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OVERVIEW 

 

 The sequencing of the first draft of the human genome in 2003 was met with great enthusiasm 

from scientists and the general public alike. Heralding a new age of biomedical discovery, the Human 

Genome Project has brought forth significant advances in genomic technologies, scientific 

breakthroughs, and has the potential to improve health outcomes and reduce healthcare disparities in 

myriad ways. Though technological advancements like large-scale genotyping arrays, next-generation 

sequencing, and whole exome and whole genome sequencing have produced considerable data, from 

its conception, the Human Genome Project was designed to also consider the ethical, legal, and social 

implications of this new era in genetics.  It is at the intersection of modern genomics and ELSI where 

this thesis occurs.  

 Personalized, or precision, medicine can be thought of as the ability to identify the correct 

medical or lifestyle intervention at the optimal time for each individual. Chapter I provides an 

overview of personalized medicine: how it is currently implemented and ways in which it differs from 

current clinical practice. Cancer diagnosis and treatment, and pharmacogenomics are used as examples 

of how personalized medicine can lead to improved health outcomes while highlighting the challenges 

that are faced in extending this approach to more common, complex diseases. Women and individuals 

from diverse populations, historically underrepresented in clinical research, are at risk of widening 

health disparities unless additional emphasis is placed upon these individuals for future research—

putting the “personalization” in personalized medicine. I conclude Chapter I with an overview of the 

types of statistical models and study designs currently used in genetic studies.  

 I present the first of three case studies in Chapter II. Women’s health, long overlooked by the 

clinical research enterprise, is now fully recognized as an important facet to understanding the nuances 

of disease. The timing of the reproductive lifespan, in particular, dictates fertility and influences disease 

risk. After an overview of the female reproductive lifespan, I consider what genetic variants are 

associated with age at menarche and age at natural menopause in African American women from two 

population-based epidemiologic studies: the Atherosclerosis Risk in Communities (ARIC) and the 

Women’s Health Initiative (WHI). Most large scale or genome-wide association studies have been 

performed in European-descent populations; this association study was the first to examine these traits 
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in an African American cohort and provided us an opportunity to compare results to prior 

publications. 

 In Chapter III, I document the creation of an algorithm to extract ages of reproductive 

milestones from electronic medical records (EMRs). These data have significant research utility 

independently and as covariates in genome-wide association studies for a variety of diseases and have 

the potential to inform clinical care. After the Health Information Technology for Economic and 

Clinical Health (HITECH) Act of 2009, secondary uses of EMRs for research have become more 

common and include selecting cohorts for clinical and research studies and reporting health statistics 

on aggregated data for disease monitoring. However, these data are not consistently documented and 

are often missing due to a lack of standardized data fields, requiring data-mining techniques for 

extraction. I present the development process for a data-mining technique to extract the ages at 

reproductive milestones from the Vanderbilt University Medical Center (VUMC) Synthetic Derivative, 

a de-identified version of the VUMC EMR for research purposes, and the performance of this 

algorithm. I also consider potential uses of the algorithm for personalized medicine and in future 

genetic studies. 

 I present the second case study in Chapter IV. Endometrial cancer, the most common 

gynecologic cancer, affects more than 50,000 women in the United States yearly and is responsible for 

8,590 estimated annual deaths. Despite the prevalence of endometrial cancer, few genetic association 

studies have been performed and the etiology of this complex disease is not fully understood. I begin 

Chapter IV with an overview of the known molecular mechanisms, environmental risk factors, and 

genetic associations attributed to endometrial cancer. I hypothesized variants previously associated 

with other cancers may also play a role in the development of endometrial cancer in a small cohort 

from VUMC.  Using a candidate-gene association study approach, I present the results from our small 

sample and that of the larger meta-analysis in the Population Architecture using Genomics and 

Environment (PAGE) Study to which our results were contributed for meta-analysis. 

 The last case study is presented in Chapter V, where I used a genome-wide association study 

(GWAS) to identify genetic variants associated with serum thyroid stimulating hormone (TSH) levels 

in both African American and European descent individuals from the Electronic Medical Records and 

Genomics (eMERGE) Network. The eMERGE Network is a collaboration of nine medical centers with 

EMRs linked to biobanks and a coordinating center, which allows investigation of genotype-phenotype 

associations in larger sample sizes than each individual site can provide. With different EMRs utilized 
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at each eMERGE member site, phenotype harmonization and data extraction are important 

considerations for genetic studies in this consortium. TSH levels are measured to diagnose thyroid 

diseases, such as hypo- and hyperthyroidism and women are disproportionately affected by these 

disorders. To identify genetic variants associated with the distribution of TSH levels, I performed a 

GWAS in euthyroid (non-thyroid disease) subjects from the eMERGE Network. I present the results of 

this analysis for both European descent and African Americans and compare our results to previously 

published GWAS for this and other related traits. Given that environmental factors, such as BMI, 

influence TSH factors, I describe an interaction analysis between BMI and single nucleotide 

polymorphisms (SNPs). Lastly, I examine what role population differentiation plays as a possible 

reason for the disease burden faced by European descent and African American individuals. 

 In Chapter VI, I consider the ethical, legal, and social implications of personalized medicine and 

the analytic evidence supporting its use in the clinical setting for common, complex diseases. The 

methods currently used to obtain the necessary analytic evidence to recommend genetic testing in this 

context are both time- and resource-intensive. I propose a rapid structured review model using a 

hypothetical genetic test for hypothyroidism risk to address this issue and demonstrate how this 

method can be used to identify gaps in evidence at academic medical centers with limited resources. 

Finally, I examine in greater detail the ethical, legal and social impacts on both the health care system 

and the general public that personalized medicine for common, complex diseases will have.  

 This thesis encompasses several phenotypes that play a role in women’s health and highlight 

the challenges faced in generalizing research findings to diverse populations. Personalized medicine 

has the potential to reduce health disparities and improve health outcomes, but faces significant 

barriers. In Chapter VII, I look ahead and discuss how this might occur, from genetic study design, to 

the role of research findings in clinical care.  
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CHAPTER I 

INTRODUCTION 

 

I. INTRODUCTION 

Personalized medicine 

 Personalized, or precision, medicine has generally come to mean the use of genetic data to 

inform clinical care for individual patients, including decision-making for prevention, diagnosis, and 

treatment (National Human Genome Research Institute2014b). Personalized medicine (PM) gained 

traction and increased societal awareness after sequencing of the first draft of the human genome was 

completed: researchers and physicians were motivated to utilize the new wealth of genetic information 

in the clinical setting to improve health outcomes. New businesses based on bringing genetic testing 

directly to the masses fought for consumers and against regulation.  In the clinical setting, PM is used 

to determine which chemotherapy a tumor is susceptible to (Kim et al.2013), guide medication choice 

and drug dosage (Scott et al.2013), and diagnose unknown genetic disorders (Yang et al.2013). Despite 

direct-to-consumer marketing suggesting your genome can accurately predict risk for developing 

hundreds of complex diseases and traits at the present time, expansion to the clinical setting of PM for 

common, complex disease risk prediction and management of care is essentially nonexistent.   

 Cancer is the poster child for successful integration of PM in the clinical setting. BRCA1/2 

testing is routine in breast cancer diagnosis and is used to determine lifetime risk of developing breast 

and/or ovarian cancer in affected individuals and their family members (Peshkin et al.2002). 

Characterizing breast tumors as estrogen receptor positive/negative or overexpressing human 

epidermal growth-factor receptor 2 (HER2) results in targeted chemotherapies and improved clinical 

outcomes (Slamon et al.2001). Similarly, non-small-cell lung cancer patients now benefit from the 

identification of gene expression signatures that are sensitive to synthetic indolotriazine (Kim et 

al.2013) and from dosing recommendations for fluoropyrimidines based on DYPD genotypes (Caudle 

et al.2013).   Numerous cancer and medical centers now advertise the use of a patient’s tumor genome 
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to guide chemotherapy decisions for some types of cancer (The University of Arizona Cancer 

Center2014;Vanderbilt Ingram Cancer Center2014;University of California2014).     

 Personalized medicine is also being used to guide medication choice and drug dosage at several 

institutions (Rossolatos and Aitchison2014). Pharmacogenomics, the study of how the genome affects 

drug response, seeks to predict which patients will respond favorably, unfavorably, or not at all to a 

particular medication (National Library of Medicine2014). Though adverse drug events are rare, they 

are a significant cause of morbidity and mortality in the United States and over 200 drug labels carry 

warnings suggesting pharmacogenetic testing to guide therapy (Dodson2011).  The Clinical 

Pharmacogenetics Implementation Consortium (CPIC) is a collaboration of investigators who are 

studying the role of genetics in pharmacology. CPIC publishes recommendations using a standardized 

format and grading system to evaluate the strength of the genotype-phenotype association (Caudle et 

al.2014). Nine studies, to date, on the use of genotypes to guide medication choice and dosage have 

been published by CPIC (Caudle et al.2014), including recommendations for codeine therapy based on 

CYP2D6 genotype (Crews et al.2014) and the anti-clotting agent clopidogrel based on CYP2C19 

genotypes (Scott et al.2013). These guidelines are being implemented in the clinical setting at 

institutions such as Vanderbilt University Medical Center (VUMC) and at St. Jude Children’s Research 

Hospital(Hoffman et al.2014). The VUMC Pharmacogenetic Resource for Enhanced Decisions in Care 

and Treatment (PREDICT) Program identifies patients at-risk for adverse events and prospectively 

genotyped them (Pulley et al.2012). Obtaining the genetic data prior to the clinical need allows for 

physicians to integrate the data into clinical care through decision support mechanisms implemented in 

the electronic health record.  

Current practice 

 The questions of when to screen a patient for a disorder, how to accurately identify those who 

are risk of disease, and when to provide prophylactic interventions (e.g., thyroid replacement hormone 

for subclinical hypothyroidism or statin therapy for hypercholesterolemia) to prevent disease or 

improve health outcomes are key points of PM research. The decision of whether to screen for a 

particular disease has primarily relied upon guidelines developed in 1968 by Wilson and Jungner 

(Table 1) (Wilson and Jungner 1968). These recommendations laid out ten criteria that a screening test 

should possess before a screening program is initiated, including that the condition should be an 

important health problem, that there should be a recognizable latent or early symptomatic stage, that a 

suitable test and treatment be available and are generally accepted by the public (Wilson and Jungner 
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1968). The Wilson and Jungner guidelines also require that the natural history of the condition, 

including development of the disease from latency to diagnosis be adequately understood and that the 

screening program be generally cost-effective compared to medical costs incurred by not screening 

(Wilson and Jungner 1968).  These criteria have been used to justify some public screening programs, 

(e.g., newborn screening for phenylketonuria (PKU)(Petros 2012)), and not others (screening for adult 

celiac disease(Evans, Hadjivassiliou, and Sanders 2011)). Advances in genomics have led some to 

consider if the Wilson-Jungner criteria should be updated in order to be more flexibly applied to 

genetic testing (Table 1) (Petros 2012;Andermann et al. 2008). These updated criteria may provide an 

initial guideline when determining which diseases a PM approach is appropriate. 
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Table 1. Screening criteria for disease. 

Wilson & Jungner 1968(Wilson and 
Jungner1968) 

Andermann et al. 2008(Andermann 
et al.2008) 

Petros 2012(Petros2012) 

The condition should be an important 
health problem. 

The screening should respond to a 
recognized need. 

The test may be multiplexed or overlaid 
onto an existing structure or system. 

There should be an accepted 
treatment for patients with 
recognized disease. 

The objectives of screening should be 
defined at the start of the program. 

The “diagnostic odyssey” for the 
patient/family may be reduced or 
eliminated. 

Facilities for diagnosis and treatment 
should be available. 

There should be a defined target 
population. 

Adverse outcome(s) are rare with a 
false-positive test. 

There should be a recognizable latent 
or early symptomatic stage. 

There should be scientific evidence of 
screening program effectiveness. 

Treatment costs may be covered by 
third parties (either private or public). 

There should be a suitable test or 
examination. 

 The program should integrate 
education, testing, clinical services 
and program management. 

Testing may be declined by 
parents/guardians. 

The test should be acceptable to the 
population. 

 There should be quality assurance, 
with mechanisms to minimize 
potential risks from screening. 

Adequate pretesting information or 
counseling is available to 
parents/guardians. 

The natural history of the condition, 
including development from latency 
to diagnosis, should be adequately 
understood. 

 The program should ensure 
informed choice, confidentiality, and 
respect for autonomy. 

Screening in the newborn period is 
critical for prompt diagnosis and 
treatment. 

There should be an agreed policy on 
whom to treat as patients. 

The program should promote equity 
and access to screening for the entire 
target population. 

Public health infrastructure is in place 
to support all phases of the testing, 
diagnosis, and interventions. 

The cost of case-finding (including 
diagnosis and treatment of diagnosed 
patients) should be economically 
balanced in relation to possible 
expenditure on medical care as a 
whole. 

The program evaluation should be 
planned from the start. 

If carriers are identified, genetic 
counseling is provided. 

Case-finding should be a continuing 
process and not a “once and for all” 
project. 

The overall benefits of screening 
should outweigh the harm. 

Treatment risks and the impact of a 
false-positive test are explained to 
parents/guardians. 

  The limitations of screening and risks of 
a false-negative test are explained to 
parents/guardians. 
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 Aspects of health “personalization” 

 Though the nomenclature may be recent, personalized clinical care has existed for hundreds of 

years (Murray 2012). Physicians routinely personalize clinical care based on sex, age, race/ethnicity, 

family history, and environmental exposures. For example, screening for colorectal cancer is age and 

family history dependent: the United States Preventative Services Task Force (USPSTF) recommends 

screening beginning at age 50 unless a family history or other risk factors cause a patient to be at higher 

risk of developing the disease (U.S.Preventative Services Task Force 2008). The pneumococcal 

vaccination is recommended for all children under age 5 years and adults with certain medical 

conditions, such as immunodeficiency, sickle cell disease, or chronic lung diseases (National Center for 

Immunization and Respiratory Diseases 2012). 

 For some diseases, family and health histories provide sufficient basis to accurately assign risk 

to an individual. Huntington’s disease, an autosomal dominant genetic disorder caused by a triplet 

repeat expansion in the HTT gene, provides an example of this. An individual with an affected parent 

has a 50% risk of inheriting the mutation and developing the disease. But for more common diseases, 

such as cancer or type 2 diabetes (T2D), that have both environmental and complex genetic factors and 

interactions, determining risk for an individual patient can be more challenging.    

 Sex and race/ethnicity have roles in disease risk, providing an opportunity for PM based, in 

part, upon those traits (Burchard et al. 2003). Women are disproportionately affected by numerous 

complex diseases, including autoimmune and reproductive disorders. There are notable differences in 

the incidences and severity of diseases between men and women, from Alzheimer’s disease (Irvine et 

al. 2012) to inflammatory arthritis (Barnabe et al. 2012), which may stem, in part, from hormone 

differences between men and women (Carter et al. 2012). Similarly, population-specific genetic 

differences have already been identified for ECG traits (Ramirez et al. 2011), and age-related macular 

degeneration (Klein et al. 2011). Given the underlying biological mechanisms for many complex 

diseases are not fully understood, these sex- and population-specific differences emphasize the benefit 

in a personalized medicine approach. 
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Current implementation 

EHR utilization 

 Personalized medicine often relies substantially on software systems that can identify at-risk 

patients across large patient populations and guide clinical decision-making. Electronic health/medical 

records (EHR/EMR) systems are a key factor in successful PM initiatives in medical centers. Through 

the HITECH Act, medical institutions benefit financially from meaningful uses of their EHR systems, 

such as monitoring communicable disease incidence and immunization statistics for national 

surveillance programs and recording patient data (e.g., demographic, medication allergy, smoking 

status), (Stevens et al. 2013; Blumenthal 2010; Blumenthal and Tavenner 2010; Blumenthal 2011; Jha et 

al. 2009; Kukafka et al. 2007). With bioinformatic and computational biology approaches, EHR systems 

can scan patient populations to find cohorts for clinical trials, identify patients delinquent in 

immunization schedules (Stevens et al. 2013), and target interventions to specific populations.  

 EHR utilization goes beyond the clinical space, however. Researchers also benefit from the 

ability to access EHRs to perform epidemiologic and genetic studies on patient populations to better 

understand how genetic variations contribute to health and disease. The Electronic Medical Records 

and Genomics (eMERGE) Network is an example of a group of medical centers where researchers 

access EHR data linked to biobanks in order to perform genetic studies (McCarty et al. 2011;Crawford 

et al. 2014). eMERGE has published numerous studies on a broad range of phenotypes, including 

hypothyroidism (Denny et al. 2011), low density lipoprotein (LDL) levels (Rasmussen-Torvik et al. 

2012), and cardiac conduction (Ritchie et al. 2013). However, this secondary use of clinical data by non-

clinical researchers leads to ethical, legal, and social issues (Clayton et al. 2010; Fullerton et al. 2012) 

that remain to be fully addressed.  

Decision support mechanisms 

 Identification of patients for an intervention is only one half of the PM implementation strategy. 

Moving from identification to intervention relies on decision support mechanisms. Decision support 

mechanisms may include computerized alerts, reminders to clinicians, generation of patient data 

reports, and automatic order set suggestions--approaches that integrate multiple pieces of healthcare 

data and may involve strategies to engage the patient in the healthcare decision making process 

(Downing et al. 2009). These may be built into the EHR system or exist as a secondary system 
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depending on the use. For example, at VUMC, prescriptions are ordered electronically, allowing for a 

decision support mechanism to alert a prescribing clinician when a medication that is contraindicated 

for a patient due to genetics or drug allergy has been ordered (Pulley et al. 2012). This alert can provide 

the relevant data for the clinician about the contraindication and suggest alternate medications or 

dosing strategies (Pulley et al. 2012). Monitoring patients with chronic health conditions, such as 

asthma or T2D, is a key attribute of the Kaiser Permanente health system (McCarthy, Mueller, and 

Wrenn 2009). This allows Kaiser to target information to their patients through multiple methods and 

interactions with healthcare providers; current smokers may receive information about smoking 

cessation programs and asthmatics may receive information about reducing the frequency of attacks 

(McCarthy, Mueller, and Wrenn 2009).  

 Despite the potential to improve health outcomes using decision support mechanisms, there are 

numerous challenges to implementing a decision support process. EHR systems may not have been 

designed for this type of use and require modification or replacement and a lack of interoperability 

between specialized EHR systems may impede clinical decision support (Blavin et al. 2013). Even when 

a decision support system is implemented at an institution, the decision to change orders based on an 

alert may not occur. Alert fatigue, a phenomenon where the physician becomes desensitized to decision 

support alerts and ignores the information, is a key problem (Ancker et al. 2014; McCoy et al. 2014). 

Additionally, ethical and legal concerns about clinical decision support systems have been noted by 

several (Berner 2002; Goodman 2007; Castillo and Kelemen 2013). The reliability and accuracy of the 

clinical decision support system needs to be verified and its limitations communicated to the end users 

(Castillo and Kelemen 2013). The challenges noted for clinical decision support systems and the use of 

EHRs should be addressed for successful implementation of personalized medicine. 

 

Current examples 

 Despite the abovementioned challenges, there are numerous examples of successful 

implementation of PM for pharmacogenetics and cancer treatment.   

Pharmacogenetics 

 One use of pharmacogenetics is to match drug therapy to the patient in which it will be 

effective. Cystic fibrosis, an autosomal recessive genetic disorder caused by mutations in CFTR, is 

associated with a reduced lifespan and pulmonary events such as mucus buildup, infection, 
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inflammation, bronchiecstasis and respiratory failure (Rowe, Miller, and Sorscher 2005). 

Approximately 1,900 variants in CFTR have been associated with the disease (Online Mendelian 

Inheritance in Man 2014) and the variants can be grouped into classes based on the mechanism of CFTR 

defect (Clancy et al. 2014). Current treatment of cystic fibrosis relies primarily on targeting the 

symptoms resulting from the CFTR mutations; however, there is interest in approaches that restore 

function to the mutant CFTR protein (Clancy and Jain 2012). Ivacaftor, is the first FDA-approved drug 

to target a specific CFTR defect: gating of CFTR at the plasma membrane (Van et al. 2009). The 

effectiveness of ivacaftor relies on CFTR expression on the cell surface and the ability of CFTR 

activation through normal intracellular signaling mechanisms (Eckford et al. 2012); therefore, only 

patients who are heterozygous or homozygous for the G551D-CFTR variant are recommended for 

ivacaftor therapy (Davies et al. 2013; Ramsey et al. 2011; Accurso et al. 2010).  

 Pharmacogenetics has also been used to identify which patients are at greater risk of adverse 

drug events. Codeine, an opioid analgesic, is activated by cytochrome p450 2D6 (CYP2D6). Variants in 

CYP2D6 have been associated with variations in drug efficacy and toxicity (Crews et al. 2014). 

Individuals with decreased codeine metabolism have demonstrated poor analgesic effects from codeine 

(Lotsch et al. 2009) and severe or life-threatening toxicity following normal doses have been observed 

in fast metabolizers (Gasche et al. 2004). As a standard starting dose can result in toxicity for ultrafast 

metabolizers, identifying these at-risk patients by their CYP2D6 genotypes may decrease potential 

adverse events through administration of alternate analgesics (Crews et al. 2014).  

Cancer treatment 

 Cancer medicine is the area where personalized medicine has arguably been the most 

successful. Substantially increased lifetime risk of breast and ovarian cancers has been associated with 

mutations in BRCA1 and BRCA2 (National Cancer Institute at the National Institutes of Health 2014a). 

Genetic testing for BRCA1/2 variants may enable carriers of deleterious mutations to seek 

chemoprevention, intensive cancer screening (Peshkin et al. 2002), or prophylactic surgery to reduce 

their risk of developing breast or ovarian cancers (U.S.Preventative Services Task Force 2013). Gene-

expression data has also contributed to the success of PM in cancer care. Increased expression of the 

human epidermal growth-factor receptor 2 (HER2) is present in approximately one quarter of breast 

cancers and is indicative of an aggressive subtype of disease with poor prognosis (Slamon et al. 

1987).Testing breast cancer tumors for increased HER2 expression allows oncologists to use 
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trastuzumab antibody therapy in these patients, which has significantly improved health outcomes for 

this subset of breast cancer patients (Slamon et al. 2001).  

 Other cancers have also benefitted from personalized medicine approaches, including guiding 

treatment decisions and determining disease prognosis. Non-small cell lung carcinoma is a type of lung 

cancer where the tumor develops in the small alveoli of the lungs (National Cancer Institute at the 

National Institutes of Health 2014c). Prognosis and treatment depend upon whether the tumor has 

mutations in particular genes, such as the epidermal growth factor receptor (EGFR) or the anaplastic 

lymphoma kinase (ALK) gene. Specific ALK mutations are used to guide therapy with crizotinib, a 

tyrosine kinase inhibitors in lung cancer. Additionally, ALK overexpression has been associated with 

poor prognosis in colorectal cancer (Bavi et al. 2013).   

Common, complex diseases 

 Personalized medicine approaches, (i.e., patient-finding, treatment guiding, and intervention 

timing) have not been as successful for other non-cancer common, complex diseases. Though the public 

health burden from common diseases like cardiovascular disease, T2D, asthma, or autoimmune 

disorders is substantial, PM approaches have not generally been implemented on a population-level 

scale. Common disorders result from both genetic and environmental factors and complex interactions 

of those factors. The biologic mechanisms for these diseases are not fully understood, so identifying the 

optimal time and type of intervention for PM is difficult. Randomized clinical trials, considered to be 

the “gold standard” in evaluating an intervention, have been performed for pharmacogenetics and 

cancer treatments, but are rarely utilized for other common, complex diseases. The downstream 

consequence of this is a lack of evidence resulting in challenges to establishing policy for PM.  

 Despite these challenges, PM approaches have been used successfully for age-related macular 

degeneration. Age-related macular degeneration (AMD) is a phenotypically heterogeneous ocular 

disease characterized by central vision loss, from damage to the macula that presents with one of two 

subtypes: wet or dry (National Eye Institute at the National Institutes of Health 2013). Genetic (e.g., 

ARMS2/HTRA1, CFH) and environmental (e.g., cigarette smoking, elevated body mass index) factors 

contribute to disease development (Chakravarthy et al. 2013; Edwards et al. 2005; Haines et al. 2005; 

Klein et al. 2005; National Eye Institute at the National Institutes of Health 2013). A recent study has 

used a PM approach to classify neovascular AMD (nAMD) patients into subtypes for potential 

therapeutic interventions. Feehan et al. classified affected AMD patients into four discrete clusters 
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based on phenotypic and genotypic heterogeneity (Feehan et al. 2011). History of hypertension or of 

hypercholesterolemia were significant risk factors, as was the ARMS2/HTRA1 rs1049331 TT genotype 

(Feehan et al. 2011). Currently, injectable anti-VEGF therapies are used to treat nAMD; however, it has 

been proposed that these therapies are contraindicated in patients with cardiovascular risk factors 

(Enseleit, Michels, and Ruschitzka 2010). The ability to classify patients into these clusters, based on 

both environmental and genetic risk factors, may provide clinicians an opportunity to target 

pharmacologic treatments to specific patients and not others.  

 Response to AMD therapy based on genotype was investigated by Wang et al. (Wang et al. 

2012). Wang et al. identified an association between response to ranibizuman/bevacizumab therapy in 

nAMD patients and PLA2G12A rs2285714, though this association was not significant after Bonferroni 

correction for multiple testing (Wang et al. 2012). Interactions between genetic risk (CFH rs1061170 or 

ARMS2 rs10490924) and environment (dietary intake of antioxidants, zinc, and omega-3 fatty acids) 

were evaluated in a recent study (Wang et al. 2014a). Participants were grouped by number of risk 

alleles in CFH or ARMS2 and a regression analysis was performed to identify associations between 

genetic risk and the environmental variables. The authors found interactions between intake of 

antioxidants and fish consumption with decreased AMD risk, but only in participants with two or 

more risk alleles in CFH or ARMS2 (Wang et al. 2014a). This association highlights the potential 

opportunity for clinicians to identify at-risk patients who are most likely to benefit from specific 

interventions and demonstrates the use of PM for a common, complex disease.  

Personalization: Understanding Women’s Health 

 Tailoring clinical care to an individual can take many forms and may be based on several 

factors, including genetics, ethnicity, and sex. Known differences in disease prevalence and severity 

between men and women, and female-specific issues of reproduction and the reproductive lifespan, 

emphasize the need to perform disease research in women as well as men. 

Historic research inequality 

 Women comprise more than 50% of the US population (Bureau of the Census 2011; 

U.S.Department of Commerce 2014) and there are notable differences in the incidences and severity of 

diseases between men and women, from Alzheimer’s disease (Irvine et al. 2012) to inflammatory 

arthritis (Barnabe et al. 2012). Parity may affect disease manifestation or outcomes such as body mass 
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index (BMI) (Bobrow et al. 2013) and diabetes (Simons et al. 2012). The timing of the reproductive 

lifespan is associated with numerous disease traits; an earlier age at menarche and/or later age at 

menopause increases risk for several cancers, while an earlier age at menopause place women at 

increased risk for osteoporosis and cardiovascular disease, in addition to decreased fertility. It is 

unclear to what extent sex-specific genetic architecture and environmental factors (such as hormone 

fluctuations or behavior) contributes to observed disease prevalence or severity variation. Gene 

regulation differences and genotype-sex interactions have been suggested to play a role in sex-specific 

heritability for some diseases (Ober, Loisel, and Gilad 2008).  Nevertheless, only in the last few decades 

has the importance of women’s health and physiologic differences between males and females in the 

research setting come to the forefront of researchers and government agencies (Taylor 1994).  

Endometrial Cancer research 

 One example of a female-specific disease is endometrial cancer (EC). Endometrial cancer is the 

most common invasive gynecological cancer and has the fourth highest cancer incidence rate in the 

United States, with an estimated 52,630 new cases and 8,590 deaths in 2014 (National Cancer Institute at 

the National Institutes of Health 2014b). Worldwide, an estimated 287,000 new cases arise yearly, with 

twice the age-standardized incidence rate in developed countries as in developing countries (Jemal et 

al. 2011). Diagnosis of EC currently occurs after the patient is symptomatic. There is no standard 

screening test, making the development of biomarkers (including genetic risk scores) very important. 

Common forms of EC can be roughly categorized into three distinct subtypes: endometrioid, serous, 

and clear cell. Several rarer histological subtypes (e.g., mixed Müllerian, squamous cell carcinoma) also 

exist. Endometrioid cancer is estrogen dependent and is the most common of the subtypes; prognosis 

for endometrioid EC is often the best of the common subtypes and many of the cancers are diagnosed 

at early stages.  Serous and clear cell carcinoma are both estrogen-independent and are typically higher 

grade; outcomes for these cancers are worse than for endometrioid cancers, even when adjusted for 

stage (O'Hara and Bell 2012). EC risk increases with age, type 2 diabetes, obesity, hypertension, and 

gynecological disorders such as polycystic ovarian syndrome (PCOS), endometriosis, and uterine 

fibroids. Smoking, nulliparity, and hypertension are associated with increased risk of EC, while parity 

and oral contraceptive use have a protective effect against EC (Haidopoulos et al. 2010). 
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Genetic contributions to endometrial cancer  

 A family history of EC is a known risk factor for the disease and its heritability has been 

estimated at 52% (Schildkraut, Risch, and Thompson 1989).  Several studies performed in women with 

European ancestry have reported odds ratios (OR) ≈ 2.0 for EC for women with a family history of EC 

and/or colorectal cancers, however, results have been largely inconsistent (Lucenteforte et al. 2009).  It 

has been suggested that a family history of different cancers may predispose women to EC, an effect 

more pronounced in young women diagnosed at an early (<40 years) age (Lucenteforte et al. 2009). 

Lynch syndrome has been well documented to increase risk of several cancers, including EC, providing 

further evidence of a genetic contribution to EC through mutations in DNA mismatch repair genes 

(Wang et al. 2013; Gruber and Thompson 1996; Ma, Ledbetter, and Glenn 2013). HER-2/neu 

expression, also implicated in breast cancer, has been found to be associated with EC overall, cancer-

related, and disease-free survival (Kalogiannidis et al. 2014).  

 Several candidate gene association studies (CGAS) have been published for EC (Lee et al. 2010; 

Ashton et al. 2009b; Chen et al. 2012b; Xu et al. 2009a; Xu et al. 2009c). Given that endometrioid ECs are 

estrogen-dependent, one CGAS found ESR1 and ESR2 variants to be associated with increased EC risk, 

an effect which was increased in subjects with both polymorphisms (Ashton et al. 2009a). Variants in 

PGR, the progesterone receptor, have been associated with increased EC risk (Lee et al. 2010; O'Mara et 

al. 2011a); though a recent meta-analysis of eight studies found no significant association between the 

PGR +331G/A polymorphism and endometrial cancer risk (Pabalan et al. 2014). Polymorphisms in 

caspases, more broadly associated with the progression of cancer through the apoptotic pathway, were 

found to be associated with increased risk of EC in a cohort of Chinese women (Xu et al. 2009a). 

Obesity is a known risk for EC and is associated with adiponectin and leptin levels; it was 

hypothesized that obesity-related genes may play a role in EC risk (Chen et al. 2012b). Chen et al. 

identified variants in both LEP and ADIPOQ associated with reduced EC risk in their Chinese cohort 

(Chen et al. 2012b). In general, though several studies have identified variants associated with EC risk, 

these have typically been unreplicated or of mixed results, and represent a small fraction of genes 

involved in cancer initiation and progression pathways.   

 Four genome-wide association studies (GWAS) have been published for EC (Spurdle et al. 2011; 

Long et al. 2012; De, I et al. 2014; Kuhn et al. 2012). These studies have identified a single significant 

locus, HNF1B rs4430796, associated with EC after multiple testing corrections (p=7.1x10-10) (Spurdle et 

al. 2011; De, I et al. 2014). Three SNPs, all in LD in the first four exons of HNF1B, were associated with 
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endometrial cancer at p<10-07 in a European-descent population; one of these SNPs was tested in a 

Chinese cohort from Shanghai (Shanghai Endometrial Cancer Genetics Study), but failed to generalize 

to that population in a supplemental analysis (Spurdle et al. 2011). The second GWAS published for 

endometrial cancer performed a multiple-stage analysis, beginning with the Shanghai cohort from the 

first GWAS, and identified a variant near CAPN9 on chromosome 1 associated with EC, an effect that 

was more significant when the analysis was limited to endometrioid ECs (Long et al. 2012).  A 

replication study was performed in two studies from the PAGE Consortium; two SNPs, rs4430796 and 

rs7501939, identified in the Spurdle et al. GWAS for EC were tested for association with EC in 1,357 

incident cases of invasive EC in women of diverse ethnic ancestries from the Multiethnic Cohort Study 

(MEC) and the Women’s Health Initiative (WHI) (Setiawan et al. 2012). These SNPs were found to be 

protective against EC (both type I and type II tumors) in their overall study population and in women 

of European-descent, with similar trends found in the African American, Asian/Pacific Islander and 

Latina women (Setiawan et al. 2012). Despite the association between EC and HNF1B, no other variants 

have been associated with EC at genome-wide significance, suggesting common variants may not 

explain a significant amount of heritability for EC (Chen et al. 2014b). Therefore, an exome-wide 

association study (EXWAS) design was used to identify rare variants associated with EC in multiethnic 

participants from the Epidemiology of Endometrial Cancer Consortium (E2C2) (Chen et al. 2014b). No 

variants in the EXWAS reached genome-wide significance after Bonferroni adjustment for multiple 

tests, nor did a gene-based analysis identify significant associations with EC; however this study was 

small and powered only to detect ORs>2.53 for low frequency (MAF<0.02) variants (Chen et al. 2014b). 

The limited variants consistently identified through a relatively small number of genetic studies 

highlight the opportunities for additional studies to meaningfully contribute to the field.   

Timing of the Reproductive lifespan 

 Age at menarche (AM) and age at natural menopause (ANM) define the boundaries of the 

reproductive lifespan in women. Cross-sectional and longitudinal studies have shown a recent secular 

trend of earlier attainment of pubertal milestones (breast development, appearance of pubic hair, 

menarche) from the 1960s to present (Kaplowitz 2006; Herman-Giddens 2006).  This tendency is 

accelerated in girls of African American and Hispanic ancestry, a bias that remains after adjusting for 

socioeconomic variables and body mass index (BMI) (Wu, Mendola, and Buck 2002). Known 

environmental modifiers of age at menarche include exposure to organochlorine chemicals and 

polybrominated biphenyls (Wolff and Landrigan 2002; Blanck et al. 2000). Increased BMI is associated 
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with earlier AM (Biro, Khoury, and Morrison 2006) and later ANM (Palmer et al. 2003), while active 

smoking is associated with earlier ANM (Gold 2011). These and other known environmental factors 

explain only a small amount of individual variation in the timing of these reproductive measures. 

Menarche 

 The gonadotropin-releasing hormone (GnRH) can be considered the ‘master switch’ controlling 

the timing of puberty and release of hormones from the hypothalamus. Secretion of GnRH varies with 

age; in utero release of GnRH leads to pituitary release of follicle-stimulating hormone (FSH) and 

luteinizing hormone (LH). This hormonal cascade reaches a peak at about the same time the maximum 

number of oocytes is reached (DiVall and Radovick 2008). LH and FSH levels begin to decline as 

placental estrogen provides negative feedback on the hypothalamus-pituitary-gonadotropin (HPG) 

axis. After birth and the removal of placental estrogen, FSH and LH levels rise again, only to fall in the 

first two years of life to nearly undetectable levels.  From this point, the HGP axis enters what is known 

as the ‘juvenile pause,’ a state of relative quiet in the HPG axis (Nathan and Palmert 2005). 

 The process of puberty begins some time prior to menarche/initiation of menstruation.  

Kisspeptins, encoded by the KISS1 gene, stimulate pulsatile release of GnRH from the hypothalamus to 

the pituitary (Okamura et al. 2013); pituitary production of FSH and LH increases (Garcia-Galiano, 

Pinilla, and Tena-Sempere 2012; Matzuk and Lamb 2008). FSH leads to maturation of the follicles in the 

ovary and production of estradiol and anti-Mullerian hormone (AMH) (Burger et al. 2007; Hale et al. 

2007).  Estradiol is the strongest of three types of estrogens: estradiol, estrone, and estriol. Estradiol is 

the primary circulatory estrogen before the onset of menopause. In the pubertal girl, circulating 

estrogen leads to uterine and breast growth, and the lining of the uterus, the endometrium, becomes 

vascularized. AMH acts to inhibit overstimulation of follicles due to the increased levels of FSH. LH 

increases lead to ovulation and maintenance of the endometrium. In absence of pregnancy and 

hormone levels to sustain the vascularized tissue, the endometrium is sloughed off and menstruation 

occurs. It has been hypothesized that the first few anovulatory menses act to mature the HPG axis 

(Henriet, Gaide Chevronnay, and Marbaix 2012). Though ovulation may occur at the time of menarche, 

it is not common, and cyclic menstruation may occur in its absence (Zhang et al. 2008). As the HPG axis 

matures, menstrual cycles become regular and the cyclic rise and fall of the various hormones stabilizes 

into a regular pattern (Ruiz-Alonso, Blesa, and Simon 2012). 
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 In the clinical setting, female puberty can be subdivided into five stages based on breast 

(thelarche) and pubic hair (pubarche) development (Table 2) (Marshall and Tanner 1969; Tanner and 

Whitehouse 1976). Menarche, the initiation of the menstrual cycle, occurs typically at some time after 

Tanner stage 3 or 4, at which point breast and pubic hair development are continuing, but not mature 

(Tanner stage 5) (Marshall and Tanner 1969). In the Harpenden Growth Study, a longitudinal study of 

British girls from an institutional setting, the mean age at menarche was 13.47 years, with a standard 

deviation of 1.02 years (Marshall and Tanner 1969).   

Figure 1. Hormonal fluctuations during the menstrual cycle.  

Shown are the relative hormonal fluctuations that occur during a typical (non-disordered state) 28-day 
menstrual cycle. Colored boxes represent the three phases of the menstrual cycle as labeled above the 
figure. Abbreviations: luteinizing hormone (LH); follicle stimulating hormone (FSH). Adapted from 
Ruiz-Alonso et al. 2012. 
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Table 2. Tanner stages of female puberty. 

Tanner Stage Breast Development Pubic Hair Development 
1 pre-adolescent; papilla elevation 

only 
pre-adolescent; no pubic hair 

2 breast bud stage; enlargement of 
breast and papilla as a small 

mound; enlargement of areola 
diameter 

sparse growth of long, slightly curled, 
and slightly pigmented hair; appears 

mainly on the labia 

3 continued enlargement of breast 
and areola 

darker, coarser, and more curled hair 
spread sparsely  

4 projection of papilla and areola to 
form a secondary mount above the 

level of the breast 

hair is adult in type but coverage is 
significantly less than in adults 

5 mature breast adult in quantity and type, spread to 
medial surface of the thighs but not 

above the base of the inverse triangle 
 

 Concern of a secular trend toward earlier attainment of the stages of pubertal development 

served as the impetus for several studies (Sun et al. 2005; Sun et al.2002). Using data collected from the 

National Health and Nutrition Examination Survey (NHANES) III (1988-1994), differences in timing of 

menarche and breast/pubic hair development were found between non-Hispanic blacks, Mexican-

Americans, and non-Hispanic whites (Chumlea et al. 2003; Sun et al. 2002). Comparing the sexual 

maturity data collected from the National Health Examination Survey (NHES) 1966, the Hispanic 

Health and Nutrition Examination Survey (HHANES) 1982-1984, and the NHANES III (1988-1994), no 

obvious secular trend for earlier attainment of breast or pubic hair development was found for non-

Hispanic blacks or non-Hispanic whites between NHES (1966) and NHANES III (1988-94) (Sun et al. 

2005). In Mexican-American girls, a greater proportion had attained Tanner stage 2 or higher in 

NHANES III than in HHANES; however, completion of pubertal development (Tanner stage 5) 

occurred later in NHANES III compared to HHANES (Sun et al. 2005). Age at menarche for all girls 

declined slightly in NHANES III (median: 12.43 years) compared to NHES (median: 12.77 years) (Sun 

et al. 2005). Non-Hispanic blacks reached menarche earliest of the three groups (median: 12.06 years), 

compared to non-Hispanic whites (median: 12.55 years) or Mexican-Americans (median: 12.25 years). 

The largest difference in age at menarche between NHES 1966 and NHANES III 1988-94 was observed 

in non-Hispanic blacks (difference: 0.46 years)(Sun et al. 2005). Despite the earlier age at menarche and 

breast development observed in NHANES III compared to earlier population surveys, the authors 

determined overall pubertal development had not substantially declined(Sun et al. 2005). Similarly, 
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data from NHANES (1999-2004) demonstrated a downward trend in age at menarche for all women 

and within each racial/ethnic category(McDowell, Brody, and Hughes 2007). 

 In the Copenhagen Puberty Study, using a cross-sectional population study design, 

investigators collected data for Tanner stages of puberty, weight and height, and hormone levels 

(estradiol, serum follicle-stimulating hormone (FSH), and luteinizing hormone (LH)) (Aksglaede et al. 

2009). The findings were similar to those found in the US study (Sun et al. 2005); the mean age at 

menarche declined from 13.42 years to 13.13 years and Tanner stage 2 (breast) declined from 10.88 

years to 9.86 years (Aksglaede et al. 2009). Increased gonadotropins were not associated with the 

observed earlier breast development; however, there was a small but significant decrease in estradiol 

levels among 8-10 year olds (Aksglaede et al. 2009). Notably, adjustment for BMI did not change the 

significance of the menarche or pubic hair development results (Aksglaede et al. 2009). These data, 

considered together, suggest that earlier breast development may occur as a result of estrogenic 

actions, rather than earlier activation of the HPG axis, and this is not associated with increasing 

incidence of childhood obesity (Aksglaede et al. 2009). 

 The Avon Longitudinal Study of Parents and Children (ALSPAC) evaluated the timing of 

puberty in a British cohort (Christensen et al. 2010b). This study used questionnaires mailed to the 

participants to obtain self-reported/parent-reported data on Tanner stages and age at menarche; 

drawings were provided to aid in the determination of Tanner stage (Christensen et al. 2010b). Several 

characteristics were assessed for association with Tanner stage of the child, including mother’s pre-

pregnancy BMI, mother’s age at delivery, mother’s age at menarche, mother’s level of education, social 

class, child’s birth weight, race, birth order, and BMI at time of questionnaire (Christensen et al. 2010b). 

The median age at menarche in ALSPAC was 12.9 years, though this was found to vary according to 

whether the participant began thelarche before pubarche, pubarche before thelarche, or entered 

thelarche and pubarche simultaneously (Christensen et al. 2010b). Unlike the Copenhagen cohort, 

increased BMI was associated with higher Tanner stages for breast and pubic hair development 

(Christensen et al. 2010b). 

 Though several studies have found a decrease in median age at menarche and earlier 

attainment of Tanner stages, the cause of this is not well understood. BMI is not consistently associated 

with earlier thelarche, pubarche, or menarche (Cousminer et al. 2014). Others have considered the 

influence of environmental factors such as exposure to chemicals that mimic estrogenic compounds 

(e.g., bisphenol A (BPA), phthalates) (Wolff and Landrigan 2002; Blanck et al. 2000). It is unclear if 
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interactions between genetic variants and environmental factors play a role in the timing of puberty. 

Given the impact on future disease risk associated with timing of pubertal milestones, additional 

studies that examine both the genetic and environmental components of puberty are warranted.  

Menopause 

 The median age at which menopause occurs is 51 years, though unlike the relatively short 

timeframe for menarche, there is substantial variation (Cramer and Xu 1996; Gold 2011).  At the start of 

the menopausal transition, the follicular count continues to decrease and AMH levels are low (Burger 

et al. 2007; Harlow et al. 2012). Cycle length does not change initially. However, changes in the length 

of the cycle and FSH levels in the early follicular phase of the cycle increase as a woman approaches 

menopause.  As the menopausal transition progresses, variability is seen in the length of the cycle >7 

days from normal and is persistent across multiple cycles as the levels of FSH increase but are more 

variable (Harlow et al. 2012; Burger et al. 2007). As FSH levels continue to rise, estrogen levels further 

decline and missed menstruation (amenorrhea) occurs, though some women may experience normal 

cycles and normal or increased levels of estradiol up to age 55 (Harlow et al. 2012; Weiss et al. 2004; 

Santoro and Randolph, Jr. 2011). The Stages of the Reproductive Aging Workshop (STRAW) group 

have delineated the reproductive lifespan and menopausal transition into three main phases with 

seven stages based on frequency and variation of the menstrual cycle and supporting evidence from 

antral follicle counts and FSH and AMH levels (Table 3) (Harlow et al. 2012). The final menstrual 

period marks the boundary of the menopausal transition into post-menopause. At the end of the 

menopausal transition, the antral follicle count is very low, FSH levels continue to rise before 

stabilizing, and both estradiol and AMH levels are very low (Harlow et al. 2012). 
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Table 3. Stages of the Reproductive Lifespan 

 Reproductive  Menopausal Transition Postmenopause 

Stage -5 -4 -3b -3a -2 -1 +1a +1b +1c +2 

Menstrual Cycle variable to 

regular 

regular regular some 

changes to 

flow 

variable 

length 

amenorrhea 

≥60 days 

    

Endocrine Levels 

FSH   low variable variable, 

elevated 

elevated, 

>25 IU/L 

variable, 

elevated 

stabilizes  

AMH   low low low low low very low  

Inhibin B    low low low very low very low  

Antral Follicle Count   low low low low very low very low  

Shown are the stages of the reproductive lifespan, identified by the Stages of Reproductive Aging Workshop (STRAW). Menstrual Cycle, 
selected hormone levels and antral follicle counts are presented.  Stage (-5) begins with menarche. The postmenopausal period is divided 
into two main stages; stage (+1a) begins after a 12 month period of amenorrhea and defines that the final menstrual cycle has occurred. 
Shaded stage boxes indicate perimenopause. Abbreviations: follicle stimulating hormone (FSH), anti-Mullerian hormone (AMH). Adapted 
from Harlow et al. 2012. 
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Genetic contributions to timing of the female reproductive lifespan 

 The genetic component for the timing of menarche and natural menopause has been 

investigated in multiple twin, family, and large population studies, with heritability estimates of nearly 

50% for both AM and ANM (He and Murabito 2012). The associations between AM/ANM with disease 

underscore the importance of elucidating the mechanisms responsible for timing of these events and 

the genetic predisposition to timing which could affect future disease risk. 

 Genome-wide linkage analyses (GWLA) have been used to identify regions of the genome 

linked to AM and ANM—four for AM and two for ANM (Guo et al. 2006a; Anderson et al. 2008; 

Rothenbuhler et al. 2006; Murabito et al. 2005; Pan et al. 2008; van Asselt et al. 2004).  All of the GWLA 

were performed in European-descent populations (He and Murabito 2012).  There was little 

concordance in the results of the GWLA; only one region was identified in two separate GWLA for AM 

(22q13) (Pan et al. 2008; Guo et al. 2006a). Furthermore, these results have not been replicated in other 

studies, nor have the causal genes under the linkage peaks been identified.  Multiple candidate gene 

association studies have also been performed for AM and ANM, many of these in the last few years 

(reviewed in (He and Murabito 2012)).  While earlier candidate gene studies focused on estrogen 

biosynthesis pathways and yielded inconsistent findings, more recent studies have considered other 

biological pathways with some concordance. In a study evaluating biologic pathways for associations 

with AM and ANM, FSHB was associated with later onsets of menarche and menopause, and ESR2 

was associated with AM (He et al. 2010). In general, although linkage and candidate gene studies have 

identified several potential associations with AM and/or ANM, a lack of replication and inconsistency 

has resulted in few variants of accepted significance. 

 Genome-wide association studies (GWAS) have identified many novel loci associated with AM 

or ANM. Four GWAS published simultaneously for AM identified many of the same SNPs (He et al. 

2009a; Ong et al. 2009; Sulem et al. 2009; Perry et al. 2009). Variants in or near LIN28B (6q21) and 9q31.2 

reached genome-wide significance in these studies; however, they were responsible for less than 1.0% 

of the variation in AM (Perry et al. 2009; Ong et al. 2009).  The International ReproGen Consortium 

published a meta-analysis of 87,802 women with a replication cohort of 14,731 women, all of European 

ancestry. This meta-analysis confirmed the associations between LIN28B/6q21 and 9q31.2 with AM 

and identified 30 novel associations and ten suggestive associations with AM (Elks et al. 2010). Despite 

this increase in sample size, these 42 variants account for <10% of the observed variation in AM (Elks et 

al. 2010).  
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 The findings from GWAS on ANM are similar to those for AM, with little concordance between 

studies. Studies have identified the same locus (19q13.42/BRSK1) at genome-wide significance (He et 

al. 2009a; Stolk et al. 2009). A recent meta-analysis from the ReproGen Consortium in 38,968 women 

with replication in 14,435 women, all of European ancestry, confirmed associations with four 

menopause loci and identified thirteen novel ANM associations in DNA repair and immune pathways 

(Stolk et al. 2012). Additionally, the WHI-SHARe (Women’s Health Initiative-SNP Health Association 

Resource) has generalized associations with eight menarche loci and two menopause loci to a cohort of 

Hispanic ancestry (Chen et al. 2012a). A pentanucleotide repeat polymorphism in SHBG was associated 

with an earlier age at menopause in a Greek study, though this effect was slight and the study size 

small (n=210) (Markatseli et al. 2014).  

