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Chapter 1

Introduction

The research presented in this work focuses on the development of an open source soft-

ware package, and specific hardware solution to implement a high fidelity magnetic res-

onance (MR) spectrometer using commercially-available software defined radios (SDR).

Specifically we show that one can home-build a high performance MR spectrometer, with

little hardware modification for roughly $2,000. This chapter discusses the basic compo-

nents of a magnetic resonance imaging (MRI) system, and MR spectrometer, and gives an

overview of the use of field programmable gate array (FPGA) based devices for custom

MR spectrometers. We will then discuss the specific gr-MRI software solution and system

architecture.

1.1 MR System Overview

Modern commercial MRI and nuclear magnetic resonance (NMR) spectrometers are so-

phisticated devices with very high performance. Figure 1.1 shows a block diagram for a

typical modern MR scanner. There are many basic components that comprise a modern RF

spectrometer and MRI system, which are defined by the way that MR signals are produced,

detected, and processed.

1.1.1 Magnet

The first necessary component of a MR, or NMR system is the magnet that creates the main

magnetic field. Some major considerations regarding the magnet are its strength, stability,

and field uniformity. The procession frequency at which protons spin in a magnetic field,

or the Larmour Frequency, is directly dependent on the strength of the magnetic field. A

larger main magnetic field will increase the Larmour Frequency, and thus increase the nec-
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Figure 1.1: Block diagram of a typical 2 channel modern MR signal pathway [1].

essary center frequency of the spectrometer system. Additionally, the field must be uniform

enough to observe spin features resulting from the physical structure that is being analyzed,

which for imaging applications usually requires a field uniformity of roughly 0.1 ppm over

the imaged volume [1]. The magnets used for this study were two aligned permanent mag-

nets resulting in a 0.5 Tesla (T) main field, but most modern clinical scanners use super

cooled electromagnets with field strengths ranging from 1.5T to upwards of 7T.

1.1.2 RF Probe

The most basic function of the RF probe is to couple nuclear spins to the RF transmitter or

receiver. When transmitting, the RF probe generates a magnetic field perpendicular to the

main magnetic field, affecting the magnetization vector in the sample. When receiving, the

probe converts the magnetic field changes created by the relaxation of nuclear spins into an

electrical current which is sent back to the MR spectrometer via an amplifier. The probe is

electrically tuned to the Larmour frequency, and typically matched to 50 Ohms impedance.
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There have been many sophisticated advances in the field of RF coils, but at its simplest, a

probe can simply be a loop of wire.

1.1.3 Magnetic Field Gradients

Magnetic field gradients, referred to simply as gradients in the rest of the paper, are coils

which play high voltage DC signals, which purposely create linear field inhomogeneities.

MR imaging depends on the use of gradients to spatially map the received signals to specific

frequencies generated by the gradients. Typically during an imaging experiment, gradients

are pulsed to create transient field gradients with properties creating desired linear phase

or frequency shifts across an object in three dimensions, resulting in the localization of

signals. Additionally, gradients are often played during RF transmission to couple nuclear

excitation to specific spatial locations.

1.1.4 MR Spectrometer

The MR spectrometer is responsible for the user controlled sequencing of RF and gradi-

ent pulses, as well as other gating pulses which control external hardware necessary for

MRI. Any modern MR spectrometer consists of several basic components, which when

combined, enable MR imaging.

1.1.4.1 Transmitter

The RF transmitter should be able to adapt to a wide range of potential frequencies and

applications in MR. MR spectrometers usually use a highly stable 10MHz crystal oscil-

lator, or something similar, which provides an RF source from which other frequencies

can be derived [1]. The spectrometer usually includes a general purpose frequency syn-

thesizer, so that it can produces RF pulses in a wide range of frequencies, as well as high

speed, and high resolution digital to analog converters (DACs) to create the actual pulses.

Modern spectrometers allow for user controlled RF transmission through time dependent
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amplitude modulation, which results in the ability to produce arbitrary pulse shapes. Addi-

tionally, spectrometers allow the user to modulate the phase of pulses, which is important

for many imaging applications, such as moving the location of slice selective excitation or

adiabatic swept pulse generation [2]. The signal produced by the spectrometer is generally

too small to create the required magnetic field (normally around 0dBm), so the output from

the transmitter is typically run through a power amplifier before being sent to the probe.

1.1.4.2 Receiver

The receive chain is responsible for converting the small signal detected by the probe into

a digital representation of that signal, which is saved in memory. The first step in the re-

ceive chain is usually amplified 60-100dB by the preamplifier before the coupling with the

spectrometer interface [1]. The spectrometer creates a complex signal by splitting the re-

ceived signal into two streams and adding 90 degrees of phase to one before they are sent

through independent high speed analog to digital converters (ADCs). Modern spectrome-

ters typically used 12-16 bit ADCs which achieve high signal resolution, and typically the

preamplifier is scaled so that the received signal uses the full dynamic range of the ADC. At

minimum, the ADC must sample at least twice as fast as the highest frequency component

in the signal to avoid aliasing, however it is typically advantageous to use as high a receive

bandwidth as possible because noise voltage decreases with increased bandwidth. The high

sampling rates create a high volume of data, which is typically down sampled before being

sent to a computer, or other digital control system.

1.1.4.3 Digital Control

MR spectrometers also include some sort of high performance digital control such as a

computer to coordinate the other spectrometer functions. The computer creates RF pulses,

and sets timing for the transmission of those pulses, gradient pulses, and hardware control

pulses in a pulse sequence, however most time critical pulses are loaded into the spec-
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trometer and handled by hardware. The computer also specifies the timing and duration of

data acquisition. Further, it defines the data sampling strategy, and keeps track of the data

received, which is saved to memory for post processing.

