Eccentric Knee Flexor Strength and Between Limb Strength Asymmetries in Cricket

January 2016

Wade John Chalker
Bachelor of Sport Science

Faculty of Health Sciences and Medicine
Bond University

A thesis submitted in total fulfilment of the requirements of the degree of Masters by Research
Abstract

Cricket was once regarded as a “moderate injury risk” sport. However, more recent research suggests that the injury rate in elite cricket is rising, with hamstring strain injuries (HSIs) one of the most common and severe injuries (Frost and Chalmers, 2014). Multiple cricket playing nations have documented the occurrence of cricket injuries over several seasons and all have demonstrated an increase in injuries over recent times with the introduction of Twenty20 cricket and the increase in matches played per year (Frost and Chalmers, 2014, Orchard et al., 2011). International cricket injury reports suggest that elite pace bowlers are the most at risk of incurring an injury throughout each season, with a high affiliation to HSIs (Frost and Chalmers, 2014, Mansingh et al., 2006, Orchard et al., 2002, Orchard et al., 2011, Orchard et al., 2006, Stretch, 2003).

Preventative measures can be further deduced from the causation of hamstring strains in order to reduce the risk of sustaining a HSI. Addressing strength imbalances and improving eccentric knee flexor strength have been proposed as a key component of HSI prevention for a variety of high intensity sports. The addition of the Nordic hamstring exercise (NHE) to training programs for elite sports has resulted in significant reductions in HSI rates (Arnason et al., 2008, Askling et al., 2003, Brooks et al., 2006). However, as a HSI may result in chronic inhibition of the injured (weaker) hamstring (Fyfe et al., 2013, Sole et al., 2012), further research needs to be conducted to determine how best to improve recruitment patterns in the injured hamstring. One such approach may be the use of psychological strategies such as augmented feedback (AF). AF has demonstrated improvements in overall quality of training and increases in acute and chronic strength gains, power and skill based tasks when associated with complex movements related to sport (Argus et al., 2011, Jung and Hallbeck, 2007, Kim and Kramer, 1997, McNair et al., 1996, Tod et al., 2005). Considering the importance of increased eccentric knee flexor strength and reduce bilateral limb asymmetries in helping lower the risk of sustaining a HSI, the use of AF during training may provide acute increases in performance during the NHE that result in increased chronic adaptations.

The objective of research study one of this thesis was to compare eccentric knee flexor strength and bilateral asymmetries in elite, sub-elite and school level cricket players; and to determine if playing position and limb role influenced these eccentric knee flexor strength indices. Seventy four male cricket players of three distinct skill levels (elite, sub-elite and school level) performed three repetitions of the NHE on the experimental device. Strength was assessed as the absolute and relative mean peak force output for both limbs, with bilateral asymmetries defined as the percent difference in force between limbs. There were no significant differences between elite, sub-elite and school level athletes for mean peak force (elite 313 ± 67N and 3.65 ± 0.89N.kg⁻¹; sub-elite 308 ± 77N and 3.74 ± 0.96N.kg⁻¹;
school $285 \pm 68N$ and $4.11 \pm 0.77N.kg^{-1}$ for absolute and relative mean peak force respectively; $P>0.05$) and bilateral asymmetries (elite $11.5 \pm 8.6\%$; sub-elite $15.1 \pm 12.2\%;$ school $12.6 \pm 11.6\%; P>0.05$) of the knee flexors. There were no significant differences observed between bowlers’ and batters’ mean peak force ($297 \pm 77N$ and $3.74 \pm 0.97 N.kg^{-1}$; $305 \pm 65N$ and $3.99 \pm 0.76 N.kg^{-1}$ for bowlers and batters respectively; $P>0.05$) and bilateral asymmetries ($13.7 \pm 10.3\%$ and $13.2 \pm 12.5\%$ for bowlers and batters, respectively; $P>0.05$). There were no significant differences between front and back limb mean peak force outputs ($299 \pm 79N$ and $3.83 \pm 1.03N.kg^{-1}$; $303 \pm 71N$ and $3.84 \pm 0.84N.kg^{-1}$ for absolute and relative mean peak force, respectively; $P>0.05$). Skill level, playing position and limb role appeared to have no significant effect on eccentric knee flexor strength and bilateral asymmetries. Further, bowlers and elite players had the lowest relative eccentric knee flexor mean peak force outputs which may present cause for the increased number of HSIs in these demographics. Future research should seek to determine whether eccentric knee flexor strength thresholds are predictive of HSIs in cricket and if specific eccentric knee flexor strengthening can reduce these injuries.

