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CHAPTER I 

 

INTRODUCTION 

 

A Brief Historical Perspective of Phylogenetic Incongruence 

In his famous work, “On the Origin of Species”, which is considered as the foundation of 

evolutionary biology, Charles Darwin introduces the idea of  “…the great tree of life”, as a 

metaphor that explains how all life on earth is evolutionarily related1. However, in his magnum 

opus, Darwin did not provide an actual phylogenetic tree drawn from real data, but rather a 

conceptual tree-like branched diagram.  

One of the first phylogenetic trees from actual data was published in 1865 by St. George Mivart, 

which provided a reconstruction of primate evolutionary history based on the axial skeleton, or 

spinal column  (fig. 1.1a) 2. Interestingly, in 1867, Mivart published a second phylogeny of 

primates (fig. 1.1b), this time using data from the appendicular skeleton or limbs, which differed 

from the first topology3. Thus, the birth of phylogenetics goes in hand with phylogenetic 

incongruence.  In 1870, not being able of reconciling the observed topological differences, and in 

line with his growing and strong opposition to Darwin’s theory, Mivart writes to Darwin “…I 

have really expressed no opinion as to Man’s origin…Pro. Z. Soc. expresses what I believe to be 

the degree of resemblance as regards the spinal column only. The diagram in the Phil. 

Trans. expresses what I believe to be the degree of resemblance as regards the appendicular 

skeleton only…” (Darwin Correspondence Project letter 7170).   

http://www.darwinproject.ac.uk/entry-7170�
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Figure 1.1. The reconstruction of primate evolution history by SG Mivart in 1865 and 1867, 
depicting conflicting topologies based on a) axial skeleton or spinal column and b) appendicular 
skeleton or limbs. 
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Contrary to Mivart’s rejection of the Darwin’s theory of evolution, evolutionary biologists have 

been trying ever since to identify heritable traits that may reveal and resolve the evolutionary 

relationships between organisms. Although phylogenetics as a field has existed since Darwin, its 

major growth came with the molecular biology revolution and its integration with evolutionary 

biology. The ensuing dramatic increase of characters led several researchers to try to generate 

new classifications of organisms, and different schools of phylogenetic thought developed. For 

example Cladistics, also later known as phylogenetic systematics, originated with the work of 

entomologist Willi Hennig4. Hennig advocated for the reconstruction of evolutionary history 

based on the analysis of certain types of informative characters. On the other hand, Phenetics, 

influenced by the work of Peter Sneath and Robert Sokal5, supported the construction of 

dendrograms using similarity matrices of numerous characters, without necessarily invoking an 

evolutionary scenario. These two schools of thought were engaged in a severe philosophical 

battle during the 1960s and 1970s, with cladistics eventually becoming the dominant school of 

thought.  

In the mid 80’s and 90’s, the development of powerful and robust computational algorithms in 

the presence of numerous and continuously increasing number of phylogenetic characters- 

enabled the emergence of  computational phylogenetics, due to their ability to account for 

complex evolutionary models, while providing support for the inferred topologies in an explicit 

statistical framework. Proposed methods for estimating phylogenetic trees like Maximum 

Likelihood (ML)6 and Bayesian Inference (BI)7, were established as dominant in the field of 

phylogenetics8,9. However, even nowadays, in the presence of extremely large data sets and 

complex evolutionary models, phylogenetic incongruence continues to confound evolutionary 

biologists by providing studies with conflicting results, across the “great Tree of Life”. 
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 Phylogenetic Incongruence in the Modern Era Using Yeasts as a Model Clade 

The modern era of phylogenetics 

Advances in sequencing technologies have enabled the whole-genome sequencing of hundreds 

of prokaryote and eukaryote genomes providing researchers with large amounts of biological 

data10, especially in the field of phylogenetics. However, using molecular data, researchers often 

focused their interest on resolving large taxonomic groups, resulting in the use of few genes with 

insufficient phylogenetic information, and consequently the inference of weakly supported 

topologies11,12. Moreover, high levels of phylogenetic incongruence were reported across very 

diverse clades (Primates, fruit flies, yeasts, arthropods, metazoan phyla)13–23.  

In a 2003 study, aimed at benchmarking the identification of phylogenetic incongruence, Rokas 

et al. revealed a high degree of phylogenetic incongruence, as well as the ability to obtain highly 

supported clades using concatenation, the analysis of all genes in a data set as a single 

supermatrix. This study, together with several others (e.g. see references 11,24), signified the 

beginning of the “phylogenomic era”, an era initially greeted as the “end of incongruence”25. 

Since then, studies that use concatenation approaches have become commonplace and are 

commonly portrayed to have resolved several vexing ancient divergences with a high degree of 

confidence26–47. Consequently, concatenation analysis became the standard approach for 

reconstruction of the major and deep branches of the ToL26–28,48,49. However, despite the progress 

that the advent of concatenation has brought, its use has not eliminated 

incongruence26,28,34,44,48(Fig. 1.2), suggesting that it might not be as robust as confidence indices 

purport it to be. 
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Figure 1.2. The use of concatenation on datasets with hundreds of genes provide conflicting 
topologies in a) the evolution of mollusks and b) the evolution of early metazoa 

 

 

Yeast As a Model Clade 

In their 2003 study, Rokas et al. constructed a matrix of 106 widely distributed orthologous 

genes from 8 species and showed that data sets consisting of single or a small number of 

concatenated genes have a significant probability of supporting conflicting topologies, although 

occasionally supported with high bootstrap values17,18. Those findings combined with re-analyses 

of the same data matrix50–52 as well as with studies on other genome-scale yeast data 

matrices36,53,54 suggested that the problem of incongruence in yeasts was not simply a problem of 

statistical efficiency and low support for different clades. Instead, the lack of accuracy in 

phylogenetic inference has resulted in different studies with conflicting placements of several 
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species55–58. The presence of (a) unresolved clades, (b) factors that affect the phylogenetic 

accuracy and information, combined with (c) the large number of fully sequenced genomes that 

are publicly available, has rendered the fungal class Saccharomycetes as an excellent model for 

the study of phylogenomics.  More analytically: 

a) The presence of unresolved clades  

A number of studies55–58 produced conflicting results concerning the placement of several yeast 

taxa including Eremothecium gossypii, Saccharomyces castellii, Candida glabrata, 

Kluyveromyces lactis and K. waltii. For example, while E. gossypii and K. lactis appeared to be 

sister taxa in studies from Jeffroy et al. (2006), Kurtzman and Robnett (2003) and Scannell et al. 

(2006), in Hittinger et al. (2004) the sister taxon for E. gossypii is K. waltii (fig. 1.3). At the same 

time, even more puzzling was the phylogenetic topology of Saccharomyces castellii and 

Candida glabrata, when compared to Saccharomyces cerevisiae. Contrary to all known studies 

based on molecular data, in the work of Scannell et al. (2006), Candida glabrata was presented 

as more closely related to Saccharomyces cerevisiae than Saccharomyces castellii, based on 

syntenic characters derived from the loss of genes after a whole genome duplication (WGD)59.   

At the same time, different topologies have been obtained as the result of using different 

optimality criteria and sequence data types (nucleotides vs amino acids)17,50. In Rokas, Williams 

et al study, the topology of K. lactis could not be resolved. Maximum likelihood analysis placed 

K. lactis as the first species to diverge, while parsimony analysis suggested an alternative 

placement. Both topologies were supported with a high bootstrap value. In the second case, the 

placement of E. gossypii differed significantly when nucleotide sequence data were used instead 

of amino acid data. 
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Figure 1.3. Conflicting topologies between 4 phylogenetic studies in yeast. Taxa with various 
topologies are shown in blue 

 

 b) The presence of factors that affect the accuracy and phylogenetic information  

Several different analyses on the yeast clade have shown the existence of factors that affect 

phylogenetic inference17,50. Exploring those factors using the 8-taxon data matrix of 106 gene 

alignments, Rokas et al. (2003) tested whether clade support could be explained by or correlated 
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with the number of variable sites, number of parsimony-informative sites, gene size, rate of 

evolution, nucleotide composition, base compositional bias, genome location, or gene ontology.  

Interestingly, their results showed a significant correlation between clade support and the number 

of variable sites, the number of parsimony -informative sites and gene size for some of the 

branches. Subsequent analyses of the data matrix by Phillips et al. (2004), further established the 

presence of systematic error in the yeast phylogeny. By using minimum evolution as their 

optimality criterion, the authors inferred a different topology. Moreover, this topology was 

mainly attributed to the existence of nucleotide compositional bias as the recoding of nucleotides 

to purines and pyrimidines rendered the original phylogeny. Similarly, Collins et al. 

demonstrated  that the use of stationary genes in their dataset provided on average more accurate 

results51, while other groups demonstrated how the influence of long branch attraction frequently 

resulted in misplacements for some of the eight taxa in some single gene analyses52,60.  

c) The increasing availability of fully sequenced genomes  

The original data matrix constructed by Rokas et al. (2003) used data from the 8 then available 

yeast genomes. Currently, more than 20 yeast genomes have been fully sequenced, which 

enables the construction of much bigger data matrices from many more taxa. Moreover, the 

recent development of databases such as the Yeast Genome Order Browser (YGOB)61 and 

Candida Gene Order Browser (CGOB)62 provides valuable information concerning the 

identification and validation of orthologous groups of genes from many of those genomes, 

rendering this data set a model dataset for future functional and phylogenetic analyses. 
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What is the Source for Phylogenetic Incongruence?  

 In general, the reasons for observing phylogenetic incongruent data sets may be characterized as 

either analytical or biological. In biological reasons potential incongruence in a dataset may exist 

by genes that have different histories than their respective species and stem from historical 

events. This type of incongruence includes events such as partial or whole genome duplication, 

introgression, lineage sorting of ancestral polymorphisms or horizontal transfer63.   

In analytical reasons, we find two main types of error that may explain the presence of 

incongruence; sampling and systematic64. Sampling error arises when the sample is not 

representative of the whole population. Factors that may increase sampling error are the number 

and appropriateness of included genes, and the phylogenetic information of the inferred 

alignment64. Systematic error may result from a misspecification of the selected evolutionary 

model50,65. Example of factors that contribute to systematic error are base composition and 

branch length17,64.  

One factor that deserves special mention is ortholog determination, because its accurate 

determination is fundamental to evolutionary analyses. The identification of orthologs is not 

always straightforward because genetic (e.g., gene duplications and losses) and population-level 

(e.g., hybridization and speciation) events can yield complex gene histories66,67. For example, 

gene duplication, especially when it affects many genes as in the case of whole genome 

duplications and is followed by extensive gene loss, can generate large numbers of single-copy 

paralogs, which complicate ortholog determination66–70.  The difficulty in accurately determining 

orthology, combined with the utility of orthology in many different applications and disciplines 

and the need for high-throughput pipelines for prediction, have led to the development of several 

different algorithms for ortholog-based prediction71. 
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In chapter II, I present an evaluation of different graph-based algorithms that define orthology 

between genes in a phylogenetic dataset, including the performance of clustering Reciprocal Best 

Hit (cRBH), a clustering algorithm for reciprocal best hit ortholog identification that I developed 

using custom perl scripts. Analysis of 4 algorithms showed that cRBH algorithm outperformed 

all other three algorithms in almost all of my comparisons. Even though all algorithms seem to 

deal well with paralogy in most data sets, their performance seems to decrease dramatically in 

data sets with high levels of paralogy, especially when the orthologous genes have been lost.   

In chapter IV, where I construct a data matrix from 23 yeast species some of which underwent a 

whole genome duplication59, the construction of orthogroups was accomplished by retrieving 

information from two high quality databases –YGOB61 and CGOB62– where orthology is 

determined based on syntenic information, sequence similarity and manual curation. This, 

enabled the construction of a premium dataset of orthogroups that is essentially free of paralogy. 

However, in constructing data matrices from Metazoans and Vertebrates, lineages for which high 

quality databases of syntenic orthologs are lacking, I was able to apply my cRBH algorithm to 

infer orthology.  

 

Measuring data incongruence 

Handling and quantifying incongruent data sets has confounded systematists since the beginning 

of evolutionary biology72–74. In general, methods that have been developed for the quantification 

of incongruence can be classified into two main categories: a) methods that identify character-

based incongruence75–83 and b) methods that calculate incongruence between trees84–86. In the 

first group, the identification of incongruence is achieved by examining how well the data set fits 

a given phylogenetic tree. In contrast, the second group of methods attempt to calculate the 
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difference between two distinct trees87. In general, even though several of these methods are 

extremely useful, in practice, they tend to lack generality, as they depend either on a particular 

optimality criterion77,78,81 or clade support measure76,85.   

Given the increasing number of available genes for phylogenetic analysis, an interesting group of 

tree-based methods for measuring incongruence and summarizing conflict are consensus 

methods88. Since each internode in a phylogenetic tree can be represented by a bipartition of two 

sets of taxa, a set of trees can be potentially also summarized into a consensus tree by including 

only those bipartitions that are “representative of the set”. A very popular and widely-used 

particular form of consensus methods is the Majority Rule Consensus (MRC) tree method which 

summarizes the shared bipartitions across all trees in a set, in order to provide a single tree with a 

value for each internode that corresponds to either the number or percentage of individual 

phylogenetic trees. However, although very useful, this value does not differentiate between the 

presence of a strong secondary conflicting signal on the specific internode or simply 

phylogenetic noise. For example, when a MRC tree reports that 51 out of 100 phylogenetic trees 

contain a specific bipartition, whether the rest of the bipartitions strongly support a secondary 

signal remains unknown.  

In chapter III, I present four novel measures based on information theory and Shannon’s entropy 

to quantify phylogenetic incongruence. Each internal branch (or internode) in a phylogenetic tree 

can also be represented by the bipartition of two disjoint sets of taxa (partitions). Consequently, 

using the prevalence of conflicting bipartitions, I calculate the level of support for each internode 

as well as the level of conflict. Specifically, Internode Certainty (IC) and Internode Certainty All 

(ICA) measure the level of certainty for a specific internode either by selecting either the two 

most prevalent conflicting bipartitions (IC) or all prevalent conflicting bipartitions (ICA), 
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respectively. Furthermore, the sum of all IC or ICA values on a given phylogeny provides a level 

of support and conflict for that phylogeny, which is captured by the measures Tree Certainty 

(TC) and Tree Certainty All (TCA), respectively.  

 

Available High-Profile Practices That Decrease Phylogenetic Incongruence 

To reduce data incongruence and improve phylogenetic inference, different phylogenomic 

studies have relied upon the use of several practices; these include the removal of rogue 

(unstable or fast evolving) taxa26,48,89, the trimming and exclusion of ambiguous columns from 

the gene alignments17,26,44,49, the use of only the slow-evolving and highly conserved genes26,41,48, 

the use of ‘good-marker’ genes identified based on whether these genes recover internodes that 

are widely considered as known27, or finally the use of certain types of characters that are thought 

to be more informative,  such as conserved amino acid (aa) substitutions90 or indels91. Although 

their effect and magnitude of impact has not been systematically evaluated, these -highly 

popular- practices are being generously applied, despite different empirical and simulation 

studies that have argued for their utility92–94.  

In chapter IV, by analyzing a  dataset of 1,070 high-quality orthologous groups from 23 yeast 

genomes, as well as two additional data sets of 1,086 orthogroups from 18 vertebrates species 

and 225 groups from 21 metazoan species, I show that selecting genes with strong phylogenetic 

signal reduces incongruence and allows the more accurate reconstruction of ancient divergences. 

Additionally, using IC and TC (as presented in chapter III) I demonstrate that widely used 

methods that intend to reduce incongruence, have little or no significant effect on the yeast 

phylogeny. Finally, I propose two novel methods that dramatically decrease the level of 

incongruence in the dataset.  However, even with achieving a significant decrease of 
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incongruence, I was unable to resolve certain very short internodes at the base of the yeast 

species phylogeny, suggesting that conflict in the genes’ phylogenetic signal is strong or that 

phylogenetic signal for these internodes has been almost lost. Perhaps one of the most surprising 

results of my thesis was that the 1,070 inferred gene trees differed with the species phylogeny, as 

well as with each other.  

 

Evaluating Phylogenetic Properties and Functional Factors that Influence Phylogenetic 
Incongruence 
  
Despite significant efforts in accurately reconstructing the tree of life95, the phylogeny of 

different evolutionary clades still remains unresolved14–16,18,20,21,49. Contradicting results on 

whether more genes or more taxa need to be included in order to minimize phylogenetic 

incongruence52,92,96–101, has opened the discussion of which genes should be considered 

appropriate and informative. In my comparison of 1,070 yeast gene trees against the species 

phylogeny, I discovered great differences among the gene trees, as well as between the gene 

trees and the species phylogeny. This begged the question what are the factors that drive these 

large amounts of incongruence. As mentioned previously (see “Yeast as a model clade”, section 

‘b’), in their 2003 study, Rokas et al. (2003) tested whether the clade support could be explained 

by or correlated with the number of variable sites, number of parsimony-informative sites, gene 

size, rate of evolution, nucleotide composition, base compositional bias, genome location, or 

gene ontology.  

In chapter V, I explore a set of different functional factors (including the percentage and variance 

of GC content in genes, percentage of variable sites, branch length, number of physical and 

genetic interactions, level of gene expression, codon adaptation and codon bias102) together with 

a set of phylogenetic gene properties (including Tree Certainty103, Average Bootstrap Support104, 
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Robinson-Foulds105 mean distance(mRF)and Robinson-Foulds gene variance) in order to 

examine to which degree these factors or properties are driving phylogenetic incongruence. 

Rokas et al.,  showed a correlation between clade support and many of these factors. In my new 

data set, I explored the impact of several of the factors tested by Rokas et al. as well as new ones 

on a data set that included ten times as many orthogroups and three times as many taxa. 

Moreover, using data mining and statistical techniques such as regression, principal component 

analysis and neural networks, I measure the predictability of each gene’s phylogenetic behavior 

based on its functional factors. Overall, I show that approximately 15-20% of gene-tree 

incongruence can be directly attributed to gene factors like the percentage of GC content, codon 

bias, codon adaptation, percentage of variable sites, and distorts the gene’s topology away from 

the species phylogeny. However, even though these functional factors may provide extremely 

useful insights on the evolutionary behavior of genes, their impact on reducing data 

incongruence appears to be small, especially for resolving short internodes at the base of the 

phylogeny. Thus, selecting genes based on their phylogenetic properties such as gene Tree 

Certainty, average bootstrap support or mean Robinson Foulds distance (the best-performing 

measure), remains the best way to select genes for phylogenetic inference. 
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ABSTRACT 

Background 

Accurate identification of orthologs is crucial for evolutionary studies and for functional 

annotation. Several algorithms have been developed for ortholog delineation, but so far, 

manually curated genome-scale biological databases of orthologous genes for algorithm 

evaluation have been lacking. We evaluated four popular ortholog prediction algorithms 

(MULTIPARANOID; and ORTHOMCL; RBH: Reciprocal Best Hit; RSD: Reciprocal Smallest 

Distance; the last two extended into clustering algorithms cRBH and cRSD, respectively, so that 

they can predict orthologs across multiple taxa) against a set of 2,723 groups of high-quality 

curated orthologs from 6 Saccharomycete yeasts in the Yeast Gene Order Browser. 

Results 
Examination of SENSITIVITY [TP/(TP+FN)], SPECIFICITY [TN/(TN+FP)], 

and ACCURACY[(TP+TN)/(TP+TN+FP+FN)] across a broad parameter range showed 

that CRBH was the most accurate and specific algorithm, whereas ORTHOMCL was the most 

sensitive. Evaluation of the algorithms across a varying number of species showed that CRBH 

had the highest ACCURACYand lowest FALSE DISCOVERY RATE [FP/(FP+TP)], followed 

by CRSD. Of the six species in our set, three descended from an ancestor that underwent whole 

genome duplication. Subsequent differential duplicate loss events in the three descendants 

resulted in distinct classes of gene loss patterns, including cases where the genes retained in the 

three descendants are paralogs, constituting ‘traps’ for ortholog prediction algorithms. We found 

that the FALSE DISCOVERY RATE of all algorithms dramatically increased in these traps. 

Conclusions 

These results suggest that simple algorithms, like CRBH, may be better ortholog predictors than 

more complex ones (e.g., ORTHOMCL and MULTIPARANOID) for evolutionary and 
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functional genomics studies where the objective is the accurate inference of single-copy 

orthologs (e.g., molecular phylogenetics), but that all algorithms fail to accurately predict 

orthologs when paralogy is rampant. 

 

INTRODUCTION 

Orthologous genes are homologs that originated by speciation events, whereas paralogs are 

homologs that originated by gene duplication events [1]. Accurate determination of orthologs 

and paralogs is fundamental to molecular evolution analyses, the first step in any comparative 

molecular biology study, and incredibly useful for functional prediction and 

annotation [2], [3],[4], [5], [6]. However, identifying orthologs and distinguishing them from 

paralogs is not always straightforward because genetic (e.g., gene duplications and losses) and 

population-level (e.g., hybridization and speciation) events can yield complex gene 

histories [2], [7]. 

The difficulty in accurately determining orthology, the utility of orthology in many different 

applications and disciplines, and the abundance of genomic data necessitating high-throughput 

pipelines for prediction, have led to the development of several different types of ortholog 

prediction algorithms [8]. For example, a number of graph-based algorithms use similarity 

searches, such as BLAST [9], to predict groups of orthologous genes (orthogroups), either in 

pairwise (between two taxa) or clustering (between multiple taxa) 

fashion [3], [6], [10], [11],[12], [13], [14], [15], [16], [17]. In contrast, tree-based algorithms 

predict orthogroups using explicit phylogenetic criteria [18], [19], [20], [21], [22], [23]. 

Although all these different types of ortholog prediction algorithms are widely used, studies that 

evaluate ortholog prediction algorithm performance for molecular phylogenetic purposes are not 
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available. Furthermore, large-scale studies that evaluate the relative performance of a wide 

variety of different ortholog prediction algorithms have yielded contradictory 

results [10], [24],[25], [26]. For example, whereas Alexeyenko and co-workers [10] found that 

the graph-based MULTIPARANOID clustering algorithm produced the fewest errors, a different 

analysis showed that ORTHOMCL, another graph-based clustering algorithm, had the best 

balance of SENSITIVITY and SPECIFICITY [27]. In contrast, Hulsen and co-

workers [24] found that the INPARANOID pairwise algorithm outperformed ORTHOMCL in 

predictions of orthologous gene pairs. Furthermore, Altenhoff and Dessimoz [25] found that the 

graph-based OMA clustering algorithm [16] had the highest SPECIFICITY (together with the 

homolog prediction algorithm HOMOLOGENE [28]), and that certain tree-based algorithms 

were occasionally outperformed by graph-based pairwise algorithms. Unfortunately, several 

differences in algorithm design make many of the above comparisons hard to interpret. For 

example, it is unclear how to interpret comparisons between pairwise and clustering ortholog 

prediction algorithms (e.g.,[24]), or between algorithms that predict orthologs and paralogs 

(e.g., [25]), or how the results should be interpreted when the objective is not functional 

prediction but phylogenetic inference (e.g., [24]). 

One potential explanation for these contradictory results might be that each one of the efforts to 

evaluate ortholog prediction algorithms makes assumptions likely to be 

violated [10], [24], [25],[27]. For example, several studies evaluated algorithms using functional 

similarity as a proxy for orthology [24], [25], whereas others evaluated algorithms against sets of 

orthologs identified by phylogenetic analysis [10], [25]. However, orthologous genes are not 

always functionally similar [2], and single-gene phylogenies frequently yield erroneous 

results [29], [30]. 
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The contradictory results in studies of ortholog prediction algorithm performance and the range 

of evaluation approaches developed suggest that there is a clear need for reliable reference 

genome-scale ortholog databases. One such high-quality reference database of homologous gene 

groups is the Yeast Gene Order Browser (YGOB) [31]. The YGOB is an excellent reference 

dataset for evaluating different ortholog prediction algorithms (e.g., [19], [32]) for two reasons. 