1.2 Overview of Software Defined Radios in MR and NMR

While modern commercial spectrometers deliver high performance, many research and

development applications in magnetic resonance require more configurable, portable, or

scalable spectrometers at a low cost. For example, spectrometers have been developed

in-house to meet the unique needs of low-field MRI scanners [3, 4], deliver point-of-care

relaxometry measurements [5], hyperpolarize exogenous contrast agents [6], increase the

number of receive channels in parallel imaging [7, 8, 9], implement parallel transmission [9,

10, 11], and acquire signals in NMR field monitoring probes concurrently with imaging [12,

13, 14]. In particular, many recent systems have been designed around field programmable

gate arrays (FPGAs) which perform sequencing and signal processing functions [15, 3, 16,

17, 18, 5, 9]. FPGAs are particularly well-suited for MR at Larmor frequencies of tens to

hundreds of megahertz since they can process multiple streams of transmitted and received

data in parallel at high speeds.

While FPGAs are well-suited to application in high-frequency MR spectrometers, repli-

cating current FPGA-based spectrometers is challenging for non-electronics experts due to

the steep learning curve involved in FPGA programming, and since most are based on cus-

tom circuitboard designs that would be difficult for non-experts to recreate. At the same

time, communications research has benefited in recent years from the development of the

open-source GNU Radio software (gnuradio.org), which enables non-hardware experts to

build custom software radios that can be used with a wide range of low-cost software-

defined radio (SDR) devices; at the time of writing, the GNU Radio website list ten com-

patible SDR vendors, many of which offer several SDR models [19]. SDR’s typically

comprise analog-to-digital and digital-to-analog converters, an FPGA for basic filtering
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and signal down- and up-conversion, and a USB interface. They can be thought of as PC

sound cards that operate at RF frequencies, in that they act as an interface between the digi-

tal computer and the analog world, while the PC handles most of the real-time digital signal

manipulations. Depending on their feature set, commercial GNU Radio-compatible SDR’s

currently cost between a few hundred and a few thousand dollars and ship with FPGA soft-

ware images, so the user can focus on implementing the functionality of their radios on

the PC side. Software radios are built in the Python programming language (python.org)

in GNU Radio, by connecting modular signal processing components together into a flow-

graph, the inputs and outputs of which are connected to the SDR via a driver interface.

Figure 1.2: Block diagram showing the basic signal chain components for a single RF
channel in SDR enabled MRI. The left side shows what the computer produces, the middle
shows the signal processing that happens in the SDR, and the right shows external MRI
specific hardware.

Figure 1.2 shows the basic signal chain for a single RF channel of SDR enabled MRI.

The software exists in the computer, where it is executed and sends instructions to the SDR

via a USB connection. The FPGA creates and sequences the final signals that are then

converted to analog signals. The analog signal can be either amplified or attenuated before

it is sent out of the radio to the RF amplifier, and to the Probe via the transmit / receive

switch. The received signal is amplified by the preamp, and returned to the radio where

it can be further amplified or attenuated. The ADC converts the signal to a digital signal,
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where the FPGA and digital signal processor (DSP) handle down converting and filtering

the digital signal. The data stream is then returned to the computer and real time signal

processing software. Similar signal chains exist for transmit only pulses such as gradient

waveforms and hardware control pulses.
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Chapter 2

gr-MRI Software Package Overview and Architecture

2.1 Introduction

We describe an open-source software package that extends the functionality of GNU

Radio to perform MRI experiments. The package comprises a set of Python scripts and

two C++-based GNU Radio flowgraph elements. It implements system timing calibrations,

center frequency and transmit power optimization, shaped RF and gradient pulses, image

reconstruction, and three representative MR imaging sequences: gradient echo, spin echo,

and inversion recovery. It was used to operate a commercial 0.5 Tesla tabletop MRI scanner

with a pair of commercially-available SDRs that generated all RF and gradient pulses and

sampled received signals. Overall, the software will enable users to rapidly implement

custom MRI spectrometers, without recreating or developing new hardware. Since it is

built on top of the active GNU Radio project, the software will be compatible with a wide

range of current and future SDR devices. The full package and a detailed user guide can be

downloaded at https://bitbucket.org/wgrissom/gnuradio-mri.

2.2 A basic single-pulse sequence in GNU Radio

To illustrate how GNU Radio works and to motivate the architecture and features of

the gr-MRI package, Figure 2.1a shows an implementation of the most basic NMR pulse

sequence using GNU Radio software alone, without gr-MRI. The sequence comprises a

single-pulse excitation with simultaneous reception of the free induction decay (FID) sig-

nal. Specifically, the figure shows a graphical representation of this sequence’s flowgraph

in GNU Radio Companion (a GUI-based flowgraph editor packaged with GNU Radio).

A GNU Radio flowgraph is made up of signal generation, signal processing, and input

and output blocks, which are connected by virtual wires that transmit baseband signals
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between them; wires conduct signals in one direction. In this flowgraph, the blocks that

produce a block excitation pulse are outlined in box A. The pulse is generated by dupli-

cating a square wave, inverting and delaying its copy, and multiplying the copy by itself.

Then the real-valued block pulse signal is converted to a complex signal type (with zero

imaginary component) and passed into the USRP Sink block (box B), which interfaces via

a driver to one or more transmit channels of a Universal Software Radio Peripheral SDR

(USRP; Ettus Research, Santa Clara, CA, USA). The demodulated received signal comes

back into the flowgraph via the USRP Source block (box C), which sends the amplitude of

the signal to an oscilloscope block for continuous display (box D). The flowgraph is free-

running, and does not record data. Figure 2.1b shows the oscilloscope window that appears

when the flowgraph is executed, which displays the demodulated FID signal in real-time.

(a) (b)

BA

C D

Figure 2.1: (a) Basic single-pulse GNU Radio flowgraph without gr-MRI elements. The
outlined boxes contain: A) The excitation pulse generation blocks, B) the USRP Sink
block which sends the excitation pulse to the radio, C) the USRP Source block which
receives baseband RF signals from the radio, and D) the oscilloscope block to continuously
display the received signal. (b) The oscilloscope window that appears when the flowgraph
is executed, showing the FID signal in real-time.