 A lack of data for genetic variants associated with AM/ANM in non-European-descent 

populations has been highlighted as a known barrier to identifying loci associated with these traits in 

all race/ethnicities, and emphasizes the need to extend GWAS analyses to more diverse populations 

(Dvornyk and Waqar 2012). This disparity in research has recently been addressed in a GWAS meta-

analysis in African American women (n=6,510) from eleven studies across the US (Chen CT et al. 2014). 

Though no new associations with age at menopause were identified, the authors generalized to their 

participants six variants previously associated with ANM in European cohorts (Chen et al. 2014a).  

 A recent study has assessed the interaction between cigarette smoking and genetic variants on 

the timing of natural menopause in European-Americans (Butts et al. 2014). Smoking is a risk factor for 

natural menopause, decreasing the ANM by 1-2 years (Cramer et al. 1995; Gold et al. 2001; Sievert et al. 

2013). It has been hypothesized that smoking influences age at menopause through a mechanism that 

results in cytotoxicity to oocytes, leading to oocyte depletion to hastening time to menopause 

(Mattison, Nightingale, and Shiromizu 1983; Jurisicova et al. 2007; Matikainen et al. 2001) or though 

chemicals in cigarettes that lead to hypoestrogenism (Zhu and Conney 1998; Michnovicz et al. 1986). 

Candidate genes were selected for their association with timing of menopause or bioactivation of 

polyaromatic hydrocarbons that are in cigarettes (Butts et al. 2014). Significant associations of earlier 

age at menopause were found in carriers of CYP1B1*3 or CYP3A4*1B who were smokers, resulting in a 

more than two-fold increased risk of menopause than nonsmokers (Butts et al. 2014). However, this 

was a small study (n=410) and the findings only applied to the European-American participants 

(n=205), not the African Americans in their study, and the strata for each genotype and smoking status 
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were small (Butts et al. 2014). Nevertheless, these findings suggest interactions between genetic 

variants and environmental factors may play a role in the timing of menopause.  

Autoimmunity and Thyroid disease 

 Autoimmune disorders are a group of disorders characterized by a loss of immune tolerance to 

self antigens (Murphy, Travers, and Walport 2008). Autoimmune diseases can be generally organized 

into two groups: organ-specific and systemic; Graves’ disease and Hashimoto’s thyroiditis are 

examples of organ-specific autoimmune disorders (Murphy, Travers, and Walport 2008). For many 

autoimmune diseases, women are disproportionately affected (Lawrence et al. 1998; Weyand et al. 

1998) and there may be differences in disease incidence across racial/ethnic groups (Murphy, Travers, 

and Walport 2008; Cooper and Stroehla 2003; Okayasu et al. 1994). Though the human leukocyte 

antigen (HLA) region of chromosome six has been implicated in many autoimmune disorders 

(reviewed in (Gough and Simmonds 2007)), these diseases are not fully understood and represent an 

important area in women’s and minority health research. 

Epidemiology of autoimmune thyroid disease 

 The thyroid is a small, butterfly-shaped gland on the front and sides of the neck. As a part of the 

hypothalamus-pituitary-thyroid (HPT) axis, the thyroid helps to regulate many physiological 

processes, including metabolic processes and mitochondrial function (Bassett and Williams 2008; 

Costa-e-Sousa RH and Hollenberg 2012; Vidali et al. 2014). Thyroid disease is a broad term that 

encompasses several related, though clinically distinct, disorders including thyroid nodules and goiter, 

thyroid cancer, congenital hypothyroidism, hyperthyroidism, and hypothyroidism. Both 

hyperthyroidism and hypothyroidism may develop from autoimmune causes or from environmental 

factors, such as iodine insufficiency; in developed countries, where iodine is replete, autoimmune 

causes are the most common (Vanderpump 2011). Both hyperthyroidism and hypothyroidism are 

diagnosed by measuring the serum thyroid stimulating hormone (TSH), free thyroxine (free T4), and 

free tri-iodothyronine (free T3) levels (Vanderpump 2011;National Endocrine and Metabolic Diseases 

Information Service (NEMDIS), National Institute of Diabetes and Digestive and Kidney Diseases 

(NIDDK), and National Institutes of Health 2014) (Table 4).  
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Table 4. Reference ranges and typical thyroid function test results. 

 TSH (mIU/L) free thyroxine 
(fT4)(ng/dL) 

free triiodothyronine 
(fT3) (pg/mL) 

Euthyroid (normal) 0.5-4.50 0.5-1.2 2.3-4.2 
Hypothyroid ↑ ↓ ↓ 
Hyperthyroid ↓ ↑ ↑ 

The reference range for TSH reflects the position of a joint conference of the American 
Association of Clinical Endocrinologists, the American Thyroid Association, and The Endocrine 
Society (JAMA 2004; 291:228).  Arrows indicate direction of test value from the reference level in 
a typical thyroid diseased patient. Adapted from: (National Endocrine and Metabolic Diseases 
Information Service (NEMDIS), National Institute of Diabetes and Digestive and Kidney 
Diseases (NIDDK), and National Institutes of Health 2014) 

 

 Hypothyroidism is most commonly caused by Hashimoto’s disease and is four times more 

common in women than in men; it is primarily seen in middle-aged women, though it may occur at 

any age in either sex (Vanderpump 2011; Hollowell et al. 2002). Symptoms of hypothyroidism include 

fatigue and/or muscle weakness, sensitivity to cold, constipation, unexplained weight gain, excessive 

or prolonged menstruation, and depression (Dubbs and Spangler 2014). Complications from 

hypothyroidism include development of a goiter, increased risk of heart disease (Bai et al. 2014), 

depression and other mental health issues, and myxedema; untreated myxedema is critical and may 

result in myxedemic coma or death (Dubbs and Spangler 2014). Pregnant women with untreated 

Hashimoto’s disease are at increased risk of adverse maternal and fetal outcomes including recurrent 

miscarriage and birth defects (Nathan and Sullivan 2014; Dosiou et al. 2012).   

Genetic contributions to the development of Hashimoto’s disease 

  The heritability of autoimmune hypothyroidism and thyroid hormones (TSH, T3, T4) has been 

assessed in several twin- and family-based studies with substantial variability (Brix et al. 2000; Panicker 

et al. 2008b; Samollow et al. 2004; Hansen et al. 2004; Meikle et al. 1988). Intra-individual variability has 

been shown to be roughly half that of inter-individual variability in these hormone levels for healthy 

individuals (Andersen et al. 2002). Nevertheless, these studies demonstrate a strong genetic component 

to thyroid hormone levels and corresponding disease state. Both candidate gene and genome-wide 

association studies have been used to identify genetic variants associated with hypothyroidism and 

corresponding thyroid hormone levels. Variants in PDE8B are associated with serum TSH levels 

(Arnaud-Lopez et al. 2008; Medici et al. 2011; Taylor et al. 2011); this gene encodes a cAMP-specific 
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protein expressed in thyroid tissue (Horvath et al. 2010). FOXE1, a thyroid transcription factor believed 

to be important in thyroid morphogenesis (Cuesta, Zaret, and Santisteban 2007), has been associated 

with hypothyroidism (Eriksson et al. 2012; Denny et al. 2011; Gudmundsson et al. 2009)  and may be 

weakly associated with serum TSH levels (Medici et al. 2011). Despite the strong autoimmune 

component to hypothyroidism, few variants in known autoimmune loci (e.g., HLA region, CTLA-4) 

have been found to be associated with the clinical disease (Eriksson et al. 2012). In summary, the 

known genetic variants associated with TSH levels or hypothyroidism account for little of the expected 

heritability, emphasizing the need for future studies to identify additional genetic risk factors. 

Personalization: Understanding Race/Ethnicity 

Historic research inequality 

 As women have historically been overlooked in clinical research, so too, have been populations 

of non-European ancestry. The NIH Revitalization Act of 1993 was put into place to require biomedical 

researchers include more women and minorities in their clinical research studies unless compelling 

reasons against their inclusion existed (National Institutes of Health 1993). This and other initiatives to 

include women and minorities has resulted in some success: a recent report by the Federal Food and 

Drug Administration (FDA) determined that sex composition of clinical trials in 2011 was reflective of 

the disease prevalence differences between men and women (Food and Drug Administration and 

U.S.Department of Health and Human Services 2013). However, more than a decade later, minority 

participation in clinical research is still lacking (Food and Drug Administration and U.S.Department of 

Health and Human Services 2013; Ford et al. 2005). For example, the African American participation in 

T2D clinical studies was less than 5%, despite the higher prevalence of T2D in African Americans and 

their overall percent of the US population (13.2%) (Food and Drug Administration and U.S.Department 

of Health and Human Services 2013; U.S.Department of Commerce 2014; Office of Minority Health and 

U.S.Department of Health and Human Services 2014a). This FDA report concluded that, for 2011 

clinical trials, non-white clinical trial study participants were underrepresented (Food and Drug 

Administration and U.S.Department of Health and Human Services 2013). 

  There are several barriers to participation in biomedical research by underrepresented groups 

from both the participant and the institutional perspectives. These include ineligibility per study 

design, cost, language differences, low literacy, and practical obstacles (e.g., number of visits required 

per study design) (Williams 2009). A lack of awareness and mistrust are challenges that result, in part, 
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from historic injustices to some groups (Armstrong et al. 1999; Gorelick et al. 1998). For example, the 

Tuskegee Syphilis Study, in which African American men with syphilis were untreated in order to 

study the natural progression of the disease, has had lingering effects on minority participation in 

biomedical research and clinical trials (Thomas and Quinn 1991; Freimuth et al. 2001; Gamble 1997; 

Tuskegee University Centers of Excellence Bioethics Center 2014). These challenges may be successfully 

overcome through use of social marketing, referrals from family or friends, and recruitment through 

healthcare providers (UyBico, Pavel, and Gross 2007). Use of EHRs to identify individuals who may 

qualify for participation in clinical research may improve minority participation. 

Clinical differences across diverse populations 

 Population-specific differences have already been identified for many diseases. For example, 

Native Hawaiians and Pacific Islanders are 30% more likely to have asthma than non-Hispanic whites, 

and from 2003-2005, African American children were 7 times more likely to die from asthma than non-

Hispanic white children (Asthma Disparities Working Group 2012). Type 2 diabetes disproportionately 

affects racial and ethnic minority groups; risk of diabetes compared to non-Hispanic whites is 18% 

higher in Asian Americans, 66% higher in Hispanics, and 77% higher in non-Hispanic blacks (Centers 

for Disease Control and Prevention and U.S.Department of Health and Human Services 2011). 

Complications from T2D, such as end stage renal disease and lower limb amputation are also more 

common in non-white individuals (Office of Minority Health and U.S.Department of Health and 

Human Services 2014b). Other population-specific differences have been identified for ECG traits 

(Ramirez et al. 2011), age-related macular degeneration (Klein et al. 2011), and heart disease (Office of 

Minority Health and U.S.Department of Health and Human Services 2014c). For reproductive traits, it 

is well-established that certain race/ethnicities differ in the median AM (Salsberry, Reagan, and Pajer 

2009), though the cause of those differences is not completely understood and is likely to arise from 

both genetic and environmental factors. Similarly, endometrial cancer rates differ between 

race/ethnicities, and these differences cannot be attributed solely to socioeconomic issues that impair 

access to care (1987). The incidence rate for cervical cancer is more than five times higher for 

Vietnamese women in the US than for white women (Agency for Healthcare Research and Quality 

2001). Given the public health burden of common, complex diseases, understanding the genetic, 

environmental, and socioeconomic factors that contribute to these disorders is imperative and 

necessitates studies in diverse populations.  
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Strategies for Building Statistical Models in Personalized Medicine 

 There are multiple approaches to designing a genetic study, each with a unique set of 

challenges and benefits. As the technology used to perform these studies changes, methods used to 

analyze the data must adapt to maximize the utility of the results. Many genetic studies follow the 

common disease/common variant hypothesis (CDCV), where common genetic variants confer the 

majority of disease susceptibility (Reich and Lander 2001). Because these risk alleles are common 

(typically defined as having a minor allele frequency >5%) and not subject to strong natural selections 

as are mutations, these risk alleles are likely ancient and shared across most populations. Each common 

variant is expected to confer a small effect towards disease risk; therefore, it is expected that common 

diseases will have multiple risk alleles and interactions with environmental factors. Genome-wide 

association studies, discussed below, were developed on the CDCV premise (Manolio et al. 2009). For 

most common disorders, current studies have failed to identify more than a small fraction of the 

genetic component using approaches based on CDCV, suggesting that rare variants with large effect 

sizes and/or complex interactions between genetic variants and environmental factors may play a 

substantial role in disease susceptibility (Manolio et al. 2009; Eichler et al. 2010; Cirulli and Goldstein 

2010). For women’s health, two main approaches have been used to identify the genetic variants 

associated with disease: candidate gene and genome-wide association studies.   

Candidate gene approach 

 Based on prior knowledge or biological plausibility, the candidate gene association study 

interrogates specific variants, genes, or regions for association with the disease or quantitative trait. 

Candidate gene association studies (CGAS) were the first type of association study performed and are 

still widely used. Benefits to this approach include lower costs than other methods, the hypothesis-

driven nature of the study, and limited number of tests performed. However, this design is not without 

drawbacks. If the correct variant/gene is not selected, no association with the phenotype will be 

found—a potential hazard due to genetic (both locus and allelic) heterogeneity. Candidate gene studies 

with small sample sizes have led to few of these studies replicating, though completely excluding a 

gene based on negative results is difficult. As in GWAS studies (see below), properly designed 

(appropriately powered) studies are essential when attempting to replicate a genotype-phenotype 

association. 



 

27 
 

 Despite the challenges inherent with CGAS, they have been successful in identifying genes 

associated with numerous phenotypes important in women’s health. Early CGAS evaluating the role of 

hormone biosynthesis pathways in the timing of the reproductive lifespan were largely unsuccessful; 

however, more recent studies have identified FSHB and ESR2 associations with timing of AM (He et al. 

2010). A CGAS was used to identify inflammatory pathway genes that were associated with 

endometrial cancer in the Shanghai Endometrial Cancer Genetics Study (Delahanty et al. 2013). CGAS 

may also be used to confirm results obtained from genome-wide association studies (GWAS) (see 

below); O’Mara et al. assessed five SNPs previously associated with endometrial cancer in GWAS, but 

failed to confirm these past associations(O'Mara et al. 2011b). In addition, CGAS may be used to 

prioritize studies hoping to generalize results from association studies in one population to another. 

With the majority of genetic studies performed in European-descent populations, extension of the 

findings to more diverse populations may suggest underlying biological disease mechanisms, while 

those that fail to associate may suggest population-specific disease risk or false positives. A recent 

CGAS assessed forty SNPs, previously identified in GWAS of European women, for association with 

breast cancer in Chinese women. rs9693444 was associated with overall breast cancer in this Chinese 

cohort (p=6.44x10-04), while others were associated with various breast cancer subtypes (Zhang et al. 

2014). Though there are significant challenges to the CGAS approach, it is a useful and relevant method 

to identify genotype-phenotype associations. 

Genome-wide association studies 

 Unlike candidate gene studies where an a priori hypothesis about a relationship between the 

genetic variant and phenotype exists, genome-wide association studies (GWAS) require no previous 

knowledge about such a relationship, relying instead on the CDCV hypothesis. In a GWAS, 

interrogation occurs across the genome, generally capturing common variants in European-descent 

populations; the exact number of variants tested varies by platform and assay. It is common for 

hundreds of thousands or millions of SNPs to be tested. Linkage disequilibrium, the non-random 

association of alleles, allows a fraction of the genome to be genotyped while inferring information 

about untyped variants. Though the GWAS approach offers researchers the ability to discover new 

genotype-phenotype associations, it comes with a high statistical price: correcting for multiple 

statistical tests. This statistical burden is often corrected for using the Bonferroni method, where the 

alpha value for a single hypothesis test is divided by the total number of tests performed. For GWAS, 

the rule of thumb is that a result is significant if the p-value <5x10-8 (0.05/1 million) (Dudbridge and 
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Gusnanto 2008). With newer GWAS chips capable of genotyping 5 million SNPs, this threshold may be 

inadequate; however, some have suggested the Bonferroni method is too stringent and other methods, 

such as false-discovery rates may be better (Zablocki et al. 2014; Pan 2013; Lin and Lee 2012; Wei 2012). 

This stringency arises from linkage disequilibrium; many of the SNPs tested in a GWAS are not 

independent, and the Bonferroni correction of these non-independent tests can result in a greater 

number of false negatives (missed true interactions) (De, Bush, and Moore 2014). In addition, GWAS 

chips primarily focus on common SNPs with allele frequencies greater than 0.05, limiting their ability 

to identify rare variants that are associated with a particular phenotype. The ability of genotyping chips 

to tag common variants also depends on the population under study (Hoffmann et al. 2011; Eberle et al. 

2007). Furthermore, most SNPs associated with a disease phenotype have small effect sizes, explaining 

only a small amount of the phenotypic variance. These small effect sizes may fail to be clinically 

meaningful and frustrate replication attempts, as increasingly larger sample sizes are required to 

replicate the initial discovery. For example, a recent meta-analysis performed in the GIANT consortium 

with more than 250,000 cases and controls identified novel variants associated with overweight with an 

OR=1.04 (Berndt et al. 2013); successful replication of these results will require many more thousands 

of individuals derived from the same population, not already used in one of the contributing studies, 

demonstrating the practical challenges of replicating results with very small effect sizes.  

 Despite these limitations, GWAS have been successful in identifying genetic variants associated 

with many women’s health traits and complex diseases and have led to additional hypotheses about 

the biological mechanisms responsible for disease. For example, a recent GWAS for systemic lupus 

erythematosus (SLE) identified novel HLA-region genes and replicated four genes previously 

associated with the autoimmune disorder (Armstrong et al. 2014). Numerous GWAS have been 

performed for breast cancer (briefly, (Low et al. 2013; Garcia-Closas et al. 2013; Michailidou et al. 2013)), 

endometriosis (Albertsen et al. 2013; Nyholt et al. 2012; Painter et al. 2011), and cervical cancer (Chen et 

al. 2013; Shi et al. 2013). Traits like gestational diabetes (Hayes et al. 2013) and fibroid tumors (Cha et al. 

2011) have also been assessed with GWAS. These studies represent only a few women’s health traits 

that have been investigated using GWAS. Though GWAS has not been successful in identifying causal 

variants with large effect sizes for most diseases/traits, the findings may point to underlying genetic 

architecture and biological mechanisms. 
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Interactions 

 Interactions, both gene-gene (GxG) and gene-environment (GxE), have been suggested as 

explanations for the “missing heritability” from GWAS studies (Zuk et al. 2012; Manolio et al. 2009). 

Interactions are challenging to identify in human genetic studies for a variety of reasons. Sample size 

requirements differ based on the study design (e.g., case-only vs. matched case-control), what type of 

interaction (GxG, GxE), and expected effect size of the interaction (Gauderman 2002a; Gauderman 

2002b). Testing for statistical interactions among all the genetic variants is computationally intensive 

and leads to sparse/no data for some interactions; limiting GxG testing to variants with significant 

associations with the phenotype improves the computational challenges, including corrections for 

multiple tests, but compromises the ability to identify interactions between variants without main 

effects. Testing for interactions may be done using data reduction methods (e.g., combinatorial 

partitioning (Nelson et al. 2001), restricted partitioning (Culverhouse 2007), multifactor dimensionality 

reduction (Ritchie et al. 2001)), extensions to regression analysis (e.g., classification and regression trees 

(CART) (Breiman, Friedman, and Olshen), multivariate adaptive regression splines (MARS) (Lin et al. 

2008)), and pattern recognition methods (e.g., neural networks (Turner, Dudek, and Ritchie 2010)). 

Prioritizing variants for GxG or GxE by biological plausibility reduces the number of statistical tests 

and computational burdens, yet restricts the potential to identify novel interactions that may be 

clinically meaningful.  

Gene-gene interactions 

 Despite the issues addressed above, GxG interactions have been identified for a variety of 

phenotypes. Gene-level interactions between SMAD3 and NEDD9 affecting lipid levels was found in 

the Atherosclerosis Risk in Communities (ARIC) study and replicated in an independent sample from 

the Multi-Ethnic Study of Atherosclerosis (MESA) (Ma, Clark, and Keinan 2013).  Samples with age-

related macular degeneration (Klein et al. 2005) were used to find variants in several genes interacting 

with CFH, a well-characterized AMD gene (Zhang, Long, and Ott 2014). Notably, the AMD results are 

not only biologically plausible, but the interaction between BBS9 and CFH replicates earlier studies 

performed using different methodology to detect the interactions (Chen et al. 2007; Wang et al. 2009).  
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Gene-environment interactions 

 Based on epidemiologic studies, environmental factors, which include such variables as body 

mass index (BMI), dietary intake, and carcinogen exposure, are known to play a role in the 

susceptibility of numerous disorders and complex traits (Cecchini et al. 2012; Turati et al. 2014; 

Steenland et al. 1996). How environmental exposures in conjunction with genetic variants contribute to 

the genetic architecture of complex diseases and traits is not fully understood. Examples of GxE 

interactions include exposure to farming with genetic variants on asthma risk (Ege et al. 2011; Ober and 

Vercelli 2011) and the effect of early childhood environment with genetic predisposition on mental 

health traits (Cicchetti and Rogosch 2012; Forsyth et al. 2013).  

 Despite some success, there is no systematic approach to identifying GxG or GxE and relatively 

few phenotypes have been adequately assessed for these potentially important interactions. The 

potential importance of GxG and GxE interactions should be considered in the context of personalized 

medicine. Individuals with significantly higher or lower disease risks based on GxG interactions may 

benefit from modified screening schedules; for example, in absence of a family history predisposing to 

colorectal cancer (CRC), someone with a GxG interaction that significantly increases their risk of 

developing CRC could benefit from more frequent colonoscopies. In addition, modifying exposures, 

such as alcohol intake, may reduce the risk of some diseases, like liver cancer. For individuals with 

increased genetic risk for a specific disease, understanding how environmental factors may interact 

with genetic factors may be a motivational tool to encourage healthy lifestyle choices.  

Summary 

 Personalized medicine offers the potential to improve health outcomes by tailoring clinical care, 

including preventative medicine, to the individual patient. Though PM for cancer treatment and 

pharmacogenetics have been successfully integrated into clinical care at some institutions, expansion to 

other common, complex diseases has yet to be realized. Importantly, PM initiatives may reduce the 

historic and continued health and research disparities faced by women and some populations as 

researchers seek to understand the genetic architecture of complex traits and translate these findings to 

clinical care, or may lead to increased health disparities if access to and coverage of genetic testing is 

not universal or if decision support rules are invalid for non-European descent individuals. This body 

of work presents three genetic studies with an emphasis on complex traits important through the 
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course of a woman’s life, from menarche through menopause and beyond, and then considers what 

work remains to effectively use this information to improve health outcomes in the future.  
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CHAPTER II 

CASE STUDY: GENETICS OF THE FEMALE REPRODUCTIVE LIFESPAN1 

II. CASE STUDY: GENETICS OF THE FEMALE REPRODUCTIVE LIFESPAN 

Introduction 

As noted in Chapter 1, age at menarche and age at natural menopause are heritable traits that 

influence a variety of phenotypes along the female life course. In this study, we used data from the 

Metabochip genotyping array to characterize previously identified variants associated with menarche 

and menopause in African Americans in a combined cohort of African-American women from the 

Women’s Health Initiative (WHI) and Atherosclerosis Risk in Communities (ARIC) studies (Matise et 

al. 2011) as part of the Population Architecture using Genomics and Epidemiology (PAGE) Study 

(Buyske et al. 2012).  The Metabochip array is based on the Illumina iSelect platform and contains 

approximately 200,000 single nucleotide polymorphisms (SNPs) consisting of GWAS index variants 

and fine-mapping common and less common variants for GWAS-identified regions relevant to 

metabolic and cardiovascular traits (Voight et al. 2012; Buyske et al. 2012).  Using current GWAS and 

candidate gene literature as a guide, we attempted to generalize previously identified menarche and 

menopause SNPs and gene regions identified in European-descent populations to African Americans 

in the PAGE Study.   We then sought to identify novel SNPs associated with AM and/or ANM. 

Menarche 

Study population 

 Women participants from two cohorts of the PAGE Study (Matise et al. 2011), Atherosclerosis 

Risk in Communities Study (ARIC) and the Women’s Health Initiative (WHI), were included in these 

analyses. ARIC is a population-based prospective study of cardiovascular diseases and their causes in 

~16,000 men and women aged 45-64 at baseline (1989).  Participants were recruited in Forsyth County, 

N.C., Jackson, M.S., Minneapolis, M.N., and Washington County, M.D.  From this group, 2,070 women, 

                                                      
1 Adapted from: Spencer KL*, Malinowski J*, Carty CL, Franceschini N, et al. Genetic variation and reproductive 
timing: African American women from the Population Architecture using Genomics and Epidemiology (PAGE) 
Study. PLoS One. (2013). 8(2), e5528 PMID: 23424626 *these authors contributed equally to the work. 
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all of self-reported African American race/ethnicity and with information on reproductive timing, 

were selected for study.  The WHI is a long term national health study investigating the leading causes 

of mortality and frailty in post-menopausal women in the United States, including heart disease, breast 

and colorectal cancer, and osteoporotic fractures (1998).  A subset of 2,455 self-reported African 

American women selected based on consent to use DNA and availability of DNA, blood lipids, and 

glucose and insulin measurements were included in this study.  The appropriate institutional review 

board at each participating study site approved all procedures, and written informed consent was 

obtained from all participants. Age at menarche was defined as the age when menstrual periods started 

in years, with extreme values pooled in groups of 9 years or less and 17 years or older.   

Genotyping and statistical methods 

 Genotyping and quality control methods were the same for the age at menarche and the age at 

natural menopause analyses. Genotyping was performed on the Metabochip, a custom Illumina iSelect 

genotyping chip designed to genotype SNPs associated with metabolic traits and cardiovascular 

disease (Buyske et al. 2012; Voight et al. 2012). The array also includes 2,207 SNPs associated at 

genome-wide significance to any trait published in the NHGRI GWAS catalog as of August 1, 2009.  

For each of these GWAS-identified SNPs, an additional proxy SNP with r2>0.90 in the CEU HapMap II 

dataset, plus up to four additional SNPs with r2>0.5 in the YRI HapMapII dataset were also included on 

the array.  Lastly, SNPs selected to fine-map regions of interest related to metabolic traits, copy number 

variant-tagging SNPs, Major Histocompatibility Complex (MHC) SNPs, SNPs on the X and Y 

chromosomes, mitochondrial DNA SNPs, and “wildcard” SNPs were also targeted, for a total of 

approximately 200,000 SNPs.  Of these, 161,098 (81.9%) passed quality control filters for tests of Hardy-

Weinberg Equilibrium (>1x10-7) and genotyping efficiency (>95% call rate). There was no filter for 

minor allele frequency due to PAGE quality control protocol.  The design and performance of this 

genotyping chip in this African American sample has been described in detail elsewhere (Buyske et al. 

2012). All analyses were carried out in either METAL or the R software package, and data were plotted 

using LocusZoom (Pruim 2010; R Development Core Team 2012). Statistical power to detect an 

expected association was estimated in Quanto (Gauderman 2002a) assuming the observed sample size 

and coded allele frequency in this African American cohort and the genetic effect size previously 

reported in the literature. 

 All participants self-reported African American ancestry. To adjust for potential population 

stratification, we used the principal components method implemented in EIGENSTRAT  (Price et al. 
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2006). We excluded any ancestry outliers further than eight standard deviations away from the mean 

for the first ten principal components determined by EIGENSOFT. 

 For menarche, linear regression was performed assuming an additive genetic model to test for 

associations between individual SNPs and the outcomes of age at menarche in years. We examined two 

models for menarche: 1) a minimally adjusted model that accounted only for study sites and principal 

components, and 2) a fully adjusted model that included study site, year of birth, principal 

components, and body mass index at ascertainment, with the understanding that BMI at ascertainment 

may be a poor proxy for BMI at age of menarche. Age at menarche was self-reported many years later 

at time of examination, which has been shown to be fairly accurate (Must et al. 2002). 

 We studied one model for natural menopause using Cox’s proportional hazards for time-to-

event (natural menopause) analysis, which adjusted for study site, principal components, and year of 

birth. Women with a missing age at menopause, an age at menopause <40 years, or hysterectomy, 

oophorectomy, or hormone replacement therapy after age 40 but prior to menopause, were excluded 

from the study. Women who had menopause >60 years had their ANM set as censored at age 60. A 

fixed effects meta-analysis was then performed using METAL to obtain effect size and standard error 

(SE) estimates (Willer, Li, and Abecasis 2010).  

 We looked to generalize to our population of African American women genes, gene regions 

(400 kb upstream and downstream of a gene of interest), and SNPs described in previous GWAS and 

candidate gene studies associated with AM.  We tested all SNPs in the regions regardless of linkage 

disequilibrium (LD) with the index SNP, although we only considered a test of association generalized 

if the tested SNPs were identical to the index SNP or in strong LD with the index variant in HapMap 

CEU samples. For each candidate gene, we plotted results of single SNP tests of association using 

LocusZoom and examined regions 400kb upstream and downstream of the gene/gene region of 

interest. Tests of association were considered significant for generalization at a liberal threshold of 

p<0.05. For previously reported variants not genotyped in our study, we identified SNPs in LD with 

our directly genotyped SNPs (Johnson et al. 2008) and reported results from our minimally adjusted 

model (Model 1) for the proxy SNPs. 

 In addition to generalization, we sought to discover novel SNP-trait associations using the 

entire Metabochip. Significance in this discovery phase was defined as p<3.1x10-7, after Bonferroni 

correction (0.05/161,098). Because this threshold is highly conservative given the correlation among the 
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SNPs on the Metabochip, we also defined an arbitrary suggestive significance level as p<1x10-4 in the 

discovery phase. 

Results 

 A total of 4,159 African American female participants met the study definitions for AM and 

both PAGE studies were represented roughly equally (Table 5). In ARIC, the mean age at menarche 

was 12.9 years, which was slightly greater than the mean age at menarche in WHI (12.6 years) (Table 5). 

Groups’ participants’ heights, weights, and body mass indices were comparable. In both ARIC and 

WHI, the majority of participants’ decade of birth was the 1930s (Table 5). 

 

Table 5. Population characteristics of African American women from the PAGE Study for age at 

menarche (AM) analysis.  

 Age at Menarche (AM) 
 Study Population 

 ARIC WHI 

Participants (n) 2078 2081 

Age at menarche, yrs 12.89 (1.76) 12.56 (1.64) 

Age at enrollment, yrs 53.36 (5.73) 61.01 (6.87) 

Body mass index, kg/m2 30.86 (6.63) 31.34 (6.83) 

Weight, lbs. 181.05 (39.68) 182.87 (41.26) 

Height, in. 64.24 (2.43) 64.00 (2.63) 

Decade of birth, #(%) 1910s - 26 (1.24) 

 1920s 504 (24.07) 414 (19.82) 

 1930s 1083 (51.72) 981 (46.96) 

 1940s 507 (24.21) 668 (31.98) 

Data presented as means (sd) unless otherwise noted. Abbreviations: 
Population Architecture using Genomics and Epidemiology (PAGE), 
Atherosclerosis Risk in Communities (ARIC), Women’s Health Initiative 
(WHI), years (yrs), standard deviation (sd). 
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Generalization to PAGE African Americans 

 To generalize previously-associated genetic variants in our African American population, we 

examined regions/genes previously associated with AM from either published candidate gene studies 

or GWAS: CYP19A1, CYP17, CYP1B1, FTO, LIN28B, 9q31.2 region, IGF1, TNFSF11, TNFRSF11A, and 

LHCGR (Guo et al. 2006b; Mitchell et al. 2008; Elks et al. 2010; Zhao et al. 2007; Perry et al. 2009; Ong et 

al. 2009; Lu et al. 2010; He et al. 2009a; He et al. 2010).  We also evaluated forty-two SNPs associated 

with AM identified in a recent meta-analysis by Elks et al. of >87,000 European-descent women from 

forty-nine studies (Elks et al. 2010).   

 Overall, 11/21 (52%) SNPs previously identified for AM from earlier studies and 15/42 (36%) 

from the Elks et al. meta-analysis were directly genotyped or in strong (r2>0.70) LD in the CEU panel of 

HapMap with those genotyped (Table 6 and Appendix A, respectively), and one generalized to this 
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Figure 2. Regional association plot for AM in African American women from 
PAGE Study.  
Locus Zoom plot for LIN28B region in age at menarche (AM) analysis. Vertical axis is –log10 of 
the p-value, the horitzontal axis is the chromosomal position. Each dot represents a SNP tested 
for association with AM in 4,159 African American women from the Population Architecture 
using Genomics and Epidemiology (PAGE) Study. Approximate linkage disequilibrium 
between the most significant SNP, rs408949, listed at the top of the plot, and the other SNPs in 
the plot is shown by the r2 legend. 
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African American cohort: rs9385399, in LD with previously reported rs1361108 (r2=1.00, p=0.01) 

(Appendix A).  A LocusZoom plot of the results of association tests and LD in this African American 

sample is given for LIN28B -- previously associated with AM (Figure 2) (He et al. 2009a; Ong et al. 2009; 

Sulem et al. 2009; Perry et al. 2009).  

Three SNPs in LIN28B were included on the Metabochip (rs314277, rs4946651, and rs7759938), 

and while the direction of genetic effect was consistent with previous reports, all failed to reach 

statistical significance in this sample (p>0.30) (Table 6).  Four additional SNPs in LD with these LIN28B 

SNPs were also not significant. At the 9q31 locus, rs7861820 and rs4452860, both located downstream of 

TMEM38B, had betas opposite to prior reports (Perry et al. 2009; He et al. 2009a). Neither SNP nor their 

proxy SNPs were significant at p<0.05. Similarly, SNPs in LD (rs1856142 and rs605765) with previously 

associated variants in and around FSHB were not significantly associated with AM in this African 

American sample, though rs605765 (β=-0.06) had the same direction of effect and comparable 

magnitude as rs1782507 (β=-0.07) (He et al. 2010). 
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Table 6. Comparison of GWAS-identified age at menarche (AM) variants in African American women from the Population Architecture 
using Genomics and Epidemiology (PAGE) Study.  

Prior GWAS in European descent women African American women from the PAGE Study 

SNP CHR Gene/Region Coded 

Allele 

Beta P-value Ref. Best Proxy SNP 

from present 

study 

r2 in 

HapMap 

CEU/YRI 

Coded 

Allele 

Model 1 Model 2 

Beta (SE) P-

value 

Beta (SE) P-

value 

rs314277 6 LIN28B A 0.16 2.7E-13 (He et al.2009a) rs314277 - A 0.03(0.04) 0.34 0.03(0.04) 0.36 

rs369065 6 LIN28B C 0.11 2.4E-11 (He et al.2009a) rs7759938 1.00/0.34 A -0.02(0.04) 0.61 -0.02(0.04) 0.55 

rs7759938 6 LIN28B C 0.09 7.0E-09 (Perry et al.2009) rs7759938 - A -0.02(0.04) 0.61 -0.02(0.04) 0.55 

rs314276 6 LIN28B C -0.22 1.5E-08 (Ong et al.2009) rs314274 1.00/0.73 A 0.05(0.04) 0.22 0.05(0.04) 0.24 

rs314280 6 LIN28B T 0.09 2.3E-08 (Sulem et al.2009;He 

et al.2009a) 

rs7759938 0.64/0.28 A -0.02(0.04) 0.61 -0.02(0.04) 0.55 

rs4946651 6 LIN28B A 0.09 3.1E-08 (He et al.2009a) rs4946651 - A 0.03(0.04) 0.55 0.03(0.04) 0.55 

rs314262 6 LIN28B C 0.08 9.7E-08 (He et al.2009a) rs7759938 0.60/0.29 A -0.02(0.04) 0.61 -0.02(0.04) 0.55 

rs7861820 9 9q31 C -0.09 3.4E-09 (He et al.2009a) rs7861820 - A -0.10(0.06) 0.10 -0.09(0.06) 0.12 

rs12684013 9 9q31 T -0.10 3.6E-08 (He et al.2009a) rs4452860 0.81/0.01 A -0.03(0.04) 0.43 -0.03(0.04) 0.42 

rs4452860 9 9q31 G -0.09 7.9E-08 (He et al.2009a) rs4452860 - A -0.03(0.04) 0.43 -0.03(0.04) 0.42 

rs7028916 9 9q31 A -0.09 9.7E-08 (He et al.2009a) rs4452860 0.98/0.85 A -0.03(0.04) 0.43 -0.03(0.04) 0.42 

rs2090409 9 9q31 A -0.10 1.7E-09 (Perry et al.2009) rs4452860 0.83/0.82 A -0.03(0.04) 0.43 -0.03(0.04) 0.42 

rs555621 11 FSHB C 0.06 0.001 (He et al.2010) rs1856142 0.43/0.71 A 0.03(0.04) 0.44 0.03(0.04) 0.36 

rs1782507 11 FSHB T -0.07 0.006 (He et al.2010) rs605765 0.83/0.87 A -0.06(0.04) 0.14 -0.06(0.04) 0.13 

rs4953616 2 LHCGR T -0.07 0.006 (He et al.2010) rs1589749 0.17/0.05 A 0.002(0.07) 0.97 -0.01(0.07) 0.87 

rs7579411 2 LHCGR T 0.06 0.01 (He et al.2010) rs1589749 0.17/0.05 A 0.002(0.07) 0.97 -0.01(0.07) 0.87 

rs4374421 2 LHCGR C 0.06 0.02 (He et al.2010) rs17326321 0.19/0.69 A -0.01(0.06) 0.86 -0.01(0.06) 0.84 

rs2470144 15 CYP19A1 G - 5.9E-06 (Guo et al.2006b) rs12148492 0.23/0.01 A -0.01(0.07) 0.91 -0.02(0.07) 0.73 

rs2445761 15 CYP19A1 G - 1.2E-06 (Guo et al.2006b) rs4774585 0.28/0.02 A 0.04(0.05) 0.47 0.03(0.05) 0.58 

rs9525641 13 TNFSF11/RANKL T - 0.04 (Lu et al.2010) rs931273 0.05/0.03 A 0.11(0.09) 0.24 0.11(0.09) 0.21 

rs3826620 18 TNFRSF11A/RANK A - 0.02 (Lu et al.2010) rs8092336 0.16/0.22 A 0.16(0.17) 0.33 0.17(0.17) 0.29 

rs6214 12 IGF1 G - 0.02 (Zhao et al.2007) rs6214 - A -0.01(0.04) 0.71 -0.02(0.04) 0.61 

Comparison of previously reported SNPs associated with AM in European descent women to 4,159 African American women from the PAGE 
Study in a minimally adjusted model for AM (Model 1) and a model adjusted for study site, year of birth, principal components, and body mass 
index (Model 2). Data are presented for the previously identified SNP. If the previously identified SNP was not directly genotyped in present 
study, data shown are for best proxy SNP based on linkage disequilibrium from the International HapMap Project CEU panel. 
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 We also examined SNPs associated with AM that were reported in a recent meta-analysis 

performed by Elks et al. for the ReproGen Consortium (Elks et al. 2010) (Appendix A). Of the forty-two 

SNPs associated with AM in Elks et al., we detected an association with rs9385399 (p=0.01), located 

downstream of CENPW, which is a perfect proxy (r2=1.00) for previously associated variant rs1361108, 

and the only SNP to generalize to our African American sample. We also identified an association with 

rs2947411 (p=0.02) with AM (Appendix A), though the directions of effect were opposite.  One 

additional SNP, rs4929923 (p=0.06), nearly reached the significance threshold and had a similar 

magnitude and direction of effect compared with the previous report. Overall, AM SNPs from 

previously published studies of European-descent women, including the Elks et al. meta-analysis, did 

not generalize to our PAGE African American population. 

Discovery 

 We tested all SNPs genotyped on the Metabochip for an association with AM adjusted for study 

site and principal components (Model 1) and adjusted for study site, year of birth, principal 

components, and body mass index (Model 2) (Appendix C). After accounting for multiple testing 

(p<3.1x10-7), no SNPs were significantly associated with AM in either model (Appendix C). The most 

significant SNP in both models was rs11604207 (Model 1:  p=1.59x10-6; Model 2: p=1.82x10-6), which is 

located upstream of RSF1, a gene encoding a chromatin remodeling protein implicated in ovarian and 

breast cancers (Maeda et al. 2011; Choi et al. 2009; Brown et al. 2008) (Appendix C). 

Menopause 

Study population 

 Age at natural menopause was defined as the age at which cessation of regular menstrual 

periods due to the body’s natural aging process occurred.  In ARIC, women were asked, “Was your 

menopause natural or the result of surgery or radiation?”  Only women who indicated natural 

menopause were included.  Women in WHI who underwent hysterectomy, oophorectomy, or hormone 

replacement therapy before the onset of natural menopause were excluded.  In both studies, women 

reporting age at natural menopause <40 years were excluded; women reporting age at natural 

menopause >60 years were censored at age 60. All women included in the present study were post-

menopausal.  
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Genotyping and statistical methods 

 Genotyping, quality control, and statistical methods are detailed above for age at menarche.  

Results 

 A total of 1,860 African American female participants met the study definitions for ANM and 

both PAGE studies were represented roughly equally (Table 7). In ARIC, the mean age at natural 

menopause was 48, which was slightly younger than the WHI group (Table 7). The body mass indices, 

heights, and weights of both groups were comparable. In ARIC and WHI, the majority of participants’ 

decade of birth was the 1930s (Table 7).  

 

Table 7. Population characteristics of African American women from the Population Architecture 
using Genomics and Epidemiology (PAGE) Study for age at natural menopause (ANM) analysis.  

Age at Natural Menopause (ANM) 

Study Population 

 ARIC WHI 

Participants (n) 994 866 

Age at menopause, yrs 47.97 (3.83) 50.84 (4.50) 

Age at enrollment, yrs 53.07 (5.75) 61.30 (6.78) 

Body mass index, kg/m2 31.29 (6.94) 30.95 (6.76) 

Weight, lbs. 183.78 (40.80) 181.05 (40.63) 

Height, in. 64.31 (2.38) 64.05 (2.75) 

Decade of 

birth, #(%) 

1910s - 12 (1.39) 

 1920s 221 (22.23) 183 (21.13) 

 1930s 522 (52.52) 414 (47.81) 

 1940s 251 (25.25) 257 (29.68) 

Data presented as means (sd) unless otherwise noted. Abbreviations: 
Atherosclerosis Risk in Communities (ARIC), Women’s Health 
Initiative (WHI), years (yrs), standard deviation (sd). 
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Generalization to PAGE African Americans 

As with AM, to generalize results to our African American population, we examined previously 

identified 400kb regions around genes associated with ANM from published candidate gene studies 

and GWAS (Table 8) (He et al. 2010; He et al. 2009a; He et al. 2007; Murray et al. 2011; Stolk et al. 2009; 

Meng et al. 2011a; Long et al. 2006; Voorhuis et al. 2011; Lu et al. 2010). We also examined twenty SNPs 

associated with ANM that were identified in a recent study by Stolk et al. (Stolk et al. 2012) (Appendix 

B).  

Overall, 14/23 (40%) SNPs previously identified for ANM via GWAS and 6/20 SNPs from the 

Stolk et al. meta-analysis were directly genotyped on the Metabochip or were in strong LD (r2>0.70) in 

CEU panel of HapMap. One twelfth (8%) of the tested SNPs in these regions/genes generalized to this 

African American sample: rs8113016 (Table 8).  rs8113016, located in an intron of 

TMEM150B/TMEM224 and downstream of BRSK1, is in LD with previously reported rs897798 (r2=0.72) 

and was associated with ANM in our sample (p=0.03). An intronic APOE variant, rs769450, was 

associated with ANM (p=0.03), though the nonsynonymous APOE rs7412 was not (p=0.55); these SNPs 

are not in LD with each other (r2=0.04). In BRSK1, no previously reported SNPs were genotyped in our 

study; however, directly genotyped intronic TMEM150B rs4806660 was in very strong LD with intronic 

BRSK1 rs1172822 (r2=0.98).  BRSK1 rs1168309, in strong LD with rs2384687 (r2=0.85) was not associated 

with ANM in this African American sample (p=0.59).  

 Three of the twenty SNPs recently identified by Stolk et al. as associated with ANM were 

directly genotyped on the Metabochip (Appendix B). Two of the three genotyped SNPs (rs2303369 and 

rs2153157) had the same directions of effect, though the magnitudes were smaller. Of the remaining 17 

SNPs not directly targeted by the Metabochip, three were in strong LD (HapMap CEU r2 ranging from 

0.86 to 0.91) with the SNPs identified by Stolk et al: rs1176133, rs4668368, and rs12593363.  For seven 

SNPs, no proxy SNP could be identified on the Metabochip (Appendix B). Of the twenty SNPs 

identified in the Stolk et al. meta-analysis and directly or indirectly represented on the Metabochip, 

none were associated with ANM in this African American sample (Appendix B).
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Table 8. Comparison of GWAS-identified age at natural menopause (ANM) variants in African American women in the Population 
Architecture using Genomics and Environment (PAGE) Study.  

Prior GWAS in European descent women African American women from the PAGE Study 
SNP Chr Gene/Region Coded 

Allele 
Beta P-

value 
Ref. Best Proxy SNP 

from present study 
r2 in HapMap 

CEU/YRI  
Coded 
Allele 

Beta 
(SE) 

P-
value 

rs16991615 20 MCM8 A 1.07 1.21E-21 (He et al.2009a;Murray et 

al.2011) 

rs16991615 - A -0.17(0.15) 0.25 

rs236114 20 MCM8 A 0.50 9.71E-11 (Stolk et al.2009) rs236114 - A 0.02(0.06) 0.69 

rs1172822 19 BRSK1 T -0.49 1.8E-19 (Stolk et al.2009;He et 

al.2009a) 

rs4806660 0.98/0.64 A 0.002(0.03) 0.97 

rs2384687 19 BRSK1 C -0.47 2.4E-18 (He et al.2009a) rs11668309 0.85/0.43 A 0.02(0.04) 0.59 

rs897798 19 BRSK1 G -0.40 1.1E-14 (He et al.2009a) rs8113016 0.72/0.02 A 0.12(0.05) 0.03 

rs1065778 15 CYP19A A - 0.05 (He et al.2007) rs10519297 0.90/0.32 A -0.01(0.05) 0.84 

rs2255192 15 CYP19A A - 0.04 (He et al.2007) rs10459592 0.32/0.02 A -0.02(0.04) 0.52 

rs621686 11 FSHB A 0.32 0.007 (He et al.2010) rs1856142 0.27/0.32 A 0.04(0.03) 0.29 

rs7951733 11 FSHB A -0.32 0.02 (He et al.2010) rs7951733 - A 0.11(0.13) 0.37 

rs769450 19 APOE A - 0.007 (He et al.2009b) rs769450 - A -0.07(0.03) 0.03 

rs7412 19 APOE - - 0.001 (Meng et al.2011b) rs7412 - A -0.03(0.05) 0.55 

rs1019731 12 IGF1 C -0.28 0.005 (He et al.2010) rs1019731 - A -0.03(0.11) 0.82 

rs9457827 17 IGF2R T 0.37 0.04 (He et al.2010) rs9457827 - A 0.04(0.04) 0.28 

rs4135280 3 PPARG T 0.54 0.005 (He et al.2010) rs4135280 - A -0.14(0.18) 0.42 

rs1256044 14 ESR2 G - 0.03 (He et al.2007) rs1268656 0.08/0.004 A -0.01(0.06) 0.88 

rs1256059 14 ESR2 A - 0.05 (He et al.2007) rs1268656 0.08/0.004 A -0.01(0.06) 0.88 

rs1056836 2 CYP1B1 G - 0.04 (Long et al.2006) rs10495874 0.04/0.03 A -0.03(0.05) 0.60 

rs346578 13 TNFSF11 A - 0.007 (Lu et al.2010) rs6561072 0.07/0.07 A 0.04(0.04) 0.22 

rs9525641 13 TNFSF11 T - 0.01 (Lu et al.2010) rs931273 0.05/0.03 A -0.02(0.08) 0.81 

rs8086340 18 TNFRSF11A G - 0.02 (Lu et al.2010) rs8094440 0.10/0.01 A 0.03(0.03) 0.38 

rs2002555 12 AMHR2 G 0.30 0.02 (Voorhuis et al.2011) rs7131938 0.59/0.54 A 0.01(0.04) 0.84 

rs2384687 19 TMEM224 C 0.38 1.39E-10 (Stolk et al.2009) rs11668309 0.85/0.43 A 0.02(0.04) 0.59 

rs897798 19 TMEM224 G 0.31 3.91E-08 (Stolk et al.2009) rs8113016 0.72/0.02 A 0.12(0.05) 0.03 

Comparison of previously reported SNPs associated with ANM in European and Chinese descent women to 1,860 African American women from the PAGE Study. Data presented are for the previously identified SNP. If the previously 

identified SNP was not directly genotyped in present study, data shown are for the best proxy SNP based on linkage disequilibrium calculated from the International HapMap Project CEU data. 
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Age at Natural Menopause: Discovery 

We tested all SNPs on the Metabochip for associations with ANM adjusted for study site and 

principal components. Three SNPs were significant after Bonferroni correction (p<3.1x10-7):  LDLR 

(rs189596789, p=4.98x10-8), KCNQ1 (rs79972789, p=1.90x10-7), and COL4A3BP (rs181686584, p=2.85x10-7) 

(Table 9).  The most significant association was with rs189596789, located approximately 10kb upstream 

of the low-density lipoprotein receptor (LDLR) gene, which has been associated with familial 

hypercholesterolemia (Diakou et al. 2011; De Castro-Oros et al. 2011).  