The objective of research study two was to determine the acute effects of real-time visual AF provided during the NHE in reducing bilateral knee flexor strength asymmetries and increasing bilateral knee flexor strength outputs. Forty four male cricket players of two distinct skill levels (sub-elite and school level) performed two testing sessions of the NHE with and without the aid of visual feedback of force production using a cross over study design. Strength was assessed as the peak force output for both limbs, with bilateral asymmetries defined as the percent difference in force between limbs. Differences in mean peak force outputs and bilateral asymmetry were compared between the two conditions. There was a significant increase in mean peak force production when feedback was provided compared to no feedback (NFB) ($d=0.61; P<0.05$), but no significant difference in bilateral limb asymmetry for feedback ($12.7 \pm 12\%$) or NFB ($15.5 \pm 13.2\%$) ($d=0.41; P>0.05$). Increases in force production for the feedback condition were a result of increased force contribution for the weaker limb ($284 \pm 65N$ vs $299 \pm 72N; d=0.22$) compared to the strong limb ($327 \pm 77N$ vs $331 \pm 78N; d=0.05$). In conclusion, the use of real-time visual feedback during the NHE resulted in significantly increased eccentric knee flexor force. As the significant improvement in the knee flexor force was observed primarily in the weaker limb, the chronic performance of NHE with feedback may reduce HSI risk by increasing eccentric knee flexor strength, especially of the weaker limb.

In summary, the present thesis provides insight into the eccentric knee flexor strength performance characteristics associated with cricket at multiple skill levels and has provided additional training recommendations to a sport that has limited literature encompassing all playing positions. Elite level athlete’s absolute eccentric knee flexor strength was found to be
similar to sub-elite and school level cricket players, even though it should be greater considering the elite players' greater body mass, absolute running workloads and higher number of HSIs. Real-time visual feedback during the NHE may be a valuable tool for increasing the acute force outputs which may accelerate strength gains and reductions of between limb strength asymmetries over the course of a typical training cycle. Future research might determine what eccentric knee flexor strength threshold best predicts HSIs in cricket. Once this is known, strength and conditioning staff may focus on their weaker players reaching this threshold, and once that is achieved, direct more focus to reducing between limb strength asymmetries.
Declaration

This thesis is submitted to Bond University in fulfilment of the requirements of the degree of Masters by Research. This thesis represents my own original work towards this research degree and contains no material which has been previously submitted for a degree or diploma at this University or any other institution, except where due acknowledgement is made.

Wade Chalker

Sign: __________________
Acknowledgements

I would like to acknowledge and express my appreciation to a number of people who have provided guidance and support throughout the completion of my Masters by Research thesis.

To Bond University for providing me with the opportunity to complete this degree and all of the staff who have provided me with guidance and assistance, it is greatly appreciated.

To my primary supervisor, Dr Justin Keogh, thank you for your constant support. Thank you for the continued effort that you put into my work to push me for success. The past two years have enabled me to develop myself as a person and a professional and it wouldn’t have happened without your support. Thank you for your time throughout my thesis.

To my secondary supervisors, Dr Anthony Shield and Dr David Opar, thank you for the continual feedback and guidance. Thank you Anthony for the opportunity to collect data using the device you and David have developed. Thank you for your expertise in this area of research, without you guys it would have been a long haul.