First, it contains genomes of varying evolutionary distances, and the homology of several 

thousand of their genes has been accurately annotated through sequence similarity, phylogeny, 

and synteny conservation data [31], [33]. Second, approximately 100 million years ago, a subset 

of species in the clade underwent a single round of whole genome duplication (WGD) (Figure 

2.1A) [34]. Subsequent differential loss of gene duplicates originating from the WGD event 

resulted in groups of different gene retention pattern where in some cases the duplicates retained 

are paralogs [35] (Figure 2.1B), constituting ‘traps’ for ortholog prediction algorithms (e.g., 

Class III gene retention patterns in Figure 2. 1C). Importantly, the YGOB database contains 

accurate ortholog annotations from species that predate and postdate the WGD event, as well as 

an accurate annotation of hundreds of such ‘trap groups’, allowing us to compare algorithm 

performance against orthogroup sets that are much more challenging to decipher. 
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Figure 2.1. The generation of the five distinct classes of gene loss patterns following the 
yeast whole genome duplication (WGD). 
(A) Approximately 100 million years ago, the common ancestor of S. cerevisiae, C. glabrata, 
and N. castellii underwent WGD, resulting in the doubling of chromosomes. Segments that 
correspond to the two chromosome sets are known as tracks A and B. (B) An example of how 
the loss of paralogs from different tracks, if undetected, can generate an incorrect species tree. In 
the example, C. glabrata has lost a paralog from track A, whereas S. cerevisiae and N. 
castellii have lost paralogs from track B, ‘trapping’ ortholog prediction algorithms in incorrectly 
grouping the three post-WGD paralogs in an orthogroup. (C) In the aftermath of WGD, 
extensive loss of paralogs within homologous gene groups resulted in different gene loss 
patterns, known as classes 0 – IV [35]. Class 0 consists of groups that have not lost any paralogs. 
Groups in classes I and II have lost one and two paralogs, respectively. Finally, all groups in 
classes III and IV have lost three paralogs, however, all paralogs lost in class IV groups were on 
the same track (A or B). 
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Here, we evaluated the performance of four commonly used ortholog prediction algorithms –

MULTIPARANOID [10], ORTHOMCL [3], RBH [4], [6], [12], [13], and RSD [14] in 

predicting orthogroups in six yeast proteomes by comparing their results against reference 

orthogroups retrieved from the YGOB database. To ensure that we evaluated all algorithms for 

their performance in detecting orthogroups across multiple species, we extended RBH and RSD 

into clustering algorithms (CRBH and CRSD, respectively). We selected these four algorithms 

among the several different ones available [8], based on their popularity, availability as 

standalone algorithms, and that they are not tree-based, which allows their implementation for 

downstream molecular phylogenetic analyses. We assessed the performance of each algorithm 

under a range of parameters and conditions, including in ‘traps’, as well as using varying 

numbers of species. We found that CRBH almost always outperformed all other algorithms, 

suggesting that simpler algorithms may often perform better than more complex ones in 

identifying orthologs across species, but that the FALSE DISCOVERY RATE of all algorithms 

was dramatically increased when groups of paralogs stemming from the WGD event were 

examined. 

 

METHODS 

The Test Dataset 

The test dataset consists of 31,012 proteins from the proteomes of the following six 

Saccharomycete yeasts: Saccharomyces cerevisiae, Candida glabrata (also known 

asNakaseomyces glabrata [36]), Naumovia castellii (also known as Saccharomyces 

castellii[36]), Lachancea waltii (also known as Kluyveromyces waltii [36]), Eremothecium 

gossypii (also known as Ashbya gossypii [36]), and Kluyveromcyes 
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lactis [37], [38], [39], [40], [41]. A common ancestor of three of these six yeast species (S. 

cerevisiae, C. glabrata, and N. castellii) underwent a single round of WGD (Figure 2.1A) [34]. 

Although the quality of annotations differs between the six species included in this study [31], it 

is unlikely to influence significantly our results. This is so because in our analyses we test all 

four algorithms on exactly the same data, and we have no reason to think that annotation quality 

differences would differentially affect the performance of ortholog prediction algorithms in our 

study. 

 

Constructing ‘Gold Groups’, a Reference Set of Orthogroups 

The Yeast Genome Order Browser (YGOB) database is a manually curated homolog database of 

Saccharomycete proteins [31] from species that predate the WGD event (K. lactis, L. 

waltiiand E. gossypii) as well as from species that postdate the WGD event (S. cerevisiae, C. 

glabrata, and N. castellii). Thus, for every chromosomal segment in the three pre-WGD species 

(L. waltii, E. gossypii, and K. lactis), assuming no loss, there are two corresponding 

chromosomal segments (known as track A and B) in the three post-WGD species. As a result, 

each homologous gene group in the YGOB database, assuming no gene loss, contains a single 

ortholog from each pre-WGD species, and two paralogs from each post-WGD species, one from 

track A and one from track B. 

To construct a reference dataset of orthogroups deprived of paralogy we first retrieved all 2,723 

annotated homologous gene groups from the YGOB (note that this set is a fraction of the total set 

of true orthogroups) and split each group into two subgroups. The first subgroup contained all 

ortholog genes from pre-WGD species together with all orthologs from post-WGD species found 

on track A, whereas the second subgroup contained the same orthologous genes from pre-WGD 
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species together with all orthologs from post-WGD species found on track B. To avoid the 

double counting of orthologs from pre-WGD species in our assessment of ortholog predictions, 

we evaluated each prediction only against the subgroup that had the best match. We used these 

orthogroups, from here on referred to as ‘gold groups’, as the reference set to evaluate the 

performance of ortholog prediction algorithms. 

 

Ortholog Prediction Algorithms Tested 

The MULTIPARANOID algorithm [10] is an extension of the graph-based 

INPARANOID clustering algorithm [11], [42] for identifying orthologs and inparalogs across 

multiple species. INPARANOID uses bi-directional best BLAST [9], [43] to identify putative 

orthologs and a clustering algorithm to identify their inparalogs. To do so, 

INPARANOID assumes that any sequences from the same species that are more similar to the 

predicted ortholog than to any sequence from other species are inparalogs [11], [42]. 

MULTIPARANOID generates multi-species orthogroups by merging all pairwise 

INPARANOID predictions, while minimizing the number of internal conflicts. Furthermore, the 

algorithm uses a ‘cut-off’ parameter based on the distance of candidate inparalogs to the 

predicted target ortholog to filter out weakly supported candidates. MULTIPARANOID was 

obtained from http://multiparanoid.sbc.su.se and INPARANOID (version 3beta) was obtained 

upon request from inparanoid@sbc.su.se. 

The ORTHOMCL algorithm also builds upon the INPARANOID algorithm [11], [42] by using 

the Markov Cluster (MCL) algorithm for predicting orthogroups across multiple species based 

on their sequence similarity information [3]. The algorithm uses an ‘inflation rate’ parameter, to 
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regulate the ‘tightness’ of the predicted orthogroups. ORTHOMCL (version 1.4) was obtained 

from http://orthomcl.org/common/downloads/software/v1.4/. 

The Reciprocal Best Hit (RBH) algorithm [4], [6], [12], [13] relies on BLAST [9], [43] to 

identify pairwise orthologs between two species. According to the RBH algorithm, two 

proteins X and Yfrom species x and y, respectively, are considered orthologs if protein X is the 

best BLAST hit for protein Y and protein Y is the best BLAST hit for protein X. We integrated a 

‘filtering’ parameter r that enabled us to avoid constructing orthogroups that contained distant 

homologs by considering the degree by which the two proteins differed in sequence length or 

BLAST alignment [44], [45]. Thus, putative orthogroups are retained if: 

 

From the above equation, it follows that r values close to 1 are likely to filter out a larger number 

of putative orthologs, whereas r values close to 0 are likely to include all putative orthologs. The 

default mode of the algorithm does not use the filtering parameter r. 

The Reciprocal Smallest Distance (RSD) algorithm [14] generates global sequence alignments 

for a small number of top BLAST hits against a query gene X from species x. RSD then 

calculates the maximum likelihood evolutionary distance between X and its top BLAST hits, 

identifying the gene with the smallest evolutionary distance from X (e.g., gene Y from speciesy). 

If the RSD search using gene Y from species y as the query also identifies gene X from 

species x as its closest relative, then proteins X and Y are considered orthologs [14], [15]. In 

RSD, the user can modify the shape parameter a of the gamma distribution, a key determinant of 

the estimated evolutionary distance between genes. The RSD algorithm was obtained 

fromhttp://roundup.hms.harvard.edu/site/. 
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Extending the Pairwise RBH and RSD Algorithms into Clustering Algorithms cRBH and 

cRSD 

To directly compare the clustering performance of all four ortholog prediction algorithms we 

extended the pairwise algorithms RBH and RSD into clustering algorithms CRBH and CRSD, 

respectively. CRBH and CRSD construct orthogroups from more than two species as follows 

(see also [46]). Considering all pairwise BLAST similarity searches for genes A, B, C,…, N-1, 

N from species a, b, c,…, n-1, n to form an orthologous gene group, gene B must be the 

reciprocal best hit to gene A, gene C the reciprocal best hit to gene B or gene A, …, and 

geneN the reciprocal best hit to any gene [A, B, C,…, N-1]. In cases such as when gene A from 

species a is the reciprocal best hit to gene B from species b and to gene C1 from species c, but 

gene B is the reciprocal best hit to gene C2 from species c, the algorithm drops species cfrom the 

orthogroup. 

 

Evaluating the Performance of Ortholog Predictions 

We used a BLASTP cut-off E-value of ≤ 1e-5 in all orthogroup predictions made with all four 

algorithms. We run the MULTIPARANOID algorithm using a range of cut-off parameter values 

(cut-off = {0.0, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}; 0.0 is the default value), the 

ORTHOMCL algorithm using a range of inflation rate parameter values (inflation rate = {0.1, 

0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 5, 7.5, 10.0, 100.0}; 1.5 is the default value), the CRBH algorithm 

by ranging the values assigned to the filtering parameter r (r = {no r, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 

0.7, 0.8, 0.9}; no r is the default option), and the CRSD algorithm by ranging the values of the 

shape parameter a (a = {0.1, 0.4, 0.5, 0.6, 0.7, 1.0, 1.5, 2.0, 2.5, 5.0}; 0.5 is the default value). 

For each algorithm and its range of parameter values, we calculated 
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its ACCURACY,SENSITIVITY, SPECIFICITY, and FALSE DISCOVERY RATE using the 

following equations:  

 

 

 

 

Finally, we graphically plotted 

the RECEIVER OPERATING CHARACTERISTIC (ROC curve) of  

SENSITIVITY versus (1 − SPECIFICITY). 

 

The Evaluation Pipeline for Test Orthologous Genes and Orthogroups 

We evaluated the ability of each ortholog algorithm to predict orthogroups by comparing their 

predictions against the reference gold groups. According to our evaluation pipeline (Figure 2.2 

and Text S2.1), each predicted orthogroup was first compared against the set of gold groups to 

identify, if any, its corresponding gold group. If a test group shared at least two genes with a 

reference gold group, the test group was characterized as a ‘defined’ test group. In all other 

cases, the test group was considered ‘undefined’. 
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Figure 2.2. The pipeline used to evaluate the performance of the ortholog prediction 
algorithms. 
The pipeline evaluates algorithm performance by comparing their predictions on six yeast 
proteomes against a high-quality reference set of orthologs (gold groups) constructed from the 
YGOB [31]. The pipeline first compares each test group against the set of gold groups. If the test 
group matches with a corresponding gold group, the test group is characterized as ‘defined’ and 
the two groups are further compared on a gene-by-gene basis. If there is no match, the test group 
is characterized as ‘undefined’. For the ‘defined’ groups, genes present in both the test and the 
gold groups are considered true positives (TP), whereas genes present only in the test group or 
only in the gold group are considered as false positive (FP) and false negative (FN), respectively. 
From the TP, FP, and FN values for all ‘defined’ groups we then estimated the true positives 
(TP*), false positives (FP*), and false negatives (FN*) for the ‘undefined’ set of groups. Finally, 
by adding the values obtained from the analysis of ‘defined’ and ‘undefined’ groups we 
calculated the total number of true positive (tTP), false positive (tFP), false negative (tFN), and 
true negative (tTN) genes for all test groups, and used them to estimate each 
algorithm's SENSITIVITY, SPECIFICITY,ACCURACY and FALSE DISCOVERY RATE (See
 Methods and Text S2.1). 
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For the defined orthogroups, we considered all genes shared between the test group and its 

corresponding gold group as true positive (TP), and any genes in the test group that did not also 

belong to the gold group as false positive (FP) (Figure 2.2 and Text S2.1). FP genes could belong 

to a different gold group or to be absent from the set of corresponding gold groups. Finally, we 

considered all those genes present in gold groups that did not belong to any test groups as false 

negative (FN). 

Given that the number of reference gold groups is much smaller than the total number of true 

orthogroups in our dataset, we expect that a significant number of test orthogroups will not have 

corresponding gold groups, and hence will be undefined. Because we wanted to calculate values 

that were representative for the entire dataset, we estimated the number of true positive (TP*), 

false positive (FP*), and false negative (FN*) for the undefined orthogroups by multiplying the 

number of TP, FP, and FN calculated from the defined groups with the ratio of the number of 

undefined genes on the number of defined genes (Figure 2.2 and Text S2.1). For example, TP* is 

the product of the TP value multiplied by the ratio of the number of undefined genes on the 

number of defined genes. Finally, by calculating the total number of true positive (tTP = TP + 

TP*), false positive (tFP = FP + FP*), and false negative (tFN = FN + FN*) genes, we were able 

to estimate the number of total true negative genes (tTN = total number of genes – tTP – tFP – 

tFN) in our dataset (Figure 2.2 and Text S2.1). 

To ensure that the calculated TP, FP, and FN values for proteins that belonged to ‘defined’ 

groups were also representative of the remainder of the proteins (i.e., those that belong to the 

‘undefined’ groups) (Figure 2.2), we tested whether S. cerevisiae genes that belong to ‘defined’ 

and ‘undefined’ groups differed significantly in evolutionary rate (measured by the dN/dS ratio), 

number of paralogs in genome, and codon adaptation index. We obtained the data for 
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evolutionary rate and codon adaptation index calculations from the study of Wall et al. [47]. We 

calculated the number of S. cerevisiae paralogs per protein using BLASTP [9]. To evaluate 

whether the evolutionary and functional properties of genes that belong to the ‘defined’ and 

‘undefined’ groups were statistically significant, we performed a two-tailed t-test (assuming 

unequal variance and unequal sample size) [48]. 

 

Evaluating Algorithm Performance for Varying Numbers of Species 

To evaluate the performance of each algorithm across varying numbers of species, we examined 

all possible combinations for three, four, and five yeast proteomes and calculated each 

algorithm's ACCURACY and FDR. All algorithms were run using the parameter values that 

yielded the highest ACCURACY in orthogroup prediction on the six yeast proteomes dataset. 

 

Evaluating Algorithm Performance against Different Classes of Gene Loss Events 

Our reference dataset contains orthogroup classes where some of the homologs retained are 

paralogs. To investigate how each algorithm performed in these ‘trap groups’, we divided the 

2,723 gold groups into the five classes described by Scannell et al. [35] (Figure 2.1C) and 

calculated the ACCURACY and FDR for each algorithm. All algorithms were run using the 

parameter values that yielded the highest ACCURACY in orthogroup prediction on the six yeast 

proteomes dataset. 

 

RESULTS 

We evaluated the performance of four different algorithms (MULTIPARANOID, 

ORTHOMCL,CRBH and CRSD) in predicting orthogroups against a manually curated, high-
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quality database of ortholog groups (gold groups), by 

estimating SENSITIVITY, SPECIFICITY, ACCURACY and FDR across different parameter 

values, using a varying number of species and across different gene loss classes (Figures 

2.3, 2.4, 2.5, 2.6 and Table S2.1). S. cerevisiae genes that belong to ‘defined’ and ‘undefined’ 

groups did not differ significantly in evolutionary rate, number of paralogs in genome, and codon 

adaptation index (all p-values for all measures across all algorithms were larger than 0.05). Thus, 

the ‘defined’ and ‘undefined’ orthogroups do not differ significantly. Therefore, our estimation 

of the number of true positive (TP*), false positive (FP*), and false negative (FN*) for the 

undefined orthogroups based on the number of TP, FP, and FN calculated from the defined 

groups seems to be valid and our results should be representative of the entire population of 

orthogroups present in the six yeast genomes under study. 
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Figure 2.3. The ACCURACY and RECEIVER OPERATING CHARACTERISTIC (ROC) 
curve for each ortholog prediction algorithm across a range of parameter values. 
(A) The ACCURACY [(TP + TN)/(TP + TN + FP + FN)] of each ortholog prediction algorithm 
(shown on the Y-axis) is plotted against the range of algorithm-specific parameter values (shown 
on the X-axis). Values for MULTIPARANOID are for the ‘cut-off’ parameter, values for 
ORTHOMCL are for the ‘inflation rate’ parameter, values for CRBH are for the ‘filtering 
parameter r’, and values for CRSD are for the ‘shape parameter a’. (B) The ROC curve for each 
ortholog prediction algorithm shows SENSITIVITY [TP/(TP + FN)] (on the Y-axis) plotted 
against 1 – SPECIFICITY [1 – (TN/(TN + FP))] (on the X-axis). Optimal values and 
distributions reside on the top left of the graph. All values depicted in the graphs are shown 
in Table S2.1. 
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Figure 2.4. The ACCURACY and FDR of ortholog prediction algorithms using varying 
numbers of species. 
(A) The ACCURACY of ortholog prediction algorithms (shown on the Y-axis) is plotted against 
varying numbers of species (shown on the X-axis). (B) The FDR of ortholog prediction 
algorithms (shown on the Y-axis) is plotted against varying numbers of species (shown on the X-
axis). Each algorithm was run using the parameter value yielding the highest ACCURACY. All 
values depicted in the graphs are shown in Table S2.1. 

 
 
Figure 2.5. The ACCURACY and FDR of ortholog prediction algorithms across five 
orthogroup classes with different gene retention patterns. 
The five classes are described in Figure 2.1. (A) The accuracy of ortholog prediction algorithms 
(shown on the Y-axis) is plotted against the five classes (shown on the X-axis). (B) The FDR of 
ortholog prediction algorithms (shown on the Y-axis) is plotted against the five classes (shown 
on the X-axis). Each algorithm was run using the parameter value yielding the 
highest ACCURACY. All values depicted in the graphs are shown in Table S2.1. 
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Figure 2.6. Examples of the behavior of the four algorithms in predicting orthogroups from 
gold groups belonging to three different classes. 
(A) Construction of gold groups (gold groups A and B) from the set of homologous gene groups 
from the YGOB. Each test group is evaluated against only against the gold group that had the 
best match. (B) The orthogroups for three different gold groups belonging to classes 0, III and IV 
predicted by the four different algorithms. The gold group is shown on the left-most column. 
The S. cerevisiae gene name for each of the three gold groups is shown on the left. Genes 
correctly predicted as belonging to each orthogroup (true positives) are shown in green, genes 
incorrectly predicted as belonging to each orthogroup (false positives) are shown in red, whereas 
genes present in a gold group that were not predicted to belong to this or any other test group 
(false negatives) are shown in grey. 
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Comparing Algorithm Performance across Different Parameter Values 

Ranging the cut-off parameter value of the MULTIPARANOID algorithm had minor effects on 

its performance. All analyses with cut-off values >0 yielded identical results with 

higherSENSITIVITY and ACCURACY, but lower SPECIFICITY relative to the default cut-off 

value of zero. The ORTHOMCL algorithm did not exhibit any clear trade-off 

between SENSITIVITY andSPECIFICITY with increasing inflation rate values. Specifically, 

predictions using inflation rate values ≥ 3.5 had both lower SENSITIVITY and SPECIFICITY. 

The algorithm had almost equalSENSITIVITY for values < 3, with the 

best SPECIFICITY and ACCURACY obtained when the inflation rate was 1.5. The CRBH 

algorithm had the highest SENSITIVITY and ACCURACY when r was 0.3, although similar 

values were obtained when r was not set (default) or when r was 0.4. In general, r values greater 

than 0.4 decreased the SENSITIVITY of the algorithm by excluding increasing numbers of 

putative orthologs, but increased its SPECIFICITY. 

For CRSD,SENSITIVITY and ACCURACY remain largely stable and optimal for a values ≥ 

0.4. SENSITIVITYwas highest at a = 0.4, whereas ACCURACY and SPECIFICITY were both 

highest at a = 1.5. In general, the algorithm produced a limited number of false positives, which 

resulted in both highACCURACY and low FDR. 

The performance of all ortholog algorithms across different parameter values is summarized in 

Figure 2.3. Our results suggest that CRBH is the most accurate algorithm. Specifically, CRBH 

had the highest ACCURACY (0.934, for r = 0.3), followed by CRSD (0.921, for a = 1.5), 

MULTIPARANOID (0.912, for any cut-off >0) and ORTHOMCL (0.909, for inflation rate = 

1.5) (Figure 2.3). Higher SENSITIVITY is typically associated with either higher numbers of 

true positives or lower number of false negatives. Across the range of all parameters for all 

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0018755#pone-0018755-g003�
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0018755#pone-0018755-g003�


44 
 

algorithms, ORTHOMCL showed the highest SENSITIVITY (inflation rate = 1), followed 

by CRBH (r = 0.3), MULTIPARANOID (for cut-off >0) and CRSD (for a = 0.4) (Figure 2.3). In 

contrast, higherSPECIFICITY is typically associated with lower numbers of false positives. 

Across the range of all parameters for all algorithms, CRBH has the 

highest SPECIFICITY (for r = 0.9), followed byCRSD (for a = 0.1), MULTIPARANOID (for 

cut-off = 0) and ORTHOMCL (for inflation rate = 1.5) (Figure 2.3). 

 

Comparing Algorithm Performance Using a Varying Number of Species and Across 

Different Gene Loss Classes 

To evaluate the performance of each algorithm under a varying number of species, we ran the 

algorithms for all possible combinations of three, four and five species (Figure 2.4). Once 

again,CRBH had the highest ACCURACY (Figure 2.4A) and the lowest FDR across all taxon 

numbers (Figure 2.4B), followed by CRSD. 

To investigate how the existence of ‘trap’ gold groups affected the performance of the four 

ortholog prediction algorithms, we compared their ACCURACY and FDR across the five 

different gold group classes (Figure 2.1C). Overall, all four algorithms had higher FDR values in 

paralog-containing classes (classes 0 through III) than in paralog-lacking classes (class IV) 

(Figure 2.5).CRBH had the highest ACCURACY and the lowest FDR values across all classes. 

However, not all algorithms exhibited the same behavior across the five classes. For example, 

whereas CRBH and CRSD had their highest FDR values in class III, ORTHOMCL and 

MULTIPARANOID had their highest FDR values in class 0, due to the larger number of 

paralogs (Figures 2.5, 2.6). Finally, note that in class IV, where all paralogs from the same track 
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(track A or B) have been lost, all algorithms perform well, but CRBH still showed the 

highest ACCURACY and the lowest FDR. 

 

DISCUSSION 

More than twenty orthology prediction algorithms and databases have been developed, which 

can be divided into three main groups: graph-based (orthology is inferred from sequence 

similarity), tree-based (orthology is inferred from phylogeny), and hybrid-based (orthology is 

inferred from both phylogeny and sequence similarity) [8]. In this study, we compared the 

performance of four popular graph-based clustering algorithms (MULTIPARANOID, 

ORTHOMCL,CRBH and CRSD) that predict orthogroups for use in molecular phylogenetics. 

We did not include tree-based and hybrid algorithms because ortholog prediction on large 

datasets typically requires faster algorithms, and because the reliance of these algorithms on 

knowledge of the gene family (e.g., [18]) or species phylogeny (e.g., [19]) can render them 

inappropriate for downstream phylogenetic studies (but see [49]). Furthermore, the use of YGOB 

as our reference dataset required the availability of standalone algorithms that could make 

predictions on user-provided datasets. 

For the majority of orthogroup predictions, all methods showed high ACCURACY and 

low FDR(Figures 2.3, 2.4, 2.5), a finding consistent with their similarity in algorithm 

construction and popularity in the literature. However, our results also suggested that CRBH 

outperformed all other three algorithms in almost all of our comparisons (Figures 2.3, 2.4, 2.5). 

These results directly pertain to on-going debates about the choice of ortholog prediction 

algorithms for downstream evolutionary, genomic and functional 

analyses [8], [10], [24], [25], [26]. However, the selection of the optimal ortholog prediction 
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algorithm for inferring orthologous genes and groups across such a remarkably wide range of 

fields and applications is a complex problem that is likely to be influenced by many parameters. 

 

Curated Ortholog Databases as Gold Standards for Algorithm Evaluation 

Several different benchmarks have been used to assess the ACCURACY of ortholog prediction 

algorithms [8]. However, the lack of ‘gold’ standard reference datasets has made interpretations 

of relative performance challenging. For example, several recent comparative studies have 

yielded contradictory results [10], [24], [25], [26], but the degree to which this lack of common 

high-quality reference sets contributes to these conflicts is largely unknown. To circumvent these 

issues, we employed a highly accurate genomic database of homologs to evaluate directly 

ortholog prediction algorithms (see also [19], [32]). We think that our gold group set has strong 

potential to become one such ‘gold’ standard for the evaluation of ortholog prediction 

algorithms. Of course, our dataset stems from species inhabiting a single small twig of the tree of 

life. Thus, it remains an open question whether these results hold across branches of the tree of 

life, or whether ACCURACY in ortholog prediction in different branches will require several 

different approaches. As more genomes from several clades of the tree of life are 

sequenced[50] we anticipate that highly accurate homolog databases, like the YGOB [31], will 

become commonplace and more densely populated with orthologs from several additional 

species (e.g.,[51]), thus greatly facilitating algorithm evaluation and testing the generality (or 

not) of findings such as those reported in this study. 