Several of the most significant SNPs for ANM were located in/near genes previously associated 

with obesity, type 2 diabetes (T2D), coronary artery disease and lipid metabolism, e.g., LDLR 

(rs189596789), NOS1AP (rs76078015), DGKB (rs74486449), LYPLAL1 (rs78696400), and CDKAL1 

(rs114158228) (Appendix D). We were unable to generalize the previously reported association between 

ANM and PPARG rs4135280 in this African American sample. 

 

 

Table 9. Significant SNP associations for ANM in African Americans from the PAGE Study. 

CHR SNP GENE GENE 

REGION 

CODED 

ALLELE 

CAF BETA SE P VALUE 

19 rs189596789 LDLR upstream A 0.006 1.09 0.20 4.98x10-8 

11 rs79972789 KCNQ1 intronic C 0.997 -1.76 0.34 1.90x10-7 

5 rs181686584 COL4A3BP intronic A 0.002 2.35 0.46 2.85x10-7 

Tests of association at p≤3.1x10-7 (Bonferroni correction) from individual SNP linear regressions 
adjusted for study site and principal components in 1,860 African American women from the 
PAGE study are shown. For each significant test of association, the chromosome, rs number, 
nearest gene, location, coded allele, beta, standard error, and p-value are given. Genes listed are 
nearest genes to SNP as measured from the transcription start site for upstream SNPs or the 
transcription stop site for downstream SNPs. Abbreviations: chromosome (CHR), single 
nucleotide polymorphism (SNP), coded allele frequency (CAF), standard error (SE). 

 

 

 Two genes were suggestively associated with both ANM and AM at a nominal significance 

threshold. PHACTR1 was suggestively associated with AM (rs73725617;Appendix C) and ANM 

(rs117124693;Appendix D). Though the direction of effects was similar for each SNP in PHACTR1, the 

SNPs are not in LD with each other. Likewise, SNPs in ARHGAP42, located at the 11q22.1 locus, were 
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suggestively associated with AM (rs11224447;Appendix C) and ANM (rs11224401; Appendix D), but 

are not in LD with each other, though the direction of effects was the same. 

 

Summary 

 Here we demonstrated the use of the Metabochip genotyping array to identify SNPs associated 

with AM and ANM in a sample of African American women.   Previous GWAS studies for AM and 

ANM have been performed in primarily European descent populations; generalization to diverse 

populations has largely been lacking (Dvornyk and Waqar 2012). Our study is the first, to our 

knowledge, to consider this trait in a large African American cohort. We were able to generalize only 

one previously identified variant for AM and two variants for ANM to our African American cohort 

[AM: rs1361108; ANM: rs897798 and rs9385399 (proxy for rs1361108)]. Overall, however, we were 

unable to generalize the majority of significant associations for previously identified SNPs associated 

with AM, including LIN28B or the 9q31 locus, or with ANM, including MCM8 or 

TMEM150b/TMEM224, which have recently been identified in several GWAS of European-descent 

women. Our inability to replicate earlier findings in our African American sample may have, in part, 

resulted from scant Metabochip coverage of these regions.  The emphasis of the Metabochip on genes 

involved in lipid metabolism and cardiovascular traits is evident comparing coverage in the FTO 

region (1053 SNPs) to the LIN28B region (28 SNPs).    

 In the discovery phase of our AM analysis, none of our results reached genome-wide 

significance.  However, the ANM analysis yielded three associations that were significant after 

multiple testing corrections. Broadly, we demonstrate the ability to potentially uncover new variants 

associated with age at natural menopause in our African American cohort using the Metabochip.       

 Several studies have shown relationships between a woman’s reproductive milestones (AM, 

ANM, parity) and menstrual characteristics and risk for breast cancer, endometrial cancer, and ovarian 

cancer (Milne et al. 2011; Opdahl et al. 2011; Narod 2011a; Narod 2011b; Jasen 2011) and chronic 

diseases such as diabetes, osteoporosis and cardiovascular disease (briefly (Dishi et al. 2011; Campbell 

Jenkins et al. 2011; Kallen and Pal 2011) ). Interestingly, a recent study that assessed breast cancer 

susceptibility loci for associations with timing of menarche, menopause and the reproductive lifespan 

found only two SNPs associated with ANM: CASP8 rs17468277 and 5p12 rs10941679; however, these 

results were not replicated in a validation cohort (Warren et al. 2014). The relationships between the 

timing of these reproductive events and their influences on complex diseases remain to be elucidated. 



 

45 
 

 The most significant result in the ANM analysis was a SNP located upstream of LDLR 

(rs189596789) which encodes a low density lipoprotein receptor implicated in familial cholesterolemia. 

KCNQ1 (rs79972789) also reached genome wide significance in our ANM analysis. Numerous variants 

in KCNQ1 have also been implicated in type 2 diabetes in several populations, though none were in 

linkage disequilibrium with rs79972789 (Cui et al. 2011; Saif-Ali et al. 2011a; Saif-Ali et al. 2011b; Rees et 

al. 2011; Yasuda et al. 2008; Unoki et al. 2008). Recently, Buber et al. evaluated the role of menopausal 

hormonal changes with cardiac events in women with mutations in KCNQ1 and congenital long-QT 

syndrome (LQTS) and determined the onset of menopause was associated with an increase in the risk 

of cardiac events in LQTS women (Buber et al. 2011). Though not significant, suggestive AM 

associations included LPL and CYP4F22, which are associated with type 2 diabetes and lipid 

metabolism (rs1372339, rs4922116, rs1273516), and TMEM18 (rs2947411), associated with obesity and 

body mass index (Jurvansuu and Goldman 2011; Speliotes et al. 2010). These ANM associations and 

suggestive AM associations with genes involved in cardiovascular function, lipid metabolism, and type 

2 diabetes concur with research showing later AM lowers obesity and diabetes risk while earlier ANM 

increases risk for cardiovascular disease, obesity and insulin resistance (Carr 2003; Salpeter et al. 2006).  

 Different pathways appear to be involved in the initiation and cessation of menses. Other 

GWAS and linkage studies performed in European descent or Asian populations for AM and ANM 

show little concordance with specific genes (reviewed in (Hartge 2009) (Perry et al. 2014).  Our analysis 

is consistent with this observation.  Only PHACTR1 and ARHGAP42 SNPs were suggestively 

significant in both our AM and ANM analyses. PHACTR1 is a phosphatase and actin regulator which 

has been implicated in coronary artery disease (Schunkert et al. 2011; Ripatti et al. 2010).  Its role in 

menarche and menopause is yet to be determined. ARHGAP42, a Rho GTPase activating protein, has 

not yet been evaluated for a role in menarche or menopause.  A GWAS identified intronic ARHGAP42 

rs633185 is associated with blood pressure (Ehret et al. 2011) , but this variant is not in strong LD with 

ARHGAP42 variants suggestively associated with either AM or ANM in this study.  A recent study by 

Lu et al., found SNPs in both TNFSF11 and TNFRSF11A significant for AM and ANM (Lu et al. 2010).  

SNPs genotyped on the Metabochip were in weak LD with the reported SNPs and failed to reach 

significance in this African American sample.  Given the role that both PHACTR1 and ARHGAP42 play 

in atherosclerosis, osteoporosis and the development of lactation glands in pregnancy, further 

investigation on the influence of these genes in AM and ANM is warranted  (Hofbauer and Schoppet 

2004; Boyce and Xing 2008).  
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The Metabochip was designed to be a cost-effective method of genotyping approximately 

200,000 metabolic and cardiovascular SNPs and SNPs in other useful regions of the genome, such as 

the HLA region and the X and Y chromosomes.  Overall, median SNP density on the Metabochip is 

approximately one SNP per 370 bases (Buyske et al. 2012). This coverage appears sufficient to replicate 

some loci associated with both cardiovascular or metabolic traits and AM/ANM. However, we found 

instances of previously identified genes for AM/ANM with little/no Metabochip coverage (CYP1B1, 

LIN28B, ESR2, and BRSK1) which may have impacted our results. Additionally, prior studies that 

identified SNPs associated with AM and ANM were performed primarily in European-descent cohorts. 

Though our study included over 4,000 African American women, we had limited power to identify 

significant associations in most previously identified loci, which may explain why we failed to detect 

the same associations identified in European-descent GWAS.  For specific tests of association, our 

power was impacted by sample size and by minor allele frequencies. For example, the allele frequency 

for rs7861820 in this African American cohort was 0.11 compared to a higher frequency observed in 

HapMap CEU (0.57; Table 10).  Interestingly, we were adequately powered (>98%) (Appendix E) to 

generalize the intronic LIN28B SNP, rs314277, with AM in our sample, yet failed to find an association 

with this SNP or with SNPs in strong LD with it (Table 6, Appendix A).  
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Table 10. Minor allele frequency comparisons of African American women in the Population 
Architecture using Genomics and Epidemiology (PAGE) Study to HapMap CEU Panel.  

 

SNP Gene/Region HapMap CEU AF 
(Allele) 

PAGE Study AF 
(Allele) 

rs314277 LIN28B 0.13 (A) 0.39 (A) 
rs7759938 LIN28B 0.64 (T) 0.46 (A) 
rs4946651 LIN28B 0.48 (A) 0.75 (A) 
rs7861820 9q31 0.57 (T) 0.11 (A) 
rs4452860 9q31 0.72 (A) 0.67 (A) 
rs16991615 MCM8 0.09 (A) 0.01 (A) 
rs236114 MCM8 0.21 (A) 0.09 (A) 
rs7951733 FSHB 0.95 (A) 0.99 (A) 
rs769450 APOE 0.38 (A) 0.38 (A) 
rs7412 APOE 0.09 (T) 0.10 (A) 
rs1019731 IGF1 0.14 (T) 0.02 (A) 
rs9457827 IGF2R 0.05 (T) 0.28 (A) 
rs4135280 PPARG 0.98 (T) 0.99 (A) 
Comparison of allele frequencies between PAGE Study African American women and 
HapMap CEU Panel. SNPs compared were previously associated with age at menarche or 
age at natural menopause and directly genotyped on the Metabochip. Abbreviation: 
single nucleotide polymorphism (SNP), allele frequency (AF). 

 

 

 

 Metabochip performance in non-European populations was recently evaluated in a pilot study 

in African American PAGE participants (Buyske et al. 2012). In this pilot study, Buyske et al. 

demonstrated that the majority (89%) of SNPs targeted by the Metabochip passed rigorous quality 

control with high call rates (Buyske et al. 2012).  Using lipid traits as an example, Buyske et al. 

demonstrated that Metabochip data can be used to replicate known GWAS-identified SNP-trait 

relationships (Buyske et al. 2012). Furthermore, the pilot study demonstrated that Metabochip data can 

be used to fine-map GWAS-identified regions to uncover potential novel index SNPs specific to African 

Americans in an established locus for that trait.  Fine-mapping data for AM/ANM was not included in 

the Metabochip content. While we were able to use the Metabochip to identify potentially novel SNP-

trait relationships for AM/ANM, additional fine-mapping efforts of other loci already implicated for 

these traits are needed. Furthermore, additional studies in general are warranted for diverse (non-

European descent) populations using Metabochip or other arrays designed for fine-mapping.   

Admixture in the African American population and its associated decreased LD compared to European 

Americans challenge identification of trait-associated SNPs. Targeted fine mapping, such as use of the 
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Metabochip, may be more appropriate in some circumstances than GWAS to evaluate specific SNPs 

and regions associated with particular traits.   

 A GWAS meta-analysis for age at menarche in African Americans was published shortly after 

publication of the PAGE study (Demerath et al. 2013). In a much larger cohort (n=18,089), Demerath et 

al. found only suggestive associations (p>5x10-8) between AM and FLRT2 and PIK3R1; conditional 

analyses identified RORA rs339978 and rs980000 as additional variants, independently associated with 

AM (Demerath et al. 2013). Additionally, they generalized to their cohort 25/42 (60%) variants 

previously associated in the Elks meta-analysis (Elks et al. 2010). This is higher than the 36% that we 

were able to generalize to the PAGE African American cohort (Appendix A), though the substantial 

increase in sample size for the Demerath et al. meta-analysis likely played a role.  

 Although the Metabochip was designed for genotyping of cardiovascular and metabolic SNPs, 

this study demonstrates the feasibility of utilizing such a targeted chip to identify SNP associations 

with age at menarche and age at natural menopause.  We identified potentially novel associations with 

AM/ANM at loci implicated in cardiovascular traits, obesity and cancer.  This may result from 

pleiotropic loci or may suggest that the AM/ANM timing mechanisms influence underlying disease 

process. With numerous genes implicated in both metabolic and cardiovascular phenotypes and both 

AM and ANM, further studies will allow us to consider how specific genes may influence the 

reproductive lifespan in women. 
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CHAPTER III 

ALGORITHMIC EXTRACTION OF FEMALE REPRODUCTIVE 

MILESTONES FROM ELECTRONIC MEDICAL RECORDS2 

III. ALGORITHMIC EXTRACTION OF FEMALE REPRODUCTIVE 

MILESTONES FROM ELECTRONIC MEDICAL RECORDS 

Introduction 

 As described in Chapter 1, the rich phenotypic data existing in EMR systems allows clinicians 

and researchers to identify potential cohorts, while EMRs that are linked to biobanks extend this 

framework to genotype-phenotype association studies. Traditional epidemiologic studies are costly 

and require significant amounts of time to complete; furthermore, these studies may not include 

sufficient numbers of individuals from diverse ancestries. The Epidemiologic Architecture for Genes 

Linked to Environment (EAGLE) Study seeks to address these limitations by enabling high-throughput 

identification and generalization of genotype-phenotype associations in diverse research populations. 

Accessing data from EMRs for use in research may prove to be a cost effective alternative to traditional 

ascertainment and data collection.  One challenge to research use of EMR-derived data is the lack of 

consistency in recording certain types of data in the EMR. Despite the obvious health implications, AM 

and AAM/ANM are not recorded consistently or in a standardized manner in the EMR. This presents 

a challenge for researchers and suggests algorithm development is a necessary first step in developing 

a resource for women’s health studies in diverse populations. 

 

BioVU 

 BioVU is the Vanderbilt University Medical Center (VUMC) biorepository linked to the EMR 

system. Beginning in 2007, discarded blood samples from routine clinical testing have the DNA 

extracted, stored, and linked to a de-identified version of the EMR termed the Synthetic Derivative 

                                                      
2 Adapted from: Malinowski J, Farber-Eger E, Crawford DC. Development of a data-mining algorithm to identify 
ages at reproductive milestones in electronic medical records. Pacific Symposium in Biocomputing. (2014) 19:376-87 
PMID: 24297563 
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(SD).  As of mid-2012, more than 150,000 samples have been collected for BioVU, including more than 

16,000 pediatric samples.  Patients are given the opportunity to opt-out of BioVU at any time. Once a 

sample has been accepted into the system, a unique ID is generated through a one-way hash 

mechanism and linked to that patient’s SD. The SD removes or de-identifies Health Insurance 

Portability and Accountability Act (HIPAA) information, such as names, geographical locations, and 

social security numbers, and replaces dates with dates that have been randomly shifted by up to six 

months. The date shifting is consistent within a single SD record. The SD enables researchers to 

examine genome-phenome associations and identify cohorts for research.  

Methods 

Study population 

 As part of the Population Architecture using Genomics and Epidemiology (PAGE) I Study, 

EAGLE genotyped all non-European descent patients in BioVU (EAGLE BioVU, n=15,863) on the 

Metabochip, a custom genotyping array with an emphasis on cardiovascular disease and metabolic 

traits (see Chapter II, Methods and (Voight et al. 2012) for full details on the design). Overall, 11,521 

African Americans, 1,714 Hispanics, 1,122 Asians and others were genotyped on the Metabochip in 

EAGLE.  For the AM study, all females age>6 in EAGLE BioVU as of January 31, 2013 were eligible for 

inclusion. For the AAM study, all females >18 years were eligible for inclusion; for the ANM study, 

only women ages≥41 were eligible for inclusion. All patients were of diverse race/ethnicity. 

Algorithm development 

 We developed a flow chart to visualize the inclusion/exclusion processes for the algorithms 

(Figure 3A-C).   AM and age at menopause or age at natural menopause (AAM/ANM) are not 

consistently recorded in the EMR system at VUMC; individuals may enter BioVU through numerous 

outpatient clinics with different data field requirements. The lack of a pre-specified field for AM and 

AAM/ANM in the EMR necessitated a combination of free text data mining using regular 

expressions/pattern matching, billing (ICD-9) codes, and procedure (CPT) codes to identify AM and 

AAM/ANM in the subsequently generated SD. All analysis for this study was performed using the SD. 

Age at menarche (AM) 

 Primary exclusion criteria for AM phenotype consisted of four components: age<7 years, male 

sex, ICD-9 codes for delayed puberty/sexual development (259.0) and precocious puberty/sexual 
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development (259.1), and keywords (Figure 3A). Inclusion of any of the preceding criteria in the SD 

resulted in exclusion for the AM study.  As part of the de-identification data scrubbing to convert a 

patient’s EMR to the SD, ages and dates may be masked and listed as “birth-12” or “in teens.” Dates 

and ages which are not masked were  date shifted by up to six months forward or backward from the 

actual date.  
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Figure 3. Flow chart for algorithm development for reproductive milestones. 
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 To identify a listed AM for an individual, we utilized pattern matching to seek instances with 

menarche keyword phrases (Figure 3A). Numbers and dates were allowed to be included as numerals 

only.  Instances where the AM was listed as a date used the subject’s birthdate to calculate the age (in 

years) at menarche.  In cases of ties, where more than one AM was identified and recorded an equal 

number of times in the SD, the AM was determined to be the one listed first in the SD. If the algorithm 

identified multiple versions of the AM (an exact age, an age calculated from a date, or a de-identified 

age), a hierarchy was used to determine the AM for the output, where an exact age or date was 

prioritized over de-identified age ranges.  Instances where multiple different ages were listed in the SD 

as AM defaulted to the age listed most frequently. We considered situations where the algorithm 

identified an exact AAM and a de-identified AAM range containing the exact AAM to be the same for 

purpose of calculating sensitivity, specificity, and positive predictive value (PPV), but different for the 

purpose of calculating accuracy. The resulting output file contained the subject’s unique research id 

(RUID), date of birth, and either an algorithm-generated AM or null value. 

Age at menopause (AAM) 

 For an algorithm to identify all post-menopausal women and their age at menopause (AAM), 

we initially excluded all males, set a minimum age of 18 years, and excluded patients with a Fragile X 

diagnosis (ICD-9 759.83) (Figure 3B).  Pattern matching was utilized to find keyword phrases similar to 

those used in the menarche algorithm, substituting “menopause” for “menarche” (Figure 3D).  

Furthermore, we included keywords pertaining to surgical procedures that induce cessation of 

menses/menopause (Figure 3D). We excluded instances where the word “possible” immediately 

preceded a keyword.  For instances where the SD had scrubbed the exact age, decade-specific results 

(e.g. “in 30s”, “in 50s”) were captured by our algorithm. CPT (Table 11) and ICD-9 (Table 12) codes 

were used to identify women with surgical menopause or menses-ceasing procedures. 
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Table 11. CPT codes for age at menopause (AAM) and age at natural menopause (ANM) algorithms. 

CPT code Procedure 

58150 Total abdominal hysterectomy (corpus and cervix), with or without removal of tube(s), with or 
without removal of ovary(s) 

58152 Total abdominal hysterectomy (corpus and cervix), with or without removal of tube(s), with or 
without removal of ovary(s); with colpo-urethrocystopexy (eg, Marshall-Marchetti-Krantz, Burch) 

58180 Supracervical abdominal hysterectomy (subtotal hysterectomy), with or without removal of tube(s), 
with or without removal of ovary(s) 

58200 Total abdominal hysterectomy, including partial vaginectomy, with para-aortic and pelvic lymph 
node sampling, with or without removal of tube(s), with or without removal of ovary(s) 

58260 Vaginal hysterectomy, for uterus 250g or less 
58262 Vaginal hysterectomy, for uterus 250g or less, with removal of tube(s), and/or ovary(s) 
58263 Vaginal hysterectomy, for uterus 250g or less, with removal of tube(s), and/or ovary(s), with repair 

of enterocele 
58267 Vaginal hysterectomy, for uterus 250g or less, with colpo-urethrocystopexy (eg, Marshall-Marchetti-

Krantz type, Pereyra type) with or without endoscopic control 
58270 Vaginal hysterectomy, for uterus 250g or less, with repair of enterocele 
58275 Vaginal hysterectomy, with total or partial vaginectomy 
58280 Vaginal hysterectomy, with total or partial vaginectomy, with repair of enterocele 
58285 Vaginal hysterectomy, radical (schauta type operation) 
58290 Vaginal hysterectomy, for uterus greater than 250g 
58291 Vaginal hysterectomy, for uterus greater than 250g, with removal of tube(s), and/or ovary(s) 
58292 Vaginal hysterectomy, for uterus greater than 250g, with removal of tube(s), and/or ovary(s), with 

repair of enterocele 
58293 Vaginal hysterectomy, for uterus greater than 250g, with colpo-urethrocystopexy (eg, Marshall-

Marchetti-Krantz type, Pereyra type) with or without endoscopic control 
58294 Vaginal hysterectomy, for uterus greater than 250g, with repair of enterocele 
58353 Endometrial ablation, thermal, without hysteroscopic guidance 
58541 Laparoscopy, surgical, supracervical hysterectomy, for uterus 250 g or less 
58542 Laparoscopy, surgical, supracervical hysterectomy, for uterus 250 g or less, with removal of tube(s), 

and/or ovary(s) 
58543 Laparoscopy, surgical, supracervical hysterectomy, for uterus greater than 250 g 
58544 Laparoscopy, surgical, supracervical hysterectomy, for uterus greater than 250 g, with removal of 

tube(s), and/or ovary(s) 
58548 Laparoscopy, surgical, with radical hysterectomy, with bilateral total pelvic lymphadenectomy and 

para-aortic lymph node sampling (biopsy), with removal of tube(s) and ovary(s), if performed 
58550 Laparoscopy, surgical, with vaginal hysterectomy, for uterus 250 g or less 
58552 Laparoscopy, surgical, with vaginal hysterectomy, for uterus 250 g or less, with removal of tube(s) 

and ovary(s) 
58553 Laparoscopy, surgical, with vaginal hysterectomy, for uterus greater than 250 g 
58554 Laparoscopy, surgical, with vaginal hysterectomy, for uterus greater than 250 g, with removal of 

tube(s) and ovary(s) 
58563 Hysteroscopy, surgical, with endometrial ablation (eg endometrial resection, electrosurgical 

ablation, thermoablation) 
58570 Laparoscopy, surgical, with total hysterectomy, for uterus 250 g or less 
58571 Laparoscopy, surgical, with total hysterectomy, for uterus 250 g or less, with removal of tube(s) and 

ovary(s) 
58572 Laparoscopy, surgical, with total hysterectomy, for uterus greater than 250 g 
58573 Laparoscopy, surgical, with total hysterectomy, for uterus greater than 250 g, with removal of 

tube(s) and ovary(s) 

CPT codes used to identify menopausal women for the age at menopause (AAM) algorithm and to identify women 
to exclude in a time-dependent manner for the age at natural menopause (ANM) algorithm in EAGLE BioVU. 
Abbreviations: Current procedural terminology (CPT). 

 



 

55 
 

Table 12. ICD-9 codes for age at menopause (AAM) and age at natural menopause (ANM) 
algorithms. 

65.5 
Bilateral oophorectomy 

65.51 Other removal of both ovaries at same operative episode 
65.52 Other removal of remaining ovary 
65.53 Laparoscopic removal of both ovaries at same operative episode 
65.54 Laparoscopic removal of remaining ovary 
65.6 Bilateral Salpingo-oophorectomy 
65.61 Other removal of both ovaries and tubes at same operative episode 
65.62 Other removal of remaining ovary and tube 
65.63 Laparoscopic removal of both ovaries and tubes at the same operative episode 
65.64 Laparoscopic removal of remaining ovary and tube 
68.23 Endometrial ablation 
68.3 Subtotal abdominal hysterectomy 
68.31 Laparoscopic supracervical hysterectomy 
68.39 Other and unspecified subtotal abdominal hysterectomy 
68.4 Total abdominal hysterectomy 
68.41 Laparoscopic total abdominal hysterectomy 
68.49 Other and unspecified total abdominal hysterectomy 
68.5 Vaginal hysterectomy 
68.51 Laparoscopically assisted vaginal hysterectomy (LAVH) 
68.59 Other and unspecified vaginal hysterectomy 
68.6 Radical abdominal hysterectomy 
68.61 Laparoscopic radical abdominal hysterectomy 
68.69 Other and unspecified radical abdominal hysterectomy 
68.7 Radical vaginal hysterectomy 
68.71 Laparoscopic radical vaginal hysterectomy (LRVH) 
68.79 Other and unspecified radical vaginal hysterectomy 
68.9 Other and unspecified hysterectomy 
ICD-9 codes used to identify menopausal women for the age at menopause (AAM) algorithm and to identify women 
to exclude in a time-dependent manner for the age at natural menopause (ANM) algorithm in EAGLE BioVU. 
Abbreviations: International Classification of Diseases, Ninth Revision (ICD-9). 
 

 After SD review of initial algorithms and subject matter knowledge, we implemented secondary 

exclusion criteria based on the algorithm-identified AAM and excluded subjects with a calculated 

AAM<18 or AAM>65 (Figure 3B). A hierarchy was used to determine the AAM for the output, with an 

exact age or date identified by keyword or pattern matching and ICD-9/CPT codes prioritized over de-

identified age ranges. In rare instances where the algorithm identified more than one AAM for a 

subject, the age recorded most frequently was determined to be the AAM for that patient. In cases of 

ties, where more than one AAM was identified and recorded an equal number of times in the SD, the 

AAM was determined to be the one listed first in the SD. We considered situations where the algorithm 

identified an exact AAM and a de-identified AAM range containing the exact AAM to be the same for 

purpose of calculating sensitivity, specificity, and PPV, but different for the purpose of calculating 

accuracy. The resulting output file contained the subject’s unique research id (RUID), date of birth, 
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race/ethnicity, either an algorithm-generated AAM or null value, the method by which the AAM was 

calculated (e.g., from ICD-9 code, keyword), and the date in the SD corresponding to the AAM 

identification. 

Age at natural menopause (ANM) 

 To discriminate age at natural menopause (ANM) from all instances of menopause (AAM), we 

extended the AAM algorithm to exclude women aged <41 years, men, and subjects with ICD-9 codes 

signifying premature ovarian failure/premature menopause (256.31), artificially induced menopause 

(627.4), ovarian failure (256.39), and Fragile X syndrome (759.83) (Figure 3C). We used pattern 

matching with the menopause keywords to identify an age at menopause (Figure 3D). We did not use 

ICD-9 codes, CPT codes, or keywords associated with procedures that induce menopause to identify 

subjects for the ANM cohort.  

 Medication delivery and prescriptions are captured by the EMR at VUMC and are included in 

the SD. To ascertain the temporal relationship between AAM and menopause-inducing/menses-

ceasing surgery or hormone replacement therapy (HRT) use, we first calculated the AAM with the 

alternate algorithm (Figure 3C). Surgery-inducing menopause, determined through CPT and/or ICD-9 

codes or keywords, and HRT were not exclusion criteria unless the first instance of surgery or HRT 

occurred prior to the extended algorithm-identified AAM. Keyword pattern matching was performed 

using surgical keywords (Figure 3D). We used a combination of brand-name and generic names for 

HRT identification (Figure 3D).  If AAM was identified and no keywords or CPT/ICD-9 codes were 

found to indicate artificially induced menopause, the subject was deemed to have undergone natural 

menopause. If surgery or HRT occurred after the algorithm-determined ANM, the subject was also 

considered to have undergone natural menopause. If the subject had either surgery or used HRT prior 

to menopause, they were excluded from the cohort and the resulting output was a null value. 

 We implemented secondary exclusion criteria (Figure 3C) based on the algorithm-identified age 

at menopause and excluded subjects with a calculated ANM<18 or ANM>65 based on subject matter 

knowledge and review of early versions of our algorithms. A hierarchy was used to determine the 

ANM for the output. If the algorithm determined more than one ANM for a subject, we used the same 

procedure as described above to determine the final ANM generated by our query. We again  

considered situations where the algorithm identified an exact ANM and a de-identified ANM range 

containing the exact ANM to be the same for purpose of calculating sensitivity, specificity, and PPV, 
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but different for the purpose of calculating accuracy. The resulting output file contained the subject’s 

unique research id (RUID), date of birth, race/ethnicity, either an algorithm-generated ANM or null 

value, the method by which the ANM was calculated (e.g., from exact date, de-identified age), and the 

date in the SD corresponding to the ANM identification. 

Manual review 

 To determine the sensitivity, specificity, PPV, and accuracy of the AM, AAM, and ANM 

algorithms, extensive manual chart review was performed by a single individual for consistency.  Each 

algorithm output contained three types of values: exact ages, de-identified ages, and null values. For 

each algorithm, a random number generator was used to randomize RUIDs within each of the three 

types of output and the subjects were then sorted in ascending value by the random number. The first 

50 subjects in the exact age and de-identified age categories and the first 100 subjects with a null value 

had their SD reviewed manually to determine the AM, AAM, or ANM. Sensitivity, specificity, PPV and 

accuracy were calculated by comparing the automated algorithm result to the manual review result for 

each subject. 

Results 

Population characteristics 

 A total of 10,051 females were genotyped on the Metabochip in BioVU in EAGLE for various 

studies. We identified an age for menarche (exact or de-identified) in 1,618 individuals. For the AAM 

algorithm, we identified an AAM (exact age or de-identified decade) for 1281 individuals. We 

identified 83 individuals with an ANM (exact or de-identified decade) (Table 13). The algorithm-

extracted mean AM in our population was 12.7 (+/- 2.1 ) yrs. The mean AAM in our population was 

44.6 (+/- 9.8) yrs. and the mean ANM was 49.7 (+/- 5.6) yrs. (Table 13). Approximately half of the 

algorithm extracted AM (54.7%) and ANM (47.0%) were exact ages, while the majority of AAM (92.5%) 

were exact ages (Table 13).  
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Table 13. Population characteristics for women with algorithm-identified age at menarche (AM), age 
at menopause (AAM), and age at natural menopause (ANM) from EAGLE BioVU.  

 AM AAM ANM 

N, total 1618 1281 83 

exact age (n) 885 1185 39 

de-identified age (n) 733 96 44 

Age at event, mean +/- sd (yrs)  12.7 (2.1) 44.6 (9.8) 49.7 (5.6) 

Age range at event (yrs) 8-20 18-65 40-65 

Race/ethnicity (n)     

African American 1232  1112  62  

Hispanic 120  45  4  

Asian 115  66  11  

Other 151  58  6  

Abbreviations: standard deviation (sd), years (yrs). 

 

AM algorithm performance 

 We manually reviewed 200 SD entries for the AM algorithm to determine sensitivity, specificity, 

PPV, and accuracy. Of the 100 subjects with an algorithm-specified AM, 94 were confirmed by manual 

review. For the 100 subjects without an AM captured by the algorithm, 99 were not found to have an 

identifiable AM upon manual review. The AM algorithm had a sensitivity and specificity of 99.0% and 

94.3%, respectively, and a PPV of 94.0% (Table 14).  We calculated the accuracy of the algorithm by 

comparing the results for the 94 subjects with both manually identified and algorithm identified AMs, 

requiring identical results for concordance. Of these 94 subjects, we found 87 where the AM matched in 

both manual and algorithm identification for an accuracy of 92.6% (Table 14). We observed instances 

where the algorithm calculated an exact AM (e.g., 8) and manual review found a de-identified AM 

(e.g., birth-12), or vice-versa. If we allow these to be concordant, accuracy increases to 94.7%. 
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Table 14. Performance of the age at menarche (AM), age at menopause (AAM), and age at natural 
menopause (ANM) algorithms in women from EAGLE BioVU.  

 Sensitivity Specificity Accuracy PPV 

AM (n=200) 99.0% 94.3% 92.6% 94.0% 

AAM (n=200) 94.4% 85.6% 52.4% 84.0% 

ANM (n=183) 89.8% 75.8% 75.5% 63.9% 

Abbreviations: positive predictive value (PPV). 
 

AAM algorithm performance 

 For the AAM algorithm, we manually reviewed 200 SD entries to determine sensitivity, 

specificity, PPV, and accuracy. Of the 100 subjects with an algorithm-identified AAM, we identified 82 

with AAM via manual review. Only five of the 100 subjects without an algorithm-identified AAM were 

found to have an identifiable AAM with manual review.  Overall, our algorithm was found to have 

94.4% sensitivity, 85.6% specificity, and a PPV of 84.0% (Table 14). We also calculated the accuracy of 

our AAM algorithm by comparing the algorithm-obtained AAM to the manual review-obtained AAM. 

We observed a 52.4% exact concordance within our 82 subjects with AAMs calculated from both 

manual review and the algorithm. If we allowed a de-identified age range encompassing an exact age 

to be considered concordant with the exact age obtained from the other method, our accuracy 

improved to 61.9%. 

ANM algorithm performance 

 The ANM algorithm identified 83 individuals with an ANM; therefore, we manually reviewed 

183 SD entries to determine the specificity, sensitivity, PPV, and accuracy of our ANM algorithm. Of 

the 100 individuals with no algorithm-identified ANM, manual review of the SD found 6 instances 

with an identifiable ANM (Table 14). Of the 83 individuals with an algorithm-specified ANM, manual 

review confirmed 53. Overall, the sensitivity and specificity of the ANM algorithm were 89.8% and 

75.8%, respectively, and the PPV was 63.9%. Of the 53 subjects with both algorithm- and manually-

identified ANM, 40 were an exact match, yielding an accuracy of 75.5%. We again observed instances 

where the algorithm yielded an exact age, but manual review of the SD obtained only a de-identified 

ANM range that encompassed the exact age, and vice-versa; if we considered these as concordant, our 

accuracy increased to 81.1%. 



 

60 
 

Summary 

Potential use in personalized medicine  

 Menarche and menopause are the bookends of the reproductive lifespan in women. The timing 

of these events may increase risk for various complex disorders and cancers, such as osteoporosis and 

breast cancer (Hartge 2009).  Precocious or delayed menarche may signal the occurrence of hormonal 

imbalance, inadequate nutrition or caloric intake, or pituitary diseases (Hartge 2009). The timing of 

menopause directly affects reproductive capabilities. In addition, premature menopause may result 

from hormonal imbalances, genetic disorders such as Fragile X Syndrome, metabolic disorders, or 

autoimmune diseases such as thyroid disease or rheumatoid arthritis (Okeke, Anyaehie, and 

Ezenyeaku 2013). Though the timing of menarche and menopause may increase risk for disease or 

indicate underlying pathologies, this information is not consistently included in electronic health 

records, leading to missed opportunities to inform clinical care and represents a challenge to clinicians 

and researchers alike. A clinical decision support mechanism to identify women who are at risk of 

developing certain diseases as a result of the timing of their reproductive milestones may be useful in 

clinical practice.  

Potential use for genetic studies of reproductive timing 

 Data-mining EMRs has been used to identify cohorts for research studies (Newton et al. 2013; 

Stratton-Loeffler et al. 2012; Brownstein et al. 2010; Warren et al. 2012), determine smoking status 

(Wiley et al. 2013), and predict disease, such as sepsis (Mani et al. 2014). Our development of 

algorithms to extract these important data is notable for the emphasis on diverse populations and 

attention to women’s health, both historically underrepresented in health outcomes research.  The 

menarche (AM) and menopause (AAM) algorithms have PPV>80% and high specificity and sensitivity, 

though accuracy of the AAM algorithm was just over 50%.  The age at natural menopause (ANM) 

algorithm had moderately high (>75%) sensitivity and specificity but the lowest PPV, at 63.9%. 

However, the accuracy of the ANM algorithm bested that of the AAM (75.5% vs. 52.4%, respectively). 

In addition, the algorithm-extracted ages at menarche, menopause, and natural menopause are 

consistent with published research, validating our methodology. 

 Several factors may have reduced the performance of our menopause algorithms. We observed 

many instances where the ages calculated by the algorithm and by manual review differed by one year. 

This may have been the result of the date-shifting done within each individual’s SD for de-
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identification purposes.  If the method for calculating the age differed between the methods, it is 

possible this could result in the observed one-year difference. When we allowed a +/- 1 year difference 

in the algorithm and manual identified AAM and ANM, the accuracy of our algorithms improved to 

70.2% and 90.6%, respectively. The timing of menopause is challenging to identify, as the menstrual 

cycle becomes more erratic as a woman moves through perimenopause into menopause. Months may 

lapse between cycles; hormone levels may change substantially.  In addition, the normal menopausal 

age range is quite large, taking place between the ages of 40 and 60. These factors challenge the 

accurate dating of the onset of menopause.  

 Furthermore, an algorithm designed to identify the age at menopause may not accurately 

reconcile multiple mentions in an EMR of menopause. Discerning between natural menopause and 

medically/surgically induced menopause is an additional challenge. Our extensive list of time-

dependent exclusions for HRT and surgical procedures was not exhaustive and may have led to the 

algorithm identifying an ANM where manual review identified HRT and/or a procedure artificially 

inducing menopause. Correctly identifying the temporal relationship between attainment of natural 

menopause and surgical procedures that result in menopause may perform inconsistently in the 

absence of these data in structured fields in an EMR. Addressing some of these issues by including 

structured fields for age at menarche, age at menopause, and type of menopause (natural/medical), 

and standardizing the reporting of these data could greatly improve the performance of our 

algorithms. 

 We have demonstrated the performance of algorithms designed to extract the age at menarche 

and age at menopause from the Synthetic Derivative, a de-identified version of the electronic medical 

record at Vanderbilt University Medical Center. Furthermore, we have developed an algorithm to 

discriminate naturally occurring menopause from artificially-induced menopause. Our method 

combining text-mining for regular expressions and pattern matching, and structured data derived from 

the EMR to obtain the age at menarche and the age at menopause is likely to be easily transferable to 

other institutions, given the simplicity of the approach. Overall, these algorithms provide an 

opportunity for researchers and clinicians to obtain these valuable, though inconsistently reported 

data. 
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CHAPTER IV 

CASE STUDY: GENETIC VARIANTS ASSOCIATED WITH ENDOMETRIAL 

CANCER 

IV. CASE STUDY: GENETIC VARIANTS ASSOCIATED WITH 

ENDOMETRIAL CANCER 

Introduction 

 As discussed in Chapter I, endometrial cancer (EC) is the most common invasive gynecological 

cancer in the United States; an estimated 52,630 new cases arise yearly with approximately 8,590 deaths 

in 2014 (National Cancer Institute at the National Institutes of Health 2014b). EC typically occurs in 

post-menopausal women; the average age at diagnosis is 60 years (Jick, Walker, and Rothman 1980). 

Symptoms of EC include irregular or post-menopausal bleeding, pelvic pain, presence of a pelvic mass, 

and weight loss (National Cancer Institute at the National Institutes of Health 2014b). Known risk 

factors for Type I EC include hormone imbalances, greater than average number of menstrual cycles 

over the reproductive lifespan, early menarche, late age at menopause, nulliparity, tamoxifen use for 

breast cancer, estrogen-only hormone replacement therapy (HRT), obesity, and hypertension 

(Haidopoulos et al. 2010).  Risk factors for Type II ECs include long term use of tamoxifen, history of 

pelvic radiation, and hereditary conditions like childhood retinoblastoma and hereditary 

leiomyomatosis and renal cell carcinoma syndrome.  Prolonged exposure to estrogen-only therapy is 

associated with an increased risk of EC while progesterone plus estrogen has a protective effect (Jick, 

Walker, and Jick 1993a; Jick, Walker, and Jick 1993b). There are notable differences in EC incidence 

internationally, with European-Americans and US Hawaiian Japanese immigrants having the highest 

rates among twenty-two international cancer registries (Katanoda and Qiu 2006). Variation in EC 

incidence and survival across racial/ethnic groups has been observed in US cohorts (Setiawan et al. 

2007; Madison et al. 2004). In the Multiethnic Cohort Study, Setiawan et al. identified lower relative 

risks for EC in African Americans and Latinas compared to European Americans, while the risks in 

Native Hawaiians and Japanese Americans were similar (Setiawan et al. 2007).    
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 EC can be categorized into different subtypes by histology: endometrioid, serous, clear cell, and 

poorly differentiated (2007; Creasman et al. 2006; Creasman et al. 2004).  ECs that arise in the inner 

layer of the uterus (endometrium) are known as endometrial carcinomas. These comprise most ECs. 

ECs that arise in the muscle layer (myometrium) or connective tissues are called sarcomas. EC 

carcinomas that begin in the cells that form the glands of the endometrium are known as 

adenocarcinomas; of these, the most common form is endometrioid adenocarcinomas that comprise 

80% of ECs.  The endometrioid type of EC tends to be less aggressive than the more uncommon forms 

of EC (e.g. clear cell or serous) and are the type of EC that presents clinically most often (O'Hara and 

Bell 2012).  

 EC tumors can be further divided into three histological grades (1-3) based on the percentage of 

tissue forming glands. Grade 1 tumors have more than 95% of the cancerous tissue forming glands; 

grade 2 tumors have between 50-94%. Grade 3 tumors are more aggressive, may have metastasized at 

the time of diagnosis, and tend to have a poor outlook compared to grades 1 and 2 (O'Hara and Bell 

2012). EC tumors are also divided into two types based on estrogen dependence. Type I cancers are 

typically slow to spread and are not usually aggressive.  They appear to be estrogen-dependent and 

immunostaining has demonstrated that they do not stain for p53. Grades 1 and 2 endometrioid ECs are 

often Type I. Type II EC cancers are estrogen-independent and appear not to be related to endometrial 

hyperplasia; grade 3 endometrioid ECs (serous, clear cell, and poorly differentiated) are all Type II 

(Kitchener and Trimble 2009). Type II cancers physiologically do not resemble normal endometrium; 

these cancers tend to be more aggressive than Type I and are more likely to be high-grade serous and 

clear cell ECs (O'Hara and Bell 2012). Type II cancers immunostain for p53, supporting the hypothesis 

that Types I and II ECs have a different etiology (Kitchener and Trimble 2009). A small fraction (~4%) 

of uterine cancers are uterine carcinosarcoma, also known as malignant mixed mesodermal or 

malignant mixed Mullerian tumors.  These cancers contain features of both carcinomas and sarcoma, 

with similar natural history to Type II ECs.  Along with type and grade, EC tumors are also classified 

by their stage; these three classifications comprise the International Federation of Gynecology and 

Obstetrics (FIGO) score for tumors (Table 15) (Compton 2012). 
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Table 15. FIGO scoring for endometrial carcinoma tumors. 

Category FIGO Stage for EC 
carcinomas 

Description 

 
 
 
Tumor 

I, IA, IB tumor is confined to corpus uteri, tumor may invade >1/2 or more of 
myometrium 

II tumor invades stromal connective tissue of the cervix but doesn’t invade 
beyond uterus 

IIIA, IIIB tumor involves vagina  
IVA tumor invades bladder and/or bowel mucosa 

Lymph Node Involvement IIIC1, IIIC2 regional lymph node metastasis pelvic (IIIC1) or para-aortic (IIIC2) lymph 
nodes 

Metastasis IVB distant metastasis to lung, liver, bone or inguinal lymph nodes 

Description and FIGO scoring criteria for endometrial carcinoma tumors. Abbreviations: Federation of Gynecology and Obstetrics (FIGO). 

 

Molecular mechanisms 

 The molecular mechanisms responsible for development of EC are not well understood. Some 

forms of Type II EC have mutations in p53, a tumor suppressor gene, suggesting germline or somatic 

mutations play a role in development of Type II EC (Garg et al. 2010; Tashiro et al. 1997).  Other risk 

factors include Lynch syndrome and a first-degree relative with EC, though these risk factors are not 

entirely understood and account for a small percent of ECs.  

 Changes to the HPG axis that results in excess estrogen can lead to unregulated proliferation 

and vascularization of the endometrium, yielding an environment amenable to the development of 

Type I EC. A similar result can be found in women with intact uteri who take tamoxifen for breast 

cancer treatment. Though tamoxifen acts in an anti-estrogenic way in breast tissue, tamoxifen behaves 

like estrogen in the uterus, causing growth of the endometrium  (Lumachi et al. 2012). Ovarian tumors 

known as granulosa-theca tumors also lead to increased levels of estrogen and an increased risk for EC. 

Gynecological disorders, such as polycystic ovarian syndrome (PCOS) and endometriosis, with 

increased androgens and estrogens, also lead to an increased risk for EC, as the estrogens and 

androgens are accompanied by lower than normal levels of progesterone.  Diminished levels of 

progesterone lead to unopposed levels of estrogen, disrupting the homeostatic balance of the HPG axis. 

This is also consistent with evidence that the risk of Type I EC is twice as high in overweight women as 

in normal weight women, and three times as high in obese women (Everett et al. 2003), suggesting a 

dose-dependent effect of estrogen on Type I EC. In general, the more menstrual cycles a woman 

experiences and fewer instances of pregnancy, the greater her exposure to estrogens. This leads to the 

repeated proliferation and vascularization of the endometrium, supporting the known increased risk of 

EC due to early menarche, late menopause, and nulliparity. 
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Genetic associations 

 Heritability of EC has been estimated at 0.52 (Schildkraut, Risch, and Thompson 1989), but the 

unknown molecular mechanisms responsible for EC have made identifying the genetic risk factors 

challenging. As a result, numerous candidate gene studies have been performed for EC, primarily for 

genes involved in sex hormone biosynthesis (Figure 4). The strong relationship between estrogen and 

EC risk has been explored through candidate gene studies (Ashton et al. 2009a). Two estrogen receptor 

SNPs in ESR1 and four ESR2 SNPs were assessed in a case-control study of European-descent women 

from Australia (Ashton et al. 2009a). The authors observed SNPs in each estrogen receptor gene that 

were associated with increased EC risk after adjusting for risk factors: ESR1 rs2234693 and ESR2 

rs1255998 and rs944050 (Ashton et al. 2009a). Thirty-six variants involved in sex hormone metabolism, 

including CYP17, ESR1, and ESR2 were considered in a pathway-based case-control study of Polish 

women (Yang et al. 2010). Only AR, involved in the synthesis of androgen response elements (Figure 

4), was significantly associated in a gene-based analysis with EC risk in this population; however, SNP-

based analyses uncovered associations with multiple SNPs in genes: AKR1C2, AR, CYP11B1, HSD17B2, 

CYP19A1, CYP1A1/A2, SHBG, and SRD5A1, though these results were not corrected for multiple tests 

(Yang et al. 2010). The role of CYP17, a gene that encodes an enzyme in the estrogen biosynthesis 

pathway (Figure 4), was assessed in a recent meta-analysis in a multi-ethnic study (Xu et al. 2013). In 

this meta-analysis, rs743572(C) was significantly associated with EC using a recessive model in 

European-descent and East Asian populations, but not others (Xu et al. 2013). Given the differences in 

EC incidence across diverse populations, additional studies to evaluate the population-specific 

frequencies of CYP17 variants and their effect on EC risk may be warranted. 
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Figure 4. Sex hormone metabolic pathway. 

Shown are the genes (bold) involved in the biosynthesis of sex hormones and their products. Adapted from Yang HP et al. 2010 and Hyland PL et al. 2013. 



 

67 
 

 Other genes not involved in sex hormone metabolism have been considered for association with 

EC based on known risk factors and biologic mechanisms of disease. A proposal by Modugno et al. 

(Modugno et al. 2005) that inflammation may be a factor in the development of EC led Ashton et al. to 

investigate the role of NOD and TLR polymorphisms and EC in their Australian cohort (Ashton et al. 

2010). Haplotype analysis demonstrated TLR9 rs5743836(C) and rs187084(C) were protective for EC 

(Ashton et al. 2010), though these results have not yet been replicated in an independent cohort. 

 The strong positive association between obesity and endometrial cancer risk was further 

assessed by a candidate gene study for variants in adipokine and leptin genes (Chen et al. 2012b). 

Adipokines are hormones that play a role in energy regulation and insulin sensitivity  (Rasmussen-

Torvik et al. 2009) and have been shown to inhibit cell growth and angiogenesis and induce apoptosis 

(Korner et al. 2007; Dieudonne et al. 2006; Jarde et al. 2009); women with the highest levels of 

adiponectin were observed to have a 50% reduced risk of EC compared to women with the lowest 

levels, independent of BMI, in a nested case-control study in the European Prospective Investigation 

into Cancer and Nutrition (Cust et al. 2007). Leptins, conversely, promote cell proliferation and 

angiogenesis (Korner et al. 2007; Dieudonne et al. 2006; Jarde et al. 2009). In a case-control study of 

women from the Shanghai Endometrial Cancer Study and the Shanghai Breast Cancer Study, Chen et 

al. observed three SNPs in ADIPOQ (rs3774262, rs1063539, rs12629945) and one SNP in LEP (rs2071045) 

associated with EC risk (Chen et al. 2012b). In addition, women carrying two or more minor alleles for 

the ADIPOQ SNPs were found to have a 22% lower EC risk than women with no minor alleles (Chen et 

al. 2012b). Though promising, there are limitations to this study. Study subjects’ adiponectin and leptin 

levels were not measured, preventing the authors from assessing the relationship between the 

significant variants and hormone levels. Additionally, this study has not been validated in an 

independent cohort and the authors did not correct for multiple tests (e.g., Bonferroni correction). 

