. However, as stated before, particle degradation altered the final size 

distribution. 
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Fig 46 Surface decoration of CHSg with p-SCN-Bn-NOTA with different reaction times 

Maximum reaction yield taking into consideration the totality of available NH2 groups was 

slightly over 1%. Nevertheless it is a biased calculation since only a fraction of these groups are 

exposed for the p-SCN-Bn-NOTA reaction. Regardless of the yield, the addition of 260 

micrograms of p-SCN-Bn-NOTA to the batch represents a theoretical loading capacity (assuming 

95% labeling yield) of 12.8 µCi/particle (1.28 Ci for 100,000 particles). In molecular imaging 

only 3-5 mCi total are used, 3 order of magnitude less than the total available capacity. 

6.4.2 68Ga Labeling and CHSg Microspheres Degradation 

CHSg, PGCD and CHSg-NOTA microparticles were labeled with 68Ga successfully with more 

than 90% yield at room temperature. Reaction kinetics placed the optimum reaction time at 15 

minutes (Fig 47). Specific labeling yields after 15 minutes were 93±3 % for 68Ga-PGCD, 

96±3.5 % for 68Ga-CHSg and 97±3 % for 68Ga-NOTA-CHSg. 
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Fig 47 Reaction Kinetics for CHSg, PGCD and CHSg-NOTA with 68Ga 

Radiochemical stability was shown to be over 90 % after 4 hours of study at 37 ºC in saline, PBS 

buffer and 1% reconstituted bovine hemoglobin lysate. The particles conserved their shape and 

distribution during the labeling process and in vitro radiochemical stability studies.  

Porcine plasma studies showed faster microsphere degradation than when they were in PBS 

buffer (see previous chapter) for all studied particles (Fig 48). PGCD degradation half-life was 

found to be around 24 hours in the PBS. However when placed in contact with plasma 

degradation is much faster. PGCD (50:50 D:C ratio) microparticles disappear from solution 

within 5 minutes of contact with plasma. The other PGCD composition (75:25 D:C ratio) showed 

increased stability in the plasma, though the half-life of these particles was found to be shorter 

than 30 minutes, disappearing completely after 1 hour. This degradation half-life might be 

considered too fast for both lung perfusion and RMT planning applications. However, because of 

the nature of the perfusion studies blood contact might be diminished when injected in vivo and 

half-life might be greater. For these reasons in vivo testing of these particles was not discarded. 
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Fig 48 Porcine Plasma microsphere degradation studies for A: PGCD (50:50); B: PGCD (75:25); 
C: CHSg and D: CHSg-NOTA (n=3) 

Equally to PGCD, CHSg (and CHSg-NOTA) in vitro degradation was faster than expected from 

the PBS buffer experiments. As can be seen in Fig 48, CHSg degradation undergoes a different 

process from that of PGCD. CHSg particles are first swollen in plasma (effect not observed in 

any PBS buffer degradation experiments) and then particle division into smaller pieces. The 

dramatic increase observed in particle concentration after 12 hours, together with the decrease in 

average particle size is due to the rupture of the original particles into smaller fractions. These 

fractions are later dissolved (degraded) disappearing gradually from the suspension. The observed 

half-life for both, CHSg and CHSg-NOTA, was found to be around 24 hours with no significant 

difference in their degradation profiles. 
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Particle degradation experiments performed in vivo show a similar degradation mechanism to that 

obtained in vitro (Fig 49).  

 

Fig 49 CHSg microspheres in vivo degradation studies (n=2 per time point) 

Particle concentration is initially increased because of microsphere rupture. Smaller pieces are 

later slowly dissolved. This dissolution results in a steady decrease of the particles average 

diameter and also in particle concentration in the tissue (Fig 50). The in vivo half-life of the 

particles was determined to be 18-20 hours, since this the time when the particle concentration is 

reduced to half (50% of initial particle concentration). 
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Fig 50 Representation of the in vivo CHSg microsphere degradation mechanism. Collage of 
representative microarticles found in the cryosections for different time points: A: 2 hours, B: 6 
hours, C: 12 hours and D: 24 hours. Relative particle amount in the images is related to the real 

particle concentration found in the tissue sections. 

Results obtained in the in vivo experiments are highly qualitative since many assumptions were 

made for the calculations of average size and concentration. Particles concentration was assumed 

to be homogeneous in the entire lung, and particles under 10 micrometers were not included in 
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the analysis since those should no longer occlude the vessels and therefore will not interfere with 

the later injection of the therapeutic particles in final the RMT phase.  

Furthermore, the average size calculation is only an estimate due to the artifacts inherent to the 

sectioning method; there is no way to know if a particle that is sized represents the whole cross-

section or only a part of the particle, the latter being more likely. Therefore, the particle size 

distribution is probably an underestimate of the true in vivo size distribution. Nevertheless, by 24 

hours, comparatively few particles were observed in the sections. Also, no particle clumping was 

observed as the particles were found to be evenly distributed and thus a good estimation of 

particles half-life was obtained. The particle degradation half-life was found to be between 18 and 

20 hours, which makes the CHSg microspheres a potential candidate for lung perfusion imaging 

and RMT planning. 

6.4.3 Lung Perfusion Experiments 

The first obtained image (10 minutes) after injection of 68Ga-PGCD showed severe release of the 

radioisotope from the particles (compared to the 10 minutes image for 99mTc-PGCD, Fig 43). The 

68Ga-PGCD chelation was apparently weaker than that of the competing native transferrin (Fig 

51). 

 

Fig 51 Comparison of images 10 minutes after injection for A: Free 68Ga and B: 68Ga-PGCD 
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However, despite the similarities organ collection at 2 hours showed a different picture (Fig 52). 

Only 49.0±3.3 % of the 68Ga injected as 68Ga-PGCD was found in the blood while 84.9±4.5 % 

was present in the blood for the free 68Ga experiments. Equally different was the amount of tracer 

in the urine: 35.1±4.0 % for 68Ga-PGCD versus 6.8±2.9 % for the free 68Ga. These differences 

evidence a combination of trans-chelation (PGCD to native transferrin) and PGCD in vivo 

degradation. Small dissolved polar fragments with 68Ga (probably some form of Gallium Citrate) 

are cleared quickly by the kidneys and moved to the bladder. Despite the evidence of some 68Ga 

chelation strength by PGCD, it is not enough to perform lung perfusion imaging studies as shown 

in Fig 51. The fast released of 68Ga to the blood significantly increases the body background and 

makes difficult to obtain lung perfusion images with diagnostic value. 

 

Fig 52 Decay corrected organ biodistribution after 2 hours for free 68Ga and 68Ga-PGCD. 

Similar to 68Ga-PGCD, and despite the excellent in vitro results obtained, 68Ga-CHSg did not 

perform well as a lung perfusion imaging agent. Strong evidence of 68Ga trans-chelation by native 

transferring was observed (Fig 53). 
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Fig 53 Comparison of images 10 minutes after injection for A: Free 68Ga and B: 68Ga-CHSg 

Nevertheless, 68Ga-CHSg in vivo behavior was notably different than that of free 68Ga 2 hours 

post-injection (Fig 54). 

 

Fig 54 Organs biodistribution after 2 hours for free 68Ga and 68Ga-CHSg. 

After 2 hours 31.9±1.3 % of the injected activity can be found in the lungs (compared to the 

3.1±2.9 % found for the free 68Ga) but 46.7±1.2 % was already released to the blood. The slow 
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degradation of CHSg (compared to PGCD) was expected. However the 68Ga release to the blood 

was not expected since in vitro experiments were remarkable. Obtained result made necessary the 

surface decoration of the CHSg microspheres with a 68Ga specific chelator (NOTA) to increase in 

vivo stability of the labeling. 

Animal experiments performed with 68Ga-NOTA-CHSg showed high lung allocation and stability 

during the 4 hour study (Fig 55). 
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Fig 55 Non decay-corrected, un-collimated full body X-Ray/Autoradiography for free 68Ga and 
68Ga-NOTA-CHSg at 1, 2, 3 and 4 hours. 

From the images can be concluded that I vivo stability of the prepared 68Ga-NOTA-CHSg is 

remarkable and the microspheres are a good candidate for lung perfusion imaging. However, 

organs were collected and measured for quantification at 2 and 4 hours (Fig 56). 
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Fig 56 Decay Corrected Biodistribution of 68Ga-NOTA-CHSg and Free 68Ga at 2 and 4 hours. 

After 2 hours 98.9±0.2 % of the injected activity of 68Ga-NOTA-CHSg was found in the lungs, 

decreasing to 95.6±0.9 % after 4 hours. The activity released from the lungs moved directly to the 

bladder (3.5±0.6 % after 4 hours). The absence of activity in the blood (0.1±0.1 % at 2 hours and 

0.5±0.1 % after 4 hours) evidenced the high radiochemical stability of the NOTA-68Ga complex.  

The activity found in the urine must be due to early particle degradation releasing small polar 

fragments as frag-NOTA-68Ga. The addition of the NOTA chelator to the surface of the particles 

also served as a radioprotectant to the rest of the organs, since less than one percent of the 

injected activity was found in the blood at any time. For the obtained perfusion agent imaging is 

recommended within the first hour post injection because of 68Ga decay. 
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6.5 Conclusion 

Microspheres within the desired 30±10 µm size range were successfully obtained for PGCD and 

CHSg. Surface modification of CHSg microspheres with NOTA for 12 hours did not affect the 

original size distribution or morphology. Addition of 260 micrograms of p-SCN-Bn-NOTA to the 

particles represents a theoretical loading capacity (assuming 95% labeling yield) of 12.8 

µCi/particle. Labeling was performed for all compositions with >90% yield and in vitro 

radiochemical stability after 4 hours. Particle in vitro degradation half-life in porcine plasma 

showed a fast <30 minutes half-life for PGCD and approximately 24 hours for CHSg and CHSg-

NOTA. In vivo studies with 68Ga-PGCD labeled microspheres show fast release of 68Ga.  Similar 

results were found for the 68Ga-CHSg labeled microparticles evidencing the need for surface 

decoration with p-SCN-Bn-NOTA. For the obtained 68Ga-NOTA-CHSg lung allocation was very 

high with 98.9±0.2 % and 95.6±0.9 % after 2 and 4 hours respectively. Even when remarkable 

lung allocation was obtained another important result is that the addition of p-SCN-Bn-NOTA 

acts as a radioprotectant quickly eliminating the released activity from the lungs to the bladder. 
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CHAPTER 7 90Y Labeled Microspheres 

7.1 Abstract 

Chitosan (CHS) is used to prepare 30±10 µm size microspheres. Surface modification with p-

SCN-Bn-DOTA was performed. A maximum 90Y capacity was found to be 12.1 ± 4.4 

µCi/particle. The best obtained labeling yield was 87.7±0.6 %.  More than 90% in vitro stability 

was found. Particle in vitro degradation half-life in PBS was found to be greater than 21 days. In 

vivo studies with 90Y-DOTA-CHS show more than 95 % of the injected activity (decay corrected) 

in the lungs after 24 hours.  90Y-DOTA-CHS performance was superior to the commercially 

available SirTex microspheres. The addition of p-SCN-Bn-DOTA served as a radioprotectant for 

bone marrow. The 5 % 90Y released from the lungs during the first 24 hours was quickly 

eliminated via urine. 

7.2 Introduction 

The available products in the market for Selective Internal Radiation Treatment (Fig 57) show 

several limitations. High specific gravity making injection challenging and null biodegradability 

are among them. 

 

Fig 57 A: Commercially available products for RMT; A1: TheraSpheres, A2: SirSpheres and B: 
Representation of tumors being treated with 90Y microspheres 
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For the TheraSpheres (also known as glass spheres), the relation between 90Y activity and number 

of spheres can only be controlled by decay, since there is only one universal composition 

prepared. On the other side SirSpheres can be prepared with the desired 90Y activity/number of 

spheres ratio, however the nature of 90Y attachment is not specific (rather it is by ionic exchange 

absorption), increasing the risk of 90Y release and bone marrow suppression. 

RMT is almost always accompanied by chemotheraphy that is administered independently of the 

radiotherapeutic particles. Since these particles are non-biodegradable, chemotherapy entrapment 

and in situ release is not possible. Polymeric microparticles with high in vivo 90Y radiochemical 

stability to protect bone marrow, and the capability to entrap chemotherapy drugs for 

simultaneous radio/chemotherapy are needed. The proper design of these particles will most 

likely improve the safety and effectiveness of the current RMT practice. Among the many 

materials available, a clear candidate for this application is Chitosan, a chitin derivate that has 

been extensively used for drug entrapment/release and has very low (if any) in vitro and in vivo 

toxicity (82). 

7.3 Materials and Methods 

7.3.1 Particle Preparation and Surface Modification 

Chitosan (CHS, Sigma-Aldrich, USA) particles were prepared similar to the CHSg microspheres 

using a water in oil (w/o) emulsion technique. One ml of CHS solution (2.5 % w/v solution in 2% 

v/v acetic acid) was added drop wise to a round bottom flask and stirred (Corning-Cole Palmer, 

USA) at 1150 rpm. The flask contained 20 ml of Toluene (Acros Organics, USA) and 100 µl of 

Tween® 80 (surfactant, Sigma-Aldrich, USA). After 15 minutes 200 µl of glutaraldehyde (25 % 

in water, FisherSci, USA) was added and the emulsion was stirred for another 105 min. Toluene 

was finally decanted and particles were washed three times with 200-proof ethanol (Sigma-

Aldrich, USA) and lyophilized (Lab-Conco, USA). 
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A 1 mg/ml solution of p-SCN-Bn-DOTA (Macrocyclics, USA, Fig 58) was prepared in 

Na2HCO3/NaH2CO3 buffer (Sigma-Aldrich, USA) with a pH 9.3-9.4. Particles were resuspended 

in 1 ml of the p-SCN-Bn-DOTA solution and stirred for 4, 12, 24 or 48 hours to form the DOTA-

CHS particles. The reaction yield was evaluated using the p-SCN-Bn-DOTA absorption peak at 

224 nm with a UV/Visible spectrophotometer (Varian/Agilent Technologies, Switzerland). All 

experiments were done in triplicate for all time points. 

7.3.2 90Y Labeling and in vitro stability 

A labeling study was performed at two different pH values: 5 and 7. The temperature influence 

on labeling was also studied using 25, 35 and 37 ºC. CHS microspheres and resin spheres (kindly 

provided by SirTEX, USA) were labeled for comparison in similar conditions.  A 72 hours in 

vitro stability study using PBS buffer at pH 7 was performed to evaluate radiochemical purity. 

With 90Y present to account for radiolytic effects CHS microspheres were studied for degradation 

over 21 days.  

Using stable YCl3 (Sigma-Aldrich, USA) as carrier for the radioactive 90YCl3 (Perkin-Elmer, 

USA), a radioactive indicator experiment was performed to calculate the maximum 90Y capacity 

of the prepared microspheres. Experiments were also performed with SirSpheres for comparison. 

For the in vitro work all activity measurements were made in an AtomLab 100 Dose Calibrator 

(Biodex, USA). 

7.3.3 Lung Perfusion Experiments 

Sprague Dawley rats (200-225 grams, 2 per time point, Harlan, USA) were anesthetized with an 

Ohmeda Isotec 3 isolfurane vaporizer (GE Healthcare, USA) after weighed. Once restrained in 

the supine position (completely anesthetized) and a torso X-Ray was obtained (Belmont Acuray 

071A, USA). Immediately after, 100 µL (8,000-10,000 particles) of the labeled microspheres 
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(90Y-DOTA-CHS and 90Y-SirSpheres) with an activity ranging from 555-925 kBq (15 to 25 µCi) 

were injected through the lateral tail vein. Animals were imaged with non-collimated 

autoradiography (in the unaltered supine position the X-Ray was obtained) at 10 min, 12 and 24 

hours post injection (Packard Phosphorimager, Perkin Elmer, USA). After the last image was 

obtained, animals were euthanized (24 hours post injection). For either time point their lungs, 

liver, spleen, heart, kidneys, ribs and 0.2 ml of blood and urine were collected, weighed and 

measured for activity using a Cobra 5000 well counter (Packard, USA). One group received free 

90Y as a control. The obtained X-Rays and the autoradiography images were superimposed to 

provide anatomical and functional data.  

For the collected organs measurements, an activity vs. radiation counts linearity test (with known 

activity samples) was performed to the Cobra 5000 well counter (Packard, USA). A test tube 

(similar to the ones used in the organs) was filled with absorbent paper and soak in water to 

simulate auto absorption of the organs. Later, a known amount of 90Y was deposited (ranging 

from 2 to 5 µCi, close to the activity range found in the organs) in the paper and measured (n=3 

per activity point) in the well counter. Results were linear fitted and correlation coefficient was 

found. Spectra obtained for the lowest and highest activity points were also compared. 

7.4 Results and Discussion 

7.4.1 Particle Preparation and Surface Modification 

The size distribution obtained for CHS particles was an average of 30.7±8.3 µm. After the 

preparation of the microspheres, the DOTA decoration reaction was performed (Fig 58). 
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Fig 58 CHS - p-SCN-Bn-DOTA reaction. 

The kinetic study for the reaction showed that saturation is reached at 12 hours (optimum reaction 

time), with no extra addition of p-SCN-Bn-DOTA in the subsequent time points. The total p-

SCN-Bn-DOTA-CHS reaction yield is around 1% (with a maximum 250 µg of p-SCN-Bn-DOTA 

addition, similar to the result obtained for p-SCN-Bn-NOTA). The approximated 6.3 mg of CHS 

(total mass of 100,000 particles, 63 ng/particle) present in each preparation accounts for 2.33·1019 

available NH2 groups in total. However, only a fraction of these groups are exposed to the 

microsphere surface and to further complicate the problem, the surface is not perfectly flat (Fig 

63 A). 

 

Fig 59 p-SCN-Bn-DOTA-CHS reaction kinetics 
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After the p-SCN-Bn-DOTA decoration a size distribution of 31.3±8.1 was obtained. As expected 

for CHS microspheres, there is no significant change in the distribution or particle morphology 

before and after the addition reaction (Fig 60). This is due to the high pH (9.4) in which the 

reaction is being held and the already low solubility and slow degradation rate of CHS. 

 

Fig 60 CHS microsphere size distribution before and after p-SCN-Bn-DOTA addition reaction. 

 

7.4.2 90Y Labeling and in vitro stability 

Maximum labeling yield for 90Y-DOTA-CHS labeling was 87.7±0.6 %, obtained at pH=7 and 37 

ºC (Fig 61) after 30 minutes. Yield was dependent on both pH and temperature (Fig 61). A rise in 

temperature might benefit the labeling, however CHS is a polysaccharide very sensitive to 

temperature and structural damages might occur. A longer labeling time did not increased the 

yield and 30 minutes was identified as the optimal labeling temperature. Labeling of resin spheres 

(SirTEX, USA) showed more than 98% yield in all conditions within 10 minutes of reaction. The 
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labeling was performed at pH=7 only since resin spheres are labeled and injected in water. Yield 

was not dependent on temperature for the studied range.   

 

Fig 61 Labeling yields for 90Y-CHS, 90Y-DOTA-CHS and 90Y-Resin at different pH values and 
temperatures.  

