NON-NEURONAL ATP: REGULATION OF RELEASE AND ACTION IN THE BLADDER

PhD Thesis

By

Luke Alexander Grundy

Faculty of Health Science and Medicine

Bond University

Submitted in total fulfilment of the requirements of the degree of Doctor of Philosophy by Research

April 2014
SUMMARY OF THESIS

This thesis investigates the mechanisms involved in sensory signalling from the mouse urinary bladder. Sensory afferent firing is essential in the initiation of the micturition reflex and ultimately regulates the cycle of bladder filling and bladder emptying. Whilst bladder contraction and efferent function have been studied extensively, the processes that determine afferent signalling remain elusive and two distinct pathways are currently thought to underlie mechanotransduction: direct gating of mechanosensitive afferents in the bladder wall during bladder stretch, and an indirect mechanism via the release of mediators from the urothelium. Understanding more about bladder afferent transduction mechanisms may lead to the development of novel treatments for lower urinary tract disorders in which symptoms are associated with the filling phase of micturition such as overactive bladder and interstitial cystitis.

Mechanisms underlying bladder mechanosensation were investigated both directly, using an in vitro afferent nerve recording technique which allowed the concurrent recording of intravesical pressure and afferent nerve activity, and indirectly, examining urothelial mediator release and intracellular calcium signalling of urothelial cells and isolated DRG neurons. Using a combination of mechanical, pharmacological and genetic tools, a role for P2X, P2Y, TRPV1 and NK2 receptors in influencing mechanosensitivity was investigated.

Experiments employing pharmacological blockade or genetic deletion of the TRPV1 receptor implicated TRPV1 in bladder mechanosensitivity. Furthermore, experiments investigating the mechanisms of TRPV1 mechanosensitivity determined a role for TRPV1 in modulating purinergic responses on afferent nerves and ATP release from the urothelium. These mechanisms are thought to combine and underlie the decreased afferent nerve sensitivity to distension observed in TRPV1−/− knockout mice. This thesis also suggests that autocrine signalling of the urothelium through P2X and P2Y receptors may regulate intracellular calcium levels, an essential component of ATP release from the urothelium. Furthermore, a role for tachykinins in mediating mouse detrusor contraction acting through NK2 receptors was confirmed. A novel mechanism whereby stimulation of urothelial NK2 receptors was able to alter urothelial mediator release, and modify afferent nerve activity as a result of a change in detrusor function was also elucidated.

As modulation of bladder compliance and detrusor smooth muscle contraction during bladder distension was able to significantly alter afferent nerve discharge, these studies suggest that the major stimulus for afferent nerve output from the bladder is direct mechanical stretch of the bladder.
wall, and that in healthy mice, a lesser component is attributable to secondary indirect mechanisms mediated via non-neuronal ATP from the urothelium.

Further research is necessary to determine the relative contribution of the two mechanosensitivity pathways in disease states, as there is significant evidence that a phenotypic switch towards an indirect mechanism of mechanosensation could underlie increased sensation and reflex bladder symptoms.
DECLARATION AND ADDENDUM

This thesis is submitted to Bond University in fulfilment of the requirements of the degree of Doctor of Philosophy by Research

This research represents my own original work towards this research degree and contains no material which has been previously submitted for a degree or diploma at this university or any other institution, except where due acknowledgment has been made.

Luke Grundy

April 2014
ACKNOWLEDGEMENTS

I would like to thank a great deal more people than can possibly be named within this section as I like to think that everyone who I have met during my PhD candidature has contributed to my growth as a person and therefore the completion of this thesis.

I would like to start by thanking my supervisors Professor Russ Chess-Williams and Dr Donna Sellers for their support over the last 4 years. I would also convey further thanks to Russ for initially offering me a chance to work in the laboratory here at Bond and the wonderful opportunity to study for my PhD, it has truly been the best experience I could have ever hoped for.

This thesis would not have been completed without the support of Bond University and NHMRC Australia who have provided me with the funds necessary to both carry out the work necessary and travel to both national and international conferences to present it. I would also like to thank all of the staff and students in the Faculty of Health Science and Medicine here at Bond University, and all of the staff in the lab at the University of Sheffield for unquestioningly accepting me into their research group during my time there. Particular mention should be made to my PhD colleagues who have provided valuable scientific discussion, and also invaluable non-scientific discussion during my time here. I would like to express my gratitude to Donna Daly in particular for her fantastic advice and providing her expert assistance in developing my scientific skills.

I could not have completed this PhD without the friends I have been lucky enough to find here on the Gold Coast, I thank you for all the good times, for showing me your country, and for listening to my presentations with no clue as to what they are about. A special mention must be made to my good friend Rob whom convinced me to undertake a PhD, I will be forever grateful.

I would like to acknowledge my girlfriend Ravi. For late night beach walks, for always making me smile, for her unwavering support, and for always understanding when I needed to work late and for putting up with me for the last three months.

These acknowledgements could not be complete without a mention of my family. To my Mum and Dad, who have always supported me in everything that I choose and pushed me to succeed, and to my brothers Joe and Rick for teaching me that there are no boundaries in life.

Grundy, L., Daly, D.; Mansfield, K. Chess-Williams R. Sensory nerve responses to ATP are regulated by TRPV1 receptors. Neurourology and Urodynamics: 31 (6): Pages: 794-796

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUMMARY OF THESIS</td>
<td>i</td>
</tr>
<tr>
<td>DECLARATION AND ADDENDUM</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iv</td>
</tr>
<tr>
<td>PUBLICATIONS</td>
<td>v</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vi</td>
</tr>
</tbody>
</table>

CHAPTER 1: GENERAL INTRODUCTION

1.1 ANATOMY OF THE BLADDER | 1 |
1.2 THE BLADDER WALL: STRUCTURE AND FUNCTION | 2 |
1.3 NEURAL INNERVATION OF THE BLADDER | 4 |
1.4 MECHANISMS OF MECHANOSENSITIVITY | 10 |
1.5 THE MICTURITION REFLEX | 18 |
1.6 PATHOLOGIES OF THE BLADDER | 22 |
1.7 PURINERGIC RECEPTORS AND ATP | 24 |
1.8 TRANSIENT RECEPTOR POTENTIAL VANILLOID 1 (TRPV1) | 28 |
1.9 TACHYKININS | 34 |
1.10 AIMS | 39 |

CHAPTER 2: MATERIALS AND METHODS

2.1 ANIMALS | 45 |
2.2 IN-VITRO AFFERENT NERVE RECORDING | 46 |
2.3 DATA ANALYSIS | 47 |
2.4 EXPERIMENTAL PROTOCOL | 50 |
2.5 CHARACTERISATION OF AFFERENT NERVE RESPONSES TO DISTENSION | 52 |
2.6 SPONTANEOUS BLADDER CONTRACTIONS | 66 |
2.7 SPONTANEOUS AFFERENT FIRING | 69 |

CHAPTER 3: PURINERGIC RECEPTORS OF THE UROTHELUM

3.1 INTRODUCTION | 72 |
3.2 EXPERIMENTAL PROTOCOL | 75 |
3.3 CHARACTERISATION OF PMUC RESPONSES TO ATP | 76 |
3.4 THE ROLE OF EXTRACELLULAR CALCIUM IN PMUC RESPONSES TO ATP | 82 |
3.5 THE CONTRIBUTION OF P2X IN PMUC RESPONSES TO ATP | 86 |
3.6 THE CONTRIBUTION OF P2Y RECEPTORS | 92 |
3.7 DISCUSSION | 96 |