Furthermore, the generalizability of the study results to other (non-Chinese) populations with differing 

obesity levels is unknown. Despite these limitations, the results are suggestive of a role for adipokines 

in EC risk.  

 As with many other diseases and traits, GWAS have been performed for EC. The first GWAS 

for EC was published in 2011 by Spurdle et al. in European-descent women from Australia and the UK 

(Spurdle et al. 2011). The authors identified HNF1B rs4430796(G) associated with endometrioid EC 

(OR=0.84, p=7.1x10-10), an association that held in their independent validation cohort of European-

descent women (Spurdle et al. 2011). This locus has been previously associated with prostate cancer 
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(Elliott et al. 2010) and with increased risk for type 2 diabetes (Voight et al. 2010). Subsequent studies 

have attempted to replicate the association of EC with HNF1B variants, with mixed results (De, I et al. 

2014; Setiawan et al. 2012; Long et al. 2012). A recent exome-wide association study failed to identify 

any novel variants associated with EC in a multiethnic population from the Epidemiology of 

Endometrial Cancer Consortium (E2C2) (Chen et al. 2014b). Given the limited number of variants 

associated with EC, additional studies performed in diverse populations may improve our 

understanding of the molecular mechanisms responsible for EC and the genetic factors influencing 

population-specific disease burdens.   

Influence of the female reproductive lifespan 

 The length of the reproductive lifespan (age at menarche) and parity play a role in the risk for 

developing EC. An early age at menarche and/or later age at natural menopause are risks for EC, as 

the lifetime exposure to estrogen increases (Hartge 2009).   Similarly, nulliparous women are at higher 

risk than parous women. EC risk in women with ten or more deliveries was found to be substantially 

lower than a Finnish reference population (Hognas et al. 2014).  Whether this protective effect is dose-

dependent (number of deliveries) or occurs at a given threshold is unknown. Use of estrogen-only 

hormone replacement therapy (HRT) in post-menopausal women is also a significant risk factor for EC 

and other poor outcomes, though absolute risk for an individual patient may differ (Ali 2014; Manson 

2014; Harman 2014).  

 Influence of cancer-associated variants 

 There is evidence that some cancers may be associated with the same genetic variants, 

suggesting pleiotropic effects. For example, a meta-analysis of PAGE, Genetic Epidemiology of 

Colorectal Cancer (GECCO), and the Colon Cancer Family Registry (CCFR) identified associations with 

colorectal cancer in 8q24, a known cancer locus (Cheng et al. 2014). As noted above, HNF1B has been 

associated with both EC (Spurdle et al. 2011) and with prostate cancer (Elliott et al. 2010). Females with 

Lynch syndrome, a hereditary colorectal cancer syndrome caused by mutations in DNA mismatch 

repair genes, have a 40-60% lifetime risk of developing endometrial cancer (Sehgal et al. 2014). Whether 

additional variants, associated with other cancers, are also associated with EC remains unknown. 
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Methods  

Selection of genetic variants 

 Variants were selected based upon their association with other cancers and identified by PAGE 

I Study investigators from the NHGRI GWAS catalog as of January 2010, fine mapping literature, and 

review of recent cancer GWAS.  One hundred twenty-two (122) candidate SNPs plus 128 ancestry 

informative markers (AIMS) were genotyped using Sequenom and TaqMan assays (Appendix G).  

Study population 

 The Epidemiologic Architecture for Genes Linked to Environment (EAGLE) study, as part of 

the Population Architecture using Genomics and Epidemiology (PAGE) I Study, accessed DNA 

samples from BioVU, the Vanderbilt University Medical Center biorepository linked to de-identified 

medical records. A description of BioVU was presented in Chapter III. Women 18 years of age and 

older were eligible for this study. Endometrial cancer cases were required to have a tumor registry 

entry for endometrial (uterine) cancer with a primary site of C540 (Isthmus uteri), C549 (Corpus uteri), 

or C559 (Uterus NOS); women with lymphoma or leukemia primary histology (9590-9989) were 

excluded. Controls for this study were females from the eligible BioVU population, excluding women 

with any ICD-9-CM code for EC, a tumor registry entry, or cancer-associated terminology in their 

synthetic derivative record. 

Statistical methods 

 Quality control (QC) methods were performed based on the QC consensus pipeline from the 

PAGE Coordinating Center (Cheng et al. 2014). The principal components method implemented in 

EIGENSTRAT was used to adjust for potential population stratification (Price et al. 2006). Samples 

were excluded based on call rates (<90%), departure from Hardy-Weinberg equilibrium (p<0.001), and 

concordance of blinded replicates (≤98%). A total of 114 candidate SNPs passed the QC process and 

were assessed for association with EC. An additive genetic model was selected for logistic regression 

between each SNP and EC; the ‘risk’ allele was defined as the allele previously associated with 

increased cancer risk in prior publications. We considered a minimally adjusted model and a fully 

adjusted model that included age, principal components, and body mass index (BMI). We defined 

significance as p<4.39x10-4, which is Bonferroni corrected (0.05/114). 

 Unexpectedly, only 20/206 EC cases and 156/2227 controls (European descent) and 2/20 cases 

and 22/335 controls (African American) remained for analysis after QC. Approximately half of the 
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samples had BMI data, a critical covariate in the EC study. Therefore, we contributed our European-

descent samples’ data to a larger meta-analysis (Setiawan et al. 2014) from the PAGE Study (Matise et 

al. 2011) and the E2C2 (Olson et al. 2009). Log odds regression estimates were combined across study 

sites in a fixed-effect, inverse-variance weighted meta-analysis implemented in METAL (Willer, Li, and 

Abecasis 2010). Heterogeneity across studies was estimated based on Cochran’s Q statistic. For the 

meta-analysis, significance was defined as a Bonferroni-corrected p<2.35x10-4 (0.05/213) (Setiawan et 

al. 2014). 

Results 

 Presented are the single-site (EAGLE BioVU) results for the EC study. The controls were slightly 

older than the cases; BMI for the cases and controls was comparable (Table 16). No SNPs met the 

Bonferroni-corrected significance threshold of 4.39x10-4 (Appendix H). The most significant SNPs at 

p<0.05 are listed in Table 17. Full logistic regression results for the EAGLE BioVU study are presented 

in Appendix H. 

 

Table 16. Population characteristics for EAGLE BioVU endometrial cancer study. 

 Cases Controls 
Number of subjects (n) 20 156 
Mean age (yrs.) 88.1 89 
Mean BMI (kg/m2) 25.8 25.5 

 

 

Table 17. Significant results from EAGLE BioVU endometrial cancer analysis. 

CHR SNP GENE A1 NMISS OR SE P-value 

8 rs10086908 intergenic T 92 8.06 0.80 9.20x10-3 

2 rs1465618 THADA T 92 7.13 0.82 0.02 

12 rs10778826 PPFIA2 A 92 4.41 0.63 0.02 

8 rs6983267 CCAT2 G 92 0.26 0.59 0.02 

8 rs10505477 LOC101930033 A 92 0.26 0.59 0.02 

Data shown are significant SNP associations at p<0.05 for EAGLE BioVU endometrial 
cancer analysis. For each SNP, p-values, risk allele, odds ratio, number of cases and 
controls are given for a fully adjusted model that included age, principal components, 
and body mass index (BMI). Gene shown is the closest gene to the SNP. Abbreviations: 
chromosome (CHR), single nucleotide polymorphism (SNP), risk allele (A1), number of 
cases and controls used in each logistic regression (NMISS), odds ratio (OR), standard 
error (SE). 
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 The most significant associations from the EC logistic regression include SNPs previously 

implicated in prostate cancer and colorectal cancer. The most significant result from our analysis 

(p<0.05) was rs10086908, located in an intergenic region in chromosome 8q24. This locus has been 

identified in several studies to be associated with prostate cancer (Liu et al. 2011; Xu et al. 2009b; Liu et 

al. 2008; Robbins et al. 2007). THADA rs1465618 at 2p21 has been associated with prostate cancer in 

both Europeans (Eeles et al. 2009) and Chinese males (Zhao et al. 2014). rs6983267, in 8q24.21, a 

colorectal cancer susceptibility SNP has recently been associated with prostate cancer and tumor 

volume in European descent men (Reinhardt et al. 2013) and with prostate cancer in a Hispanic 

(Chilean) population (San Francisco et al. 2014). rs10505477, another colorectal cancer associated SNP is 

also located in the 8q24 region (Table 17). 

 Comparing our single-site results to those of the larger meta-analysis, we failed to find 

agreement between any of the most significant associations (p<0.05) observed in EAGLE BioVU (Table 

17) and the associations reported by the PAGE I Study meta-analysis (p<0.05) (Setiawan et al. 2014). 

The lack of agreement is expected given the smaller sample size and limited power of EAGLE BioVU 

(20 cases, 156 controls) compared with the overall PAGE I Study meta-analysis (3758 cases, 5966 

controls) (Setiawan et al. 2014). Despite this lack of similarity, in both the single-site and meta-analysis, 

the most significant results were also associated with prostate cancer, suggesting pleiotropic effects for 

these SNPs and perhaps a shared biological mechanism for the development of both cancers (Table 17, 

(Setiawan et al. 2014)). 

Summary 

 Pleiotropy, the association of a genetic locus with more than one distinct phenotype (Stearns 

2010; Solovieff et al. 2013), has been investigated for a few diseases, most recently with the PheWAS—

the phenome-wide association study (Pendergrass et al. 2011; Denny et al. 2010). The PheWAS design is 

similar to that of the GWAS; where a GWAS interrogates multiple SNPs for association with a single 

phenotype, the PheWAS interrogates multiple phenotypes with a single variant (Pendergrass et al. 

2011; Denny et al. 2010). This approach may uncover previously unknown genotype-phenotype 

associations and suggest underlying biological mechanisms that are shared across phenotypes. Though 

PheWAS is a new approach for assessing pleiotropy on a large scale, testing individual variants where 

prior studies have shown associations across multiple phenotypes remains a valid approach.  
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 Studies have identified multiple genetic variants that are associated with several cancer 

phenotypes. In a recent analysis, SNPs in the 5p15.33 region, were assessed for their association with 

six distinct cancers (Wang et al. 2014b). This region has been previously linked to ten different cancers, 

including bladder (Rothman et al. 2010), glioma (Shete et al. 2009), lung (Wang et al. 2008), ovarian 

(Beesley et al. 2011), melanoma (Rafnar et al. 2009), and prostate cancer (Kote-Jarai et al. 2011) and 

contains TERT, a gene coding for a subunit of telomerase reverse transcriptase (Kim et al. 1994) and 

CLPTM1L, a gene implicated in lung and pancreatic cancer (James et al. 2012; Jia et al. 2014). Wang et 

al. identified five SNPs in TERT and one in CLPTM1L with significant pleiotropic effects (Wang et al. 

2014b).  

 This study and the meta-analysis to which it contributed, considered how GWAS-identified 

variants from other cancer studies might be associated with EC. For example, HNF1B is associated with 

endometrial cancer (Spurdle et al. 2011) and prostate cancer (Elliott et al. 2010) and has been linked to 

increased risk for type 2 diabetes (Voight et al. 2010). Interestingly, we failed to find HNF1B variants 

associated with EC at a nominal (p<0.05) significance level in EAGLE BioVU (Appendix H). However, 

we did observe SNPs in the 8q24 region, previously associated with colorectal (Real et al. 2014) and 

prostate cancer (Robbins et al. 2007), to be nominally significant in our study (Table 17). Additionally, 

THADA rs1465618 was nominally significant in our study and has been previously associated with 

prostate cancer (Eeles et al. 2009). The mechanism by which the 8q24 intergenic region contributes to 

cancer susceptibility remains unknown. This locus appears to generalize to diverse populations--

African American (Han et al. 2014), European (Eeles et al. 2009), and Chinese males (Hui et al. 2014); its 

association with multiple cancer phenotypes further suggests a role as a part of a general cancer 

mechanism. 

 A significant limitation of this single-site study is the sample size.  Though we were adequately 

powered (power=0.80) to identify an odds ratio (OR) ≈ 2.25 with our pre-QC sample size of 206 cases 

and 2227 controls (European descent), once quality control procedures were completed, our sample 

size dropped to 20 cases. We would have needed to detect an OR>4.75 with an allele frequency ≥0.15 to 

have sufficient power with this reduced sample size (Appendix I).  Given that we were underpowered 

to detect associations of modest size, we contributed our data to a larger effort that combined studies 

from two consortia: PAGE and E2C2.  In addition, this study only assessed a relatively small number of 

SNPs that were previously associated with a variety of cancers, primarily through GWAS. It is likely 

that other SNPs, not considered in this analysis, may also demonstrate pleiotropic effects in multiple 
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cancer phenotypes. Future studies investigating this potential are needed. Furthermore, despite initial 

intentions of including African American samples in this analysis, the number of EAGLE BioVU cases 

was insufficient (n=2). The lack of EC minority cases makes generalizing results to a non-European 

population challenging; the larger meta-analysis also limited their results to European-descent women. 

Additional studies in more diverse populations should be performed to verify the associations 

identified here and in other studies. Despite these limitations, this single-site study identified 

nominally significant associations between prostate cancer SNPs and endometrial cancer, suggesting 

these variants may have pleiotropic effects across multiple cancer phenotypes.     
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CHAPTER V 

CASE STUDY: A GENOME-WIDE ASSOCIATION STUDY FOR SERUM 

THYROID STIMULATING HORMONE LEVELS3 

V. CASE STUDY: A GENOME-WIDE ASSOCIATION STUDY FOR SERUM 

THYROID STIMULATING HORMONE LEVELS 

Introduction 

 Hyperthyroidism and hypothyroidism are important endocrine diseases caused by over- or 

under-production of thyroid hormone, which is regulated by thyroid stimulating hormone (TSH) 

produced in the anterior pituitary gland. Hypothyroidism, the most common thyroid disease, can be 

caused by iodine insufficiency, autoimmunity, pregnancy, pituitary disease (leading to increased TSH 

production), or other conditions. Thyroid diseases occur more often in women than in men 

(Vanderpump 2011) and the risk of developing hypothyroidism increases with age (Laurberg et al. 

2005; Bagchi, Brown, and Parish 1990).  Diagnosis of thyroid diseases involves measuring TSH levels 

and circulating thyroxine (T4) and triiodothyronine (T3) in the blood; elevated TSH levels and 

depressed T4 levels signify clinical hypothyroidism (Laurberg et al. 2005; Means 1940) while elevated 

TSH levels and normal T4 levels indicate mild (subclinical) hypothyroidism (Hollowell et al. 2002). 

TSH is produced by a normally functioning pituitary gland in response to decreased thyroid hormone 

levels; as thyroid hormone levels decrease, TSH signals to the thyroid to produce additional thyroid 

hormone.  When the thyroid gland does not maintain sufficient production of thyroid hormone, serum 

TSH levels become elevated, and the individual develops hypothyroidism. Similarly, elevated thyroid 

hormone levels from primary hyperthyroidism result in decreased TSH levels.   

 Both genetic and environmental factors influence serum TSH levels.  Physical and emotional 

stress, poor nutrition, increased body mass index (BMI), current smoking, and pregnancy are all risk 

factors for elevated serum TSH levels (Brix et al. 2000; Jorde and Sundsfjord 2006; Nyrnes, Jorde, and 

Sundsfjord 2006).  Normal serum TSH levels range from 0.3 µIU/mL – 4.0 µIU/mL but are tightly 

                                                      
3 Adapted from: Malinowski JR, Denny JC, Bielinski SJ, Basford MA, Bradford Y, et al. Genetic variants associated 
with serum thyroid stimulating hormone (TSH) levels in European Americans and African Americans: an 
eMERGE Network analysis. PLoS One. In press. 
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regulated within an individual, suggesting a genetic ‘set point’ for individual thyroid hormone levels 

(Hollowell et al. 2002; Chiamolera and Wondisford 2009; Arnaud-Lopez et al. 2008). A cross-sectional 

population study demonstrated differences in mean TSH levels between race/ethnicities, with higher 

mean TSH levels in non-Hispanic whites than in Mexican Americans or non-Hispanic blacks 

(Hollowell et al. 2002). The etiology behind the observed differences in mean TSH levels across ethnic 

groups has not been elucidated, and it is unclear if those differences lead to lower prevalence of 

hypothyroidism in populations of diverse ancestry. A recent study identified differences in prevalence 

of thyroid cancer across racial/ethnic groups living in England (Finlayson et al. 2014), and TSH 

antibodies were demonstrably lower in non-Hispanic blacks compared to non-Hispanic whites or 

Mexican-Americans in the National Health and Nutrition Examination Survey (NHANES) III (Spencer 

et al. 2007); however, studies evaluating hypothyroidism or hyperthyroidism burden among different 

racial/ethnic groups have not been performed. Twin and family-based studies have suggested 

heritability estimates of 32%-67% for TSH, T4, and T3 levels (Panicker et al. 2008b; Panicker et al. 2008a; 

Panicker 2011). Several genetic association studies have been performed, including two meta-analyses 

of GWAS (Porcu et al. 2013; Rawal et al. 2012). These studies have identified common variants 

associated with serum TSH levels: rs2046045 (PDE8B), rs10917477 (CAPZB), rs10028213 (NR3C2), and 

rs3813582 (16q23) (Panicker et al. 2010; Porcu et al. 2013). Altogether, the known loci explain <5% of the 

variance in TSH levels (Rawal et al. 2012). However, these GWAS and meta-analyses have been 

performed in populations of European ancestry, and it is unclear if these findings generalize to other 

race/ethnicities.  

 In this study, we sought to identify variants associated with normal variability of serum TSH 

levels in euthyroid (thyroid disease free) European Americans and African Americans from the 

Electronic Medical Records and Genomics (eMERGE) Network. We looked to replicate in our study 

known associations between SNPs and serum TSH levels. We hypothesized variants associated with 

serum TSH levels might also be associated with thyroid disorders, such as hyperthyroidism (Grave’s 

disease), hypothyroidism (Hashimoto’s disease), and thyroid cancer. Given that increased BMI is a risk 

factor for elevated serum TSH levels, we also tested for evidence that TSH-associated SNPS are 

modified by BMI in this study of euthyroid European and African Americans from the eMERGE 

Network. 
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Methods 

 The eMERGE Network is a collaboration of institutions with biobanks linked to EMRs.  The 

data for these analyses included Phase I of the eMERGE Network whose members included Group 

Health Cooperative/University of Washington, Marshfield Clinic, Mayo Clinic, Northwestern 

University, Vanderbilt University and the eMERGE Administrative Coordinating Center (McCarty et 

al. 2011). 

Study population and phenotype 

 This study was performed in the eMERGE Network which includes approximately 17,000 

individuals who were genotyped for a variety of complex diseases (e.g. dementia, cataracts, peripheral 

arterial disease (PAD), type 2 diabetes) and medically relevant quantitative traits (e.g. cardiac 

conduction) (Denny et al. 2011). To qualify for euthyroid designation in this analysis, individuals were 

required to have at least one test of thyroid function (i.e., TSH and T3 or T4 if available) with no 

abnormal results, must not have any billing codes for hypothyroidism or history of myasthenia gravis 

in his/her EMR or evidence of thyroid replacement medication, and must have at least two past 

medical history sections (non-acute visits) and medication lists. For individuals with multiple TSH 

tests, the median TSH level was used in the analysis. Individuals were excluded if they had any cause 

of hypothyroidism or hyperthyroidism, any other thyroid diseases (e.g. Graves, thyroid cancer) as 

indicated by billing (ICD-9) codes, procedure (CPT) codes or text word diagnoses, or were on thyroid-

altering medication (e.g., lithium) (Denny et al. 2011). From this group, 6,086 European Americans and 

633 African Americans qualified as euthyroid, of which 4,501 European Americans and 351 African 

Americans had body mass index (BMI). The appropriate institutional review board at each 

participating study site approved all procedures. 

Genotyping 

 Genotyping was performed using the Illumina Human660W-Quadv1_A and the Illumina1M 

BeadChips for European Americans and African Americans, respectively, as previously described 

(Denny et al. 2011).  Of the SNPs on each array, 474,366 SNPs and 905,285 SNPs, respectively, passed 

quality control filters for tests of genotyping efficiency (>99% call rate), and minor allele frequency 

(>5%). Details of eMERGE quality control have been previously published (Turner et al. 2011; Zuvich et 

al. 2011). Briefly, datasets from each of the five participating eMERGE Phase I sites were combined at 

the eMERGE Coordinating Center. Sample relatedness was assessed by calculating pairwise kinship 
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estimates in PLINK with the –genome command; the sample with the lowest call rate of the related 

pairs (e.g., full sibling, avuncular, parent-offspring) was removed (Zuvich et al. 2011). Population 

stratification was examined using the principal components analysis implemented in EIGENSTRAT 

(Price et al. 2006). Hardy-Weinberg equilibrium (HWE) was evaluated after dividing the data into two 

main groups by ancestry, European and African; a HWE threshold of p<1x10-4 was implemented. Call 

rates and minor allele frequencies were examined for each study site individually to assess batch effects 

that could skew results (Zuvich et al. 2011).    

Statistical methods 

 Quality control and data analysis were performed using a combination of PLINK  (Purcell et al. 

2007; Purcell 2009), and R software, and data were plotted using R code obtained from the Getting 

Genetics Done website (Turner and Bush 2012; R Development Core Team 2012),  Stata (StataCorp 

2011) and Synthesis-View (Pendergrass et al. 2010).  Power calculations were performed using Quanto 

(Gauderman 2002a).  Linear regression was performed assuming an additive genetic model to test for 

associations between individual SNPs and log-transformed median serum TSH levels. Tests were 

performed stratified by race/ethnicity, unadjusted and adjusted for age, sex, BMI, and first principal 

component (PC1) calculated with EIGENSTRAT (Price et al. 2006). Additional tests of association were 

performed in European Americans stratified by BMI (normal: BMI 18.5-24.9; overweight: BMI≥25) and 

adjusted for age, sex, and PC1.  We also performed formal tests of interaction between SNPs associated 

with TSH levels as a significance threshold of p<1x10-4 and stratified BMI (normal versus overweight) 

stratified by race/ethnicity in adjusted (age, sex, PC1, and main effects) models. We considered a SNP-

BMI interaction significant at a threshold of p<0.05. Wilcoxon rank-sum tests were performed to 

compare median TSH levels at each genotype for normal vs. overweight BMI categories for each SNP. 

 In addition to GWAS discovery, we sought to replicate and generalize previously reported 

genetic associations for TSH levels.  We considered a SNP replicated in European Americans if the 

tested SNP was identical to the index SNP, or a proxy in strong linkage disequilibrium (LD) (r2>0.7) 

with the index SNP in 1000 Genomes CEU reference panel, and the direction of effect was consistent 

with the previous report after taking into account coding allele differences.  We considered a SNP 

generalized to African Americans if the tested SNP was identical to, or a proxy in strong LD with 

(r2>0.7), the index SNP in 1000 Genomes CEU reference panel, and the direction of effect was consistent 

with European Americans. For the replication/generalization analysis, significance was defined at a 
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threshold of p<0.05.  Power calculations were performed assuming the genetic effect sizes reported in 

the literature, the present study sample size, and the present study coded allele frequencies. 

Results 

 All eMERGE participating sites contributed data for European Americans and all sites except 

Marshfield Clinic contributed data for African Americans (Appendix J). Collectively, European 

Americans had higher mean TSH levels compared to the African Americans (1.90 μIU/mL vs. 1.45 

μIU/mL), had lower BMI (27.51 kg/m2 vs. 32.16 kg/m2), included more men (52.19% male vs. 25.07%), 

and were older (median decade of birth 1930s vs. 1950s) (Table 18). The higher mean TSH level in 

European Americans compared to African Americans is consistent with previous epidemiologic 

reports (Vanderpump 2011; Hollowell et al. 2002; Boucai and Surks 2009). The age, BMI, and sex ratio 

differences between the groups observed here most likely reflect ascertainment differences resulting 

from the characteristics of the source populations at each eMERGE site, rather than true differences at 

the overall population level. 

 

Table 18. Population characteristics in euthyroid individuals for serum TSH levels in the eMERGE 

Network. 

 European Americans 
(n=4,501) 

African Americans (n=351) 

Female (%) 47.81 74.93 
Body mass index, kg/m2 27.51 (5.55) 32.16 (8.43) 

Age at lab, years  65.50 (12.48) 50.59 (18.41) 
TSH levels, μIU/mL  1.90 (0.93) 1.45 (0.72) 
 
 
 

Decade of 
birth, # 

(%) 

1910s 608 (13.51) 30 (8.55) 
1920s 865 (19.22) 40(11.40) 
1930s 994 (22.08)  22 (6.27) 
1940s 1246 (27.68) 40 (11.40) 
1950s 612 (13.60) 71 (20.23) 
1960s 89 (1.98) 67 (19.09) 
1970s 48 (1.07) 42 (11.97) 
1980s 38 (0.84) 38 (10.83) 
1990s 1 (0.02) 1 (0.28) 

Data are presented as means (standard deviation) unless otherwise noted. Abbreviations: thyroid stimulating 
hormone (TSH), the Electronic Medical Records and Genomics (eMERGE). 

 

Discovery 

 We performed standard single SNP tests of association stratified by race/ethnicity and adjusted 

for sex, age (decade of birth), BMI, and PC1.  For European Americans, we identified six SNPs in 
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PDE8B on chromosome 5 as associated with TSH levels at genome-wide significance (p<5x10-8) (Table 

19, Figure 5).  Our most significant result, rs1382879, was a perfect proxy for previously-identified 

(Rawal et al. 2012) rs2046045 (r2=1.00) and was in moderate-to-high LD (r2>0.30) with the other 

significant PDE8B SNPs.  No novel genotype-phenotype associations were identified at genome-wide 

significance in this sample of European Americans.  However, an additional 111 SNPs were 

suggestively associated with serum TSH levels (p<1x10-4), including seven SNPs in PDE8B, ten SNPs 

near FOXE1, three SNPs in PDE10A, four SNPs in THBS4, and eight SNPs in NRG1 (Appendix K). The 

majority of these SNPs are located in noncoding regions of the genome (intronic, upstream, 

downstream); however, rs3745746 (CABP5, p=4.93x10-5) is a missense mutation, and rs1443434 (FOXE1, 

p=6.53x10-5) is located in the 3′ untranslated region. 

 

Table 19. Genome-wide significant SNP associations for serum TSH levels in eMERGE euthyroid 

European Americans. 

CHR SNP GENE GENE REGION CODED 
ALLELE 

BETA (SE) P-VALUE 

5 rs1382879 PDE8B intronic G 0.09 (0.01) 7.16x10-18 

5 rs2046045 PDE8B intronic C 0.09 (0.01) 1.85x10-17 

5 rs989758 PDE8B intronic T 0.08 (0.01) 1.33x10-14 

5 rs9687206 PDE8B intronic G 0.08 (0.01) 5.52x10-14 

5 rs12515498 PDE8B intronic C 0.07 (0.01) 3.27x10-10 

5 rs6885813 PDE8B intronic A 0.06 (0.01) 4.05x10-8 

Tests of association using linear regression for 474,366 SNPs assuming an additive genetic model and adjusted for 
age, sex, principal component (PC1), and body mass index were performed. Significance defined as p<5x10-8. 
Abbreviations: single nucleotide polymorphism (SNP), thyroid stimulating hormone (TSH), Electronic Medical 
Records and Genomics (eMERGE). 

  

 No SNPs were associated with TSH levels in African Americans at the genome-wide 

significance threshold of p<5.0x10-8 (Appendix L).  However, 87 SNPs reached a suggestive significance 

level (p<1x10-4); the most significant result was rs1409005 (POU4F1-AS1, p=5.02x10-7). Similar to the 

results in the European Americans, the majority of these SNPs were located in noncoding regions 

except for two missense mutations (COQ5 rs3742049, p=6.08x10-5; RBM20 rs942077, p=8.47x10-5) and 

one synonymous substitution (KLK1 rs1054713, p=4.16x10-5) (Appendix L).
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Data shown are p-values from single SNP tests of association with serum TSH levels in a model adjusted 
for age, sex, principal component (PC1), and body mass index in euthyroid European Americans in 
eMERGE Network (n=4,501). The y-axis represents the –log10 (p-value); horizontal lines represent 
Bonferroni corrected significance level (p<5x10-8)(top) and suggestive significance level (1x10-4)(bottom). 
Chromosomes are arranged on the x axis. Abbreviations: thyroid stimulating hormone (TSH), Electronic 
Medical Records and Genomics (eMERGE), single nucleotide polymorphism (SNP). 

Figure 5. Manhattan plot of tests of association with serum TSH levels in euthyroid 
European Americans in eMERGE Network. 
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Trans-population genetic associations 

 Given the smaller sample size of African Americans with serum TSH levels, the GWAS was 

underpowered to detect associations at genome-wide significance with expected small to moderate 

effect sizes.  Therefore, we evaluated the 31 most significant (p<1x10-5) associations from the European 

American dataset for evidence of generalization to the African American dataset at a liberal 

significance threshold of 0.05 (Figure 6). One SNP, rs813379, was not directly genotyped in African 

Americans. We observed two SNPs in PDE8B associated with serum TSH levels in European 

Americans (rs2046045: p=1.85x10-17 and rs12520862: p=7.48x10-6) that were also associated in African 

Americans (p=0.03 and 0.01, respectively) with consistent directions and magnitude of effect after 

accounting for the coded allele (Figure 6).  We also observed two SNPs upstream of IGFBP5 (rs1861628 

and rs13020935) associated both in European Americans (p=3.68x10-6 and 7.02x10-6, respectively) and 

African Americans (1.82x10-4 and 1.82x10-4, respectively).  These SNPs are in perfect LD in both 1000 

Genomes CEU and YRI reference panels (r2=1.00). Interestingly, while the direction of effect was 

consistent between the two populations, the magnitude of effect was larger in African Americans β= -

0.1492, SE=0.04; β=-0.1492, SE=0.04, respectively) compared with European Americans (β = -0.05, 

SE=0.01; β=-0.05, SE=0.01, respectively).  One additional variant, ABO rs657152, was significant in both 

European Americans (p=4.17x10-6, β=0.05) and African Americans (p=0.03, β=0.09). Overall, most 

genetic associations identified in European Americans for serum TSH levels were not significant 

(p<0.05) in African Americans (25/30; 83.3%); however, the majority of associations (21/30; 70.0%) had 

genetic effects in the same direction between the two populations (Figure 6). 
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Figure 6. Comparison of most significant associations identified in European Americans 
with African Americans from the eMERGE Network. 

Shown are p-values, coded allele frequencies, and betas for euthyroid European Americans (n=4,501) and 
African Americans (n=351) in the eMERGE Network for serum TSH level tests of association using 
SynthesisView. Data shown are comparisons between European Americans (blue markers) and African 
Americans (red markers) for p-values (data shown are –log10(p-value)), genetic effect magnitudes (beta), and 
coded allele frequencies (MAF) for the 31 most significant SNPs in European Americans. Red horizontal line on 
p-value track indicates p=0.05. SNPs are oriented across the top of the figure, arranged by chromosomal 
location. Large triangles represent p-values at or smaller than 5x10-8. Direction of the marker for p-values 
indicates direction of effect for each SNP. Abbreviations: Electronic Medical Records and Genomics (eMERGE), 
thyroid stimulating hormone (TSH), single nucleotide polymorphism (SNP). 
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Replication and Generalization 

 At least 24 SNPs have been associated with serum TSH levels in European descent populations 

in the literature (Rawal et al. 2012; Porcu et al. 2013; Taylor et al. 2011; Panicker et al. 2010). We 

considered a SNP replicated if the direction of effect was the same as previously reported and 

associated at a liberal threshold of p<0.05 with serum TSH levels. In European Americans, we 

replicated 22/25 (88%) SNPs previously associated with serum TSH levels (Table 20).  As previously 

mentioned, the most significant association with TSH levels in European Americans replicated the 

published reports for PDE8B SNPs rs2046045 and rs6885099 (Table 20).  Beyond PDE8B, we replicated 

two SNPs on chromosome 1 in CAPZB previously implicated as associated with serum TSH levels 

(Table 20). One SNP, rs12138950, was a perfect proxy for previously-reported CAPZB rs10917469 (1000 

Genomes CEU r2=1.00, β=-0.05, p=8.97x10-5) (Table 20). 
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Table 20. Comparison of prior associations with TSH levels to eMERGE European Americans. 

Locus Prior Association Current Study 
SNP Chr Gene/ 

Gene Region 
C
A 

CAF β 
(SE) 

P-value Ref. SNP/Best Proxy 
SNP 

r2 CA CAF β 
(SE) 

P-value 

rs10917469 1 CAPZB G 0.16 -0.16(0.03) 3.2x10-08 
(Panicker et al.2010) 

rs12138950 1.00 C 0.15 -0.05(0.01) 8.97x10-05 
rs10917477 1 CAPZB A 0.51 -0.06(0.01) 1.54x10-08 (Rawal et al.2012) rs6683419 0.73 G 0.48 0.04(0.01) 3.56x10-04 
rs10799824 1 CAPZB A 0.16 -0.11(0.01) 3.60x10-21 (Porcu et al.2013) rs12138950 0.95 C 0.15 -0.05(0.01) 8.97x10-05 
rs334699 1 NFIA A 0.05 -0.14(0.02) 5.40x10-12 (Porcu et al.2013) rs334708 0.79 C 0.08 -0.05(0.02) 7.20x10-03 

rs13015993 2 IGFBP5 A 0.74 0.08(0.01) 3.24x10-15 (Porcu et al.2013) rs1861628 1.00 T 0.27 -0.05(0.01) 3.68x10-06 
rs10028213 4 NR3C2 C 0.82 0.08(0.01) 2.88x10-10 (Rawal et al.2012) rs10519980 1.00 T 0.18 -0.04(0.01) 0.001 
rs10032216 4 NR3C2 T 0.78 0.09(0.01) 9.28x10-16 (Porcu et al.2013) rs17025017 1.00 A 0.19 -0.04(0.01) 2.38x10-03 
rs2046045 5 

PDE8B 

T 0.62 -0.12(0.01) 2.79x10-27 (Rawal et 
al.2012;Eriksson et 
al.2012;Medici et 
al.2011) 

rs2046045 -- C 0.40 0.09(0.01) 1.85 x10-17 

rs6885099 5 PDE8B A 0.59 -0.14(0.01) 1.95x10-56 (Porcu et al.2013) rs2046045 1.00 C 0.40 0.09(0.01) 1.85 x10-17 
rs4704397 5 PDE8B A 0.40* 0.21 1.64x10-10 (Taylor et al.2011) rs1382879 0.94 G 0.39 0.09(0.01) 7.16 x10-18 
rs753760 6 PDE10A C 0.69 0.10(0.01) 1.21x10-24 (Porcu et al.2013) rs2983514 0.93 G 0.33 -0.05(0.01) 1.36 x10-05 
rs9472138 6 VEGFA T 0.29 -0.08(0.01) 6.72x10-16 (Porcu et al.2013) rs9472138 -- T 0.28 -0.04(0.01) 6.41 x10-04 

rs11755845 6 VEGFA T 0.27 -0.07(0.01) 1.68x10-10 (Porcu et al.2013) rs11755845 -- T 0.24 -0.02(0.01) 0.04 
rs9497965 6 SASH1 T 0.42 0.05(0.01) 2.25 x10-08 (Porcu et al.2013) rs9377117 0.54 G 0.30 0.02(0.01) 0.12 
rs7825175 8 NRG1 A 0.21 -0.07(0.01) 2.94 x10-09 (Porcu et al.2013) rs2466067 0.21 C 0.31 -0.05(0.01) 8.41 x10-06 
rs657152 9 ABO A 0.34 0.06(0.01) 4.11 x10-10 (Porcu et al.2013) rs657152 -- T 0.38 0.05(0.01) 4.17 x10-06 
rs1571583 9 GLIS3 A 0.25 0.06(0.01) 2.55 x10-08 (Porcu et al.2013) rs1571583 -- T 0.25 0.03(0.01) 0.01 

rs17723470 11 PRDM11 T 0.28 -0.07(0.01) 8.83 x10-11 (Porcu et al.2013) rs7940871 0.89 T 0.29 -0.04(0.01) 1.42 x10-04 
rs1537424 14 MBIP T 0.61 -0.05(0.01) 1.17 x10-08 (Porcu et al.2013) rs1537424 -- G 0.43 0.03(0.01) 2.89 x10-03 

rs11624776 14 ITPK1 A 0.66 -0.06(0.01) 1.79 x10-09 (Porcu et al.2013) rs957362 0.31 C 0.22 0.02(0.01) 0.09 
rs10519227 15 FGF7 A 0.25 -0.07(0.01) 1.02 x10-11 (Porcu et al.2013) rs7168316 1.00 T 0.23 -0.05(0.01) 2.10 x10-05 
rs17776563 15 MIR1179 A 0.32 -0.06(0.01) 2.89 x10-10 (Porcu et al.2013) rs11073790 0.81 T 0.35 -0.01(0.01) 0.24 
rs3813582 16 LOC440389/

MAF 
T 0.67 0.08(0.01) 8.45 x10-18 (Rawal et al.2012;Porcu 

et al.2013) 
rs17767383 1.00 A 0.31 -0.04(0.01) 1.42 x10-04 

rs9915657 17 SOX9 T 0.54 -0.06(0.01) 7.53 x10-13 (Porcu et al.2013) rs9915657 -- C 0.46 0.03(0.01) 9.53 x10-04 
rs4804416 19 INSR T 0.57 -0.06(0.01) 3.16 x10-10 (Porcu et al.2013) rs4804416 -- G 0.44 0.03(0.01) 7.20 x10-04 

SNP rs number, chromosomal location, nearest gene/gene region, coded allele (CA), coded allele frequency (CAF), and association summary statistics (betas, standard 
errors, and p-values) are given for each previously reported association with the TSH levels in European Americans. CAF for rs4704397 is the mean CAF for the combined 
cohorts described in Taylor et al. For SNPs not directly genotyped in this study, the proxy in highest linkage disequilibrium in 1000 Genomes CEU reference panel was 
identified. Results of adjusted (age, sex, body mass index, and principal component 1) tests of association are given for each previously reported SNP or its proxy in this 
European American dataset (n=4,501). 
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 In African Americans, 5/24 (25%) SNPs previously associated with TSH levels in European-

descent populations generalized at a liberal significance threshold of p<0.05 and a consistent direction 

of effect (Appendix M). PDE8B rs2046045, a proxy for rs6885099 (1000 Genomes CEU r2=1.00, YRI 

r2=0.945), was associated with serum TSH levels in African Americans (β = -0.09, p=0.03) (Appendix 

M).  NFIA rs334713, a proxy for rs334699 (1000 Genomes CEU r2=1.00, YRI r2=0.774), was associated 

with serum TSH levels in eMERGE African Americans (p=1.50x10-3) with a similar effect size (β=-0.17) 

as previously-reported European-descent populations.  Notably, the coded allele frequency of this SNP 

was greater in African Americans (coded allele frequency = 0.17) compared with either eMERGE 

European Americans (rs334708 coded allele frequency=0.08)(Table 20) or the previously-reported 

European descent population (0.05) (Appendix M). Intronic ABO rs657152 was significant at p=0.03, 

and the magnitude and direction of effect were similar to previously published European American 

data (Appendix M). VEGFA rs11755845 was significant at p=0.01 (Appendix M) with an effect size 

nearly double that of the previously reported result in European Americans (Appendix M). SNP 

rs13020935 upstream of IGFBP5, a proxy for rs13015993 (r2=1.00), was significant at p=1.82x10-4 

(Appendix M). 

SNPs previously associated with thyroid disease 

 Next, we investigated SNPs that had previously been associated with a thyroid disease 

phenotype, specifically: hypothyroidism, thyroid cancer, and Graves disease (Eriksson et al. 2012; Chu 

et al. 2011; Gudmundsson et al. 2009), since variation in TSH levels may indicate thyroid disease.  Six 

SNPs in the FOXE1 region, including rs925489, generalized to euthyroid European American subjects 

(Appendix N). An additional SNP in FOXE1, rs965513, previously associated with hypothyroidism 

(Eriksson et al. 2012; Denny et al. 2011), generalized to serum TSH levels in European Americans 

(p=1.09x10-6, β=-0.05) (Appendix N).  FOXE1 rs1877432, previously associated with hypothyroidism, 

generalized to serum TSH levels in African Americans (p=9.73x10-3, β=0.11) (Appendix O). 

RHOH/CHRNA9 rs6832151, previously associated with Grave’s Disease, generalized to serum TSH 

levels in African Americans (p=0.01, β=-0.10) (Appendix O). None of the SNPs previously associated 

with thyroid cancer (Gudmundsson et al. 2009) were associated with serum TSH levels in either  

European Americans or African Americans at a liberal significance threshold of p<0.05 (Appendix N, 

Appendix O).  Broadly, we found little evidence of association with serum TSH levels for SNPs, apart 

from FOXE1, that have been associated with other thyroid-related phenotypes. 
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Interaction with BMI 

 Increased BMI is significantly associated with TSH levels and changes in BMI can be a symptom 

of thyroid disease, with hypothyroid persons gaining weight and hyperthyroid persons losing weight 

(Knudsen et al. 2005). We observed that the addition of BMI into the linear regression model yielded 

more significant p-values for the SNPs in PDE8B and others, and the results from the stratified analyses 

differed within each race/ethnicity (Appendix P, Appendix Q). Therefore, we performed formal tests 

of interaction between BMI and all SNPs (n=118) with p<1x10-4 from the age, sex, PC1, and BMI 

adjusted model in European Americans and considered evidence for an interaction at p<0.05.   Three 

SNPs met our significance threshold in European Americans for an interaction with BMI: NFIA 

rs10489909, NRG1 rs2466067 and rs4298457. An additional NRG1 SNP was just outside the p<0.05 

significance threshold for the interaction: rs10954859 (Table 21). The NRG1 SNPs are in moderate-to-

high LD with each other (r2>0.70). We compared median TSH levels by BMI category for each genotype 

by SNP and observed lower median TSH levels for individuals with the AA genotype for rs10489909 

who were of normal BMI than compared to individuals with overweight BMI (p<0.005) (Figure 7). We 

observed similar trends for rs2466067 (CC genotype), rs10954859 (GG genotype), and rs4298457 (GG 

genotype) (p<0.05) which suggests serum TSH levels may be attenuated based on BMI for these 

homozygous genotypes (Figure 7). 

 

Table 21. Body mass index as a modifier of serum TSH levels genetic associations. 

POPULATION SNP GENE/REGION MODIFIER BETA (SE 
SNPxBMI) 

P (SNPxBMI) 

European American rs10489909 NFIA BMI 0.01(0.004) 6.21E-03 

European American rs2466067 NRG1 BMI 0.004(0.002) 0.040 

European American rs4298457 NRG1 BMI 0.004(0.002) 0.047 

European American rs10954859 NRG1 BMI 0.004(0.002) 0.050 

African American rs6728613 MYT1L BMI -0.016(0.005) 2.28E-03 

African American rs4073401 MYT1L BMI -0.016(0.005) 2.28E-03 

African American rs10518306 LOC285419 BMI -0.026(0.011) 0.020 

African American rs6062344 TCEA2 BMI -0.010(0.005) 0.043 

African American rs6090040 TCEA2 BMI -0.009(0.005) 0.047 

Interaction analyses were performed using the SNPs with p<1x10-4 significance levels in the model adjusted for age, 
sex, principal component 1 (PC1), and body mass index (BMI) in European Americans (n=4,501) and African 
Americans (n=351) in eMERGE serum TSH levels study. The model was stratified by race/ethnicity and by 
normal/overweight BMI (normal: BMI 18-24.9; overweight: BMI 25+). We considered a SNPxBMI interaction 
significant at a threshold of p<0.05. Displayed are significant interaction results at p=0.05. 
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Figure 7. BMI as a modifier of serum TSH levels in eMERGE European Americans. 

Interaction analyses were performed using the SNPs with p<1x10-04 significance levels in the model adjusted for age, sex, PC1, 
and body mass index in European Americans (n=4,501). For each significant (p<0.05) interaction term, the model was then 
stratified by normal/overweight BMI (normal BMI =18-24.9; overweight BMI≥25). We considered a SNPxBMI interaction 
significant at a threshold of p<0.05. Shown are p-values from Wilcoxon rank-sum test comparing median TSH values between 
BMI categories at each genotype. 
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 We also performed tests of interaction in African Americans for BMI and the 87 most significant 

SNPs (p<1x10-4 from the age, sex, PC1, and BMI adjusted model). We observed five SNPs at the p<0.05 

significance threshold (Table 21, Appendix R). MYT1L rs6728613 and rs4073401 are in perfect LD with 

each other (r2=1.00) and were the most significant in this interaction analysis (p=2.28x10-3) (Table 21, 

Appendix R). While other interaction terms were significant in the African American sample, small 

sample sizes and low counts made comparisons across genotypes and BMI categories difficult to 

interpret (Appendix R). 

 

Summary 

 The eMERGE Network was established in 2007 to determine whether electronic medical records 

could be used to identify disease susceptibility in diverse patient populations for complex 

traits/diseases. At each study site, DNA linked to an EMR was genotyped for a GWAS for specific 

complex diseases (e.g., type II diabetes) and medically relevant quantitative traits (e.g., cardiac 

conduction). A recent eMERGE Network GWAS demonstrated that these study-specific genotype data 

can be “reused” for additional GWAS for binary outcomes (hypothyroidism) extracted from the EMR 

(Denny et al.2011). As an extension of this exercise, we performed a GWAS for an additional medically 

relevant quantitative trait: thyroid stimulating hormone (TSH) levels, in 4,501 European American and 

351 African American euthyroid individuals. 

 Several studies have shown associations between TSH levels and PDE8B (briefly: (Arnaud-

Lopez et al. 2008; Medici et al. 2011; Taylor et al. 2011)).  PDE8B is a phosphodiesterase gene that 

encodes a cAMP-specific protein expressed in thyroid tissue (Horvath et al. 2010).  PDE8B upregulates 

cAMP through interaction with the TSH receptor on thyroid cells (Arnaud-Lopez et al. 2008; Horvath et 

al. 2010). In this study, we have replicated the results recently obtained by several groups finding 

association of TSH levels and several SNPs in the PDE8B region in European Americans (Medici et al. 

2011; Taylor et al. 2011). Variants in PDE8B were the only SNPs in this analysis to reach genome-wide 

significance in European Americans after accounting for multiple testing. In African Americans, 

rs2046045 (in high/perfect LD with rs6885099 and rs4704397) was nominally significant.   

 The FOXE1 region was not as strongly associated with TSH levels as PDE8B in European 

Americans, a result similar to that obtained by Medici et al (Medici et al. 2011). FOXE1 encodes a 

thyroid transcription factor with a characteristic forkhead motif believed to be important in thyroid 
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morphogenesis (Cuesta, Zaret, and Santisteban 2007; De and Di 2004). Mutations in FOXE1 have been 

implicated in hypothyroidism (Eriksson et al. 2012; Gudmundsson et al. 2009; Denny et al. 2011)  and 

thyroid cancer (Tomaz et al. 2012; Landa et al. 2009).  No SNPs in FOXE1 reached genome-wide 

significance in this study, though several were associated at the 10-6 threshold in European Americans.   

 Given the relationship between TSH levels and specific clinical outcomes, we hypothesized that 

serum TSH levels would also be associated with SNPs previously associated with hypothyroidism, 

Grave’s Disease, or thyroid cancer by GWAS or candidate gene studies (Chu et al. 2011; Gudmundsson 

et al. 2009; Eriksson et al. 2012). Patients with these disorders exhibit abnormal TSH levels and there is 

a strong autoimmune component to the diseases.  No SNPs in previously identified gene regions 

(CTLA-4, TSHR, TTF1, HLA, and PTPN22) were significantly associated with TSH levels in either 

European Americans or African Americans from the eMERGE Network (Appendix N, Appendix O).  

 Obesity (BMI >30) has been implicated in higher TSH levels and change in an individual’s set 

point (Marzullo et al. 2010; De et al. 2007). We performed additional analyses adjusting for age, sex, 

PC1, and BMI in both the European American and African American cohorts and stratified analyses by 

BMI (normal versus overweight).  In the European Americans, adjusting for BMI did not appreciably 

modify the results, though the results in both PDE8B and FOXE1 were more highly significant 

(Appendix P).  These results led us to consider potential SNPxBMI interactions.  After performing tests 

of association for an interaction in the most significant results from the primary analysis, we identified 

two loci with SNPxBMI interactions in European Americans: NFIA and NRG1.  NFIA, a transcription 

factor, has not previously been associated with thyroid-related traits. NRG1 encodes neuregulin, a 

signaling protein recently identified in a study to be associated with thyroid cancer, potentially 

mediated by regulation of TSH levels (Gudmundsson et al. 2009). Neuregulin is expressed in papillary 

thyroid carcinomas and has been found to regulate cell proliferation in a rat thyroid cell model 

(Breuleux 2007).  Further studies on the role NRG1 may play in regulating TSH levels are warranted. In 

the African American subjects, significant interactions at a liberal threshold (p<0.05) were identified, 

but small sample sizes and low genotype counts per BMI category made comparisons across groups 

difficult.   

 We compared results from the African Americans to those of the European Americans in our 

study and observed several differences.  While several SNPs in PDE8B reached genome-wide 

significance in European Americans, none were significant in African Americans, and only two PDE8B 

variants identified in previous GWAS generalized to this population at a liberal significance threshold 
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of p<0.05. Of the 32 most significant SNPs in European Americans, 21 had the same direction of effect 

and similar effect sizes in African Americans.  