This example illustrates that GNU Radio flowgraphs run continuously and are not in-

herently sequenced as is required for MR. Furthermore, the precise timing of transmitted

signals is subject to delays on the PC, and the software lacks the ability to generate shaped

waveforms such as sinc excitation pulses and gradient trapezoids, as well as the ability to

change pulse amplitudes and phases between repetitions. It also lacks the ability to selec-

tively record received signals over specific time intervals. To address these needs, gr-MRI

pulse sequences use master clock signals that trigger provided RF and gradient pulse gen-
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eration and signal recording blocks. gr-MRI further provides tools to calibrate gradient

strength, center frequency, and RF power, and to synchronize sequence timing in order to

compensate system delays between RF and gradient pulse transmission and signal recep-

tion. These tools and features are described in the next sections.

2.3 Sequenced pulse generation and signal recording in gr-MRI

gr-MRI Uses square wave signals with period equal to the sequence repetition time

(TR) (or TR plus inversion time (TI) in an inversion recovery sequence, described further

below) to trigger pulse sequence events. To generate shaped RF and gradient pulses, gr-

MRI provides a C++-based Triggered Vector Source block, illustrated in Figure 2.2a. The

block plays real- or complex-valued samples from a user-provided vector that is typically

loaded when it is constructed but can also be changed during sequence execution. After its

pulse has been played completely, a Triggered Vector Source plays zeros until it receives

another trigger. The settings (Figure 2.2b) allow the user to specify amplitude stepping

for phase encode gradients and RF chopping, and how many times to repeat each step to

accommodate averaging. Received signals are recorded using the Gated Vector Sink block,

shown in Figure 2.2c, which writes a complex data stream from one input to an internal

vector whenever its other input is high.

To initiate a gr-MRI scan sequence, the user invokes that sequence’s Python script from

the IPython shell [20], which creates the RF and gradient waveforms and loads them into

Triggered Vector Sources in a new sequence flowgraph. The script then optionally launches

the flowgraph into an interactive prescan period, during which the user can dynamically

adjust sequence parameters such as timing and pulse amplitude settings from the command

line, and observe the effect on the received signal which is displayed in real time. Finally

the user invokes the full scan, and the entire sequence is run while the script saves raw

data into the Gated Vector Sink. After the scan, the user can extract the data from the

Gated Vector Sink into a k-space matrix, and reconstruct an image using provided functions
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described below.

Figure 2.2: (a) The Triggered Vector Source GNU Radio block. The orange box on the left
is the block’s input socket and the blue box on the left is its output socket. (b) The Triggered
Vector Source block’s settings. (c) The Gated Vector Sink GNU Radio block. The blue box
on the left represents the complex data input socket, and the orange box represents the gate
socket which controls data recording. (c) The Gated Vector Sink block’s settings.

2.4 gr-MRI Pulse sequences

2.4.1 Basic single-pulse: FID.py

Figures 2.3 and 2.4 show a gr-MRI-enabled flowgraph that implements the same single-

pulse sequence as in Figure 2.1, but uses a Triggered Vector Source to generate arbitrary RF

excitation pulses, and a Gated Vector Sink to record data. Figure 2.3 shows the flowgraph’s

transmit section. The outlined box A contains the TR clock signal generator that produces

a square wave with period equal to the TR. The output signal triggers two Triggered Vector

Sources in outlined box B, which are each loaded with a waveform and settings defined in

the Python script. The top Triggered Vector Source produces a scalable block excitation

pulse which is sent to the RF power amplifier, and the bottom one generates a longer block

pulse that defines the signal recording interval. The latter signal is transmitted from the

SDR and fed back into one of the SDR’s receive channels to trigger the Gated Vector

Sink in Figure 2.4 for signal recording. This loopback mechanism is necessary because

variable USB latency during transmit makes it impossible to know exactly when the pulses
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were transmitted by the SDR with respect to the received signal’s time basis. The signal

is also used to compensate phase drift as described below. The blocks in box C generate

a transmit-enable pulse that unblanks the RF power amplifier during the excitation pulse,

by routing the absolute value of the RF pulse through a 10-sample moving average filter

and a thresholding operation, resulting in a square pulse with an amplitude of 1 Volt that is

10 samples longer than the RF pulse. All other pulses are delayed by 5 samples to center

the RF pulses in the transmit-enable window. The transmit enable pulse is output from the

SDR from a channel operating at DC. The block excitation pulse and the signal recording

gate pulse are combined as the real and imaginary parts of a single complex-valued signal,

and are output from the SDR from two channels operating at the Larmor frequency. The

settings of the USRP Sink block in box D define which signals are sent to which channels,

and their center frequency.

Figure 2.3: Sequence timing and RF excitation flowgraph of the single-pulse sequence
FID.py. The outlined boxes contain: A) The TR clock square wave signal generator,
which triggers all sequence events. B) Triggered Vector Sources that generate an RF ex-
citation pulse (top) and a signal recording gate (bottom). C) A transmit-enable pulse is
generated from the RF excitation pulse to unblank the RF amplifier. D) The USRP Sink
block routes the baseband signals to three channels on the SDR, operating at RF (for the
excitation pulse and the signal recording gate) or DC (for the transmit-enable pulse).

Figure 2.4 shows the receive section of the flowgraph for the single-pulse sequence. The

far left block in outlined box A is the USRP Source which outputs baseband signals coming

from the SDR’s receive channels. The bottom data stream from this block is the complex

RF data received from the scanner’s preamplifier, and the top stream is the looped-back

signal recording gate pulse, which serves two purposes in the flowgraph. First, it controls
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Figure 2.4: RF Receive flowgraph of the single-pulse sequence FID.py. The outlined
boxes contain: A) the USRP Source, which converts received data into a complex data
stream; B) a group of blocks used to normalize the signal recording gate pulse’s amplitude
while preserving its phase; C) a multiply conjugate block that removes the signal recording
gate pulse’s phase from the FID signal phase to correct phase drifts; D) the gated vector sink
which stores the raw data to a vector; and E) a QT GUI sink used to display the received
signal in real time.

the Gated Vector Sink in box D so that the FID signal is only recorded over the desired

interval. Second, it is used to correct spectrometer phase drifts. This is done by the blocks

in box B, which normalize the amplitude of signal recording gate pulse, but preserve its

phase, and the received FID signal is multiplied with the normalized signal recording gate

pulse’s complex conjugate in box C. This works because the both the excitation and the

signal recording gate pulses originated from the same daughterboard with the same phase.