Another interesting observation is that direct CHS labeling did not result in high yields. This 

result is in contradiction with a previously reported 99% yield (79). CHS used in these 

experiments (also 15 kDa molecular mass) was obtained from a different manufacturer 

(Polysciences, USA). Differences in results obtained with various chitosan batches and vendors 

have been reported in the past (83). This problem is solved by the addition of p-SCN-Bn-DOTA, 

rendering the labeling independent of the chitosan nature. However, differences in degradation 

and drug entrapment and release for other applications might be found and this problem needs to 

be investigated further. 
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The performed in vitro stability study showed over 90% radiochemical purity for 90Y-DOTA-

CHS after 72 hours compared to the 80% obtained for the resin spheres (Fig 62). Considering 

these positive result for 90Y-DOTA-CHS, animal experiments were performed. 

 

Fig 62 in vitro stability study for 90Y-DOTA-CHS and 90Y-SirSpheres. 

The extended in vitro degradation of the particles showed that integrity was maintained, although 

with some surface degradation after 21 days (Fig 63). This timeframe was chosen since more than 

95% of the 90Y is physically decayed by 21 days. The obtained biodegradable microspheres 

demonstrated a long enough half-life to adequately perform RMT while allowing for ultimate 

clearance and blood flow restoration. 

 

Fig 63 Degradation of CHS microspheres after A: 1 day, B: 7 days, C: 14 days and D: 21 days 
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Finally, the maximum labeling capacity for the CHS-p-SCN-Bn-DOTA microspheres was 12.1 ± 

4.4 µCi/particle and for SirSpheres 111.7 ± 0.1 µCi /particle. Hence, in a regular treatment course 

using 3·106 to 30·106 particles, maximum possible activity load is 36-360 Ci and 335.1-3351 Ci 

for CHS-p-SCN-Bn-DOTA and SirSpheres respectively. These values are 3 orders of magnitude 

over the regular administered dose. 

7.4.3 Lung Perfusion Experiments 

Detector linearity response to activity and spectra distribution were performed as described. A 

high correlation coefficient was obtained in the studied range. Spectra comparison between the 

lowest and highest activity points revealed no difference. 

 

Fig 64 Cobra 5000 well counter (Packard, USA) efficiency and linearity calibration for 90Y 

The high specific gravity of the SirSpheres makes particles injection difficult since they deposit 

fast. An injection yield of only 15 % was reached (injected in water). The injection yield for the 

90Y-DOTA-CHS microspheres was over 50 % (injected in saline solution), very repeatable for all 

the other CHS and CHSg microspheres studied (Fig 65). The initial assessment of biodistribution 
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with a survey meter (Victoreen ASM-990, Fluke, USA) revealed a strong allocation in the lungs 

for the 90Y-DOTA-CHS microspheres while the SirSpheres distribution did not differ from the 

free 90Y. 

 

Fig 65 Injection efficiency for all the studied microparticles 

Already in the 10 minutes strong 90Y bone marrow allocation and similar distribution was 

observed in the autoradiography images for 90Y-Resin and free 90Y (Fig 67). However, collected 

organ quantification (Cobra 5000 well counter, Packard, USA) at 24 hours showed some lung 

allocation for 90Y-Resin (Fig 66). 
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Fig 66 Decay Corrected Biodistribution of 90Y-DOTA-CHS, 90Y-Resin and free 90Y  

Lung allocation of more than 95 % (decay corrected) of the injected activity was detected for 90Y-

DOTA-CHS after 24 hours, showing a significant difference with the 23 % (decay corrected) 

found for the 90Y-Resin. Free 90Y was initially allocated in the bone marrow but only 9 % 

remained after 24 hours, the rest of the activity was eliminated via urine. Over 4% of the injected 

90Y-Resin activity was found in bone marrow after 24 hours and more than 70% was eliminated. 

In contrast to this result the activity released from the lungs in the 90Y-DOTA-CHS experiments 

resulted in only a fraction of a percent being allocated to the bone marrow, and the remaining 

either in the urine or eliminated. 
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allocation of 23% of the decay corrected injected activity at 24 hours). For the 90Y-DOTA-CHS 

microspheres the radiation damage distribution was completely different. The lung were 

significantly discolored and fragile after 24 hours (due to the allocation of more than 95% of the 

decay corrected injected activity at 24 hours) while no visible damage was seen in the kidneys 

and normal urine output was observed. Note that venous injection of 90Y microspheres so that 

they locate in the lungs would never be therapeutically indicated. This model was used only to 

investigate in vivo radiochemical stability and animals were not allowed to survive longer than 24 

hours because of the organ damage that was expected to occur.  

7.5 Conclusion 

CHS microspheres within the 30±10 µm size range were successfully obtained. Surface 

modification of CHS microspheres with p-SCN-Bn-DOTA showed an optimal reaction time of 12 

hours. The surface decoration did not affect the original size distribution or morphology. 

Maximum 90Y capacity was found to be 12.1 ± 4.4 µCi/particle, which means that when using 

3·106 to 30·106 particles (normal therapeutic range) maximum possible activity load is 36-360 Ci 

(orders of magnitude higher than real activities used). Maximum obtained labeling yield was 

87.7±0.6 % when labeling at pH=7 and 37 ºC for 30 minutes.  More than 90% in vitro stability 

was found in reconstituted 1% hemoglobin lysate after 72 hours. Particle in vitro degradation 

half-life in PBS was found to be greater than 21 days. In vivo studies with 90Y-DOTA-CHS 

labeled microspheres show remarkable stability with more than 95 % of the injected activity 

(decay corrected) still in the lungs after 24 hours.  90Y-DOTA-CHS performance was superior to 

the commercially available SirTex microspheres with only 23% (decay corrected) of the injected 

activity in the lungs after 24 hours. Autorradiography images obtained at 10 minutes showed 

strong release of 90Y for the commercial particles. The addition of p-SCN-Bn-DOTA served to 

increase labeling yield and in vivo stability, but also to act as a radioprotectant for other organs 
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since less than 1% was found in bone marrow (regular 90Y target organ). The 5 % 90Y released 

from the lungs during the first 24 hours was quickly eliminated via urine. 
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CHAPTER 8 DOSIMETRY 

8.1 Abstract 

Monte Carlo particle transport code (MCNPX 2.7) and the rat whole body phantom (ROBY) 

were used to calculate animal’s dose distribution for all the obtained experimental 

biodistributions. Maximum dose per decay to several target organs was calculated and visual dose 

distribution simulations are presented. Maximum dose to the lungs is delivered as expected when 

the successful perfusion and treatment agents are use. Other organ doses were also. The 

dosimetry study carried out complements the study of the designed microspheres allocating 

specific radiation fields to specific organs. The methods used have the potential to be extrapolated 

to humans as long as a proper phantom is used. 

8.2 Introduction 

Radiomicrosphere Therapy (RMT) as well as RMT planning are based on the utilization of the 

radiolabeled microspheres (and MAA microparticles) with the radioisotopes 68Ga and 99mTc for 

imaging as well as 90Y for therapy.  Consequently, the emissions produced by the decay of the 

radioactive nuclei induce energy depositions (dose) in the tissues reached by the radiation fields.  

Dosimetry (measurement of the deposited energy, dose) is an important factor to consider for 

both: the safety of the planning agents and the effectiveness of the planned treatment. Current 

FDA’s “Guidance for Industry” only concerns about the safety of the overall treatment process 

(including planning). This means that the planning doses have to be under “reasonable limits” and 

the therapy dose biodistribution has to treat the damaged tissue with minimal (if any) damage to 

the surrounding organs (84). Concepts like “maximum feasible dose” and “maximum tolerated 

dose” are regularly used, which clearly target safety of administration. However low (if any) 

interest is paid to the therapeutic efficacy and the optimization of the administered dose.  
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The current status quo of radiotherapy was somehow justified by the complexity of the human 

tissue, organs size and distribution, changing from patient to patient. Also because the phantoms 

used to calculate deposited doses were far from a true human surrogate, making calculations 

unreliable and imprecise. However, with the advent and readily availability of CT and PET/CT 

systems, this approach is no longer justified. There is no need for anthropomorphic phantoms in 

dose calculations, since a CT will provide the real field of densities for the patient in question. 

Molecular imaging makes dose calculations even easier, since real PET quantification and 

biodistribution determination are possible. The afore mentioned advances, together with the 

readiness of powerful computers to calculate statistical energy distributions with the help of 

numerical (MCNP) methods renders the current medical practice outdated and inefficient. 

8.3 Materials and Methods 

This dosimetry assessment consisted of a numerical dosimetry approach based on the simulations 

of photon and electron transport utilizing the Monte Carlo particle transport code MCNPX 2.7 

(85).  The simulated numerical models considered specific aspects requirements related to case of 

study that can classified as: geometry, source, and detection. 

8.3.1 Geometry 

The modeled geometry is a numerical rat phantom voxelized with 0.5 mm resolution and 75 

differentiated tissues/organs and generated by the ROBY (kindly provided by Michael G. Stabin, 

(86)) phantom (the main parameters used for building the phantom are showed in the ANNEX 1. 

Fig 68 and Fig 69 show 2D and 3D views respectively, of the visualization of the MCNPX 

ROBY model (visualization of the input). 
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Fig 68 2D representations of the MCNPX ROBY model.  The different views represent the 
following planes: A: Coronal; C: Sagittal; and B: Transverse. 

 

Fig 69 3D representations of the MCNPX ROBY model (visualization: MORITZ), back (above) 
and front (bottom) views.  (Skin and muscles are removed from the image.) 



In

sk

an

de

th

su

T

bi

C

gi

ev

in

n addition to t

kin: around a

nd axially ab

etection regio

hicknesses (fu

urrounding th

Fig 70 Visua
phantom (v

8.3.2 S

The case of 

iodistribution

Consequently, 

iven by the 

valuated nucl

ntensity deriv

the rat phanto

a middle-body

bove the head

ons along the

urthest away 

he phantom an

alizations of t
visualization: 

Source 

study consi

ns obtained fr

the simulatio

experimental

lear data and 

ved from the

om, six 1 cm l

y transversal 

d and betwee

e axis of the c

from the ph

nd a 2D longi

the water dete
MORITZ).  3

idered three 

rom the afore

ons were perf

l results.  Ev

the emission

e experiment

100 

 

long water cy

plane in the 

en the legs (0

cylinders with

hantom). Fig 

itudinal view 

ectors for mea
3D view (abo

animal bod

radioisotope

e described an

formed using 

very radioiso

ns were distrib

ts.  ANNEX 

ylinders were 

back, front, l

0.5 cm diam

h 1 mm (clos

 70 shows a

of one of the 

asuring doses
ove): the detec
dy 

es, 99mTc, 68

nimal experim

as sources ea

otope emissio

buted uniform

X 2 A shows

located 1 cm

left, and righ

meter).  Each 

sest to the ph

a 3D view o

detectors nea

s in the surrou
ctors can be s

8Ga, and 90Y

ments (Chapt

ach radioisoto

on was simul

mly within ea

s the organ-b

m away from t

ht (1 cm diam

detector has 

hantom) and 

f all the dete

ar the phantom

undings of the
seen around th

Y, with dif

ters 4, 5, 6 an

ope biodistrib

lated accordi

ach organ wi

by-organ em

the rat 

meter); 

three 

8 mm 

ectors 

m. 

 

e rat 
he 

fferent 

nd 7).  

bution 

ing to 

th the 

mission 



101 

 

distributions obtained from the experiments. ANNEX 2 B shows re-casted distributions for the 

MCNPX ROBY model.  This re-casting consists of obtaining the emission probability for each 

organ considering the whole body has emission probability equal to one and the 

compartmentalization of some organs/tissues.  Scripts of three of the source files used for the 

simulations are shown in the ANNEX 1. 

The experimental data was directly associated to the ROBY model in each of the measured 

organs.  However, for other organs, ROBY has a multi-region definition and some assumptions 

were made to generate the simulation sources. 

For calculations purposes in the geometric definition by ROBY software heart was considered as 

the combination of two ventricles (left: myoLV, and right: myoRV) and two atria (left: myoLA.  

The distribution in heart was assumed uniform and consequently each of the compartments was 

given an emission probability proportional to its volume adding all of them to the emission 

probability of the total heart.  The activity of blood in the experimental data for the 68Ga and 

99mTc compounds was distributed among the blood in bone marrow, the blood in the cavities of 

the heart and their main vessels, and the blood distributed among the rest of the body (in the 

space not defined as any specific  organs/tissues, mainly composed of muscle).  It was assumed 

that blood occupies 7% of the volume of the body (87), that the whole marrow is red marrow and 

that the red marrow to blood activity concentration ratio (RMBLR) is 0.32 (88).  Then, the blood 

in the cavities of the heart and their main vessels (100% blood) is distributed within blood LV, 

blood RV, blood LA, and blood RA source compartments  (named bldplLV, bldplRV, bldplLA, and 

bldplRA in the geometric definition by ROBY software), which have volumes defined by ROBY.  

The activity concentration in marrow is 0.32 that of blood LV (or of the other 100%-blood pools).  

The volume of blood in the rest of the body was assumed to be the total blood volume minus the 

volume of marrow, blood LV, blood RV, blood LA, and blood RA.  In the case of the compounds 
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with 90Y, a similar procedure was performed for the values of rest of the body, blood LV, blood 

RV, blood LA, and blood RA but for marrow, which had an explicitly defined activity.  The 

activity of Urine in the experimental data was assigned to the emission probability in the bladder 

of the numerical model. 

8.3.3 Detection 

The detection of the particles that provided the dose distributions was performed utilizing 

MCNPX and total mesh type 3 tallies (89).  The first two types of tallies were used for assessing 

through two different methods, the average doses in each organ and in each of the detection 

regions of the detectors.  Another mesh was included to calculate a voxelized 1 mm-resolution 

dosimetry along the phantom in order to visualize potential important dose distribution 

heterogeneities. 

8.3.4 General Aspects 

The composition of the materials that fill each of the regions of the phantom where extracted 

from the International Commission of Radiation Units and Measurements Report 46 that lists the 

elemental compositions for human tissues/organ (89).  In the phantom appear tissues whose 

material composition are not explicitly described in the report and, for those cases, the values 

used were approximated to show organ/tissues composition according to its similarity.  The file 

containing the definitions of the material compositions is shown in the ANNEX 1. 

8.3.5 Other considerations of the particle transport.   

In order to produce appropriate transport conditioning EFAC (see ANNEX 1, source files) and 

ESTEP (see ANNEX 1, material file), MCNPX parameters were adjusted considering a space 

resolution equal to or greater than 0.5 mm and Integrated Tiger Series option was chosen 

according to the suggestions given in (90). 
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8.4 Results and Discussion 

The MCNPX /ROBY were simulated in collaboration with Dr. Manuel Sztejnberg in the Ezeiza 

Atomic Center, National Atomic Energy Comission, Buenos Aires, Argentina. Using 107 

particles and CPU time of 57 days (Intel Core i7 CPU 860 @ 2.80 GHz x 8 and OS Ubuntu 12.04 

(64-bits) [Linux kernel: 3.2.4-40-generic]. 

Complete dosimetry results can be found in ANNEX 3. It describes the absorbed dose per decay 

in each of the organs/tissues and the maximum dose among the detectors surrounding the 

phantom.  Considering that the amount of decays per Becquerel is 5.86·103, 3.12·104, and 

3.32x105 for 68Ga, 99mTc, and 90Y respectively, relative dose distributions are calculated and 

plotted for all 99mTc compounds in Fig 71, for all 68Ga compounds in Fig 72 and for all 90Y 

compounds in Fig 73. 

In almost all of the cases the maximum dose per decay was delivered to lungs or bladder and the 

dose to the rest of the tissues is lower than 50% of the maximum.  Maximum dose per decay is 

delivered to lungs in the following cases: 68Ga-MAA (2h and 4h); 68Ga-NOTA-CHSg (2h and 

4h); 99mTc-MAA (2h and 4h); Free 99mTc (2h and 4h); 99mTc-CHSg (2h and 4h); 99mTc-PGCD 2h; 

90Y-DOTA-CHS 24h; and 90Y-Resin 24h.  For the case of 99mTc-PGCD 2h the dose to bladder is 

67% of the maximum.  Maximum dose per decay is delivered to bladder in the following cases: 

free 68Ga (2h and 4h); 99mTc-PGCD 4h; 68Ga-CHSg (confirming the need of the NOTA chelator); 

and 68Ga-PGCD.  For the cases of 99mTc-PGCD 4h and 68Ga-CHSg the dose to lungs are 69% and 

94%, respectively, of the maximum.  Maximum dose per decay is delivered to kidneys in the case 

of free 90Y 24h.  In this case, the doses to bladder and marrow are 69% and 55% of the maximum.  

In the rest of the dose distributions marrow receives less than 10% of the maximum dose.  Liver 

receives less than 12.5% of the maximum dose in all the cases but for free 90Y 24h where it 

receives less than 33% of the maximum. 
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Fig 71 MCNP derived Dose Distribution in rats for all 99mTc labeled microparticles and free 99mTc 
at 2 and 4 hours post injection 
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Fig 72 MCNP derived dose distribution in rats for all 68Ga labeled microparticles and free 68Ga at 
2 hours post injections for 68Ga-PGCD and 68Ga-CHSg; 2 and 4 hours post injection for the rest 
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Fig 73 MCNP derived dose distribution in rats for all 90Y labeled microparticles and free 90Y at 
24 hours post injection 

The maximum doses in the surroundings of the phantom that could be determined as the 

maximum between the average skin dose and the maximum dose in the detectors was for all of 

the cases equal to or lower than 1.5% of the maximum dose to an organ/tissue. 

The radiotolerance doses to the most affected organs (according to what was described in the 

previous paragraphs) are about 6.5, 20 (approximated through BED formalism), 7, 0.5 Gy (92).  

Comparing the relation of these doses to the relation between the maximum doses and organ 

doses one can determine the organs at the largest risk for each case: lungs for 68Ga-MAA- (2h and 

4h), 68Ga-NOTA-CHSg (2h and 4h), 99mTc-MAA (2h and 4h), Free 99mTc (2h and 4h), 99mTc-

CHSg (2h and 4h), 99mTc-PGCD (2h and 4h), 90Y-DOTA-CHS 24h, and 90Y-Resin 24h; bladder 

for 99mTc-PGCD 4h and 68Ga-PGCD; and marrow for Free 68Ga (2h and 4h), 68Ga-CHSg, and free 

3
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90Y 24h.  Consequently, for each of the cases the doses to the corresponding above mentioned 

organ must be considered as maximum deliverable dose in order to avoid any type of normal 

tissue complication. 

The utilization of the above mentioned tolerance doses would be a conservative approach since 

the effect of the reduction of the dose rate in the radioisotopes produces a less effective radiation 

damage induction. 