Thank you to Evelyne Rathbone for providing me with valuable guidance during the data analysis phase of this thesis. There were some technical periods of analysis and I would not have been able to do it without your help.

Thank you to the coaching staff at the following facilities; All Saints Anglican School, The Southport School, Gold Coach Dolphins, Toombul Bulls and Queensland Bulls. Thank you for providing me with the opportunity to collect data at your associations. Special thanks to Simon Price at the Queensland Bulls for providing me with opportunity to collect data as well as working with Queensland’s best cricket players in a strength and conditioning environment.

To King’s Christian College for providing me with the opportunity to work in my field of expertise while still allowing me flexible working hours to ensure I can complete tasks applicable to completing my thesis.

To my parents, Mandy and Greg, thank you for providing me with the environment and opportunity to excel and reach for my goals. Without you guys I would not be here today in the position that I am in. I have only been able to work as hard because of all the work you have put in throughout years shaping me into the person I am today.

Finally, to my partner Nicole, thank you for always pushing me and encouraging me to work hard. There have been fun times, great times and hard times and you have helped me and been with me through them all and I appreciate everything that you have done.
Table of Contents

ABSTRACT ..I
DECLARATION ...V
ACKNOWLEDGEMENTS ...VII
LIST OF PUBLICATIONS ...XI
LIST OF CONFERENCE PROCEEDINGS ..XI
LIST OF TABLES ..XIII
LIST OF FIGURES ..XV
ABBREVIATIONS ..XVII
UNITS OF MEASUREMENT ..XVII

CHAPTER ONE: INTRODUCTION ..1

PROJECT AIMS ...3

CHAPTER TWO: LITERATURE REVIEW ..5

LITERATURE SEARCH ..5
EVOLUTION OF CRICKET ..5
Increased Demands of Cricket ..6
INJURIES IN CRICKET ..7
HAMSTRING STRAIN INJURY OCCURRENCE RATES IN CRICKET10
Hamstring Injury Rates in Comparison to Other Sports ..12
CAUSATION OF HAMSTRING STRAINS ...13
RISK FACTORS LEADING TO HAMSTRING STRAINS ..16
Non-Modifiable Risk Factors ...16
Age ..16
Ethnicity ..16
Previous Hamstring Strain ...17
Modifiable Risk Factors ...17
Strength Imbalances ..17
Fatigue ...18
Flexibility ..19

HAMSTRING STRAIN PREVENTION ..19
Warm-Up ...20
Match Specific Training ...20
Hamstring Strength Training ..20
Eccentric Training ..20
The Nordic Hamstring Exercise ...21
Eccentric Strength Training Alternatives ...23
Exercise Selection ..23
Rehabilitation Corrections ...24
Hamstring Inhibition Following Injury ..25
Augmented Feedback ...26

CONCLUSION ..27

CHAPTER THREE: COMPARISON OF ECCENTRIC KNEE FLEXOR STRENGTH AND
ASYMMETRIES ACROSS ELITE, SUB-ELITE AND SCHOOL LEVEL CRICKET PLAYERS29

ABSTRACT ..29
INTRODUCTION ..30
MATERIALS & METHODS ...31
Participants ..31
Research Design ...31
Eccentric Knee Flexor Strength Assessment ..32
Data Analysis ...33
Statistical Analysis ...33
RESULTS ...33
DISCUSSION ..36
CHAPTER FOUR: EFFECT OF ACUTE AUGMENTED FEEDBACK ON BILATERAL LIMB ASYMMETRIES AND ECCENTRIC KNEE FLEXOR STRENGTH DURING THE NORDIC HAMSTRING EXERCISE ... 39