One potential limitation of such reference databases is that their construction might be possible 

only from genomes of close relatives. This is so, because accurate annotation of orthologs 

between distantly related species is much more challenging; at greater evolutionary distances 
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protein homology is frequently reduced to homology between domains [52], domain shuffling is 

commonplace [53], and independent data, such as synteny conservation, that are highly 

informative for accurate annotation of orthologs between closely related species, become less 

useful [54]. Nevertheless, our findings (see also [19], [32]) suggest that evaluation approaches 

against high-quality ‘gold standard’ databases [31], [51] are likely to be a very useful addition to 

existing benchmarks [8], [24], [25] in the quest to accurately infer orthologs on a genome-wide 

scale. 

 

Simpler Algorithms Can Sometimes Be Better 

The usefulness of ortholog identification in several downstream genomic, molecular and 

evolutionary analyses, coupled with the abundance of genomic data from diverse organisms, has 

spurred the development of several ortholog prediction algorithms [8]. Thus, we were surprised 

to find that CRBH, a conservative clustering version of the simplest and earliest-developed of the 

four algorithms tested that drops instead of resolving inconsistencies [4], [6],[12], [13], [55], was 

consistently (e.g., across several parameter values and varying numbers of species) the best 

ortholog predictor. In agreement with our results, a recent phylogenetic and functional 

assessment of ortholog prediction algorithms and databases also found that RBH performed well 

and its predictions were, in several instances, better than those of more complex algorithms [25]. 

The superior performance of CRBH and CRSD may be partially explained by the fact that 

ORTHOMCL and MULTIPARANOID are designed to also include inparalogs in their 

orthogroup predictions (Figure 2.6). Using our evaluation pipeline, this design can raise 

significantly the number of false positives, thus decreasing the 

algorithms' ACCURACY and SPECIFICITY, but increasing the algorithms' FDR 
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and SENSITIVITY. However, when the algorithms were tested on class IV orthogroups, which 

comprise the majority of gold groups (1,957 orthogroups or ~70%) and have lost all paralogs 

from the same track (Figure 2.1C), CRBH still performed better by showing a very low FDR, 

high ACCURACY and SPECIFICITY and almost equal SENSITIVITY as ORTHOMCL, the 

most sensitive algorithm (Figure 2.3). Although this difference in performance could be due to 

the inclusion of other paralogs that did not originate through the WGD, the existence of other 

paralogs is unlikely to account fully for it. For example, analysis of a dataset that contained only 

genes belonging to class IV gold groups, an inparalogs-free dataset, also showed that CRBH 

and CRSD have the highest ACCURACY and lowest FDR. Finally, the set of single-copy 

orthogroups obtained from ORTHOMCL and MULTIPARANOID is much smaller than the total 

number of predicted orthogroups and shows much lower SENSITIVITY and ACCURACY. This 

suggests that the popular approach of using these algorithms for orthogroup prediction in 

molecular phylogenetic studies is less accurate than the use of algorithms designed to predict 

orthogroups that contain a single gene from each species, like CRSD and CRBH. 

When tested on the class III groups (Figure 2.1), in which the pattern of gene loss forced all 

algorithms to place single-copy paralogs in the same orthogroup, all algorithms showed very 

high FDR values (Figures 2.1, 2.5). CRBH was again the best performing algorithm, partly due 

to the effect of the filtering parameter r in dropping putative orthogroups composed of distantly 

related paralogs. Note that the lack of a ‘gold’ reference dataset or the adoption of an evaluation 

strategy based on majority-rule predictions would have not permitted us to identify the failing of 

these algorithms for class III orthogroups, and would have instead considered most of them as 

likely true. 
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Choosing the Right Algorithm for Orthologous Gene Group Prediction 

Our results suggest that simpler algorithms, like CRBH and CRSD, might be better choices for 

many downstream evolutionary analyses than more complex ones in cases where the objective is 

to identify orthogroups and that the trend of several studies toward using more complex ortholog 

prediction strategies is not always justified. One of the criteria used in our selection of algorithms 

was for ones whose orthogroup predictions would be appropriate for use in phylogenetic 

analyses. Thus, we did not evaluate tree-based or hybrid-based algorithms. However, such 

algorithms could be much more appropriate for orthogroup prediction in several other contexts, 

e.g., for functional annotation. For example, the SYNERGY algorithm [19], [56], which 

integrates information from similarity searches, gene trees, and synteny in its orthogroup 

predictions has been shown to be more accurate than RBH [19], and likely to be a much better 

choice for evolutionary genomics and functional studies. Similarly, because RBH, RSD and their 

clustering extensions are limited to finding orthogroups that contain a single gene from each 

species, they will fail to detect the presence of inparalogs, and in contrast to algorithms such as 

SYNERGY [19], [56], MULTIPARANOID [10] and ORTHOMCL [3], are probably of no use 

for studying gene family evolution. 
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SUPPLEMENTARY FIGURES, TABLES & TEXT 
 
Table S2.1. The ACCURACY, SENSITIVITY, SPECIFICITY and FDR values of ortholog 
prediction algorithms across a range of parameter values (S2.1A), using varying numbers of 
species (S2.1B), and across five orthogroup classes with different gene retention patterns 
(S2.1C). 
 
Table_S2.1A. Figure 2.3 Raw Data 

ORTHOMCL                             

'inflation rate' parameter value 0.10 0.50 1.00 1.50 2.00 2.50 3.00 3.50 5.00 7.50 10.00 100.00 
  

ACCURACY 0.90 0.90 0.90 0.91 0.91 0.90 0.90 0.90 0.90 0.90 0.90 0.90 Data for Figure 3A 

SENSITIVITY 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.96 0.95 0.96 0.94 0.94 Data for Figure 3B 
SPECIFICITY 0.42 0.42 0.42 0.43 0.42 0.42 0.42 0.39 0.37 0.39 0.35 0.35 

  
              

MULTIPARANOID             
        

'cut-off' parameter value 0.00 0.01 0.05 0.10 0.20 >0.3 
        

ACCURACY 0.90 0.91 0.91 0.91 0.91 0.91 Data for Figure 3A 
     

SENSITIVITY 0.95 0.96 0.96 0.96 0.96 0.96 Data for Figure 3B      
SPECIFICITY 0.59 0.58 0.58 0.58 0.58 0.58 

     
  

              
cRBH                     

    
'r' parameter value 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 

    
ACCURACY 0.93 0.93 0.93 0.93 0.93 0.92 0.92 0.90 0.89 0.83 Data for Figure 3A 

 
SENSITIVITY 0.95 0.95 0.94 0.95 0.94 0.94 0.93 0.90 0.89 0.81 Data for Figure 3B  
SPECIFICITY 0.82 0.82 0.82 0.83 0.84 0.83 0.85 0.86 0.87 0.89 

 
  

              
cRSD                     

    
'α' parameter value 0.10 0.40 0.50 0.60 0.70 1.00 1.50 2.00 2.50 5.00 

    
ACCURACY 0.91 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 Data for Figure 3A 

 
SENSITIVITY 0.93 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 

Data for Figure 3B  
SPECIFICITY 0.81 0.83 0.84 0.84 0.83 0.84 0.85 0.84 0.84 0.83   

 
Table S2.1B. Figure 2.4 Raw Data 

 
Number of Species 

   
ACCURACY 

3 
species 

4 
species 

5 
species 

6 
species 

   
MULTIPARANOID 0.94 0.93 0.92 0.91 

Data for Figure 4A ORTHOMCL 0.92 0.92 0.91 0.91 

CRBH 0.95 0.95 0.94 0.93 

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0018755.s001�
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CRSD 0.94 0.93 0.92 0.92 

        
FALSE DISCOVERY RATE 

3 
species 

4 
species 

5 
species 

6 
species 

   
MULTIPARANOID 0.03 0.04 0.05 0.06 

Data for Figure 4B ORTHOMCL 0.06 0.06 0.07 0.07 

CRBH 0.02 0.03 0.03 0.03 

CRSD 0.02 0.03 0.03 0.03 

 
Table S2.1C. Figure 2.5 Raw Data 

  Classes       

ACCURACY 0 I II III IV 
  

  

MULTIPARANOID 0.86 0.85 0.84 0.85 0.98 

Data for Figure 5A ORTHOMCL 0.73 0.72 0.83 0.83 0.96 

CRBH 0.76 0.79 0.82 0.83 0.95 

CRSD 0.72 0.74 0.70 0.64 0.84 

  
       

  

FALSE DISCOVERY RATE 0.00 I II III IV 
  

  

MULTIPARANOID 0.22 0.18 0.15 0.17 0.02 

Data for Figure 5B ORTHOMCL 0.27 0.26 0.14 0.17 0.02 

CRBH 0.05 0.08 0.07 0.16 0.00 

CRSD 0.06 0.09 0.09 0.19 0.00 

 

Text S2.1.Analytical description of the evaluation algorithm. For the ‘defined’ predicted 

orthogroups (‘defined’ test groups), a gene that was present in both the test group and its 

corresponding gold group was considered as true positive (TP), whereas a gene that was only 

present in the test group, but not in the corresponding gold group, was considered as false 

positive (FP). In general: 

(All genes used in the comparison) = FP + TP + FN + TN                                                          (1) 

We distinguished FP genes into those that are found in the set of corresponding gold groups 

(FPin) and those that are not found in the set of corresponding gold groups (FPout): 
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FP = FPin + FPout                                                                                                                           (2) 

In addition, we distinguished FN genes to those genes belonging to gold groups that are absent 

from their corresponding test groups (FNm) and to those genes belonging to gold groups that 

were not matched by any test group (FNnm). Thus: 

FN = FNm + FNnm                                                                                                                          (3) 

We calculated TP, FPin, FPout, and FNm values by comparing test groups with their corresponding 

gold groups. Furthermore, in cases where an algorithm predicted fewer test groups than expected 

based on the number of gold groups (2,723 for all classes, 210 for Class 0, 149 for Class I, 188 

for Class II, 219 for Class III, 1,957 for Class IV), we estimated the FNnm value using the 

equation: 

FNnm = (‘number of gold groups’ – ‘number of defined groups’) x ‘average number of genes per 

gold group’                                                                                                                                    (4) 

We then used the TP, FP and FN values for the ‘defined’ test genes to estimate true positive 

(TP*), false positive (FP*), and false negative (FN*) values for the ‘undefined’ test genes 

according to: 

TP* = TP x (number of ‘undefined’ test genes / number of ‘defined’ test genes)                      (5) 

FP* = FP x (number of ‘undefined’ test genes / number of ‘defined’ test genes)                      (6) 

FN* = FN x (number of ‘undefined’ test genes / number of ‘defined’ test genes)                    (7) 
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Finally, we estimated the numbers of total true positive (tTP), total false positive (tFP), total false 

negative (tFN) and total true negative (tTN) genes according to: 

tTP = TP + TP*                                                                                                                           (8) 

tFP = FP + FP*                                                                                                                            (9) 

tFN = FN + FN*                                                                                                                          (10) 

tTN = ‘number of genes in proteome set’ – tTP – tFP – tFN                                                      (11) 
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ABSTRACT 

Phylogenies inferred from different data matrices often conflict with each other necessitating the 

development of measures that quantify this incongruence. Here, we introduce novel measures 

that use information theory to quantify the degree of conflict or incongruence among all non-

trivial bipartitions present in a set of trees. The first measure, Internode Certainty (IC), calculates 

the degree of certainty for a given internode by considering the frequency of the bipartition 

defined by the internode (internal branch) in a given set of trees jointly with that of the most 

prevalent conflicting bipartition in the same tree set. The second measure, IC All (ICA), 

calculates the degree of certainty for a given internode by considering the frequency of the 

bipartition defined by the internode in a given set of trees in conjunction with that of all 

conflicting bipartitions in the same underlying tree set. Finally, the Tree Certainty (TC) and Tree 

Certainty All (TCA) measures are the sum of IC and ICA values across all internodes of a 

phylogeny, respectively. IC, ICA, TC, and TCA can be calculated from different types of data 

that contain non-trivial bipartitions, including from bootstrap replicate trees, gene trees or 

individual characters. Given a set of phylogenetic trees, the IC and ICA values of a given 

internode reflect its specific degree of incongruence, and the TC and TCA values describe the 

global degree of incongruence between trees in the set. All four measures are implemented and 

freely available in version 8.0.0 and subsequent versions of the widely-used program RAxML. 

 

INTRODUCTION 

Phylogenetic trees constructed from different genes frequently contradict each other, giving rise 

to incongruence1,2. For example, several recent studies examining hundreds of genes in fungi3,4, 

plants5 and mammals6 found that the vast majority of gene trees are not topologically congruent 
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either with each other or with the species phylogeny. This incongruence can be due to analytical 

factors stemming from either inadequate sample sizes1,7,8 or the misfit between data and 

evolutionary models9,10 or due to biological factors such as horizontal gene transfer, lineage 

sorting, introgression, and hybridization11–13. 

Although the challenge of detecting and appropriately handling incongruence has vexed 

systematists for decades7,14,15, the recent realization that a large number of gene trees will 

typically disagree with the species phylogeny has highlighted the importance and value of 

measures that capture and quantify incongruence3.  Incongruence tests can be broadly classified16 

into tests that assess incongruence between characters17–24 and tests that assess incongruence 

between trees25–27. Note that both character-based and tree-based incongruence tests rely on 

phylogenetic trees; however, in character-based tests, the assessment of incongruence is focused 

on the differences between how the distinct data sets fit the trees, whereas in tree-based tests, the 

assessment of incongruence focuses on the difference between the trees16. For example, the 

character-based measure developed by Shimodaira and Hasegawa (1999) relies on bootstrap 

resampling of characters to identify whether any one or more of a set of trees best explains the 

data, whereas Rodrigo’s topology-based measure relies on the distribution of tree distances 

among bootstrap replicate trees to examine the degree of incongruence between sets of 

characters25. Although several of these measures are extremely useful in practice, they frequently 

lack generality because they depend on a particular optimality criterion19,22,28 or clade support 

measure23,25. 

A particularly interesting group of tree-based methods for handling incongruence and 

summarizing conflict are consensus methods29. Because each internode (or internal branch) in a 

phylogenetic tree represents a bipartition that separates two sets of taxa (e.g., Fig. 3.1 shows a 
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bipartition a, b, c, d, e | f, g, h, i, j that divides the internode between nodes 1 and 5 into taxon 

sets {a, b, c, d, e} and {f, g, h, i, j}), a set of trees can be effectively summarized into a consensus 

tree that depicts only those bipartitions that are ‘representative’ of the set. For example, the 

majority-rule consensus (MRC) approach29 calculates the shared bipartitions across all trees in a 

set and displays only those shared by the majority of the trees. Consequently, each internode in 

the MRC tree has a value that corresponds to either the number or the percentage of individual 

phylogenetic trees that contain the bipartitions created by splitting up the tree at this internode. 

Although consensus methods have been extremely useful and very popular in summarizing 

agreement and incongruence, they do not provide information on the next most prevalent 

conflicting bipartition, or more generally, on the distribution of conflicting bipartitions. For 

example, when a MRC tree reports that 51 out of 100 phylogenetic trees contain a specific 

bipartition, whether the second most prevalent, yet conflicting bipartition, is supported by the 

remaining 49 phylogenetic trees or by only 5 of these is not known. Information about the 

distribution of conflicting bipartitions, however, can be informative because the first type of 

conflict in the previous example (51% versus 49%) shows that both bipartitions receive almost 

identical support, whereas the second type (51% versus 5%) suggests that the first bipartition 

represents the sole strongly supported bipartition. Although phylogenetic inference programs 

typically report the distribution of bipartitions from a set of trees, including those That do not 

appear in the MRC tree30,31, and several methods have been developed to visualize the 

phylogenetic conflict on each internode32–34, measures that also incorporate conflicting 

bipartitions to quantify incongruence have so far been lacking.  

 



62 
 

We introduce four related measures that, given a set of trees or characters defining bipartitions, 

can be used to quantify the degree of incongruence for a given internode, or for an entire tree. 

The quantification of incongruence or conflict in all four measures is based on Shannon’s 

entropy, a common uncertainty measure for a random variable35. The first two measures, 

Internode Certainty (IC) and Internode Certainty All (ICA), quantify the degree of certainty for 

each individual internode by considering the two most prevalent conflicting bipartitions (IC) or 

all most prevalent conflicting bipartitions (ICA), by providing the log magnitude of their 

difference. The other two measures, Tree Certainty (TC) and Tree Certainty All (TCA), are the 

sums of IC and ICA values, respectively over all internodes in a phylogeny. In this study, we 

present the theory of the four measures and illustrate by example how they can be applied to 

different types of data and biological questions. Finally, we describe how they have been 

implemented in the widely-used program RAxML. 

 

Four Novel Measures that Use Information Theory to Quantify Incongruence 

 Phylogenetic trees that represent evolutionary relationships among different genes or taxa are 

acyclic connected graphs that consist of nodes connected by edges or branches. Each internal 

branch (or internode) in a phylogenetic tree can also be represented as a bipartition or split that 

divides the taxa into two disjoint partitions (Fig. 3.1). Therefore, any measure that quantifies 

internode support will also represent the support for the given bipartition. By considering each 

internode as a bipartition, any unrooted fully bifurcating phylogenetic tree with k taxa will 

contain k–3 non-trivial bipartitions (i.e., k–3 bipartitions, each of which divides the k = m + n 

taxa in the tree into two partitions of m and n taxa, respectively where m ≥ 2 and n ≥ 2). If two 

phylogenetic trees with the same number of taxa k are topologically identical, then the total 
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number of unique non-trivial bipartitions is still only k–3 because the union of the set of 

bipartitions induced by this second tree with the set of bipartitions induced by the first shows that 

there are no unique non-trivial bipartitions that are only present in one tree but absent from the 

other. In contrast, if two phylogenetic trees are incongruent, then the set of phylogenetic trees 

will contain more than k–3 bipartitions, where each of the additional bipartitions represent 

bipartitions that conflict with one or more of the k–3 bipartitions. 

Figure 3.1. Compatible and conflicting bipartitions. Bipartition A={a, b, c, d, e | f, g, h, i, j} is 
composed of the partitions A1={a, b, c, d, e} and A2={f, g, h, i, j}, where a, b, c, d, e, f, g, h, i, 
and j are taxa. Bipartition B={a, b, c | d, e, f, g, h, i, j} is composed of the partitions B1={a, b, c} 
and B2={d, e, f, g, h, i, j}, and bipartition C={a, b, c, d, g | e, f, h, i, j} is composed of the 
partitions C1={a, b, c, d, g} and C2={e, f, h, i, j}. Bipartitions A and B are compatible because 
one of the intersections of their bipartition pairs (A2 ∩ B1) is empty. Bipartitions B and C are 
compatible for the same reason (B1 ∩ C2 is empty). In contrast, bipartition C conflicts or is 
incompatible with bipartition A because none of the four intersections (A1 ∩ C1, A1 ∩ C2, A2 ∩ 
C1, A2 ∩ C2) is empty. 

 

Compatible and Conflicting Bipartitions 

Two bipartitions A = X1 | X2 and B = Y1 | Y2 from the same taxon set are compatible if and only if 

at leastone of the intersections of the four bipartition pairs (X1 ∩ Y1, X1 ∩ Y2, X2 ∩ Y1, X2 ∩ Y2) is 
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empty29,34. If this condition is not met, then the bipartitions are said to be incompatible or 

incongruent or to conflict with one another.  

 

Example.  Let us consider the bipartition A = {a, b, c, d, e | f, g, h, i, j}, comprised by the 

partitions A1 = {a, b, c, d, e} and A2 = {f, g, h, i, j}, where a, b, c, d, e, f, g, h, i and j are taxon 

names. Let us also consider a second bipartition from the same set of taxa B = {a, b, c | d, e, f, g, 

h, i, j}, comprised by the partitions B1= {a, b, c} and B2 = {d, e, f, g, h, i, j} (Fig. 3.1). Bipartition 

B does not conflict with bipartition A because A2 ∩ B1 is empty. In contrast, bipartition C = {a, b, 

c, d, g | e, f, h, i, j}, comprised by the partitions C1 = {a, b, c, d, g} and C2 = {e, f, h, i, j}, 

conflicts or is incompatible with bipartition A because none of the four intersections (A1 ∩ C1, A1 

∩ C2, A2 ∩ C1, A2 ∩ C2) is empty (Fig. 3.1). 

 

Shannon’s Entropy and Internode Certainty 

Shannon’s entropy measures the amount of uncertainty in random variables35. For two equally 

probable events, for example “head or tails” in a fair coin toss, the amount of uncertainty is equal 

to 1. However, if the coin is not fair the uncertainty of the outcome decreases proportionally to 

the coin’s ‘unfairness’. In general, for a random variable X with a set of n possible values {X1, 

X2…Xn} Shannon’s entropy H(X) is defined as 

 

where P(Xn) is the probability of outcome Xn . In its simplest form, if variable X consists of  

only two possible outcomes X1 and X2, Shannon’s entropy is equal to 
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In phylogenetics, let us consider variable H(X) as the entropy that measures the amount of 

uncertainty of support for a given internode with the set of possible values being the values of 

the two most prevalent conflicting bipartitions (n = 2) for that internode (i.e., X = {X1, X2}), with 

X1 being the frequency of support for the bipartition that defines the internode. For these two 

bipartitions X1 and X2 we define H(X) as the Internode Uncertainty: 

 

 

 

 

where P(X1) = X1 / (X1 + X2), P(X2) = X2 / (X1 + X2), and P(X1) + P(X2) = 1. 

 

Because internode support measures typically quantify the degree of support for a given  

internode, rather than the lack thereof, we reverse the sign of the equation and add log2 

(n) to it so that the measure corresponds to certainty rather than uncertainty. Thus, we define 

Internode Certainty (IC) as 

 



66 
 

 

 

 

where P(X1) = X1 / (X1 + X2), P(X2) = X2 / (X1 + X2), and P(X1) + P(X2) = 1. 

For a given internode, IC values correspond to the magnitude of conflict between the bipartition 

that defines the internode and the most prevalent conflicting bipartition in the given tree set. For 

example, IC values at or close to 1 indicate the absence of conflict for the bipartition defined by 

a given internode, whereas IC values at or close to 0 indicate equal support for both bipartitions 

and hence maximum conflict. 

So far, we have assumed that the frequency of the bipartition that defines the internode is equal 

or higher than the frequency of the most prevalent bipartition, that is, P(X1) ≥ P(X2). However, in 

some cases it may happen that we need to calculate the IC of an internode that was included in 

the consensus tree (depending on the type of consensus tree constructed, see below) whose 

bipartition frequency is actually smaller than the frequency of a conflicting bipartition, that is 

P(X1) ≤ P(X2) . To distinguish between cases where P(X1) ≥ P(X2) from cases where P(X1) ≤ 

P(X2), we reverse the sign of the IC value for all cases where P(X1) ≤ P(X2). Thus, negative IC 

values indicate that the internode of interest conflicts with a bipartition that has higher frequency, 

and IC values at or close to –1 indicate an almost complete absence of support for the bipartition 

defined by the given internode and an almost absolute support for the conflicting bipartition. The 

behavior of the IC measure for a range of different values of X1 and X2 is shown in Fig. 3.2. 
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Examples.  Let us consider a set of 100 gene trees, from which 62 gene trees support 

bipartition X1, which appears on the MRC tree, and 6 gene trees support the conflicting 

bipartition X2 (which does not appear on the MRC tree). In this case, 

P(X1) = X1 / (X1 + X2) = 62 / (62 + 6) = 0.91, and P(X2) = X2 / (X1 + X2) = 6 / (62 + 6) = 0.09. 

Thus, 

IC=1+ P(X1) log2 ((P(X1))+ P(X2) log2(P(X2))=1+0.91∗log2(0.91)+0.09 ∗ log2(0.09 ) =0.57 

 

If X1= 52 gene trees and the conflicting bipartition X2 = 29 gene trees, then 

 

P(X1) = X1/ (X1 + X2) = 52 / (52 + 29) = 0.64, and P(X2)= X2/ (X1 + X2) = 29 / (52 + 29) = 0.36.  