8.5 Conclusion 

The MCNPX/ROBY models for each of the compounds and sampling times were simulated with 

107 particles and CPU time of 57 days. Maximum dose per decay is delivered to lungs in the 

following cases: 68Ga-MAA, 68Ga-NOTA-CHSg, 99mTc-MAA, free 99mTc, 99mTc-CHSg, 99mTc-

PGCD; 90Y-DOTA-CHS and 90Y-Resin.  The results are expected since most of these are the 

successful lung perfusion agents. For the case of 99mTc-PGCD the dose to bladder is 67% of the 

maximum after 2 hours.  Maximum dose per decay is delivered to bladder for: free 68Ga, 99mTc-

PGCD, 68Ga-CHSg, and 68Ga-PGCD.  Maximum dose per decay is delivered to kidneys in the 

case of free 90Y.  In this case, the doses to bladder and marrow are 69% and 55% of the maximum 

respectively.  In the rest of the dose distributions marrow receives less than 10% of the maximum 

dose.  Liver receives less than 12.5% of the maximum dose in all the cases except for free 90Y 

where it receives less than 33% of the maximum. The dosimetry study carried out complements 

the study of the designed microspheres allocating specific radiation fields to specific organs.  
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LIMITATIONS AND FUTURE WORK 

In the present study all of the microspheres were injected into the tail vein and deposited into the 

lungs, while the main intent of use is in liver tumor RMT, with the microspheres injected directly 

into the hepatic artery. The different vascular environments may result in different degradation 

rates and radiolabel stabilities. For example, intravascular injection results in the particles 

traveling through the heart with much longer exposure to flowing blood, which could impact 

stability. Different enzymes in the liver compared to the lungs could impact degradation. Even 

though large changes in stability are not to be expected, future experiments must  be conducted 

injecting the radiolabeled particles in the hepatic artery and biodistribution assessed under 

conditions closer to those intended.  

The emulsion method used to prepare the particles is time consuming, and the yield obtained for 

particles 30±10 µm vary from 20% to 95% depending on the material and method used. It is well 

known that microsphere synthesis is difficult to control with the precision required for 

commercialization. Automation and bulk manufacturing may be difficult to achieve. Therefore, 

new micro-fabrication methods should be developed to increase yield and consistency.  Labeling, 

surface modification reactions and in vivo degradation are not expected to be affected by the 

change in the particle preparation method, since those depend on the intrinsic material 

characteristics. Tween®80 is known to be toxic and therefore it must be shown that no Tween® 80 

remains at the end of the manufacturing process, or an alternative surfactant must be identified. 

The 90Y-DOTA-CHS in vivo experiments need to be extended to at least 21 days (corresponding 

to near total 90Y decay), preferably with particle injection in the liver’s hepatic artery. In the 

present study particles labeled with 90Y were evaluated for only 24 hours because of their 

deposition in the lungs. Even when half-life should not be affected significantly for fast degrading 

particles (CHSg and CHSg-NOTA) in the liver, enzymes are likely to reduce the CHS-DOTA 
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microspheres degradation half-life. The combined effect of liver enzymes and 90Y radiolysis for 

90Y-DOTA-CHS needs to be studied. In the future, tumor implantation in the liver and RMT 

planning/treatment effectiveness needs to be performed.  Nevertheless, this preliminary study 

with the particles deposited in the lungs for 24 hours provided the necessary data to move forward 

with more complicated and costly experiments. 

Finally, biodistribution of 90Y-DOTA-CHS needs to be directly compared to 90Y-Resin Spheres 

injected into the liver since the later particles are prescribed to be injected in water via the hepatic 

artery in the clinical RMT procedure. The injection of 90Y-Resin into the tail vein might have 

decreased the in vivo stability of the 90Y binding since the turbulence in the heart’s chamber must 

have certainly exposed the particles to greater blood interaction than would occur when the 

particles are injected directly into the liver tumor vasculature. Having said this, the23% stability 

found 24 hours after injection into the tail vein is highly problematic from a safety standpoint. 

The very low in vivo stability of the 90Y-Resin label in blood deserves closer scrutiny. 
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OVERALL CONCLUSIONS 

Alternate labeling kits with 30±10 µm biodegradable microspheres were created and labeled with 

68Ga and/or 99mTc at >90% yield and radiochemical purity and 12 to 48 hours degradation half-

life for its potential use in RMT planning. Appropriate emulsion and purification methods for the 

creation of 30±10 µm particles were designed and implemented to provide the necessary raw 

materials for the subsequent experiments. Radiolabeling of the particles was performed with more 

than 90% 68Ga and/or 99mTc labeling yield and in vitro radiochemical purity for the studied 

periods. Surface modification of the particles with specific chelating agents to improve in vitro 

and in vivo stability was performed an optimized. In vitro stability studies of the particles in 

saline, PBS buffer and porcine plasma was performed and degradation half-lives determined. 

Several particles particle compositions were identified as treatment planning and treatment agents 

with variable degradation half-lifes. In vivo lung perfusion studies in Sprague Dawley were 

performed for the obtained particles. Stability and bio-distribution of the particles and the 

radioactive labels was determined. Three agents were identified for potential clinical translation: 

99mTc-CHSg and 68Ga-NOTA-CHSg for RMT planning and 90Y-DOTA-CHS for treatment. 

Dosimetry calculations were also performed using the MCNPX-ROBY models and radiation dose 

distribution were found for all the studies compositions. 
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ANNEXES 

ANNEX 1 MCNPX Simulation Parameters 

ROBY parameter file, roby_140x140x550_50.par 

mode = 0  # program mode (0 = phantom, 1 = heart lesion, 2 = spherical lesion, 3 = 
plaque, 4 = vectors, 5 = save anatomical variation) SEE NOTE 0  
act_phan_each = 1 # activity_phantom_each_frame (1=save phantom to file, 0=don't save)  
atten_phan_each = 1 # attenuation_coeff_phantom_each_frame (1=save phantom to file, 
0=don't save)  
act_phan_ave = 0 # activity_phantom_average    (1=save , 0=don't save) see NOTE 1  
atten_phan_ave = 0 # attenuation_coeff_phantom_average  (1=save, 0=don't save) see NOTE 
1  
 
motion_option = 1 # motion_option  (0=beating heart only, 1=respiratory motion only, 
2=both motions) see NOTE 2  
 
out_period = 0.37  # output_period (SECS) (if <= 0, then 
output_period=time_per_frame*output_frames)  
time_per_frame = 0 # time_per_frame (SECS) (**IGNORED unless output_period<=0**)  
out_frames = 1  # output_frames (# of output time frames )  
 
hrt_period = 0.171   # hrt_period (SECS) (length of beating heart cycle; 
normal = 1s) see NOTE 3  
hrt_start_ph_index = 0.0 # hrt_start_phase_index (range=0 to 1; ED=0, ES=0.4) see 
NOTE 3  
heart_base = roby_heart.nrb  # basename for heart files  
heart_curve_file = heart_curve.txt # name for file containing time curve for heart  
 
resp_period = 0.37                 # resp_period (SECS) (length of respiratory cycle; normal breathing 
= 5s) see NOTE 3  
resp_start_ph_index = 0.4 # resp_start_phase_index (range=0 to 1, full exhale= 0.0, full 
inhale=0.4) see NOTE 3  
max_diaphragm_motion = 1.0 # max_diaphragm_motion  (extent in mm's of diaphragm 
motion; normal breathing = 1 mm) see NOTE 4  
max_AP_exp = 0.7  # max_AP_expansion  (extent in mm's of the AP expansion of 
the chest; normal breathing = 0.7 mm) see NOTE 4  
 
dia_filename = diaphragm_curve.dat # name of curve defining diaphragm motion during 
respiration  
ap_filename = ap_curve.dat       # name of curve defining chest anterior-posterior motion 
during respiration  
 
organ_file = roby.nrb   # name of organ file that defines all organs  
 
diaph_scale = 1.0   # scales the diaphragm up or down  
 
phantom_long_axis_scale = 1.0  # phantom_long_axis_scale (scales phantom laterally - 
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scales everything) SEE NOTE 5  
phantom_short_axis_scale = 1.0  # phantom_short_axis_scale (scales phantom AP - scales 
everything) SEE NOTE 5  
phantom_height_scale = 1.0  # phantom_height_scale (scales phantom height - scales 
everything) SEE NOTE 5  
 
skin_long_axis_scale = 1.0  # skin_long_axis_scale (sets body transverse axis - 
scales only body outline) SEE NOTE 5  
skin_short_axis_scale = 1.0  # skin_short_axis_scale (sets body AP axis - scales only 
body outline) SEE NOTE 5  
 
bones_scale = 1.0   # scales the bones about their center axes SEE NOTE 5  
 
hrt_scale = 1.0   # hrt_scale  (scales heart in 3D)  
 
vol_liver = 0.0   # sets liver volume (0 - do not change)  
vol_pancreas = 0.0  # sets pancreas volume (0 - do not change)  
vol_stomach = 0.0  # sets stomach volume (0 - do not change)  
vol_spleen = 0.0  # sets spleen volume (0 - do not change)  
vol_rkidney = 0.0   # sets right kidney volume (0 - do not change)  
vol_lkidney = 0.0  # sets left kidney volume (0 - do not change)  
vol_bladder = 0.0  # sets bladder volume (0 - do not change)  
vol_testes = 0.0  # sets testes volume (0 - do not change)  
vol_small_intest = 0.0  # sets small intestine volume (0 - do not change)  
vol_large_intest = 0.0  # sets large intestine volume (0 - do not change)  
vol_trachea = 0.0  # sets trachea volume (0 - do not change)  
vol_thyroid = 0.0  # sets thyroid volume (0 - do not change)  
 
vessel_flag = 1   # vessel_flag (1 = include arteries and veins, 0 = do not include)  
papillary_flag = 1  # papillary_flag (1 = include papillary muscles in heart, 0 = do 
not include)  
 
frac_H2O = 0.5  # fraction (by weight) of water in wet bone and wet spine (used to calc. 
atten coeff)  
 
marrow_flag = 1   # render marrow (0 = no, 1 = yes)  
 
thickness_skin = 0.5            # thickness skin (mm)  
 
thickness_sternum = 0.4  # thickness sternum  (mm)  
thickness_scapula = 0.4  # thickness scapulas (mm)  
thickness_humerus = 0.45 # thickness humerus (mm)  
thickness_radius = 0.45  # thickness radius (mm)  
thickness_ulna = 0.45  # thickness ulna (mm)  
thickness_hand = 0.2  # thickness hand bones (mm)  
thickness_femur = 0.5  # thickness femur (mm)  
thickness_tibia = 0.75  # thickness tibia (mm)  
thickness_fibula = 0.45  # thickness fibula (mm)  
thickness_patella = 0.3  # thickness patella (mm)  
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thickness_foot = 0.2  # thickness foot bones (mm)  
thickness_ribs = 0.3  # thickness ribs     (mm)  
thickness_backbone = 0.4 # thickness backbone (mm)  
thickness_pelvis = 0.4  # thickness pelvis (mm)  
thickness_skull = 0.4  # thickness skull (mm)  
thickness_collar = 0.35  # thickness collarbones (mm)  
thickness_si = 0.6 # thickness of small intestine wall (mm)  
thickness_li = 0.6 # thickness of large intestine wall (mm)  
 
pixel_width = 0.05 # pixel width (cm);  see NOTE 7  
slice_width = 0.05 # slice width (cm);  
array_size = 140 # array size  
subvoxel_index = 1 # subvoxel_index (=1,2,3,4 -> 1,8,27,64 subvoxels/voxel, respectively)  
startslice = 1  # start_slice;   
endslice = 550  # end_slice;  
 
d_ZY_rotation = 0 # change in zy_rotation (beta) in deg. (0); see NOTE 8  
d_XZ_rotation = 0 # change in xz_rotation ( phi) in deg. (0);  
d_YX_rotation = 0 # change in yx_rotation ( psi) in deg. (0);  
 
X_tr = 0.0 # x translation in mm ;  
Y_tr = 0.0 # y translation in mm ;  
Z_tr = 0.0 # z translation in mm ;  
 
activity_unit = 0 # activity units (1= scale by voxel volume; 0= don't scale)  
 
skin_activity = 10  # skin_activity  
 
hrt_myoLV_act = 12  # hrt_myoLV_act - activity in left ventricle myocardium  
hrt_myoRV_act = 14  # hrt_myoRV_act - activity in right ventricle myocardium  
hrt_myoLA_act = 16  # hrt_myoLA_act - activity in left atrium myocardium  
hrt_myoRA_act = 18  # hrt_myoRA_act - activity in right atrium myocardium  
hrt_bldplLV_act = 20  # hrt_bldplLV_act - activity in left ventricle chamber (blood 
pool)  
hrt_bldplRV_act = 22  # hrt_bldplRV_act - activity in right ventricle chamber (blood 
pool)  
hrt_bldplLA_act = 24  # hrt_bldplLA_act - activity in left atria chamber (blood pool)  
hrt_bldplRA_act = 26  # hrt_bldplRA_act - activity in right atria chamber (blood pool)  
body_activity = 28  # body_activity (background activity) ;  
liver_activity = 30  # liver_activity;  
gall_bladder_activity = 32 # gall_bladder_activity;  
lung_activity = 34  # lung_activity;  
airway_activity = 36  # airway activity;  
st_wall_activity = 38  # st_wall_activity;  (stomach wall)  
st_cnts_activity = 40  # st_cnts_activity;   (stomach contents)  
pancreas_activity = 42  # pancreas_activity;  
kidney_activity = 44  # kidney_activity;  
spleen_activity = 46  # spleen_activity;  
sm_intest_activity = 48  # small_intest_activity;  
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large_intest_activity = 50 # large_intest_activity;  
bladder_activity = 52  # bladder_activity;  
vas_def_activity = 54  # vas_def_activity;  
testicular_activity = 56  # testicular_activity;  
rib_activity = 58  # rib_activity;  
spine_activity = 60  # spine_activity;  
skull_activity = 62  # skull_activity;  
 
humerus_activity = 64  # humerus_activity  
radius_activity = 66  # radius_activity  
ulna_activity = 68  # ulna_activity  
femur_activity = 70  # femur_activity  
fibula_activity = 72  # fibula_activity  
tibia_activity = 74  # tibia_activity  
patella_activity = 76  # patella_activity  
bone_activity = 78  # bone_activity (remaining bones)  
 
brain_activity = 80  # brain_activity;  
cerebral_cortex_activity = 82 # cerebral_cortex_activity;  
cerebellum_activity = 84  # cerebellum_activity;  
corpus_callosum_activity = 86  # corpus_callosum_activity;  
brainstem_activity = 88  # brainstem_activity;  
striatum_activity = 90  # striatum_activity;  
thal_activity = 92  # thal_activity;  
hippo_activity = 94  # hippo_activity;  
hypothalamus_activity = 96 # hypothalamus_activity;  
amygdala_activity = 98  # amygdala_activity;  
lateral_septal_nuclei_activity = 100  # lateral_septal_nuclei_activity;  
anterior_commissure_activity = 102 # anterior_commissure_activity;  
anterior_pretectal_nucleus_activity = 104 # anterior_pretectal_nucleus_activity;  
periaqueductal_gray_activity = 106 # periaqueductal_gray_activity;  
aqueduct_activity = 108   # aqueduct_activity;  
cerebral_peduncle_activity = 110  # cerebral_peduncle_activity;  
cochlear_nuclei_activity = 112  # cochlear_nuclei_activity;  
deep_mesencephalic_nuclei_activity = 114 # deep_mesencephalic_nuclei_activity;  
fimbria_activity = 116   # fimbria_activity;  
fornix_activity = 118   # fornix_activity;  
globus_pallidus_activity = 120  # globus_pallidus_activity;  
inferior_colliculus_activity = 122 # inferior_colliculus_activity;  
internal_capsule_activity = 124  # internal_capsule_activity;  
interpeduncular_nucleus_activity = 126 # interpeduncular_nucleus_activity;  
lateral_dorsal_nucleus_of_thalamus_activity = 128 # 
lateral_dorsal_nucleus_of_thalamus_activity;  
lateral_geniculate_activity = 130  # lateral_geniculate_activity;  
lateral_lemniscus_activity = 132  # lateral_lemniscus_activity;  
medial_geniculate_activity = 134  # medial_geniculate_activity;  
nucleus_accumbens_activity = 136  # nucleus_accumbens_activity;  
olfactory_areas_activity = 138  # olfactory_areas_activity;  
optic_tract_activity = 140  # optic_tract_activity;  
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pontine_gray_activity = 142  # pontine_gray_activity;  
spinal_trigeminal_tract_activity = 144 # spinal_trigeminal_tract_activity;  
substantia_nigra_activity = 146  # substantia_nigra_activity;  
superior_colliculus_activity = 148 # superior_colliculus_activity;  
pineal_gland_activity = 150  # pineal_gland_activity;  
ventral_thalamic_nuclei_activity = 152 # ventral_thalamic_nuclei_activity;  
ventricular_system_activity = 154  # ventricular_system_activity;  
 
 
thyroid_activity = 156  # thyroid activity;  
 
li_air_activity = 158 # large intestine air activity;  
si_air_activity = 160 # small intestine air activity;  
 
marrow_activity = 162 # bone marrow activity;  
 
lesn_activity = 164  # activity for heart lesion or plaque  
 
energy  = 140 # radionuclide energy in keV (range 1-40MeV, increments of 0.5 keV) ; for attn. 
map only  
 
#---------------------Heart lesion parameters------------------------------SEE NOTE 9  
ThetaCenter = 90.0  # theta center in deg. (between 0 and 360)  
ThetaWidth = 100.0  # theta width in deg., total width (between 0 and 360 deg.)  
XCenterIndex = .5  # x center (0.0=base, 1.0=apex, other fractions=distances in 
between)  
XWidthIndex = 60  # x width, total in mm's  
Wall_fract = 1.0  # wall_fract, fraction of the outer wall transgressed by the lesion  
#--------------------------------------------------------------------------  
 
#---------------------Spherical lesion parameters--------------------------SEE NOTE 10  
x_location = 80   # x coordinate (pixels) to place lesion  
y_location = 67   # y coordinate (pixels) to place lesion  
z_location = 85   # z coordinate (pixels) to place lesion  
lesn_diameter = 1.0  # Diameter of lesion (mm)  
#--------------------------------------------------------------------------  
 
#---------------------Heart plaque parameters------------------------------SEE NOTE 11  
p_center_v = 0.35  # plaque center along the length of the artery (between 0 and 1)  
p_center_u = 0.5  # plaque center along the circumference of the artery (between 0 
and 1)  
p_height = 1.0   # plaque thickness in mm.  
p_width = 2.0   # plaque width in mm.  
p_length = 2.0   # plaque length in mm.  
p_id = 1462   # vessel ID to place the plaque in  
#--------------------------------------------------------------------------  
 
#---------------------Vector parameters------------------------------------SEE NOTE 12  
vec_factor = 2          # higher number will increase the precision of the vector output  
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#--------------------------------------------------------------------------  
 