 A major limitation of this study is sample size.  Among both populations, we exclude 

individuals in eMERGE with an abnormal TSH level given this study sought to identify genetic 

determinants of the normal distribution for TSH levels. Despite excluding individuals with abnormal 

TSH values, the mean (standard deviation) observed here for European Americans [1.90 (0.93)] was 

well within the range of previous TSH level genetic association studies:  1.5 (0.80) to 2.7 (4.1) μIU/mL 

(Porcu et al. 2013). The addition of the few individuals with abnormal TSH levels would unlikely 

increase statistical power enough to detect additional genome-wide associations nor substantially 

impact the overall trait distribution. In comparison, the African American sample size was very small 

which impacted our ability to generalize previous findings to this population. In eMERGE African 

Americans, we were only adequately powered (>80%) for one test of association: PDE8B rs4704397.  

This SNP was not directly genotyped in the eMERGE African American dataset, but is in very high LD 

with genotyped rs2046045 in the 1000 Genomes CEU panel (r2=0.94), but not with the 1000 Genomes 

YRI panel (r2=0.49). The small sample size coupled with lower linkage disequilibrium resulted in 

underpowered tests of association for the African American dataset. 

 We also observed striking differences in minor allele frequencies (MAF) between European 

Americans and African Americans that may have impacted our ability to replicate and generalize 

previously associated variants. In European Americans, most of the minor allele frequencies were 

comparable to those in previously published studies (Appendix S), and we were adequately powered 

(80%) to replicate 18/25 SNPs previously associated with serum TSH levels at a liberal significance 

threshold of 0.05 (Appendix S). Of the 18 properly powered tests of association, all of these SNPs 

replicated in the eMERGE European American dataset. We further considered that population 

differentiation may have prevented us from generalizing known variants to the eMERGE African 

Americans. Between populations, differences in environmental pressures can lead to differential 

changes in allele frequencies. Calculating FST by both the Weir/Cockerham(Weir and Cockerham 1984) 

and Wright(Wright 1965) methods using PLATO((The Ritchie Lab 2013)), we found no evidence 

corroborating this hypothesis (Table 22). 
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Table 22. FST Calculations for European and African Americans in eMERGE TSH analysis. 

 FST 

Gene SNP Weir/Cockerham Wright 

PDE8B rs2046045 0.03 0.00 

CAPZB rs10799824 0.00 0.00 

VEGFA rs9472138 0.00 0.00 

VEGFA rs11755845 0.01 0.11 

NRG1 rs7825175 0.00 0.00 

ABO rs657152 0.00 0.00 

GLIS3 rs1571583 0.00 0.00 

PRDM11 rs17723470 0.00 0.00 

MBIP rs1537424 0.03 0.00 

ITPK1 rs11624776 0.00 0.00 

SOX9 rs9915657 0.00 0.00 

INSR rs4804416 0.01 0.00 

Shown are FST calculations, rounded to the nearest hundredth, for SNPs previously associated with serum TSH levels 
in European populations and the FST at each locus for eMERGE European Americans and African Americans. FST was 
calculated with PLATO software for both the Weir/Cockerham and Wright methods. Gene shown is the gene closest 
to the SNP presented.  

 

 This study further demonstrates the feasibility of using genotypes linked to EMRs to perform 

secondary analyses for quantitative traits in complex diseases in diverse populations (Crosslin et al. 

2013; Ding et al. 2012). We identified SNPs associated with serum TSH levels and replicated findings 

from earlier GWAS for TSH levels and thyroid-related traits to the eMERGE European American 

euthyroid population.  We further suggest BMI may modify genetic associations with serum TSH 

levels. Consistent with other reports, we found few associations with SNPs associated with serum TSH 

levels that have effects on other thyroid-related traits/diseases. Importantly, we identified suggestive 

associations with biologically plausible SNPs and generalized several SNPs from previous GWAS to 

the eMERGE African American euthyroid population, suggesting additional studies in diverse 

populations are warranted. 
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CHAPTER VI 

IMPLEMENTING PERSONALIZED MEDICINE: EVIDENCE AND ETHICS4,5 

VI. IMPLEMENTING PERSONALIZED MEDICINE: EVIDENCE AND 

ETHICS 

Introduction 

 Personalized medicine (PM), defined as individualization of clinical care based, in part, on the 

genomic background of an individual, (Cornetta and Brown 2013), has more generally come to mean 

the use of genetic/genomic data to inform clinical care (decision-making for prevention, diagnosis, and 

treatment) for individual patients (National Human Genome Research Institute 2014b). Genetics and 

genomics has been used to identify the etiology of unknown genetic conditions (Need et al. 2012) and 

additional variants responsible for known disorders (Lupski et al. 2010), determine a tumor’s 

susceptibility to chemotherapies (Tessari, Palmieri, and Di 2013), and guide dosage requirements for 

medication (Scott et al. 2013). Given the public health impact of complex diseases such as type 2 

diabetes (T2D), cardiovascular disease (CVD), and asthma, which have genetic and environmental 

components, leveraging PM to improve health outcomes in complex diseases offers much potential. 

PM may be used for complex disease to predict which individuals are at greatest risk for disease 

development based on their genetic composition and environmental exposures, allowing for pre-

symptomatic intervention, or to inform pharmacologic therapy choices once a disorder has manifested. 

However, there are numerous challenges to overcome for PM to be successful for common, complex 

diseases. The clinical validity, utility and added benefit attributable to including genetic and genomic 

information in clinical care for complex disorders has not been adequately assessed.  The impact on the 

health care system, including integration of these data into electronic medical records, data access, 

privacy, and physician decision support, remain important issues for multiple stakeholders. 

Addressing public understanding of genomics in the context of healthcare is necessary to avoid 

                                                      
4 Adapted from: Malinowski J & Clayton EW. From pharmacogenetics and cancer to common, complex diseases: 
are we ready for precision medicine? (In preparation). 
 
5 Adapted from: Malinowski J & Naylor H. A rapid evidence review for the inclusion of genetic data in clinical 
care for a common, complex disease. (In preparation). 
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genetic-based discrimination, genetic determinism, and conflation of genetic ancestry with complex 

social constructs of race/ethnicity. This chapter will describe the scientific, systemic, and social barriers 

to successful implementation of PM for complex disease in the clinical setting and consider how these 

challenges have been addressed for pharmacogenetics and cancer treatment.

 

Figure 8. Analytic framework for personalized medicine implementation for complex 
diseases. 

Analytic framework showing how personalized medicine might be used to screen asymptomatic individuals 
to identify at-risk individuals, allowing for early intervention to prevent disease, leading to improved health 
outcomes, but with risks from harms caused by both screening and the intervention. 
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Scientific issues 

 Challenges to implementation of PM for common, complex diseases in the clinical setting 

include a deficit of data on the analytic validity, clinical validity, and clinical utility of genetic tests for 

risk prediction of complex diseases. Genome-wide association studies (GWAS) have identified 

thousands of genetic variants associated with complex traits and common diseases but have not 

generally provided the data necessary to ascertain their benefit in a clinical setting. 

 

Analytic validity 

 Analytic validity refers to the ability of a genomic test to determine the presence or absence of a 

particular variant (Table 23) (National Cancer Institute at the National Institutes of Health 2012a). 

Accuracy and reliability are key measures of analytic validity. Accuracy refers to the ability of a test to 

measure a specific variant correctly; reliability refers to the ability of a test to yield the same answer 

when the test is repeated. Despite the importance of this information, little has been published in peer-

reviewed literature documenting the analytic validity of genetic tests (Sun et al. 2011). For example, a 

2007 review of the literature assessed genetic testing of cytochrome p450 polymorphisms in adults with 

depression to guide treatment decisions (Thakur et al. 2007).  This systematic review included 

MEDLINE and other databases, such as FDA documents, but found few of the studies compared their 

results to the “gold standard” of DNA sequencing or other methods such as polymerase chain reaction 

and restriction fragment length polymorphism or allele specific PCR (Thakur et al. 2007). Of the thirty-

seven studies which met their inclusion threshold, nine reports compared clinical genotyping of 

CYP2D6 SNPs to a reference standard, but only two studies compared to DNA sequencing (Thakur et 

al. 2007). This lack of data on the analytic validity of genetic tests has not since been adequately 

addressed.  
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Table 23. Glossary of selected terms. 

Analytic validity The ability of a laboratory test to accurately and reliably measure the 
property it is designed to measure(National Cancer Institute at the 
National Institutes of Health2012a). 

Clinical validity The accuracy with which a test predicts the presence or absence of a 
clinical condition or predisposition(National Cancer Institute at the 
National Institutes of Health2012c). 

Clinical utility The usefulness of the test and value of the information to clinical 
practice(National Cancer Institute at the National Institutes of 
Health2012b). 

Positive predictive value (PPV) The proportion of positive results of a given test that is truly 
positive(Gordis2009). 

Negative predictive value (NPV) The proportion of negative results of a given test that is truly 
negative(Gordis2009). 

Quality-adjusted life years (QALYs)  A measure of disease burden that takes into account quality of and 
length of time lived(Hyder and Morrow2006).  

Disability-adjusted life years (DALYs)  A measure of disease burden that is expressed by the length of time 
that is lost due to death or disability(Hyder and Morrow2006). 

Health-adjusted life expectancy (HALE)  A measure of life expectancy at birth given healthy and sick health 
states(Hyder and Morrow2006). 

Genotype The genetic constitution of an individual, collectively at all loci or at 
a single locus(Nussbaum, McInnes, and Willard2007). 

 

 The Evaluation of Genomic Applications in Practice and Prevention (EGAPP) working group 

was established in 2005 to extend the Analytic Validity, Clinical Validity, Clinical Utility, and Ethical, 

Legal, & Social Implications (ACCE) Project, a pilot study funded by the Centers for Disease Control 

and Prevention. The goal of EGAPP is to provide evidence-based evaluation of genomic data for use in 

clinical practice through a systematic review process, similar to the comprehensive evaluations 

completed by the US Preventative Services Task Force (USPSTF) for other clinical services (EGAPP 

Working Group 2014). The EGAPP evaluations methodically review the peer-reviewed literature and 

other sources (e.g., industry white pages, government documents) to identify the analytic and clinical 

validity of genetic tests and the clinical utility of these tests in a medical setting. The rigor of the 

literature and potential bias are also considered (Teutsch et al. 2009). A recent article outlining the 

challenges and successes of the Evaluation of Genomic Applications in Practice and Prevention 

(EGAPP) Working Group noted the dearth of publicly available data upon which to establish analytic 

validity (EGAPP Working Group 2014). With a lack of substantive data, the inherent trust in the 
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analytic validity of genetic tests can lead to erroneous interpretations in the clinical setting, and may 

lead to negative patient outcomes (Baggerly and Coombes 2011). 

Clinical validity 

 Clinical validity refers to the accuracy with which a test predicts the presence or absence of a 

clinical condition/disorder (Table 23). For genetic tests, it is the predictive value of the genetic variant 

for the disorder: what is the probability that someone with a particular variant has the disorder? 

Several scientific factors determine the clinical validity of genetic information in personalized medicine 

initiatives. Genome-wide association studies (GWAS) have built upon earlier genetic studies, including 

linkage analysis and family studies, and uncovered thousands of loci associated with hundreds of 

phenotypes. Recently, these GWAS findings have been applied to determine risk for hundreds of 

complex traits and disorders by direct-to-consumer genetic testing companies, such as 23&Me. 

However, these associations may not be the causal variants responsible for expression of the phenotype 

or disease, nor may they identify the biologic mechanism responsible for increased disease risk 

(EGAPP Working Group 2014). This complicates building an accurate and complete risk model for the 

disease using GWAS findings. Additionally, complex diseases result from the interplay of genetics and 

environment. The relative contributions each makes to the development of disease is specific for each 

disorder and have yet to be fully elucidated, affecting the clinical validity by varying the predictive 

ability of the genetic information (Table 23).  Genetic heterogeneity, where multiple variants may cause 

a disorder, and incomplete penetrance, where there is variation in the expressivity of the disease, 

further undermine the predictive abilities of genetic tests. Furthermore, intervention in the context of 

personalized medicine takes place at the individual level, while most genotype-phenotype associations 

arise from population studies. This changes the role of genetics from deterministic to probablistic, 

leading to a measure of uncertainty in the relationship between the genetic information and disease 

risk. 

 Positive predictive values (PPV), the area under the receiver-operating characteristic curve 

(AUC), and clinical validity (Table 23) are important, and to-date, mostly missing pieces of data, 

essential to demonstrate the utility of genetic information in implementation of personalized medicine 

in the clinical setting. The PPV and other metrics such as the sensitivity, specificity, and negative 

predictive value (NPV) can be calculated using a 2x2 table (Table 24). For example, the sensitivity of a 

test is measured by the ratio of true positives and all those who are disease positive (a/a+c); the 
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specificity is the ratio of true negatives and all those who test negative (d/b+d) (Table 24). The PPV is 

the ratio of individuals with the genetic variant who have the disorder and the total number of 

individuals who test positive (including those without the disease) (a/a+b). Consider two scenarios: in 

the first, the disorder is rare with a 0.5% population prevalence (Appendix T); and in the second, the 

disorder is more common, with a population prevalence of 8.3%, similar to the prevalence in the 

general public of type 2 diabetes (T2D)(Centers for Disease Control and Prevention 2012) (Appendix 

U).  If we assume the tests we perform have high sensitivity and specificity (99% each), the PPV of the 

test will depend on the population prevalence of the disorder. In the first example, the low population 

prevalence results in a PPV = 0.33, while the increased prevalence in the second example results in a 

higher PPV = 0.92.  This strategy for calculating the PPV of a test for a particular disorder works well 

when the test provides a dichotomous outcome. For some disorders, such as Huntington’s disease, a 

genetic test can yield a true positive or negative outcome and calculating the PPV of a test for the 

disorder can be done using a 2x2 table. A PCR-based assay for Huntington’s disease has a PPV of close 

to 1.00 for CAG repeats ≥40 (Saft, Leavitt, and Epplen 2014).   

 

Table 24. Calculating specificity, sensitivity, positive and negative predictive values for genetic tests 
using a 2x2 table. 

Variant Disease (+) (-) Total 

 (+) True Positives 

(a) 

False 
Positives (b) 

a+b 

(-) False 
Negatives (c) 

True 
Negatives (d) 

c+d 

Total a+c b+d a+b+c+d 

PPV=a/(a+b)   NPV=d/(c+d) 

Abbreviations: positive predictive value (PPV), negative 
predictive value (NPV). 

 

 

 For complex diseases, such as T2D or cardiovascular disease (CVD), as lifetime risk and/or 

population prevalence increases, the upper limit on the predictive capacity of genetic data may 
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decrease (Dreyfuss et al. 2012). This is unsurprising considering the other factors that come into play 

with common, complex diseases: the relative contribution of the environment to the disorder, genetic 

heterogeneity, incomplete penetrance, complex inheritance patterns, gene-environment interactions, 

and variable expressivity. Therefore, calculating the PPV of a genetic test for a common, complex 

disorder using the traditional 2x2 tables may not be the most appropriate method (Janssens et al.2006). 

The area under the receiver operator characteristic (ROC) curve (AUC) yields the accuracy of a 

continuous test to discriminate those who will develop the disease from those who will not and may be 

used for genetic tests as a measure of clinical validity (Wray et al. 2010).  The measure of a test that 

perfectly discriminates between those who will develop disease and those who will not will have an 

AUC = 1.00, while a test that performs no better than random chance will have an AUC = 0.50 (Figure 

9) (Wray et al. 2010). Calculating the maximum AUC to determine the clinical validity of a given 

genetic test for a common, complex disorder requires the genomic architecture of a disease be 

understood and the genetic variance completely explained by the variants tested. Complex genomic 

architecture that is unaccounted for will decrease the AUC (Wray et al. 2010).  For any two disorders 

with the same population prevalence, the AUC will be higher (and the genetic test more predictive of 

disease status) for the disease with the greater genetic contribution relative to the environmental 

component (Wray et al. 2010). Similarly, for any two disorders with the same heritability measurement, 

the AUC will be higher for the disease with the lower population prevalence (Wray et al. 2010).  Thus 

far, the variance explained by genetic associations identified through GWAS is small for common 

diseases with complex genetic architecture and often undetermined environmental component. 

Therefore, the effective AUC is likely to be much lower than the maximum AUC for any genetic test for 

common, complex disorders.  

 This suggests a potential trade-off in the benefit of genetic testing for complex disease in a 

clinical setting. Screening all patients who come to a clinic or medical center for a complex disease with 

moderate-to-high prevalence and complex genetic and environmental architecture will reduce the 

predictive value of an individual genetic test. In the context of PM used to predict disease risk, 

institution-wide screening would result in many false positives and the value of the genetic 

information would differ based on the prevalence of the disease considered. Evaluating only patients 

who have already been identified as ‘at risk’ is not ideal, either. This method would lead to decreased 

negative predictive value (NPV, Table 23) as initial risk scores fail to capture 100% of the at-risk 

population. Additionally, this method would reduce some of the potential benefit ascribed to PM: 
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namely, that PM could allow you to identify at-risk individuals prior to the development of risk 

factors/symptoms. 

Clinical utility: interventions and patient behavior 

 The clinical utility of a test broadly refers to the ability of the test (screening or diagnostic) to 

inform clinical decision making, generally in comparison to the current test or case management 

(Grosse and Khoury 2006; Bossuyt et al. 2012).  For genetic tests used as a screening mechanism to 

identify at-risk individuals for common diseases, there must be recognized interventions available to 

ameliorate disease risk. These interventions may be clinical in nature, such as more frequent lab tests, 

or behavioral, such as smoking cessation. When the genetic test is used as a diagnostic tool, such as in 

cancer treatments or pharmacogenomics, the intervention is the alternate treatment. For both screening 

and diagnostic genetic tests, comparing the outcome from the standard treatment absent the genetic 

Figure 9. Receiver-operator characteristic curve of hypothetical genetic tests for complex 
diseases. 

Area under the receiver-operator characteristic (ROC) curve (AUC) to determine accuracy of genetic tests. Blue 
line (bottom) represents an uninformative genetic test with AUC=0.50. Red line (top) represents an informative 
genetic test with AUC=0.869. 
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information to the course with the information is essential. A lack of clearly stated, measurable health 

outcomes makes determining the utility of personalized medicine challenging (Botkin et al. 2010). 

Borrowing from epidemiology and public health research, health-adjusted life expectancy (HALE), 

quality-adjusted life years (QALYs) and disability-adjusted life years (DALYs) (Table 23) may be of use 

to researchers addressing personalized medicine outcomes in large populations. Additional 

quantitative outcomes may include: cost-effectiveness analyses, time to diagnosis of disease from onset 

of symptoms, number of tests needed to diagnose disease, clinical measurements (e.g., lab values, 

BMI), symptom severity, and dose of medication required to maintain appropriate lab values. 

Qualitative data may also contribute meaningfully to health outcomes research in personalized 

medicine. These may include psychosocial measures such as lifestyle changes and patient/clinician 

perspectives. These valuable measurements will provide the foundation for clinical utility research in 

PM; though thousands of genetic variants have been associated with hundreds of clinical traits and 

diseases, few of them have been evaluated in this context. Electronic health records may facilitate this 

research by aiding risk model algorithm development, prescription information, and the ability to 

follow patients over the course of many years. Determining the clinical utility of genetic variants for 

complex diseases could be accomplished through EGAPP, evidence-based practice centers, or 

translational scientists. The EGAPP working group has repeatedly determined there is insufficient 

evidence to recommend genetic testing to improve health outcomes for several diseases; however, they 

have completed fewer than a dozen studies thus far, and it may be premature to draw broad 

conclusions from their work (EGAPP Working Group 2014). 

  Cost-utility analysis (CUA) is one type of cost-effectiveness study that integrates economic 

costs with health outcomes using QALYs (Phillips et al. 2014). A recent analysis of fifty-nine published 

CUAs for PM tests found gene expression profile tests for breast cancer to be the most common 

(Phillips et al. 2014). The majority of tests evaluated by Phillips et al. provided improved health 

outcomes; however, this was countered by increased costs (Phillips et al. 2014). Less than 25% of the 

CUAs evaluated demonstrated cost-savings and 8% had increased costs while failing to demonstrate 

improvements in outcomes (Phillips et al. 2014). An additional challenge to accurately assessing the 

costs associated with PM programs is that many economic evidence studies rely on statistical modeling 

with hypothetical cohorts (Lieberthal 2013). A recent review by Lieberthal found most literature on the 

economics of genomic testing for women with breast cancer relied on modeling with hypothetical 

cohorts for their analyses (Lieberthal 2013). Cost-effectiveness studies in pharmacogenomics also use 
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hypothetical cohorts and statistical modeling (Pink et al. 2014; Paulden et al. 2013; You et al. 2012).  

Utilizing clinical trials data to generate the cost-effectiveness data needed of genetic tests would 

provide an accurate representation of the costs in real-world scenarios; however, the overall dearth of 

comparative effectiveness research or clinical utility data for genetic tests performed for risk prediction 

of common, complex diseases is likely to remain a major barrier to necessary cost-effectiveness studies 

for PM (Lieberthal 2013; Garber and Tunis 2009). 

 Despite the lack of data demonstrating clinical utility for inclusion of genetic information in 

clinical care, several studies have evaluated research participants’ lifestyle changes and opinions about 

the personal utility of genetic information for complex disease risk. Little behavioral change has been 

observed in a survey of young adults given hypothetical risk scenarios for CVD, T2D, and stroke 

(Vassy et al. 2013). High-risk genetic results were associated with increased likelihood that individuals 

would alter their diet and exercise behavior; however, this response was mitigated by poor nutrition 

and physical activity at baseline (Vassy et al. 2013).  Several studies have examined the impact of 

genetic information of on smoking cessation (Lerman et al. 1997; Audrain et al. 1997; McBride et al. 

2002; Ito et al. 2006; Carpenter et al. 2007). Lerman et al. found initial differences in perceived risk of 

lung cancer and benefits to smoking cessation in smoking participants given risk information about 

genetic susceptibility to lung cancer compared to participants not given genetic risk information; 

however, these differences were no longer observed at the two-month follow-up (Lerman et al. 1997). 

Long-term follow-up in this cohort failed to identify significant differences in actual smoking cessation 

between the groups, though subjects who had been given their genetic susceptibility were more likely 

to have attempted quitting (Audrain et al. 1997). More recent studies continue to support a lack of 

significant changes in long-term smoking behavior attributable to the participant’s knowledge of 

genetic susceptibility to smoking-associated disease (McBride et al. 2002; Carpenter et al. 2007; Ito et al. 

2006). 

 A 2011 study by Roberts et al. examined the perceived clinical utility of APOE testing for risk of 

Alzheimer’s disease among the Risk Evaluation and Education for Alzheimer’s disease (REVEAL) 

Study participants (Roberts, Christensen, and Green 2011). Roberts et al. chose Alzheimer’s disease as a 

model for other common, complex disorders, because of similarities in the low predictive value of 

genetic risk factors identified via GWAS, increased population prevalence of risk alleles compared to 

rare Mendelian variants, and the availability (at that time) of direct-to-consumer genetic testing which 

provided a risk assessment for the disorder (Roberts, Christensen, and Green 2011). The authors 
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identified several purposes driving study participation, including the opportunity to consider long 

term care insurance, the impact on personal affairs, and the ability to prepare oneself and family 

emotionally for disease development (Roberts, Christensen, and Green 2011). Despite the lack of 

medical interventions to reduce Alzheimer’s disease risk, participants believed the genetic information 

to be valuable (Roberts, Christensen, and Green 2011).  

 Colorectal cancer is a complex disease with both genetic and environmental risk factors, such as 

lack of physical activity, low vegetable and fruit intake, obese and overweight BMI, and alcohol or 

tobacco use(Centers for Disease Control and Prevention 2014). Graves et al. evaluated response to 

genetic SNP testing for CRC risk in male and female primary care patients (Graves et al. 2013).  

Participants received genetic counseling pre- and post-test; post-test materials included lifetime risk 

assessments based on their genetic test results, family history, and other risk factors.  Subjects were 

assessed for their emotional distress, comprehension of lifetime risk estimates, lifestyle changes, 

disclosure of results to family, and contact with physicians or colorectal cancer screenings (Graves et al. 

2013).  This study found no distress among participants after learning of their genetic test results and 

limited (28% of study participants) disclosure of the results to physicians (Graves et al. 2013).  

Participants reported increased physical activity and healthy eating post-test (Graves et al. 2013), 

though self-report of exercise, diet, and traits like BMI may be subject to bias (Wen and Kowaleski-

Jones 2012; Warren et al. 2010).  

 Others have observed an increase in risk-reducing behaviors following DNA based risk 

information (Watson et al. 2004; Johnson et al. 2002; Botkin et al. 2003; Schwartz et al. 2002). REVEAL 

study participants with APOE ε4 alleles who are at increased risk for developing Alzheimer’s disease 

were more likely to have indicated lifestyle changes specific to Alzheimer’s disease prevention (e.g., 

diet, exercise) than those without the ε4 alleles (Chao et al. 2008; Vernarelli et al. 2010).  These data and 

others (Bloss et al. 2013; Bunnik, Janssens, and Schermer 2014)  suggest individuals may obtain 

personal utility from learning of their genetic risk for complex disease. Bunnick et al. described the 

personal utility of genetic testing to include reproductive and lifestyle planning and psychological 

benefit of “knowing” genetic risk (Bunnik, Schermer, and Janssens 2011).  A follow up study in the 

Scripps Genomic Health Initiative group found that participants generally felt no long term distress 

related to their genetic testing and believed the test to be of high personal utility, though there was little 

change for those at risk in fat intake or exercise compared to pre-test levels (Bloss et al. 2013).  

 A 2006 paper that modifies Leventhal’s common-sense model (CSM) of self-regulation of health 
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and illness (Leventhal et al. 1997) may provide a basis for the lack of consistent, observable risk-

reducing behaviors when individuals are given genetic risk information (Marteau and Weinman 2006). 

This self-regulation theory suggests individuals cope with information about health threats based on 

their pre-existing beliefs and how the new information fits within their belief structure. Extending this 

framework to a personalized medicine context, patients may decide to act in a clinically meaningful 

way when provided genetic risk information based on their perception of the health risk, their 

perception of the likely effectiveness of the suggested behavior change, and their confidence in their 

ability to perform the behavior (De Wit and Stroebe 2004). The physician and patient perception of the 

health threat may differ, particularly when the connection between the risk-reducing behavior and the 

health threat are abstract (Marteau and Weinman 2006). If patients perceive death from cancer to be a 

greater and more significant threat than death from cardiovascular disease, they may be more willing 

to modify their behavior to reduce the perceived threat of cancer. This may partly explain the 

discrepancy among study outcomes. 

 With complex diseases, the lack of consistent, observable risk-reducing behaviors following 

genetic testing may also stem from a general inability to integrate multiple pieces of information 

(French et al. 2002; French et al. 2000). Patients may be less likely to believe that a DNA test can 

accurately predict disease risk for common diseases with genetic and environmental contributions 

and/or complex genetic architecture (e.g., genetic heterogeneity, variable expressivity) (Michie et al. 

2003; Michie et al. 2002). The weight a patient assigns to the genetic and environmental contribution to 

disease risk may also play a role in whether or not the patient engages in risk reducing behavior after 

learning of their genetic risk.  If a patient perceives that the genetic component to disease risk 

outweighs the environmental or modifiable contribution, they may be less likely to engage in risk-

reducing behaviors; the CSM suggests this is due to an imbalance between perceived cause of health 

threat and the related coping procedure (Marteau and Weinman 2006).  

 For some individuals, belief that both genetics and the environment contributed to the 

development of familial adenomatous polyposis (FAP) made them less likely to believe a genetic test 

could accurately predict their risk of FAP (Michie et al. 2002). Comparing individuals who expected to 

undergo colonoscopy screening for FAP with those who did not plan to, genetic tests were less likely to 

be perceived as extremely accurate in those who planned to have bowel screenings and those 

individuals were more likely to attribute the cause of FAP to behavioral factors (Michie et al. 2002). 

Though both environmental and genetic factors contribute to psychiatric disorders, the stigma 
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associated with mental illness often prevents affected individuals from seeking professional treatment 

(Corrigan 2004). The Genes, Disease, and Stigma (GDS) Study and the MacArthur Mental Health 

Module of the 1996 General Social Survey were analyzed to identify potential associations between 

participants’ beliefs about the role of genetics in mental illness etiology and the perceived effectiveness 

of treatment  for depression and schizophrenia (Phelan, Yang, and Cruz-Rojas 2006). Individuals 

attributing genetic factors to the cause of the illness were more likely to recommend prescription 

medication or psychiatric hospitalization for treatment than those who did not believe the illness was 

caused by genetic factors (Phelan, Yang, and Cruz-Rojas 2006). Perceived effectiveness in treatment did 

not differ between depression and schizophrenia; however, in the GDS study, attributing genetic 

factors to the disorder significantly reduced belief in the effectiveness of the treatment (Phelan, Yang, 

and Cruz-Rojas 2006).  

 In families with familial hypercholesterolemia, individuals with genetic mutations who 

received routine clinical diagnosis and genetic testing trended toward stronger belief in the efficacy of 

cholesterol lowering medication and decreased belief that diet could reduce cholesterol levels (Marteau 

et al. 2004). However, a recent study evaluating participant trust in genetic risk assessment for T2D 

reported high levels of trust in the information (Mills, Barry, and Haga 2014). Mills et al. used surveys 

to assess participant understanding of genetic tests for risk prediction of T2D and attitudes about risk, 

test results, and method of result delivery (online through testing company website or in person via 

genetic counselor) (Mills, Barry, and Haga 2014).  The majority of participants perceived the benefit of 

genetic testing for T2D risk to be learning about healthy behaviors that could reduce risk for 

developing T2D to be very or somewhat important (98.8%) (Mills, Barry, and Haga 2014).  Accurate 

portrayal of the clinical validity and utility of genetic tests will likely improve patient perceptions in the 

context of assigning disease risk based on genotypes; patient attitudes toward the efficacy of lifestyle-

based interventions to minimize disease risk may be more challenging to change. To obtain improved 

health outcomes with PM for common, complex diseases, it will be necessary to use a multifaceted 

approach that broadens patients’ understanding of complex disease composition, provides concrete 

examples of disease risk, offers interventions that are acceptable to patients, and educates patients so 

their perceptions of disease risk and the benefit of risk-reducing behaviors more closely align to 

physician perspectives.   

Added value of genomic information with existing risk models 

 For complex diseases like CVD or T2D, physicians can use established risk models based on a 
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combination of variables (e.g., family history, anthropomorphic traits such as body mass index, and lab 

values) to predict the likelihood of developing the disorder in a future time period. For PM to be 

widely implemented, clinicians need to demonstrate that adding genomic information to a risk model 

improves the model’s ability to distinguish those who will remain unaffected from those who will 

become affected, or provides incentive to those who are genetically at risk of developing the disease to 

make behavioral changes to minimize risk. T2D has an estimated prevalence of 9.3% and is responsible 

for an estimated $174 billion in direct and indirect costs in the United States (Sheehy, Coursin, and 

Gabbay 2009). Risk prediction for T2D is not generally a part of routine clinical practice; however, 

lifestyle interventions have been shown to reduce the development of T2D in high risk individuals 

(Knowler et al. 2002; Teufel and Ritenbaugh 1998) and the development of complications (Sheehy, 

Coursin, and Gabbay 2009), supporting the utility of identifying at-risk individuals prior to the 

development of disease. For healthy individuals, the Cambridge and Framingham risk score 

algorithms predict risk of developing T2D based on routinely collected clinical data and information, 

such as parental history of T2D, sex, and body mass index (BMI) (Rahman et al. 2008; Wilson et al. 

2007). In a study by Talmud et al., using the prospective Whitehall II cohort, adding the known genetic 

associations with T2D to the Framingham and Cambridge risk scores did not significantly improve the 

predictive ability of those models (Talmud et al. 2010). Notably, the predictive ability of the genetic 

information alone yielded an AUC of 0.54, far below that of the Framingham risk model (AUC=0.78) or 

Cambridge risk model (AUC=0.72) (Talmud et al. 2010). These data suggest including genetic data in 

clinical practice for T2D yields limited benefit for the prediction of disease development (Clayton 2009).    

 Cardiovascular disease is another complex disease with significant morbidity, mortality, and 

associated economic costs.  The Framingham Risk Score (FRS) is a well-known model that includes 

variables such as age, sex, BMI, smoking status, and cholesterol levels to predict the 10 year risk of 

developing cardiovascular disease (D'Agostino, Sr. et al. 2008). Similar to the findings in the Talmud et 

al. paper for T2D, adding genetic variants to the FRS model has not consistently improved 

discrimination in several studies (Brautbar et al. 2012; Hughes et al. 2012; Talmud et al. 2008). These 

studies indicate that using genetic variants, which have previously been associated with disease in 

GWAS, to predict complex disease risk, does not generally prove as predictive as established risk 

scores based on easily obtainable clinical data. Furthermore, including the genetic component to these 

risk scores does not significantly improve the predictive ability of the risk score (Mihaescu et al. 2011; 

Wray et al. 2013). Though the added benefit of genetics in a risk model will likely differ substantially 
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across complex diseases, it is clear that for some, there is little evidence to suggest that this information 

is currently clinically useful.   

 A new study being performed in adult US Air Force primary care patients seeks to determine if 

health coaching with dissemination of genetic information leads to improved health outcomes for T2D 

and coronary heart disease (Vorderstrasse et al. 2013).  This study employs the modified CSM (Marteau 

and Weinman 2006) and considers patient response to genetic information using a variety of clinical 

measures (e.g., BMI, lipid profile) and surveys (Vorderstrasse et al. 2013).  Additional studies similar to 

Vorderstrasse et al., leveraging study techniques employed by social scientists and behavioral 

psychologists in addition to clinical measurements, would improve the ability of genetic researchers to 

calculate the added value of genetic information in current disease management. 

 

Evidence review for inclusion of genetic data in clinical care for hypothyroidism 

 A recent review by the EGAPP working group noted the challenge in implementing thorough 

reviews with limited resources and time, and the scant evidence for analytic validity, clinical validity, 

and clinical utility (EGAPP Working Group 2014). To address the lack of clinical validity and utility 

data, we investigated if a rapid evidence review could be performed in an academic setting to identify 

analytic evidence that inclusion of genetic data associated with common, complex diseases in clinical 

care improved health outcomes. Our goal was to establish a first-pass method to evaluate the evidence 

base for including genetic data in the clinical setting, which could be used to identify gaps in 

knowledge or to justify more comprehensive evidence reviews (Ganann, Ciliska, and Thomas 2010; 

Watt et al. 2008).  

 Until recently, consumers could bypass medical professionals and obtain their genetic data for 

carrier status and disease risk through direct-to-consumer (DTC) genetic testing providers, e.g., 23&Me. 

These DTC companies provided consumers’ estimated risks of developing more than one hundred 

disorders (e.g., T2D, CVD, hypothyroidism) and traits (e.g., male pattern baldness, response to the drug 

clopidogrel) (23&Me 2014a) with a goal of empowering their customers to use genetic data to improve 

their lives (23&Me 2014b). However, few variants identified through genome-wide association studies 

(GWAS) have been demonstrated to be actionable clinically as part of a screening mechanism. 

Candidate gene studies similarly lack accepted, clinically actionable results, though there are 

exceptions: pre-symptomatic risk assessment using genetic/genomic testing performed for breast 

cancer (BRCA1/2) (Robson and Offit 2007), screening for Lynch syndrome hereditary colon cancer in 
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family members of those recently diagnosed with the disease (MLH1, MSH2, MSH6, PMS2) (2009), and 

long QT interval (KCNQ1, KCNH2, SCN5A) (Napolitano et al. 2005). Well-documented obstacles to 

expanded implementation of PM are the unknown risks and benefits in the clinical setting, lack of 

clinical validity and utility data (Teutsch et al. 2009; Palomaki et al. 2009b; Palomaki et al. 2009a; 

Palomaki et al. 2010; Palomaki et al. 2013),  and the challenge of incorporating multiple causes (genetic, 

environmental, behavioral) in a risk prediction model (Wray et al. 2013). 

 For this study, we selected a common, complex disease, hypothyroidism and related 

quantitative trait, serum thyroid stimulating hormone (TSH) levels, both with numerous genetic 

associations identified through GWAS (see Chapter I). Diagnosis of hypothyroidism involves 

measuring TSH levels in the blood; elevated TSH levels may indicate hypothyroidism. TSH levels vary 

across individuals, with higher mean TSH levels observed in non-Hispanic whites than in Mexican 

Americans or non-Hispanic blacks (Hollowell et al. 2002); however, within an individual, TSH levels 

are tightly regulated (Hollowell et al. 2002; Arnaud-Lopez et al. 2008; Chiamolera and Wondisford 

2009). Environmental and genetic factors influence TSH levels and risk for hypothyroidism. Increased 

body mass index (BMI), smoking, pregnancy, and physical and emotional stress are all risk factors for 

elevated TSH levels (Brix et al. 2000; Jorde and Sundsfjord 2006; Nyrnes, Jorde, and Sundsfjord 2006). 

Several genes have been implicated in hypothyroidism (FOXE1, PTPN22, VAV3, and the HLA region) 

(Eriksson et al. 2012; Denny et al. 2011) and serum TSH levels (PDE8B, CAPZB, NR3C2) (Panicker et al. 

2010; Rawal et al. 2012; Porcu et al. 2013; Malinowski et al. 2014(in press)). Symptoms for 

hypothyroidism are generally nonspecific and include fatigue, sensitivity to cold, unexplained weight 

gain, and depression (Dubbs and Spangler 2014). Left untreated, hypothyroidism may lead to goiters 

which can affect appearance and breathing/swallowing, heart problems, depression, peripheral 

neuropathy, infertility, and myxedema (Dubbs and Spangler 2014). Untreated hypothyroidism during 

pregnancy may lead to adverse maternal and fetal outcomes, including recurrent miscarriage and birth 

defects, and though screening high-risk pregnant women is advocated, universal screening is 

controversial (Nathan and Sullivan 2014; Dosiou et al. 2012). 

 

Methods 

 We began our review by identifying a clinical scenario to guide the process. The clinical 

scenario focuses on women of childbearing age (18-55) in the general (not high-risk) population being 

offered a genetic test to assess their risk for developing hypothyroidism. These women would be 
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asymptomatic, or be unrecognized as having symptoms, of hypothyroidism and therefore, be unlikely 

to have their TSH levels checked during a routine clinic visit. The proposed clinical utility for testing is 

to improve health outcomes in women of childbearing age by identifying those who are at risk for 

developing the disease.  Identification of at-risk individuals based on genetic information could lead to 

1) regular TSH level testing, potentially minimizing the lag time between development of symptoms 

and a diagnosis of hypothyroidism and treatment; 2) knowledge of health behaviors, such as smoking, 

some medication use, and maintaining a healthy BMI, that can be changed to reduce the risk of 

developing hypothyroidism; 3) reduction of miscarriages and/or birth defects caused by 

undiagnosed/untreated hypothyroidism prior to conception and during the prenatal period. This 

review addressed the overarching question: “Does the genotyping of variants previously associated 

with hypothyroidism in adult, asymptomatic women of reproductive age (18-55), lead to improved 

health outcomes?” 

 The ACCE framework used by the CDC EGAPP (Teutsch et al. 2009) working group was used 

as a reference to perform this rapid review. The disease hypothyroidism was selected as an example of 

a common, complex disease with numerous genetic associations identified through genome-wide 

association studies (GWAS) that might be a candidate for personalized medicine initiatives in a clinical 

setting. The variants selected for this were those used by a direct to consumer genetic testing company 

to provide their customers risk of developing hypothyroidism (Table 25). The general stages of a 

systematic evidence review were followed. In collaboration with an information scientist in knowledge 

management at the Vanderbilt University Medical Center (VUMC) Eskind Biomedical Library (EBL), 

an overarching research question was developed based on similar questions from previous evidence 

reviews, generally following the PICOTS (population, intervention, comparator, outcome, timing, 

setting) method. Key questions were formulated to identify the analytic validity, clinical validity, and 

clinical utility of genetic tests for those variants. Additional questions were created to identify evidence 

of improved health outcomes tied to the genetic tests and relevant ethical, legal, or social issues (ELSI) 

associated with genetic testing for hypothyroidism. A comprehensive PubMed search for citations was 

developed incorporating Medical Subject Heading (MeSH) terminology and search results exported for 

abstract and full text reviews. Citations were included in this rapid review if they were included in the 

PubMed search results as of August 2013 and were written available in English. 
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Table 25. Variants selected for inclusion in rapid evidence review. 

Variant Gene GWAS Study OR P-value 
rs7850258 FOXE1 Denny,J.C., 2011 0.74(A) 3.96x10-9 
rs2476601 PTPN22 Eriksson,N., 2012 1.36(A) 3.9x10-13 
rs3184504 SH2B3 Eriksson,N., 2012 0.84(C) 2.6x10-12 
rs4915077 VAV3 Eriksson,N., 2012 1.30(C) 7.5x10-10 
rs2517532 HLA region Eriksson,N., 2012 0.86(A) 1.3x10-8 
Shown are single nucleotide polymorphisms selected for inclusion in a rapid 
evidence review of genetic data for hypothyroidism in a personalized medicine 
program in a clinical, but asymptomatic and low-risk, population. Variants were 
previously used by 23&Me to report risk for developing hypothyroidism to their 
clients. Listed are the SNP rs number, nearest gene to the SNP, GWAS study first 
author and year of publication, odds ratio (OR) and allele, and p-value.  

 

 Study data were collected and managed using REDCap electronic data capture tools hosted at 

Vanderbilt University Medical Center (Harris et al. 2009). REDCap (Research Electronic Data Capture) 

is a “secure, web-based application designed to support data capture for research studies, providing 1) 

an intuitive interface for validated data entry; 2) audit trails for tracking data manipulation and export 

procedures; 3) automated export procedures for seamless data downloads to common statistical 

packages; and 4) procedures for importing data from external sources” (Harris et al. 2009). An abstract 

review was performed independently by two reviewers. After the first 50 search results were reviewed, 

concordance was evaluated between reviewers to identify key questions that could be misinterpreted 

and discrepancies were resolved by discussion. Concordance was again evaluated at the halfway point 

of the abstract review. Citations without abstracts or instances where the reviewers selected “cannot 

determine” answers for any of the key questions were automatically passed through to the full text 

review.  A full text review was performed on the citations for which full text articles were available to 

the two reviewers either in print, or electronically. Concordance was evaluated after the first 50 articles 

had been reviewed to assure interpretation of the questions was consistent. A third reviewer was 

available for the full text review for discordant reviews. Branching logic was used in REDCap for full 

text review questions; the first non-affirmative answer for a question provided by the reviewer 

prompted questions pertaining to the next key question. The survey was ended when no further 

affirmative answers were provided by the reviewer (Figure 10). Data from the full text review was 

exported from REDCap (Harris et al. 2009) to Stata (Boston and Sumner 2003). 

 Studies were excluded from final analysis on the basis of several factors: inclusion of pediatric 

samples in the study without stratification or statistically adjusting for age, inclusion of male samples 
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in the study without stratification or statistical adjustment for age, failure to include race/ethnicity 

information about the sample, small sample size (n<10), or inclusion of thyroid cancer samples in the 

study without stratification. Additional exclusion criteria included failure to provide effect sizes/odds 

ratios, positive predictive values (PPV) or area under the receiver-operator characteristics curve (AUC) 

for the genetic variant. Studies that did not address the key questions in any way were also removed 

from analysis. 

Results 

 This rapid review was started in August 2013 and completed in March 2014. Specific variants 

were selected for evaluation as they had been used previously by a direct to consumer genetic testing 

company to report risk of developing hypothyroidism (23&Me 2014a). A total of 631 citations were 

obtained from the search query and their abstracts were reviewed using a REDCap database 

specifically set up for this project; 346 articles were moved forward to full text review (54.9%). No 

articles were accepted after full text review for further analysis (Table 26). Twenty-five articles were 

unavailable through open-access publications, EBL electronic subscription, or in-print at EBL (7.2%) 

(Table 26).  One article was eliminated due to inclusion of samples with thyroid cancer and three were 

removed due to low sample size (n<10) (Table 26). The majority of articles were excluded due to the 

study’s focus not providing information corresponding to one of our key questions (65.0%) (Table 26). 

Fourteen of the articles fully reviewed provided odds ratios but not positive predictive values or AUC 

for the genetic variant (4.0%) (Table 27). No articles addressed the ethical, legal, or social issues (ELSI) 

of genetic testing for hypothyroidism risk in asymptomatic women of childbearing age (18-55). We 

found no evidence that genetic testing of five SNPs improved health outcomes for this clinical 

population.
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Figure 10. Flowchart for rapid evidence review. 
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Table 26. Number of studies excluded in full text review. 

Reason for removal Count (n) 
Full text unavailable 25 
Study included pediatric samples (age ≤17), age not adjusted for or pediatric results reported 
separately 

22 

Study included males, sex not adjusted for or male results reported separately 47 
Study excluded due to small sample size (n<10) 3 
Study excluded due to race/ethnicity not adjusted for or results stratified by race/ethnicity 5 
Study excluded because sample included individuals with thyroid cancer, results not stratified 
by cancer status 

1 

Study excluded because no effect sizes/odds ratios given 3 
Study excluded because no positive predictive values/AUC given 15 
Study excluded because study did not address any of the key questions of the rapid evidence 
review 

225 

 

 

Table 27. List of studies providing ORs/effect sizes for genetic variants associated with 
hypothyroidism/TSH levels. 

First author, year of 
publication 

Type of study Study outcome Variants reported p-value 

Petrone, A.; 2001 candidate gene Hashimoto’s 
thyroiditis 

HLA region <0.05 

Terauchi, M.; 2003 candidate gene Hashimoto’s 
thyroiditis 

HLA region <0.01 

Brix, T.H.; 2005 candidate  Hashimoto’s 
thyroiditis 

X-inactivation n.s. 

Hansen, P.S.; 2007 candidate gene TSH levels TSHR 0.007 
Panicker, V.; 2008 linkage scan TSH levels 2q36, 4q32, 9q34 LOD 2.1-3.2 
Arnaud-Lopez, L.; 
2008 

GWAS TSH levels PDE8B 1.3x10-11 

Panicker, V.; 2008 candidate gene TSH levels DIO1 n.s. 
Panicker, V.; 2010 GWAS TSH levels CAPZB 3.2x10-8 
Volpato, C.B.; 2011 linkage, association TSH levels PDE10A LOD 2.66 
Denny, J.C.; 2011 GWAS,meta-analysis hypothyroidism FOXE1 3.96x10-9 
Eriksson, N.; 2012 GWAS hypothyroidism FOXE1, PTPN22, 

SH2B3, VAV3, HLA 
region 

2.4x10-19, 2.8x10-13, 
2.6x10-12, 7.5x10-10, 
1.3x10-8  

Rawal, R., 2012  meta-analysis TSH levels PDE8B, CAPZB, 
NR3C2, LOC440389 

2.79x10-27, 1.54x10-

8, 2.88x10-10, 
5.63x10-10 

Piacentini, S., 2013 candidate gene hypothyroidism GSTO2 0.009 
Porcu, E., 2013 meta-analysis TSH levels * * 
Data shown are the studies that provided odds ratios (ORs) or effect sizes and level of significance for an association 
between the variants reported and either hypothyroidism or serum thyroid stimulating hormone (TSH) levels. *Porcu 
et al. reported 26 independent associations with TSH. The associations and corresponding p-values can be found in 
Porcu E. et al., PLoS Genet 2013; 9(2):e1003266 doi: 10.1371/journal/pgen.1003266 Abbreviations: n.s.: not significant; 
TSH: thyroid stimulating hormone 
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Summary for rapid evidence review 

 This rapid review sought to identify analytic evidence that the inclusion of genetics in routine 

clinical care for common, complex disorders improves health outcomes. We generally followed the 

ACCE/EGAPP method for an evidence review with several key differences. Only one database was 

searched (Medline through PubMed) for pertinent articles and the breadth of the search was limited to 

articles with the clinically relevant patient population to allow for faster applicability in the medical 

setting. Two reviewers performed the abstract and full text reviews, though an additional reviewer was 

available as necessary. This review was completed in seven months over two academic semesters, with 

both reviewers working part-time on this project. Potential bias and the quality of evidence of the 

studies were not graded. Several potential analytic frameworks were considered for this rapid review: 

ACCE, Fryback-Thornbury, USPSTF framework for Screening, and the EGAPP framework. A 

combined ACCE/EGAPP structure was deemed the most appropriate framework to use with genetic 

studies and has been used successfully for several EGAPP projects, uses an analytic framework to 

visually address how the genetic test could lead to health outcomes, and incorporates key components 

of both the USPSTF and Fryback-Thornbury models. Consistent recommendations for laboratories to 

publish analytic validation studies of their genetic tests in peer-review journals have been ignored and 

most genetic studies do not provide the analytic evidence (analytic validity, clinical validity, clinical 

utility) that is needed to evaluate PM policies using current frameworks as described above. If these 

important data continue to be lacking, it may be necessary to consider alternate methods to evaluate 

PM initiatives. 

 Several studies have addressed the lack of appropriate data upon which to base 

recommendations for or against genetic testing for various health conditions. We found that the 

analytic evidence supporting genetic testing in asymptomatic women of childbearing age for 

hypothyroidism risk to be inadequate. Few of the articles that were full text reviewed addressed our 

key questions. Though our key questions were very specific and failed to identify studies that met the 

criteria for inclusion, broadening the queries would have undesired consequences due to identification 

of superfluous studies. Generalizing the population of interest would fail to meet the updated Wilson 

and Jungner screening criteria proposed by Andermann et al. for a targeted screening population (see 

Chapter I, Table 1). The five genetic variants of interest were selected based on their use by a DTC 

genetic testing company to provide risk of developing hypothyroidism to their clients (23&Me 2014a). 