Thus, 

IC=1+ P(X1) log2 (P(X1))+ P(X2)log2 (P(X2))=1+0.64∗ log2(0.64)+0.36 ∗log2(0.36) =0.06 

 

Finally, if an internode is defined by a bipartition X1 supported by 5 gene trees and the 

conflicting bipartition X2 is support by 55 gene trees, then 

P(X1) = X1/ (X1 + X2) = 5 / (5 + 55) = 0.08, and P(X2)= X2 / (X1+ X2) = 55 / (5 + 55) = 0.92. Thus, 

IC=1+ P(X1) log2(P(X1))+ P(X2)log2(P(X2))=1+0.08∗log2(0.08)+0.92 ∗ log2(0.92 )= –0.59 
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Fig. 3.2. Visualizing IC for the two most prevalent conflicting bipartitions of a given 
internode. The default curve represents the case of only two conflicting bipartitions for one 
internode (only two partitions: {X, 100 – X}). Out of 100 total trees, when 60 trees recover the 
first bipartition, the remaining 40 will support the second and conflicting bipartition. In the 
presence of three conflicting bipartitions for a given internode (e.g., {65, 30, 5}), when the two 
most prevalent bipartitions are considered, the percentage of trees supporting the first bipartition 
is equal to 65 / (65 + 30), whereas the percentage of trees supporting the second conflicting 
bipartition is equal to 30 / (65 + 30). The reason that we do not include the number of trees 
containing the third bipartition is that we want IC to measure the magnitude of certainty 
conveyed by the two most prevalent bipartitions. This way, IC will be zero when the two most 
prevalent conflicting bipartitions have equal frequencies. 
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Extending IC to Include All Prevalent Conflicting Bipartitions 

The IC can be extended to consider all n prevalent conflicting bipartitions for a given internode, 

that is X = {X1, X2… Xn}. This measure, which we name Internode Certainty All (ICA), can be 

calculated using 

ICA=logn(n)+ P(X1) logn (P(X1))+ P(X1) logn (P(X1))+…+ P(Xn) logn(P(Xn)) 

 

where P(X1) = X1 / (X1 + X2 + …+ Xn), P(X2)= X2 / (X1 + X2 + …+ Xn), … ,  

P(Xn) = Xn / (X1 + X2 + …+ Xn), and P(X1) + P(X2)+ …+ P(Xn)= 1. 

 

Because the number of bipartitions that conflict with a given internode in large phylogenetic tree 

sets can be high, as well as because conflicting bipartitions whose frequency is very low have 

little impact on the certainty value of a given internode, we restrict the ICA to consider only 

bipartitions whose frequency is ≥ 5% because this represents a reasonable trade-off between 

speed and accuracy. To distinguish between cases where P(X1) is greater than or equal to each 

single one of the frequencies for all conflicting bipartitions from cases where P(X1) is lower than 

one or more conflicting bipartitions, we reverse the sign of the ICA for all cases where P(X1) is 

lower. Thus, ICA values at or near 1 indicate the absence of any conflict for the bipartition 

defined by a given internode, whereas ICA values at or near 0 indicate that one or more 

conflicting bipartitions have almost equal support. Negative ICA values indicate that the 

internode of interest conflicts with one or more bipartitions that exhibit a higher frequency and 

ICA values at or near 1 indicate the absence of support for the bipartition defined by a given 

internode. The behavior of the ICA measure for a range of different values of X1, X2, …, Xn is 

shown in Fig. 3.3. 
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Fig. 3.3. Visualizing ICA for all the most prevalent conflicting bipartitions of a given 
internode. For simplicity, calculations were performed using a 2-variable system (X : Y … Y) 
with the number of conflicting bipartitions increasing. For example, the open triangle line on the 
graph illustrates the behavior of ICA when the frequency of the most strongly supported 
bipartition for a given internode is 80, with the remaining 20% equally divided among all 
conflicting bipartitions (e.g., if there is one conflicting bipartition it will have a frequency of 
20%, if there are two conflicting bipartitions each one will have a frequency of 10%, etc.). 
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Examples.  Let us consider a set of 100 gene trees, from which 80 gene trees support 

bipartition X1, 6 gene trees support the conflicting bipartition X2, and 5 gene trees support the 

conflicting bipartition X3. In this case, 

P(X1) = X1 / (X1 + X2 + X3) = 80 / (80 + 6 + 5) = 0.88,  

P(X2) = X2 / (X1 + X2 + X3) = 6 / (80 + 6 + 5) = 0.07, and  

P(X3) = X3 / (X1 + X2 + X3) = 5 / (80 + 6 + 5) = 0.05. Thus, 

ICA=1+ P(X1) log3 (P(X1)) + P(X2) log3 (P(X2)) + P(X3) log3 (P(X3)) = 

=1+0.88∗ log3 (0.88) +0.07∗ log3 (0.07) +0.05∗log3 (0.05) = 0.59 

If X1 = 52 gene trees and the conflicting bipartitions X2 = 29 gene trees and X3 = 19 gene trees, 

then 

 

P(X1) = X1 / (X1 + X2 + X3) = 52 / (52 + 29 + 19) = 0.52,  

P(X2) = X2 / (X1 + X2 + X3) = 29 / (52 + 29 + 19) = 0.29, and  

P(X3) = X3 / (X1 + X2 + X3) = 19 / (52 + 29 + 19) = 0.19. Thus, 

ICA=1+ P(X1) log3 (P(X1)) + P(X2) log3 (P(X2)) + P(X3) log3 (P(X3)) = 

=1+0.52 ∗log3 (0.52) +0.29∗ log3 (0.29) + 0.19∗ log3 (0.19) = 0.08 

Finally, if X1 = 5 gene trees and the conflicting bipartitions X2 = 15 gene trees and X3 = 11 gene 

trees, then 

P(X1) = X1 / (X1 + X2 + X3) = 5 / (5 + 15 + 11) = 0.16,  

P(X2) = X2 / (X1 + X2 + X3) = 15 / (5 + 15 + 11) = 0.48, and  

P(X3) = X3 / (X1 + X2 + X3) = 11 / (5 + 15 + 11) = 0.36. Thus, 

ICA=1+ P(X1) log3 (P(X1)) + P(X2) log3 (P(X2)) + P(X3) log3 (P(X3)) = 

=1+0.16 ∗log3 (0.16) + 0.48∗ log3 (0.48) + 0.36∗ log3 (0.36) = 0.08 
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However, because P(X1) ≤ P(X2) and P(X1) ≤ P(X3), the sign of the ICA value is reversed to  

-0.08. 

 

Tree Certainty 

 Given that empirical examinations of the support frequencies of internodes in a phylogeny 

suggest that they are generally independent from each other3, it is reasonable to assume that the 

mutual information or dependence between internodes in a phylogenetic tree is very small. Thus, 

the sum of all IC or ICA values across a phylogeny can be used to quantify changes in the degree 

of incongruence produced by the phylogenetic analysis of a given data set when analyzed with a 

variety of protocols or methods. Thus, for the complete set of k – 3 internodes (internal branches) 

in a phylogeny, where k is the number of taxa, we define the Tree Certainty (TC) as 

 

and Tree Certainty All (TCA) as 

 

The maximum TC or TCA value is equal to k – 3 and indicates a comprehensive absence of 

conflict in the phylogeny. When comparing phylogenies with different taxon numbers, a 

normalized value of TC or TCA can also be obtained by dividing the TC value by k – 3, the 

number of internodes in the phylogeny. 
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Applications of IC, ICA, TC, and TCA 

All four measures can be used to quantify incongruence on any dataset that contains bipartitions, 

including from bootstrap replicate trees, gene trees or individual characters (e.g., from 

morphology, from large-scale and rare genomic changes, or from individual sites in a sequence 

alignment). To demonstrate the utility of the four measures, we discuss three commonly used 

data types here where one can deploy IC, ICA, TC, and TCA to quantify incongruence. 

 

IC, ICA, TC, and TCA Can Quantify Incongruence in Sets of Trees 

 The most straightforward use of the four measures is for quantifying incongruence on a set of 

trees (Fig. 3.4); often, this set is comprised of the gene trees obtained from analysis of several 

different genes collected from the same set of taxa. In this case, calculation of the four measures 

will be based on the frequency values of the bipartitions present in the entire set of gene trees; 

note that, the frequency value of a bipartition is also known as gene support frequency or GSF 

and reflects the percentage of gene trees that contain the bipartition36. When quantifying 

incongruence in a set of gene trees, the IC and ICA values of a given internode will reflect the 

degree of incongruence for that internode in the set of gene trees, and the TC and TCA values 

will reflect the degree of incongruence between the individual gene trees across the entire 

phylogeny. When applied to a dataset of 1,070 gene trees from 23 taxa, the IC and ICA values 

revealed high levels of incongruence in several internodes of the extended majority-rule 

consensus phylogeny and enabled us to distinguish between internodes that have similar GSF 

values but very different degrees of conflict (Fig. 3.4D). Specifically, the placement of 

Saccharomyces bayanus and of Zygosaccharomyces rouxii received 52% and 62% GSF, whereas 

their IC values were 0.05 and 0.59 and their ICA values were 0.14 and 0.47, respectively (Fig. 
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3.4D). This marked difference between the GSF and the IC / ICA values of the two internodes is 

a result of the absence of well-supported bipartitions that conflict with the placement of Z. rouxii 

and the presence of well-supported bipartitions that conflict with the placement of S. bayanus3,37.  

 

Fig. 3.4. IC, ICA, TC, and TCA can quantify incongruence in any set of trees or 
bipartitions. Given a set of trees (panel A) that defines a set of bipartitions (panel B), one can 
use the four measures to quantify incongruence (panel C). For example, examination of 1,070 
gene trees revealed the presence of extensive incongruence in a phylogeny of 23 yeast taxa 
(panel D) (values near internodes correspond to GSF / IC / ICA values). 
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When analyzing phylogenetic trees from a single gene or set of genes (multiple genes in 

supermatrix), it is standard practice to calculate the robustness of support for each internode of 

the gene tree via bootstrapping38. One can thus use the set of bootstrap replicate trees for a given 

gene to calculate IC, ICA, TC, and TCA. In this case, calculation of the measures will be based 

on the frequency values of the bipartitions present in the entire set of bootstrap replicate trees, 

which are better known as bootstrap support values. When quantifying incongruence in a set of 

bootstrap replicate trees from a single gene, the IC and ICA values of a given internode will 

reflect the degree of incongruence for that internode in the set of bootstrap replicate trees, and 

the TC and TCA values will reflect the degree of incongruence between the individual bootstrap 

replicate trees across the entire gene phylogeny. For example, in our recent study3 we ranked 

1,070 genes from 23 yeast species based on their TC value as calculated from each gene’s 

bootstrap trees. Interestingly, concatenation analysis of the 131 genes with the highest TC placed 

C. glabrata in a position that is also supported by several distinct rare genomic changes39, a 

result that contradicts both the analysis of all 1,070 genes as well as previously published 

phylogenomic analyses4,40–42. 

 

IC, ICA, TC, and TCA Can Quantify Incongruence in Sets of Bipartitions 

The four measures can also be calculated from a set of partially resolved trees or even directly 

from bipartitions (Fig. 3.4B, C). For example, the bipartitions present in each gene tree rarely 

receive equal support; the bootstrap consensus tree of virtually every gene shows that certain 

internodes receive higher bootstrap support or IC / ICA values, indicating that the degree of 

congruence of phylogenetic signals as well as the degree of “noise” from a given gene differs 

widely across internodes. Thus, it may frequently be desirable to use only a genes’ highly 
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supported bipartitions in the inference of consensus phylogenies (one can easily select the highly 

supported bipartitions in the bootstrap consensus tree of a given gene by “collapsing” all 

internodes with bootstrap support values below a certain threshold using software such as the 

CONSENSE program in the PHYLIP package30). In this case, calculation of the four measures 

will be exclusively based on the frequency values of those bipartitions that received high support 

(e.g., high bootstrap support) or present low conflict in the entire set of gene bootstrap consensus 

trees. Thus, the IC and ICA values of a given internode in the consensus tree will reflect the 

degree of incongruence for that internode among only the group of highly supported bipartitions 

present in the set of gene trees, whereas the TC and TCA values will reflect the degree of 

incongruence between highly supported bipartitions across the entire phylogeny. Note that, the 

use of IC or ICA overcomes potential issues when only a small number of highly supported 

bipartitions are associated with a given internode by measuring the degree of incongruence 

independently of the number of bipartitions taken into consideration. For example, both the IC 

and the ICA value for the sister group Saccharomyces cerevisiae and S. paradoxus calculated 

from an analysis of 1,070 gene trees from 23 yeast taxa is 0.56 (Fig. 3.4D). In contrast, both the 

IC and ICA values calculated using only those bipartitions that received ≥ 80% bootstrap support 

in individual gene analyses of the same 1,070 genes are 0.85, suggesting that most of the 

observed incongruence in the resolution of this internode stems from conflict among weakly 

supported bipartitions. 

 

IC, ICA, TC, and TCA Can Quantify Incongruence in Sets of Individual Characters 

Because the four measures can be applied to any dataset that contains taxon bipartitions one can 

extend their use to quantifying the level of phylogenetic conflict on any character in which the 
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distribution of character states is such that it splits the taxon set into two non-trivial bipartitions 

(Fig. 3.5). Assuming a character with two states 0 and 1 from a set of k = m + n taxa, where m ≥ 

2 and n ≥ 2, any site with a character state distribution of (01…0m, 11…1n) corresponds to the 

bipartition {m taxa} / {n taxa}. Thus, one can use IC or ICA to quantify the degree of 

incongruence for a given bipartition defined by a character across a set of characters by 

considering the number of characters supporting that bipartition jointly with the number of 

characters supporting the most prevalent bipartition that conflicts with it (IC) or jointly with the 

numbers of characters supporting all most prevalent bipartitions that conflict with it (ICA). Note 

that, much like GSF reflects the frequency of bipartitions in a set of trees, the frequency value of 

a bipartition defined by a character reflects the percentage of characters that support the 

bipartition, which we denote as character support frequency (CSF). Examples of characters that 

can be used to define bipartitions include rare genomic changes43, indels, sites that contain a 

single substitution between amino acids that differ radically in their physicochemical 

properties44, binary morphological characters, as well as any other binary characters. For 

example, analysis of 20,289 sites that contain single radical substitutions (defined as 

substitutions with a blosum62 matrix score ≤ –3), from the dataset of 1,070 genes from 23 yeast 

taxa, also known as RGC_CAMs44, showed that the bipartitions defined by such sites were more 

incongruent than the bipartitions present in the 1,070 gene trees. 
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Fig. 3.5. IC, ICA, TC, and TCA can quantify incongruence in any set of characters that 
define bipartitions. Given a set of characters (panel A) that defines a set of bipartitions (panel 
B), one can use the four measures to quantify incongruence (panel C). For example, examination 
of 20,289 sites that contain single radical substitutions (defined as substitutions with a blosum62 
matrix score ≤ –3), from the dataset of 1,070 genes from 23 yeast taxa showed that the 
bipartitions defined by such sites not only lacked information about several internodes of the 
yeast phylogeny but also displayed considerable levels of incongruence.  

 

 

Using TC and TCA to Evaluate the Impact of Different Practices in Data Analysis 

 Summing the IC or ICA values across all internodes of a phylogeny amounts to the phylogeny’s 

TC or TCA, respectively. One useful application of the TC and TCA measures is for comparing 

the relative impact of different analytical practices on incongruence. For example, one could 

calculate the TC and TCA values of the extended MRC phylogeny constructed from the gene 
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trees estimated from analysis of 100 genes with only those sites that do not contain missing data 

and compare it with the TC / TCA measured from the eMRC phylogeny constructed from 

analysis of the same 100 genes in which only sites with more than 50% data missing are 

excluded. In this case, the practice with the highest TC / TCA value will be that one that displays 

the lowest degree of incongruence among the 100 gene trees. In contrast, a high decrease in TC / 

TCA may indicate that a particular data filtering approach increases incongruence across the 

phylogeny. For example, examination of the TC of the trees from the 100 slowest-evolving genes 

in a data matrix comprised of 1,070 genes from 23 yeast taxa showed that they had a 

substantially lower TC than the TC calculated by considering all 1,070 gene trees3. 

 

Calculating IC, ICA, TC, and TCA using the RAxML software 

We implemented the score calculations of the four measures in RAxML45 (version 7.7.8, 

available via https://github.com/stamatak/standard-RAxML), taking advantage of already 

available efficient data structures for performing calculations on bipartitions46. For a full 

description of the commands for calculation of the four measures and an example, please see the 

manual (Supplementary Text File) and test dataset (Supplementary Data file). Given a set of gene 

trees, RAxML can directly calculate a MRC as well as an eMRC tree on this set that is annotated 

by the respective IC and ICA values. The particularly compute-intensive inference of eMRC 

trees (finding the optimal eMRC tree is, in fact, NP-hard47) relies on the fast parallel 

implementation presented in Aberer et al.46. It can also compute stricter MRC trees with arbitrary 

threshold settings that range between 51 and 99%. Furthermore, we have implemented an option 

that allows for drawing IC scores onto a given, strictly bifurcating reference tree (e.g., the best-

known ML tree). 

https://github.com/stamatak/standard-RAxML�
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Note that, the IC and ICA values are represented as branch labels, since, as is the case for 

bootstrap support values, information associated to bipartitions of a tree always refers to its 

internodes (internal branches) and not its nodes. Each tree viewer (e.g., Dendroscope34) that can 

properly parse the Newick tree format is able to display these branch labels. The rationale for not 

providing IC values as node labels is that some tree viewers may not properly rotate the node 

labels when the user reroots the tree, leading to an erroneous internal branch-to-IC-value 

association. 

When calculating the IC and ICA values on extended MRC trees or onto a given reference tree it 

may occur that, the bipartition that has been included in the tree has lower support than one or 

more conflicting bipartitions (see also above). In this case, RAxML will display a warning to the 

user and annotate the internode with a negative IC value. Note that, this is not only a theoretical 

possibility when using extended MRC trees, but a frequent observation for bipartitions that have 

low frequency in a gene tree set or that have low bootstrap support in a set of bootstrap replicate 

trees. 

RAxML also calculates the TC and TCA values as well as their relative values that are 

normalized by the maximum possible TC / TCA values for a given phylogeny. Finally, we have 

implemented a verbose output option that allows users to further scrutinize particularly 

interesting conflicting bipartitions. In verbose mode RAxML will generate two types of output 

files: one set of files containing the bipartition included in the MRC tree and its corresponding 

conflicting bipartitions in Newick format and an output file listing all bipartitions (included and 

conflicting) with their IC and ICA values in a PHYLIP-like format. 
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DISCUSSION  

To tackle gene incongruence, phylogeneticists often resort to creating concatenated data matrices 

comprised of tens or hundreds of genes1,48–51. Because the vast majority of concatenation studies 

assesses robustness in inference using bootstrapping, an extremely useful measure of robustness 

of inference when data are limited38 but one that in the presence of large amounts of data will 

nearly always result in 100% support3,10,41 numerous studies purport to have resolved long-

standing phylogenetic problems. However, different phylogenomic studies focused on the same 

internodes sometimes provide contradicting, but equally robustly supported, answers49,50,52,53, 

suggesting that incongruence is not ameliorated, but rather masked, by these practices. 

Consequently, accurate phylogenetic inference requires not only large amounts of data and 

absolute bootstrap support, but also demonstration that the data do not contain substantial 

amounts of conflicting phylogenetic signal3. Thus, accurate inference requires methods that 

identify and quantify conflicts in phylogenetic signal. 

To quantify the degree of incongruence present in phylogenomic data matrices, we developed 

two novel measures, IC and ICA, which quantify the degree of conflict on each specific 

internode of a phylogeny and two novel measures, TC and TCA, which quantify the degree of 

conflict for the whole tree. All four measures can be used for a wide variety of different 

phylogenetic markers, from individual characters to gene trees to genomic characters (Figs. 4 

and 5) and are meant to provide simple, fast and intuitive measurements that identify the 

presence of incongruence in a phylogenomic data matrix rather than to elucidate the root cause(s) 

of the observed incongruence. Even though the absolute values of our measures are not aimed to 

provide statistical significance, the degree of certainty calculated derives from the amount of 

information on each internode. For example, in the case of IC the degree of certainty corresponds 
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to the ratio between the most prevalent and the next most prevalent, but conflicting, bipartition 

(Fig. 2). If the most prevalent bipartition is supported by 95% of the data and the next most 

prevalent conflicting bipartition is supported by the remaining 5%, then the value of the IC 

measure will be approximately 0.71, whereas if the two most prevalent conflicting bipartitions 

have the same frequency of support, then IC will equal zero. 

Compared to the very popular incongruence length difference test28, our measures can easily be 

applied to the study of a single internode or the whole tree, to study one or many data partitions, 

and are not dependent on a particular optimality criterion. Compared to topology constraint tests, 

such as the Kishino-Hasegawa (KH) test20, the Shimodaira-Hasegawa (SH) test23, and the 

Approximately Unbiased (AU) test54, there is no need for a priori tree selection and multiple 

internodes can be examined simultaneously very quickly. The price of this speed and flexibility, 

however, is that our tests are not designed to test specific phylogenetic hypotheses or provide 

estimates of statistical significance; in many ways, our measures are designed to quickly identify 

incongruence in phylogenomic data matrices, enabling users to further explore its causes using 

more custom methods. 

Our IC, ICA, TC, and TCA measures do not distinguish whether a low degree of certainty is the 

result of strong conflicts in phylogenetic signal, or random noise due to be absence of any signal. 

In other words, incongruence between trees does not necessarily indicate conflicting support, 

because incongruent trees are also the null expectation when a data matrix contains no 

phylogenetic signal (although, differences between IC and ICA values may alert for the presence 

of more than two signals). In such cases, users are advised to examine whether the tree distance 

distribution of observed trees deviates significantly from randomness by using a tree distance 

method3,4, such as the Robinson-Foulds tree distance55, prior to inferring that the low degree of 
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certainty in a data matrix is the result of strong conflicts in phylogenetic signal. Other 

alternatives include employing the more computationally-intensive topology constraint KH, SH, 

or AU tests20,23,54. 

One potential drawback when applying the IC, ICA, TC, and TCA measures is their values may 

not be representative when small numbers of characters or gene trees are used. Although this is a 

general problem that influences all measures, including bootstrap support (BS) and gene support 

frequency (GSF), our measures are likely to be most informative when applied to large amounts 

of data (e.g., hundreds of characters or dozens of genes or hundreds of bootstrap replicates). Our 

TC and TCA measures also assume that the support frequencies of internodes in a phylogeny are 

independent from each other. Even though this is an approximation, previous results suggest that 

the application of a variety of standard practices aimed at reducing incongruence, such as 

removal of unstable or fast-evolving taxa, do not affect IC and ICA values across the entire 

phylogeny; rather, their effects are largely localized on one particular internode3. It should be 

noted that such a focus on a single internode or a small, local neighborhood of an internode 

represents a common approximation in phylogenetics and is frequently used to design search 

heuristics or statistical tests such as the aLRT test56. 

Finally, IC, ICA, TC, and TCA  measures, as currently implemented in RAxML, cannot be 

applied on datasets with missing data (for example when some genes are missing from certain 

taxa), because dealing with trees that only contain subset of the overall taxon set is 

computationally substantially more challenging and requires the appropriate adaptation and/or 

extension of supertree methods. Hence, the solution to this problem is not straightforward, but 

we hope to address this challenging issue in the near future. 
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SUPPLEMENTARY MATERIAL 

Manual for calculating Internode Certainty (IC), Internode Certainty All (ICA), Tree 

Certainty (TC), and Tree Certainty All (TCA) in RAxML [Provided as Supplementary Text 

File to: Salichos, L., A. Stamatakis, and A. Rokas (2013). Novel Information Theory-Based 

Metrics for Quantifying Incongruence among Phylogenetic Trees. Manuscript under review] 

 

Disclaimers 

Score calculations of the IC, ICA, TC, and TCA metrics have been implemented in the widely-used 

program RAxML (version 7.7.8, available via https://github.com/stamatak/standard-RAxML) (Stamatakis 

2006). RAxML users are strongly encouraged to always check for and use the latest RAxML version on 

GITHUB. User support is provided via the following Google group: 

https://groups.google.com/forum/?hl=de#!forum/raxml. Users should avoid contacting the authors 

directly with inquiries about the code, but to post their question on the RAxML Google group. Users are 

encouraged to examine past answers to questions, which can be easily searched via keywords. 

 

https://github.com/stamatak/standard-RAxML�
https://groups.google.com/forum/?hl=de#!forum/raxml�
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Users of the IC, ICA, TC, and TCA metrics are kindly requested to cite the following papers when using 

them:  

Salichos, L., and A. Rokas (2013) Inferring ancient divergences requires genes with strong phylogenetic 

signals. Nature 497: 327-331 

Stamatakis, A. (2006) RAxML-VI-HPC: Maximum Likelihood-based Phylogenetic Analyses with 

Thousands of Taxa and Mixed Models. Bioinformatics 22: 2688-2690 

Salichos, L., A. Stamatakis, and A. Rokas (2013). Novel Information Theory-Based Metrics for 

Quantifying Incongruence among Phylogenetic Trees. Manuscript under review 

Manual 

The implementation of the IC, ICA, TC, and TCA metrics relies on the efficient data structures that are 

already available in RAxML for performing calculations on tree bipartitions/splits [2].  