The far right block in box E is a QT GUI Sink that is used to display the received signal in

real time. A representative QT GUI Sink window is shown in Figure 2.5 for the spin echo

imaging sequence (described below).

The same strategies used to develop the FID single-pulse sequence were applied to en-

able gradient waveform generation for 2D and 3D imaging. The gr-MRI package includes

three common imaging sequences, and a template sequence to enable development of new

sequences. These sequences are described next. The software was built using GNU Radio

version 3.7.5.1, and uses the scientific Python libraries NumPy (http://www.numpy.org)

and Matplotlib (http://matplotlib.org). All communication with SDR’s occurs via USRP

Sink and Source blocks, which in spite of their vendor-specific name are compatible with
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all SDR’s that are supported by GNURadio.

Figure 2.5: Screen shot of the receive data shown in the QT GUI window while running
the spin echo sequence spinecho.py.

2.4.2 Gradient-recalled echo: gradecho.py

Figure 2.9a plots the gradient-recalled echo (GRE) pulse sequence generated by the

script gradecho.py, and defines some relevant scan parameters. By default the sequence

plays a Hamming-windowed sinc excitation pulse concurrently with a slice-select gradient

trapezoid in the z direction to localize the excitation to a slice in the sample. Phase encod-

ing, slice rewinding and readout prephasor trapezoids occur immediately after the pulse,

followed by the readout gradient and acquisition window which are centered at the echo

time (TE). Compared to the single-pulse sequence described above, the GRE sequence’s

flow graph includes three more Triggered Vector Sources to generate gradient pulse wave-

forms in three spatial dimensions.

Table 2.1 lists the sequence parameters that can be set in the configuration file gre config.txt
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or during the prescan period before running the scan, and Table 2.2 shows the user-accessible

functions defined by gradecho.py and the other imaging sequences described below.

Many of the parameters in Table 2.1 also apply to the other sequences, as indicated. All

scan parameters set in the config file can be changed dynamically while running the scan

by calling params.set {param name}({value}), where param name is the name

of the parameter to be changed, and value is the new value to be assigned. Each time a

parameter is changed, the parameter update functions also update all dependent pulse se-

quence parameters. Parameters can be saved to Python pickle (.pkl) files and can also be

loaded from pickle files when operating in interactive prescan mode.

2.4.3 Spin echo: spinecho.py

Figure 2.10a plots the spin echo (SE) pulse sequence produced by spinecho.py.

Compared to the GRE sequence, the SE sequence adds a block refocusing pulse midway

between the excitation pulse and the readout window.

2.4.4 Inversion recovery: invrecov.py

Figure 2.11a plots the inversion recovery (IR) sequence produced by invrecov.py.

Compared to the SE sequence, the IR sequence adds a block inversion pulse played TI

(inversion time) seconds before each excitation and signal readout.

2.4.5 Template sequence: template.py

gr-MRI also provides a template sequence to enable rapid development of custom pulse

sequences. The template is based on gradecho.py, and is heavily commented to give

instructions for how to edit the sequence. In the simplest case, the user need only define the

RF pulse shape to generate a pulse sequence, however the user can define custom gradient

waveforms, and new data acquisition windows if desired; multiple windows could also be
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Param Name Param Description Units Sequence
TR Repetition time s GRE,SE,IR,FID
CF Center frequency Hz GRE,SE,IR,FID

offset Center frequency Offset Hz GRE,SE,IR,FID
p90 Excitation pulse length s GRE,SE,IR,FID
p180 Refocusing pulse length s SE,IR
TE Echo time s GRE,SE,IR
TI Inversion time s IR
BW Readout bandwidth Hz GRE,SE,IR

readout length FID Readout length s FID
NRO Matrix dimension in readout di-

rection
integer GRE,SE,IR

NPE Number of phase encodes integer GRE,SE,IR
FOVread Field of view in readout dimen-

sion
mm GRE,SE,IR

FOVphase Field of view in phase encode di-
mension

mm GRE,SE,IR

readdir Readout dimension
(x=1,y=2,z=3)

integer GRE,SE,IR

phasedir Phase encode dimension integer GRE,SE,IR
slicedir Slice dimension integer GRE,SE,IR
pre dur Readout prephasor duration s GRE,SE,IR
phase dur Phase encode gradient duration s GRE,SE,IR

rewinder length Slice gradient rewinder length s GRE,SE,IR
slice thick Slice thickness mm GRE,SE,IR

nav Number of averages integer GRE,SE,IR,FID
TBW Excitation pulse time-bandwidth

product
unitless GRE,SE,IR

slice shift Slice offset Hz GRE,SE,IR
ex type Excitation pulse shape

(Square=0, Sinc=1)
integer GRE,SE,IR

ischopped RF Chopping (Off=0, On=1) integer GRE,SE,IR
interactive mode Pre-scan/Interactive mode

(Off=0, On = 1)
integer GRE,SE,IR

param file .pkl file name for automatically
loaded scan parameters

string GRE,SE,IR,FID

leader ID “Leader” radio serial ID (not in-
teractive)

string GRE,SE,IR,FID

follower ID “Follower” radio serial ID (not
interactive)

string GRE,SE,IR,FID

Table 2.1: Parameters that can be adjusted dynamically or in configuration files for each of
the pulse sequences.
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Function Description Argument
params.set {param}(value) Change value of

parameter {param}
and dependents

value: new value of
parameter

params.param table() Display current se-
quence parameters

None

sync() Synchronize two ra-
dios

None

read on() Enable readout gradi-
ent

None

slice on() Enable slice select
gradient

None

grads off() Disable all gradients None
profile() Display 1D ob-

ject profile with
params.nav num-
ber of averages

None

show pulses() Plot pulse sequence None
params.save params(file) Save scan parameters

to pickle file
file: file name to
save parameters to

params.import params(file) Import scan parame-
ters from pickle file

file: file name to
load parameters from

calib slice() Calibrate slice gradi-
ent rewinder

None

calib readout() Calibrate readout
gradient prephasor to
center signal

None

run() Run imaging se-
quence and record
data

None

data.recon() Reconstruct image None
end() Stop sequence and

program
None

Table 2.2: User interface functions defined by the three imaging pulse sequences.
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defined for multi-echo sequences. The template includes function definitions that provide

the same functionality as the full imaging pulse sequences, and the config file is preloaded

with general parameter names that were used in the those pulse sequences.