We considered variants published in other studies as well, based on knowledge of other genetic 
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associations with hypothyroidism and serum TSH levels, but did not find adequate evidence of clinical 

validity or utility for any. 

 Using our review, we identified deficits in the knowledge base that future genetic studies 

should address. First, the lack of substantive evidence demonstrating analytic and clinical validity must 

be corrected. As our rapid review considered only articles cited within PubMed, it is possible that a 

more comprehensive search including other databases, manufacturer’s websites, and other grey 

literature would provide the sensitivity, specificity, and predictive values for these variants for 

hypothyroidism. However, our results are consistent with others that have documented the same 

challenges to obtaining this crucial information using more comprehensive approaches. Replication of 

genetic associations should be undertaken in large, independent cohorts to identify which variants may 

be false positives and which are robust disease associations; meta-analyses are another method. This is 

of particular importance as many of the reported disease associations are for variants with relatively 

small effect sizes and may not be the causal variant affecting the disease process. Though the PPV is 

one metric used to evaluate the clinical validity of a test, for genetic testing in common, complex 

diseases, the area under the receiver-operator characteristic curve (AUC) may be a better measurement.  

 Second, the clinical utility of genetic information in PM for common disorders is unclear and 

likely varies by disease. Comparing health outcomes using the current screening model to one that 

includes genetic information is a key part of demonstrating the utility of PM. For the general 

population, screening practices for hypothyroidism by measuring TSH levels can vary by physician. 

Though screening of high-risk pregnant women for hypothyroidism is advocated and recent studies 

have shown universal screening to be cost-effective, universal screening of remains contested. 

Additional studies with clearly stated and measureable health outcomes will improve researchers’ 

ability to determine the utility of PM. Quantitative measurements such as quality-adjusted life years 

(QALYs) or disability-adjusted life years (DALYs) may be of use in studies evaluating PM initiatives in 

large populations. The use of electronic health records (EHRs) may make obtaining the necessary 

clinical and outcomes data easier. Qualitative data, such as surveys of symptom severity or change in 

patient behavior, can further inform clinical utility studies.      

 Additionally, it is important to consider how generalizable the results from genetic studies are 

to populations of diverse ancestry, particularly when there are disease prevalence differences. These 

disease burden variations may occur from differences in environmental or behavioral exposures to risk 

factors, may arise through differences in risk allele frequencies across populations, or some 
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combination of these. Understanding the true population risk is an integral part of implementing PM in 

the clinical setting.  

 Despite these negative results, our rapid review methodology serves as an example of 

deploying an evidence review in an academic setting to systematically identify the essential data 

required to accurately assess the utility of including genetic data to improve health outcomes for 

common, complex diseases. We have highlighted the gaps in knowledge preventing researchers from 

adequately assessing the use of genetic information in the clinical setting for complex disorders. Future 

genetic studies that include analytic evidence will benefit outcomes research and help policymakers 

determine the use of genetic data for precision medicine in the clinical setting. Rapid reviews such as 

this one can be a valuable first-pass to establish the need for a more comprehensive evidence review 

prior to setting policy. 

Ethical, legal, and social issues 

Impact on health care system 

 If PM is to be implemented in the clinical setting for common, complex diseases, the impact on 

the health system should not be overlooked. Data management, access to data/privacy issues, 

integration with existing electronic health records (EHR) and physician decision-support mechanisms 

must be comprehensively investigated. These factors and the costs required to implement such a 

program should be carefully weighed and cost-benefit analyses performed if widespread adoption of 

such programs is to expand beyond a few academic medical centers. 

Data management 

 The amount of data generated by whole genome sequencing (WGS), whole exome sequencing 

(WES), and genotyping arrays with >2 million SNPs is substantial. This leads directly to two issues: the 

cost and infrastructure required for generating and maintaining the data, and the time and human 

capital needed to analyze and translate the data for clinical use. Though the technological cost of WES 

and WGS are decreasing, the cost of data storage has not declined as dramatically (Baker 2010). Each 

WES run yields several terabytes of raw sequence data and hundreds of GB of stored data and WGS 

will increase substantially the amount of stored data (Kho et al. 2013). Some medical centers are 

pursuing technologies such as cloud computing for managing data and data analysis; however, legal 

regulations such as HIPAA and others may restrict the use of cloud technologies for restricted and 
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personal health information (Fusaro et al. 2011; Kuo 2011; Schadt et al. 2010; Rosenthal et al. 2010). 

Similar to the declining cost of WES and WGS, the time required to obtain genetic data has also 

declined, with WES results in <24 hours and WGS results in a few days (Kho et al. 2013). Analysis of 

well-characterized variants is not difficult with databases that link genotype and phenotype; however, 

curation of novel variants is time consuming (Famiglietti et al. 2014). In addition, periodic re-

examination of the pathogenicity and function of genetic variants should take place, as demonstrated 

by Das et al. where variants previously described as pathogenic were reclassified as benign or of 

unknown significance, and variants previously classified as of unknown significance were upgraded to 

pathogenic (Das et al. 2014). Though the analysis of genetic data has become more automated, it is 

unclear to what extent the cost to analyze and translate the data into clinically meaningful information 

will decline; this is likely to vary substantially by disease and current knowledge of genetic variants.     

Data privacy 

 From the health system’s perspective, data security and privacy are not only ethically 

appropriate, but legally required (Juengst 2014). Controlling data access and ensuring data privacy are 

key issues that must be addressed for successful implementation of PM, given the sensitive health 

information contained in patients’ EMRs. Current identification of data breaches in EHRs occurs post-

event through random audits; new methods are being developed that can predict inappropriate access 

using historical data (Menon et al. 2014; Fabbri and Lefevre 2013). Maintaining patients’ genomic data 

outside of the EHR with controlled access to the data is one method of minimizing inappropriate access 

(Hazin et al. 2013). As patients gain access to their EHRs through patient portals, medical centers will 

need to create policies centered on educating patients of their responsibilities for privacy and security 

of their health care data (Hazin et al. 2013). A recent mandate (Swain and Patel 2014) that providers 

allow patients access to their laboratory records may serve as a test for medical centers to navigate data 

access and privacy requirements when patients play a key role in keeping those data secure. State or 

local laws may additional limitations on access to genetic data that surpass the requirements of HIPAA 

and dictate segregation of certain types of health data within EHRs or require additional levels of 

patient consent before genetic data can be disclosed (National Human Genome Research Institute 

2014a). Data security and controlled access will likely remain an integral facet to PM’s impact on the 

health system. 
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Integration with existing EHRs 

 Increased use of EHRs can play a substantial role in PM implementation through enhanced 

communication between patients and clinicians, physician decision-support mechanisms, PM cohort 

identification, exchange of health information between providers, and by providing the necessary data 

upon which clinical validity and utility of PM initiatives can be measured (Kohane 2011; Boland et al. 

2013; Goldspiel et al. 2014; Middleton et al. 2013; Payne et al. 2013). With the quantity of genomic data 

generated from WES, WGS, and genotyping arrays, not all data is likely to be inserted into the EHR. 

Maintaining genomic data in an off-site repository and including only the data that directly informs 

clinical care is one method to control the burden of data storage, but raises ethical and legal issues 

(Hazin et al. 2013). A segmented system in which only certain individuals have access to some of the 

data may pose a challenge to PM practices (Hazin et al. 2013). Determining which clinicians and 

ancillary health professionals have access to the genomic data and when they may access it, is an 

important facet to utilizing this information in the clinical setting.  

 Integrating genomic information and disease risk prediction into EHRs will be an essential 

component to PM for common, complex diseases and will require both accessible genomic data and 

physician decision support mechanisms (Hazin et al. 2013). Design and implementation of EHRs for 

this purpose should involve multiple stakeholders, including patient, physician, and informatics 

representatives (Hartzler et al. 2013); input from these perspectives may improve patient participation 

in healthcare choices and physician buy-in to PM initiatives. EHR platforms may require substantial 

modifications be made so they can be used for PM (Kho et al. 2013). Where genomic data will reside, 

how it will be accessed through bioinformatics pipelines, and when physician decision-support 

mechanisms will initiate are key questions for health systems to address. This will require a substantial 

level of automation for data to be updated routinely and quickly (Schneeweiss 2014).  Though adoption 

of EHR technologies have become more widespread following the Health Information Technology for 

Economic and Clinical Health (HITECH) Act (Ancker et al. 2013; Blumenthal 2011), technological and 

logistical issues relating to the management and analysis of genetic data in EHRs remain a barrier for 

the application of PM for common, complex diseases (Shoenbill et al. 2014). 

Physician decision support 

 Decision-support should be integrated into clinical care without adding to physician burden 

(Schneeweiss 2014). Alert fatigue, ignoring/overriding decision-support messages, remains a 
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considerable barrier to PM (Ancker et al. 2014; McCoy et al. 2014); however, successful examples of 

decision-support systems have emerged in pharmacogenetics (Goldspiel et al. 2014; Pulley et al. 2012; 

Laerum et al. 2014). More importantly, physicians must feel adequately prepared and comfortable 

integrating genetic testing into clinical practice (Gray et al. 2014; Hazin et al. 2013; Haga et al. 2012). 

Decision-support mechanisms with access to corroborating research may help to alleviate physician 

uncertainty and improve physician confidence integrating genetic data in routine clinical care. 

Economic costs 

 The economic costs involved in PM programs encompass several areas: diagnostic tests and 

equipment, personnel, computing infrastructure, the costs associated with false-negative and false-

positive test results, and the costs associated with risk-reducing interventions. These costs may be 

balanced or outweighed by improved health outcomes and decreased future health care costs resulting 

from the PM program.  It is currently unclear at what point implementation of PM is a cost-effective 

strategy (Phillips et al. 2014). Given the public health burden of common, complex diseases such as 

CVD and T2D, effective PM could improve health care outcomes while reducing health care 

expenditures.  Multiple methods exist for calculating the cost-effectiveness of a test; cost-utility analysis 

(CUA) is one method that integrates health outcomes using QALYs (Phillips et al. 2014). Current CUAs 

focus primarily on pharmaceuticals, though CUAs of PM tests for cancer and pharmacogenetics are 

becoming more common (Phillips et al. 2014).  

  

Impact on society: the patient perspective 

 Similar to the issues health systems face, the patient perspective should also be considered if 

PM programs are to be expanded for common, complex diseases. Privacy and data access issues of 

EHRs from the patient’s perspective must be addressed to allay fears of misuse. If PM is expanded as a 

screening mechanism to identify risk for common disorders, a significant portion of the population will 

be exposed to complex and abstract genetic concepts that may require patient education or counseling 

to understand. Public knowledge of genetics and genomics, fear of discrimination based on genetics, 

misinterpretation that genetic ancestry is a proxy for social constructs of race/ethnicity are challenges 

that must be addressed for public acceptance of PM initiatives for common diseases. 
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Data privacy/access 

 Patient-centric concern over privacy of their health records and control over data mirrors 

privacy issues from the health system perspective.  Patient concern over privacy and data access is 

considered a barrier to successful implementation of EHRs (Boonstra and Broekhuis 2010; Barrows, Jr. 

and Clayton 1996). These concerns include data access management to prevent discrimination or 

unconsented re-use of data for research or commercial purposes (Caine and Hanania 2013). These 

concerns were identified in a cross-sectional survey of health consumers in New York (Abramson et al. 

2014). These survey participants perceived that use of EHRs would not improve security or privacy 

(Abramson et al. 2014). A 2013 issue of JAMIA presented several papers with a socio-legal perspective 

on privacy with regard to EHRs (reviewed in (Malin, Emam, and O'Keefe 2013)). In general, patients 

have expressed desire to maintain some level of control over who may access their EHRs and for what 

purpose (Caine and Hanania 2013). Participants with highly sensitive data in their EHRs were less 

likely to grant access to the sensitive data. Participants were discriminating in their likelihood to share 

data; subjects indicated willingness to share a greater percent of their EHRs with primary care 

physicians, specialists, and emergency physicians and less willing to share with family, administration, 

researchers, or non-treating recipients (Caine and Hanania 2013). 

Health literacy  

 Overall health literacy, the ability of individuals to obtain, process, understand basic health 

information, and use that information to make appropriate health decisions is lacking for a significant 

proportion of the general public (Lea et al. 2011; Kutner et al. 2006). Health literacy contributes to 

health outcomes in that individuals with limited health literacy, for example, have increased incidence 

of chronic illness and decreased use of preventative care (Lea et al. 2011; Berkman et al. 2011). One facet 

of health literacy is genetics and genomics. Public awareness and understanding of genetics and 

genomics has improved over the past several years, though many misconceptions still abound 

(Christensen et al. 2010a). Mathematical illiteracy, or innumeracy, will make understanding true 

inherited risk of disease and population risk difficult, though the extent to which this impacts genetic-

based PM has not been evaluated (Lea et al. 2011; Syurina et al. 2011). Genomic health literacy requires 

understanding that for complex diseases, genetic and environmental factors contribute to disease risk 

and some competency in numeracy (Hurle et al. 2013). Health literacy and numeracy skills will play a 

significant role in successful PM; the average patient with an elementary understanding of genetic 
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inheritance may be unlikely to fully grasp the difference between the role genetic mutations play in 

Mendelian diseases with the role of genetic variation in conferring varying degrees of risk for complex 

traits without additional education. Christensen et al. determined that less than 50% of their survey 

population was able to correctly answer 7 out of 8 basic statements about genetics (Christensen et al. 

2010a). This held for black and white, male and female participants, though there were between group 

differences (Christensen et al. 2010a). The lack of genetic knowledge identified in Christensen et al. is 

consistent with earlier reports (Lanie et al. 2004; Emery, Kumar, and Smith 1998). Though public 

awareness of genetics has increased, it appears that genetic knowledge and understanding has not 

correspondingly improved. This deficit will impede implementation of PM for in the clinical setting if 

stakeholder support is lacking due to misinterpretations and lack of understanding. 

 A recent Health Information National Trends Survey (HINTS), a population-based, nationally 

representative survey of the civilian, non-institutionalized population in the United States, collected 

self-report questionnaires with questions relating to the genetic contribution to common, complex 

diseases, how disease risk is interpreted numerically, and awareness of direct to consumer genetic 

testing (2013). Analysis of the HINTS data showed participants largely expressed belief in 

multifactorial causes for common, complex diseases. About 10% of respondents believed the etiology of 

cancer, diabetes, heart disease, and hypertension to be mostly behavioral in nature, though one-fourth 

of the respondents believed obesity is caused by mostly behavioral factors (Waters, Muff, and 

Hamilton 2014). The results of this study are encouraging, in that the participants perceived common, 

complex diseases having both environmental and genetic causes; however, it is unclear if additional 

studies will come to the same conclusions or if belief in multifactorial causes of complex diseases is 

associated with risk-reducing behavior change (Waters, Muff, and Hamilton 2014).  

 Of particular concern is the penchant for persistent notions of genetic or biologic determinism.  

Biological determinism, the view that biological components are the causal factors of behavioral 

differences between people (Malott 2007), and genetic determinism, the idea that genes dictate health 

outcomes without any contribution from environment (Parrott et al. 2012) are key concepts that must 

be addressed to maximize potential risk-reducing behavior modification for PM. Numerous groups 

have attempted to quantify the extent of genetic deterministic beliefs (Lynch et al. 2008; Dambrun et al. 

2009; Parrott et al. 2004; Keller 2005). These scales have been criticized for mixing conceptual themes 

(Condit 2011), for example, genetic determinism and racial bias (Keller 2005; Lynch et al. 2008).  Genetic 

determinism has the potential to undermine PM initiatives if individuals believe behavioral change is 
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unlikely to improve their health condition or reduce risk of future illness (Shiloh, Rashuk-Rosenthal, 

and Benyamini 2002; Senior, Marteau, and Peters 1999; Nelkin and Lindee 1996).  Consistent with prior 

studies (Marteau and Weinman 2006; Michie et al. 2003; De Wit and Stroebe 2004), a recent review of 

the literature identified five factors  that determined whether or not a genetic test motivates behavioral 

change: characteristics of the target behavior, the patient’s perception of the severity of the disease, the 

amount of risk the genetic variant contributes to the disease, patient characteristics (e.g., demographic 

factors, socio-economic status, educational attainment, level of health literacy and numeracy), and how 

patients perceive the value of the genetic information compared to other data, such as family history or 

lab values (Condit 2011). Patients may rely on genetic determinism to support unhealthy behaviors, 

though this may be applied discriminately depending on the factors listed above (Condit 2011).  

 

Vulnerable populations 

 Given the complex interactions between ancestry and genetics, it is reasonable to acknowledge 

the concern that advances in genomics may make individuals and groups vulnerable or disadvantaged 

in new ways (McClellan et al. 2013). PM depends on the identification of genetic risk markers to 

classify patients into different risk groups. This classification process may leave some patients 

vulnerable if the risk categories in which they are placed are groups that historically have been 

discriminated against or if the risk groups are perceived as socially disadvantaged relative to others. 

Three types of vulnerabilities may result from the implementation of PM in the clinical setting: disease-

specific, genome-specific, or race/ethnicity-specific.   

 For some complex diseases, like T2D or asthma, the risk for vulnerability may be slight from the 

social perspective, when compared to other complex diseases like Alzheimer’s or autoimmune 

diseases. Individuals identified as “at risk” for stigmatizing diseases may require additional resources 

to reduce potential vulnerabilities in the PM setting. With PM utilizing genetics as a basis for assigning 

disease risk, individuals may be at risk of vulnerability if it becomes apparent that some genotypes 

(Table 23) consistently utilize more healthcare resources than others. This differs from increased 

resource utilization by individuals who are already sick, in that PM for common, complex diseases 

would target asymptomatic individuals who are clinically healthy at the time of screening. Rigorous 

safeguards to patient privacy and EHR data access may minimize harm to the patient. Even if genomic 

risk information is well protected, however, cultural beliefs about chronic, complex diseases impact the 
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patient’s ability to understand their disease risk and participant fully in their healthcare (Shaw et al. 

2009). Methods to assess how the patient perceives the severity and health risk of a disease, such as the 

explanatory model (Kleinman and Benson 2006) or the CSM (Marteau and Weinman 2006; McAndrew 

et al. 2008) may yield insight into ways in which vulnerabilities based on disease and disease risk can 

be minimized.   

 Vulnerable populations may result from the categorization of at-risk patients by race/ethnicity. 

This is a sensitive issue, as there are known differences in disease prevalence among ethnic groups that 

might naturally suggest candidates for risk group assignment and personalized medicine-driven 

interventions. Genetic researchers agree that labels such as “black” or “white” do not adequately 

convey the complexities involved in genetic ancestry and have developed sophisticated statistical 

methods to account for these complexities (Fujimura and Rajagopalan 2011; Fujimura, Duster, and 

Rajagopalan 2008), though some clinicians may be prone to using race/ethnicity as a proxy for genetic 

ancestry (Hunt, Truesdell, and Kreiner 2013). Individuals, who self-identify with a given 

race/ethnicity, are often genetically heterogeneous. For example, admixture in African Americans 

yields significant variation in the amount of European ancestry across individuals (Zakharia et al. 

2009).   This heterogeneity may influence an individual’s disease risk and should be taken into account 

when assigning individuals to a risk group based on sociocultural norms (e.g., European, African, 

white, black) (Fujimura, Duster, and Rajagopalan 2008; Fujimura and Rajagopalan 2011; Rajagopalan 

and Fujimura 2012). Though grouping individuals based on race/ethnicity allows geneticists to recruit 

diverse populations for health research, it is necessary to develop mechanisms that aid public 

understanding of how these terms are used by scientists, so that negative connotations associated with 

certain groups are not reinforced (Foster and Sharp 2002). Public understanding of genetic ancestry and 

potential conflation of genetic ancestry with complex social constructs of race/ethnicity remain a 

concern. Williams and Eberhardt developed a race conceptions scale (RCS) designed to quantify the 

idea that race is biologically based (Williams and Eberhardt 2008). The RCS has been correlated with 

Modern Racism Scale Scores, Attitudes Toward Blacks Scale, Social Dominance Orientation, and 

acceptance of racial disparities (Condit 2011). Similar to the way in which genetic determinism may be 

used to perpetuate some health behaviors or beliefs (Condit 2011), genetic ancestry may be 

misinterpreted to mean that health vulnerabilities are inherent to particular groups and could be 

dismissed as natural phenomena instead of being recognized as genuine health disparities (Isler et al. 

2013).  
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Summary 

Personalized medicine has risen in the public consciousness as medical centers advertise their 

ability to inform clinical care using a patient’s genetic information to improve outcomes and on-

demand genetic testing for health and ancestry gain popularity.  Until recently, adults could obtain an 

analysis of their DNA using direct-to-consumer genetic testing companies (Public Health Service Food 

and Drug Administration and Gutierrez 2013). These analyses included risk prediction for hundreds of 

common, complex diseases and traits, pharmacogenetic results, and disease carrier status (Public 

Health Service Food and Drug Administration and Gutierrez 2013).  However, integrating genetic 

information into clinical care for complex disease is challenging for a variety of scientific, ethical, and 

social issues.  

The very nature of complex diseases makes them challenging to understand disease risk on an 

individual level. Complex diseases result from a mixture of genetics and environmental influence, and 

the combination of these factors differ between diseases. Even when the entirety of genetic factors has 

been identified, risk prediction that includes genetics may perform poorly, if the environmental 

influence is significant. Due to incomplete penetrance, some individuals with a susceptible genotype 

may never develop the disease. Different variants may be responsible for disease development in some 

individuals, frustrating variant-phenotype associations, and phenotypic heterogeneity can play a role 

in recognition of at-risk individuals.  

A lack of clearly stated, measurable health outcomes makes determining the utility of 

personalized medicine challenging. In clinical care, quantitative outcomes could be measured in terms 

of morbidity and mortality, or through more nuanced measurements such as DALYs, QALYs, or 

HALEs. Patient/clinician perspectives or symptom severity are examples of more qualitative outcomes 

that may be assessed.  These valuable measurements will provide the foundation for clinical utility 

research in genetics. Though thousands of genetic variants have been associated with hundreds of 

clinical traits and diseases, few of them have been validated in the clinical setting. Additional studies 

should be performed to evaluate the clinical validity of variants that are likely to be included in risk 

models to identify at-risk populations or guide clinical care, as in pharmacogenetics. EHRs may 

facilitate this research by aiding risk model algorithm development, prescription information, and the 

ability to follow patients over the course of many years. Determining the clinical validity and utility of 

genetic variants for complex diseases could be accomplished through EGAPP, evidence-based practice 

centers, or translational scientists. The EGAPP working group has repeatedly determined there is 
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insufficient evidence at present to recommend genetic testing to improve health outcomes for several 

diseases; however, they have completed fewer than a dozen studies thus far, and the future may be 

more promising if the needed data become available. 

 Implementation of personalized medicine for complex disease is also complicated by ethical 

and social issues. The challenge of accurately identifying at-risk individuals without creating 

vulnerable populations needs to be addressed. For common, complex diseases such as diabetes or 

cardiovascular disease, the risk of stigmatization may be less than for other diseases, such as 

Alzheimer’s disease or autoimmune diseases. Certain racial/ethnic groups may be more likely to fall 

into a vulnerable classification due to historical discrimination; the targeting of specific groups for 

personalized medicine interventions or screenings may lead to increased vulnerability in those groups. 

Equitable access to screening and intervention should be based on genetic susceptibility and other risk 

factors for disease, not sociocultural labels.  

 How personalized medicine is implemented leads to ethical and social issues. Identification of 

the at-risk population for PM can take several forms and may depend upon the typical age of onset for 

a disease. A revised Wilson and Jungner screening criteria may be more appropriate for evaluating 

whether to pursue screening for a given disease using genomic information (Andermann et al. 2008). 

Vanderbilt’s PREDICT program demonstrates another method of identifying individuals for 

intervention; patients are identified as high-risk to start a particular drug therapy as calculated by a 

predictive algorithm, or as they come through the cardiac catheterization clinic (Pulley et al. 2012). For 

common, complex diseases, such as CVD, timing genetic testing for PM will depend on the value 

conferred by testing, the disease, its natural course, and the proposed intervention. Current 

implementation of precision medicine for cancer treatment or pharmacogenetics is targeted; non-

targeted approaches such as WGS, WES, and genome-wide genotyping arrays can provide additional 

data, though the utility of this information is unclear and raises other issues (Lawrence et al.2014).  For 

complex diseases with late-adulthood onset, such as age-related macular degeneration, identifying the 

at-risk patients in early adulthood or middle age may be the most appropriate time. For diseases that 

occur at earlier ages, such as CVD or T2D, it may be more advantageous to identify the at-risk 

population in childhood, perhaps maximizing the effects from the intervention, but raising a host of 

issues that are beyond the scope of this work (Erickson et al. 2014; Ross et al. 2013). These differences 

suggest that the decision to use PM for complex diseases will require thoughtful deliberation on a 

disease by disease and intervention by intervention basis. A new method of determining what diseases 
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are most appropriate for PM initiatives may be required and may rely on evidence-based medicine and 

cost-utility analyses. A three-pronged method that considers the potential utility, benefits, and harms is 

one method of identifying which diseases, which individuals, and when a precision medicine approach 

is best suited. Evidence supporting any precision medicine method should begin in multidisciplinary 

collaborations between social scientists, clinicians, and geneticists. Legal issues, which are outside the 

scope of this work, are numerous for precision medicine.  

Despite the recent cessation of risk prediction for complex diseases through a direct-to-

consumer genetic testing company, the public desire for useful health information and individualized 

treatment is unlikely to subside. Numerous medical centers have embraced precision medicine to 

inform cancer care and pharmacogenetics, though evidence that the practice has improved patient care 

or health outcomes is still emerging. Yet the role that precision medicine can play for common, 

complex disease has not been fully explored.  Numerous scientific, ethical, and social concerns will 

need to be addressed, and evidence that genetic information improves health outcomes through 

medical and lifestyle modifications must be determined.  

  



 

126 
 

CHAPTER VII 

CONCLUSION AND FUTURE DIRECTIONS 

VII. CONCLUSION AND FUTURE DIRECTIONS 

Conclusion  

 Personalized medicine, the use of genomic data to guide clinical decision making for an 

individual patient, currently takes a variety of forms. For numerous cancers, the result is cancer tumors 

being tested for specific genetic variants and measuring gene expression levels that may make the 

cancer more susceptible to a specific chemotherapy regimen. Genetic testing prior to the development 

of cancer for familial forms of breast cancer or colorectal cancer allows patients to modify risk 

behaviors or undergo prophylactic surgery or chemotherapy. Importantly, this may also be used to 

infer risk in related individuals, perhaps providing clinically useful information for entire families. 

Pharmacogenomic studies look to determine the correct dosing strategy and medication choice for 

patients to avoid adverse events and maximize therapeutic efficacy. For individuals who have 

previously been without a clear diagnosis, exome and/or whole genome sequencing may provide 

insight to the underlying biological mechanism responsible for their disorder and end the diagnostic 

odyssey. 

 Despite these successes, the promise of personalized medicine to revolutionize care for 

common, complex diseases has not materialized.  With the exception of Mendelian disorders, some 

cancers, and pharmacologic interactions, the prognostic capabilities of genetic tests to accurately gauge 

risk of disease development are low. This results from both an incomplete understanding of the 

biologic mechanisms responsible for disease development and progression, and a fragmented grasp of 

the role of environmental factors and interactions play in these disorders. Though cancer and adverse 

drug events contribute significantly toward the overall health picture of the nation, they are vastly 

overshadowed by the public health impact from complex diseases, like age-related macular 

degeneration, type 2 diabetes, and cardiovascular disease. Given the increasing population burden of 

these disorders, a personalized medicine approach to correctly identify which patients are at greatest 

risk prior to developing the disorder and then targeting interventions to those individuals in order to 

prevent, delay, or ameliorate the disorder, could result in substantially improved health outcomes. 
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 This body of work sought to understand the role of genetic variation in complex traits 

associated with women’s health. Though women comprise a majority of the population in the United 

States, their specific health needs have been largely ignored until the past few decades. This disparity is 

mirrored in biomedical research in diverse populations. Differences in disease prevalence and severity 

between men and women or between individuals of European- and non-European ancestry for many 

complex traits have been documented. How gender, race/ethnicity, and the role of environmental 

interactions contribute to these differences is unclear. Nevertheless, that these differences exist suggests 

a potential role for personalized medicine approaches to health in women and diverse populations to 

improve health outcomes.  

 The role of the reproductive lifespan in women has been associated with various complex traits 

and diseases. Beginning with menarche during the pubertal period, until menopause, cyclic hormone 

patterns and the role of pregnancy impact a woman’s risk of developing certain cancers, osteoporosis, 

and cardiovascular disease. In addition, women are more at risk of most autoimmune disorders, and 

there are differences in autoimmune disease risk that varies by ethnicity. Despite the importance of 

these traits, their molecular basis and the biological mechanisms by which they play a role in disease 

development are not well understood. The importance of these traits, their association with disease, 

and gap in scientific evidence served as the impetus for studying these traits.  

 I began by assessing the role of genetic variation on age at menarche and age at natural 

menopause in African American women from the Population Architecture using Genomics and 

Epidemiology (PAGE) Study in the first of three case studies. Using the Metabochip, a genotyping 

array with a primary emphasis on fine-mapping GWAS-identified genomic regions associated with 

cardiovascular traits, I sought to generalize to our sample variants previously identified in European-

descent cohorts for these traits. Differences in the timing of these traits by race/ethnicity have been 

observed consistently and have yet to be fully explained. This was the first study to consider these 

traits in a large African American cohort at the time of publication, though others have followed. We 

were able to generalize only one previously identified SNP, rs1361108, for age at menarche, and two 

SNPs, rs897798 and rs9385399, for age at natural menopause, to our cohort. We failed to identify novel 

variants associated with age at menarche, after correcting for multiple tests; however, we observed 

three novel SNPs associated with age at natural menopause in this population. Our ability to generalize 

variants identified in European cohorts, including the LIN28B region, was compromised by 

Metabochip coverage of some genomic regions and its emphasis on genes involved in lipid metabolism 
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and cardiovascular traits. In addition, the sample size and minor allele frequency differences between 

our population and European populations likely impacted our ability to replicate known variants 

associated with these traits. Despite these limitations, our results demonstrated the ability to use the 

Metabochip to identify variants associated with reproductive lifespan traits in a diverse population.  

 As personalized medicine approaches rely substantially on the use of electronic health records 

(EHRs) to identify groups of patients for interventions, I developed an algorithm to extract age at 

menarche and age at menopause from the Vanderbilt University Medical Center biorepository, BioVU. 

My goal was to create an automated method of extracting these important data from EHRs; these data 

and this algorithm could subsequently be used by researchers who continue to study these traits and 

the genetic influences on their timing, as well as by clinicians who could use this information to 

identify individuals for clinical research cohorts or for targeted interventions using ages at these 

milestones as risk factors for cancers, cardiovascular diseases, or other complex traits. Despite known 

links between the timing of these events and complex diseases, these data are not consistently nor 

uniformly collected and placed in EHRs. To address this issue, we created a method using a 

combination of free text data mining for regular expressions and pattern matching, billing, and 

procedure codes to identify the age at these events in women and children (age>7) in BioVU. Our 

method captured these data successfully, with a positive predictive value of 94.0% for the age at 

menarche algorithm. In addition, we were able to discriminate between natural menopause and all-

cause menopause. 

 Our algorithm identified ages at these reproductive milestones that concur with national 

estimates. We identified several challenges to accurately extracting this information from BioVU that 

may be generalizable to other institutions using our method. First, in BioVU, specific ages and dates 

may be de-identified or date-shifted.  De-identification was observed in approximately half of our age 

at menarche and age at natural menopause results; it is possible that if these data were not de-

identified, our algorithm’s predictive abilities could change. In addition, the date-shifting that is done 

for privacy concerns meant that the actual timing of these events could have occurred within a one year 

window (six months forward or backward of the date), further compromising our ability to accurately 

identify these ages. Furthermore, both the de-identification and date shifting were applied 

inconsistently, sometimes within a single record. While our method prioritized an actual date/age over 

a de-identified or shifted age when reporting results, we found instances where the algorithm failed to 

find the exact date/age which decreased the predictive capability of our method. These challenges 
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frustrated our ability to obtain these data; however, our method has been recently used by another 

institution to extract the data from their biorepository/EHR for contribution to a meta-analysis for 

timing menarche and menopause in the PAGE Study (data not shown). It is hoped that data extraction 

methods, such as ours, may be used more frequently to provide researchers with necessary data for 

studies. 

 The second case study assessed the role of genetic variation in the development of endometrial 

cancer. Endometrial cancer (EC) is the most common invasive gynecologic cancer in the United States. 

Typically occurring in post-menopausal women, EC risks appear to vary by race/ethnicity. Multiple 

subtypes of EC complicate studies evaluating the genetic risk factors for disease. Endometrioid EC 

tends to be less aggressive than the clear cell or serous types of EC and is generally estrogen-

dependent. The molecular mechanisms for EC development are not fully understood; however, timing 

of menarche, menopause, and pregnancy, and parity are known to be associated with EC. Previous 

genetic studies have identified several genes implicated in EC, though results suffer from a lack of 

consistency. We performed a candidate-gene association study for EC using variants selected due to 

their association with a variety of cancers. Pleiotropic effects have been observed for other cancers; 

identifying cancer variants additionally linked to EC may result in better understanding of general 

cancer mechanisms. After quality control filters, our single-study sample size for this study was 

drastically reduced. Consequently, though our single-site results have been presented in Chapter IV, 

we contributed our results to a larger meta-analysis comprised of studies from two consortia: PAGE 

and the E2C2 (Epidemiology of Endometrial Cancer Consortium). The leading results from our 

analysis implicate SNPs previously associated with prostate and colorectal cancer. This is interesting, as 

the PAGE/E2C2 meta-analysis also observed significant associations for SNPs associated with prostate 

cancer, suggesting a potential shared mechanism for the development of both cancers. Given our small 

sample size, our single-site results should be interpreted with caution. 

 A genome-wide association study (GWAS) for thyroid stimulating hormone (TSH) levels was 

the last case study presented here. Unlike a candidate gene approach (Chapter IV), or a more targeted 

association study (Chapter II), this method generates hypotheses for additional studies, rather than 

testing specific hypotheses. Similar to the reproductive traits and endometrial cancer, the heritability of 

TSH levels is approximately 0.50, though genetic studies have failed to identify variants responsible for 

more than a few percent. And like reproductive traits and EC, sex and population differences have 

been observed in both mean TSH levels and prevalence of thyroid disease. Performed in the eMERGE 



 

130 
 

Network, this GWAS replicated known variants associated with TSH levels in European Americans, 

including the well-characterized PDE8B rs2046045; however, we were unable to generalize most 

associations to African Americans. Differences in minor allele frequencies between the European and 

African-descent populations may have impacted our statistical power to replicate in the African 

American population.  

 We also considered the role of interactions between genetic(SNPs) and environmental factors 

(body mass index (BMI)) in this case study. Obesity has been implicated in higher TSH levels and 

contribute to a change in an individual’s normal TSH level (Marzullo et al. 2010; De et al. 2007).  We 

identified two loci, NRG1 and NFIA, with BMIxSNP interactions in European Americans. Nominally 

significant, the NRG1 interaction is particularly interesting as it has been associated with thyroid cancer 

(Gudmundsson et al. 2009) and has been shown to regulate cell proliferation in an animal thyroid cell 

model (Breuleux 2007). Though interactions were identified for the African Americans, small sample 

sizes and low genotype counts per BMI category; comparisons across groups are therefore difficult. 

This study highlights the challenges in assessing genetic and environmental interactions in small 

samples.   

 Identifying the genetic variants associated with these women’s health-related traits lays the 

foundation for personalized medicine in a clinical setting; however, identification is merely the first 

step of many in translating this data into clinical practice for complex diseases. Though identification of 

genetic variants associated with a given trait may provide insight to the underlying biological 

mechanisms, these associations are rarely predictive for disease risk in an individual. The complexity in 

understanding the role of genetics in many common diseases, like cancer or hypothyroidism, results in 

part from the interactions of genes and environment, and is complicated by genetic heterogeneity and 

incomplete penetrance. Few genetic studies have considered the positive predictive value of the genetic 

associations for disease risk. Until recently, several companies provided disease risk for hundreds of 

common, complex diseases and traits, despite the lack of rigorously tested evidence that GWAS-

identified SNPs are substantially predictive of disease risk. It is not unlikely that physicians will 

encounter patients with this disease risk information in the near future, and be confronted with how to 

best manage preventative care based upon this genetic data. The EGAPP framework to evaluate genetic 

evidence for inclusion in clinical care was established in 2007 based off the earlier Analytic Validity, 

Clinical Validity, Clinical Utility, and Ethical, Legal, & Social Implications (ACCE) Project. EGAPP has 

performed numerous studies in the last seven years evaluating the evidence that genetic testing 
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improves health outcomes for several diseases. These studies have consistently found a lack of analytic 

evidence upon which to base their recommendations. This lack of evidence frustrates clinician’s 

abilities to determine when a personalized medicine approach may be effectively implemented. 

 To address the lack of data observed by the EGAPP working group and others, we developed a 

rapid evidence review procedure as a first-pass method that could be implemented in an academic 

medical center setting to evaluate the analytic evidence supporting the use of genetic data in the clinical 

setting to improve health outcomes for a complex disease and used hypothyroidism/serum TSH levels 

as the example. Systematic evidence reviews (SERs) are notoriously time consuming, often taking more 

than one year to complete, and costly, both economically and in terms of human capital. To address 

these issues, a streamlined approach to the SER was taken. As in a full SER, an overarching research 

question and supporting key questions were developed to identify the desired analytic evidence. One 

database was searched for the literature review (PubMed) and the abstract and full text reviews were 

performed by two individuals, with access to a third independent party as necessary. The REDCap 

database was used to capture and house the data for the review process; this tool has a web-based 

interface and allows for automatic export of the data to common statistical packages.    

 Though we identified hundreds of potential studies for the review, we found no studies that 

met our inclusion criteria. Importantly, we found studies lack important clinical validity data, such as 

positive predictive values or areas under receiver-operator characteristics curves. In addition, we found 

a lack of evidence that studies considered the clinical utility of knowing the genetic variants improved 

health outcomes. Finally, ethical, legal, and social issues were not addressed in the studies identified 

through our rapid review; though this may be a result of searching one database only or key questions 

that did not sufficiently address that topic. In general, our rapid review results concur with those 

performed for other diseases/traits and highlight the need for genetic studies to publish this key 

analytic data. 

 A lack of analytic evidence is not the only barrier to implementing personalized medicine for 

complex diseases. The health care system may not be adequately prepared to expand PM in this way 

due to data management challenges, data privacy issues, and complications arising from EHR 

integration and physician decision support mechanisms. Economic analyses on the costs to a health 

care system to implement PM are largely missing. Logistic issues with legal implications include the 

consequences of a patient changing their medical home, such as data and sample ownership. 

Institutions that develop highly predictive algorithms for certain complex diseases may feel protective 
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of their investment and be unwilling to share with other medical centers. Concerns around proprietary 

testing, analytic models, patents, and licensing will likely play a significant role as personalized 

medicine becomes more prevalent. The patient and public role in PM requires considering data privacy 

and access, health literacy, and vulnerable populations. Historic injustices to certain populations have 

led to distrust of the medical community and continue to inhibit participation in biomedical research. 

Unwillingness to share information with researchers presents an immediate challenge for PM 

implementation. Health outcomes research for PM initiatives will rely on a large number of individuals 

consenting that their data be included in analyses; if patients are less likely to allow sharing of their 

personal health information with researchers, necessary clinical utility and outcomes data may be 

difficult to obtain.  

 

Future Directions 

Genetic studies 

 Though the health of women and minorities has been significant focus of governmental 

agencies in the past several decades, health disparities still abound for many diseases. It is clear from 

the limitations described in the previous case studies that additional genetic research in women and 

minorities should remain a goal of researchers. The etiology of different disease trajectories for women 

and men for some diseases has yet to be fully explored. Self-defined or third-party observed labels of 

race/ethnicity may be insufficient to serve as proxies for genetic ancestry; known variation in percent 

African ancestry across African Americans should serve as an example of the complexities involved 

when assigning disease risk to an individual based on population-level data. However, this data may 

reflect socio-cultural data that genetic ancestry cannot.   

 Additional studies in large cohorts with diverse populations will improve our understanding of 

the genetic contribution to disease. Several studies, such as the Jackson Heart Study (Taylor, Jr. et al. 

2005) and the Southern Community Cohort (Signorello et al. 2005), focus their attention on 

understanding the underlying causes of health disparities for minorities in cancer and cardiovascular 

disease, and consortia like the PAGE Study have a considerable multi-ethnic component. Despite these 

and other studies, health disparities remain a significant challenge and it is unclear to what extent 

genetic ancestry, in combination with other genetic and environmental factors influences disease risk 

and highlights the need for additional large studies in these populations. This is much more easily said 
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than done, however. Past studies that led to mistrust of the medical and scientific community have had 

long-lasting effects on participation in research studies and clinical trials. While social scientists have 

identified methods to overcome this mistrust, minority participation in clinical trials is dismal, even 

where disease burden is higher in non-European descent individuals. Collaborations with social 

scientists and community leaders that lead to a better understanding of the barriers that exist to 

minority participation in biomedical studies may improve recruitment and retention.   

 Despite the hundreds of GWAS studies performed for dozens of diseases and complex traits, 

the vast majority of associations have failed to explain much of the variation observed. The “missing 

heritability” phenomenon has led to increased exploration of the role of interactions and rare variants, 

though there is little evidence that these studies will be more successful at explaining the heritability of 

a specific trait. Larger and larger samples sizes are required to uncover variants with smaller and 

smaller effect sizes. While the additive nature of variants likely plays a significant role in the “missing 

heritability,” for some diseases it is unlikely researchers will ever be able to amass enough samples to 

identify all causal variants. Prospective studies and nested case-control studies within prospective 

studies can reduce the effective sample size needed for some genetic studies; however, interaction 

analyses will likely be compromised by the number of samples for each possible interaction. Our lack 

of understanding of the biological mechanisms that lead to disease certainly plays a significant role in 

the failure to identify the responsible genetic variants. The ENCODE Project, which has identified 

regulatory regions of the genome, may lead to insight on the biologic relevance to disease of many 

intergenic or intronic GWAS associations. Whole exome (WES) and whole genome sequencing (WGS) 

may yield important clues about genetic contribution to disease. As the number of individuals who 

undergo WES/WGS increases, knowledge about allele frequencies across population will improve, 

leading to better understanding of which alleles are causal variants (and in which populations) and 

which are along for the ride. This again leads back to the need for increased participation in research by 

non-European populations. 

  

Role of research findings in clinical care 

Establishing an evidence base 

 Though genetic research to identify the basic biology underlying disease is necessary, this body 

of work has examined the role of genetic variation in disease from a context of personalized medicine. 
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Moving research findings into the clinical sphere is challenging and encompasses numerous 

disciplines. It is clear that from the studies performed in the past decade and the rapid review 

described herein, that the analytic evidence that genetic testing fails to improve health outcomes for 

common, complex diseases currently. I would like to emphasize that this does not suggest that genetic 

testing will never lead to improved outcomes, and certainly successes in cancer research and 

pharmacogenetics demonstrate the potential of PM approaches in the clinical setting.  I have outlined 

many of the challenges personalized medicine currently faces—they are by no means insurmountable. 

 The current lack of analytic evidence prevents researchers from demonstrating clinical validity 

and clinical utility. This can be addressed by a concerted effort from geneticists to publish the positive 

predictive value or AUC for their studies. It may be that neither the PPV nor the AUC is the most 

appropriate statistic to demonstrate clinical validity—PPV works best when the outcome is 

dichotomous and AUC implies the test captures all of the heritability. Any genetic test for a complex 

trait is unlikely to meet these criteria. Biostatisticians working alongside geneticists may be able to 

develop a new method that better describes the clinical validity of genetic variants. 

 How institutions prioritize which diseases may benefit from a PM approach is complicated. 

From an evidence-based perspective, those diseases for which the analytic evidence is complete and the 

disorder fulfills all/most of the updated Wilson and Jungner(Andermann) criteria may prove to be the 

easiest. Extensions to current PM initiatives in cancer and pharmacogenetics are a natural first step. 

Other disorders, for which there are well-documented interventions, such as cardiovascular disease 

and type 2 diabetes, may be alternative first steps. Prioritization based on the public health burden of 

the disease offers another method to determine which diseases could benefit from this approach.  

 The economic realities of biomedical research today cannot be overlooked. Economic studies 

considering the cost-effectiveness of various interventions or screening modalities, including genetic 

testing, are important and mostly absent from the literature. In light of limited financial resources, 

collaborations across institutions, the inclusion of non-academic medical centers in studies, 

partnerships with industry and non-academic entities (e.g., patient advocacy groups) with financial 

backing may provide opportunities for large-scale studies with reduced cost burden for any one 

institution. Additionally, data previously collected for other research studies or the information held in 

EHRs may alleviate the burden of researchers to recruit and test new participants. This leads directly to 

legal, ethical, and practical challenges which should be carefully considered. The role of patients and 

the public as research partners should not be underestimated. Examples of motivated patients who 
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desire to become involved in biomedical research by contributing samples and financially may be seen 

in Patients Like Me, UBiome, and 23&Me’s research arm, 23&We. This approach led to recruitment of 

more than 3,000 individuals with Parkinson’s disease and the identification of two new variants 

associated with the disorder through 23&Me’s Parkinson’s Research Community(23&Me). How this 

method can be implemented in collaboration with a medical institution should be considered.  

Complex disease prevention and management 

 Personalized medicine requires a multidisciplinary approach—geneticists are experts in 

genetics, not behavioral psychology; roles for ethicists, psychologists, geneticists, epidemiologists, 

clinicians, and other professionals should be included. Patient motivation to change risk behaviors has 

been largely unsuccessful with regard to genetic testing, though BRCA1/2 testing has been shown to 

increase breast cancer screenings. Whether knowing disease risk based on genetics for other complex 

diseases will lead to heightened surveillance or reduction in risk behaviors, such as smoking, is unclear, 

and downstream consequences of these interventions are not likely to be known for many years. 

Tracking individual patients through the medical system would, in essence, become a prospective 

study, where health outcomes could be evaluated and nested case-control studies be performed. 

However, this calls into question additional ELSI and technical issues, such as how to manage patients 

who leave one medical home for another. Widespread collaborations across institutions nationally, or a 

single-payer health system could alleviate some of these problems, though thoughtful consideration of 

these suggestions is beyond the scope of this body of work.    

  

Summary 

 Our scientific understanding of the basis for many common, complex diseases and traits has 

improved in the past decades with advances in genomic studies. Despite these advances, real 

improvements to health outcomes remain generally unrealized and widespread health disparities 

continue. To address these issues, I have considered the role of genetic variation in the timing of the 

female reproductive lifespan, risk of endometrial cancer, and serum TSH levels in both European-

descent and African American populations, using candidate gene, large-scale association, and genome-

wide association studies. I developed a method to extract important reproductive lifespan data out of 

an EHR for use in research studies and suggest how that could be used in the clinical setting. I have 

identified variants associated with these traits, considered how prior published studies generalize to 
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more diverse populations, discovered potential gene-environment interactions. These studies have 

been undertaken in the context of personalized medicine—how genetic data can be used to inform 

clinical care. I have noted significant challenges facing implementation of personalized medicine for 

complex diseases and performed a rapid review that could serve as a template for others wishing to 

perform similar studies. Evaluation of the role of genetic variants as predictors of complex disease is 

developing; though the challenges are significant, it is likely they will be overcome in the future.
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Appendix A: Comparison of SNPs in Elks et al. (2010) meta-analysis for AM to African American women in the PAGE Study.  