ABSTRACT ... 39
INTRODUCTION .. 40
METHODS .. 41
Participants ... 41
Research Design ... 41
Real-Time Visual Feedback ... 42
Eccentric Knee Flexor Strength Assessment ... 43
Data Analysis ... 44
Statistical Analysis .. 44
RESULTS .. 44
DISCUSSION ... 47
CONCLUSION ... 49

CHAPTER FIVE: DISCUSSION .. 51

COMPARISONS OF ECCENTRIC KNEE FLEXOR STRENGTH AND ASYMMETRIES ACROSS ELITE, SUB-ELITE AND SCHOOL LEVEL CRICKET PLAYERS ... 54
EFFECT OF ACUTE AUGMENTED FEEDBACK ON BILATERAL LIMB ASYMMETRIES AND ECCENTRIC KNEE FLEXOR STRENGTH DURING THE NORDIC HAMSTRING EXERCISE .. 54
DISCUSSION ... 55
Practical Applications .. 58
LIMITATIONS .. 59
DIRECTIONS FOR FUTURE RESEARCH ... 59

REFERENCES ... 61

APPENDICES ... 71

APPENDIX A: INFORMED CONSENT FORM .. 71
APPENDIX B: PARTICIPATION INFORMATION FORM – STUDY 1 74
APPENDIX C: PARTICIPATION INFORMATION FORM – STUDY 2 80
APPENDIX D: HAMSTRING STRAIN INJURY INCIDENCE RATES 86
APPENDIX E: SUBMITTED ABSTRACT FOR THE 5TH WORLD CONGRESS OF SCIENCE AND MEDICINE IN CRICKET .. 90
APPENDIX F: SUBMITTED ABSTRACT FOR THE 5TH WORLD CONGRESS OF SCIENCE AND MEDICINE IN CRICKET .. 94
List of Publications

List of Conference Proceedings

Chalker, W. J., Shield, A. J., Opar, D. A., Keogh, J. W.L. Eccentric Knee Flexor Strength Asymmetries and the Effect of Augmented Feedback in Elite Cricket Players: A Pilot Study. 5th World Congress of Science and Medicine in Cricket, March 2015, Sydney (Oral Presentation and Abstract) (Appendix E)

Chalker, W. J., Shield, A. J., Opar, D. A., Keogh, J. W.L. A Review of Hamstring Strain Injuries in Cricket and Potential Methods to Reduce the High Occurrence of Strains. 5th World Congress of Science and Medicine in Cricket, March 2015, Sydney (Oral Presentation and Abstract) (Appendix F)
List of Tables

Table 1. Cricket injury data from multiple representative teams. 9

Table 2. Hamstring injury occurrences in domestic and international cricket teams over multiple playing seasons. 11

Table 3. Physical characteristics of participants in each skill level and playing position. 34

Table 4. Mean peak force outputs and relative mean peak force outputs with bilateral limb asymmetries of knee flexors during the NHE for all three groups; elite, sub-elite and school level and playing positions; bowlers and batters. 35

Table 5. Feedback sequencing for four groups 42
List of Figures

Figure 1. The phase of the bowling action where it is believed most HSIs occur to the front leg as it undergoes a large amount of deceleration. 12

Figure 2. Anatomy of hamstring muscles; Bicep Femoris long and short head, Semitendinosus and Semimembranosus have been highlighted. Adapted from Drake et al. (2010). 14

Figure 3. Muscle activity represented by solid bars in relation to the running gait cycle for hamstrings, hip extensors, rectus, quadriceps, gastrosoleus and anterior tibial muscle groups. Initial contact (IC) and toe off (TO) are represented for the active limb. Adapted from Novacheck (1998). 15

Figure 4. The Nordic hamstring exercise demonstrated from the starting position (1) to the finishing position (2), where the entire movement is resisted through eccentric contraction of the hamstrings as much as possible. Adapted from (Arnason et al., 2008). 21

Figure 5. The novel field testing device used to assess eccentric knee flexor strength during the NHE. The device measures force through uniaxial load cells located on each individual ankle brace. 22