 

Given a set of gene trees, RAxML can directly calculate a majority rule consensus (MRC; MR in RAxML 

terminology) as well as an extended MRC tree (MRE in RAxML terminology) on this set that has every 

internode (that is, internal branch) annotated by their respective IC and ICA scores.  For instance, to 

compute the IC, ICA, TC, and TCA scores for a given set of gene trees on a MRC tree you would type: 

 

./raxmlHPC -L MR -z 1070_yeast_genetrees.tre -m GTRCAT -n T1 
 

where -L MR specifies that the scores will be displayed on the MRC tree computed by RAxML, -z 

1070_yeast_genetrees.tre specifies the filename that contains the set of gene trees (which are 

the maximum likelihood trees from the 1,070 yeast genes analyzed by Salichos, and Rokas 2013, and 

which are provided as supplementary data to this manuscript), -m GTRCAT is an arbitrary substitution 

model (this will have no effect whatsoever, but is required as input to RAxML), and -n T1 is the run ID 
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that is appended to output files. RAxML will automatically build the MRC tree, annotate it with the IC 

and ICA scores, and report both in an output file named 

RAxML_MajorityRuleConsensusTree_IC.T1, which will look like this:  

 

(Scer,Spar,(Smik,(Skud,(Sbay,(Scas,(Cgla,(Kpol,(Zrou,((Clus,((Psti,((C

tro,(Calb,Cdub):1.0[0.95,0.95]):1.0[0.77,0.77],(Cpar,Lelo):1.0[0.76,0.

76]):1.0[0.75,0.75]):1.0[0.11,0.11],(Cgui,Dhan):1.0[0.02,0.07]):1.0[0.

02,0.08]):1.0[0.97,0.97],((Sklu,(Kwal,Kthe):1.0[0.97,0.97]):1.0[0.32,0

.23],(Agos,Klac):1.0[0.08,0.08]):1.0[0.04,0.10]):1.0[0.59,0.47]):1.0[0

.02,0.02]):1.0[0.11,0.11]):1.0[0.02,0.02]):1.0[0.97,0.97]):1.0[0.05,0.

14]):1.0[0.30,0.27]):1.0[0.54,0.54]); 

 

For each internode or internal branch of the constructed MRC tree, RAxML will assign an 

length[x,y]branch label, where length corresponds to the branch’s length (because this is a MRC 

tree, all internal branch lengths have been arbitrarily set to 1.0 by default),  x corresponds to the IC 

score and y to the ICA score.  

 

RAxML will also calculate the TC and TCA scores for the MRC tree, as well as the relative TC and TCA 

scores that are normalized by the maximum possible TC and TCA scores for a fully bifurcating tree from 

the same number of taxa. The scores are displayed in the terminal output and in the 

RAxML_info.runID standard output file associated with the run (in this case RAxML_info.T1) 

and will look like this: 

 

Tree certainty for this tree: 7.642240 

Relative tree certainty for this tree: 0.382112 
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Tree certainty including all conflicting bipartitions (TCA) for this 

tree: 7.580023 

Relative tree certainty including all conflicting bipartitions (TCA) 

for this tree: 0.379001 

 

Given a set of gene trees, RAxML can also directly calculate an extended MRC tree on this set that has 

every internode (that is, internal branch) annotated by their respective IC and ICA scores. The 

particularly compute-intensive inference of extended MRC trees (finding the optimal extended MRC tree 

is, in fact, NP-hard; Phillips, and Warnow 1996) relies on RAxML’s fast parallel implementation 

(presented in Aberer, Pattengale, and Stamatakis 2010). Thus if you use the PThreads version of RAxML, 

this part will run in parallel. To compute IC, ICA, TC and TCA scores on an extended MRC tree you would 

type:  

 

./raxmlHPC -L MRE -z 1070_yeast_genetrees.tre -m GTRCAT -n T2 

 

RAxML can compute MRC and extended MRC trees, using both fully bifurcating and partially resolved / 

multifurcating trees as an input. RAxML can also compute stricter MRC trees with arbitrary threshold 

settings that range between 51 and 100%. For instance, by typing 

 

./raxmlHPC -L T_75 -z 1070_yeast_genetrees.tre -m GTRCAT -n T3 

 

RAxML will display IC, ICA, TC and TCA scores on a MRC tree that only includes those bipartitions that 

have ≥ 75% support. 
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We have also implemented an option (-f i) that allows the user to calculate and display IC, ICA, TC 

and TCA scores onto a given, strictly bifurcating reference tree (for example, the best-known ML tree). 

This is analogous to the standard -f b option in RAxML that draws bootstrap support values from a set 

of bootstrap trees onto a reference phylogeny. The option can be invoked by typing 

 

./raxmlHPC -f i -t yeast_concatenationtree.tre -z 

1070_yeast_genetrees.tre -m GTRCAT -n T4 

 

Note that, the tree contained in file yeast_concatenationtree.tre needs to be strictly 

bifurcating and contain branch lengths. In this example, the yeast_concatenationtree.tre file 

is the best-known maximum likelihood tree recovered by concatenation analysis of the 1,070 yeast 

genes (Salichos, and Rokas 2013). Using this command, RAxML will annotate the tree in 

yeast_concatenationtree.tre with the IC and ICA scores, and report both in an output file 

named RAxML_IC_Score_BranchLabels.T4, which will look like this: 

 

(((((((Clus:0.47168135428609103688,((((Lelo:0.30356174702769450624,Cpa

r:0.25490874239480920682):0.13023178275857649755[0.76,0.76],(Ctro:0.18

383414558272206940,(Calb:0.04124660275465741321,Cdub:0.042908015883968

32289):0.14526604486383792869[0.95,0.95]):0.12355825028654655873[0.77,

0.77]):0.17335821030783615804[0.75,0.75],Psti:0.42255112174261910685):

0.07862882822310976461[0.11,0.11],(Cgui:0.45961028886034632768,Dhan:0.

28259245937168109286):0.05586015476156453580[0.02,0.07]):0.08116340505

230199009[0.02,0.08]):1.03598510402913923656[0.97,0.97],((Agos:0.53332

956655591512440,Klac:0.47072785596320687596):0.08132006357704427146[0.

08,0.08],((Kthe:0.17123899487739652203,Kwal:0.17320923240031221857):0.
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25620117495110567019[0.97,0.97],Sklu:0.24833228915799765435):0.0564699

2617871094550[0.32,0.23]):0.05236306187235122145[0.04,0.10]):0.1068651

7691208799463[0.59,0.47],Zrou:0.41307833685563782877):0.03792570537296

727218[0.02,0.02],Kpol:0.43287284049576529865):0.04560341693136910068[

0.11,0.11],Cgla:0.49584136365135367264):0.04363310339731014259[0.02,0.

02],Scas:0.37212829744050218705):0.29362133996280515014[0.97,0.97],(Sk

ud:0.06926467973344750673,(Smik:0.06535810850036427588,(Scer:0.0428584

8856634000975,Spar:0.03030513540244994877):0.02506719066056842596[0.54

,0.54]):0.02459323291555862850[0.30,0.27]):0.02524223867026276907[0.05

,0.14],Sbay:0.06506923220637816918);  

 

For each internode or internal branch of this output tree RAxML will assign a length[x,y]branch 

label, where length corresponds to the branch’s length,  x corresponds to the IC score and y to the 

ICA score. RAxML will also display the TC and TCA scores of this tree both in the terminal output and in 

the RAxML_info.T4 output file associated with the run. 

It should further be noted that the IC and ICA scores are represented as branch labels, since, as is the 

case for bootstrap support values, information associated to splits/bipartitions of a tree always refers to 

branches and not nodes. Each tree viewer (e.g., Dendroscope; Huson, and Scornavacca 2012) that can 

properly parse the Newick tree format is able to display these branch labels. The rationale for not 

providing IC and ICA scores as node labels is that, some viewers may not properly rotate the node labels 

when the tree is re-rooted by the user, which will lead to an erroneous branch-IC/ICA-score association.  

When calculating IC and ICA scores on extended MRC trees or when drawing IC and ICA scores onto a 

given reference tree it may occur that the bipartition that has been included in the tree has lower 

support than one or more conflicting bipartitions. In this case, RAxML will report IC and ICA scores on 

the inferred tree with negative signs. 
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Finally, we have implemented a verbose output option that allows users to further scrutinize particularly 

interesting conflicting bipartitions. Verbose mode is activated by adding the -C command line switch to 

any of the above examples. In verbose mode RAxML will generate two types of output files: One set of 

files containing one included bipartition and the corresponding conflicting bipartitions in Newick format 

(called RAxML_verboseIC.runID.0 … RAxML_verboseIC.runID.N-1, where N is the 

number of bipartitions in the tree) and an output file that lists all bipartitions (included and conflicting) 

in a PHYLIP-like format (called RAxML_verboseSplits.runID). 

 

For example, by adding -C to the previous command 

 

./raxmlHPC -f i -t yeast_concatenationtree.tre -z 

1070_yeast_genetrees.tre -m GTRCAT -n T5 -C 

 

will produce 20 files (one for each of the 20 bipartitions present in the 

yeast_concatenationtree.tre) named RAxML_verboseIC.T5.0, 

RAxML_verboseIC.T5.1, …, RAxML_verboseIC.T5.19 

 

For example, the RAxML_verboseIC.T5.0 file will look like this: 

 

((Cpar, Lelo),(Scer, Smik, Skud, Cgla, Kpol, Zrou, Kwal, Kthe, Agos, 

Klac, Clus, Cgui, Psti, Ctro, Calb, Cdub, Dhan, Sklu, Scas, Sbay, 

Spar)); 

((Cpar, Ctro, Calb, Cdub),(Scer, Smik, Skud, Cgla, Kpol, Zrou, Kwal, 

Kthe, Agos, Klac, Clus, Cgui, Psti, Lelo, Dhan, Sklu, Scas, Sbay, 

Spar)); 
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where the first Newick string represents the bipartition that was included in the 

yeast_concatenationtree.tre and all following Newick strings represent the corresponding 

conflicting bipartitions in descending order of their frequency of occurrence. In the case of the 

RAxML_verboseIC.T5.0 file the first bipartition, which is included in the 

yeast_concatenationtree.tre conflicts with only one other bipartition, which is listed as the 

second bipartition. 

 

Analogously, the output file that lists all bipartitions (included and conflicting) in a PHYLIP-like format 

(RAxML_verboseSplits.T5), looks like this: 

 

1. Scer  

2. Smik  

3. Skud  

4. Cgla  

5. Kpol  

6. Zrou  

7. Kwal  

8. Kthe  

9. Agos  

10. Klac  

11. Clus  

12. Cgui  

13. Psti  

14. Cpar  

15. Lelo  
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16. Ctro  

17. Calb  

18. Cdub  

19. Dhan  

20. Sklu  

21. Scas  

22. Sbay  

23. Spar  

partition:  

----- ----- ---** ----- ---     956/89.345794/0.761406 

----- ----- ---*- ***-- ---     39/3.644860/0.761406 

 

partition:  

----- ----- ----- -**-- ---     1051/98.224299/0.949483 

----- ----- ----- **--- ---     6/0.560748/0.949483 

 

. 

. 

. 

partition:  

--*** ***** ***** ***** **-     641/59.906542/0.303620 

-**-- ----- ----- ----- -*-     148/13.831776/0.303620 

-*-** ***** ***** ***** *--     114/10.654206/0.303620 

 

partition:  

-**** ***** ***** ***** **-     825/77.102804/0.545775 
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-**-- ----- ----- ----- -**     87/8.130841/0.545775 

 

Here each block that starts with the partition keyword contains a specific bipartition and all 

corresponding conflicting bipartitions in descending order. The x/y/z scores correspond to the 

frequency of the bipartition (x), the support percentage (also known as gene support frequency; y), and 

the IC score (z).  
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ABSTRACT 

To tackle incongruence, the topological conflict between different gene trees, phylogenomic 

studies couple concatenation with practices such as rogue taxon removal or the use of slowly 

evolving genes. Phylogenomic analysis of 1,070 orthologues from 23 yeast genomes identified 

1,070 distinct gene trees, which were all incongruent with the phylogeny inferred from 

concatenation. Incongruence severity increased for shorter internodes located deeper in the 

phylogeny. Notably, whereas most practices had little or negative impact on the yeast phylogeny, 

the use of genes or internodes with high average internode support significantly improved the 

robustness of inference. We obtained similar results in analyses of vertebrate and metazoan 

phylogenomic data sets. These results question the exclusive reliance on concatenation and 

associated practices, and argue that selecting genes with strong phylogenetic signals and 

demonstrating the absence of significant incongruence are essential for accurately reconstructing 

ancient divergences.  

 

INTRODUCTION 

Concatenation, the compilation and analysis of hundreds of genes as a single dataset, has become 

the standard approach for inferring deep branches of the tree of life1-5. However, incongruence 

stemming from either analytical errors in gene history reconstruction6,7 or the action of biological 

processes8, evidenced by disagreements between phylogenomic studies9-14, argues that the 

histories of some lineages are better depicted by or more closely resemble networks of highly 

related trees15 and that concatenation might not be as robust as confidence indices indicate. To 

tackle incongruence, studies have adopted several practices, such as removing unstable taxa1-3, 

which although useful are not always effective16-18. 
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The Saccharomyces and Candida yeasts are excellent for examining phylogenomic practices in 

the presence of incongruence, due to the presence of conflicting gene trees7,19, and the 

availability of two synteny databases20,21 for genome-wide identification of high-quality 

orthologs, minimizing the risk of incongruence from hidden paralogy22,23 and horizontal gene 

transfer24. Importantly, levels of sequence divergence between yeasts are intermediate to those 

observed between vertebrates and animals, making them an appropriate model for the study of 

ancient divergences. 

Analyses on 1,070 genes from 23 yeast genomes showed that although concatenation resolved 

the species phylogeny, several internodes of the extended majority-rule consensus (eMRC) 

phylogeny of the 1,070 underlying gene trees (GTs) were weakly supported. None of the 1,070 

GTs agreed with each other, with the concatenation phylogeny or with the eMRC phylogeny. By 

developing a novel measure to quantify the observed incongruence and evaluate standard 

practices aimed at reducing it, we found that such practices had little impact. In agreement with 

theory9,16,25,26, incongruence was more severe for shorter internodes deeper on the phylogeny. 

Remarkably, the selection of genes whose bootstrap consensus trees had high average clade 

support, or of highly supported internodes, significantly reduced incongruence, arguing that 

inference in deep time critically depends on identifying molecular markers with strong 

phylogenetic signal. 

 

All Gene Trees Differ From Species Phylogeny 

We assembled a dataset of 1,070 groups of orthologous genes (orthogroups) from 23 yeast 

genomes20,21,27 (Methods and Supplementary Table 1). Maximum likelihood analysis of the 

concatenation of all 1,070 orthogroups yielded a species phylogeny where all 20 internodes 
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exhibited 100% bootstrap support (BS) (Fig. 4.1a); we obtained identical results using one other 

maximum likelihood and one other Bayesian inference software (Supplementary Fig. 4.1). 

Remarkably, all 1,070 GTs were topologically distinct and none matched the topology inferred 

by concatenation analysis (Fig. 4.1b). However, the average tree distance between the 1,070 GTs 

was much lower (normalized Robinson-Foulds tree distance28 = 0.52, i.e., two GTs differed on 

average in 10.4 out of their 20 bipartitions) than that between randomly generated trees of the 

same taxon number (0.99, i.e., two trees differed on average on 19.8/20 bipartitions), indicating 

that the yeast GTs have similar evolutionary histories. 

Summarizing the 1,070 GTs into an eMRC phylogeny yielded a topology identical with the 

concatenation phylogeny (Fig. 4.1a). However, although 11/20 internodes in the eMRC 

phylogeny had >50% gene support frequency (GSF), 5 of the remaining 9 internodes had GSF 

<30% (Fig. 4.1a). Furthermore, the most prevalent conflicts to most of these weakly supported 

internodes had substantial GSF values (Supplementary Table 2). Take, for example, the relative 

placement of C. glabrata, S. castellii, and the Saccharomyces sensu stricto clade where 5 

uniquely shared chromosomal rearrangements and a substantially higher number of uniquely 

shared gene losses between C. glabrata and S. cerevisiae indicate that S. castellii divergence 

preceded that of C. glabrata from the Saccharomyces sensu stricto clade22. Even though 

concatenation provided 100% BS for the apparently incorrect grouping of S. castellii with the 

sensu stricto species (Fig. 4.1a), only 311/1,070 GTs (29%) favored it, whereas 214 (20%) 

inferred the C. glabrata – Saccharomyces sensu stricto one. 
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Figure 4.1 | The yeast species phylogeny recovered from the concatenation analysis of 1,070 
genes disagrees with every single gene tree, despite absolute bootstrap support.   a, The 
yeast species phylogeny recovered from concatenation analysis of 1,070 genes using maximum 
likelihood. Asterisks (*) denote internodes that received 100% bootstrap support by the 
concatenation analysis. Values near internodes correspond to gene support frequency and 
internode certainty, respectively. b, The distribution of the agreement between the bipartitions 
present in the 1,070 individual gene trees and the concatenation phylogeny, as well as the 
distribution of the agreement between the bipartitions present in 100 randomly generated trees of 
equal taxon number and the concatenation phylogeny, measured using the normalized Robinson-
Foulds tree distance. Average distances between the 1,070 gene trees and the concatenation 
phylogeny, between the 1,070 gene trees with each other, and between 100 randomly generated 
gene trees of equal taxon number with each other, are also shown. The phylogeny of the 23 yeast 
species analyzed in this study is unrooted and contains 20 non-trivial bipartitions; because the 
divergence of Saccharomyces and Candida lineages is well established, the mid-point rooting of 
the phylogeny is shown for easier visualization. 
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A Novel Measure That Considers Incongruence 

To quantify incongruence we developed Internode Certainty (IC), which evaluates support for a 

given internode by considering its frequency in a given set of trees jointly with that of the most 

prevalent conflicting bipartition in the same set of trees. Like phylogenetic network methods 

developed for visualizing phylogenetic conflicts15, IC relies on the bipartitions present in trees, 

each of which is a split of the taxa into two mutually exclusive non-empty groups. Compared to 

other incongruence measures29-32, IC is not character-based29-31, it does not depend on an 

optimality criterion29-31 or clade support metric32, and can be applied to any set of trees. For 

example, if the entire set of GTs is used, the IC of a given internode will reflect the amount of 

information available for that internode in the set of GTs by considering the internode’s GSF 

jointly with the GSF of the most prevalent bipartition that conflicts with the internode. If the set 

of bootstrap replicate trees for a given gene is used, then IC will be calculated based on BS 
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values. IC values near 0 indicate the presence of an almost equally supported bipartition that 

conflicts with the inferred internode, whereas values near 1 indicate the absence of conflict. 

Examination of the eMRC phylogeny showed 9/20 internodes with IC <0.3, which corresponds 

to a <4:1 ratio between the support for the inferred internode to that of its most prevalent 

conflicting bipartition, and 7/20 with IC <0.1 (<7:3 ratio) (Fig. 4.1a and Supplementary Fig. 4.2). 

Because IC measures the degree of conflict for every internode, it is more informative than GSF. 

For example, whereas the placement of S. bayanus and the placement of Z. rouxii received 52% 

and 62% GSF, their ICs were 0.06 and 0.59, respectively (Fig. 4.1a). This marked difference in 

IC values of the two internodes despite similar GSF values is because there was strong secondary 

signal only in the case of S. bayanus33 (29% GSF for grouping S. bayanus with S. kudriavzevii), 

but not in the case of Z. rouxii (Supplementary Table 2). Furthermore, comparison of the sums of 

IC values across trees of a given taxon number (Tree Certainty; TC) can be used to quantify 

changes in the degree of incongruence between trees inferred using different datasets or methods. 

 

Standard Practices Do Not Reduce Incongruence 

To test whether we could decrease incongruence, we evaluated the effect of several standard 

phylogenomic practices purported to do so on the inference of the yeast phylogeny (Fig. 4.2). 

Specifically, we tested the effect of: 

(1) removing sites containing gaps as well as of “rogue” genes producing alignments of bad 

quality (Supplementary Fig. 4.3), 

(2) removing unstable and fast-evolving species (Supplementary Figs 4.5, 4.6, and 4.7), 

(3) using only genes that recover a particular internode widely regarded as known or well 

established from prior data (Supplementary Figs 4.6 and 4.7), 
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(4) using only slowly evolving genes (Supplementary Fig. 4.8), and 

(5) using conserved amino acid substitutions or indels (Supplementary Fig. 4.9). 

Whereas the first three practices did not have a substantial effect on the inference and support of 

the yeast phylogeny, the use of slowly evolving genes and conserved sites increased 

incongruence across many internodes of the yeast phylogeny (Fig. 4.2). Furthermore, the 

removal of unstable or fast-evolving species from the Saccharomyces lineage had no effect on, 

often highly ambiguous, internodes in the Candida lineage and vice versa (Supplementary Figs 

4.5 and 4.6), arguing that the impact of removing “rogue” taxa was not only minimal but also 

highly localized. 
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Figure 4.2 | The effect of phylogenomic practices on the inference of the yeast phylogeny.
 The first column (Treatment) indicates the specific phylogenomic practice tested, the 
second (avGSF) the average gene support frequency  of the internodes of the yeast phylogeny, 
the third (TC) the tree certainty of the yeast phylogeny, the fourth (# ↑ | ↓ GSF) the numbers of 
internodes of the yeast phylogeny where GSF increases or decreases by more than 3%, and the 
fifth (# ↑ | ↓ IC) the numbers of internodes of the yeast phylogeny where IC increases or 
decreases by more than 0.03. Because the maximum value of IC for a given internode is 1, the 
maximum value of TC for a given phylogeny is the number of internodes, which will equal K-3, 
where K is the number of taxa used. In the analyses concerned with the removal of poorly 
aligned genes, only genes whose alignment length after gap removal is ≥x% of original one were 
used. In the analyses concerned with the use of bipartitions, only those bipartitions that displayed 
BS ≥60%, ≥70%, or ≥80% in the bootstrap consensus trees of the 1,070 genes were used to 
construct eMRC phylogenies, which were then compared with the default analysis. 
 

 

 

Support depends on internode length and depth 

Examination of whether the degree of incongruence, as measured by low GSF, correlated with 

internode length and depth, as measured by branch lengths, showed that incongruence was 

stronger in early divergent and short internodes (Fig. 4.3), in agreement with theoretical 
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expectations9,16,25,26. To test if this relationship holds in other lineages, we generated a dataset of 

1,086 orthogroups from 18 vertebrate species, which has higher sequence similarity than the 

yeast one (61% vs 44% average pairwise aa similarity, respectively), and a dataset of 225 

orthogroups from 21 metazoan species, which has lower sequence similarity (29% average 

pairwise aa similarity). The vertebrate genes yielded 299 distinct GTs (average normalized 

Robinson-Foulds tree distance = 0.42). Concatenation analysis inferred an absolutely supported 

species phylogeny; however, this phylogeny was topologically identical to 15 GTs and eMRC 

analysis showed that 4/15 internodes had GSF <50% and IC <0.3 (Supplementary Fig. 4.10a-c). 

Similarly, the 225 metazoan genes yielded 224 distinct GTs (average normalized Robinson-

Foulds tree distance = 0.72). Concatenation analysis inferred 14/18 internodes with 100% BS 

despite that it was not topologically identical to any of the 225 GTs and that 10/18 internodes 

had <50% GSF and <0.1 IC (Supplementary Fig. 4.10d-f). Interestingly, incongruence was 

significantly correlated only with short internodes in the (less divergent) vertebrates, nearly 

equally significantly with both internode length and internode depth in yeasts, and more 

significantly with internode depth than with internode length in the (more divergent) metazoans 

(Fig. 4.3).  
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Figure 4.3 | Incongruence is more prevalent in shorter internodes located deeper on the 
phylogeny.   The correlation (Pearson’s r) between a measure of internode support (gene support 
frequency or GSF) with internode length and depth was measured for each internode present in 
three datasets that show lower (vertebrates, 1,086 genes), intermediate (yeasts, 1,070 genes) and 
higher (metazoans, 225 genes) levels of sequence divergence. a, GSF is positively correlated 
with internode length in yeasts and metazoans. b, GSF is positively correlated with the root to 
internode length in all three lineages, indicating that internodes placed deeper in the phylogeny 
typically have lower GSF. c, GSF is positively correlated with the product of internode length 
and root to internode length in all three lineages. 
 

 

Strong Signal Reduces Incongruence 

To test whether the selection of genes with stronger phylogenetic signal reduced incongruence, 

we analyzed three datasets comprised of genes whose bootstrap consensus trees showed average 

BS across all internodes ≥ 60% (904 genes), ≥ 70% (545 genes), or ≥ 80% (131 genes),and three 

datasets comprised of the 904, 545, or 131 genes whose bootstrap consensus trees had the 
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highest TC. Selecting genes with high average BS or high TC significantly reduced incongruence 

across many, but not all, internodes (Fig. 4.2, and Supplementary Figs 4.11 and 4.12). 

Concatenation analysis of the sets of genes with average BS ≥  60%, and ≥ 70% (and of the 904 

and the 545 genes with the highest TC) yielded the same species phylogeny as when all genes 

were analyzed. Remarkably, analysis of genes with average BS ≥  80%, as well as of the 131 

genes with the highest TC, yielded the correct placement of C. glabrata (Supplementary Fig. 