#--------------------------------------------------------------------------  
#--------------------------------------------------------------------------  
#This is a general parameter file for the DYNAMIC MOBY phatom, version 1.0  
#--------------------------------------------------------------------------  
#THE PARAMETERS CAN BE IN ANY ORDER. THE PROGRAM WILL SORT THEM.  
#--------------------------------------------------------------------------  
#                             NOTES:  
#--------------------------------------------------------------------------  
#NOTE 0: The phantom program can be run in different modes as follows.   
#  Mode 0: standard phantom generation mode that will generate phantoms of the  
#          body.  
#  Mode 1: heart lesion generator that will create phantoms of only the user  
#          defined heart lesion. Subtract these phantoms from those of mode 0  
#          to place the defect in the body.  
#  Mode 2: spherical lesion generator that will create phantoms of only the  
#          user defined lesion. Add these phantoms to those of mode 0 to place  
#          the lesions in the body.  
#  Mode 3: cardiac plaque generator that will create phantoms of only the  
#          user defined plaque. Add these phantoms to those of mode 0 to place  
#          the plaques in the body.  
#  Mode 4: vector generator that will output motion vectors as determined from  
#          the phantom surfaces. The vectors will be output as text files.  
#  Mode 5: anatomy generator will save the phantom produced from the user-defined anatomy  
#          parameters. The phantom is saved as two files, the organ file and the heart_base  
#          file. The names of these files can then be specified in the parfile for later runs  
#          with the program not having to take the time to generate the anatomy again. In using  
#          a saved anatomy, be sure to set all scalings back to 1; otherwise, the anatomy will be  
#          scaled again.  
#  
#NOTE 1: The average phantom is the average ONLY OF THOSE FRAMES GENERATED. 
That is,  
#  if you specify that only 2 frames be generated, then the average phantom is  
#  just the average of those 2 frames.  
#  ***************************************************************************  
#  ** FOR A GOOD AVERAGE, generate at least 8-16 frames per 1 complete heart  
#  ** cycle and/or per 1 complete respiratory cycle.  
#  ***************************************************************************  
#  
#NOTE 2: Heart motion refers to heart BEATING or contraction, while resp.  
#  motion refers to organ motion due to breathing. Note that the entire heart is  
#  translated or rotated due to resp. motion, even if it is not contracting.  
#  ** IF motion_option=1 , THE HEART WILL MOVE (TRANSLATE) BUT NOT BEAT.****  
#  
#NOTE 3:   Users sets the length and starting phase of both the heart  
#          and respiratory cycles. NORMAL values for length of heart beat and  
#          respiratory are cycles are 1 sec. and 5 secs., respectively,  
#          BUT THESE CAN VARY AMONG PATIENTS and will increase if the patient  
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#          is under stress.  
#  
#          An index value between 0 and 1 is used the specify the starting phase  
#          of the heart or resp cycles. IF NO MOTION IS SPECIFIED THEN THE STARTING  
#          PHASE IS USED AS THE SINGLE PHASE AT WHICH THE PHANTOM IS 
GENERATED.  
#          (see documentation for more details).  
#  
#NOTE 3A:  These parameters control the LV volume curve of the heart. The user can specify the 
LV  
#    volume at 5 points in the cardiac cycle. Check the logfile to see what the default 
volumes  
#          are.  The end-diastolic volume can only be reduced. The way to increase it would be to 
change  
#          the overall heart scale.  The end-systolic volume can be increased or reduced. The other 
volumes  
#          need to have values between the end-diastolic and end-systolic volumes.  The time 
durations for the  
#          different portions of the cardiac cycle must add up to a total of 1.  
#  
#          Changing these parameters will alter the heart_curve.  The altered curve and heart files 
can be output using  
#          mode = 5.  
#  
#NOTE 4:  These NORMAL values are for normal tidal breathing.  
#  ** Modeling a deep inhale may require higher values. **  
#  
#  The AP_expansion parameter controls the anteroposterior diameter of the ribcage, body,  
#  and lungs. The ribs rotate upward to expand the chest cavity by the amount indicated by the  
#  AP_expansion parameter. The lungs and body move with the expanding ribs. There is 
maximum amount  
#  by which the AP diameter can expand, due to the size of the ribs (some expansions are 
impossible  
#  geometrically.) If the user specifies too great an expansion, the program will terminate with an  
#  error message.  
#  
#  The diaphragm motion controls the motion of the heart, liver, the left diaphragm, stomach, 
spleen and  
#  all organs downstream from them.  
#  
#  
#NOTE 5: The phantom program outputs statistics on these anatomical parameters in the logfile it 
generates.  The logfile is  
#         named with the extension _log.  These statistics can be used to determine the amount of 
scaling desired. Be aware  
#   the phantom scaling parameters scale the entire phantom; therefore, any body, heart or 
breast scalings  will  
#         be additional to this base scaling.  
#  
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#  
#NOTE 7:  
#        - The phantom dimensions do not necessarily have to be cubic. The array_size parameter  
#          determines the x and y dimensions of the images.  The number of slices in the z dimension  
#          is determined by the start_slice and end_slice parameters.  The total number of slices is  
#          end_slice - start_slice + 1.  
#  
#NOTE 8:  
#        - rotation parameters determine  
#          initial orientation of beating (dynamic) heart LV long axis  
#        - d_zy_rotation : +y-axis rotates toward +z-axis (about x-axis) by beta  
#          d_xz_rotation : +z-axis rotates toward +x-axis (about y-axis) by phi  
#          d_yx_rotation : +x-axis rotates toward +y-axis (about z-axis) by psi  
#  
#        - Based on patient data, the mean and SD heart orientations are:  
#                zy_rot = -110 degrees (no patient data for this rotation)  
#                xz_rot = 23 +- 10 deg.  
#                yx_rot = -52 +- 11 deg.  
#  
#  Phantom will output total angles for the heart in the logfile  
#  
#NOTE 9: Creates lesion (defect) for the LEFT VENTRICLE ONLY.  
#  
#--------------------------------  
#  theta_center: location of lesion center in circumferential dimension  
#  
#  theta center =    0.0  => anterior wall  
#  theta center =  +90.0  => lateral   "  
#  theta center = +180.0  => inferior  "  
#  theta center = +270.0  => septal    "  
#--------------------------------  
#  theta_width : lesion width in circumferential dimension  
#  
#  TOTAL width of defect in degrees. So for example a width of 90 deg.  
#  means that the width is 45 deg. on either side of theta center.  
#--------------------------------  
#  x center :   lesion center in long-axis dimension  
#  
#  x center = 0    -> base of LV  
#  x center = 1.0  -> apex of LV  
#--------------------------------  
#  x width:  lesion width in long-axis dimension  
#  
#  total width. Defect extend half the total width on either side of the  
#  x_center.  
#  
#  NOTE: if the specified width extends beyond the boundaries of the LV  
#        then the defect is cut off and the effective width is less than the  
#        specified width. So for example...  
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#  
#--------------------------------  
#  Wall_fract : fraction of the LV wall that the lesion transgresses  
#  Wall_fract = 0.0 => transgresses none of the wall  
#  Wall_fract = 0.5 => transgresses the inner half of the wall  
#  Wall_fract = 1.0 => trangresses the entire wall  
#--------------------------------  
#  
#  
#NOTE 10: Creates a spherical lesion in the MOBY phantom. Depending on where the lesion is 
placed, it will move with  
#         the respiratory motion. Location of the lesion is specified in pixel values.  
#  
#  
#NOTE 11: Creates a plaque in the coronary vessel tree that will move with the 
cardiac/respiratory motion  
#  
#---------------------------------------------------------------------------  
#  plaque_center: location of plaque along the length of the specified artery  
#    center = 0    -> base of artery  
#    center = 1.0  -> apex of artery  
#  
#-------------------------------------------  
#  plaque_thickness : plaque thickness in mm.  
#  
#-------------------------------------------  
#  plaque_width :   plaque width in mm.  
#  
#-------------------------------------------  
#  plaque_length :  plaque length in mm.  
#  
#------------------------------------------------------  
#  plaque_id  :  vessel to place the plaque in  
#  
#        AORTA = 423  
#------------------------------------------------------  
#  
#NOTE12:  Using mode = 4, vectors are output for each voxel of frame 1 to the current frame. 
The vectors show the motion  
#         from the 1st frame to frame N. The vectors are output as text files with the format of  
#         output_name_vec_frame1_frameN.txt.  
#         The output vectors are a combination of known sampled points from the phantom objects 
and vectors interpolated  
#         from these sampled points.  The known vectors are designated as such in the vector output.  
You can increase  
#         the number of known points (and accuracy of the vector output) by increasing the 
parameter vec_factor.  
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ANNEX 2 

ANNEX 2 A: Table 7 Experimental organ-by-organ emission distributions 

Organ 68Ga-
MAA 

2h 

68Ga-
MAA 
2h E 

68Ga-
MAA 

4h 

68Ga-
MAA 
4h E 

68Ga-
CHSg-
NOTA 

68Ga-
CHSg-
NOTA 

E 

68Ga-
CHSg-

NOTA 4h 

68Ga-
CHSg-

NOTA 4 
h E 

Free 
68Ga 
2h 

Free 68Ga 
2h E 

Free 
68Ga 
4h 

Free 
68Ga 
4h E 

Spleen 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.6 0.5 1.6 0.1 
Blood 0.8 0.8 0.8 0.0 0.1 0.1 0.5 0.1 84.9 4.5 63.1 3.9 
Rib 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.4 1.3 0.4 

Urine 0.1 0.0 0.1 0.0 0.5 0.4 3.5 0.6 6.8 2.9 14.0 1.7 
Right 

Kidney 
0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.0 0.5 0.5 1.6 0.4 

Left 
Kidney 

0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.0 0.5 0.5 1.4 0.2 

Heart 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.7 1.5 0.2 
Total 
Lungs 

98.6 0.7 98.6 0.1 98.9 0.2 95.6 0.9 3.1 2.9 8.4 0.3 

Total 
Liver 

0.4 0.2 0.4 0.1 0.2 0.1 0.2 0.1 2.3 1.9 7.2 1.2 

Organ 99mTc-
MAA 

2h 

99mTc-
MAA 
2h E 

99mTc-
MAA 

4h 

99mTc-
MAA 
4h E 

Free 
99mTc 2h 

Free 
99mTc 2h 

E 

Free 
99mTc 

4h 

Free 
99mTc 4h 

E 

99mTc-
CHSg  

2h 

99mTc-
CHSg 
2h E 

99mTc-
CHSg 

4h 

99mTc-
CHSg 
4h E 

Spleen 0.1 0.0 0.1 0.0 7.2 1.1 11.8 0.7 0.0 0.0 0.1 0.0 
Blood 0.9 0.2 0.9 0.0 1.3 1.2 0.4 0.0 0.7 0.5 0.8 0.1 
Rib 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 

Urine 7.6 1.3 12.3 1.2 6.1 4.0 0.6 0.2 4.9 2.5 10.0 2.1 
Right 

Kidney 
2.1 0.1 3.3 0.1 0.6 0.1 0.4 0.0 1.1 1.5 2.6 0.8 

Left 
Kidney 

2.2 0.2 3.4 0.2 0.6 0.1 0.4 0.0 1.2 1.6 2.6 0.8 

Heart 0.0 0.0 0.1 0.0 0.2 0.0 0.2 0.0 0.0 0.0 0.0 0.0 
Total 
Lungs 

86.6 0.7 79.2 1.5 39.5 1.5 45.2 10.9 91.6 6.5 83.2 4.1 
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Total 
Liver 

0.5 0.0 0.9 0.0 44.6 2.8 40.9 11.7 0.3 0.3 0.7 0.3 

           
 

  

Organ 99mTc-
PGCD 

4h 

99mTc-
PGCD 
4h E 

68Ga-
CHSg 

2h 

68Ga-
CHSg 
2h E 

CHS-
DOTA-
90Y 24h 

CHS-
DOTA-

90Y 24h E 

RMTEX-90Y 
24h 

RMTEX-90Y 
24h E 

Free-90Y 
24h 

Free-
90Y 24h 

E 
Spleen 1.2 0.3 0.9 0.2 0.0 0.0 0.1 0.0 0.1 0.0 
Blood 7.6 1.2 46.7 1.2 0.1 0.1 0.1 0.1 0.1 0.1 
Rib 0.1 0.0 0.4 0.0 0.3 0.0 4.5 1.2 9.0 0.4 

Urine 31.4 5.3 10.9 0.1 0.9 0.1 0.3 0.0 0.4 0.3 
Right Kidney 3.8 0.3 0.9 0.2 0.1 0.0 0.6 0.1 1.3 1.0 
Left Kidney 3.7 0.5 0.8 0.3 0.1 0.0 0.6 0.1 0.7 0.1 

Heart 0.2 0.1 1.2 0.2 0.2 0.1 0.1 0.0 0.1 0.0 
Total Lungs 29.9 1.1 31.9 1.3 95.4 1.6 23.0 4.3 0.2 0.0 
Total Liver 19.8 1.9 6.3 0.7 0.3 0.0 1.1 0.3 1.8 0.1 

 

  



131 

 

ANNEX 2 B: Table 8 Re-casted distributions for the MCNPX ROBY model 

 68Ga-
MAA 2h 

68Ga-
MAA 4h 

68Ga-
CHSg-

NOTA 2h 

68Ga-
CHSg-
NOTA 

4h 

Free 
68Ga 2h 

Free 68Ga 
4h 

99mTc-
MAA 2h 

99mTc-
MAA 4h 

Free 
99mTc 2h 

Free 
99mTc 4h 

heart 
LV 

1.4165E-4 1.7792E-4 2.5432E-4 3.5193E-
4 

5.5384E-
3 

1.2309E-2 3.0012E-4 4.5547E-4 1.4241E-
3 

1.6416E-
3 

heart 
RV 

2.0553E-5 2.5816E-5 3.6900E-5 5.1063E-
5 

8.0360E-
4 

1.7860E-3 4.3545E-5 6.6086E-5 2.0663E-
4 

2.3819E-
4 

heart 
LA 

3.7593E-6 4.7219E-6 6.7493E-6 9.3399E-
6 

1.4699E-
4 

3.2668E-4 7.9648E-6 1.2088E-5 3.7794E-
5 

4.3567E-
5 

heart 
RA 

5.3000E-6 6.6571E-6 9.5154E-6 1.3168E-
5 

2.0722E-
4 

4.6056E-4 1.1229E-5 1.7042E-5 5.3284E-
5 

6.1423E-
5 

blood 
LV 

2.8575E-4 2.9484E-4 3.1289E-5 1.8083E-
4 

3.1177E-
2 

2.3159E-2 3.4317E-4 3.1757E-4 4.5952E-
4 

1.5187E-
4 

blood 
RV 

2.5285E-4 2.6088E-4 2.7686E-5 1.6001E-
4 

2.7587E-
2 

2.0492E-2 3.0365E-4 2.8100E-4 4.0660E-
4 

1.3438E-
4 

blood 
LA 

8.3777E-5 8.6440E-5 9.1733E-6 5.3016E-
5 

9.1405E-
3 

6.7897E-3 1.0061E-4 9.3106E-5 1.3472E-
4 

4.4525E-
5 

blood 
RA 

3.3027E-4 3.4077E-4 3.6163E-5 2.0900E-
4 

3.6034E-
2 

2.6766E-2 3.9663E-4 3.6705E-4 5.3111E-
4 

1.7553E-
4 

body 
rest 

5.3385E-3 5.5082E-3 5.8455E-4 3.3783E-
3 

5.8246E-
1 

4.3266E-1 6.4112E-3 5.9330E-3 8.5849E-
3 

2.8373E-
3 

liver 4.1615E-3 4.1616E-3 2.4738E-3 1.5811E-
3 

2.3226E-
2 

7.2295E-2 4.5540E-3 8.8954E-3 4.4648E-
1 

4.0948E-
1 

lung 9.8559E-1 9.8519E-1 9.8847E-1 9.5574E-
1 

3.1361E-
2 

8.3633E-2 8.6566E-1 7.9180E-1 3.9480E-
1 

4.5185E-
1 

kidney 3.4462E-4 6.4526E-4 1.7168E-3 1.5842E-
3 

1.0718E-
2 

2.9883E-2 4.3414E-2 6.6444E-2 1.1586E-
2 

7.4213E-
3 

spleen 9.1440E-4 9.7711E-4 7.2734E-4 5.1691E-
4 

5.7897E-
3 

1.6148E-2 5.7300E-4 7.6736E-4 7.1775E-
2 

1.1838E-
1 

bladder 1.0375E-3 7.8540E-4 5.4485E-3 3.5174E-
2 

6.8173E-
2 

1.3975E-1 7.5964E-2 1.2274E-1 6.0699E-
2 

6.4290E-
3 

rib 0.0000E+0 0.0000E+0 0.0000E+0 5.0076E- 4.9928E- 1.2731E-2 1.2810E-4 1.5578E-4 4.2682E- 3.1113E-
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5 3 4 4 
marrow 1.4907E-3 1.5381E-3 1.6323E-4 9.4337E-

4 
1.6265E-

1 
1.2082E-1 1.7903E-3 1.6567E-3 2.3973E-

3 
7.9229E-

4 
           

 99mTc-
CHSg 2h 

99mTc-
CHSg 4h 

99mTc-
PGCD 2h 

99mTc-
PGCD 4h 

68Ga-
CHSg 

68GaPGCD 
2h 

90Y-CHS-
DOTA 24h 

90Y-
RMTEX 

24h 

Free 90Y 24h 

heart LV 3.0155E-4 3.0609E-4 9.3994E-
4 

1.6211E-
3 

9.6185E-
3 

9.5181E-3 1.6175E-3 1.8834E-3 5.0518E-3 

heart RV 4.3753E-5 4.4412E-5 1.3638E-
4 

2.3522E-
4 

1.3956E-
3 

1.3810E-3 2.3469E-4 2.7326E-4 7.3299E-4 

heart LA 8.0027E-6 8.1234E-6 2.4945E-
5 

4.3024E-
5 

2.5526E-
4 

2.5260E-4 4.2927E-5 4.9982E-5 1.3407E-4 

heart RA 1.1283E-5 1.1453E-5 3.5168E-
5 

6.0656E-
5 

3.5988E-
4 

3.5613E-4 6.0519E-5 7.0467E-5 1.8902E-4 

blood LV 2.7229E-4 3.0800E-4 2.6679E-
3 

2.8651E-
3 

1.7147E-
2 

1.7980E-2 3.9397E-5 1.0943E-4 2.6426E-4 

blood RV 2.4094E-4 2.7253E-4 2.3607E-
3 

2.5352E-
3 

1.5172E-
2 

1.5910E-2 3.4861E-5 9.6833E-5 2.3383E-4 

blood LA 7.9832E-5 9.0299E-5 7.8219E-
4 

8.4001E-
4 

5.0271E-
3 

5.2715E-3 1.1551E-5 3.2084E-5 7.7476E-5 

blood RA 3.1472E-4 3.5598E-4 3.0836E-
3 

3.3115E-
3 

1.9818E-
2 

2.0782E-2 4.5535E-5 1.2648E-4 3.0543E-4 

body rest 5.0871E-3 5.7541E-3 4.9843E-
2 

5.3528E-
2 

3.2034E-
1 

3.3592E-1 7.3604E-4 2.0445E-3 4.9370E-3 

liver 2.9627E-3 6.6119E-3 2.7583E-
2 

2.0292E-
1 

6.3462E-
2 

4.9253E-2 2.8789E-3 3.7748E-2 1.3556E-1 

lung 9.1620E-1 8.3159E-1 5.6353E-
1 

3.0638E-
1 

3.1913E-
1 

5.6386E-2 9.7954E-1 7.5793E-1 1.1508E-2 

kidney 2.3517E-2 5.2606E-2 5.5335E-
2 

7.6429E-
2 

1.7184E-
2 

2.7100E-2 1.9219E-3 3.9834E-2 1.4701E-1 

spleen 4.5143E-4 7.5350E-4 8.0913E-
3 

1.1966E-
2 

9.0263E-
3 

7.6440E-3 2.5681E-4 1.8523E-3 5.4100E-3 

bladder 4.9037E-2 9.9534E-2 2.7106E-
1 

3.2175E-
1 

1.0856E-
1 

3.5116E-1 9.3067E-3 8.3853E-3 2.5702E-2 
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rib 5.6434E-5 1.4234E-4 6.1325E-
4 

5.2629E-
4 

4.0457E-
3 

7.2820E-3 0.0000E+0 0.0000E+0 0.0000E+0 

marrow 1.4205E-3 1.6068E-3 1.3918E-
2 

1.4947E-
2 

8.9454E-
2 

9.3803E-2 3.2743E-3 1.4956E-1 6.6289E-1 

 