 

Locus Gene/ 

region 

Elks et al.  African American women from the PAGE Study 

SNP Chr Minor 

Allele 

MAF Beta P-value Best Proxy SNP 

from present 

study 

r2 in 

HapMap 

CEU/YRI 

Coded 

Allele 

CAF Beta (SE) P-value 

rs7759938 6 LIN28B C 0.32 0.12 5.4E-60 rs7759938 - A 0.46 -0.02(0.04) 0.61 
rs2090409 9 TMEM38B A 0.31 -0.09 2.2E-33 rs4452860 0.83/0.82 A 0.67 -0.03(0.04) 0.43 
rs1079866 7 INHBA G 0.15 0.08 5.5E-14 rs6947337 0.02/0.001 A 0.28 -0.07(0.04) 0.10 
rs466639 1 RXRG T 0.13 -0.08 1.3E-13 rs285482 0.36/0.05 A 0.55 -0.003(0.04) 0.93 

rs6438424 3 3q13.3 A 0.50 -0.05 1.4E-13 rs9283566 0.51/0.15 A 0.29 0.03(0.04) 0.47 
rs1398217 18 FUSSEL18 G 0.43 -0.05 2.3E-13 NA NA NA NA NA NA 
rs12617311 2 PLCL1 A 0.32 -0.06 6.0E-13 NA NA NA NA NA NA 
rs9635759 17 CA10 A 0.32 0.06 7.3E-13 NA NA NA NA NA NA 
rs6589964 11 BSX A 0.48 -0.05 1.9E-12 rs922252 0.24/0.16 A 0.40 0.03(0.04) 0.43 
rs10980926 9 ZNF483 A 0.36 0.05 4.2E-11 rs6477828 0.12/0.13 A 0.55 -0.01(0.04) 0.76 
rs17268785 2 CCDC85A G 0.17 0.06 9.7E-11 NA NA NA NA NA NA 
rs13187289 5 PHF15 G 0.20 0.06 1.9E-10 NA NA NA NA NA NA 
rs7642134 3 VGLL3 A 0.38 -0.05 3.5E-10 rs1825896 0.02/0.05 A 0.15 -0.04(0.05) 0.40 
rs17188434 2 NR4A2 C 0.07 -0.09 1.1E-09 NA NA NA NA NA NA 
rs2002675 3 TRA2B G 0.42 0.04 1.2E-09 NA NA NA NA NA NA 
rs7821178 8 PXMP3 A 0.34 -0.05 3.0E-09 NA NA NA NA NA NA 
rs1659127 16 MKL2 A 0.34 0.05 4.0E-09 rs1659127 - A 0.30 0.03(0.04) 0.46 
rs10423674 19 CRTC1 A 0.35 0.04 5.9E-09 rs757318 0.63/0.14 A 0.78 -0.03(0.04) 0.49 
rs10899489 11 GAB2 A 0.15 0.06 8.1E-09 rs7115850 0.96/0.58 C 0.58 -0.05(0.04) 0.23 
rs6575793 14 BEGAIN C 0.42 0.04 1.2E-08 NA NA NA NA NA NA 
rs4929923 11 TRIM66 T 0.36 0.04 1.2E-08 rs4929923 - A 0.46 0.07(0.04) 0.06 
rs6439371 3 TMEM108 G 0.34 0.04 1.3E-08 NA NA NA NA NA NA 
rs900145 11 ARNTL C 0.30 0.04 1.6E-08 rs900145 - A 0.47 -0.03(0.04) 0.41 

rs6762477 3 RBM6 G 0.44 0.05 1.6E-08 rs2240327 0.69/0.16 A 0.64 -0.06(0.04) 0.15 
rs2947411 2 TMEM18 A 0.17 0.05 1.7E-08 rs2947411 - A 0.23 -0.10(0.04) 0.02 
rs1361108 6 C6orf173 T 0.46 -0.04 1.7E-08 rs9385399 1.00/0.60 A 0.25 -0.12(0.04) 0.01 
rs1364063 16 NFAT5 C 0.43 0.04 1.8E-08 rs889398 0.93/0.42 A 0.28 -0.05(0.04) 0.25 
rs633715 1 SEC16B C 0.20 -0.05 2.1E-08 rs516636 1.00/0.92 A 0.11 0.04(0.06) 0.55 

rs4840086 6 PRDM13 G 0.42 -0.04 2.4E-08 NA NA NA NA NA NA 
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Locus Gene/ 

region 

Elks et al.  African American women from the PAGE Study 

SNP Chr Minor 

Allele 

MAF Beta P-value Best Proxy SNP 

from present 

study 

r2 in 

HapMap 

CEU/YRI 

Coded 

Allele 

CAF Beta (SE) P-value 

rs7617480 3 KLHDC8B A 0.22 0.05 2.8E-08 rs13096474 0.76/0.56 A 0.35 -0.05(0.04) 0.21 
rs9939609 16 FTO A 0.40 -0.04 3.1E-08 rs9939609 - A 0.48 0.003(0.04) 0.93 
rs852069 20 PCSK2 A 0.37 -0.04 3.3E-08 NA NA NA NA NA NA 
rs757647 5 KDM3B A 0.22 -0.05 5.4E-08 rs757647 - A 0.41 -0.06(0.04) 0.09 

rs9555810 13 C13orf16 G 0.28 0.04 5.6E-08 NA NA NA NA NA NA 
rs16938437 11 PHF21A T 0.09 -0.07 5.9E-08 rs16938437 - A 0.23 0.02(0.04) 0.63 
rs2687729 3 EEFSEC G 0.27 0.04 1.3E-07 rs2811415 0.17/0.83 A 0.29 0.05(0.04) 0.26 
rs1862471 19 OLFM2 G 0.47 0.04 1.5E-07 NA NA NA NA NA NA 
rs12472911 2 LRP1B C 0.20 0.05 1.5E-07 NA NA NA NA NA NA 
rs3914188 3 ECE2 G 0.27 -0.04 2.6E-07 NA NA NA NA NA NA 
rs2243803 18 SLC14A2 A 0.40 0.04 3.4E-07 NA NA NA NA NA NA 
rs3743266 15 RORA C 0.32 -0.04 8.0E-07 rs17270188 0.31/0.02 A 0.92 0.05(0.07) 0.47 
rs7359257 15 IQCH A 0.45 0.03 1.9E-06 rs7359257 - A 0.66 0.06(0.04) 0.15 

Comparison of previously reported SNPs associated with AM in European descent women to 4,159 African American women from the PAGE Study in a model minimally 
adjusted for study site and principal components (Model 1). Beta values from Elks et al. converted from weeks to years. Data presented are for the previously identified 
SNP. If the previously identified SNP was not directly genotyped in present study, data shown are for the best proxy SNP based on linkage disequilibrium from the 
International HapMap Project CEU panel. (NA) = no sufficient proxy available on the Metabochip. Abbreviations: single nucleotide polymorphism (SNP), age at menarche 
(AM), Population Architecture using Genomics and Epidemiology (PAGE), chromosome (Chr), minor allele frequency (MAF), coded allele frequency (CAF). 
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Appendix B. Comparison of SNPs in Stolk et al. meta-analysis for ANM to African American women in the PAGE Study.  

 

Locus Gene/ 

region 

Stolk et al.  African American women from the PAGE Study 

SNP Chr Minor 

Allele 

MAF Beta P-value Best Proxy SNP 

from present 

study 

r2 in 

HapMap 

CEU/YRI 

Coded 

allele 

CAF Beta (SE) P-value 

rs4246511 1 RHBDL2 T 0.27 0.24 9.08E-17 NA NA NA NA NA NA 
rs1635501 1 EXO1 C 0.48 -0.16 8.46E-10 rs1776133 0.91/0.23 A 0.70 -0.05(0.04) 0.17 
rs2303369 2 FNDC4 T 0.39 -0.18 2.25E-12 rs2303369 - A 0.36 -0.02(0.03) 0.48 
rs10183486 2 TLK1 T 0.37 -0.20 2.21E-14 rs4668368 0.86/0.62 A 0.65 0.03(0.03) 0.37 
rs7606918 2 METAP1D G 0.16 -0.23 2.89E-08 rs11681005 0.08/0.02 A 0.13 -0.06(0.05) 0.25 
rs4693089 4 HELQ G 0.49 0.23 2.38E-19 NA NA NA NA NA NA 
rs890835 5 RNF44 A 0.11 0.18 6.10E-06 NA NA NA NA NA NA 
rs365132 5 UIMC1 T 0.49 0.29 9.11E-32 NA NA NA NA NA NA 

rs2153157 6 SYCP2L A 0.49 0.17 7.76E-12 rs2153157 - A 0.70 0.03(0.04) 0.47 
rs1046089 6 PRRC2A A 0.35 -0.21 1.63E-16 rs9264532 0.08/0.05 A 0.65 0.02(0.03) 0.50 
rs2517388 8 ASH2L G 0.17 0.26 9.31E-15 rs4976896 0.003/0.000 A 0.78 0.01(0.04) 0.77 
rs12294104 11 MPPED2 T 0.17 0.23 1.46E-11 rs7951733 0.35/- A 0.99 0.11(0.13) 0.37 
rs2277339 12 PRIM1 G 0.10 -0.38 2.47E-19 rs12809466 0.01/0.04 A 0.88 0.02(0.05) 0.66 
rs3736830 13 KPNA3 G 0.16 -0.18 9.41E-08 NA NA NA NA NA NA 
rs4886238 13 TDRD3 A 0.33 0.17 9.53E-11 NA NA NA NA NA NA 
rs2307449 15 POLG G 0.41 -0.18 3.56E-13 rs12593363 0.91/0.12 A 0.74 0.01(0.04) 0.83 
rs10852344 16 GSPT1 C 0.42 0.17 1.01E-11 rs8053435 0.04/0.01 A 0.77 -0.01(0.04) 0.77 
rs11668344 19 TMEM150B G 0.36 -0.42 1.45E-59 NA NA NA NA NA NA 
rs12461110 19 NLRP11 A 0.36 -0.16 8.74E-10 rs302469 0.03/0.004 A 0.25 -0.05(0.04) 0.22 
rs16991615 20 MCM8 A 0.07 0.95 1.42E-73 rs16991615 - A 0.01 -0.17(0.15) 0.25 

Comparison of previously reported SNPs from Stolk et al. meta-analysis (Stolk et al.2012) associated with ANM in a combined cohort (discovery and replication) of 53,403 
European descent women to 1,860 PAGE Study African American women in a minimally adjusted for study site and principal components for ANM. MAF from Stolk et al. 
reported for discovery cohort, beta and p-values reported for combined discovery and replication cohorts (Stolk et al.2012). Data presented are for the previously identified 
SNP. If the previously identified SNP was not directly genotyped in present study, data shown are for the best proxy SNP based on linkage disequilibrium from the 
International HapMap Project CEU panel. (NA)= no sufficient proxy available on the Metabochip. Abbreviations: single nucleotide polymorphism (SNP), age at natural 
menopause (ANM), Population Architecture using Genomics and Epidemiology (PAGE), chromosome (Chr), minor allele frequency (MAF), coded allele frequency (CAF). 
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Appendix C. SNPs associated (p≤1x10-04) with AM in African American women from the PAGE Study.  

 

CHR 

 

SNP 

 

GENE 

 

GENE 

REGION 

 

CODED 

ALLELE 

 MODEL 1 MODEL 2 

CAF BETA SE P 

VALUE 

BETA SE P VALUE 

11 rs11604207 RSF1 upstream A 0.58 0.38 0.08 1.59E-06 0.38 0.08 1.82E-06 
17 rs59622946 HEXIM2 flanking A 0.01 1.01 0.23 1.14E-05 1.04 0.23 4.93E-06 
1 rs2753399 ZFYVE9 intronic A 0.08 0.31 0.07 1.16E-05 0.30 0.07 1.63E-05 
5 rs40602 MAST4 intronic A 0.57 0.16 0.04 1.26E-05 0.15 0.04 3.65E-05 

15 rs7181548 C15orf27 intronic A 0.58 -0.16 0.04 1.96E-05 -0.16 0.04 2.36E-05 
8 rs4922116 LPL downstream A 0.15 -0.22 0.05 2.18E-05 -0.21 0.05 3.10E-05 
8 rs1372339 LPL downstream A 0.84 0.21 0.05 2.19E-05 0.21 0.05 2.89E-05 

17 rs116523982 HEXIM2 flanking A 0.01 0.96 0.23 2.51E-05 0.99 0.23 1.11E-05 
17 rs3744412 HEXIM2 5’ UTR C 0.01 0.96 0.23 2.52E-05 1.00 0.23 1.12E-05 
3 rs11922097 PPP2R3A upstream A 0.55 0.16 0.04 2.55E-05 0.16 0.04 1.64E-05 

17 rs16939893 HEXIM2 intronic A 0.004 1.26 0.30 2.73E-05 1.29 0.30 1.46E-05 
6 rs73725617 PHACTR1 intronic A 0.99 -0.64 0.15 3.11E-05 -0.60 0.15 6.83E-05 
7 rs11979121 TFEC upstream A 0.98 -0.52 0.13 4.50E-05 -0.51 0.13 5.41E-05 
3 rs1320623 LSG1 intronic A 0.37 0.15 0.04 5.64E-05 0.15 0.04 5.56E-05 

12 rs61507607 CUX2 intronic A 0.43 0.15 0.04 5.85E-05 0.13 0.04 3.15E-04 
11 rs11224447 ARHGAP42 intronic A 0.07 0.30 0.07 6.11E-05 0.30 0.07 6.11E-05 
19 rs1273516 CYP4F22 downstream A 0.40 0.15 0.04 6.33E-05 0.15 0.04 6.29E-05 
6 rs9503555 IRF4 upstream A 0.78 0.18 0.04 6.83E-05 0.18 0.04 6.03E-05 

15 rs8032832 FAM174B upstream A 0.35 -0.15 0.04 7.26E-05 -0.16 0.04 3.70E-05 
5 rs17730451 C5orf41 3’ flanking A 0.05 0.34 0.09 7.53E-05 0.33  0.09 1.35E-04 
7 rs849326 JAZF1 upstream C 0.09 0.25 0.06 9.35E-05 0.24 0.06 1.07E-04 

Tests of association at p≤1x10-04 for Model 1 from individual SNP linear regressions adjusted for study site and principal components 
(Model 1) and study site, principal components, year of birth, and BMI (Model 2) in 4,159 African American women from the PAGE 
Study are shown.  For each significant test of association, the chromosome, rs number, nearest gene, location, coded allele, beta, 
standard error (SE), and p-value are given. Genes listed are nearest genes to the SNP as measured from the transcription start site for 
upstream SNPs or the transcription stop site for downstream SNPs. Abbreviations: single nucleotide polymorphism (SNP), age at 
menarche (AM), Population Architecture using Genomics and Epidemiology (PAGE), chromosome (CHR), coded allele frequency 
(CAF), standard error (SE). 
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Appendix D. SNP associations with ANM in African American women from the PAGE Study.  

 

CHR SNP GENE GENE REGION CODED 
ALLELE 

CAF BETA SE P 
VALUE 

19 rs189596789 LDLR upstream A 0.006 1.09 0.20 4.98E-08 
11 rs79972789 KCNQ1 intronic C 0.997 -1.76 0.34 1.90E-07 
5 rs181686584 COL4A3BP intronic A 0.002 2.35 0.46 2.85E-07 
6 rs114158228 CDKAL1 intronic A 9E-04 3.60 0.73 7.12E-07 
21 rs117876865 KCNE1 downstream A 9E-04 3.58 0.73 8.55E-07 
10 rs11195485 ADRA2A downstream A 0.002 2.89 0.59 9.63E-07 
11 rs11224401 ARHGAP42 intronic A 0.997 2.20 0.45 1.13E-06 
1 rs78937547 SEC16B downstream A 0.992 -1.97 0.41 1.89E-06 
17 rs75394140 KCNJ2 downstream A 0.002 -0.93 0.21 6.48E-06 
11 rs76988592 KCNJ1 downstream A 0.702 -0.93 0.21 7.24E-06 
3 rs114451007 PPARG intronic A 0.253 1.70 0.38 9.30E-06 
12 rs10846771 DHX37 downstream A 0.997 -0.16 0.04 9.43E-06 
11 rs12804247 CCDC81 upstream A 0.655 0.17 0.04 1.45E-05 
1 rs76571116 SEC16B downstream A 3E-04 -1.54 0.36 1.57E-05 
17 rs17634167 TTLL6 cds-synon. A 6E-04 -0.34 0.08 1.62E-05 
7 rs117382431 FKBP6 downstream A 0.999 4.38 1.03 2.17E-05 
6 rs76294174 LOC100130357 intronic C 3E-04 4.38 1.03 2.17E-05 
6 rs74918542 SCGN intronic A 0.999 -4.38 1.03 2.17E-05 
1 rs76078015 NOS1AP intronic A 9E-04 4.38 1.03 2.17E-05 
18 rs117454233 MC4R downstream A 0.999 -4.38 1.03 2.17E-05 
3 rs73025249 PPARG intronic A 9E-04 4.38 1.03 2.17E-05 
3 rs182857216 ETV5 intronic A 0.999 -4.38 1.03 2.17E-05 
3 rs73027210 PPARG intronic A 9E-04 4.38 1.03 2.17E-05 
9 rs75220302 CDKN2A downstream A 0.999 -4..38 1.03 2.18E-05 
9 rs74599268 CDKN2B upstream A 3E-04 4.38 1.03 2.18E-05 
9 rs3731245 CDKN2A intronic A 3E-04 4.38 1.03 2.18E-05 
9 rs76774391 CDKN2B upstream C 3E-04 4.38 1.03 2.18E-05 
2 rs117258126 IRS1 downstream A 3E-04 4.38 1.03 2.18E-05 
9 rs3808846 CDKN2B 5' flanking A 3E-04 4.38 1.03 2.18E-05 
9 rs77706751 CDKN2B upstream A 6E-04 4.38 1.03 2.18E-05 
9 rs3808845 CDKN2B 5' flanking A 3E-04 4.38 1.03 2.18E-05 
9 rs76810097 CDKN2B upstream A 3E-04 4.38 1.03 2.18E-05 
9 rs36228836 CDKN2A 5' flanking A 3E-04 4.38 1.03 2.18E-05 
9 rs75039118 ADAMTS13 intronic A 0.999 -4.38 1.03 2.19E-05 
18 rs75914913 MC4R downstream A 3E-04 4.38 1.03 2.19E-05 
11 rs190060931 BUD13 downstream A 0.999 -4.38 1.03 2.21E-05 
2 rs186397905 IRS1 downstream C 3E-04 4.38 1.03 2.21E-05 
16 rs9934222 JPH3 cds-synon. A 0.163 -0.19 0.04 2.28E-05 
15 rs72751410 MAP2K5 intronic A 0.998 -1.51 0.36 2.30E-05 
15 rs72747452 LOC100506686 intronic A 0.002 1.51 0.36 2.30E-05 
11 rs180751580 NUCB2 missense C 0.999 -4.36 1.03 2.30E-05 
3 rs186437034 SCN5A intronic A 0.999 -2.46 0.58 2.45E-05 
7 rs78912482 JAZF1 upstream A 0.012 0.64 0.15 3.04E-05 
1 rs116071515 SEC16B intronic A 0.002 1.88 0.45 3.06E-05 
6 rs1997770 OFCC1 downstream A 0.970 -0.41 0.10 3.55E-05 
7 rs118135044 DGKB upstream A 4E-04 4.22 1.02 3.73E-05 
11 rs74402657 ARFGAP2 intronic C 4E-04 2.93 0.72 3.96E-05 
1 rs117217277 SEC16B downstream A 0.999 -2.97 0.72 3.97E-05 
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CHR SNP GENE GENE REGION CODED 
ALLELE 

CAF BETA SE P 
VALUE 

1 rs116881786 SEC16B downstream A 0.999 -2.97 0.72 3.97E-05 
1 rs76471454 SEC16B downstream A 6E-04 2.97 0.72 3.97E-05 
1 rs79775735 SEC16B downstream A 6E-04 2.97 0.72 3.97E-05 
1 rs79468804 SEC16B downstream A 6E-04 2.97 0.72 3.97E-05 
1 rs74703854 SEC16B downstream A 0.999 -2.97 0.72 3.97E-05 
1 rs116923068 SEC16B downstream C 0.999 -2.97 0.72 3.97E-05 
1 rs117674205 SEC16B downstream C 0.999 -2.97 0.72 3.97E-05 
1 rs117260315 SEC16B downstream A 6E-04 2.97 0.72 3.97E-05 
1 rs76020919 SEC16B downstream A 6E-04 2.97 0.72 3.97E-05 
11 rs2306034 LRP4 UTR-3’ A 4E-04 2.94 0.72 3.99E-05 
2 rs189110944 IRS1 downstream A 4E-04 4.17 1.02 4.72E-05 
5 rs1976311 KCNN2 upstream C 0.996 -1.02 0.25 4.98E-05 
7 rs13245084 LOC100507421 intronic A 4E-04 4.14 1.02 5.07E-05 
6 rs115178932 LRRC16A intronic A 4E-04 4.14 1.02 5.07E-05 
1 rs77353590 SYF2 downstream A 0.009 0.74 0.18 5.42E-05 
2 rs111826230 APOB upstream A 0.984 -0.58 0.14 5.47E-05 
11 rs193030163 DDB2 upstream C 0.999 -4.11 1.02 5.57E-05 
11 rs114702513 KCNQ1 intronic A 0.996 -1.23 0.31 5.60E-05 
6 rs117124693 PHACTR1 intronic A 0.999 -4.11 1.02 5.62E-05 
6 rs181947983 SLC17A3 upstream A 4E-04 4.11 1.02 5.62E-05 
15 rs183951867 CHRNB4 upstream A 9E-04 4.11 1.02 5.62E-05 
9 rs191930498 CDKN2B upstream C 4E-04 4.10 1.02 5.83E-05 
17 rs192656758 CCT6B downstream A 4E-04 4.10 1.02 5.86E-05 
7 rs740259 JAZF1 5’ flanking A 4E-04 4.09 1.02 5.97E-05 
1 rs114389068 GPR153 cds-synon. A 0.005 0.93 0.23 6.07E-05 
11 rs185476610 KCNQ1 intronic A 0.999 -4.08 1.02 6.24E-05 
16 rs246192 NDRG4 intronic C 0.256 0.15 0.04 6.25E-05 
7 rs192457106 JAZF1 intronic A 0.999 -4.08 1.02 6.35E-05 
7 rs73702566 WBSCR22 intronic A 0.999 -4.08 1.02 6.35E-05 
6 rs187190790 TAP2D upstream A 0.999 -4.08 1.02 6.38E-05 
7 rs74984879 DGKB upstream C 0.999 -2.04 0.51 6.40E-05 
11 rs184056970 ARAP1 intronic A 4E-04 4.07 1.02 6.53E-05 
3 rs76909367 COLQ intronic A 4E-04 4.06 1.02 6.89E-05 
10 rs11187795 PLCE1 intronic A 4E-04 4.06 1.02 6.93E-05 
6 rs186129489 TFAP2D intronic A 4E-04 4.05 1.02 7.12E-05 
2 rs73923981 BRE intronic A 9E-04 4.05 1.02 7.32E-05 
15 rs180807356 ADAMTS7 upstream A 0.999 -4.04 1.02 7.52E-05 
5 rs10062135 NPR3 intronic A 0.009 0.73 0.19 7.85E-05 
12 rs17568045 C12orf42 intronic A 0.993 -0.86 0.22 8.11E-05 
1 rs116411856 WARS2 upstream A 0.003 1.32 0.34 8.16E-05 
1 rs78696400 LYPLAL1 downstream A 0.985 -0.58 0.15 8.96E-05 
15 rs74979292 C15orf39 upstream A 0.002 1.49 0.38 9.29E-05 
11 rs144204188 TRIM66 intronic A 0.002 2.79 0.72 9.39E-05 
1 rs78411379 TBX15 intronic A 0.999 -2.27 0.58 9.62E-05 
15 rs190893945 ADAMTSL3 intronic A 0.998 -1.76 0.45 9.67E-05 
9 rs12555547 CDKN2B upstream C 0.998 -2.30 0.59 9.69E-05 
2 rs10932320 C2orf67 intronic A 0.807 -0.17 0.04 9.93E-05 

Tests of association at p≤1x10-04 from individual SNP linear regressions adjusted for study site and principal 
components in 1,860 African American women from the PAGE Study are shown.  For each significant test of 
association, the chromosome, rs number, nearest gene, location, coded allele, beta, standard error, and p-value 
are given.  Genes listed are nearest genes to the SNP as measured from the transcription start site for upstream 
SNPs or the transcription stop site for downstream SNPs. Abbreviations: single nucleotide polymorphism 
(SNP), age at natural menopause (ANM), Population Architecture using Genomics and Epidemiology (PAGE), 
chromosome (CHR), coded allele frequency (CAF), standard error (SE). 
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Appendix E. Power calculations for AM analysis for women in the PAGE Study. 

 

 

Shown are power calculations for the age at menarche study of African American women in the PAGE 
Study calculated using QUANTO. Models were for 4,159 independent individuals and a continuous 
trait, gene-only hypothesis assuming an additive model of inheritance and a 3.1x10-7 two-sided 
significance level. Abbreviations: age at menarche, AM; Population Architecture using Genomics and 
Epidemiology, PAGE. 
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Appendix F. Power calculations for ANM analysis for African American women in the PAGE Study. 

 

Shown are power calculations for the age at natural menopause study of African American women in 
the PAGE Study calculated using QUANTO. Models were for 1,860 independent individuals and a 
continuous trait, gene-only hypothesis assuming an additive model of inheritance and a 3.1x10-7 two-
sided significance level. Abbreviations: age at natural menopause, ANM; Population Architecture 
using Genomics and Epidemiology, PAGE.  

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6

P
o
w
e
r

β

MAF=0.10

MAF=0.15

MAF=0.20

MAF=0.25

MAF=0.30

MAF=0.35

MAF=0.40

MAF=0.45

MAF=0.50



 

146 
 

Appendix G. SNPs analyzed in endometrial cancer meta-analysis. 

SNP Chr Gene Cancer type GWAS  author GWAS 

year 

rs7538876 1 PADI4, PADI6, 
RCC2, ARHGEF10L 

Basal cell carcinoma Stacey SN 2008 

rs1866967 1 PTPRU Prostate cancer Tao S 2012 
rs903263 1 PRKACB Male breast cancer Orr N 2012 

rs11249433 1 intergenic Breast cancer Thomas G 2009 
rs4072037 1 MUC1 Esophageal & gastric cancer Abnet CC 2010 
rs2808630 1 CRP Lung cancer Amos CL 2008 
rs3790844 1 NR5A2 Pancreatic cancer Petersen GM 2010 
rs6687758 1 DUSP10 Colorectal cancer Houlston RS 2010 
rs801114 1 RHOU Basal cell carcinoma Stacey SN 2008 

rs1465618 2 THADA Prostate cancer Eeles RA 2009 
rs10490113 2 intergenic Breast cancer Murabito JM 2007 
rs721048 2 EHBP1 Prostate cancer Gudmundsson J 2008 

rs6545977 2 EHBP1 Prostate cancer Eeles RA 2009 
rs4254535 2 intergenic Lung cancer Broderick P 2009 
rs10187424 

2 
GGCX, VAMP8, 
VAMP5, RNF181 Prostate cancer Kote-Jarai Z 2011 

rs12615966 2 LOC284998 Pancreatic cancer Low SK 2010 
rs3789080 2 ACOXL Prostate cancer Tao S 2012 
rs12621278 2 ITGA6 Prostate cancer Eeles RA 2009 
rs16867225 2 CWC22 Prostate cancer Tao S 2012 
rs13398206 2 PLCL1 Prostate cancer Tao S 2012 
rs6435862 2 BARD1 Neuroblastoma (high-risk) Capasso M 2009 
rs13387042 2 intergenic Breast cancer Stacey SN 2007 
rs966423 2 DIRC3 Thyroid cancer Gudmundsson J 2012 

rs1656402 2 EIF4E2 Lung cancer Sato Y 2010 
rs11892031 2 UGT1A Bladder cancer Rothman N 2010 
rs7584330 2 intergenic Prostate cancer Kote-Jarai Z 2011 
rs2292884 2 MLPH Prostate cancer Schumacher FR 2011 
rs975334 3 CNTN4 Gallbladder cancer Cha PC 2012 

rs4973768 3 SLC4A7 Breast cancer Turnbull C 2010 
rs1530057 3 RBMS3 Lung cancer Broderick P 2009 
rs2660753 3 intergenic Prostate cancer Eeles RA 2008 
rs17023900 3 intergenic Prostate cancer Cheng I 2012 
rs17181170 3 LINC00506 Prostate cancer Eeles RA 2009 
rs10934853 3 EEFSEC Colorectal cancer Spain SL 2009 
rs6763931 3 ZBTB38 Prostate cancer Kote-Jarai Z 2011 
rs6788895 3 SIAH2 Breast cancer Elgazzar S 2012 
rs2665390 3 TIPARP Ovarian cancer Goode EL 2010 
rs10936599 3 MYNN Colorectal cancer Houlston RS 2010 
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SNP Chr Gene Cancer type GWAS  author GWAS 

year 

rs710521 3 TP63 Bladder cancer Kiemeney LA 2008 
rs7626795 3 IL1RAP Lung cancer Amos CI 2008 
rs4927850 3 TFRC Pancreatic cancer Wu C 2011 
rs735172 4 EVC Prostate cancer Tao S 2012 

rs12500426 4 PDLIM5 Prostate cancer Eeles RA 2009 
rs17021918 4 PDLIM5 Prostate cancer Eeles RA 2009 
rs1789924 

4 ADH1C 
Upper aerodigestive tract 

cancers McKay JD 2011 
rs971074 

4 ADH7 
Upper aerodigestive tract 

cancers McKay JD 2011 
rs7679673 4 TET2 Prostate cancer Eeles RA 2009 
rs9790517 4 TET2 Breast Cancer Michailidou K 2013 
rs10069690 5 TERT Breast cancer Haiman CA 2011 
rs2736100 5 TERT Testicular germ cell cancer Turnbull C 2010 
rs4635969 5 TERT Pancreatic cancer Diergaarde B 2010 
rs4975616 5 CLPTM1L Lung cancer Broderick P 2009 
rs402710 5 TERT, CLPTM1L Lung cancer McKay JD 2008 
rs401681 5 CLPTM1L Lung cancer Wang Y 2008 

rs12653946 5 intergenic Prostate cancer Takata R 2010 
rs6879627 5 LOC731559 Pancreatic cancer Low SK 2010 
rs2121875 5 FGF10 Prostate cancer Kote-Jarai Z 2011 
rs4415084 5 intergenic Breast cancer Fletcher O 2011 
rs7716600 5 MRPS30 Breast cancer Li J 2010 
rs981782 5 intergenic Breast cancer Easton DF 2007 

rs16886165 5 MAP3K1 Breast cancer Thomas G 2009 
rs889312 5 MAP3K1 Breast cancer Easton DF 2007 

rs10940579 5 ACTBL2 Prostate cancer Tao S 2012 
rs10052657 5 PDE4D Esophageal cancer Wu C 2011 
rs7717572 5 CD180 Prostate cancer Tao S 2012 
rs6869388 5 KIAA0825 Gallbladder cancer Cha PC 2012 
rs4624820 5 SPRY4 Testicular germ cell cancer Rapley EA 2009 
rs6556756 5 intergenic Breast cancer Murabito JM 2007 
rs9502893 6 FOXQ1 Pancreatic cancer Low SK 2010 
rs10456809 6 KIF13A Prostate cancer Tao S 2012 
rs2523395 6 LOC285830 Prostate cancer Tao S 2012 
rs130067 6 CCHCR1 Prostate cancer Kote-Jarai Z 2011 

rs3117582 6 BAT3,MSH5 Lung cancer Wang Y 2008 
rs1321311 6 CDKN1A Colorectal cancer Dunlop MG 2012 
rs10498792 6 PKHD1 Prostate cancer Murabito JM 2007 
rs763780 6 IL17F Pancreatic cancer Innocenti F 2011 
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SNP Chr Gene Cancer type GWAS  author GWAS 

year 

rs9363918 6 BAI3 Pancreatic cancer Wu C 2011 
rs17530068 6 FAM46A, C6orf37 Breast cancer Siddiq A 2012 
rs339331 6 GPRC6A,RFX6 Prostate cancer Takata R 2010 

rs2180341 6 ECHDC1,RNF146 Breast cancer Gold B 2008 
rs3757318 6 ESR1,C6orf97 Breast cancer Turnbull C 2010 
rs3734805 6 ESR1 Breast cancer Fletcher O 2011 
rs2046210 6 ESR1, C6orf97 Breast cancer Zheng W 2009 
rs651164 6 intergenic Prostate cancer Eeles RA 2009 

rs9364554 6 SLC22A3 Prostate cancer Eeles RA 2008 
rs7758229 6 SLC22A3 Colorectal cancer Cui R 2011 
rs3016539 6 PARK2 Pancreatic cancer Low SK 2010 
rs12155172 7 intergenic Prostate cancer Eeles RA 2009 
rs10486567 7 JAZF1 Prostate cancer Thomas G 2008 
rs7789197 7 INHBA Prostate cancer Tao S 2012 
rs10263639 7 intergenic Breast cancer Murabito JM 2007 
rs6465657 7 LMTK2 Prostate cancer Eeles RA 2008 
rs9649213 7 BAIAP2L1 Prostate cancer Tao S 2012 
rs1495741 8 NAT2 Bladder cancer Rothman N 2010 
rs1512268 8 NKX3.1 Prostate cancer Eeles RA 2009 
rs10503733 8 intergenic Prostate cancer Cheng I 2012 
rs7832232 8 RNF5P1 Pancreatic cancer Low SK 2010 
rs16892766 8 EIF3H Colorectal cancer Tomlinson IP 2008 
rs10088262 8 FAM91A1 Pancreatic cancer Low SK 2010 
rs1016343 8 intergenic Prostate cancer Eeles RA 2008 
rs13252298 8 intergenic Prostate cancer Schumacher FR 2011 
rs1456315 8 intergenic Prostate cancer Takata R 2010 
rs13254738 8 PRNCR1 Prostate cancer Cheng I 2012 
rs6983561 8 intergenic Prostate cancer Cheng I 2012 
rs10505483 8 intergenic Prostate cancer Cheng I 2012 
rs16902094 8 intergenic Prostate cancer Gudmundsson J 2009 
rs445114 8 intergenic Prostate cancer Gudmundsson J 2009 

rs13281615 8 intergenic Breast cancer Easton DF 2007 
rs1562430 8 intergenic Breast cancer Turnbull C 2010 
rs10505477 8 ORF DQ515897 Colorectal cancer Zanke BW 2007 
rs6983267 8 POU5F1B Lung cancer Spinola M 2007 
rs7014346 

8 

POU5FIP1, 
HsG57825, 
DQ515897 Colorectal cancer Tenesa A 2008 

rs4242382 8 intergenic Prostate cancer Thomas G 2008 
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SNP Chr Gene Cancer type GWAS  author GWAS 

year 

rs7837688 8 intergenic Prostate cancer Takata R 2010 
rs9642880 8 MYC, BC042052 Bladder cancer Kiemeney LA 2008 
rs10088218 8 MYC,THEM75 Ovarian cancer Goode EL 2010 
rs2294008 8 PSCA Bladder cancer Wu X 2009 
rs7040024 9 DMRT1 Testicular cancer Kanetsky PA 2011 
rs755383 9 DMRT1 Testicular germ cell cancer Turnbull C 2010 

rs3814113 
9 

BNC2, LOC648570, 
CNTLN Ovarian cancer Song H 2009 

rs1412829 9 intergenic Glioma (high-grade) Wrensch M 2009 
rs1011970 9 CDKN2A,CDKN2B Breast cancer Turnbull C 2010 
rs11141915 9 DAPK1 Pancreatic cancer Kiyotani K 2012 
rs965513 9 FOXE1 Thyroid cancer Gudmundsson J 2009 
rs817826 9 RAD23B, KLF4 Prostate cancer Xu J 2012 

rs7847271 9 TNC Prostate cancer Tao S 2012 
rs505922 9 ABO Pancreatic cancer Amundadottir L 2009 

rs10795668 10 intergenic Colorectal cancer Tomlinson IP 2008 
rs3123078 10 intergenic Prostate cancer Eeles RA 2009 
rs10993994 10 MSMB Prostate cancer Thomas G 2008 
rs1926203 10 ACTA2 Lung cancer Broderick P 2009 
rs2274223 10 PLCE1 Esophageal cancer Wu C 2011 
rs3750817 10 FGFR2 Breast cancer Elgazzar S 2012 
rs2981579 10 FGFR2 Breast cancer Thomas G 2009 
rs1219648 10 FGFR2 Breast cancer Hunter DJ 2007 
rs2981582 10 FGFR2 Breast cancer Easton DF 2007 
rs10510102 10 FGFR2 Breast cancer Fletcher O 2011 
rs4962416 10 CTBP2 Prostate cancer Thomas G 2008 
rs3817198 11 LSP1 Breast cancer Easton DF 2007 
rs909116 11 LSP1 Breast cancer Turnbull C 2010 

rs7127900 
11 

IGF2, IGF2AS, INS, 
TH Prostate cancer Eeles RA 2009 

rs11228565 11 intergenic Prostate cancer Gudmundsson J 2009 
rs7931342 11 intergenic Prostate cancer Eeles RA 2008 
rs10896449 11 intergenic Prostate cancer Thomas G 2008 
rs7130881 11 intergenic Prostate cancer Eeles RA 2009 
rs614367 

11 

MYEOV,CCND1,OR
AOV1,FGF19,FGF4,F

GF3 Breast cancer Turnbull C 2010 
rs3802842 11 intergenic Colorectal cancer Tenesa A 2008 
rs11062040 12 DCP1B Pancreatic cancer Innocenti F 2011 
rs2900174 12 PRB2 Pancreatic cancer Innocenti F 2011 
rs2711721 12 AMIGO2 Prostate cancer Tao S 2012 
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SNP Chr Gene Cancer type GWAS  author GWAS 

year 

rs4489787 12 ANP32D Prostate cancer Tao S 2012 
rs10875943 12 PRPH Prostate cancer Kote-Jarai Z 2011 
rs11169552 12 DIP2B, ATF1 Colorectal cancer Houlston RS 2010 
rs902774 12 KRT8, EIF4B, TENC1 Prostate cancer Schumacher FR 2011 

rs1878022 12 CMKLR1 Prostate cancer FitzGerald LM 2011 
rs9600079 13 intergenic Prostate cancer Takata R 2010 
rs9543325 13 KLF5, KLF12 Pancreatic cancer Petersen GM 2010 
rs1886449 13 LOC730242 Pancreatic cancer Low SK 2010 
rs2039553 13 NDFIP2 Pancreatic cancer Low SK 2010 
rs16944141 13 MIR622 Prostate cancer Tao S 2012 
rs1926657 13 ABCC4 Breast cancer Murabito JM 2007 
rs17450420 13 SLC10A2 Esophageal cancer Wu C 2012 
rs1243647 14 RNASE9 Prostate cancer Tao S 2012 
rs944289 14 NKX2-1 Thyroid cancer Gudmundsson J 2009 

rs4444235 14 BMP4 Colorectal cancer Houlston RS 2008 
rs1314913 14 RAD51B Male breast cancer Orr N 2012 
rs3784099 14 RAD51L1 Breast cancer Shu XO 2012 
rs999737 14 RAD51L1 Breast cancer Thomas G 2009 

rs3850370 
14 

SKIIP, SNW1, 
ALKBH1, NRXN3 Lung cancer Hu L 2012 

rs4322600 14 GALC Breast cancer Chen F 2012 
rs2400997 14 MIR656 Prostate cancer Tao S 2012 
rs748404 15 TGM5 Lung cancer Broderick P 2009 

rs1876206 15 FBN1 Breast cancer Murabito JM 2007 
rs8034191 

15 

CHRNA3,CHRNA5, 
CHRNB4, PSMA4, 

LOC123688 Lung cancer Hung RJ 2008 
rs1051730 15 intergenic Lung cancer McKay JD 2008 
rs8042374 15 CHRNA3 Lung cancer Wang Y 2008 
rs9635542 16 PPL Lung cancer Wei S 2012 
rs8057939 16 C16orf78 Prostate cancer Tao S 2012 
rs3803662 16 TNRC9 Breast cancer Stacey SN 2007 
rs3112612 16 TOX3 Breast cancer Fletcher O 2011 
rs9929218 16 CDH1 Colorectal cancer Houlston RS 2008 
rs9934948 16 intergenic Breast cancer Shu XO 2012 
rs4924935 17 PRPSAP2 Pancreatic cancer Low SK 2010 
rs2257205 17 RNF43 Pancreatic cancer Low SK 2010 
rs16951095 18 LAMA1 Lung cancer Yoon KA 2010 
rs2847281 

18 PTPN2 
Esophageal cancer 

(squamous cell) Wu C 2012 
rs998124 18 MIR4319 Prostate cancer Tao S 2012 
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SNP Chr Gene Cancer type GWAS  author GWAS 

year 

rs4939827 18 SMAD7 Colorectal cancer Broderick P 2007 
rs7504990 18 DCC Gallbladder cancer Cha PC 2012 
rs1978503 18 intergenic Breast cancer Murabito JM 2007 

rs8170 19 C19orf62,MERIT40 Ovarian cancer Bolton KL 2010 
rs2363956 19 ANKLE1 Ovarian cancer Bolton KL 2010 
rs8102137 19 CCNE1 Bladder cancer Rothman N 2010 
rs10411210 19 RHPN2 Colorectal cancer Houlston RS 2008 
rs8102476 19 intergenic Prostate cancer Gudmundsson J 2009 
rs2735839 19 KLK3 Prostate cancer Eeles RA 2008 
rs103294 19 intergenic Prostate cancer Xu J 2012 
rs961253 20 intergenic Colorectal cancer Houlston RS 2008 

rs4925386 20 LAMA5 Colorectal cancer Houlston RS 2010 
rs6010620 20 RTEL1 Glioma (high-grade) Wrensch M 2009 
rs4809324 20 RTEL1 Glioma (high-grade) Wrensch M 2009 
rs372883 21 BACH1 Pancreatic cancer Wu C 2011 
rs458685 21 GRIK1 Breast cancer Murabito JM 2007 

rs1209950 21 ETS2 Lung cancer Sato Y 2010 
rs9981861 21 DSCAM Breast cancer Li J 2010 
rs1547374 21 TFF1 Pancreatic cancer Wu C 2011 
rs5751168 22 ZNF280B Prostate cancer Tao S 2012 
rs6005451 22 MN1 Prostate cancer Tao S 2012 
rs738722 

22 CHEK2,HSCB 
Esophageal cancer and 

gastric cancer Abnet CC 2010 
rs2239815 

22 XBP1 
Esophageal cancer 

(squamous cell) Wu C 2012 
rs1014971 22 CBX6,APOBEC3A Bladder cancer Rothman N 2010 
rs9623117 22 TNRC6B Prostate cancer Sun J 2009 
rs5759167 22 intergenic Prostate cancer Eeles RA 2009 
rs5945572 

X 
NUDT10, NUDT11, 

LOC340602 Prostate cancer Gudmundsson J 2008 
Shown are SNPs associated with cancer in previous GWAS that were genotyped in EAGLE BioVU for association with 
endometrial cancer. Chromosome location, previous cancer association, first author and year of the first GWAS to 
publish an association of the SNP with cancer. Abbreviations: single nucleotide polymorphism (SNP), chromosome 
(Chr), genome-wide association study (GWAS). Adapted from Setiawan VW et al. 2014.  
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Appendix H. SNP associations with endometrial cancer in EAGLE BioVU. 

CHR SNP GENE A1 TEST NMISS OR SE P-value 

8 RS10086908 intergenic T ADD 92 8.059 0.8012 0.009196 

8 RS10090154 intergenic A ADD 92 3.555 0.7785 0.1033 

19 RS10411210 RHPN2 C ADD 92 4.339 1.278 0.251 

2 RS1045485 CASP8 G ADD 92 0.5402 0.6592 0.3503 

7 RS10486567 JAZF1 G ADD 92 1.025 0.6064 0.9671 

2 RS10490113 intergenic C ADD 92 0.207 1.048 0.1327 

8 RS10505477 ORF DQ515897 A ADD 92 0.2604 0.5934 0.02338 

15 RS1051730 intergenic A ADD 92 1.251 0.4745 0.6369 

12 RS10778826 PPFIA2 A ADD 92 4.407 0.6341 0.01933 

10 RS10795668 intergenic G ADD 92 2.54 0.666 0.1616 

11 RS10896449 intergenic G ADD 91 1.319 0.4948 0.5755 

10 RS10993994 MSMB T ADD 92 0.9444 0.5785 0.9212 

11 RS11228565 intergenic A ADD 92 0.9837 0.5761 0.9772 

1 RS11249433 intergenic C ADD 92 1.994 0.4832 0.1531 

16 RS11649338 intergenic C ADD 92 1.973 0.5418 0.2098 

17 RS11649743 HNF1B G ADD 92 2.847 0.8802 0.2346 

16 RS11861609 CDH13 C ADD 92 1.347 0.4561 0.5139 

7 RS12155172 intergenic A ADD 92 1.183 0.5354 0.7539 

11 RS12418451 RP11-554A11.8 A ADD 89 1.442 0.5311 0.4909 

4 RS12500426 PDLIM5 A ADD 92 1.842 0.5397 0.2576 

8 RS12543663 intergenic C ADD 92 0.4964 0.5742 0.2225 

2 RS12621278 ITGA6 A ADD 92 8.56E+07 7454 0.998 

8 RS13254738 PRNCR1 C ADD 89 0.8486 0.5218 0.7531 

8 RS13281615 intergenic T ADD 92 0.6143 0.5009 0.3307 

2 RS13387042 intergenic A ADD 92 0.4301 0.4724 0.07411 

11 RS1393350 TYR A ADD 92 1.458 0.5436 0.4878 

2 RS1465618 THADA T ADD 92 7.129 0.8207 0.01669 

8 RS1512268 intergenic T ADD 89 0.6309 0.5398 0.3935 

3 RS1530057 RBMS3 A ADD 92 0.6356 1.009 0.6534 

9 RS1571801 DAB2IP T ADD 92 1.6 0.4831 0.3308 

5 RS16891982 SLC45A2 G ADD 89 6.37E+08 1.01E+04 0.9984 

8 RS16892766 EIF3H C ADD 89 0.3024 1.234 0.3323 

8 RS16901979 intergenic A ADD 88 6.44E-09 1.05E+04 0.9986 

8 RS16902094 intergenic G ADD 91 1.218 0.6842 0.7732 

4 RS17021918 PDLIM5 C ADD 92 1.839 0.6172 0.3235 

15 RS1876206 FBN1 G ADD 89 0.4745 0.7257 0.3043 

10 RS1926203 ACTA2 T ADD 89 1.53 0.5566 0.4452 

13 RS1926657 ABCC4 T ADD 92 2.166 0.5809 0.1832 

18 RS1978503 intergenic G ADD 91 1.092 0.656 0.893 

6 RS2046210 ESR1, C6orf97 A ADD 91 2.623 0.6246 0.1227 
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CHR SNP GENE A1 TEST NMISS OR SE P-value 

17 RS2075555 COL1A1 T ADD 92 1.394 0.7214 0.6453 

22 RS2284063 PLA2G6 A ADD 92 1.028 0.5285 0.9584 

20 RS2296241 CYP24A1 G ADD 92 1.023 0.5002 0.9644 

19 RS25487 XRCC1 A ADD 92 1.009 0.5619 0.9876 

16 RS258322 CDK10 A ADD 92 0.9609 0.8933 0.9644 

3 RS2660753 intergenic T ADD 92 1.72 0.8109 0.5037 

19 RS266849 intergenic A ADD 91 0.7578 0.5888 0.6376 

2 RS2710647 EHBP1 C ADD 88 1.222 0.5054 0.6917 

19 RS2735839 KLK3 G ADD 92 0.6574 0.6681 0.5302 

5 RS2736100 TERT G ADD 88 1.843 0.502 0.2234 

8 RS2928679 intergenic A ADD 92 0.8392 0.4819 0.716 

10 RS2981578 FGFR2 G ADD 92 1.064 0.46 0.8935 

10 RS2981582 FGFR2 T ADD 92 0.8353 0.5096 0.724 

6 RS3131379 MSH5-SAPCD1 T ADD 90 1.191 0.718 0.8073 

5 RS31489 CLPTM1L C ADD 87 1.198 0.518 0.7275 

10 RS3750817 FGFR2 C ADD 92 1.302 0.4951 0.5943 

11 RS3802842 intergenic C ADD 92 0.8701 0.6396 0.8278 

16 RS3803662 TNRC9 T ADD 92 1.108 0.5643 0.8552 

9 RS3814113 BNC2, LOC648570, 
CNTLN 

T ADD 92 2.508 0.6238 0.1404 

11 RS3817198 LSP1 C ADD 92 1.548 0.5195 0.4003 

16 RS3863435 intergenic C ADD 92 1.119 0.4735 0.8122 

5 RS401681 CLPTM1L C ADD 92 1.739 0.537 0.3027 

5 RS402710 TERT, CLPTM1L C ADD 92 1.236 0.5136 0.6804 

2 RS4254535 intergenic C ADD 92 0.7048 0.6259 0.5761 

6 RS4324798 intergenic A ADD 88 0.9292 0.8394 0.9302 

5 RS4415084 intergenic T ADD 91 0.5186 0.5361 0.2206 

17 RS4430796 HNF1B G ADD 92 0.6604 0.5766 0.4718 

14 RS4444235 BMP4 C ADD 92 0.6297 0.5041 0.3588 

21 RS458685 GRIK1 C ADD 92 1.626 0.6899 0.4811 

4 RS4588 GC A ADD 89 0.643 0.5992 0.461 

9 RS4636294 intergenic A ADD 89 1.054 0.5592 0.9249 

15 RS4779584 intergenic T ADD 92 1.223 0.5631 0.7203 

16 RS4782780 CDH13 T ADD 92 1.105 0.4615 0.8292 

16 RS4785763 AFG3L1P A ADD 90 0.9574 0.5578 0.9378 

3 RS4857841 EEFSEC A ADD 92 0.7802 0.582 0.6698 

18 RS4939827 SMAD7 T ADD 92 0.9456 0.5161 0.9137 

8 RS4961199 intergenic A ADD 92 0.9528 0.6984 0.9449 

10 RS4962416 CTBP2 C ADD 92 2.734 0.6047 0.09627 

3 RS4973768 SLC4A7 T ADD 92 0.6317 0.5361 0.3916 

5 RS4975616 CLPTM1L A ADD 92 2.079 0.6011 0.2234 

22 RS5759167 intergenic G ADD 92 1.653 0.5844 0.3896 
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CHR SNP GENE A1 TEST NMISS OR SE P-value 

X RS5945572 NUDT10, NUDT11, 
LOC340602 

A ADD 92 0.5652 0.5983 0.3402 

X RS5945619 intergenic C ADD 89 0.5694 0.5963 0.345 

20 RS6068816 CYP24A1 T ADD 92 2.637 0.8508 0.2544 

8 RS620861 LOC101930033 G ADD 91 0.3639 0.5966 0.09016 

7 RS6465657 LMTK2 C ADD 92 0.6371 0.5054 0.3724 

17 RS6504950 STXBP4 G ADD 92 0.644 0.5058 0.3842 

5 RS6556756 intergenic G ADD 92 1.225 0.8238 0.8053 

8 RS6983267 POU5F1B G ADD 92 0.2593 0.5855 0.02115 

8 RS7000448 intergenic T ADD 92 0.4986 0.6317 0.2705 

8 RS7014346 POU5FIP1, 
HsG57825, DQ515897 

A ADD 92 0.4448 0.5552 0.1445 

9 RS7023329 MTAP A ADD 92 0.8699 0.5484 0.7994 

4 RS7041 GC T ADD 92 0.7994 0.4734 0.6363 

11 RS7117034 intergenic T ADD 92 0.9837 0.5761 0.9772 

9 RS719725 intergenic A ADD 92 1.083 0.5294 0.88 

12 RS731236 VDR C ADD 89 1.388 0.5071 0.5177 

15 RS748404 TGM5 T ADD 90 0.3624 0.5831 0.08175 

17 RS7501939 HNF1B C ADD 92 1.401 0.5466 0.5371 

3 RS7626795 IL1RAP G ADD 88 0.2351 1.158 0.2112 

4 RS7679673 TET2 C ADD 88 0.4859 0.5465 0.1866 

8 RS7837688 intergenic T ADD 92 3.555 0.7785 0.1033 

8 RS7841060 PRNCR1 G ADD 92 0.404 0.7368 0.2186 

15 RS8042374 CHRNA3 G ADD 90 0.8378 0.6759 0.7934 

19 RS8102476 intergenic C ADD 92 1.956 0.5504 0.2229 

5 RS889312 MAP3K1 C ADD 92 1.27 0.5024 0.634 

20 RS910873 PIGU A ADD 91 0.8671 0.9447 0.88 

6 RS9295740 intergenic A ADD 92 1.083 0.5632 0.8873 

15 RS931794 HYKK G ADD 92 1.525 0.4834 0.383 

6 RS9364554 SLC22A3 T ADD 92 1.691 0.5365 0.3275 

20 RS961253 intergenic A ADD 92 2.16 0.5243 0.1418 

22 RS9623117 TNRC6B C ADD 92 2.011 0.528 0.1857 

5 RS981782 intergenic T ADD 92 1.64 0.4911 0.3138 

16 RS9929218 CDH1 G ADD 92 1.2 0.5147 0.723 

14 RS999737 RAD51L1 C ADD 89 1.643 0.6949 0.475 

Data shown are SNP associations for EAGLE BioVU endometrial cancer analysis. Gene shown is the closest 
gene to the SNP. Abbreviations: chromosome (CHR), single nucleotide polymorphism (SNP), risk allele 
(A1), number of cases and controls used in each logistic regression (NMISS), odds ratio (OR), standard error 
(SE). 
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Shown are power calculations for the EAGLE BioVU endometrial cancer study calculated using QUANTO. (A) 206 cases, 11 

controls/case; (B) 20 cases, 8 controls/case. Models were for unmatched case-control, gene-only hypothesis assuming a log-additive 

model of inheritance and a 4.2x10-4 two-sided significance level.
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Appendix I. Power calculations for EAGLE BioVU endometrial cancer study.  
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Appendix J. eMERGE Network site contributions to TSH levels study. 