S4.11c,f), a result that, to our knowledge, has not been observed in any concatenation-based 

yeast phylogenomic analysis7,34-37, suggesting that high BS is a good indicator of a gene’s 

phylogenetic usefulness, but also that concatenating genes with high BS reduces incongruence 

and improves resolution.  

We also tested whether selecting internodes with high BS decreased incongruence by extracting 

only those bipartitions that displayed BS values ≥ 60%, ≥ 70%, and ≥ 80% from every one of the 

1,070 genes’ bootstrap consensus trees and then using them to construct new eMRC phylogenies 

(Supplementary Figs 4.12 and 4.13). One advantage of working with taxon bipartitions, rather 

than genes, is that we can quantify a given internode’s IC from only the subset of bipartitions 

that highly support or conflict with that internode. This practice significantly increased IC values 

for ≥ 14 internodes relative to the phylogeny of Figure 4.1a and showed the highest TC of all our 

analyses (Fig. 4.2). Interestingly, while IC for most internodes increased when we increased the 

BS threshold, this was not the case for several of the most difficult to resolve internodes 

(Supplementary Fig. 4.13d), suggesting that those few genes that show high BS for short 

internodes deep in the phylogeny strongly conflict with each other. We obtained similar results 

when we performed the same analyses on the vertebrate and metazoan datasets (Supplementary 

Fig. 4.14). 
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Standard Practices Can Mislead 

Aiming to infer the yeast phylogeny, we constructed and analyzed 1,070 yeast genes. Had we 

relied solely on concatenation and standard phylogenomic practices we would have recovered an 

absolutely supported phylogeny similar to those obtained by major phylogenomic studies1,3-

5,11,12,16,19. However, examination of the signal in GTs showed that concatenation masked the 

considerable incongruence present in several internodes. Thus, while analyses of ~20% of the 

genes typically present in a yeast genome definitively support many internodes of the yeast 

phylogeny, the topology of a considerable number of others remains uncertain (Supplementary 

Figs 4.15 and 4.16). 

Our finding that incongruence correlates with early divergent and short internodes indicates that 

analytical factors are major contributors; however, it is likely that biological factors have also 

contributed. “Species tree” methods use coalescent theory to estimate the species phylogeny 

from the individual GTs allowing for lineage sorting, a common biological explanation for GTs 

incongruent with the species phylogeny8. Unfortunately, many such methods assume that 

analytical errors in inference are minimal, a valid assumption for most shallow clades but one 

that is untenable for the deeply divergent clades of the yeast phylogeny. For example, analysis of 

our dataset with the average unit-ranking method38 yielded a species phylogeny where all the 

internodes with very low GSF and IC values were extremely short, largely because all 

incongruence was considered to be due to variation in coalescent depth across GTs 

(Supplementary Fig. 4.17a). Not surprisingly, these coalescent unit-based branch lengths were 

highly correlated with internodes’ GSF and IC values (Supplementary Fig. 4.17b). Furthermore, 

bootstrapping of this dataset inferred a highly supported species phylogeny (Supplementary Fig. 

4.17a), again contradicting our findings of extensive conflict in certain internodes. 
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PERSPECTIVE 

These results argue that elimination of the observed incongruence between phylogenomic 

studies1,3,4,11,12 will require three fundamental revisions to current practices. First, we should 

abandon using BS on concatenation analyses of large datasets. Developed at a time when high-

throughput sequencing was unimaginable, the bootstrap is an extremely useful measure of 

sampling error, that is the robustness in inference when data are limited39, such as when a single 

gene is analyzed. Given the availability and ease of generating genome-scale data40, relying on 

bootstrap to analyze phylogenomic datasets is misleading, not only because sampling error is 

minimal but also because its application will, even in the presence of significant conflict9 or 

systematic error6,16, almost always result in 100% values9,19,41. 

The second critical revision necessary is that we carefully examine the signal present in 

individual genes16,29-32,42 and their trees15. Our results indicate that the subset of genes with 

strong phylogenetic signal is more informative than the whole, arguing for a conditional 

combination approach than a total evidence one42. Preferably, such analyses should be combined 

with internode-specific approaches31 because the latter can uncover internodes that harbor 

multiple conflicting phylogenetic signals. As the IC measure shows (Supplementary Fig. 4.2), 

the amount of information for a given internode supported by 50% of GTs with the other 50% 

being uninformative is far greater from that when the other 50% of the GTs harbors significant 

support for two or three alternative conflicting topologies. Whereas in the first case the gene 

trees strongly suggest that the internode is resolved, in the second there is reason to be cautious.  

Finally, we need to begin explicitly identifying internodes that, despite the use of genome-scale 

datasets, robust study designs, and powerful algorithms, are poorly supported. We argue that the 

on-going debate around phylogenies inferred in different phylogenomic studies10 concerns 
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internodes that are poorly supported by individual GTs. Identifying these internodes and 

distinguishing them from ones supported by a significant fraction of genes and lack conflicts will 

go way beyond helping pinpoint challenging internodes, allowing us to identify the broad 

contours of the network of highly related gene histories that is the tree of life. Perhaps most 

importantly,  it will focus the attention of researchers to develop novel phylogenomic approaches 

and markers to more accurately decipher the most challenging ancient branches of life’s 

genealogy from the DNA record. 

 

METHODS SUMMARY 

Using synteny and orthology information present in the YGOB20 and CGOB21 databases from 23 

yeast genomes20,21,27, we constructed an initial dataset of 2,651 orthogroups, which following 

quality control (see Methods), was reduced to the final 1,070. We also used the complete gene 

sets from 18 vertebrate and 21 metazoan species and used the cRBH algorithm23 to identify 

1,086 vertebrate and 225 metazoan orthologous groups of genes. Orthogroups were aligned 

using MAFFT43, the best fit evolutionary model was inferred using ProtTest44, and the maximum 

likelihood tree was estimated using RAxML45. Extended majority rule consensus trees were 

inferred using PHYLIP46 and custom perl scripts. A series of different datasets were constructed 

using custom perl scripts. Internode Certainty (IC), was calculated according to: 

 

𝐼𝐶 = 𝑙𝑜𝑔2(2) + 𝑝 �
𝑥1

𝑥1 + 𝑥2
� 𝑙𝑜𝑔2 �𝑝 �

𝑥1
𝑥1 + 𝑥2

�� + 𝑝 �
𝑥2

𝑥1 + 𝑥2
� 𝑙𝑜𝑔2 �𝑝 �
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𝑥1 + 𝑥2

�� 

 

where 𝑥1 and 𝑥2 are the frequencies of the first and second most prevalent conflicting 

bipartitions for a given internode.    
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METHODS 

Data Matrix Construction 

We used the complete sets of annotated genes from 23 yeast genomes20,21,27,47 (Supplementary 

Table S1) and, using the synteny and orthology information present in the YGOB20 and CGOB21 

databases, we constructed an initial dataset of 2,651 orthologous groups of genes that had 

representatives in all 23 genomes. This reliance on two highly accurate and manually curated 

synteny databases and the requirement for a given ortholog to be present in all 23 species greatly 

minimized errors in orthology inference  due to hidden paralogy23,48. It also avoided the inclusion 

of any horizontally transferred genes present in some, but not all, species as well as any 

horizontally transferred genes present in regions that lack synteny conservation. For any 

potentially horizontally transferred gene to be included in our data matrix, it would have had to 

have been gained in some, but not all, yeast species used in our study and it would have had to 

replace the native gene and take up its position on the chromosome, which has never been 

observed in yeasts24,49-51 and is likely very rare. 

The nucleotide sequences of all genes were translated to amino acids (aa) taking into account 

that in certain species in the Candida lineage the CUG codon encodes for the amino acid Serine 

rather than Leucine. Using alignment quality and individual gene length filtering criteria 

described below, we then reduced the number of orthogroups to the final 1,070. Examination of 

the functional annotation–as defined by the Gene Ontology consortium52–of the 1,070 S. 

cerevisiae orthologs using the GOstat software53 showed that this gene set is statistically 

overrepresented for several different functional categories, such as cellular metabolic process, 

cellular component organization and biogenesis, and ribosome assembly and biogenesis, in other 

words, for categories associated with standard cell housekeeping functions.  Analysis of different 
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ortholog subsets (e.g., of the 131 genes whose bootstrap consensus trees show the highest 

average bootstrap support (BS)) show that they are too statistically overrepresented for many 

fewer, but the same, functions. 

We also created two additional datasets from the complete sets of annotated genes from 18 

vertebrate and 21 metazoan species (Supplementary Table S1). The two datasets were 

constructed using the cRBH algorithm23, and comprised of 1,086 vertebrate and 225 metazoan 

orthologous groups of genes. To avoid constructing orthogroups that contained very distant 

homologs we set the filtering parameter of the cRBH algorithm23, which considers the degree by 

which the two proteins differed in sequence length or BLAST alignment, to r = 0.3. 

For each species, for reasons of space and convenience, we constructed a corresponding acronym 

using the first letter from the genus name and the three first letters from the species name (e.g., 

the acronym for Saccharomyces cerevisiae is “Scer”). All data matrices are available from the 

authors upon request. 

 

Gene Alignment and Filtering Criteria 

To minimize the use of orthogroups that contained sequences whose annotation was problematic 

or which resulted in alignments of low quality, we applied various filtering criteria. We first 

excluded, prior to alignment, all orthogroups with an average sequence length ≤ 150 amino 

acids. Second, we aligned all orthogroups using the MAFFT software43, with the default settings, 

and excluded orthogroups whose alignment after removing all positions that contained gaps was 

≤ 50% of the original alignment length. 
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Gene Tree Inference 

For each orthogroup, the best fit evolutionary model, which typically consisted of an 

empirically-determined aa substitution matrix (e.g., WAG54), empirically-measured aa state 

frequencies, and accounted for heterogeneity in evolutionary rates among sites by using the 

gamma distribution as well as by allowing for a given proportion of sites to be invariable, was 

selected using ProtTest44. The unrooted phylogenetic tree of each and every orthogroup, also 

called gene tree (GT), was then inferred using RAxML45. 

 

Species Phylogeny Inference Using Concatenation and Extended Majority-Rule Consensus 

Approaches 

For the concatenation analysis, orthogroup alignments were analyzed as a single supermatrix. An 

unrooted concatenation species phylogeny was then inferred under the 

“PROTGAMMAIWAGF” model of aa substitution in RAxML45, and confirmed with GARLI55 as 

well as with MrBayes56. The unrooted extended majority rule consensus (eMRC) phylogeny that 

consisted of those bipartitions that appear in more than half of the maximum likelihood estimated 

GTs, as well as of additional compatible bipartitions that appear in less than half of the GTs57,58, 

was inferred using the CONSENSE program in PHYLIP46. The eMRC phylogeny of bipartitions 

with high BS was constructed using custom perl scripts. Because the divergence of 

Saccharomyces and Candida lineages is well established, all phylogenies shown in figures have 

been mid-point rooted at the internode that separates these two lineages for easier visualization. 

 

Species Phylogeny Inference Using a Consensus Phylogenetic Network Approach 
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A consensus phylogenetic network was constructed based on the 1,070 GTs estimated by 

maximum likelihood using the median network construction algorithm in the SplitsTree4 

software15 with a threshold of 0.1. 

 

Tree Distance Estimation  

Distances between trees were estimated using the normalized Robinson-Foulds tree distance28, as 

calculated by RAxML45. Sets of 100 random trees for 23 taxa (yeasts), 18 taxa (vertebrates), and 

21 taxa (metazoans), were generated using the random tree generator in the T-REX webserver59, 

using the random tree generation procedure described by Kuhner and Felsenstein60.  

 

Internode Certainty (IC) 

A phylogenetic tree is an acyclic connected graph that represents evolutionary relationships 

among different genes or taxa and consists of nodes that are connected by edges or internodes. 

Phylogenetic trees can also be represented in a variety of other ways. One useful depiction is as 

sets of bipartitions (or splits). In this representation, each internode in a phylogenetic tree is 

viewed as a bipartition between two sets of taxa. For example, given a set of five species (S. 

cerevisiae, S. paradoxus, S. mikatae, S. kudriavzevii, and S. bayanus), one example of a 

bipartition is the one that separates the set of S. cerevisiae, S. paradoxus, and S. mikatae from the 

set of S. kudriavzevii and S. bayanus. 

Information from multiple phylogenetic trees from the same set of taxa is typically summarized 

using consensus trees. For example, the majority-rule consensus approach57 calculates the shared 

bipartitions across all phylogenetic trees and displays only those shared by their majority. 

Consequently, each internode in the majority-rule consensus tree typically contains a value that 



118 
 

corresponds to the percentage of individual trees that contain a given bipartition, but does not 

provide any information about the next most prevalent conflicting bipartition, or more generally, 

about the distribution of bipartitions that conflict with the internode. For example, if a consensus 

tree reports that 51 out of 100 phylogenetic trees contain a specific bipartition, we are not 

informed whether the second most prevalent conflicting bipartition is present in the remaining 49 

trees or in 5 of the remaining trees. However, the first case (51% vs 49%) would indicate that 

both bipartitions have nearly equal support, whereas the second case (51% vs 5%) would 

indicate that the first bipartition is the only strongly supported bipartition for this internode. 

Consensus phylogenetic networks15,61, which are potentially hyperdimensional graphs inferred 

from all bipartitions present above a certain frequency in a given set of trees, are very useful in 

visualizing such conflicting bipartitions. To quantify the degree of incongruence, as well as 

examine whether incongruence is reduced when standard phylogenomic practices are applied, we 

developed internode certainty (IC), a measure that provides robust quantitative measures of the 

information conveyed by conflicting bipartitions for each internode. 

 

Description of IC. Shannon’s entropy measures the amount of certainty found in a random 

variable62. For example, when tossing a fair coin, heads or tails are equally probable and so the 

amount of certainty we have about the outcome is 0, whereas if the coin is not fair, our certainty 

about the toss outcome will be high. Similarly, we can quantify the certainty that we have in the 

inference of a given internode in a phylogenetic tree, by introducing a function that is maximized 

in the absence of any conflicting bipartitions, but is minimized in the presence of equally 

prevalent conflicting bipartitions. IC quantifies the certainty of a bipartition that appears on a 

phylogenetic tree (i.e., of a given internode) by considering its frequency of occurrence against 
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that of the second most prevalent conflicting bipartition. Specifically, for the two most prevalent 

conflicting bipartitions: 

 

𝐼𝐶 = 𝑙𝑜𝑔2(2) + 𝑝 �
𝑥1

𝑥1 + 𝑥2
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where 𝑥1 and 𝑥2 are the frequencies of the first and second most prevalent conflicting 

bipartitions for a given internode.   

IC, as well as the related measure Tree Certainty (see below), can be measured on any given set 

of trees. For example, if the entire set of GTs is used, the IC value of a given internode will 

reflect the amount of information available for that internode in the set of GTs by considering the 

internode’s gene support frequency (GSF) jointly with the GSF of the most prevalent bipartition 

that conflicts with the internode. If the set of bootstrap replicate trees for a given gene is used, 

then IC will be calculated based on BS values (instead of GSF values). IC can also be measured 

on any given set of bipartitions. For example, any two-state character that is variable across x 

species can be thought of as a bipartition, as it splits the set of taxa into two distinct groups. 

Thus, one can use IC to measure the amount of information available for a given bipartition, and 

quantify the extent of incongruence, by considering the number of characters supporting that 

bipartition jointly with the number of characters supporting the most prevalent bipartition that 

conflicts with the internode. 

 

Example #1. Let us assume that there are four prevalent conflicting bipartitions with 

frequencies of 40%, 10%, 10% and 10%, respectively for a given internode. In this case, 
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IC = 1 +
40

40 + 10
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Example #2. Let us assume that there are four prevalent conflicting bipartitions with 

frequencies of 40%, 40%, 10% and 10%, respectively for a given internode. In this case, 

 

IC = 1 +
40

40 + 40
𝑙𝑜𝑔2 �

40
40 + 40

� +
40

40 + 40
𝑙𝑜𝑔2 �

40
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� = 0.00  

 

Tree Certainty (TC). We define Tree Certainty (TC) as the sum of all IC values across all 

internodes of a phylogenetic tree. 

 

Evaluation of Phylogenomic Practices 

Removing positions or genes with gaps. We used custom perl scripts to modify our default 

alignments by removing sites that contained either ≥50% gaps or any gap. We also tested 

whether the removal of genes producing alignments of bad quality by filtering genes whose 

alignment length after removal of all gap-containing sites was ≤70% of the original alignment 

length (instead of the ≤50% threshold used in the default analysis). 

 

Removing species from dataset. We removed several different unstable and fast-evolving species 

from the default dataset, singly and in combination. After each removal, the new orthogroups 

were re-aligned, a new best-fit evolutionary model was identified, and the phylogenetic analysis 

was performed again with the new alignment and model.   

 



121 
 

Selection of genes that recover specific bipartitions. For the 100 hundred bootstrap replicate trees 

constructed from each gene, we used the CONSENSE program in the PHYLIP package to 

generate the bootstrap consensus tree as well as its bipartitions. Using custom perl scripts, we 

then extracted all genes that supported the three following bipartitions: (1) [C. albicans, C. 

dubliniensis, C. tropicalis], (2) [C. glabrata, K. polysporus, S. bayanus, S. castellii, S. cerevisiae, 

S. kudriavzevii, S. mikatae, S. paradoxus, Z. rouxii], and (3) [C. glabrata, S. bayanus, S. 

cerevisiae, S. kudriavzevii, S. mikatae, S. paradoxus]. We then used the selected genes and their 

GTs to infer a species phylogeny using concatenation and eMRC analysis. 

 

Selecting slow-evolving genes. The 100 slowest-evolving genes were identified by calculating 

the 100 genes whose GTs had the smallest sum of branch lengths.  

 

Selecting single rare but conserved aa substitutions or indels. To reduce the effect of homoplasy 

for early divergent internodes, many studies have suggested the use of rare substitution types63 as 

well as insertions or deletions (indels)64. We constructed three datasets by extracting all sites 

from our 1,070 gene alignments that contained (1) a single radical aa substitution (defined as a 

substitution with a blosum62 matrix score ≤–3) (20,289 sites), (2) a single substitution between 

aa that differ radically in their physicochemical properties63 (4,075 sites), or (3) a single indel 

that spans 7 or more aa (2,474 sites). The presence of any of these three types of sites instantly 

parts a set of x species into two groups of taxa or, equivalently, into two bipartitions (01….0m and 

11…1n), where m ≥ 2 species contain the “0” character state, n ≥ 2 species contain the “1” 

character state, and m + n = x. To quantify the extent of incongruence of each type of site on a 

given internode we used IC to measure the amount of information available for that internode by 
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considering the number of characters supporting that internode jointly with the number of 

characters supporting the most prevalent bipartition that conflicts with the internode. 

 

Selecting genes with high average BS or high TC. For every gene from the default dataset, we 

estimated the average BS value of all 20 internodes of its bootstrap consensus tree. We also used 

the set of bootstrap replicate trees for every gene to calculate the IC value of every internode in 

its bootstrap consensus tree. Thus calculated, the IC value reflects the amount of information 

available for that internode in the set of bootstrap replicate trees because it considers the 

internode’s BS jointly with the BS of the most prevalent bipartition that conflicts with the 

internode. We then calculated the TC value for each gene by summing the IC values of all 

internodes in its bootstrap consensus tree. Finally, we used these average BS and TC values to 

construct six subsets of orthogroups: three with genes having average BS ≥ 60% (904 genes), ≥ 

70% (545 genes) and ≥ 80% (131 genes), as well as three datasets of the 904, 545, and 131 genes 

with the highest TC.   

 

Selecting bipartitions with high BS. For every gene from the default dataset, we extracted all 

bipartitions from its bootstrap consensus tree that had BS ≥60%, ≥70% and ≥80%. We then used 

each one of these three sets of highly supported bipartitions to construct eMRC species 

phylogenies with custom perl scripts. 

 

Estimating root–to-node and internode length. We calculated the root-to-node length as the sum 

of all branch lengths from the midpoint of the rooted concatenation species phylogeny to the 
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focal node. As internode length, we considered the branch length of the internode leading to the 

focal node.    
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SUPPLEMENTARY FIGURES & TABLES 
 
Supplementary Table 1. The Taxonomy of the Organisms Used in this Study 

Organism (acronym) Taxonomy 

Yeasts  

Kluyveromyces waltii (Kwal) Fungi;Ascomycota;Saccharomycetes;Saccharomycetaceae 

Kluyveromyces  thermotolerans (Kthe) Fungi;Ascomycota;Saccharomycetes;Saccharomycetaceae 

Saccharomyces kluyveri (Sklu) Fungi;Ascomycota;Saccharomycetes;Saccharomycetaceae 

Kluyveromyces lactis (Klac) Fungi;Ascomycota;Saccharomycetes;Saccharomycetaceae 

Eremothecium gossypii (Egos) Fungi;Ascomycota;Saccharomycetes;Saccharomycetaceae 

Zygosacharomyces rouxii (Zrou) Fungi;Ascomycota;Saccharomycetes;Saccharomycetaceae 

Kluyveromyces polysporus (Kpol) Fungi;Ascomycota;Saccharomycetes;Saccharomycetaceae 

Candida glabrata (Cgla) Fungi;Ascomycota;Saccharomycetes;Saccharomycetaceae 

Saccharomyces castellii (Scas) Fungi;Ascomycota;Saccharomycetes;Saccharomycetaceae 

Saccharomyces bayanus (Sbay) Fungi;Ascomycota;Saccharomycetes;Saccharomycetaceae 

Saccharomyces kudriavzevii (Skud) Fungi;Ascomycota;Saccharomycetes;Saccharomycetaceae 

Saccharomyces mikatae (Smik) Fungi;Ascomycota;Saccharomycetes;Saccharomycetaceae 

Saccharomyces paradoxus (Spar) Fungi;Ascomycota;Saccharomycetes;Saccharomycetaceae 

Saccharomyces cerevisiae (Scer) Fungi;Ascomycota;Saccharomycetes;Saccharomycetaceae 

Candida lusitaniae (Clus) Fungi;Ascomycota;Saccharomycetes;Saccharomycetaceae 

Candida dubliniensis (Cdub) Fungi;Ascomycota;Saccharomycetes;Saccharomycetaceae 

Candida albicans (Calb) Fungi;Ascomycota;Saccharomycetes;Saccharomycetaceae 

Candida tropicalis (Ctro) Fungi;Ascomycota;Saccharomycetes;Saccharomycetaceae 

Candida parapsilosis (Cpar) Fungi;Ascomycota;Saccharomycetes;Saccharomycetaceae 

Lodderomyces elongisporus (Lelo) Fungi;Ascomycota;Saccharomycetes;Saccharomycetaceae; 

Pichia stipitis (Psti) Fungi;Ascomycota;Saccharomycetes;Saccharomycetaceae 

Candida guilliermondii (Cgui) Fungi;Ascomycota;Saccharomycetes;Saccharomycetaceae 

Debaryomyces hansenii (Dhan) Fungi;Ascomycota;Saccharomycetes;Saccharomycetaceae 

Verterbrates  

Xenopus tropicalis (Xtro) Animalia;Chordata;Aphibia;Anura;Pipidae 

Gallus gallus (Ggal) Animalia;Chordata;Aves;Galliformes;Phasianidae 

Monodelphis domestica (Mdom) Animalia;Chordata;Monodelphis;Mammalia;Didelphimorphia 

Bos taurus (Btau) Animalia;Chordata;Mammalia;Artiodactyla;Bovidae 

Equus caballus (Ecab) Animalia;Chordata;Mammalia;Perissodactyla;Equidae 

Canis familiaris (Cfam) Animalia;Chordata;Mammalia;Carnivora;Canidae 

Macaca mulatta (Mmul) Animalia;Chordata;Mammalia;Primates;Cercopithecidae 

Pongo pygmaeus (Ppyg) Animalia;Chordata;Mammalia;Primates;Hominidae 

Homo sapiens (Hsap) Animalia;Chordata;Mammalia;Primates;Hominidae 

Pan troglodytes (Ptro) Animalia;Chordata;Mammalia;Primates;Hominidae 

Rattus norvegicus (Rnor) Animalia;Chordata;Mammalia;Rodentia;Muridae 

Mus musculus (Mmus) Animalia;Chordata;Mammalia;Rodentia;Muridae 
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Cavia porcellus (Cpor) Animalia;Chordata;Mammalia;Rodentia;Caviidae 

Danio rerio (Drer) Animalia;Chordata;Actinopterygii;Cypriniformes;Cyprinidae 

Oryzias latipes (Olat) Animalia;Chordata;Actinopterygii;Beloniformes;Adrianichthyidae 

Tetraodon nigroviridis (Tnig) Animalia;Chordata;Actinopterygii;Tetraodontiformes;Tetraodontidae 

Takifugu rubripes (Trub) Animalia;Chordata;Actinopterygii;Tetraodontiformes;Tetraodontidae 

Gasterosteus aculeatus (Gacu) Animalia;Chordata;Actinopterygii;Gasterosteiformes;Gasterosteidae 