ANNEX 3: Table 9 Tabulated Dosimetry Calculations Results 

   68Ga-MAA 2h 68Ga-MAA 4h CHSg-NOTA-
68Ga 

CHSg-NOTA-
68Ga 4h 

   MEAN error MEAN error MEAN error MEAN error 
Dose at @ 1 cm (mGy/decay)   3.39E-

11 
6E-
13 

3.39E-
11 

6E-
13 

3.35E-
11 

6E-
13 

3.29E-
11 

6E-13 

Energy Dep (MeV)   8.228E-
1 

2E-4 8.228E-
1 

2E-4 8.231E-
1 

2E-4 8.230E-
1 

2E-4 

Avg (mGy/decay)   4.134E-
10 

1E-
13 

4.133E-
10 

1E-
13 

4.135E-
10 

1E-
13 

4.135E-
10 

1E-13 

Max D (mGy/decay)   3.87E-8  3.87E-8  3.89E-8  3.76E-8  
Min D (mGy/decay)   3.41E-

12 
 3.41E-

12 
 2.21E-

12 
 4.56E-

12 
 

           
 Vol 

(cm³) 
Mass 
(g) 

Dose per tissue 
(mGy/decay) 

     

   MEAN error MEAN error MEAN error MEAN error 
skin 1.79E+1 1.95E+1 2.07E-

11 
6E-
14 

2.08E-
11 

6E-
14 

1.98E-
11 

6E-
14 

2.03E-
11 

6E-14 

myoLV 5.75E-1 6.03E-1 5.66E-9 1E-
11 

5.66E-9 1E-
11 

5.68E-9 1E-
11 

5.51E-9 1E-11 

myoRV 8.34E-2 8.75E-2 1.36E-9 8E-
12 

1.37E-9 8E-
12 

1.36E-9 8E-
12 

1.32E-9 8E-12 

myoLA 1.53E-2 1.60E-2 4.74E-9 3E-
11 

4.74E-9 3E-
11 

4.74E-9 3E-
11 

4.59E-9 3E-11 

myoRA 2.15E-2 2.26E-2 1.13E-8 4E-
11 

1.13E-8 4E-
11 

1.14E-8 4E-
11 

1.10E-8 4E-11 
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bldplLV 8.49E-1 9.00E-1 2.22E-9 5E-
12 

2.22E-9 5E-
12 

2.21E-9 5E-
12 

2.15E-9 5E-12 

bldplRV 7.51E-1 7.96E-1 1.26E-9 4E-
12 

1.26E-9 4E-
12 

1.24E-9 4E-
12 

1.21E-9 4E-12 

bldplLA 2.49E-1 2.64E-1 9.81E-9 2E-
11 

9.81E-9 2E-
11 

9.83E-9 2E-
11 

9.51E-9 2E-11 

bldplRA 9.81E-1 1.04E+0 4.69E-9 7E-
12 

4.69E-9 7E-
12 

4.68E-9 7E-
12 

4.54E-9 7E-12 

Rest of the body 2.27E+2 2.33E+2 1.94E-
10 

1E-
13 

1.94E-
10 

1E-
13 

1.93E-
10 

1E-
13 

1.94E-
10 

1E-13 

Liver 1.04E+1 1.10E+1 1.07E-9 1E-
12 

1.07E-9 1E-
12 

1.06E-9 1E-
12 

1.02E-9 1E-12 

Lung 2.88E+0 7.48E-1 3.87E-8 2E-
11 

3.87E-8 2E-
11 

3.89E-8 2E-
11 

3.76E-8 2E-11 

Trachea 7.24E-1 7.46E-1 1.85E-8 1E-
11 

1.84E-8 1E-
11 

1.85E-8 1E-
11 

1.79E-8 1E-11 

Stomach_Contents 4.65E+0 4.79E+0 9.08E-
11 

4E-
13 

9.09E-
11 

4E-
13 

8.93E-
11 

4E-
13 

8.62E-
11 

4E-13 

Pancreas 5.08E-1 5.28E-1 3.70E-
11 

6E-
13 

3.81E-
11 

6E-
13 

3.94E-
11 

6E-
13 

3.90E-
11 

6E-13 

Kidney 2.09E+0 2.19E+0 3.73E-
11 

4E-
13 

4.70E-
11 

4E-
13 

7.89E-
11 

6E-
13 

7.54E-
11 

6E-13 

Spleen 8.13E-1 8.62E-1 1.09E-
10 

1E-
12 

1.16E-
10 

1E-
12 

9.17E-
11 

1E-
12 

7.34E-
11 

1E-12 

Small_Intestine 4.23E+0 4.35E+0 2.04E-
11 

1E-
13 

2.07E-
11 

2E-
13 

1.99E-
11 

1E-
13 

2.12E-
11 

2E-13 

Large_Intestine 1.95E+0 2.01E+0 1.72E-
11 

2E-
13 

1.71E-
11 

2E-
13 

2.36E-
11 

3E-
13 

7.25E-
11 

5E-13 

Bladder 6.30E-1 6.49E-1 1.38E-
10 

2E-
12 

1.05E-
10 

2E-
12 

6.93E-
10 

4E-
12 

4.48E-9 1E-11 

Vas_deferens 5.46E-2 5.63E-2 3.41E-
12 

5E-
13 

3.41E-
12 

5E-
13 

2.63E-
12 

4E-
13 

5.67E-
12 

7E-13 

Testes 1.64E-1 1.70E-1 3.82E-
12 

3E-
13 

3.91E-
12 

3E-
13 

2.67E-
12 

2E-
13 

6.06E-
12 

4E-13 

Wet_Rib_Bone 9.38E-1 1.32E+0 3.66E-9 4E- 3.66E-9 4E- 3.67E-9 4E- 3.55E-9 4E-12 
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12 12 12 
Wet_Spine_Bone 4.14E+0 5.88E+0 5.00E-

10 
8E-
13 

5.00E-
10 

8E-
13 

4.98E-
10 

8E-
13 

4.84E-
10 

8E-13 

Skull 1.24E+0 1.99E+0 1.00E-
11 

2E-
13 

1.01E-
11 

2E-
13 

6.52E-
12 

1E-
13 

8.52E-
12 

1E-13 

humerus 2.42E-1 3.53E-1 5.60E-
11 

8E-
13 

5.61E-
11 

8E-
13 

5.26E-
11 

7E-
13 

5.28E-
11 

7E-13 

radius 1.87E-1 2.73E-1 1.01E-
10 

1E-
12 

1.01E-
10 

1E-
12 

9.79E-
11 

1E-
12 

9.58E-
11 

1E-12 

ulna 2.09E-1 3.06E-1 7.42E-
11 

9E-
13 

7.43E-
11 

9E-
13 

7.10E-
11 

9E-
13 

7.11E-
11 

9E-13 

femur 4.44E-1 5.91E-1 7.26E-
12 

2E-
13 

7.44E-
12 

3E-
13 

3.74E-
12 

1E-
13 

7.68E-
12 

2E-13 

fibula 1.41E-1 1.87E-1 5.34E-
12 

4E-
13 

5.52E-
12 

4E-
13 

2.36E-
12 

2E-
13 

4.94E-
12 

3E-13 

tibia 5.17E-1 6.87E-1 4.82E-
12 

2E-
13 

4.87E-
12 

2E-
13 

2.21E-
12 

1E-
13 

4.56E-
12 

2E-13 

patella 3.75E-2 4.99E-2 7.50E-
12 

8E-
13 

7.78E-
12 

8E-
13 

3.88E-
12 

5E-
13 

6.55E-
12 

7E-13 

bone 1.96E+0 2.75E+0 2.95E-
11 

2E-
13 

2.97E-
11 

2E-
13 

2.69E-
11 

2E-
13 

2.95E-
11 

2E-13 

brain_(backgrnd) 6.00E-2 6.24E-2 1.23E-
11 

8E-
13 

1.27E-
11 

8E-
13 

8.67E-
12 

6E-
13 

1.06E-
11 

7E-13 

cerebral_cortex 1.58E+0 1.64E+0 9.49E-
12 

2E-
13 

9.54E-
12 

2E-
13 

7.84E-
12 

1E-
13 

8.58E-
12 

2E-13 

cerebellum 5.41E-1 5.62E-1 1.44E-
11 

4E-
13 

1.44E-
11 

4E-
13 

1.32E-
11 

3E-
13 

1.36E-
11 

3E-13 

corpus_callosum 1.20E-1 1.24E-1 8.62E-
12 

5E-
13 

8.62E-
12 

5E-
13 

8.17E-
12 

5E-
13 

8.25E-
12 

5E-13 

brainstem 6.33E-1 6.59E-1 1.41E-
11 

3E-
13 

1.41E-
11 

3E-
13 

1.30E-
11 

3E-
13 

1.34E-
11 

3E-13 

striatum 2.46E-1 2.56E-1 7.63E-
12 

4E-
13 

7.61E-
12 

4E-
13 

7.11E-
12 

3E-
13 

7.21E-
12 

3E-13 

thal 1.09E-1 1.13E-1 8.00E-
12 

5E-
13 

8.04E-
12 

5E-
13 

7.79E-
12 

5E-
13 

7.83E-
12 

5E-13 
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hippo 3.01E-1 3.13E-1 9.88E-
12 

4E-
13 

9.87E-
12 

4E-
13 

9.43E-
12 

4E-
13 

9.41E-
12 

4E-13 

hypothalamus 9.40E-2 9.78E-2 9.94E-
12 

7E-
13 

1.01E-
11 

7E-
13 

9.11E-
12 

6E-
13 

9.16E-
12 

6E-13 

amygdala 1.48E-1 1.54E-1 1.00E-
11 

6E-
13 

1.00E-
11 

6E-
13 

8.66E-
12 

5E-
13 

9.32E-
12 

5E-13 

lateral_septal_nuclei 4.69E-2 4.88E-2 6.73E-
12 

7E-
13 

6.73E-
12 

7E-
13 

6.69E-
12 

7E-
13 

6.54E-
12 

7E-13 

anterior_commissure 1.19E-2 1.24E-2 1.23E-
11 

2E-
12 

1.23E-
11 

2E-
12 

1.19E-
11 

2E-
12 

1.17E-
11 

2E-12 

anterior_pretectal_nucleus 1.36E-2 1.42E-2 9.08E-
12 

1E-
12 

9.08E-
12 

1E-
12 

9.14E-
12 

1E-
12 

8.89E-
12 

1E-12 

periaqueductal_gray 3.66E-2 3.81E-2 9.73E-
12 

1E-
12 

9.73E-
12 

1E-
12 

9.75E-
12 

1E-
12 

9.43E-
12 

9E-13 

aqueduct 4.38E-3 4.55E-3 1.14E-
11 

3E-
12 

1.14E-
11 

3E-
12 

1.04E-
11 

3E-
12 

1.14E-
11 

3E-12 

cerebral_peduncle 1.86E-2 1.94E-2 8.87E-
12 

1E-
12 

8.87E-
12 

1E-
12 

8.80E-
12 

1E-
12 

8.59E-
12 

1E-12 

cochlear_nuclei 2.23E-2 2.31E-2 1.56E-
11 

2E-
12 

1.56E-
11 

2E-
12 

1.44E-
11 

2E-
12 

1.51E-
11 

2E-12 

deep_mesencephalic_nuclei 4.38E-2 4.55E-2 1.11E-
11 

1E-
12 

1.11E-
11 

1E-
12 

1.11E-
11 

1E-
12 

1.08E-
11 

1E-12 

fimbria 2.21E-2 2.30E-2 7.36E-
12 

1E-
12 

7.36E-
12 

1E-
12 

7.22E-
12 

1E-
12 

7.10E-
12 

1E-12 

fornix 1.56E-2 1.63E-2 8.34E-
12 

1E-
12 

8.61E-
12 

1E-
12 

8.08E-
12 

1E-
12 

8.08E-
12 

1E-12 

globus_pallidus 2.70E-2 2.81E-2 8.56E-
12 

1E-
12 

8.56E-
12 

1E-
12 

7.63E-
12 

9E-
13 

7.89E-
12 

9E-13 

inferior_colliculus 6.51E-2 6.77E-2 1.27E-
11 

9E-
13 

1.27E-
11 

9E-
13 

1.21E-
11 

8E-
13 

1.19E-
11 

8E-13 

internal_capsule 4.13E-2 4.29E-2 7.70E-
12 

8E-
13 

7.72E-
12 

8E-
13 

7.63E-
12 

8E-
13 

7.47E-
12 

8E-13 

interpeduncular_nucleus 4.75E-3 4.94E-3 1.31E-
11 

3E-
12 

1.31E-
11 

3E-
12 

1.24E-
11 

3E-
12 

1.23E-
11 

3E-12 

lateral_dorsal_nucleus_of_thalamus 1.18E-2 1.22E-2 7.66E- 1E- 7.66E- 1E- 7.56E- 1E- 7.67E- 1E-12 
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12 12 12 12 12 12 12 
lateral_geniculate 1.86E-2 1.94E-2 9.55E-

12 
1E-
12 

9.55E-
12 

1E-
12 

9.29E-
12 

1E-
12 

9.52E-
12 

1E-12 

lateral_lemniscus 1.68E-2 1.74E-2 1.13E-
11 

1E-
12 

1.13E-
11 

1E-
12 

1.11E-
11 

1E-
12 

1.14E-
11 

1E-12 

medial_geniculate 1.80E-2 1.87E-2 7.74E-
12 

1E-
12 

7.74E-
12 

1E-
12 

7.76E-
12 

1E-
12 

7.72E-
12 

1E-12 

nucleus_accumbens 5.94E-2 6.18E-2 7.66E-
12 

7E-
13 

7.66E-
12 

7E-
13 

7.13E-
12 

7E-
13 

7.21E-
12 

7E-13 

olfactory_areas 3.33E-1 3.46E-1 7.73E-
12 

4E-
13 

7.86E-
12 

4E-
13 

5.12E-
12 

3E-
13 

6.34E-
12 

3E-13 

optic_tract 2.00E-2 2.08E-2 8.22E-
12 

1E-
12 

8.22E-
12 

1E-
12 

7.14E-
12 

1E-
12 

7.77E-
12 

1E-12 

pontine_gray 2.44E-2 2.54E-2 1.17E-
11 

1E-
12 

1.20E-
11 

1E-
12 

9.51E-
12 

1E-
12 

1.06E-
11 

1E-12 

spinal_trigeminal_tract 2.78E-2 2.89E-2 1.65E-
11 

1E-
12 

1.68E-
11 

1E-
12 

1.51E-
11 

1E-
12 

1.56E-
11 

1E-12 

substantia_nigra 3.54E-2 3.68E-2 9.84E-
12 

1E-
12 

9.84E-
12 

1E-
12 

9.57E-
12 

1E-
12 

9.06E-
12 

1E-12 

superior_colliculus 1.27E-1 1.32E-1 1.01E-
11 

5E-
13 

1.01E-
11 

5E-
13 

9.73E-
12 

5E-
13 

9.47E-
12 

5E-13 

pineal_gland 3.00E-3 3.12E-3 1.26E-
11 

4E-
12 

1.21E-
11 

4E-
12 

1.20E-
11 

4E-
12 

1.20E-
11 

4E-12 

ventral_thalamic_nuclei 5.75E-2 5.98E-2 8.85E-
12 

8E-
13 

8.85E-
12 

8E-
13 

8.76E-
12 

7E-
13 

8.35E-
12 

7E-13 

ventricular_system 9.65E-2 1.00E-1 1.00E-
11 

6E-
13 

1.00E-
11 

6E-
13 

9.48E-
12 

6E-
13 

9.38E-
12 

6E-13 

thyroid 2.62E-1 2.69E-1 2.12E-
11 

6E-
13 

2.12E-
11 

6E-
13 

2.05E-
11 

6E-
13 

1.99E-
11 

6E-13 

Large_Int 8.76E+0 1.06E-2 1.52E-
11 

5E-
13 

1.51E-
11 

5E-
13 

1.80E-
11 

5E-
13 

4.49E-
11 

7E-13 

Small_Int 1.00E+1 1.21E-2 1.92E-
11 

4E-
13 

1.95E-
11 

4E-
13 

1.85E-
11 

4E-
13 

2.01E-
11 

4E-13 

marrow 1.38E+1 1.43E+1 5.83E-
10 

5E-
13 

5.83E-
10 

5E-
13 

5.78E-
10 

5E-
13 

5.63E-
10 

5E-13 
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   Free 68Ga 2h Free 68Ga 4h 99mTc-MAA 2h 99mTc-MAA 4h 
   MEAN error MEAN error MEAN error MEAN error 
Dose at @ 1 cm (mGy/decay)   7.1E-11 1E-

12 
6.2E-11 1E-

12 
3.7E-12 1E-

13 
3.5E-12 1E-13 

Energy Dep (MeV)   7.848E-
1 

2E-4 7.949E-
1 

2E-4 2.673E-
2 

2E-5 2.676E-
2 

2E-5 

Avg (mGy/decay)   3.943E-
10 

1E-
13 

3.993E-
10 

1E-
13 

1.343E-
11 

1E-
14 

1.344E-
11 

1E-14 

Max D (mGy/decay)   8.79E-9  1.79E-8  2.62E-9  2.39E-9  
Min D (mGy/decay)   2.40E-

11 
 1.84E-

11 
 4.55E-

13 
 5.06E-

13 
 

           
 Vol 

(cm³) 
Mass 
(g) 

Dose per tissue 
(mGy/decay) 

     

   MEAN error MEAN error MEAN error MEAN error 
skin 1.79E+1 1.95E+1 1.30E-

10 
2E-
13 

1.02E-
10 

2E-
13 

2.33E-
12 

1E-
14 

2.32E-
12 

1E-14 

myoLV 5.75E-1 6.03E-1 1.99E-9 6E-
12 

2.69E-9 7E-
12 

5.16E-
11 

4E-
13 

4.84E-
11 

4E-13 

myoRV 8.34E-2 8.75E-2 1.91E-9 9E-
12 

1.85E-9 9E-
12 

2.30E-
11 

6E-
13 

2.19E-
11 

6E-13 

myoLA 1.53E-2 1.60E-2 2.34E-9 2E-
11 

2.27E-9 2E-
11 

4.50E-
11 

2E-
12 

4.16E-
11 

2E-12 

myoRA 2.15E-2 2.26E-2 2.39E-9 2E-
11 

2.71E-9 2E-
11 

1.31E-
10 

4E-
12 

1.22E-
10 

4E-12 

bldplLV 8.49E-1 9.00E-1 2.60E-9 6E-
12 

2.27E-9 5E-
12 

3.04E-
11 

2E-
13 

2.81E-
11 

2E-13 

bldplRV 7.51E-1 7.96E-1 3.17E-9 7E-
12 

2.63E-9 7E-
12 

2.78E-
11 

2E-
13 

2.55E-
11 

2E-13 

bldplLA 2.49E-1 2.64E-1 2.94E-9 1E-
11 

2.89E-9 1E-
11 

8.63E-
11 

8E-
13 

7.90E-
11 

8E-13 

bldplRA 9.81E-1 1.04E+0 2.73E-9 6E-
12 

2.42E-9 5E-
12 

4.20E-
11 

3E-
13 

3.89E-
11 

3E-13 

Rest of the body 2.27E+2 2.33E+2 3.39E-
10 

1E-
13 

2.95E-
10 

1E-
13 

4.92E-
12 

6E-
15 

4.97E-
12 

6E-15 
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Liver 1.04E+1 1.10E+1 3.89E-
10 