Figure 6. The novel field testing device used to assess eccentric knee flexor strength during the NHE. The device measures force through uniaxial load cells located on each individual ankle brace. 32

Figure 7. Mean peak force outputs (N) and relative mean peak force outputs (N.kg⁻¹) for combined group (n = 74) comparing front leg to back leg. Error bars depict the standard deviation of the mean. 35

Figure 8. Real-time display of eccentric knee flexor force outputs during the NHE for three repetitions. Yellow line represents the left limb and purple line represents the right limb. 43

Figure 9. Mean peak force outputs for both feedback groups during the two testing sessions. FB1 were provided real-time feedback during testing session 1; whereas FB2 were provided real-time feedback during testing session 2. Error bars depict the standard deviation of the mean. 45
Figure 10. Average bilateral limb asymmetry for both feedback groups during the two testing sessions. FB1 were provided real-time feedback during testing session 1; whereas FB2 were provided real-time feedback during testing session 2. Error bars depict the standard deviation of the mean.

Figure 11. Mean peak force changes for weak and strong limbs with and without feedback. *Significantly different to weak limb for NFB protocol, P<0.05. Error bars depict the standard deviation of the mean.
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEs</td>
<td>Athlete exposures</td>
</tr>
<tr>
<td>AF</td>
<td>Augmented feedback</td>
</tr>
<tr>
<td>ARF</td>
<td>Australian Rule Football</td>
</tr>
<tr>
<td>BF</td>
<td>Bicep femoris</td>
</tr>
<tr>
<td>FB1</td>
<td>Received feedback in the first testing session</td>
</tr>
<tr>
<td>FB2</td>
<td>Received feedback in the second testing session</td>
</tr>
<tr>
<td>H : Q</td>
<td>Hamstring to quadriceps strength imbalance ratio</td>
</tr>
<tr>
<td>H : Q_convol</td>
<td>Concentric strength imbalance ratio of hamstrings and quadriceps</td>
</tr>
<tr>
<td>H : Q_func</td>
<td>Concentric strength of the quadriceps to eccentric strength of the hamstrings ratio</td>
</tr>
<tr>
<td>HSI</td>
<td>Hamstring strain injury</td>
</tr>
<tr>
<td>IPL</td>
<td>Indian Premier League</td>
</tr>
<tr>
<td>NFB</td>
<td>No feedback</td>
</tr>
<tr>
<td>NHE</td>
<td>Nordic hamstring exercise</td>
</tr>
<tr>
<td>sEMG</td>
<td>Surface electromyography</td>
</tr>
<tr>
<td>SM</td>
<td>Semimembranosus</td>
</tr>
<tr>
<td>ST</td>
<td>Semitendinosus</td>
</tr>
<tr>
<td>T20</td>
<td>Twenty20</td>
</tr>
</tbody>
</table>

Units of Measurement

<table>
<thead>
<tr>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>Percentage</td>
</tr>
<tr>
<td><</td>
<td>Less than</td>
</tr>
<tr>
<td>></td>
<td>Greater than</td>
</tr>
<tr>
<td>±</td>
<td>Plus or Minus</td>
</tr>
<tr>
<td>≥</td>
<td>Equal to or greater than</td>
</tr>
<tr>
<td>cm</td>
<td>Centimetres</td>
</tr>
<tr>
<td>d</td>
<td>Cohen d effect size</td>
</tr>
<tr>
<td>Hz</td>
<td>Hertz</td>
</tr>
<tr>
<td>kg</td>
<td>Kilograms</td>
</tr>
<tr>
<td>N</td>
<td>Newtons</td>
</tr>
<tr>
<td>N.kg^{-1}</td>
<td>Newtons per kilogram</td>
</tr>
<tr>
<td>SD</td>
<td>Standard deviation</td>
</tr>
</tbody>
</table>