Metazoa  

Strongylocentrotus  purpuratus (Spur) Animalia;Echinodermata;Echinoidea;Echinoida;Strongylocentrotidae 

Branchiostoma floridae (Bflo) Animalia;Chordata;Leptocardii;Amphioxiformes;Branchiostomidae 

Ciona intestinalis (Cint) Animalia;Chordata;Ascidiaceae;Enterogona;Cionidae 

Mus musculus (Mmus) Animalia;Chordata;Mammalia;Rodentia;Muridae 

Gallus gallus (Ggal) Animalia;Chordata;Aves;Galliformes;Phasianidae 

Homo sapiens (Hsap) Animalia;Chordata;Mammalia;Primates;Hominidae 

Xenopus tropicalis (Xtro) Animalia;Chordata;Aphibia;Anura;Pipidae 

Danio rerio (Drer) Animalia;Chordata;Actinopterygii;Cypriniformes;Cyprinidae 

Helobdella robusta (Hrob) Animalia;Annelida;Clitellata;Rhynchobdellida;Glossiphoniidae 

Lottia gigantea (Lgig) Animalia;Mollusca;Gastropoda;Patellogastropoda;Lottiidae 

Caenorhabditis elegans (Cele) Animalia;Nematoda;Secernentea;Rhabditida;Rhabditidae 

Schistosoma mansoni (Sman) Animalia;Platyhelminthes;Digenea;Strigeidida 

Ixodes scapularis (Isca) Animalia;Arthropoda;Arachnida;Ixodida;Ixodidae 

Daphnia pulex (Dpul) Animalia;Arthropoda;Branchiopoda;Cladocera;Daphniidae 

Apis mellifera (Amel) Animalia;Arthropoda;Insecta;Hymenoptera;Apidae 

Tribolium castaneum (Tcas) Animalia;Arthropoda;Insecta;Coleoptera;Tenebrionidae 

Drosophila melanogaster (Dmel) Animalia;Arthropoda;Insecta;Diptera;Drosophilidae 

Bombyx mori (Bmor) Animalia;Arthropoda;Insecta;Lepidopteroa;Bombycidae 

Monosiga brevicollis (Mbre) hoanoflagellida;Codonosigidae 

Nematostella vectensis (Nvec) Animalia;Cnidaria;Anthozoa;Actiniaria;Edwardsiidae 

Trichoplax adhaerens (Tadh) Animalia;Placozoa;Tricoplacia;Tricoplaciformes;Trichoplacidae 
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Supplementary Table 2.Bipartitions that Significantly Conflict with the Bipartitions Recovered in the 
Concatenation Phylogeny of 23 Yeast Genomes 

Primary Tree Bipartition GSF IC [Conflicting Bipartition]:GSF value 

Kthe, Kwal 99 0.96 None 

    
Calb, Cdub 98 0.95 None 

    
Sbay, Scer, Skud, Smik, Spar 99 0.97 None 

    
Calb, Cdub, Cgui, Clus, Cpar, Ctro, 

Dhan, Lelo, Psti 
95 0.90 None 

    
Calb, Cdub, Ctro 90 0.78 None 

    
Cpar, Lelo 89 0.77 None 

    
Calb, Cdub, Cpar, Ctro, Lelo 86 0.76 None 

    
Scer, Spar 77 0.54 [Sbay,Skud,Smik,Spar]:8; [Smik,Spar]:5 

    
Cgla, Kpol, Sbay, Scas, Scer, Skud, 

Smik, Spar, Zrou 
62 0.59 

[Calb,Cdub,Cgla,Cgui,Clus,Cpar,Ctro,Dhan,Lelo,Psti]:6; 
[Calb,Cdub,Cgui,Clus,Cpar,Ctro,Dhan,Lelo,Psti,Zrou]:5 

    
Scer, Smik, Spar 60 0.30 

[Sbay,Skud,Smik]:14; [Sbay,Scer,Skud,Spar]:11; 
[Sbay,Skud,Smik,Spar]:8; [Skud,Smik]:7 ; [Scer,Skud,Spar]:6 

    
Scer, Skud, Smik ,Spar 52 0.06 

[Sbay,Skud]:29; [Sbay,Skud,Smik]:14; [Sbay,Scer,Smik,Spar]:11; 
[Sbay,Scer,Skud,Spar]:11; [Sbay,Skud,Smik,Spar]:8 

    

Calb, Cdub, Cpar, Ctro, Lelo, Psti 45 0.11 
[Cgui,Clus,Dhan,Psti]:20; [Dhan,Psti]:11; [Cgui,Dhan,Psti]:10; 

[Calb,Cdub,Cgui,Clus,Cpar,Ctro,Dhan,Lelo]:8; 
[Calb,Cdub,Clus,Cpar,Ctro,Lelo]:5; [Clus,Dhan,Psti]:5 

    

Kthe, Kwal, Sklu 41 0.32 

[Agos,Kthe,Kwal]:9; [Calb,Cdub,Cgui,Clus,Cpar,Ctro,Dhan,Kthe, 
Kwal,Lelo,Psti]:9; [Klac,Sklu]:8; [Agos,Klac,Kthe,Kwal]:7; [Agos, 

Klac,Sklu]:7; [Agos,Sklu]:7; [Cgla,Kpol,Kthe,Kwal,Sbay,Scas, 
Scer,Skud,Smik,Spar,Zrou]:6; [Klac,Kthe,Kwal]:5; [Cgla,Kpol, 

Sbay,Scas,Scer,Sklu,Skud,Smik,Spar,Zrou]:5 

    

Agos, Klac 36 0.09 

[Agos,Cgla,Kpol,Kthe,Kwal,Sbay,Scas,Scer,Sklu,Skud,Smik,Spar,Zrou
]:17; [Cgla,Klac,Kpol,Kthe,Kwal,Sbay,Scas,Scer,Sklu,Skud, 

Smik,Spar,Zrou]:13; [Agos,Kthe,Kwal,Sklu]:13; [Klac,Kthe,Kwal, 
Sklu]:10; [Agos,Kthe,Kwal]:9; [Klac,Sklu]:8; [Agos,Sklu]:7; [Cgla, 

Klac,Kpol,Sbay,Scas,Scer,Skud,Smik,Spar,Zrou]:7; [Klac,Kthe, 
Kwal]:5 

    

Agos, Klac, Kthe, Kwal, Sklu 31 0.04 

[Agos,Calb,Cdub,Cgui,Clus,Cpar,Ctro,Dhan,Klac,Lelo,Psti]:19; 
[Calb,Cdub,Cgui,Clus,Cpar,Ctro,Dhan,Klac,Lelo,Psti]:17; [Agos, 
Calb,Cdub,Cgui,Clus,Cpar,Ctro,Dhan,Lelo,Psti]:13; [Calb,Cdub, 
Cgui,Clus,Cpar,Ctro,Dhan,Kthe,Kwal,Lelo,Psti]:9; [Agos,Cgla, 
Klac,Kpol,Sbay,Scas,Scer,Skud,Smik,Spar,Zrou]:7; [Cgla,Klac, 
Kpol,Sbay,Scas,Scer,Skud,Smik,Spar,Zrou]:7; [Cgla,Kpol,Kthe, 
Kwal,Sbay,Scas,Scer,Skud,Smik,Spar,Zrou]:6; [Cgla,Kpol,Sbay, 

Scas,Scer,Sklu,Skud,Smik,Spar,Zrou]:5 
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Cgla, Sbay, Scas, Scer, Skud, Smik, 
Spar 

29 0.12 

[Cgla,Kpol]:12; [Kpol,Scas]:10; [Kpol,Sbay,Scas,Scer,Skud,Smik, 
Spar,Zrou]:9; [Kpol,Sbay,Scas,Scer,Skud,Smik,Spar]:8; [Cgla, 
Zrou]:8; [Kpol,Sbay,Scer,Skud,Smik,Spar]:8; [Sbay,Scer,Skud, 
Smik,Spar,Zrou]:7; [Sbay,Scas,Scer,Skud,Smik,Spar,Zrou]:7; 

[Cgla,Kpol,Scas]:6; [Agos,Klac,Kpol,Kthe,Kwal,Sbay,Scas,Scer, 
Sklu,Skud,Smik,Spar,Zrou]:6; [Scas,Zrou]:5 

    

Sbay, Scas, Scer, Skud, Smik, Spar 29 0.02 
[Cgla,Sbay,Scer,Skud,Smik,Spar]:20; [Cgla,Scas]:17; [Kpol, Scas]:10; 

[Kpol,Sbay,Scer,Skud,Smik,Spar]:8; [Sbay,Scer,Skud, 
Smik,Spar,Zrou]:7; [Cgla,Kpol,Scas]:6; [Scas,Zrou]:5 

    

Calb, Cdub, Cgui, Cpar, Ctro, Dhan, 
Lelo, Psti 

29 0.01 

[Cgui,Clus,Dhan]:24; [Cgui,Clus,Dhan,Psti]:20; [Cgui,Clus]:20; 
[Calb,Cdub,Clus,Cpar,Ctro,Dhan,Lelo,Psti]:16; [Clus,Dhan]:12; 
[Calb,Cdub,Clus,Cpar,Ctro,Lelo,Psti]:9; [Calb,Cdub,Cgui,Clus, 
Cpar,Ctro,Dhan,Lelo]:8; [Calb,Cdub,Cgui,Clus,Cpar,Ctro,Lelo, 
Psti]:6; [Clus,Dhan,Psti]:5; [Calb,Cdub,Clus,Cpar,Ctro,Lelo]:5 

    

Cgui, Dhan 29 0.02 

[Cgui,Clus]:20; [Calb,Cdub,Cpar,Ctro,Dhan,Lelo,Psti]:18; 
[Calb,Cdub,Clus,Cpar,Ctro,Dhan,Lelo,Psti]:16; [Clus,Dhan]:12; 
[Dhan,Psti]:11; [Calb,Cdub,Cgui,Cpar,Ctro,Lelo,Psti]:6; [Calb, 

Cdub,Cgui,Clus,Cpar,Ctro,Lelo,Psti]:6; [Clus,Dhan,Psti]:5 

    

Cgla, Kpol, Sbay, Scas, Scer, Skud, 
Smik, Spar 

24 0.02 

[Kpol,Zrou]:17; [Cgla,Sbay,Scas,Scer,Skud,Smik,Spar,Zrou]:15; 
[Kpol,Sbay,Scas,Scer,Skud,Smik,Spar,Zrou]:9; [Cgla,Zrou]:8; 

[Sbay,Scer,Skud,Smik,Spar,Zrou]:7; [Sbay,Scas,Scer,Skud,Smik, 
Spar,Zrou]:7; [Calb,Cdub,Cgla,Cgui,Clus,Cpar,Ctro,Dhan,Lelo, 

Psti]:6; [Scas,Zrou]:5 
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Supplementary Figures 4.1 | The topology of the yeast phylogeny recovered from concatenation 
analyses using one other maximum likelihood software (GARLI) and one other Bayesian inference 
(MrBayes) software was identical to the topology recovered by maximum likelihood analysis using the 
RAxML software. a, The yeast species phylogeny recovered from concatenation analysis of 1,070 genes 
using maximum likelihood as implemented in the GARLI software. All internodes received 100% 
bootstrap support. b, The yeast species phylogeny recovered from concatenation analysis of 1,070 
genes using Bayesian inference as implemented in the MrBayes software. All internodes had 100% 
posterior probability. 
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Supplementary Figures 4.2 | Representative values of the new measure Internode Certainty (IC) for a 
range of representative support values of two most prevalent and conflicting bipartitions for a given 
internode. Each plot on the graph depicts how IC (Y-axis) varies in response to the relative support of 
conflicting bipartitions on a given internode. IC can be measured on any given set of trees. For example, 
if the entire set of gene trees (GTs) is used, the IC value of a given internode will reflect the amount of 
information available for that internode in the set GTs by considering the internode’s gene support 
frequency jointly with the frequency of the most prevalent bipartition that conflicts with the internode. 
If the set of bootstrap replicate trees for a given gene is used, then IC will be calculated based on 
bootstrap support values. From the right to the left of the graph, the first of the four plots shown with 
triangle symbols corresponds to the case of only two conflicting bipartitions for one internode with 
support values X and 100–X. For example, given 100 total GTs, if 60 of them support bipartition 1, the 
remaining 40 will support the conflicting bipartition. The second, third and fourth of the four plots 
(shown with diamond, circle, and square symbols, respectively) correspond to case where there are 
three conflicting bipartitions for one internode, but only the two most prevalent ones are considered. 
For example, in the plot with the diamond symbols, given 100 total GTs, if 60 of them support 
bipartition 1, 35 will support the conflicting bipartition 2, because conflicting bipartition 3 has been set 
to be supported by 5 GTs. Thus, when the two most prevalent ones are considered, the percentage of 
GTs supporting the first bipartition will be equal to 60/(60+35), whereas the percentage of GTs 
supporting the second bipartition will be 35/(60+35). The reason that the number of GTs that support 
the third conflicting bipartition is not included is because we want IC to measure the magnitude of 
certainty conveyed by the two most prevalent bipartitions. This way, IC will equal zero when the two 
most prevalent bipartitions are equally prevalent (in this example that would be the case if bipartitions 1 
and 2 were each supported by 42.5 GTs each). 
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Supplementary Figures 4.3 | Removal of sites containing gaps or of poorly aligned genes does not 
significantly improve the yeast phylogeny inferred by concatenation and eMRC approaches. Each 
panel shows the yeast species phylogeny inferred from concatenation analysis (left panel) and from 
extended majority rule consensus (eMRC) analysis (right panel). All internodes of phylogenies inferred 
by concatenation received 100% bootstrap support unless otherwise indicated. Values near internodes 
of phylogenies inferred by eMRC analysis correspond to gene support frequency and internode 
certainty, respectively. a, Concatenation (left) and eMRC (right) phylogenies of all 1,070 genes following 
removal of all sites containing gaps. b, Concatenation (left) and eMRC (right) phylogenies of all 1,070 
genes following removal of all sites where ≥50% of the character states are gaps. c, Concatenation (left) 
and eMRC (right) phylogenies of the 374 genes whose alignment length following removal of all gaps is 
≥70% of the length of the original alignment. 
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Supplementary Figures 4.4 | Removal of one or more unstable or fast-evolving species has, if any, a 
minor and local effect on the yeast phylogeny inferred by concatenation and eMRC approaches. Each 
panel shows the yeast species phylogeny inferred from concatenation analysis (left panel) and from 
extended majority rule consensus (eMRC) analysis (right panel) following removal of one or more 
unstable or fast-evolving species from the analysis. All internodes of phylogenies inferred by 
concatenation received 100% bootstrap support unless otherwise indicated. Values near internodes of 
phylogenies inferred by eMRC analysis correspond to gene support frequency and internode certainty, 
respectively. a, Concatenation (left) and eMRC (right) phylogenies of all 1,070 genes following the 
removal of the unstable taxon Candida lusitaniae. b, Concatenation (left) and eMRC (right) phylogenies 
of all 1,070 genes following the removal of the fast-evolving and unstable taxon Kluyveromyces 
polysporus. c, Concatenation (left) and eMRC (right) phylogenies of all 1,070 genes following the 
removal of the fast-evolving and unstable taxon Candida glabrata. d, Concatenation (left) and eMRC 
(right) phylogenies of all 1,070 genes following the removal of the unstable taxon Saccharomyces 
castellii. e, Concatenation (left) and eMRC (right) phylogenies of all 1,070 genes following the removal of 
the fast-evolving and unstable taxon Eremothecium gossypii. f, Concatenation (left) and eMRC (right) 
phylogenies of all 1,070 genes following the removal of the fast-evolving and unstable taxon 
Kluyveromyces lactis. g, Concatenation (left) and eMRC (right) phylogenies of all 1,070 genes following 
the removal of both Eremothecium gossypii and Kluyveromyces lactis. h, Concatenation (left) and eMRC 
(right) phylogenies of all 1,070 genes following the removal of Eremothecium gossypii, Kluyveromyces 
lactis and Candida glabrata. 
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Supplementary Figures 4.5 | Removal of fast-evolving and unstable species has, if any, a minor and 
effect on GSF and IC values of internodes of the yeast phylogeny. The X-axis shows the 20 bipartitions 
present in the yeast phylogeny suggested by concatenation analysis and the Y-axis the percent change in 
gene support frequency (GSF) or Internode Certainty (IC) observed for each bipartition between the 
treatment (removal of fast-evolving and unstable species) and the default analysis (all species included). 
Only GSF changes ≥3% are shown. a, Change in the GSF values of the 20 bipartitions present in the yeast 
phylogeny when C. glabrata, C. lusitaniae, K. polysporus, and S. castellii are removed individually. b, 
Change in the IC values of the 20 bipartitions present in the yeast phylogeny when C. glabrata, C. 
lusitaniae, K. polysporus, and S. castellii are removed individually. 
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Supplementary Figures 4.6 | Removal of fast-evolving and unstable species or the exclusive use of 
genes that recover specific bipartitions has a minor and typically local effect on IC values of internodes 
of the yeast phylogeny. The X-axis shows the 20 bipartitions present in the yeast phylogeny suggested 
by concatenation analysis and the Y-axis the percent change in Internode Certainty (IC) observed for 
each bipartition between the treatment (removal of fast-evolving and unstable species or of genes that 
fail to recover specific clades) and the default analysis (all species and genes included). Only GSF changes 
≥3% are shown. a, The individual or combined removal of E. gossypii (Egos), K. lactis (Klac), and C. 
glabrata (Cgla), three of the fastest evolving species as well as of those whose phylogenetic position is 
most unstable from the dataset has a minor and local effect on the IC of neighboring internodes. b, The 
selection of genes whose individual topologies recover well-established bipartitions of the yeast 
phylogeny has a minor effect on the IC of internodes of the yeast phylogeny. Note that the [C. albicans, 
C. dubliniensis, C. tropicalis] (abbreviated [Calb, Cdub, Ctro]) bipartition has 90% GSF in the extended 
majority rule consensus (eMRC) phylogeny reconstructed from the 1,070 individual gene trees, the [C. 
glabrata, K. polysporus, S. bayanus, S. castellii, S. cerevisiae, S. kudriavzevii, S. mikatae, S. paradoxus, Z. 
rouxii] (abbreviated [Zrou, Kpol, Cgla, Sbay, Skud, Smik, Scer, Spar]) bipartition has 62% GSF, and the [C. 
glabrata, S. bayanus, S. cerevisiae, S. kudriavzevii, S. mikatae, S. paradoxus] (abbreviated [Cgla, Sbay, 
Skud, Smik, Scer, Spar]) bipartition has 20% GSF. This last bipartition does not appear in the eMRC 
phylogeny but, as discussed in the main text, several independent rare genomic changes strongly 
suggest that it is the correct one.  
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Supplementary Figures 4.7 | Selection of genes that support specific bipartitions has, if any, a minor 
and local effect on the yeast phylogeny inferred by concatenation and eMRC approaches. Each panel 
shows the yeast species phylogeny inferred from concatenation analysis (left panel) and from extended 
majority rule consensus (eMRC) analysis (right panel) following the selection and use of genes that 
recover specific bipartitions. All internodes of phylogenies inferred by concatenation received 100% 
bootstrap support unless otherwise indicated. Values near internodes of phylogenies inferred by eMRC 
analysis correspond to gene support frequency and internode certainty, respectively. a, Concatenation 
(left) and eMRC (right) phylogenies using only the genes that recover the [C. albicans, C. dubliniensis, C. 
tropicalis] (abbreviated [Calb, Cdub, Ctro]) bipartition. b, Concatenation (left) and eMRC (right) 
phylogenies using only the genes that recover the [C. glabrata, K. polysporus, S. bayanus, S. castellii, S. 
cerevisiae, S. kudriavzevii, S. mikatae, S. paradoxus, Z. rouxii] (abbreviated [Zrou, Kpol, Cgla, Sbay, Skud, 
Smik, Scer, Spar]) bipartition. c, Concatenation (left) and eMRC (right) phylogenies using only the genes 
that recover the [C. glabrata, S. bayanus, S. cerevisiae, S. kudriavzevii, S. mikatae, S. paradoxus] 
(abbreviated [Cgla, Sbay, Skud, Smik, Scer, Spar]) bipartition. This last bipartition does not appear in the 
eMRC phylogeny but, as discussed in the main text, several independent rare genomic changes strongly 
suggest that it is the correct one.  
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Supplementary Figures 4.8 | Selection of the 100 slowest-evolving genes has a large, negative effect 
on GSF and IC values of internodes of the yeast phylogeny inferred by concatenation and eMRC 
approaches. Each panel shows the yeast species phylogeny inferred from concatenation analysis (left 
panel) and from extended majority rule consensus (eMRC) analysis (right panel) following the selection 
and use of the 100 slowest-evolving genes. All internodes of phylogenies inferred by concatenation 
received 100% bootstrap support unless otherwise indicated. Values near internodes of phylogenies 
inferred by eMRC analysis correspond to gene support frequency and internode certainty, respectively.  
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Supplementary Figures 4.9 | Selection of sites that contain a single rare but conserved amino acid 
substitution or indels has a large, negative effect on GSF and IC values of internodes of the yeast 
phylogeny. The X-axis shows the 20 bipartitions present in the yeast phylogeny suggested by 
concatenation analysis and the Y-axis the percent change in Internode Certainty (IC) observed for each 
bipartition between the treatment (selection of specific sites or indels) and the default analysis (all sites 
included). Only GSF changes ≥3% are shown. The red bars correspond to changes in IC when using only 
the 20,289 sites that contain single radical substitutions (defined as a substitution with a blosum62 
matrix score ≤–3), the blue bars correspond to changes in IC when using only the 4,075 sites that contain 
a single substitution between amino acids that differ radically in their physicochemical properties, and 
the yellow bars correspond to changes in IC when using only the 2,474 characters which mark the 
presence / absence of a single indel that spans 7 or more aa among the 23 yeast species. 
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Supplementary Figures 4.10 | High levels of incongruence in Vertebrate and Metazoan phylogenomic 
datasets despite the inference of highly supported phylogenies by concatenation analysis. a, The 
distribution of the agreement between the bipartitions present in the 1,086 individual gene trees (GTs) 
and the vertebrate concatenation phylogeny, as well as the distribution of the agreement between the 
bipartitions present in 100 randomly generated trees of equal taxon number and the concatenation 
phylogeny, measured using the normalized Robinson-Foulds tree distance. The average tree distances 
between the 1,086 GTs and the concatenation phylogeny as well as between the 1,086 GTs with each 
other are also shown. b, The vertebrate species phylogeny recovered from concatenation analysis of 
1,086 genes using maximum likelihood. The extended majority rule consensus (eMRC) phylogeny is 
topologically identical to the concatenation phylogeny. Values near internodes correspond to bootstrap 
support and gene support frequency (GSF), respectively. Asterisks (*) denote internodes that received 
100% bootstrap support by the concatenation analysis. c, The distribution of Internode Certainty (IC) 
values for all internodes of the vertebrate species phylogeny. d, The distribution of the agreement 
between the bipartitions present in the 225 individual GTs and the metazoan concatenation phylogeny, 
as well as the distribution of the agreement between the bipartitions present in 100 randomly 
generated trees of equal taxon number and the concatenation phylogeny, measured using the 
normalized Robinson-Foulds tree distance. The average tree distances between the 225 GTs and the 
concatenation phylogeny as well as between the 225 GTs with each other are also shown. e, The 
metazoan species phylogeny recovered from concatenation analysis of 225 genes using maximum 
likelihood. The eMRC phylogeny is topologically identical to the concatenation phylogeny. Values near 
internodes correspond to bootstrap support and gene support frequency, respectively. Asterisks (*) 
denote internodes that received 100% bootstrap support by the concatenation analysis. f, The 
distribution of IC values for all internodes of the metazoan species phylogeny. Note that GSF and IC 
values indicate the existence of numerous internodes in the vertebrate and especially in the metazoan 
phylogeny that are supported by a small percentage of gene trees and have very small or zero IC values. 
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Supplementary Figures 4.11 | Selection of genes whose bootstrap consensus trees have high average 
Bootstrap Support (avBS) or Tree Certainty (TC) has a large, positive effect on GSF and IC values of 
internodes of the yeast phylogeny inferred by concatenation and eMRC approaches. Each panel shows 
the yeast species phylogeny inferred from concatenation analysis (left panel) and from extended 
majority rule consensus (eMRC) analysis (right panel) following the selection of genes whose trees have 
high average bootstrap support (BS) or Tree Certainty (TC). All internodes of phylogenies inferred by 
concatenation received 100% bootstrap support unless otherwise indicated. Values near internodes of 
phylogenies inferred by eMRC analysis correspond to gene support frequency and internode certainty, 
respectively. a, Concatenation (left) and eMRC (right) phylogenies of the 904 genes whose gene trees 
have average BS ≥60%. b, Concatenation (left) and eMRC (right) phylogenies of the 545 genes whose 
gene trees have average BS ≥70%. c, Concatenation (left) and eMRC (right) phylogenies of the 131 genes 
whose gene trees have average BS ≥80%. d, Concatenation (left) and eMRC (right) phylogenies of the 
904 genes with the highest TC. e, Concatenation (left) and eMRC (right) phylogenies of the 545 genes 
with the highest TC. f, Concatenation (left) and eMRC (right) phylogenies of the 131 genes with the 
highest TC. 
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Supplementary Figures 4.12 | Selecting highly supported genes or bipartitions has a large, positive 
effect on GSF and IC values of internodes of the yeast phylogeny. The X-axis shows the 20 bipartitions 
present in the yeast phylogeny suggested by concatenation analysis and the Y-axis the percent change in 
Gene Support Frequency (GSF) and Internode Certainty (IC) observed for each bipartition between the 
treatment (selection of highly supported genes or internodes) and the default analysis. Only GSF 
changes ≥3% and IC changes ≥0.03 are shown. The red bars correspond to changes in IC when using only 
the 131 genes with average bootstrap support ≥80%, the yellow bars correspond to changes in IC when 
using only the 131 genes with the highest Tree Certainty, the black bars correspond to changes in IC 
when using only those bipartitions found in the bootstrap consensus trees of individual genes that had 
bootstrap support ≥80%, and  the blue bars correspond to changes in IC when using only the 100 
slowest-evolving genes. a, Change in GSF for highly supported genes or slow evolving genes. b, Change 
in IC for highly supported genes, bipartitions or slow evolving genes. 
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Supplementary Figures 4.13 | Selection of highly supported bipartitions from the bootstrap consensus 
trees of individual genes has a large, positive effect on the IC values of internodes of the yeast 
phylogeny inferred by the eMRC approach. The first three panels show the yeast species phylogeny 
inferred from extended majority rule consensus (eMRC) analysis following the selection of bipartitions 
that had high bootstrap support (BS) in the bootstrap consensus trees of individual genes. Values near 
internodes correspond to the percentage of bootstrap consensus trees of individual genes in which this 
specific bipartition received high BS and to internode certainty (IC), respectively. a, The eMRC phylogeny 
inferred from selecting bipartitions that had BS ≥60% in individual gene analyses. b, The eMRC 
phylogeny inferred from selecting bipartitions that had BS ≥70% in individual gene analyses. c, The 
eMRC phylogeny inferred from selecting bipartitions that had BS ≥80% in individual gene analyses. d, 
Plot that illustrates the change in IC of internodes relative to the values obtained in the default analysis 
associated with the use of bipartitions that had high bootstrap support (BS) in the bootstrap consensus 
trees of individual genes. Each line of different color depicts the IC value obtained for a given internode 
in the default analysis (Fig. 1a), when using only bipartitions that had BS ≥60%, BS ≥70%, and BS ≥80%. 
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Supplementary Figures 4.14 | Selection of highly supported genes and bipartitions has a large, 
positive effect on IC values of internodes of the vertebrate and metazoan phylogenies. a, Plot that 
illustrates the change in IC of internodes of the vertebrate phylogeny relative to the values obtained in 
the default analysis associated with the use of genes whose bootstrap consensus trees have high 
average bootstrap support (BS) or with the use of bipartitions that had high BS in the bootstrap 
consensus trees of individual genes. Each line of different color depicts the IC value obtained for a given 
internode in the default analysis (Supplementary Fig. S10b), when using only genes with average BS 
≥60%, BS ≥70%, and BS ≥80%, as well as when using only bipartitions that had BS ≥60%, BS ≥70%, and BS 
≥80%. b, Plot that illustrates the change in IC of internodes of the metazoan phylogeny relative to the 
values obtained in the default analysis associated with the use of genes whose bootstrap consensus 
trees have high average bootstrap support (BS) or with the use of bipartitions that had high BS in the 
bootstrap consensus trees of individual genes. Each line of different color depicts the IC value obtained 
for a given internode in the default analysis (Supplementary Fig. S10e), when using only genes with 
average BS ≥40%, BS ≥50%, and BS ≥60%, as well as when using only bipartitions that had BS ≥60%, BS 
≥70%, and BS ≥80%. 
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Supplementary Figures 4.15 | The phylogenetic consensus network that describes the 1,070 yeast 
gene histories. The consensus network inferred using the 1,070 maximum likelihood gene trees under 
the median network construction algorithm in the SplitsTree4 software. Boxes in the network denote 
internodes that harbor significant conflict, with the length of each branch in each box being proportional 
to the number of GTs that support it. Only branches that are present in at least 10% of the GTs are 
shown in the network. 
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Supplementary Figures 4.16 | Supported, weakly supported, and unresolved internodes in the yeast 
phylogeny. Values near internodes correspond to gene support frequency and internode certainty, 
respectively calculated from the 1,070 yeast gene histories. Note that the validity of certain internodes 
marked as “unresolved” is supported by independent data (e.g., rare genomic changes). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