7E-
13 

8.87E-
10 

1E-
12 

1.84E-
11 

5E-
14 

1.85E-
11 

6E-14 

Lung 2.88E+0 7.48E-1 1.89E-9 4E-
12 

3.92E-9 6E-
12 

2.62E-9 3E-
12 

2.39E-9 3E-12 

Trachea 7.24E-1 7.46E-1 1.17E-9 3E-
12 

2.06E-9 5E-
12 

1.93E-
10 

8E-
13 

1.77E-
10 

8E-13 

Stomach_Contents 4.65E+0 4.79E+0 9.65E-
11 

5E-
13 

1.42E-
10 

6E-
13 

6.97E-
12 

4E-
14 

6.77E-
12 

4E-14 

Pancreas 5.08E-1 5.28E-1 2.18E-
10 

2E-
12 

2.42E-
10 

2E-
12 

5.55E-
12 

1E-
13 

6.12E-
12 

1E-13 

Kidney 2.09E+0 2.19E+0 4.97E-
10 

2E-
12 

1.11E-9 3E-
12 

5.58E-
11 

3E-
13 

8.47E-
11 

4E-13 

Spleen 8.13E-1 8.62E-1 6.36E-
10 

3E-
12 

1.58E-9 5E-
12 

5.18E-
12 

1E-
13 

6.10E-
12 

1E-13 

Small_Intestine 4.23E+0 4.35E+0 1.85E-
10 

6E-
13 

1.84E-
10 

6E-
13 

2.95E-
12 

3E-
14 

3.45E-
12 

3E-14 

Large_Intestine 1.95E+0 2.01E+0 3.22E-
10 

1E-
12 

4.16E-
10 

1E-
12 

3.48E-
12 

5E-
14 

4.67E-
12 

6E-14 

Bladder 6.30E-1 6.49E-1 8.79E-9 1E-
11 

1.79E-8 2E-
11 

3.21E-
10 

1E-
12 

5.16E-
10 

2E-12 

Vas_deferens 5.46E-2 5.63E-2 1.43E-
10 

4E-
12 

1.14E-
10 

4E-
12 

8.77E-
13 

1E-
13 

1.18E-
12 

1E-13 

Testes 1.64E-1 1.70E-1 1.51E-
10 

3E-
12 

1.21E-
10 

2E-
12 

8.59E-
13 

8E-
14 

1.31E-
12 

1E-13 

Wet_Rib_Bone 9.38E-1 1.32E+0 5.96E-
10 

1E-
12 

8.67E-
10 

2E-
12 

3.89E-
11 

2E-
13 

3.60E-
11 

2E-13 

Wet_Spine_Bone 4.14E+0 5.88E+0 3.66E-
10 

7E-
13 

3.09E-
10 

6E-
13 

1.02E-
11 

5E-
14 

9.75E-
12 

5E-14 

Skull 1.24E+0 1.99E+0 4.43E-
10 

1E-
12 

3.30E-
10 

1E-
12 

8.55E-
13 

3E-
14 

7.88E-
13 

3E-14 

humerus 2.42E-1 3.53E-1 4.42E-
10 

3E-
12 

3.34E-
10 

2E-
12 

8.16E-
12 

2E-
13 

7.50E-
12 

2E-13 

radius 1.87E-1 2.73E-1 4.05E-
10 

3E-
12 

3.12E-
10 

3E-
12 

1.47E-
11 

3E-
13 

1.36E-
11 

3E-13 

ulna 2.09E-1 3.06E-1 3.96E- 3E- 3.02E- 3E- 1.04E- 2E- 9.57E- 2E-13 
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10 12 10 12 11 13 12 
femur 4.44E-1 5.91E-1 4.87E-

10 
2E-
12 

3.66E-
10 

2E-
12 

1.36E-
12 

6E-
14 

1.83E-
12 

7E-14 

fibula 1.41E-1 1.87E-1 3.57E-
10 

3E-
12 

2.67E-
10 

3E-
12 

4.55E-
13 

6E-
14 

6.28E-
13 

7E-14 

tibia 5.17E-1 6.87E-1 3.26E-
10 

2E-
12 

2.45E-
10 

2E-
12 

4.92E-
13 

4E-
14 

6.13E-
13 

4E-14 

patella 3.75E-2 4.99E-2 4.00E-
10 

6E-
12 

2.98E-
10 

5E-
12 

5.26E-
13 

1E-
13 

8.18E-
13 

1E-13 

bone 1.96E+0 2.75E+0 3.43E-
10 

9E-
13 

2.66E-
10 

8E-
13 

3.43E-
12 

4E-
14 

3.70E-
12 

5E-14 

brain_(backgrnd) 6.00E-2 6.24E-2 4.46E-
10 

5E-
12 

3.31E-
10 

4E-
12 

8.16E-
13 

1E-
13 

8.27E-
13 

1E-13 

cerebral_cortex 1.58E+0 1.64E+0 2.18E-
10 

1E-
12 

1.64E-
10 

1E-
12 

6.95E-
13 

2E-
14 

6.60E-
13 

2E-14 

cerebellum 5.41E-1 5.62E-1 1.74E-
10 

2E-
12 

1.31E-
10 

2E-
12 

1.43E-
12 

6E-
14 

1.34E-
12 

6E-14 

corpus_callosum 1.20E-1 1.24E-1 7.69E-
11 

2E-
12 

5.86E-
11 

1E-
12 

8.14E-
13 

8E-
14 

7.57E-
13 

8E-14 

brainstem 6.33E-1 6.59E-1 1.59E-
10 

2E-
12 

1.21E-
10 

1E-
12 

1.31E-
12 

5E-
14 

1.24E-
12 

5E-14 

striatum 2.46E-1 2.56E-1 5.80E-
11 

1E-
12 

4.43E-
11 

1E-
12 

6.61E-
13 

6E-
14 

6.13E-
13 

5E-14 

thal 1.09E-1 1.13E-1 3.47E-
11 

1E-
12 

2.59E-
11 

1E-
12 

7.86E-
13 

1E-
13 

7.57E-
13 

9E-14 

hippo 3.01E-1 3.13E-1 7.29E-
11 

1E-
12 

5.52E-
11 

1E-
12 

8.37E-
13 

6E-
14 

8.02E-
13 

6E-14 

hypothalamus 9.40E-2 9.78E-2 2.09E-
10 

5E-
12 

1.60E-
10 

4E-
12 

8.10E-
13 

1E-
13 

7.85E-
13 

1E-13 

amygdala 1.48E-1 1.54E-1 2.08E-
10 

4E-
12 

1.54E-
10 

3E-
12 

8.56E-
13 

9E-
14 

8.27E-
13 

9E-14 

lateral_septal_nuclei 4.69E-2 4.88E-2 4.14E-
11 

2E-
12 

3.17E-
11 

2E-
12 

5.95E-
13 

1E-
13 

6.11E-
13 

1E-13 

anterior_commissure 1.19E-2 1.24E-2 5.93E-
11 

4E-
12 

4.91E-
11 

4E-
12 

5.41E-
13 

2E-
13 

5.20E-
13 

2E-13 
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anterior_pretectal_nucleus 1.36E-2 1.42E-2 2.70E-
11 

3E-
12 

2.03E-
11 

2E-
12 

5.88E-
13 

2E-
13 

5.06E-
13 

2E-13 

periaqueductal_gray 3.66E-2 3.81E-2 2.95E-
11 

2E-
12 

2.33E-
11 

2E-
12 

9.20E-
13 

2E-
13 

7.88E-
13 

1E-13 

aqueduct 4.38E-3 4.55E-3 3.78E-
11 

6E-
12 

2.96E-
11 

6E-
12 

6.40E-
13 

4E-
13 

6.04E-
13 

4E-13 

cerebral_peduncle 1.86E-2 1.94E-2 1.35E-
10 

6E-
12 

1.04E-
10 

5E-
12 

6.95E-
13 

2E-
13 

6.84E-
13 

2E-13 

cochlear_nuclei 2.23E-2 2.31E-2 2.34E-
10 

8E-
12 

1.74E-
10 

7E-
12 

1.41E-
12 

3E-
13 

1.36E-
12 

3E-13 

deep_mesencephalic_nuclei 4.38E-2 4.55E-2 2.82E-
11 

2E-
12 

2.19E-
11 

1E-
12 

1.32E-
12 

2E-
13 

1.25E-
12 

2E-13 

fimbria 2.21E-2 2.30E-2 2.40E-
11 

2E-
12 

1.84E-
11 

2E-
12 

9.36E-
13 

2E-
13 

8.43E-
13 

2E-13 

fornix 1.56E-2 1.63E-2 8.93E-
11 

5E-
12 

6.91E-
11 

4E-
12 

8.77E-
13 

2E-
13 

7.99E-
13 

2E-13 

globus_pallidus 2.70E-2 2.81E-2 4.93E-
11 

3E-
12 

3.78E-
11 

3E-
12 

8.94E-
13 

2E-
13 

8.44E-
13 

2E-13 

inferior_colliculus 6.51E-2 6.77E-2 1.16E-
10 

4E-
12 

8.58E-
11 

3E-
12 

1.18E-
12 

2E-
13 

1.15E-
12 

2E-13 

internal_capsule 4.13E-2 4.29E-2 3.55E-
11 

2E-
12 

2.80E-
11 

2E-
12 

8.78E-
13 

2E-
13 

8.70E-
13 

2E-13 

interpeduncular_nucleus 4.75E-3 4.94E-3 8.29E-
11 

1E-
11 

6.41E-
11 

8E-
12 

1.45E-
12 

6E-
13 

1.29E-
12 

5E-13 

lateral_dorsal_nucleus_of_thalamus 1.18E-2 1.22E-2 2.40E-
11 

3E-
12 

1.93E-
11 

2E-
12 

8.17E-
13 

3E-
13 

6.91E-
13 

2E-13 

lateral_geniculate 1.86E-2 1.94E-2 2.81E-
11 

2E-
12 

2.15E-
11 

2E-
12 

9.50E-
13 

3E-
13 

8.19E-
13 

2E-13 

lateral_lemniscus 1.68E-2 1.74E-2 4.44E-
11 

3E-
12 

3.55E-
11 

3E-
12 

1.51E-
12 

3E-
13 

1.29E-
12 

3E-13 

medial_geniculate 1.80E-2 1.87E-2 3.08E-
11 

3E-
12 

2.24E-
11 

2E-
12 

1.31E-
12 

3E-
13 

1.31E-
12 

3E-13 

nucleus_accumbens 5.94E-2 6.18E-2 1.29E-
10 

4E-
12 

9.76E-
11 

4E-
12 

7.53E-
13 

1E-
13 

7.40E-
13 

1E-13 

olfactory_areas 3.33E-1 3.46E-1 3.06E- 3E- 2.29E- 3E- 5.91E- 5E- 5.68E- 5E-14 
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10 12 10 12 13 14 13 
optic_tract 2.00E-2 2.08E-2 1.75E-

10 
7E-
12 

1.35E-
10 

6E-
12 

1.01E-
12 

4E-
13 

1.01E-
12 

4E-13 

pontine_gray 2.44E-2 2.54E-2 2.80E-
10 

1E-
11 

2.12E-
10 

8E-
12 

1.14E-
12 

2E-
13 

8.27E-
13 

2E-13 

spinal_trigeminal_tract 2.78E-2 2.89E-2 2.64E-
10 

7E-
12 

2.01E-
10 

6E-
12 

1.49E-
12 

2E-
13 

1.32E-
12 

2E-13 

substantia_nigra 3.54E-2 3.68E-2 8.98E-
11 

4E-
12 

6.85E-
11 

4E-
12 

7.70E-
13 

1E-
13 

7.56E-
13 

1E-13 

superior_colliculus 1.27E-1 1.32E-1 6.58E-
11 

2E-
12 

5.02E-
11 

2E-
12 

1.09E-
12 

1E-
13 

1.04E-
12 

1E-13 

pineal_gland 3.00E-3 3.12E-3 2.34E-
10 

2E-
11 

1.70E-
10 

2E-
11 

    

ventral_thalamic_nuclei 5.75E-2 5.98E-2 2.44E-
11 

1E-
12 

1.94E-
11 

1E-
12 

8.34E-
13 

1E-
13 

7.75E-
13 

1E-13 

ventricular_system 9.65E-2 1.00E-1 6.09E-
11 

2E-
12 

4.64E-
11 

2E-
12 

1.05E-
12 

1E-
13 

9.23E-
13 

1E-13 

thyroid 2.62E-1 2.69E-1 1.26E-
10 

2E-
12 

9.45E-
11 

2E-
12 

2.24E-
12 

1E-
13 

1.99E-
12 

1E-13 

Large_Int 8.76E+0 1.06E-2 2.63E-
10 

2E-
12 

2.98E-
10 

2E-
12 

3.11E-
12 

4E-
13 

3.73E-
12 

4E-13 

Small_Int 1.00E+1 1.21E-2 1.79E-
10 

1E-
12 

1.78E-
10 

1E-
12 

2.73E-
12 

3E-
13 

2.95E-
12 

3E-13 

marrow 1.38E+1 1.43E+1 8.03E-
10 

8E-
13 

6.49E-
10 

7E-
13 

7.13E-
12 

3E-
14 

6.75E-
12 

3E-14 

   Free 99mTc 2h Free 99mTc 4h 99mTc-CHSg 2h 99mTc-CHSg 4h 
   MEAN error MEAN error MEAN error MEAN error 
Dose at @ 1 cm (mGy/decay)   4.8E-12 1E-

13 
4.8E-12 1E-

13 
3.9E-12 1E-

13 
3.6E-12 1E-13 

Energy Dep (MeV)   2.689E-
2 

2E-5 2.685E-
2 

2E-5 2.672E-
2 

2E-5 2.675E-
2 

2E-5 

Avg (mGy/decay)   1.351E-
11 

1E-
14 

1.349E-
11 

1E-
14 

1.342E-
11 

1E-
14 

1.344E-
11 

1E-14 

Max D (mGy/decay)   1.20E-9  1.38E-9  2.77E-9  2.51E-9  
Min D (mGy/decay)   3.21E-  2.91E-  3.55E-  4.67E-  
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13 13 13 13 
           
 Vol 

(cm³) 
Mass 
(g) 

Dose per tissue 
(mGy/decay) 

     

   MEAN error MEAN error MEAN error MEAN error 
skin 1.79E+1 1.95E+1 2.43E-

12 
1E-
14 

2.42E-
12 

1E-
14 

2.33E-
12 

1E-
14 

2.32E-
12 

1E-14 

myoLV 5.75E-1 6.03E-1 3.61E-
11 

3E-
13 

3.96E-
11 

4E-
13 

5.44E-
11 

4E-
13 

4.99E-
11 

4E-13 

myoRV 8.34E-2 8.75E-2 2.41E-
11 

7E-
13 

2.61E-
11 

7E-
13 

2.41E-
11 

6E-
13 

2.23E-
11 

6E-13 

myoLA 1.53E-2 1.60E-2 2.96E-
11 

2E-
12 

3.36E-
11 

2E-
12 

4.90E-
11 

2E-
12 

4.44E-
11 

2E-12 

myoRA 2.15E-2 2.26E-2 6.63E-
11 

3E-
12 

7.50E-
11 

3E-
12 

1.38E-
10 

4E-
12 

1.27E-
10 

4E-12 

bldplLV 8.49E-1 9.00E-1 2.17E-
11 

2E-
13 

2.23E-
11 

2E-
13 

3.17E-
11 

2E-
13 

2.93E-
11 

2E-13 

bldplRV 7.51E-1 7.96E-1 2.16E-
11 

2E-
13 

2.16E-
11 

2E-
13 

2.89E-
11 

2E-
13 

2.67E-
11 

2E-13 

bldplLA 2.49E-1 2.64E-1 4.55E-
11 

6E-
13 

4.97E-
11 

6E-
13 

9.06E-
11 

8E-
13 

8.29E-
11 

8E-13 

bldplRA 9.81E-1 1.04E+0 3.04E-
11 

2E-
13 

3.14E-
11 

2E-
13 

4.37E-
11 

3E-
13 

4.04E-
11 

3E-13 

Rest of the body 2.27E+2 2.33E+2 4.34E-
12 

5E-
15 

4.24E-
12 

6E-
15 

4.87E-
12 

6E-
15 

4.94E-
12 

6E-15 

Liver 1.04E+1 1.10E+1 1.34E-
10 

2E-
13 

1.25E-
10 

2E-
13 

1.87E-
11 

5E-
14 

1.84E-
11 

5E-14 

Lung 2.88E+0 7.48E-1 1.20E-9 2E-
12 

1.38E-9 2E-
12 

2.77E-9 3E-
12 

2.51E-9 3E-12 

Trachea 7.24E-1 7.46E-1 9.10E-
11 

6E-
13 

1.04E-
10 

6E-
13 

2.04E-
10 

8E-
13 

1.85E-
10 

8E-13 

Stomach_Contents 4.65E+0 4.79E+0 1.38E-
11 

6E-
14 

1.55E-
11 

7E-
14 

7.09E-
12 

4E-
14 

6.89E-
12 

4E-14 

Pancreas 5.08E-1 5.28E-1 1.01E-
11 

2E-
13 

1.07E-
11 

2E-
13 

4.82E-
12 

1E-
13 

5.65E-
12 

1E-13 
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Kidney 2.09E+0 2.19E+0 2.16E-
11 

2E-
13 

1.69E-
11 

1E-
13 

3.21E-
11 

2E-
13 

6.71E-
11 

3E-13 

Spleen 8.13E-1 8.62E-1 2.29E-
10 

9E-
13 

3.78E-
10 

1E-
12 

4.62E-
12 

1E-
13 

5.82E-
12 

1E-13 

Small_Intestine 4.23E+0 4.35E+0 5.58E-
12 

4E-
14 

5.60E-
12 

4E-
14 

2.55E-
12 

3E-
14 

3.16E-
12 

3E-14 

Large_Intestine 1.95E+0 2.01E+0 4.57E-
12 

5E-
14 

3.47E-
12 

5E-
14 

2.73E-
12 

4E-
14 

4.04E-
12 

5E-14 

Bladder 6.30E-1 6.49E-1 2.57E-
10 

1E-
12 

2.76E-
11 

4E-
13 

2.08E-
10 

1E-
12 

4.21E-
10 

1E-12 

Vas_deferens 5.46E-2 5.63E-2 9.06E-
13 

1E-
13 

5.07E-
13 

9E-
14 

7.15E-
13 

1E-
13 

1.07E-
12 

1E-13 

Testes 1.64E-1 1.70E-1 9.09E-
13 

8E-
14 

4.16E-
13 

6E-
14 

7.10E-
13 

7E-
14 

1.06E-
12 

9E-14 

Wet_Rib_Bone 9.38E-1 1.32E+0 2.90E-
11 

2E-
13 

3.06E-
11 

2E-
13 

4.07E-
11 

2E-
13 

3.75E-
11 

2E-13 

Wet_Spine_Bone 4.14E+0 5.88E+0 7.04E-
12 

5E-
14 

7.32E-
12 

5E-
14 

1.05E-
11 

5E-
14 

1.00E-
11 

5E-14 

Skull 1.24E+0 1.99E+0 6.56E-
13 

3E-
14 

6.26E-
13 

2E-
14 

8.87E-
13 

3E-
14 

8.19E-
13 

3E-14 

humerus 2.42E-1 3.53E-1 5.27E-
12 

2E-
13 

5.63E-
12 

2E-
13 

8.49E-
12 

2E-
13 

7.90E-
12 

2E-13 

radius 1.87E-1 2.73E-1 1.04E-
11 

3E-
13 

1.11E-
11 

3E-
13 

1.53E-
11 

3E-
13 

1.41E-
11 

3E-13 

ulna 2.09E-1 3.06E-1 8.10E-
12 

2E-
13 

8.54E-
12 

2E-
13 

1.10E-
11 

2E-
13 

9.96E-
12 

2E-13 

femur 4.44E-1 5.91E-1 1.23E-
12 

6E-
14 

5.98E-
13 

4E-
14 

9.29E-
13 

5E-
14 

1.57E-
12 

7E-14 

fibula 1.41E-1 1.87E-1 3.88E-
13 

6E-
14 

3.00E-
13 

5E-
14 

3.55E-
13 

5E-
14 

4.67E-
13 

6E-14 

tibia 5.17E-1 6.87E-1 5.10E-
13 

4E-
14 

3.68E-
13 

3E-
14 

3.97E-
13 

3E-
14 

5.16E-
13 

4E-14 

patella 3.75E-2 4.99E-2 6.01E-
13 

1E-
13 

3.44E-
13 

9E-
14 

3.64E-
13 

9E-
14 

7.05E-
13 

1E-13 

bone 1.96E+0 2.75E+0 3.07E- 4E- 2.66E- 4E- 3.29E- 4E- 3.56E- 5E-14 
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12 14 12 14 12 14 12 
brain_(backgrnd) 6.00E-2 6.24E-2 6.04E-