2.5 System calibrations

2.5.1 Transmit/Receive Delay

Since a single SDR typically does not provide enough channels for an MRI scan, gr-

MRI imaging sequences presume the use of two radios, one for generating RF waveforms

and one for generating gradient waveforms. Due to sequence delays resulting from USB

latency which can be on the order of 20 ms, radio synchronization is essential while run-

ning these two-radio pulse sequences. To address this, one radio is designated the ‘leader’

and the other the ‘follower’. It is assumed that the leader radio will produce the RF pulses

and transmit enable pulse and the follower radio will generate the gradient waveforms. The

gr-MRI sequences use a port on each radio to loop back a ten sample block synchronization

pulse into dedicated receive channels on the follower SDR three times per TR. Figure 2.6

shows how these signals are processed in the sequence flowgraphs. The received synchro-

nization pulses are each thresholded and combined as the real and imaginary parts of a

single complex signal that is stored in a Vector Sink. While running a scan, a function in

the imaging sequence script continuously checks the synchronization data from the Vector

Sink three times per TR to compare the pulse timings. If a desynchronization is detected,

the function pauses the main pulse sequence and sets global leader and follower delays to

realign the transmitted pulses. When operating in interactive mode, the user can resyn-

chronize the radios at any time by calling the sync() function. Desynchronization during

data acquisition may corrupt the received data; the frequency with which desynchronization

events occur with our setup was characterized as described below.
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Figure 2.6: Synchronization section of the imaging sequence flowgraphs.

2.5.2 Center Frequency and Transmit Voltage

Automatic center frequency and power calibration functions are implemented as part

of the FID.py pulse sequence, and are listed in Table 2.3. The center frequency offset

calibration function is illustrated in Figure 2.7a. The user specifies the desired number of

signal averages to use for FID measurement, and the system displays the resultant FFT of

the averaged signal, along with a fit Lorentzian curve. The new center frequency offset is

defined to be the frequency corresponding to the peak of the Lorentzian curve, and is set

automatically when the script has completed. This calibration can be run multiple times

for best accuracy, since SNR increases as the radio’s frequency approaches the Larmor

frequency. The power calibration, illustrated in Figure 2.7b, finds the necessary RF pulse

amplitude to achieve a 90 degree flip angle for a fixed-duration block pulse. The user

specifies the desired number of signal averages, and the script acquires signals across a

range of pulse amplitudes until a maximum received signal amplitude has been reached.

Both functions save the optimized parameters to a Python pickle file named cal.pkl

which is loaded and used by the imaging pulse sequences.

2.5.3 Gradient strength

The gr-MRI package also provides a gradient strength calibration script called grad calibration.py,

which uses a spin echo sequence to measure one-dimensional profiles of an object of known
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Function Description Argument
calibrate offset(nav) Find offset from true cen-

ter frequency to default
center frequency

nav: number of averages

calibrate power(nav) Find the optimal exci-
tation pulse amplitude
needed to excite a 90
degree flip angle

nav: number of averages

save calib() End calibration flow
graph and saves calibra-
tion data to cal.pkl

None

Table 2.3: Center frequency and power calibration functions implemented in FID.py.

(a) (b)

Figure 2.7: User-visible plots that appear when running (a) the center frequency calibra-
tion function, and (b) the 90 degree pulse power calibration function. Both are defined in
FID.py. The Lorentzian fit to the spectrum is plotted in (a) in red, and the vertical red line
indicates the detected center frequency. I The detected 90-degree pulse power is indicated
by the red dot in (b).

size. The user defines the gradient dimension to calibrate, and the object size in that di-

mension. The sequence then calibrates the gradient strength as a function of radio output

voltage based on pre-loaded gradient amplitudes and the resultant frequency bandwidth

of object’s profile. Gradient strengths are saved in units of Gauss/mm/Volt to the file

gcal.pkl and are used by the imaging sequences to convert desired image FOV and

matrix size parameters gradient pulse amplitudes and step sizes. Table 2.4 shows all of the

functions available to the user when running the gradcalib.py script. This calibration
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Function Description Inputs
sync() Synchronize the outputs of

two radios.
None

grad calib(direction) Asks for phantom size in
specified dimension and
calibrates the gradient
strength

direction: x, y or z

save calib() End the calibration flow
graph and save calibration
data to gcal.pkl

None

Table 2.4: Gradient calibration functions defined by the gradcalib.py script.

should only need to be done once for a given scanner.

2.6 Data processing and image reconstruction

All data from a sequence is automatically transferred to an object of class data after a

sequence is run. The object contains the raw data from the sequence’s Gated Vector Sink,

and a time stamp indicating when the sequence was initiated. When the data.recon()

function is called, the data is reformatted (and averaged, if averaging was performed) to

create an NPE×NRO matrix. If the readout dimension was oversampled with respect to the

desired readout bandwidth, the matrix is decimated to the specified matrix size using a 60-

tap anti-aliasing FIR filter. Finally, a 2D inverse FFT reconstruction is performed, which

corrects for RF chopping if it is present. The formatted k-space data matrix is returned in

data.kdata and the image is returned in data.imdata.

2.7 Workflow summary

Figure 2.8 summarizes the workflow implemented by gr-MRI, for the spinecho.py

imaging sequence. The diagram shows a workflow step, and the output that the step af-

fects and (where applicable) the input the step receives. A gr-MRI imaging experiment

comprises the following steps:
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Figure 2.8: Workflow illustration for the spinecho.py imaging sequence. Dotted
lines in the workflow steps indicate optional steps that can be turned on or off using the
interactive mode parameter in the configuration file. The second column shows com-
mands as the user would enter them into the IPython shell. The third column describes the
data that is used or produced by each command, and the fourth column shows any images
or plots that are created.

1. RF power and center frequency parameters are determined and saved using FID.py.

2. The user updates the imaging sequence’s config file with the desired pulse sequence

parameters for their scan (spin config.txt). Then they invoke the imaging

sequence script (spinecho.py). The calibrated parameters from Step 1 are auto-

matically loaded, as well as the parameters from the config file.