157 
 

Supplementary Figures 4.17 | The yeast phylogeny inferred using a “species tree” method that 
accounts for variation between the 1,070 gene histories is highly supported and has extremely short 
internodes whose coalescent unit lengths are highly correlated with gene support frequency and 
internode certainty values. Using the 1,070 gene dataset, we inferred a yeast species phylogeny under 
the coalescent model and average ranks of gene coalescence times, as implemented in the STAR species 
tree method. a, The yeast species phylogeny under the coalescent. Values near internodes correspond 
to bootstrap support and internode length in coalescence units, respectively. The inferred topology is 
identical to the phylogeny shown in Figures 4.1a, except with respect to the placement of Candida 
lusitaniae. b, The lengths of internodes in the phylogeny inferred using the STAR species tree method, 
measured in average coalescent units, is highly correlated with internodes’ Gene Support Frequency 
(left panel) and Internode Certainty (right panel) values. The strength of each correlation is indicated by 
r, Pearson’s correlation coefficient. 
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ABSTRACT 
 
The reconstruction of ancient divergences continues to confound molecular phylogeneticists due 

to the presence of substantial amounts of incongruence between gene trees. Apart from 

biological events that can cause gene histories to differ from the species one, several previous 

studies have suggested a link between the functional characteristics of genes (e.g., GC content) 

and their degree of incongruence. Identifying the influence of different factors on phylogenetic 

inference is critical because they render phylogenetic studies vulnerable to systematic error and 

model misspecification but also because they can help identify genes that are more informative  

markers of phylogeny. In this study, we examined the degree to which 10 diverse functional and 

evolutionary characteristics -extracted from 1,070 groups of orthologous genes (orthogroups) 

from 23 yeast species- are correlated with 4 phylogenetic gene measures of incongruence, two 

referring to the orthogroup’s conflicting phylogenetic signal and the other two to the 

orthogroup’s tree when compared against all other gene trees. Overall, we found that GC 

content, the percentage of variable sites, codon bias and codon adaptation, provided the highest 

correlation with the levels of gene incongruence both within and across gene trees. Genes with 

low GC content or low GC variance across taxa, with higher percentage of variable sites or 

relative long branches, as well as genes with lower codon bias, seem to be less incongruent. On 

the other end of the spectrum, genes that exhibit few or many physical interactions, much 

conserved genes, and genes with high or low codon adaptation appear to increase gene 

incongruence. A principal component regression analysis showed that variance based on 

different functional factors can explain approximately 15-20% of the total variance in gene tree 

incongruence. Thus, even though several functional and evolutionary properties of genes 

contribute significantly to the incongruence between a given gene tree and the species 
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phylogeny, our results indicate that a large amount of the observed incongruence remains 

unexplained. Selecting genes based on their phylogenetic properties remains the safest way to 

reduce incongruence.    

 

INTRODUCTION 

Phylogenomic data matrices from diverse clades of the tree of life typically exhibit extensive 

phylogenetic incongruence between the trees of the individual genes that comprise them1–12. In 

general, the reasons for observing phylogenetic incongruence may be characterized as either 

analytical or biological. Biological reasons involve cases where the history of genes is genuinely 

different from the species phylogeny13. In contrast, analytical reasons involve cases where the 

data are not representative of the whole population5,14,15or the models of evolution are 

misspecified16,17, and are typically distinguished into two types, sampling error and systematic 

error16.  

Several factors contribute to sampling and systematic error. Factors that may increase sampling 

error are taxon sampling6,18,19 and the availability of data15,16,20,21. Importantly, incongruence 

stemming from sampling errors can be detected and overcome by including more data; the same 

is typically true of biological reasons. In contrast, incongruence stemming from systematic error 

cannot be overcome by increases in the amount of data5,22. Example of factors that may contribute 

to systematic error are base composition and compositional heterogeneity, sequence length, 

mutation rate,the branching pattern of a phylogeny, branch length and others18,23–31,32. In their 

2003 study, using a matrix of 106 orthologous groups, Rokas et al. identified that bootstrap 

support obtained from individual gene tree analyses was significantly correlated with gene 

properties such as gene size, long branches, GC content, or the percentage of variable sites5. 
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Subsequent analyses of the same dataset showed an additional dependence on gene stationarity 

(genes exhibiting similar base frequencies among taxa)33 and that, occasionally, the length of the 

branches resulted in the misplacement for some of the eight taxa19,21. 

In Salichos and Rokas 2013, using a dataset of 1,070 groups of orthologous genes or orthogroups 

constructed based on syntenic information, sequence similarity and manual curation from 23 

yeast species, we showed that gene tree incongruence was highly correlated with short internodes 

at the base of the phylogeny. By comparing 1,070 yeast genes against the species phylogeny, we 

discovered great differences among the gene trees, as well as between the gene trees and the 

species phylogeny. Moreover, with the use of two novel phylogenetic measures that quantify 

incongruence, namely internode certainty (IC) and tree certainty (TC), we showed that by 

selecting genes or gene tree bipartitions that exhibit high TC (genes) or IC (bipartitions) values, 

we were able to decrease the levels of incongruence much more than when we applied standard 

practices such as the removal of rogue taxa, genes or sites. However, the factors that contribute 

to these high levels of incongruence and may render a gene more informative still remain largely 

unexplored.  

In this study, we first estimate the correlation between a set of 10 functional gene factors (% GC 

content, variance in GC content across sequences of the orthogroup, % of variable sites, sum of 

gene tree branch lengths, codon bias and codon adaptation34, number of physical or genetic 

interactions per gene - retrieved from the Saccharomyces Genome Database35-, gene expression -

as estimated from Busby et al 201136-, number of paralogs per gene) and a set of 4 phylogenetic 

measures (including gene Tree Certainty (TC)37, orthogroup tree’s average bootstrap support 

(AvBS)38, gene tree’s Robinson-Foulds39 mean distance (mRF) and Robinson-Foulds variance of 

distances per gene). My results indicate a significant correlation between phylogenetic 
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incongruence and many functional gene properties, including % GC content, % variable sites, 

codon bias and codon adaptation. Second, using a sliding-window approach, we test the behavior 

of these functional factors in terms of contributing or not to incongruence, across a range of the 

gene values in ascending order, by constructing majority consensus trees for each sliding 

window of 100 genes. These analysis show that genes with low GC content or low GC variance 

across taxa, with higher percentage of variable sites or relative long branches and genes with 

lower codon bias, seem to provide MRC trees with higher TC. On the contrary, genes linked 

with few or many physical interactions, as well as much conserved genes provide MRC trees 

with very low TC.T hird, using a principal component regression, we examine the linearity of 

functional factors against mRF, a measure that demonstrates the topological distance of one gene 

against all others. Based on this analysis, we find that approximately 18% of total topological 

variance can be directly explained by functional gene factors. However, even though these 

factors may play a significant role in driving gene incongruence, they still cannot be utilized as 

effective markers for selecting informative genes 

 

RESULTS 

Using a dataset of 1,070 orthogroups, we assigned for each orthogroup a set of functional 

measures like % GC content, % GC variance across the orthogroup, % of variable sites, branch 

length of its gene tree, codon bias, codon adaptation, number of genetic or physical interactions, 

gene expression, and number of gene paralogs. Values for the last six factors were obtained 

based on the Saccharomyces cerevisiae gene ortholog. For each orthogroup, we also calculated 4 

measures of  incongruence including gene TC, AvBS, mRF and RF variance. Gene TC and 

AvBS refer to the incongruence observed based on the orthogroup’s conflicting phylogenetic 
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signals, while mRF and RF distance variance refer to how incongruent is the orthogroup’s gene 

tree when compared against all other genes trees. 

 

Significant Link Between Gene Factors and Phylogenetic Gene Incongruence 

Initially, we estimated the correlation among the set of 10 factors and 4 phylogenetic measures. 

In table 5.1, we summarize the results for every correlation analysis between all gene factors and 

phylogenetic measures. All phylogenetic measures showed a very high correlation (positive or 

negative) with each other. Significant correlation was also observed between functional  factors 

like % GC content, % of variable sites, codon bias, codon adaptation, sum of branch lengths, the 

number of physical interactions and gene expression. Finally, % GC content, % of variable sites, 

codon bias and codon adaptation provided a significant correlation with values of mRF having a 

Pearson’s coefficient of > 0.2, suggesting involvement in gene’s incongruence.  

Table 5.1. A correlation analysis. For every orthogroup, we estimated the percentage of GC 
content, the variance of GC content, the percentage of variable sites, the sum of all branch 
lengths from the gene tree, the number of physical interactions (PI), the logPI, the number of 
genetic interactions (GI), the logGI, the codon adaptation index (CAI), the codon bias index 
(CBI), the expression levels of the S.cerevisiae (Scer) ortholog, the number of close paralogs to 
the Scer ortholog, the mean Robinson –Foulds distance against all other genes, the variance of all 
1069 pairwise RF distances, the average bootstrap support for its gene tree (AvBS) and the tree’s 
Tree Certainty. Then we calculated the correlation across different gene factors and phylogenetic 
measures. Values represent the Pearson’s coefficient R. 
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A Sliding Window Approach  

Using a sliding-window analysis with a step of 20 and a window of 100 genes, we ordered all 

1,070 genes in an ascending order based on their value for each different functional factor. Then, 

for every window of 100 genes and their respective gene-trees, each time we inferred the 

majority-rule consensus tree (MRC), while also calculating the MRC’s tree certainty (TC). We 

repeated this process for each phylogenetic measure. Our results indicated that selecting genes 

with high GC content or high GC variance increases incongruence (measured by the lower TC 

values). Genes whose trees have short branch lengths also increase incongruence, but the longest 

branches may provide lower TC too. The same trend in a greater magnitude seems to apply for 

the number of physical interactions per gene, whereby selecting genes with small or large 

numbers of physical interactions results in lower TC values. Genes with higher values of Codon 

Adaptation Index or Codon Bias Index appear to provide higher values of TC with very high 

correlation, but the effect on TC does not deviate much. Finally, genes with low expression seem 

to provide higher TC values, but overall correlation is not that high (figure 5.1). As expected, 

phylogenetic properties showed an extremely high correlation with TC, while the first 100 genes 

with the smallest mRF presented the highest TC across all datasets (figure 5.2). 
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Figure 5.1. A sliding window approach for functional factors. Using a sliding window 
approach, with a window of 100 genes and a step of 10, we plot the majority consensus tree’s 
Tree Certainty (y axis) vs the average (x axis) value of 100 gene’s GC content, variance of GC 
content, percentage of variable sites, tree’s total branch length, number of physical interactions, 
genetic interactions, Codon adaptation index, Codon Bias Index and gene expression. By plotting 
them in an ascending order, overall, none factor achieves particular high TC values, although 
many factors appear to behave differently across the spectrum of their values. Genes with lower 
GC content appears to show the least amounts of incongruence (close to 0.5). On the contrary, 
much conserved genes, appear to provide very high levels of incongruence (close to 0.3).   
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Figure 5.2.  A sliding window approach phylogenetic measures. Using a sliding window 
approach, with a window of 100 genes and a step of 10, we plot the majority consensus tree’s 
Tree Certainty (y axis) vs the average (x axis) value of 100 gene tree’s Tree Certainty (gTC), 
average bootstrap support (AvBS) and mean Robinson-Foulds distance. By plotting them in an 
ascending order, overall, all phylogenetic measures achieve high TC values (demonstrating low 
incongruence). mRF, not only provides the highest degree of  correlation, but by selecting genes 
with low mRF gives TC > 0.6. 

 

Regression analysis 

To decrease the number of dimensions in our data set, we performed a Principal Component 

Analysis (PCA) on the set of functional factors. Then, given the extremely high correlation 

between mRF and majority rule consensus TC, we used mRF to perform a regression analysis 

against those components, as well against the entire set of functional factors. Overall, the highest 

degree of variance was explained using 7 principal components accounting for ~18% of the total 
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variance (figure 5.3a). In figure 5.3b, we show a 3d representation of the three first Principal 

components, colored by mRF.          

Figure 5.3. Principal Component Regression analysis a) By performing a principal component 
regression analysis of all functional factors against each gene’s mean Robinson-Foulds distance 
we show that about 17% of the total variance of gene incongruence in the dataset can be 
explained by functional factors In b) we present a 3-d scatterplot of the first 3 principal 
components, where each gene’s values has been colored based on their mRF value. Darker colors 
signify higher mean distance and therefore a more evolutionary diverged gene.  
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Testing the predictability of functional factors to predict gene incongruence 

In the last step of our analysis, we randomly divided our dataset into two groups of 700 (training 

dataset) and 370 genes (testing). Using the training dataset, we trained a simple neural network 

of different layers and asked to predict each orthologous group’s mRF value based on its 

functional properties. Then, we performed a simple correlation analysis against the true mRF 

values for the test dataset. The best neural network consisted of 20 hidden layers, and provided 

an R2 of ~0.15. 

 

DISCUSSION 

The existence of topological conflict in recent phylogenomic analyses on ancient divergences40–

44together with an increasing number of studies that demonstrate extremely high levels of gene 

incongruence5,10,12,38,45continue to confound phylogeneticists. In general, phylogenetic 

incongruence can be attributed into two main reasons: biological or analytical16. As biological 

reasons, we consider events when some genes have a different history than their respective 

species such as incomplete lineage sorting, hybridization or horizontal gene transfer45–47. As, 

analytical, we consider the type of error that stems from either small sample sizes5,14,15 or the 

misspecification of the evolutionary model16,17.  

By performing a principal component regression analysis, we found that at least 17% of the total 

variance of gene-tree incongruence can be directly attributed to analytical reasons and gene 

factors like the percentage of GC content, codon bias, codon adaptation and percentage of 

variable sites. However, a large amount of this variance remains unexplained. Given that our 

analysis consisted of 1070 orthogroups based on syntenic information and without any missing 

data, the effect of sampling error5,22(small sample size), horizontal gene transfer and paralogy48 
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should be insignificant. Thus, we consider that the remaining variance of gene tree incongruence 

could be potentially explained by the existence of additional analytical reasons, the loss of 

phylogenetic signal in short internodes deep in time, together with biological reasons such as 

incomplete lineage sorting or hybridization. However, distinguishing between the three later 

reasons that may drive gene incongruence is an extremely difficult puzzle. One typical example 

is the high phylogenetic conflict observed for the topologies of S. bayanus and S. kudriavzevii 38. 

Our current models have a great difficulty in ascertaining whether this conflict is the result of 

hybridization or incomplete lineage sorting (but see 49,50). 

To tackle incongruence, several phylogenomic studies have adopted various approaches (see 

Salichos and Rokas 2013) including the selection of only a subset of genes based on specific 

gene properties.  Such properties may refer to various gene factors, for example retaining only 

slowly involving genes40,41,51–54, the use of gene markers55, ‘good’ genes that support known 

topologies55,56, as well as stationary genes33. In our analysis, we explored the behavior of 10 such 

functional gene factors (and their combination) but we were not able to identify any factor that 

stands out and could serve as reliable marker for selecting informative genes. Furthermore, we 

found that, in some cases, selecting for highly conserved genes could be detrimental in resolving 

ancient divergences. In contrast, by selecting genes based on phylogenetic measures such as gene 

TC, AvBS or mRF we were able to observe a dramatic decrease in gene incongruence.   
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METHODS 

The dataset 

To perform our analysis, we used the gene dataset from Salichos and Rokas 2013. This dataset 

consists of 1070 orthologous groups, without any missing data, constructed using synteny and 

orthology information present in the YGOB57 and CGOB58 databases from 23 yeast genomes.  

 

Analysis and calculation of phylogenetic properties 

Genes were aligned using MAFFT59, the best-fit evolutionary model for each gene-tree was 

determined using ProtTest60, and the maximum likelihood tree was estimated using RAxML. 

Moreover, using RAxML61, we also calculated Internode Certainty (IC)37 and Tree Certainty 

(TC)37 for each gene tree, TC for the sliding window approach and Robinson-Foulds(RF)39 gene 

tree distance. For each gene, to estimate the mean RF distance, we averaged over all 1069 

pairwise distances against every other gene. Size of homolog gene family was calculated using 

OrthoMCL62 with an inflation parameter of 1.5. The percentage of variable sites per genes, 

average bootstrap support per gene tree and branch lengths were calculated using custom perl 

scripts. The sliding window approach was also performed using custom perl scripts and RAxML. 

CBI and CAI34 for orthogroups were calculated using codonw63. 

 

Functional gene factors  

The number of physical and genetic interactions per gene were retrieved from the 

Saccharomyces Genome Database35. Information concerning Saccharomyces cerevisiae gene 

expression was retrieved from Busby et al., 201135. Raw counts were averaged per gene and 

expression values were normalized using RPKM.     
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 Statistical analysis   

All statistical and data mining analyses including data normalization, correlation, regression with  

Principal Component Analysis and the construction neural networks were performed using the R 

project64. 
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CHAPTER VI 

 

CONCLUSIONS 

 

In this last chapter, I would like to address and summarize epigrammatically, the basic 

conclusions of my dissertation thesis, as they were thoroughly presented throughout the previous 

chapters of my dissertation thesis. 

 

Chapter II: Evaluating ortholog prediction algorithms in a yeast model clade 

Having a quality set of orthogroups is the keystone for every phylogenic analysis. By evaluating 

4 graphed-based ortholog prediction algorithms in a yeast model, I found that they all perform 

very well in datasets deprived of paralogy, but their accuracy decreases dramatically when 

paralogy is rampant. Moreover, my evaluation of these algorithms showed that sometimes 

simpler is better, as cRBH, a simple clustering algorithm for reciprocal best hit outperformed all 

other three algorithms in almost every category. 

 

Chapter III: Novel information theory-based measures for quantifying incongruence among 

phylogenetic trees 

With the advent of phylogenomics, most recent phylogenetic studies do not depend on single few 

genes. However, despite the abundance of data and the high bootstrap support the use of 

hundreds of genes brought, many phylogenomic studies continue to present conflicting 

topologies, all supported with high confidence. For this reason, I developed 4 novel measures -

IC, ICA, TC, TCA- based on information theory and Shannon’s entropy, aiming at quantifying 
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incongruence and the uncertainty existing in many conflicting and ambiguous clades. These 

measures are independent from the species tree, optimality criteria, they can be used for many 

different types of data-characters, including molecular data, indels or other genomic characters, 

they can be used as optimality criterion, they are relatively straightforward and easy to use and 

they have been integrated in the latest version of RAxML, a very popular open-source software 

for constructing phylogenies. In the near future, I ‘ll be working with collaborators to extend 

these measures for datasets that contain missing data.   

 

Chapter IV: Inferring ancient divergences requires genes with strong phylogenetic signals 

As mentioned previously, the use of concatenation in several studies, has presented conflicting 

topologies with high support. By concatenating 1070 high quality orthogroups from a yeast 

model clade, I inferred the yeast species tree, which was at least partially wrong based on 

syntenic information. By examining the individual gene trees, I discovered that all gene trees 

differed from the inferred species tree, as well as with each other. Using IC, I was able to 

unmask excessive levels of gene tree incongruence and show that clades with high bootstrap 

support, were extremely ambiguous. Moreover, using TC, I demonstrated that several high-

profile and widely used methods that intend to decrease incongruence, have little, no or negative 

effect. Moreover, I introduced two new methods which were able to dramatically decrease 

phylogenetic incongruence. However, even with the use of these methods, I was not able to 

resolve at least four short basal internodes on the tree of yeast, possibly due to reasons of 

incomplete lineage sorting, hybridization, or simply the loss of any phylogenetic signal, after 

more than 200 million years of evolution. However, the development of methods that can 

distinguish between these three reasons of incongruence, still remains as a strong puzzle and a 
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future aim. It should be mentioned, that I also obtained similar results using  two more datasets; 

Vertebrates and Metazoa.  

 

Chapter V: Examination of factors that influence phylogenetic incongruence in a yeast model 

clade 

 In this chapter, I examined several functional gene factors to find whether they play a role in 

driving this excessive gene incongruence that I previously described.and whether genes that 

show some of these properties may be selected for phylogenetic markers. Overall, I found that 

some of these factors show a significant correlation with gene incongruence. Moreover, by 

implementing a principal component regression analysis on these functional gene factors, I was 

able to explain more than 17% of the total variance of gene incongruence. However, my results 

also showed that they cannot be selected for and used as reliable phylogenetic markers, despite 

their often use as such by many researchers.     
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