13 
1E-
13 

6.12E-
13 

1E-
13 

7.79E-
13 

1E-
13 

7.87E-
13 

1E-13 

cerebral_cortex 1.58E+0 1.64E+0 5.17E-
13 

2E-
14 

5.16E-
13 

2E-
14 

7.21E-
13 

2E-
14 

6.72E-
13 

2E-14 

cerebellum 5.41E-1 5.62E-1 1.03E-
12 

5E-
14 

1.04E-
12 

5E-
14 

1.46E-
12 

6E-
14 

1.40E-
12 

6E-14 

corpus_callosum 1.20E-1 1.24E-1 6.25E-
13 

8E-
14 

6.68E-
13 

8E-
14 

8.39E-
13 

9E-
14 

7.75E-
13 

8E-14 

brainstem 6.33E-1 6.59E-1 9.46E-
13 

4E-
14 

9.52E-
13 

4E-
14 

1.37E-
12 

5E-
14 

1.28E-
12 

5E-14 

striatum 2.46E-1 2.56E-1 5.54E-
13 

5E-
14 

5.85E-
13 

5E-
14 

7.17E-
13 

6E-
14 

6.24E-
13 

5E-14 

thal 1.09E-1 1.13E-1 6.42E-
13 

8E-
14 

6.28E-
13 

8E-
14 

8.87E-
13 

1E-
13 

7.88E-
13 

1E-13 

hippo 3.01E-1 3.13E-1 6.02E-
13 

5E-
14 

5.97E-
13 

5E-
14 

8.77E-
13 

6E-
14 

8.39E-
13 

6E-14 

hypothalamus 9.40E-2 9.78E-2 6.75E-
13 

9E-
14 

7.17E-
13 

9E-
14 

8.16E-
13 

1E-
13 

8.28E-
13 

1E-13 

amygdala 1.48E-1 1.54E-1 5.59E-
13 

6E-
14 

6.09E-
13 

7E-
14 

9.05E-
13 

9E-
14 

8.43E-
13 

9E-14 

lateral_septal_nuclei 4.69E-2 4.88E-2 5.20E-
13 

1E-
13 

4.88E-
13 

1E-
13 

6.15E-
13 

1E-
13 

5.99E-
13 

1E-13 

anterior_commissure 1.19E-2 1.24E-2 4.72E-
13 

2E-
13 

5.29E-
13 

2E-
13 

5.82E-
13 

2E-
13 

5.41E-
13 

2E-13 

anterior_pretectal_nucleus 1.36E-2 1.42E-2 3.21E-
13 

2E-
13 

4.02E-
13 

2E-
13 

6.88E-
13 

2E-
13 

5.06E-
13 

2E-13 

periaqueductal_gray 3.66E-2 3.81E-2 8.21E-
13 

2E-
13 

8.85E-
13 

2E-
13 

8.87E-
13 

2E-
13 

8.09E-
13 

2E-13 

aqueduct 4.38E-3 4.55E-3 5.60E-
13 

3E-
13 

6.33E-
13 

3E-
13 

6.40E-
13 

4E-
13 

6.40E-
13 

4E-13 

cerebral_peduncle 1.86E-2 1.94E-2 4.40E-
13 

1E-
13 

4.85E-
13 

1E-
13 

6.95E-
13 

2E-
13 

6.95E-
13 

2E-13 

cochlear_nuclei 2.23E-2 2.31E-2 1.29E-
12 

3E-
13 

1.14E-
12 

3E-
13 

1.43E-
12 

3E-
13 

1.36E-
12 

3E-13 
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deep_mesencephalic_nuclei 4.38E-2 4.55E-2 8.15E-
13 

1E-
13 

8.55E-
13 

2E-
13 

1.35E-
12 

2E-
13 

1.32E-
12 

2E-13 

fimbria 2.21E-2 2.30E-2 7.38E-
13 

2E-
13 

8.62E-
13 

2E-
13 

1.05E-
12 

2E-
13 

9.20E-
13 

2E-13 

fornix 1.56E-2 1.63E-2 3.95E-
13 

1E-
13 

4.18E-
13 

2E-
13 

8.37E-
13 

2E-
13 

8.37E-
13 

2E-13 

globus_pallidus 2.70E-2 2.81E-2 6.57E-
13 

1E-
13 

6.89E-
13 

2E-
13 

8.32E-
13 

2E-
13 

8.31E-
13 

2E-13 

inferior_colliculus 6.51E-2 6.77E-2 8.76E-
13 

1E-
13 

9.21E-
13 

1E-
13 

1.29E-
12 

2E-
13 

1.15E-
12 

2E-13 

internal_capsule 4.13E-2 4.29E-2 7.69E-
13 

1E-
13 

6.81E-
13 

1E-
13 

8.78E-
13 

2E-
13 

9.08E-
13 

2E-13 

interpeduncular_nucleus 4.75E-3 4.94E-3 7.42E-
13 

4E-
13 

8.25E-
13 

4E-
13 

1.37E-
12 

5E-
13 

1.29E-
12 

5E-13 

lateral_dorsal_nucleus_of_thalamus 1.18E-2 1.22E-2 3.25E-
13 

1E-
13 

2.91E-
13 

1E-
13 

8.33E-
13 

3E-
13 

6.91E-
13 

2E-13 

lateral_geniculate 1.86E-2 1.94E-2 9.39E-
13 

3E-
13 

1.06E-
12 

3E-
13 

8.97E-
13 

2E-
13 

8.65E-
13 

2E-13 

lateral_lemniscus 1.68E-2 1.74E-2 8.07E-
13 

2E-
13 

9.01E-
13 

2E-
13 

1.50E-
12 

3E-
13 

1.50E-
12 

3E-13 

medial_geniculate 1.80E-2 1.87E-2 1.05E-
12 

3E-
13 

1.04E-
12 

3E-
13 

1.23E-
12 

3E-
13 

1.34E-
12 

3E-13 

nucleus_accumbens 5.94E-2 6.18E-2 5.62E-
13 

1E-
13 

5.90E-
13 

1E-
13 

7.49E-
13 

1E-
13 

7.56E-
13 

1E-13 

olfactory_areas 3.33E-1 3.46E-1 4.56E-
13 

4E-
14 

4.28E-
13 

4E-
14 

5.90E-
13 

5E-
14 

5.81E-
13 

5E-14 

optic_tract 2.00E-2 2.08E-2 8.02E-
13 

3E-
13 

8.73E-
13 

3E-
13 

1.07E-
12 

4E-
13 

1.01E-
12 

4E-13 

pontine_gray 2.44E-2 2.54E-2 8.21E-
13 

2E-
13 

8.54E-
13 

2E-
13 

1.28E-
12 

2E-
13 

1.05E-
12 

2E-13 

spinal_trigeminal_tract 2.78E-2 2.89E-2 1.09E-
12 

2E-
13 

1.04E-
12 

2E-
13 

1.53E-
12 

2E-
13 

1.40E-
12 

2E-13 

substantia_nigra 3.54E-2 3.68E-2 5.79E-
13 

1E-
13 

5.22E-
13 

1E-
13 

8.14E-
13 

2E-
13 

7.25E-
13 

1E-13 

superior_colliculus 1.27E-1 1.32E-1 7.56E- 9E- 7.96E- 9E- 1.14E- 1E- 1.08E- 1E-13 
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13 14 13 14 12 13 12 
pineal_gland 3.00E-3 3.12E-3     5.48E-

13 
5E-
13 

  

ventral_thalamic_nuclei 5.75E-2 5.98E-2 7.15E-
13 

1E-
13 

7.35E-
13 

1E-
13 

8.86E-
13 

1E-
13 

7.86E-
13 

1E-13 

ventricular_system 9.65E-2 1.00E-1 5.76E-
13 

9E-
14 

6.60E-
13 

1E-
13 

1.08E-
12 

1E-
13 

9.84E-
13 

1E-13 

thyroid 2.62E-1 2.69E-1 1.49E-
12 

8E-
14 

1.58E-
12 

8E-
14 

2.31E-
12 

1E-
13 

2.15E-
12 

1E-13 

Large_Int 8.76E+0 1.06E-2 3.61E-
12 

4E-
13 

2.49E-
12 

3E-
13 

2.54E-
12 

4E-
13 

3.60E-
12 

4E-13 

Small_Int 1.00E+1 1.21E-2 5.08E-
12 

4E-
13 

5.32E-
12 

4E-
13 

2.63E-
12 

3E-
13 

3.02E-
12 

3E-13 

marrow 1.38E+1 1.43E+1 5.43E-
12 

2E-
14 

5.34E-
12 

2E-
14 

7.30E-
12 

3E-
14 

6.93E-
12 

3E-14 

   99mTc-PGCD 2h 99mTc-PGCD 4h 68Ga-CHSg 2h 68Ga-PGCD 2h 
   MEAN error MEAN error MEAN error MEAN error 
Dose at @ 1 cm (mGy/decay)   2.8E-12 1E-

13 
3.0E-12 1E-

13 
5.4E-11 1E-

12 
4.9E-11 1E-12 

Energy Dep (MeV)   2.672E-
2 

2E-5 2.684E-
2 

2E-5 8.022E-
1 

2E-4 8.018E-
1 

2E-4 

Avg (mGy/decay)   1.342E-
11 

1E-
14 

1.349E-
11 

1E-
14 

4.030E-
10 

1E-
13 

4.028E-
10 

1E-13 

Max D (mGy/decay)   1.70E-9  1.35E-9  1.39E-8  4.48E-8  
Min D (mGy/decay)   3.76E-

13 
 4.53E-

13 
 1.41E-

11 
 1.23E-

11 
 

           
 Vol 

(cm³) 
Mass 
(g) 

Dose per tissue 
(mGy/decay) 

     

   MEAN error MEAN error MEAN error MEAN error 
skin 1.79E+1 1.95E+1 2.39E-

12 
1E-
14 

2.41E-
12 

1E-
14 

8.08E-
11 

1E-
13 

8.35E-
11 

2E-13 

myoLV 5.75E-1 6.03E-1 3.89E-
11 

4E-
13 

2.94E-
11 

3E-
13 

3.51E-9 8E-
12 

2.03E-9 6E-12 

myoRV 8.34E-2 8.75E-2 2.11E- 6E- 2.02E- 7E- 1.74E-9 9E- 1.42E-9 8E-12 
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11 13 11 13 12 
myoLA 1.53E-2 1.60E-2 3.50E-

11 
2E-
12 

2.53E-
11 

2E-
12 

2.92E-9 2E-
11 

1.72E-9 2E-11 

myoRA 2.15E-2 2.26E-2 9.04E-
11 

3E-
12 

5.74E-
11 

2E-
12 

4.93E-9 3E-
11 

1.99E-9 2E-11 

bldplLV 8.49E-1 9.00E-1 2.84E-
11 

3E-
13 

2.35E-
11 

2E-
13 

2.26E-9 5E-
12 

1.74E-9 5E-12 

bldplRV 7.51E-1 7.96E-1 2.67E-
11 

3E-
13 

2.25E-
11 

2E-
13 

2.27E-9 6E-
12 

2.02E-9 6E-12 

bldplLA 2.49E-1 2.64E-1 6.40E-
11 

7E-
13 

4.18E-
11 

6E-
13 

4.72E-9 1E-
11 

2.17E-9 9E-12 

bldplRA 9.81E-1 1.04E+0 3.62E-
11 

3E-
13 

2.89E-
11 

2E-
13 

3.02E-9 6E-
12 

1.83E-9 5E-12 

Rest of the body 2.27E+2 2.33E+2 5.58E-
12 

7E-
15 

5.47E-
12 

7E-
15 

2.67E-
10 

1E-
13 

2.73E-
10 

1E-13 

Liver 1.04E+1 1.10E+1 1.98E-
11 

6E-
14 

6.48E-
11 

1E-
13 

1.01E-9 1E-
12 

6.16E-
10 

9E-13 

Lung 2.88E+0 7.48E-1 1.70E-9 3E-
12 

9.30E-
10 

2E-
12 

1.30E-8 1E-
11 

2.70E-9 5E-12 

Trachea 7.24E-1 7.46E-1 1.26E-
10 

7E-
13 

7.10E-
11 

5E-
13 

6.33E-9 8E-
12 

1.43E-9 4E-12 

Stomach_Contents 4.65E+0 4.79E+0 6.08E-
12 

4E-
14 

7.63E-
12 

5E-
14 

1.23E-
10 

5E-
13 

9.56E-
11 

5E-13 

Pancreas 5.08E-1 5.28E-1 6.27E-
12 

1E-
13 

8.31E-
12 

1E-
13 

1.79E-
10 

2E-
12 

1.99E-
10 

2E-12 

Kidney 2.09E+0 2.19E+0 7.10E-
11 

3E-
13 

9.89E-
11 

4E-
13 

6.69E-
10 

2E-
12 

9.89E-
10 

2E-12 

Spleen 8.13E-1 8.62E-1 2.87E-
11 

3E-
13 

4.15E-
11 

4E-
13 

9.04E-
10 

4E-
12 

7.79E-
10 

4E-12 

Small_Intestine 4.23E+0 4.35E+0 4.14E-
12 

4E-
14 

5.68E-
12 

4E-
14 

1.38E-
10 

5E-
13 

1.53E-
10 

6E-13 

Large_Intestine 1.95E+0 2.01E+0 7.58E-
12 

7E-
14 

9.61E-
12 

8E-
14 

3.16E-
10 

1E-
12 

7.20E-
10 

2E-12 

Bladder 6.30E-1 6.49E-1 1.14E-9 2E-
12 

1.35E-9 3E-
12 

1.39E-8 2E-
11 

4.48E-8 3E-11 
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Vas_deferens 5.46E-2 5.63E-2 2.77E-
12 

2E-
13 

3.25E-
12 

3E-
13 

8.48E-
11 

3E-
12 

1.07E-
10 

3E-12 

Testes 1.64E-1 1.70E-1 3.02E-
12 

2E-
13 

3.54E-
12 

2E-
13 

9.00E-
11 

2E-
12 

1.13E-
10 

2E-12 

Wet_Rib_Bone 9.38E-1 1.32E+0 2.79E-
11 

2E-
13 

2.07E-
11 

2E-
13 

1.51E-9 2E-
12 

5.96E-
10 

2E-12 

Wet_Spine_Bone 4.14E+0 5.88E+0 8.39E-
12 

5E-
14 

6.72E-
12 

4E-
14 

3.57E-
10 

7E-
13 

2.41E-
10 

6E-13 

Skull 1.24E+0 1.99E+0 1.20E-
12 

3E-
14 

1.14E-
12 

3E-
14 

2.46E-
10 

9E-
13 

2.56E-
10 

9E-13 

humerus 2.42E-1 3.53E-1 6.12E-
12 

2E-
13 

4.28E-
12 

1E-
13 

2.60E-
10 

2E-
12 

2.58E-
10 

2E-12 

radius 1.87E-1 2.73E-1 1.07E-
11 

3E-
13 

8.10E-
12 

2E-
13 

2.57E-
10 

2E-
12 

2.43E-
10 

2E-12 

ulna 2.09E-1 3.06E-1 7.83E-
12 

2E-
13 

6.37E-
12 

2E-
13 

2.45E-
10 

2E-
12 

2.36E-
10 

2E-12 

femur 4.44E-1 5.91E-1 4.11E-
12 

1E-
13 

4.76E-
12 

1E-
13 

2.72E-
10 

2E-
12 

3.01E-
10 

2E-12 

fibula 1.41E-1 1.87E-1 1.41E-
12 

1E-
13 

1.57E-
12 

1E-
13 

1.98E-
10 

3E-
12 

2.14E-
10 

3E-12 

tibia 5.17E-1 6.87E-1 1.38E-
12 

6E-
14 

1.58E-
12 

7E-
14 

1.82E-
10 

1E-
12 

1.95E-
10 

2E-12 

patella 3.75E-2 4.99E-2 2.23E-
12 

3E-
13 

2.51E-
12 

3E-
13 

2.24E-
10 

5E-
12 

2.42E-
10 

5E-12 

bone 1.96E+0 2.75E+0 4.91E-
12 

5E-
14 

5.14E-
12 

5E-
14 

2.03E-
10 

7E-
13 

2.19E-
10 

7E-13 

brain_(backgrnd) 6.00E-2 6.24E-2 1.15E-
12 

2E-
13 

1.05E-
12 

2E-
13 

2.47E-
10 

4E-
12 

2.57E-
10 

4E-12 

cerebral_cortex 1.58E+0 1.64E+0 7.97E-
13 

3E-
14 

7.09E-
13 

2E-
14 

1.23E-
10 

9E-
13 

1.27E-
10 

1E-12 

cerebellum 5.41E-1 5.62E-1 1.24E-
12 

6E-
14 

1.02E-
12 

5E-
14 

1.02E-
10 

1E-
12 

1.03E-
10 

1E-12 

corpus_callosum 1.20E-1 1.24E-1 8.33E-
13 

9E-
14 

7.62E-
13 

9E-
14 

4.52E-
11 

1E-
12 

4.51E-
11 

1E-12 

brainstem 6.33E-1 6.59E-1 1.23E- 5E- 1.03E- 5E- 9.22E- 1E- 9.30E- 1E-12 
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12 14 12 14 11 12 11 
striatum 2.46E-1 2.56E-1 6.95E-