3. Interactive Mode starts and the raw signal is displayed in real-time, while the user

dynamically adjusts sequence parameters or loads saved parameters. This step is

optional.
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4. The user optionally fine-tunes gradient pulse moments to center the signal in the ac-

quisition window. The figure for the “Tune pre-phasing gradients” step of Figure

2.8 shows an example of a plot that is shown when tuning the slice gradient. The

plot is integrated signal amplitude versus a parameter rephase fudge, which is

calibrated by the script and will be used to scale the slice rephasing gradient during

imaging. The maximum point on this plot corresponds to the scaling of the rephas-

ing gradient amplitude needed to fully cancel the through-slice phase. This step is

optional but was required periodically on our scanner due to gradient amplifier non-

linearity, and may not be necessary on other scanners.

5. The user runs the sequence. The raw signal from each TR is displayed in a GUI

window, and the current phase encode line index is reported, so the user can monitor

the scan.

6. After the scan has completed, the user can save the raw k-space data for external

reconstruction, or call data.recon() to reconstruct an image.

7. The user can save data or parameters, change parameters, or begin a new scan.

2.8 Experiments

Experiments were performed on a 0.5 Tesla Oxford Maran tabletop scanner (Resonance

Instruments, Witney, U.K.) to verify the imaging sequences and other functions of the gr-

MRI software. The software ran on a PC running Ubuntu 14.04 (Canonical, London, U.K.),

with 16 GB RAM and a 4 GHz Intel Core i7-4790 CPU (Intel Corp, Santa Clara, CA,

U.S.A.). Prior to imaging scans, gradient calibration was performed using a 1×1×1 cm3

cube phantom filled with CuSO4-doped water. A solenoid RF coil was used for all scans.

23



Pulse Radio/Channel Input/Output Destination
RF Excitation Leader TX A A Output RF Amplifier

Signal recording Leader TX A B Output Leader RX B B
Transmit-enable Leader TX B A Output RF Amplifier

Leader sync Leader TX B B Output Follower RX B B
RF Receive Leader RX A A Input PC
Gx Gradient Follower TX B B Output Gradient Amplifier
Gy Gradient Follower TX A B Output Gradient Amplifier
Gz Gradient Follower TX A A Output Gradient Amplifier

Follower Sync Follower TX B A Output Follower RX B A

Table 2.5: Mapping of pulse waveforms to transmit and receive channels on the two SDRs
used for the imaging experiments. The leader SDR generated and received all RF signals,
and the follower SDR generated all gradient pulses.

2.8.1 SDR Hardware

All imaging scans used two Ettus Research USRP1 SDRs with connected clocks. Al-

though the radios perform separate functions, there is a significant difference between the

clock speed of individual radios. This results in a significant time drift between the two

radios, which would be impractical to correct by the sync() function alone. We there-

fore connected the clocks following instructions provided on the GNU Radio website. The

USRP1 comprises an Altera Cyclone FPGA, a 14 bit (-1 V to 1 V), 128 Ms/sec digital

to analog converter, and a 12 bit (-1 V to 1 V), 64 Ms/sec analog to digital converter.

The USRP1 can accommodate up to two transmit daughterboards and two receive daugh-

terboards, each of which provides two channels. Each daughterboard can be driven at a

unique frequency. The device connects to the PC by USB. In our experiments the leader

radio produced the RF excitation pulse and the signal recording gate pulse on one trans-

mit daughterboard, and DC transmit-enable and synchronizing pulses on a second transmit

daughterboard. The follower radio produced the gradient pulses and another synchronizing

pulse. Table 2.5 shows the mapping between imaging sequence pulses and radio channels.

The naming convention for the channel used is TX/RX Daughterboard Slot A/B Channel

A/B. Because the USRP1 produces a maximum pulse amplitude of 1 V but our RF amplifier

24



required at least 3.3 V to unblank, the transmit-enable pulse was used to drive a transistor

switch that connected the SDR’s 6 V power supply to the RF amplifier’s unblanking input.

2.8.2 Imaging Scans

Gradient-recalled echo, spin echo, and inversion recovery spin echo imaging exper-

iments were run with the sequence parameters shown in Table 2.6. All scans used RF

chopping to move DC artifacts to the edge of the FOV, and images were reconstructed

using gr-MRI’s 2D inverse FFT reconstruction. All sequences imaged an 11 × 8 mm2

3D-printed Vanderbilt University logo-shaped phantom immersed in a 15 mm NMR tube

filled with sunflower seed oil. The spin echo acquisitions were repeated 15 times with and

without running interactive mode first, to record the number of leader-follower desynchro-

nization events. The inversion recovery scan was repeated eight times with TI’s of 10, 25,

50, 100, 150, 200, 300, and 400 ms.

Imaging Parameter Gradient Echo Spin Echo Inversion Recovery
Python script gradecho.py spinecho.py invrecov.py

TE (ms) 1.5 10 10
TR (ms) 1000 1000 750

Flip angle (degrees) 90 90 90
Matrix size 128×128 128×128 128×128
FOV (mm2) 20×20 20×20 20×20

Slice Thickness (mm) 4 4 5
BW (kHz) 41.7 41.7 41.7
Averages 3 3 3

Table 2.6: Imaging scan parameters.

2.8.3 Frequency-swept pulse generation

To validate the software and the SDR’s ability to generate frequency-swept waveforms,

an experiment was performed in which a Triggered Vector Source was used to produce

a 500 µs frequency-swept waveform originally designed for Bloch-Siegert B+
1 mapping
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[21] (Figure 2.12, left). The small signal RF pulse was looped back into a USRP1 receive

channel and recorded. For comparison, the same waveform was generated using the Maran

scanner’s spectrometer, and recorded the same way.

2.9 Results

(a) (b) (c)

Figure 2.9: (a) Slice-selective gradient-recalled echo pulse sequence generated by
gradecho.py. (b,c) Gradient-recalled echo images acquired using (b) the Maran spec-
trometer, and (c) gr-MRI.

(a) (b) (c)

Figure 2.10: (a) Slice-selective spin echo pulse sequence generated by slicespin.py.
(b,c) Spin echo images acquired using (b) the Maran spectrometer, and (c) gr-MRI.

2.9.1 Imaging

Figure 2.9c shows the image acquired with gradecho.py, and Figure 2.9b shows a

gradient echo image acquired using the Maran spectrometer with closely-matched parame-

ters. A visual comparison of the images confirms a lack of geometric distortions in the gr-

MRI image, other than some blurring due to chemical shift in the frequency-encoded (hor-

izontal) direction. The phantom dimensions measured from the gr-MRI image are 15.15
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and 15.28 mm, which are close to the expected 15 mm dimensions. Figure 2.10c shows the

image acquired with spinecho.py, and Figure 2.10b shows a spin echo image acquired

using the Maran spectrometer. A visual comparison of the images again confirms a lack of

geometric distortions in the gr-MRI image, other than some blurring due to chemical shift

in the frequency-encoded (horizontal) direction. The phantom dimensions measured from

the gr-MRI image are 15.25 and 14.85 mm, which again are close to the expected 15 mm

dimensions. Figure 2.11b shows inversion recovery images acquired across a range of TIs.

The signal is nulled at approximately 100 ms, which is consistent with the expected oil

T1 of approximately 150 ms. Some signal intensity variations are apparent in the short-TI

images due to non-uniform inversion resulting from B+
1 inhomogeneity.

(a) (b)

Figure 2.11: (a) Slice-selective inversion recovery spin echo pulse sequence generated by
invrecov.py. (b) Images acquired using the sequence in (a) across a range of inversion
times.

2.9.2 Synchronization Analysis

Table 2.7 shows how often desynchronization events occurred during the spinecho.py

sequence, with and without running Interactive Mode prior to running the scan. The Table

shows that the described monitoring function corrected the desynchronization event each

time by adjusting the leader and follower delays to compensate. Desynchronization events

occurred more frequently immediately after starting a flowgraph because the USB interface

dynamically optimizes the data buffer sizes. By running interactive mode first for approx-

imately 30 seconds, the buffer sizes were more likely to stabilize prior to running the full
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Interactive Mode Off Interactive Mode On
TR (s) 1 1

Scan Time (s) 128 128
Scans Run 15 15

Desync Detected 10 (66%) 1 (6.6%)
Desync Corrected 10 (100%) 1 (100%)
Data Corrupted 1 (10%) 0 (0%)

Table 2.7: Frequency of desynchronization events and recovery from them, with and with-
out entering Interactive Mode before starting an imaging scan.

scan. In that case, only one desynchronization even occurred, and there were no data cor-

ruptions. When Interactive Mode was not run, one of the ten desynchronization events led

to data corruption. Data corruption is the result of a desynchronization event that occurs

between the most recent check for synchronization and the time at which the pulses are

transmitted.

2.9.3 Frequency-Swept Pulse Generation

Figure 2.12: Comparison of nominal and measured amplitude modulation (AM) and fre-
quency modulation (FM) waveforms of frequency-swept pulses generated by the Maran
spectrometer and the SDR with the gr-MRI Triggered Vector Source block.

Figure 2.12 compares small-signal frequency-swept pulses generated by the Maran and

the USRP1 with gr-MRI. The USRP1 played the waveform with high fidelity, while the
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Maran’s waveform contained spurious dropouts and undesired phase plateaus due to limited

temporal and phase resolution, resulting in large spikes in the transmitted FM waveform.

The RMS error of the Maran’s amplitude waveform was 24.8%, while that of the radio’s

was 4.0%. The RMS error of the Maran’s frequency waveform was 247 kHz, while that of

the radio’s was 21 kHz. The gr-MRI errors were largest at the ends of the waveforms.

2.10 Discussion

2.10.1 Summary of Results

We presented the gr-MRI software package, which comprises a set of Python scripts,

flowgraphs, and signal generation and recording blocks for GNU Radio, an open-source

SDR software package that is widely used in communications research. gr-MRI Imple-

ments basic sequencing functionality, and tools for system calibrations, multi-radio syn-

chronization, and MR signal processing and image reconstruction. It includes four pulse

sequences: a single-pulse sequence to record free induction signals, a gradient-recalled

echo imaging sequence, a spin echo imaging sequence, and a spin echo inversion recovery

imaging sequence.

The imaging sequences were validated in 0.5 T phantom imaging experiments, and

the gradient-recalled echo and spin echo images were compared to images acquired using

a commercial MRI spectrometer. The gr-MRI images were free of distortions, and had

similar overall geometry and quality to the commercial spectrometer’s images. The ability

to generate frequency-swept pulses using gr-MRI was also validated, which is needed for

adiabatic excitations [22] and may be useful for RF encoding using the Bloch-Siegert shift

[23, 24].
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2.10.2 SDR Considerations

gr-MRI was validated in this work using Ettus Research USRP1’s. The USRP1 is

the first Ettus SDR and has a more basic feature set than more recent models (though it

was available for purchase from Ettus at the time of writing). The software is compatible

with any GNU Radio-compatible SDR, though some of the features we developed based

on the USRP1’s capabilities may not be required for newer SDRs. For example, some

newer SDRs have gigabit ethernet connections to the PC, which reduces latency by a few

orders of magnitude compared to USB. We used looped-back signals as a general solution

to latency and between-radio delays; with lower and more stable latency, pulse sequences

may not require this. Additionally, some modern SDRs allow for time synchronization via

time-stamped transmissions or with a MIMO cable. These simplifications would free up

valuable I/O channels. In addition, radios with more channels may be able to perform both

RF and gradient functions.

Another consideration is Larmor frequency: the USRP1 can directly synthesize signals

up to 64 MHz, so to operate at higher frequencies the user would need to use high-frequency

transmit/receive daughterboards with onboard modulation/demodulation circuits, or imple-

ment mixing externally. Care would need to be taken to make sure that the reference oscil-

lator signals for modulation and demodulation are phase-locked.