13 
6E-
14 

5.39E-
13 

5E-
14 

3.41E-
11 

1E-
12 

3.41E-
11 

1E-12 

thal 1.09E-1 1.13E-1 8.59E-
13 

1E-
13 

7.85E-
13 

1E-
13 

2.12E-
11 

1E-
12 

2.04E-
11 

1E-12 

hippo 3.01E-1 3.13E-1 8.74E-
13 

6E-
14 

7.04E-
13 

5E-
14 

4.28E-
11 

1E-
12 

4.22E-
11 

1E-12 

hypothalamus 9.40E-2 9.78E-2 8.65E-
13 

1E-
13 

8.02E-
13 

1E-
13 

1.19E-
10 

4E-
12 

1.23E-
10 

4E-12 

amygdala 1.48E-1 1.54E-1 8.87E-
13 

1E-
13 

8.72E-
13 

1E-
13 

1.19E-
10 

3E-
12 

1.22E-
10 

3E-12 

lateral_septal_nuclei 4.69E-2 4.88E-2 5.52E-
13 

1E-
13 

4.53E-
13 

1E-
13 

2.45E-
11 

2E-
12 

2.37E-
11 

2E-12 

anterior_commissure 1.19E-2 1.24E-2 4.89E-
13 

2E-
13 

5.86E-
13 

2E-
13 

3.55E-
11 

3E-
12 

3.44E-
11 

3E-12 

anterior_pretectal_nucleus 1.36E-2 1.42E-2 8.20E-
13 

2E-
13 

5.71E-
13 

2E-
13 

1.59E-
11 

2E-
12 

1.41E-
11 

2E-12 

periaqueductal_gray 3.66E-2 3.81E-2 1.01E-
12 

2E-
13 

9.09E-
13 

2E-
13 

1.94E-
11 

1E-
12 

1.65E-
11 

1E-12 

aqueduct 4.38E-3 4.55E-3 3.76E-
13 

3E-
13 

5.16E-
13 

3E-
13 

2.81E-
11 

5E-
12 

2.63E-
11 

5E-12 

cerebral_peduncle 1.86E-2 1.94E-2 8.45E-
13 

2E-
13 

6.50E-
13 

2E-
13 

7.62E-
11 

4E-
12 

7.60E-
11 

4E-12 

cochlear_nuclei 2.23E-2 2.31E-2 1.53E-
12 

3E-
13 

1.28E-
12 

2E-
13 

1.31E-
10 

6E-
12 

1.35E-
10 

6E-12 

deep_mesencephalic_nuclei 4.38E-2 4.55E-2 1.20E-
12 

2E-
13 

8.23E-
13 

1E-
13 

2.00E-
11 

1E-
12 

1.74E-
11 

1E-12 

fimbria 2.21E-2 2.30E-2 6.58E-
13 

2E-
13 

4.78E-
13 

2E-
13 

1.50E-
11 

1E-
12 

1.43E-
11 

1E-12 

fornix 1.56E-2 1.63E-2 8.34E-
13 

2E-
13 

6.62E-
13 

2E-
13 

5.24E-
11 

4E-
12 

5.19E-
11 

4E-12 

globus_pallidus 2.70E-2 2.81E-2 8.82E-
13 

2E-
13 

7.86E-
13 

2E-
13 

3.00E-
11 

2E-
12 

2.85E-
11 

2E-12 

inferior_colliculus 6.51E-2 6.77E-2 1.09E-
12 

1E-
13 

9.08E-
13 

1E-
13 

6.48E-
11 

3E-
12 

6.59E-
11 

3E-12 
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internal_capsule 4.13E-2 4.29E-2 8.29E-
13 

1E-
13 

6.86E-
13 

1E-
13 

2.21E-
11 

1E-
12 

2.18E-
11 

2E-12 

interpeduncular_nucleus 4.75E-3 4.94E-3 7.32E-
13 

4E-
13 

9.52E-
13 

5E-
13 

5.82E-
11 

8E-
12 

5.82E-
11 

8E-12 

lateral_dorsal_nucleus_of_thalamus 1.18E-2 1.22E-2 5.44E-
13 

2E-
13 

4.73E-
13 

2E-
13 

1.41E-
11 

2E-
12 

1.23E-
11 

2E-12 

lateral_geniculate 1.86E-2 1.94E-2 9.29E-
13 

2E-
13 

9.37E-
13 

2E-
13 

1.78E-
11 

2E-
12 

1.62E-
11 

2E-12 

lateral_lemniscus 1.68E-2 1.74E-2 1.26E-
12 

3E-
13 

9.79E-
13 

3E-
13 

2.81E-
11 

3E-
12 

2.86E-
11 

3E-12 

medial_geniculate 1.80E-2 1.87E-2 9.90E-
13 

3E-
13 

6.40E-
13 

2E-
13 

1.67E-
11 

2E-
12 

1.59E-
11 

2E-12 

nucleus_accumbens 5.94E-2 6.18E-2 7.59E-
13 

1E-
13 

6.40E-
13 

1E-
13 

7.49E-
11 

3E-
12 

7.60E-
11 

3E-12 

olfactory_areas 3.33E-1 3.46E-1 8.09E-
13 

6E-
14 

7.02E-
13 

6E-
14 

1.72E-
10 

2E-
12 

1.79E-
10 

3E-12 

optic_tract 2.00E-2 2.08E-2 8.10E-
13 

3E-
13 

5.59E-
13 

3E-
13 

9.99E-
11 

5E-
12 

1.03E-
10 

5E-12 

pontine_gray 2.44E-2 2.54E-2 9.69E-
13 

2E-
13 

6.67E-
13 

2E-
13 

1.63E-
10 

7E-
12 

1.66E-
10 

7E-12 

spinal_trigeminal_tract 2.78E-2 2.89E-2 1.51E-
12 

3E-
13 

1.07E-
12 

2E-
13 

1.50E-
10 

6E-
12 

1.55E-
10 

6E-12 

substantia_nigra 3.54E-2 3.68E-2 7.80E-
13 

2E-
13 

6.11E-
13 

1E-
13 

5.36E-
11 

3E-
12 

5.30E-
11 

3E-12 

superior_colliculus 1.27E-1 1.32E-1 1.05E-
12 

1E-
13 

9.06E-
13 

1E-
13 

4.01E-
11 

2E-
12 

3.95E-
11 

2E-12 

pineal_gland 3.00E-3 3.12E-3   4.54E-
13 

5E-
13 

1.27E-
10 

2E-
11 

1.29E-
10 

2E-11 

ventral_thalamic_nuclei 5.75E-2 5.98E-2 5.68E-
13 

1E-
13 

5.00E-
13 

9E-
14 

1.65E-
11 

1E-
12 

1.52E-
11 

1E-12 

ventricular_system 9.65E-2 1.00E-1 8.14E-
13 

1E-
13 

6.65E-
13 

8E-
14 

3.71E-
11 

1E-
12 

3.61E-
11 

1E-12 

thyroid 2.62E-1 2.69E-1 1.74E-
12 

9E-
14 

1.36E-
12 

8E-
14 

7.42E-
11 

2E-
12 

7.36E-
11 

2E-12 

Large_Int 8.76E+0 1.06E-2 6.86E- 5E- 8.30E- 6E- 2.27E- 2E- 4.45E- 2E-12 
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12 13 12 13 10 12 10 
Small_Int 1.00E+1 1.21E-2 3.62E-

12 
3E-
13 

4.64E-
12 

4E-
13 

1.35E-
10 

1E-
12 

1.47E-
10 

1E-12 

marrow 1.38E+1 1.43E+1 7.90E-
12 

3E-
14 

7.06E-
12 

3E-
14 

6.26E-
10 

6E-
13 

5.00E-
10 

6E-13 

   CHS-DOTA-90Y 
24h 

RMTEX-90Y 24h Free 90Y 24h 

   MEAN error MEAN error MEAN error 
Dose at @ 1 cm (mGy/decay)   2.70E-

12 
2E-13 1.62E-

11 
6E-13 6.1E-11 1E-12 

Energy Dep (MeV)   9.315E-
1 

2E-4 9.275E-
1 

2E-4 9.139E-
1 

2E-4 

Avg (mGy/decay)   4.680E-
10 

1E-13 4.660E-
10 

1E-13 4.591E-
10 

1E-13 

Max D (mGy/decay)   4.22E-8  3.28E-8  5.44E-9  
Min D (mGy/decay)   1.26E-

14 
 9.49E-

13 
 2.47E-

12 
 

         
 Vol 

(cm³) 
Mass (g)     

   MEAN error MEAN error MEAN error 
skin 1.79E+1 1.95E+1 1.09E-

12 
2E-14 1.62E-

11 
6E-14 6.87E-

11 
1E-13 

myoLV 5.75E-1 6.03E-1 7.03E-9 1E-11 5.55E-9 1E-11 8.20E-
10 

4E-12 

myoRV 8.34E-2 8.75E-2 1.57E-9 8E-12 1.34E-9 8E-12 6.49E-
10 

5E-12 

myoLA 1.53E-2 1.60E-2 5.84E-9 3E-11 4.56E-9 3E-11 3.39E-
10 

8E-12 

myoRA 2.15E-2 2.26E-2 1.32E-8 4E-11 1.02E-8 4E-11 4.44E-
10 

7E-12 

bldplLV 8.49E-1 9.00E-1 2.84E-9 6E-12 2.29E-9 5E-12 5.09E-
10 

2E-12 

bldplRV 7.51E-1 7.96E-1 1.47E-9 4E-12 1.21E-9 4E-12 3.48E-
10 

2E-12 
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bldplLA 2.49E-1 2.64E-1 1.16E-8 2E-11 9.03E-9 2E-11 4.23E-
10 

4E-12 

bldplRA 9.81E-1 1.04E+0 5.75E-9 8E-12 4.55E-9 7E-12 4.72E-
10 

2E-12 

Rest of the body 2.27E+2 2.33E+2 2.18E-
10 

9E-14 2.12E-
10 

8E-14 1.94E-
10 

1E-13 

Liver 1.04E+1 1.10E+1 1.24E-9 1E-12 1.38E-9 1E-12 1.63E-9 1E-12 
Lung 2.88E+0 7.48E-1 4.22E-8 1E-11 3.28E-8 1E-11 1.16E-9 3E-12 
Trachea 7.24E-1 7.46E-1 2.03E-8 1E-11 1.58E-8 1E-11 7.46E-

10 
3E-12 

Stomach_Contents 4.65E+0 4.79E+0 6.07E-
11 

4E-13 8.02E-
11 

5E-13 1.26E-
10 

6E-13 

Pancreas 5.08E-1 5.28E-1 8.41E-
12 

4E-13 1.46E-
10 

2E-12 5.39E-
10 

3E-12 

Kidney 2.09E+0 2.19E+0 7.25E-
11 

6E-13 1.47E-9 3E-12 5.44E-9 5E-12 

Spleen 8.13E-1 8.62E-1 2.83E-
11 

7E-13 2.06E-
10 

2E-12 6.19E-
10 

3E-12 

Small_Intestine 4.23E+0 4.35E+0 3.47E-
12 

8E-14 5.72E-
11 

3E-13 2.10E-
10 

7E-13 

Large_Intestine 1.95E+0 2.01E+0 2.28E-
11 

3E-13 7.11E-
11 

5E-13 2.53E-
10 

9E-13 

Bladder 6.30E-1 6.49E-1 1.36E-9 5E-12 1.22E-9 5E-12 3.74E-9 9E-12 
Vas_deferens 5.46E-2 5.63E-2 3.15E-

13 
2E-13 9.49E-

13 
3E-13 2.47E-

12 
6E-13 

Testes 1.64E-1 1.70E-1 2.91E-
13 

1E-13 1.35E-
12 

3E-13 4.60E-
12 

5E-13 

Wet_Rib_Bone 9.38E-1 1.32E+0 4.26E-9 3E-12 3.47E-9 3E-12 8.13E-
10 

2E-12 

Wet_Spine_Bone 4.14E+0 5.88E+0 6.19E-
10 

9E-13 6.83E-
10 

1E-12 9.28E-
10 

9E-13 

Skull 1.24E+0 1.99E+0 7.95E-
12 

2E-13 3.51E-
10 

1E-12 1.55E-9 2E-12 

humerus 2.42E-1 3.53E-1 1.37E-
11 

5E-13 2.94E-
10 

2E-12 1.28E-9 4E-12 
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radius 1.87E-1 2.73E-1 4.62E-
11 

9E-13 2.89E-
10 

2E-12 1.16E-9 5E-12 

ulna 2.09E-1 3.06E-1 1.72E-
11 

5E-13 2.80E-
10 

2E-12 1.21E-9 5E-12 

femur 4.44E-1 5.91E-1 7.56E-
12 

3E-13 3.43E-
10 

2E-12 1.52E-9 4E-12 

fibula 1.41E-1 1.87E-1 3.82E-
12 

3E-13 1.74E-
10 

2E-12 7.62E-
10 

5E-12 

tibia 5.17E-1 6.87E-1 4.74E-
12 

2E-13 2.11E-
10 

1E-12 9.31E-
10 

3E-12 

patella 3.75E-2 4.99E-2 5.29E-
12 

6E-13 3.23E-
10 

5E-12 1.41E-9 1E-11 

bone 1.96E+0 2.75E+0 1.63E-
11 

2E-13 2.00E-
10 

6E-13 8.44E-
10 

1E-12 

brain_(backgrnd) 6.00E-2 6.24E-2 8.73E-
12 

6E-13 4.22E-
10 

5E-12 1.86E-9 1E-11 

cerebral_cortex 1.58E+0 1.64E+0 4.25E-
12 

2E-13 2.06E-
10 

1E-12 9.03E-
10 

3E-12 

cerebellum 5.41E-1 5.62E-1 3.23E-
12 

3E-13 1.43E-
10 

2E-12 6.30E-
10 

4E-12 

corpus_callosum 1.20E-1 1.24E-1 1.46E-
12 

2E-13 7.09E-
11 

2E-12 3.16E-
10 

3E-12 

brainstem 6.33E-1 6.59E-1 3.20E-
12 

2E-13 1.45E-
10 

2E-12 6.37E-
10 

4E-12 

striatum 2.46E-1 2.56E-1 1.05E-
12 

2E-13 5.71E-
11 

1E-12 2.55E-
10 

3E-12 

thal 1.09E-1 1.13E-1 6.78E-
13 

2E-13 1.85E-
11 

1E-12 8.61E-
11 

2E-12 

hippo 3.01E-1 3.13E-1 1.69E-
12 

2E-13 7.11E-
11 

2E-12 3.17E-
10 

3E-12 

hypothalamus 9.40E-2 9.78E-2 4.57E-
12 

7E-13 2.04E-
10 

5E-12 9.25E-
10 

1E-11 

amygdala 1.48E-1 1.54E-1 4.75E-
12 

6E-13 2.06E-
10 

4E-12 9.30E-
10 

8E-12 

lateral_septal_nuclei 4.69E-2 4.88E-2 5.30E- 3E-13 2.69E- 2E-12 1.35E- 5E-12 
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13 11 10 
anterior_commissure 1.19E-2 1.24E-2 9.33E-

13 
5E-13 5.49E-

11 
4E-12 2.65E-

10 
1E-11 

anterior_pretectal_nucleus 1.36E-2 1.42E-2 3.18E-
13 

3E-13 7.24E-
12 

2E-12 4.42E-
11 

4E-12 

periaqueductal_gray 3.66E-2 3.81E-2 1.26E-
14 

7E-15 1.57E-
11 

2E-12 6.20E-
11 

3E-12 

aqueduct 4.38E-3 4.55E-3   2.23E-
11 

5E-12 1.09E-
10 

1E-11 

cerebral_peduncle 1.86E-2 1.94E-2 2.73E-
12 

8E-13 1.18E-
10 

5E-12 5.54E-
10 

1E-11 

cochlear_nuclei 2.23E-2 2.31E-2 5.61E-
12 

1E-12 2.10E-
10 

7E-12 9.78E-
10 

2E-11 

deep_mesencephalic_nuclei 4.38E-2 4.55E-2 2.55E-
14 

2E-14 1.59E-
11 

2E-12 7.80E-
11 

4E-12 

fimbria 2.21E-2 2.30E-2 3.50E-
13 

2E-13 1.15E-
11 

1E-12 5.65E-
11 

3E-12 

fornix 1.56E-2 1.63E-2 1.29E-
12 

5E-13 8.08E-
11 

4E-12 3.76E-
10 

1E-11 

globus_pallidus 2.70E-2 2.81E-2 4.69E-
13 

2E-13 4.95E-
11 

3E-12 2.11E-
10 

7E-12 

inferior_colliculus 6.51E-2 6.77E-2 1.64E-
12 

5E-13 1.15E-
10 

4E-12 4.91E-
10 

8E-12 

internal_capsule 4.13E-2 4.29E-2 9.05E-
13 

4E-13 2.48E-
11 

2E-12 1.12E-
10 

4E-12 

interpeduncular_nucleus 4.75E-3 4.94E-3 6.22E-
13 

6E-13 9.82E-
11 

1E-11 4.47E-
10 

2E-11 

lateral_dorsal_nucleus_of_thalamus 1.18E-2 1.22E-2   5.21E-
12 

2E-12 2.73E-
11 

4E-12 

lateral_geniculate 1.86E-2 1.94E-2 1.92E-
12 

8E-13 1.92E-
11 

2E-12 8.62E-
11 

5E-12 

lateral_lemniscus 1.68E-2 1.74E-2 1.38E-
12 

6E-13 5.24E-
11 

4E-12 2.30E-
10 

9E-12 

medial_geniculate 1.80E-2 1.87E-2 3.22E-
13 

2E-13 1.88E-
11 

3E-12 7.83E-
11 

5E-12 
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nucleus_accumbens 5.94E-2 6.18E-2 1.93E-
12 

5E-13 1.45E-
10 

4E-12 6.43E-
10 

9E-12 

olfactory_areas 3.33E-1 3.46E-1 7.78E-
12 

5E-13 3.51E-
10 

4E-12 1.56E-9 8E-12 

optic_tract 2.00E-2 2.08E-2 6.34E-
12 

1E-12 1.72E-
10 

7E-12 7.62E-
10 

1E-11 

pontine_gray 2.44E-2 2.54E-2 4.40E-
12 

1E-12 2.77E-
10 

9E-12 1.24E-9 2E-11 

spinal_trigeminal_tract 2.78E-2 2.89E-2 5.87E-
12 

1E-12 2.43E-
10 

7E-12 1.07E-9 1E-11 

substantia_nigra 3.54E-2 3.68E-2 1.69E-
12 

6E-13 8.54E-
11 

4E-12 3.85E-
10 

9E-12 

superior_colliculus 1.27E-1 1.32E-1 8.51E-
13 

2E-13 6.13E-
11 

2E-12 2.71E-
10 

5E-12 

pineal_gland 3.00E-3 3.12E-3 6.19E-
12 

3E-12 2.31E-
10 

2E-11 9.58E-
10 

4E-11 

ventral_thalamic_nuclei 5.75E-2 5.98E-2 8.26E-
13 

4E-13 1.22E-
11 

1E-12 5.38E-
11 

3E-12 

ventricular_system 9.65E-2 1.00E-1 1.25E-
12 

2E-13 4.85E-
11 

2E-12 2.13E-
10 

3E-12 

thyroid 2.62E-1 2.69E-1 3.41E-
13 

1E-13 1.17E-
11 

7E-13 4.99E-
11 

1E-12 

Large_Int 8.76E+0 1.06E-2 1.32E-
11 

3E-13 4.85E-
11 

6E-13 1.77E-
10 

1E-12 

Small_Int 1.00E+1 1.21E-2 3.63E-
12 

2E-13 5.56E-
11 

6E-13 2.05E-
10 

1E-12 

marrow 1.38E+1 1.43E+1 6.83E-
10 

5E-13 1.19E-9 8E-13 3.01E-9 1E-12 
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