2.10.3 Custom Built Hardware

2.10.3.1 RF Coils

As stated in the Chapter 1, the RF probe is responsible for exciting magnetic spins

in the sample, which then induce a current in the probe when the spins relax back to the

main magnetic field. There are many sophisticated probes, however because our setup is

small, we used a simple 10 turn solenoid coil. Solenoid coils are very sensitive, and create

relatively homogeneous magnetic fields inside the coil. We wound a 10 turn coil tightly
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around the 15mm sample tube in order to place the conductor as close as possible to the

sample, and secured it with insulating Kapton tape. We used 24 AWG insulated copper wire

because it is easy to pack many close turns, and it is capable of carrying a 21MHz signal

with low losses. When constructing a coil, one generally wants the smallest amount of

real resistance possible. RF signals typically flow mostly on the surface of conductors, but

depending on frequency and electrical properties of the conductor they penetrate a certain

distance, which is referred to as the skin depth. If the wire gauge is too small, then the coil

will add resistance, which reflects RF power and lowers the sensitivity of the coil. The skin

depth for a 21MHz signal flowing on a copper wire is roughly 14 µm, which is far smaller

than the 0.25 mm radius of 24 AWG wire.

2.10.3.2 Tuning and Matching Networks

Figure 2.13: General ”pi” configuration for a tuning and matching network. CM represents
matching capacitors, and C
textsubscriptT represents the tuning capacitor.

In order to get the most sensitive coil, so that the transmit voltage remains low, and the

greatest possible signal is detected, the coil must be coupled to the spins in the sample.
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This means that the coil must be tuned to the Larmour Frequency, and impedance matched

to 50 Ohms, which matches the impedance of the rest of the RF system. Fig 2.13 shows

the general ”pi” configuration of a tuning and matching network, and is the configuration

that was used for the presented experiments. The resonant frequency of an LC circuit can

be calculated according to the following equation:

f =
1

(2π
√

LC)

In practice, when tuning and matching the coil, an inductance meter was used measure

the inductance of the coil, and the necessary tuning capacitance was derived according the

the previous equation, and assuming a resonant frequency of 21.3 MHz. The circuit was

then connected to a network analyzer, and matching capacitors were chosen to minimize

the reflected RF power at the center frequency. Variable capacitors were used in parallel

with the tuning capacitor and one of the matching capacitors to allow optimization of the

circuit when it was loaded with a sample, and placed into the magnet. The circuit used for

the following experiments was tuned to 21.27 MHz and had a reflected power, or S11, of

roughly -40dB at that frequency which is suitable for imaging.

2.10.3.3 Coil Housing

A custom coil housing was designed to accommodate these experiments as well as to

enable future experiments. The housing, and experimental setup for the described imaging

sessions is shown in Fig 2.14. The coil is shown on the left side of the box (a) and connects

to the tuning and matching circuits (c) via a solderless junction (b). This housing allows

the connection of two independent coils The two tuning and matching circuits shown in

Fig 2.14c are constructed in the pi configuration described above, and contain variable

capacitors that are accessed from outside of the housing. This allows us to tune and match

the circuit dynamically while the coil is inside the magnet and while the circuit is connected

to the receive chain. The tuning and matching circuits also contain active detuning circuits,
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Figure 2.14: Custom built coil housing showing (a) the coil and sample, (b) the solder-
less junction that connects the coil to (c) the tuning and matching circuits. (d) A pair of
crossed diodes connects the transmit port to the circuit during RF transmission, and isolates
the transmit chain during receive. (e) The copper housing is grounded, which electrically
shields the coil.

which will become important when using multiple closely tuned coils for transmit and

receive. The coil shown here is used for transmit and receive, so the transmit and receive

inputs and outputs are connected by a pair of crossed diodes, shown in Fig 2.14d. The

crossed diodes allow the high power RF excitation pulses through during transmit, but

isolate the transmit chain during receive. The entire housing box is made out of copper clad

FR4 board. The copper housing serves as a common ground for the elements contained in

the box, and electrically shields the coil from outside RF noise.

2.10.3.4 Unblanking Circuit

The dynamic range of the SDR output is -1V to 1V, and the required voltage to trip the

TTL switch on the RF amplifier is 3.3V, so we could not directly use the output from the

SDR to control the amplifier. To work around this issue, we built a small transistor switch
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Figure 2.15: Transistor circuit used to convert the 1V square output from the SDR to a 5V
TTL pulse used to enable the RF Amplifier during RF Transmission. Resistor values were
chosen to limit the current drawn by the circuit, and to convert the 6V input from the SDR
power jack to a 5V output.

that used the 1V pulse created by the SDR to drive a MOSFET, which allowed the 6V

input to be connected to the output circuit. The circuit diagram is shown in Fig 2.15. The

output circuit simply consisted of a voltage divider, shown as R2 and R3, which converts

the input 6V signal to 5V and limits the current to roughly 10mA. The resistor labeled R1

was simply used to limit the current fed to the gating pin of the MOSFET.
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Chapter 3

Conclusions and Future Work

gr-MRI Enables commercially-available software-defined radios to be used as low-cost

custom MRI spectrometers, with fidelity that is comparable to or better than commercial

spectrometers. It was designed to be highly customizable and reconfigurable. This will

make it easier for researchers and engineers to develop custom spectrometers, without re-

quiring significant spectrometer hardware development or FPGA programming.

In the near future, we can use this SDR platform to implement frequency swept Bloch-

Siegert pulses for RF gradient encoding, or to implement other advanced pulse sequences.

This could include expanding the current library of pulse sequences to support a similar

simple calibration of RF and gradient waveforms for non-cartesian trajectories such as

radial or spiral. As it exists now, a user can create these pulses outside of the program,

and load them before running a scan, but it would be nice to allow for an integrated system

in which the pulses could be created when running the scan. Much in the way that GNU

Radio is constructed, we would like to enable the integration of other user created functions

in a sort of plug-in format, which could allow for a broadening of the system as a whole

and enable novel pulse development and rapid testing of those pulses.

Future work would also include adapting this system to operate at higher fields, and

to interface with clinical scanners. The USRP1 radio, or any other radio that runs the

software is small, and would give researchers the ability to carry a custom spectrometer to

any scanner on which they are working, so it would be beneficial for the system to operate

at clinically relevant frequencies.
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