Site Primary Phenotype Total # 

Genotyped 

(n) 

TSH Levels 

European 

Americans (n) 

African 

Americans (n) 

Marshfield Clinic Cataracts 4,113 1,157 0 
Vanderbilt Cardiac Conductance 2,712 284 88 

Group Health Dementia 2,532 1,167 64 
Mayo Clinic Peripheral Artery Disease 3,043 1,881 10 

Northwestern Type 2 Diabetes 1,217 12 189 
Total  13,617 4,501 351 

Primary phenotypes reflects initial GWAS phenotype investigated at each site for the eMERGE Network. Total 
(n) genotyped are for each site’s primary phenotype GWAS. Euthyroid subjects for serum thyroid stimulating 
hormone (TSH) level analysis are a subset of the total number genotyped in eMERGE for the primary 
phenotypes. All sites contributed European Americans to the serum TSH level analysis; all sites except 
Marshfield Clinic contributed African Americans. Data shown are counts (n). 
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Appendix K. SNP associations for serum TSH levels in eMERGE study European Americans. 

CHR SNP GENE GENE 
REGION 

CODED 
ALLELE 

CAF BETA (SE) P-VALUE 

5 rs1382879 PDE8B intronic G 0.39 0.09 (0.01) 7.16E-18 

5 rs2046045 PDE8B intronic C 0.40 0.09 (0.01) 1.85E-17 

5 rs989758 PDE8B intronic T 0.36 0.08 (0.01) 1.33E-14 

5 rs9687206 PDE8B intronic G 0.43 0.08 (0.01) 5.52E-14 

5 rs12515498 PDE8B intronic C 0.26 0.07 (0.01) 3.27E-10 

5 rs6885813 PDE8B intronic A 0.25 0.06 (0.01) 4.05E-08 

5 rs1096752 PDE8B intronic A 0.45 -0.05 (0.01) 6.30E-07 

5 rs13361710 PDE8B intronic T 0.24 0.06 (0.01) 6.60E-07 

9 rs10759944 FOXE1 upstream A 0.33 -0.05 (0.01) 1.08E-06 

9 rs965513 FOXE1 upstream A 0.34 -0.05 (0.01) 1.09E-06 

9 rs925489 FOXE1 upstream C 0.34 -0.05 (0.01) 1.79E-06 

9 rs7850258 FOXE1 upstream A 0.33 -0.05 (0.01) 1.85E-06 

2 rs10496992 - intergenic G 0.38 0.05 (0.01) 2.22E-06 

2 rs1861628 IGFBP5 upstream T 0.27 -0.05 (0.01) 3.68E-06 

5 rs4348174 ITGA1 upstream C 0.40 0.05 (0.01) 3.97E-06 

9 rs657152 ABO intronic T 0.38 0.05 (0.01) 4.18E-06 

7 rs740083 VWC2 upstream A 0.24 -0.05 (0.01) 4.56E-06 

7 rs813379 CDK14 intronic G 0.06 -0.10 (0.02) 4.57E-06 

2 rs2712168 IGFBP5 upstream C 0.13 0.07 (0.01) 4.98E-06 

5 rs256438 THBS4 intronic C 0.36 0.05 (0.01) 5.53E-06 

18 rs4570936 - intergenic T 0.22 -0.05 (0.01) 5.73E-06 

2 rs6546537 AAK1 intronic C 0.28 -0.05 (0.01) 5.92E-06 

9 rs7855088 ANP32B upstream C 0.44 -0.05 (0.01) 6.23E-06 

9 rs925487 FOXE1 downstream G 0.37 -0.05 (0.01) 6.24E-06 

7 rs803174 CDK14 intronic G 0.06 -0.10 (0.02) 6.74E-06 

5 rs2438632 THBS4 downstream A 0.39 0.05 (0.01) 6.88E-06 

2 rs13020935 IGFBP5 upstream G 0.28 -0.05 (0.01) 7.02E-06 

5 rs12520862 PDE8B intronic T 0.14 0.06 (0.01) 7.48E-06 

9 rs10984103 FOXE1 downstream A 0.37 -0.05 (0.01) 7.81E-06 

9 rs907580 FOXE1 downstream A 0.27 -0.05 (0.01) 8.20E-06 

8 rs2466067 NRG1 intronic C 0.31 -0.05 (0.01) 8.42E-06 

9 rs7870926 ANP32B downstream G 0.50 -0.04 (0.01) 8.67E-06 

5 rs7341064 ITGA1 upstream C 0.40 0.04 (0.01) 1.03E-05 

8 rs4298457 NRG1 intronic G 0.27 -0.05 (0.01) 1.07E-05 

11 rs598599 MRE11A intronic A 0.28 0.05 (0.01) 1.09E-05 

4 rs4693596 COQ2 intronic C 0.38 -0.04 (0.01) 1.10E-05 

8 rs10954859 NRG1 intronic G 0.27 -0.05 (0.01) 1.12E-05 

5 rs404375 THBS4 intronic G 0.50 -0.04 (0.01) 1.26E-05 

6 rs2983525 PDE10A intronic C 0.27 -0.05 (0.01) 1.34E-05 

6 rs2983514 PDE10A intronic G 0.33 -0.05 (0.01) 1.36E-05 
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CHR SNP GENE GENE 
REGION 

CODED 
ALLELE 

CAF BETA (SE) P-VALUE 

1 rs3766122 SELP intronic C 0.05 -0.10 (0.02) 1.42E-05 

9 rs7866436 C9orf156 downstream G 0.37 -0.04 (0.01) 1.52E-05 

9 rs7024345 FOXE1 upstream A 0.27 -0.05 (0.01) 1.65E-05 

5 rs26367 FSTL4 intronic G 0.10 -0.07 (0.02) 1.65E-05 

5 rs10073636 HCN1 intronic T 0.43 0.04 (0.01) 1.73E-05 

9 rs13285674 ASTN2 upstream A 0.23 0.05 (0.01) 1.90E-05 

9 rs505922 ABO intronic C 0.36 0.04 (0.01) 1.94E-05 

5 rs7445986 ITGA1 upstream T 0.40 0.04 (0.01) 1.95E-05 

2 rs10204522 IGFBP5 upstream C 0.10 0.07 (0.02) 1.95E-05 

6 rs4054489 IBTK downstream T 0.18 -0.05 (0.01) 1.95E-05 

11 rs1055075 TTC12 downstream T 0.34 -0.04 (0.01) 1.96E-05 

4 rs4861534 DCTD downstream G 0.10 0.07 (0.02) 2.09E-05 

15 rs7168316 C15orf33 intronic T 0.23 -0.05 (0.01) 2.10E-05 

9 rs7848973 FOXE1 upstream A 0.40 -0.04 (0.01) 2.11E-05 

12 rs3136559 CD69 upstream A 0.28 0.05 (0.01) 2.13E-05 

2 rs6727435 AAK1 intronic A 0.27 -0.05 (0.01) 2.15E-05 

5 rs33613 FSTL4 intronic T 0.09 -0.07 (0.02) 2.35E-05 

15 rs12592277 C15orf33 intronic A 0.22 -0.05 (0.01) 2.35E-05 

8 rs2466062 NRG1 intronic G 0.30 -0.05 (0.01) 2.36E-05 

8 rs3898456 FAM135B intronic A 0.35 0.04 (0.01) 2.56E-05 

3 rs4402960 IGF2BP2 intronic T 0.30 -0.05 (0.01) 2.63E-05 

3 rs1470579 IGF2BP2 intronic C 0.31 -0.05 (0.01) 2.67E-05 

5 rs13354798 HCN1 intronic C 0.43 0.04 (0.01) 2.75E-05 

5 rs9686502 PDE8B intronic G 0.49 0.04 (0.01) 2.85E-05 

22 rs9606756 PDE8B intronic G 0.12 0.07 (0.02) 2.86E-05 

11 rs494442 KIRREL3 upstream T 0.40 -0.04 (0.01) 3.03E-05 

12 rs2695148 ANAPC5 upstream T 0.10 -0.07 (0.02) 3.11E-05 

1 rs17265852 NFIA intronic C 0.08 -0.07 (0.02) 3.16E-05 

5 rs6414906 HCN1 intronic C 0.43 0.04 (0.01) 3.51E-05 

16 rs3813583 WWOX downstream C 0.38 0.04 (0.01) 4.06E-05 

1 rs749378 GLIS1 downstream A 0.27 -0.05 (0.01) 4.09E-05 

5 rs6451801 HCN1 intronic A 0.43 0.04 (0.01) 4.10E-05 

5 rs13162651 HCN1 intronic C 0.43 0.04 (0.01) 4.11E-05 

6 rs12201217 CDKAL1 intronic T 0.38 -0.04 (0.01) 4.30E-05 

3 rs370234 VGLL4 upstream T 0.39 -0.04 (0.01) 4.32E-05 

12 rs1647253 ANAPC5 upstream A 0.10 -0.07 (0.02) 4.57E-05 

8 rs6989877 NRG1 downstream T 0.13 0.06 (0.01) 4.59E-05 

6 rs11963665 FAM46A upstream C 0.20 -0.05 (0.01) 4.63E-05 

5 rs6892290 HCN1 intronic G 0.43 0.04 (0.01) 4.76E-05 

1 rs6668505 PTAFR intronic T 0.06 -0.08 (0.02) 4.88E-05 

19 rs3745746 CABP5 missense C 0.39 -0.04 (0.01) 4.93E-05 
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CHR SNP GENE GENE 
REGION 

CODED 
ALLELE 

CAF BETA (SE) P-VALUE 

5 rs12521494 PDE8B intronic C 0.23 0.05 (0.01) 5.00E-05 

5 rs10064949 ITGA1 upstream C 0.43 0.04 (0.01) 5.07E-05 

2 rs1515259 - intergenic T 0.45 0.04 (0.01) 5.44E-05 

2 rs1012319 IGFBP5 upstream T 0.19 -0.05 (0.01) 5.47E-05 

6 rs2983500 PDE10A intronic T 0.11 -0.06 (0.02) 5.54E-05 

18 rs8096947 - intergenic A 0.19 -0.05 (0.01) 5.56E-05 

2 rs888186 IGFBP5 upstream C 0.10 -0.07 (0.02) 5.63E-05 

5 rs4703797 THBS4 intronic G 0.33 0.04 (0.01) 5.65E-05 

11 rs529126 MRE11A intronic A 0.26 0.04 (0.01) 5.65E-05 

1 rs11805172 SESN2 upstream G 0.07 -0.08 (0.02) 5.69E-05 

14 rs8009673 ARHGAP5 upstream A 0.15 0.06 (0.01) 5.83E-05 

11 rs1939422 C11orf87 upstream T 0.36 -0.04 (0.01) 5.94E-05 

2 rs1986415 AOX1 intronic A 0.12 0.06 (0.02) 6.05E-05 

8 rs2439300 NRG1 intronic A 0.27 -0.04 (0.01) 6.19E-05 

8 rs2943179 CNBD1 intronic T 0.22 0.05 (0.01) 6.31E-05 

15 rs8035662 MEGF11 intronic A 0.33 -0.04 (0.10) 6.37E-05 

11 rs877138 ANKK1 upstream G 0.35 -0.04 (0.01) 6.37E-05 

9 rs1443434 FOXE1 UTR-3’ G 0.40 -0.04 (0.01) 6.53E-05 

2 rs2381866 - intergenic C 0.44 0.04 (0.01) 6.68E-05 

2 rs888182 IGFBP5 upstream C 0.16 0.05 (0.01) 6.75E-05 

16 rs7184757 WWOX intronic C 0.09 -0.07 (0.02) 7.22E-05 

12 rs11172482 XRCC6BP1 downstream C 0.37 -0.04 (0.01) 7.29E-05 

7 rs39334 RELN intronic G 0.37 0.04 (0.01) 7.47E-05 

11 rs12278001 DDX10 downstream A 0.06 -0.08 (0.02) 7.53E-05 

5 rs12654213 HCN1 upstream G 0.43 0.04 (0.01) 7.69E-05 

1 rs10489909 NFIA intronic A 0.05 -0.09 (0.02) 7.81E-05 

7 rs13231383 TPK1 upstream A 0.25 0.04 (0.01) 8.19E-05 

5 rs2306344 PDE8B intronic A 0.31 -0.04 (0.01) 8.23E-05 

19 rs11666426 ZNF665 intronic C 0.41 0.04 (0.01) 8.30E-05 

1 rs12138950 CAPZB upstream C 0.15 -0.05 (0.01) 8.97E-05 

9 rs424829 STOM upstream A 0.29 0.04 (0.01) 9.02E-05 

15 rs11071858 MEGF11 intronic G 0.41 -0.04 (0.01) 9.33E-05 

11 rs12282135 OR52E2 upstream C 0.15 -0.05 (0.01) 9.47E-05 

1 rs11118832 DUSP10 intronic C 0.08 -0.07 (0.02) 9.52E-05 

1 rs630505 DENND2D intronic C 0.27 -0.04 (0.01) 9.58E-05 

2 rs16856529 IGFBP5 upstream C 0.15 0.05 (0.01) 9.80E-05 

12 rs1502816 XRCC6BP1 downstream C 0.38 -0.04 (0.01) 9.95E-05 

Tests of association using linear regression, adjusted for age, sex, principal component (PC1), and body mass index (BMI) 
were performed. Tests of association at p<1x10-4 are listed. Gene listed is the gene in closest proximity to the SNP. 
Coded allele frequency (CAF) is for the allele frequency in eMERGE European Americans in the serum TSH study 
(n=4,501). 
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Appendix L. SNP associations for serum TSH levels in eMERGE study African Americans. 

CHR SNP GENE GENE REGION CODED 
ALLELE 

CAF BETA (SE) P VALUE 

13 rs1409005 POU4F1-AS1 downstream T 0.20 0.25 (0.05) 5.02E-07 
1 rs2378497 DUSP10 upstream G 0.08 0.33 (0.07) 3.53E-06 
20 rs6062344 TCEA2 intronic T 0.40 0.18 (0.04) 4.06E-06 
16 rs270421 WWOX downstream C 0.28 0.19 (0.04) 7.75E-06 
7 rs2299116 CREB5 intronic A 0.17 0.25 (0.06) 8.16E-06 
2 rs6728613 MYT1L intronic A 0.24 0.20 (0.04) 1.14E-05 
10 rs6585018 PDCD4 near-5' G 0.17 -0.22 (0.05) 1.17E-05 
14 rs1013757 TTC6 downstream A 0.32 -0.19 (0.04) 1.33E-05 
2 rs4073401 MYT1L intronic T 0.24 0.19 (0.04) 1.33E-05 
14 rs12883861 LOC728755 downstream G 0.20 0.21 (0.05) 1.63E-05 
7 rs9784959 ABCA13 intronic A 0.30 -0.18 (0.04) 1.82E-05 
16 rs270422 WWOX downstream A 0.29 0.18 (0.04) 2.17E-05 
12 rs261875 BICD1 intronic C 0.32 0.18 (0.04) 2.24E-05 
7 rs274614 GRM3 intronic G 0.30 -0.18 (0.04) 2.36E-05 
3 rs11711934 DNAH1 intronic C 0.31 -0.17 (0.04) 2.45E-05 
2 rs12621889 KIAA1715 intronic T 0.06 0.36 (0.08) 2.68E-05 
2 rs12464144 KIAA1715 intronic A 0.06 0.36 (0.08) 2.68E-05 
18 rs10163845 NETO1 near-5' A 0.28 -0.18 (0.04) 2.74E-05 
19 rs12610504 ZNF536 downstream G 0.19 0.20 (0.05) 3.07E-05 
13 rs1274744 - intergenic C 0.42 -0.17 (0.04) 3.21E-05 
5 rs10060607 SLC36A3 intronic A 0.30 0.18 (0.04) 3.28E-05 
18 rs1824304 FAM59A intronic C 0.37 0.17 (0.04) 3.32E-05 
2 rs841452 HS6ST1 upstream C 0.37 0.17 (0.04) 3.52E-05 
7 rs11977108 ABCA13 intronic A 0.17 -0.21 (0.05) 3.70E-05 
3 rs4678798 ARPP21 intronic A 0.14 0.24 (0.06) 3.71E-05 
4 rs6851816 MLF1IP intronic T 0.50 0.16 (0.04) 3.83E-05 
22 rs133201 LRP5L 5'-UTR A 0.09 0.27 (0.06) 4.04E-05 
12 rs2593996 BICD1 intronic C 0.50 -0.16 (0.04) 4.09E-05 
19 rs1054713 KLK1 cds-synon T 0.26 0.19 (0.05) 4.16E-05 
19 rs12609319 ZNF536 downstream T 0.19 0.20 (0.05) 4.23E-05 
3 rs1918092 ARL8B,EDEM1  downstream C 0.09 0.30 (0.07) 4.90E-05 
12 rs2303478 ASCL4 downstream A 0.28 0.18 (0.04) 5.11E-05 
1 rs3738605 SZRD1 3'UTR A 0.12 0.24 (0.06) 5.12E-05 
19 rs2659099 MGC45922 near-5' T 0.29 0.18 (0.04) 5.13E-05 
3 rs4955261 CMTM8 upstream G 0.39 0.16 (0.04) 5.19E-05 
13 rs4772145 DOCK9 downstream T 0.43 0.15 (0.04) 5.23E-05 
2 rs13403407 C2orf43 intronic C 0.47 -0.16 (0.04) 5.31E-05 
3 rs1513476 ARPP21 intronic C 0.14 0.22 (0.05) 5.46E-05 
2 rs17032566 CAMKMT intronic T 0.07 -0.30 (0.07) 5.52E-05 
17 rs1105813 DNAH2 intronic T 0.43 0.16 (0.04) 5.61E-05 
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CHR SNP GENE GENE REGION CODED 
ALLELE 

CAF BETA (SE) P VALUE 

12 rs1563333 DYNLL1 intronic A 0.22 -0.19 (0.05) 5.64E-05 
10 rs1907356 C10orf11 intronic T 0.16 -0.21 (0.05) 5.71E-05 
10 rs11001788 C10orf11 intronic A 0.16 -0.21 (0.05) 5.71E-05 
2 rs12470895 LOC729164 ncRNA T 0.20 0.21 (0.05) 5.86E-05 
3 rs646929 CACNA2D3 intronic C 0.08 0.30 (0.07) 5.96E-05 
3 rs2335640 DNAH1 intronic C 0.30 -0.17 (0.04) 5.98E-05 
12 rs3742049 COQ5 missense T 0.25 0.18 (0.04) 6.08E-05 
3 rs17052068 DNAH1 intronic T 0.30 -0.16 (0.04) 6.46E-05 
1 rs2819757 RYR2 intronic C 0.18 0.22 (0.05) 6.49E-05 
2 rs10804139 PARD3B upstream A 0.38 -0.16 (0.04) 6.54E-05 
18 rs736218 FAM59A intronic C 0.38 0.16 (0.04) 6.66E-05 
9 rs10989120 MSANTD3-

TMEFF1 intronic A 0.39 -0.19 (0.05) 7.05E-05 
12 rs10744020 C12orf36 downstream C 0.23 0.16 (0.04) 7.05E-05 
19 rs2659103 KLK1 intronic T 0.25 0.19 (0.05) 7.29E-05 
1 rs10918914 XCL2 downstream G 0.17 0.22 (0.05) 7.39E-05 
12 rs261878 BICD1 intronic C 0.32 -0.16 (0.04) 7.42E-05 
15 rs12914266 SQRDL intronic A 0.29 0.17 (0.04) 7.58E-05 
7 rs6965055 C7orf10 intronic G 0.39 -0.16 (0.04) 7.65E-05 
7 rs7808606 C7orf10 intronic C 0.39 -0.15 (0.04) 7.66E-05 
14 rs17322359 PRKD1 upstream T 0.10 0.25 (0.06) 7.74E-05 
5 rs11949641 MSX2 downstream A 0.23 0.18 (0.05) 7.89E-05 
1 rs12120382 CHRM3 upstream C 0.09 0.29 (0.07) 7.96E-05 
2 rs6731363 LOC729164 ncRNA A 0.20 0.20 (0.05) 7.99E-05 
4 rs13144021 NR3C2 upstream G 0.14 0.23 (0.06) 8.00E-05 
18 rs877128 MC2R intronic A 0.25 0.18 (0.04) 8.10E-05 
10 rs7923004 BBIP1 intronic C 0.18 -0.20 (0.05) 8.19E-05 
8 rs6999969 XKR6 intronic C 0.42 -0.16 (0.04) 8.33E-05 
11 rs1027388 LRRC4C intronic A 0.28 -0.17 (0.04) 8.36E-05 
1 rs17011253 DUSP10 upstream- C 0.09 0.27 (0.07) 8.38E-05 
10 rs942077 RBM20 missense G 0.48 -0.15 (0.04) 8.47E-05 
4 rs4370216 - intergenic C 0.46 -0.15 (0.04) 8.55E-05 
4 rs2333727 HSFY2 upstream C 0.46 -0.15 (0.04) 8.55E-05 
7 rs1029357 SAMD9L 3'-UTR G 0.46 0.15 (0.04) 8.57E-05 
9 rs1332598 MSANTD3-

TMEFF1 intronic A 0.23 -0.19 (0.05) 8.69E-05 
5 rs6864667 SLC12A7 intronic G 0.47 0.15 (0.04) 8.98E-05 
12 rs4411338 CCND2 upstream C 0.29 0.16 (0.04) 9.05E-05 
19 rs171953 KLK1 downstream G 0.48 -0.15 (0.04) 9.07E-05 
19 GA035020 SSC5D intronic T 0.25 0.19 (0.05) 9.11E-05 
15 rs2040578 SV2B intronic G 0.29 0.17 (0.04) 9.13E-05 
17 rs1106826 DNAH2 intronic A 0.32 0.17 (0.04) 9.23E-05 
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CHR SNP GENE GENE REGION CODED 
ALLELE 

CAF BETA (SE) P VALUE 

20 rs6090040 TCEA2 intronic C 0.47 0.15 (0.04) 9.35E-05 
20 rs4408777 RGS19 intronic G 0.33 0.16 (0.04) 9.39E-05 
16 rs2521676 - intergenic G 0.39 0.16 (0.04) 9.73E-05 
1 rs16845412 - intergenic G 0.10 0.27 (0.07) 9.76E-05 
4 rs10518306 LOC285419 intronic A 0.06 0.35 (0.09) 9.78E-05 
8 rs10098991 - intergenic C 0.44 0.16 (0.04) 9.86E-05 
16 rs8059691 EMC8 intronic G 0.11 0.23 (0.06) 9.90E-05 

Tests of association using linear regression, adjusted for age, sex, principal component (PC1), and body mass 
index (BMI) were performed. Tests of association at p<1x10-4 are listed. Gene listed is the gene in closest 
proximity to the SNP. Coded allele frequency (CAF) is for the allele frequency in eMERGE African Americans in 
the serum TSH study (n=351). 
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Appendix M. Comparisons of reported associations with serum TSH levels in Europeans to eMERGE African Americans. 

Locus Prior Association Current Study 

SNP Chr Gene C
A 

CAF β (SE) P-value Ref. SNP/Best Proxy 
SNP 

r2 CA CAF β (SE) P-value 

rs10917469 1 CAPZB G 0.16 -0.16 (0.03) 3.2E-08 (Panicker et al.2010) rs12138950 1.00 C 0.24 -0.02 (0.05) 0.64 
rs10917477 1 CAPZB A 0.51 -0.06 (0.01) 1.54E-08 (Rawal et al.2012) rs6683419 0.62 G 0.49 0.01 (0.04) 0.85 
rs10799824 1 CAPZB A 0.16 -0.11 (0.01) 3.60E-21 (Porcu et al.2013) rs10799824 -- A 0.24 -0.03 (0.05) 0.58 
rs334699 1 NFIA A 0.05 -0.14 (0.02) 5.40E-12 (Porcu et al.2013) rs334713 1.00 A 0.17 -0.17 (0.05) 1.50E-03 
rs13015993 2 IGFBP5 A 0.74 0.08 (0.01) 3.24E-15 (Porcu et al.2013) rs13020935 1.00 G 0.48 -0.15 (0.04) 1.82E-04 
rs10028213 4 NR3C2 C 0.82 0.08 (0.01) 2.88E-10 (Rawal et al.2012) rs10519980 1.00 T 0.33 -0.07 (0.04) 0.11 
rs10032216 4 NR3C2 T 0.78 0.09 (0.01) 9.28E-16 (Porcu et al.2013) rs17025017 1.00 A 0.42 -0.07 (0.04) 0.08 
rs2046045 5 PDE8B T 0.62 -0.12 (0.01) 2.79E-27 (Rawal et al.2012;Eriksson et 

al.2012;Medici et al.2011) 
rs2046045 -- A 0.28 -0.09 (0.04) 0.03 

rs6885099 5 PDE8B A 0.59 -0.14 (0.01) 1.95E-56 (Porcu et al.2013) rs2046045 1.00 A 0.28 -0.09 (0.04) 0.03 
rs4704397 5 PDE8B A 0.41* 0.21 1.64E-10 (Taylor et al.2011) rs2046045 0.94 A 0.28 -0.09 (0.04) 0.03 
rs753760 6 PDE10A C 0.69 0.10 (0.01) 1.21E-24 (Porcu et al.2013) rs2983514 0.93 G 0.38 -0.01 (0.04) 0.73 
rs9472138 6 VEGFA T 0.29 -0.08 (0.01) 6.72E-16 (Porcu et al.2013) rs9472138 -- T 0.19 -0.10 (0.05) 0.05 
rs11755845 6 VEGFA T 0.27 -0.07 (0.01) 1.68E-10 (Porcu et al.2013) rs11755845 -- T 0.14 -0.13 (0.05) 0.01 
rs9497965 6 SASH1 T 0.42 0.05 (0.01) 2.25E-08 (Porcu et al.2013) rs9377117 0.54 G 0.18 0.01 (0.06) 0.85 
rs7825175 8 NRG1 A 0.21 -0.07 (0.01) 2.94E-09 (Porcu et al.2013) rs7825175 -- A 0.13 -0.10 (0.06) 0.12 
rs657152 9 ABO A 0.34 0.06 (0.01) 4.11E-10 (Porcu et al.2013) rs657152 -- T 0.43 0.09 (0.04) 0.03 
rs1571583 9 GLIS3 A 0.25 0.06 (0.01) 2.55E-08 (Porcu et al.2013) rs1571583 -- T 0.22 0.01 (0.05) 0.79 
rs17723470 11 PRDM11 T 0.28 -0.07 (0.01) 8.83E-11 (Porcu et al.2013) rs17723470 -- T 0.11 -0.10 (0.06) 0.11 
rs1537424 14 MBIP T 0.61 -0.05 (0.01) 1.17E-08 (Porcu et al.2013) rs1537424 -- A 0.34 0.04 (0.04) 0.35 
rs11624776 14 ITPK1 A 0.66 -0.06 (0.01) 1.79E-09 (Porcu et al.2013) rs11624776 -- C 0.11 0.04 (0.07) 0.57 
rs10519227 15 FGF7 A 0.25 -0.07 (0.01) 1.02E-11 (Porcu et al.2013) rs7168316 1.00 T 0.12 -0.03 (0.06) 0.62 
rs17776563 15 MIR1179 A 0.32 -0.06 (0.01) 2.89E-10 (Porcu et al.2013) rs13329353 0.96 C 0.45 -0.07 (0.04) 0.09 
rs3813582 16 LOC44038

9/MAF 
T 0.67 0.08 (0.01) 8.45E-18 (Rawal et al.2012;Porcu et 

al.2013) 
rs17767383 1.00 A 0.25 -0.06 (0.05) 0.18 

rs9915657 17 SOX9 T 0.54 -0.06 (0.01) 7.53E-13 (Porcu et al.2013) rs9915657 -- T 0.49 -0.06 (0.04) 0.17 
rs4804416 19 INSR T 0.57 -0.06 (0.01) 3.16E-10 (Porcu et al.2013) rs4804416 -- G 0.26 0.01 (0.05) 0.81 
SNP rs number, chromosomal location, nearest gene/gene region, coded allele (CA), coded allele frequency (CAF), and association summary statistics (betas, 
standard errors, and p-values) are given for each previously reported association with TSH levels in European Americans. CAF highlighted with (*) represents the 
average CAF in the Taylor et al. study. For SNPs not directly genotyped in this study, the proxy in highest linkage disequilibrium in 1000 Genomes CEU samples was 
identified. Results of adjusted (age, sex, body mass index, and principal component 1) tests of association are given for each previously reported SNP or its proxy in 
this African American dataset (n=351). 
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Appendix N. Comparison of thyroid-related trait associations to eMERGE European Americans. 

Locus Prior Association Current Study 
SNP Chr Gene CA CAF OR P-value Ref. SNP/Best Proxy SNP r2 CA CAF β(SE) P-value 
Hypothyroidism 
rs6679677 1 PTPN22 A 0.09 1.36 2.80E-13 (Eriksson et al.2012) rs2476601 0.78 A 0.10 0.004 (0.02) 0.81 
rs2476601 1 PTPN22 A 0.09 1.36 3.9E-13 (Eriksson et al.2012) rs2476601 -- A 0.10 0.004 (0.02) 0.81 
rs4915076 1 VAV3 C 0.08 1.30 7.50E-10 (Eriksson et al.2012) rs4915076 -- C 0.09 0.03 (0.02) 0.06 
rs2517532 6 HLA A 0.40 0.86 1.30E-08 (Eriksson et al.2012) rs2517532 -- T 0.43 -0.01 (0.01) 0.27 
rs1064191 6 HCG22/C6orf15 T 0.46 0.87 2.2E-08 (Eriksson et al.2012) rs1064191 -- A 0.48 -0.002 (0.01) 0.83 
rs925487 9 FOXE1/C9orf156 C 0.37 0.86 4.1E-08 (Eriksson et al.2012) rs925487 -- G 0.37 -0.05 (0.01) 6.24E-06 
rs907580 9 FOXE1/C9orf156 T 0.26 0.84 1.2E-08 (Eriksson et al.2012) rs907580 -- A 0.27 -0.05 (0.01) 8.2E-06 
rs925489 9 KRT18P13,FOXE1 C 0.33 0.78 2.40E-19 (Eriksson et al.2012) rs925489 -- C 0.34 -0.05 (0.01) 1.79E-06 
rs1877432 9 KRT18P13,FOXE1 A 0.40 1.16 4.40E-09 (Eriksson et al.2012) rs1877432 -- A 0.40 0.02 (0.01) 0.03 
rs7024345 9 KRT18P13,FOXE1 A 0.26 0.84 1E-08 (Eriksson et al.2012) rs7024345 -- A 0.27 -0.05 (0.01) 1.65E-05 
rs7848973 9 KRT18P13,FOXE1 A 0.40 0.84 7.10E-11 (Eriksson et al.2012) rs7848973 -- A 0.40 -0.04 (0.01) 2.11E-05 
rs11065987 12 LOC100101246 BRAP G 0.45 1.18 1.70E-10 (Eriksson et al.2012) rs11065987 -- G 0.44 0.006 (0.01) 0.53 
rs17696736 12 NAA25 G 0.46 1.18 2.80E-10 (Eriksson et al.2012) rs17696736 -- G 0.45 0.003 (0.01) 0.75 
rs11066320 12 PTPN11 A 0.45 1.17 3.50E-09 (Eriksson et al.2012) rs11066320 -- A 0.45 0.002 (0.01) 0.82 
rs3184504 12 SH2B3 C 0.50 0.84 2.60E-12 (Eriksson et al.2012) rs3184504 -- T 0.50 0.007 (0.01) 0.50 
rs11066188 12 C12orf51 A 0.44 1.18 4.1E-10 (Eriksson et al.2012) rs11066188 -- A 0.43 0.007 (0.01) 0.46 
rs653178 12 ATXN2 T 0.50 0.84 5.0E-12 (Eriksson et al.2012) rs653178 -- G 0.50 0.006 (0.01) 0.51 
Grave’s Disease/Autoimmune Thyroid Disease 
rs3761959 1 FCRL3 A 0.40 1.23 1.50E-13 (Chu et al.2011) rs3761959 -- A 0.44 -0.006 (0.01) 0.53 
rs1024161 2 CTLA4 T 0.69 1.3 2.34E-17 (Chu et al.2011) rs1024161 -- T 0.41 0.01 (0.01) 0.15 
rs6832151 4 RHOH,CHRNA9 G 0.35 1.24 1.08E-13 (Chu et al.2011) rs6832151 -- G 0.28 0.01 (0.01) 0.24 
rs9355610 6 RNASET2 G 0.47 1.19 6.85E-10 (Chu et al.2011) rs9355610 -- A 0.33 -0.008 (0.01) 0.46 
rs4947296 6 MUC21,C6orf15 C 0.14 1.77 3.51E-51 (Chu et al.2011) NA NA NA NA NA NA 
rs2281388 6 HLA-DPB1 T 0.32 1.64 1.5E-65 (Chu et al.2011) NA NA NA NA NA NA 
rs6457617 6 HLA-DR-DQ T 0.45 1.4 7.38E-33 (Chu et al.2011) rs6457617 -- T 0.50 0.01 (0.01) 0.14 
rs6903608 6 HLA-DR-DQ C 0.38 1.34 5.12E-24 (Chu et al.2011) rs6903608 -- C 0.31 -0.02 (0.01) 0.13 
rs965513 9 FOXE1 A 0.34 1.75 1.70E-27 (Eriksson et al.2012) rs965513 -- A 0.34 -0.05 (0.01) 1.09E-06 
rs12101261 14 TSHR T 0.64 1.35 6.64E-24 (Chu et al.2011) rs12101261 -- T 0.36 0.002 (0.01) 0.87 
Thyroid Cancer 
rs966423 2 DIRC3 C  1.34 1.30E-09 (Gudmundsson et al.2012) rs966423 -- C 0.42 -0.02 (0.01) 0.13 
rs2439302 8 NRG1 G  1.36 2.00E-09 (Gudmundsson et al.2012) rs7005606 1.00 G 0.46 -0.02 (0.01) 0.02 
rs944289 14 NKX2-1/TTF1 T 0.57 1.37 2.0E-09 (Gudmundsson et 

al.2012;Gudmundsson et al.2009) 
rs944289 -- C 0.43 0.02 (0.01) 0.01 

rs116909374 14 MBIP T  2.09 4.60E-11 (Gudmundsson et al.2012) rs2553571 0.13 T 0.22 -0.005 (0.01) 0.68 
SNP rs number, chromosomal location, nearest gene/gene region, coded allele (CA), coded allele frequency (CAF), and association summary statistics (odds ratio (OR) and p-values) are given 
for each previously reported association with thyroid-related traits in European Americans. For SNPs not directly genotyped in this study, the proxy in highest linkage disequilibrium in 1000 
Genomes CEU samples was identified. Results of adjusted (age, sex, body mass index, and principal component 1) tests of association are given for each SNP in this European American dataset. 
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Appendix O. Comparison of thyroid-related trait associations to eMERGE African Americans. 

Locus Prior Association Current Study 
SNP Chr Gene CA CAF OR P-value Ref. SNP/Best Proxy SNP r2 CA CAF Β (SE) P-value 
Hypothyroidism 
rs6679677 1 PHTF1, RSBN1 A 0.09 1.36 2.80E-13 (Eriksson et al.2012) rs1217413 0.60 G 0.05 0.08 (0.10) 0.43 
rs2476601 1 PTPN22 A 0.09 1.36 3.9E-13 (Eriksson et al.2012) rs1217413 0.56 G 0.05 0.08 (0.10) 0.43 
rs4915076 1 VAV3 C 0.08 1.3 8.00E-10 (Eriksson et al.2012) rs4915076 -- C 0.05 -0.03 (0.08) 0.72 
rs2517532 6 LOC729792 HCG22 A 0.40 0.86 1.3E-08 (Eriksson et al.2012) rs2517532 -- T 0.34 -0.02 (0.04) 0.59 
rs1064191 6 HCG22/C6orf15 T 0.46 0.87 2.2E-08 (Eriksson et al.2012) rs1064191 -- A 0.46 -0.04 (0.04) 0.36 
rs925487 9 FOXE1/C9orf156 C 0.37 0.86 4.1E-08 (Eriksson et al.2012) rs925487 -- G 0.25 -0.04 (0.05) 0.41 
rs907580 9 FOXE1/C9orf156 T 0.26 0.84 1.2E-08 (Eriksson et al.2012) rs907580 -- A 0.07 0.04 (0.08) 0.64 
rs925489 9 KRT18P13,FOXE1 C 0.33 0.78 2.40E-19 (Eriksson et al.2012) rs925489 -- C 0.21 -0.03 (0.05) 0.53 
rs1877432 9 KRT18P13,FOXE1 A 0.40 1.16 4.40E-09 (Eriksson et al.2012) rs1877432 -- A 0.34 0.11 (0.04) 9.73E-03 
rs7024345 9 KRT18P13,FOXE1 A 0.26 0.84 1E-08 (Eriksson et al.2012) rs7024345 -- A 0.07 0.03 (0.08) 0.69 
rs7848973 9 KRT18P13,FOXE1 A 0.40 0.84 7.10E-11 (Eriksson et al.2012) rs7848973 -- A 0.23 -0.09 (0.04) 0.06 
rs11065987 12 LOC100101246 BRAP G 0.45 1.18 1.70E-10 (Eriksson et al.2012) rs11065987 -- G 0.08 0.12 (0.08) 0.13 
rs17696736 12 NAA25 G 0.46 1.18 2.80E-10 (Eriksson et al.2012) rs17696736 -- G 0.09 0.11 (0.08) 0.16 
rs11066320 12 PTPN11 A 0.45 1.17 3.50E-09 (Eriksson et al.2012) rs11066320 -- A 0.08 0.08 (0.08) 0.31 
rs3184504 12 SH2B3 C 0.50 0.84 2.60E-12 (Eriksson et al.2012) rs3184504 -- T 0.10 0.09 (0.07) 0.20 
rs11066188 12 C12orf51 A 0.44 1.18 4.1E-10 (Eriksson et al.2012) rs11066188 -- A 0.08 0.12 (0.08) 0.12 
rs653178 12 ATXN2 T 0.50 0.84 5.0E-12 (Eriksson et al.2012) rs653178 -- G 0.10 0.09 (0.07) 0.20 
Grave’s Disease/Autoimmune Thyroid Disease 
rs3761959 1 FCRL3 A 0.40 1.23 1.50E-13 (Chu et al.2011) rs3761959 -- G 0.39 0.03 (0.04) 0.45 
rs1024161 2 CTLA4 T 0.69 1.3 2.34E-17 (Chu et al.2011) rs1024161 -- C 0.48 -0.06 (0.09) 0.13 
rs6832151 4 RHOH,CHRNA9 G 0.35 1.24 1.08E-13 (Chu et al.2011) rs6832151 -- G 0.31 -0.10 (0.04) 0.01 
rs9355610 6 RNASET2 G 0.47 1.19 6.85E-10 (Chu et al.2011) rs9355610 -- A 0.39 -0.03 (0.04) 0.47 
rs4947296 6 MUC21,C6orf15 C 0.14 1.77 3.51E-51 (Chu et al.2011) NA NA NA NA NA NA 
rs2281388 6 HLA-DPB1 T 0.32 1.64 1.5E-65 (Chu et al.2011) NA NA NA NA NA NA 
rs6457617 6 HLA-DR-DQ T 0.45 1.4 7.38E-33 (Chu et al.2011) rs6457617 -- T 0.48 0.02 (0.04) 0.63 
rs6903608 6 HLA-DR-DQ C 0.38 1.34 5.12E-24 (Chu et al.2011) rs6903608 -- C 0.38 0.02 (0.04) 0.61 
rs965513 9 FOXE1 A 0.34 1.75 1.70E-27 (Eriksson et al.2012) rs965513 -- A 0.17 -0.03 (0.05) 0.50 
rs12101261 14 TSHR T 0.64 1.35 6.64E-24 (Chu et al.2011) rs12101261 -- T 0.39 -0.01 (0.04) 0.82 
Thyroid Cancer 
rs966423 2 DIRC3 C  1.34 1.30E-09 (Gudmundsson et al.2012) rs966423 -- T 0.23 0.03 (0.05) 0.47 
rs2439302 8 NRG1 G  1.36 2.00E-09 (Gudmundsson et al.2012) rs4733130 1.00 C 0.23 -0.06 (0.05) 0.25 
rs944289 14 NKX2-1/TTF1 T 0.57 1.37 2E-09 (Gudmundsson et al.2012; 

Gudmundsson et al.2009) 
rs1169151 0.93 A 0.23 0.03 (0.05) 0.57 

rs116909374 14 MBIP T  2.09 4.60E-11 (Gudmundsson et al.2012) NA NA NA NA NA NA 
SNP rs number, chromosomal location, nearest gene/gene region, coded allele (CA), coded allele frequency (CAF), and association summary statistics (odds ratio (OR) and p-values) are given 
for each previously reported association with thyroid-related traits in European Americans. For SNPs not directly genotyped in this study, the proxy in highest linkage disequilibrium in 1000 
Genomes CEU samples was identified. Results of adjusted (age, sex, body mass index, and principal component 1) tests of association are given for each SNP in this African American dataset. 
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Appendix P. Comparison of SNP associations in regression models with and without BMI 
covariates for serum TSH levels in eMERGE study European Americans. 

SNP P BMI BETA BMI  P NO BMI BETA NO BMI 

rs1382879 7.16E-18 0.09  2.16E-15 0.08 

rs2046045 1.85E-17 0.09  2.07E-15 0.08 

rs989758 1.33E-14 0.08  1.10E-12 0.07 

rs9687206 5.52E-14 0.08  4.98E-11 0.06 

rs12515498 3.27E-10 0.07  3.18E-09 0.06 

rs6885813 4.05E-08 0.06  1.41E-07 0.06 

rs1096752 6.30E-07 -0.05  7.48E-06 -0.04 

rs13361710 6.60E-07 0.06  2.20E-06 0.05 

rs10759944 1.08E-06 -0.05  1.33E-06 -0.05 

rs965513 1.09E-06 -0.05  1.40E-06 -0.05 

rs925489 1.79E-06 -0.05  2.52E-06 -0.05 

rs7850258 1.85E-06 -0.05  2.87E-06 -0.05 

rs10496992 2.22E-06 0.05  1.61E-05 0.04 

rs1861628 3.68E-06 -0.05  2.15E-05 -0.04 

rs4348174 3.97E-06 0.05  1.13E-05 0.04 

rs657152 4.18E-06 0.05  1.06E-07 0.05 

rs740083 4.56E-06 -0.05  1.37E-05 -0.05 

rs813379 4.57E-06 -0.10  2.66E-06 -0.10 

rs2712168 4.98E-06 0.07  2.05E-05 0.06 

rs256438 5.53E-06 0.05  1.81E-05 0.04 

rs4570936 5.73E-06 -0.05  2.32E-07 -0.06 

rs6546537 5.92E-06 -0.05  2.92E-05 -0.04 

rs7855088 6.23E-06 -0.05  2.37E-05 -0.04 

rs925487 6.24E-06 -0.05  6.99E-06 -0.04 

rs803174 6.74E-06 -0.10  3.38E-06 -0.09 

rs2438632 6.88E-06 0.05  1.01E-05 0.04 

rs13020935 7.02E-06 -0.05  3.45E-05 -0.04 

rs12520862 7.48E-06 0.06  9.36E-05 0.05 

rs10984103 7.81E-06 -0.05  7.69E-06 -0.04 

rs907580 8.20E-06 -0.05  6.14E-06 -0.05 

rs2466067 8.42E-06 -0.05  5.86E-07 -0.05 

rs7870926 8.67E-06 -0.04  1.47E-05 -0.04 

rs7341064 1.03E-05 0.04  2.18E-05 0.04 

rs4298457 1.07E-05 -0.05  1.05E-06 -0.05 

rs598599 1.09E-05 0.05  8.83E-05 0.04 

rs4693596 1.10E-05 -0.04  1.05E-04 -0.04 

rs10954859 1.12E-05 -0.05  1.21E-06 -0.05 

rs404375 1.26E-05 -0.04  2.38E-05 -0.04 

rs2983525 1.34E-05 -0.05  1.04E-06 -0.05 
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SNP P BMI BETA BMI  P NO BMI BETA NO BMI 

rs2983514 1.36E-05 -0.05  6.45E-07 -0.05 

rs3766122 1.42E-05 -0.10  7.20E-04 -0.07 

rs7866436 1.52E-05 -0.04  1.55E-05 -0.04 

rs7024345 1.65E-05 -0.05  1.41E-05 -0.05 

rs26367 1.65E-05 -0.07  2.05E-05 -0.07 

rs10073636 1.73E-05 0.04  1.35E-04 0.04 

rs13285674 1.90E-05 0.05  1.86E-05 0.05 

rs505922 1.94E-05 0.04  3.55E-07 0.05 

rs7445986 1.95E-05 0.04  5.84E-05 0.04 

rs10204522 1.95E-05 0.07  3.89E-05 0.07 

rs4054489 1.95E-05 -0.05  7.09E-05 -0.05 

rs1055075 1.96E-05 -0.04  1.44E-05 -0.04 

rs4861534 2.09E-05 0.07  2.15E-05 0.06 

rs7168316 2.10E-05 -0.05  2.55E-05 -0.05 

rs7848973 2.11E-05 -0.04  2.22E-05 -0.04 

rs3136559 2.13E-05 0.05  8.51E-04 0.03 

rs6727435 2.15E-05 -0.05  9.24E-05 -0.04 

rs33613 2.35E-05 -0.07  2.68E-05 -0.07 

rs12592277 2.35E-05 -0.05  2.39E-05 -0.05 

rs2466062 2.36E-05 -0.05  1.50E-06 -0.05 

rs3898456 2.56E-05 0.04  9.80E-05 0.04 

rs4402960 2.63E-05 -0.05  1.03E-05 -0.04 

rs1470579 2.67E-05 -0.05  8.35E-06 -0.04 

rs13354798 2.75E-05 0.04  1.91E-04 0.03 

rs9686502 2.85E-05 0.04  3.83E-04 0.03 

rs9606756 2.86E-05 0.07  1.27E-04 0.06 

rs494442 3.03E-05 -0.04  1.76E-04 -0.04 

rs2695148 3.11E-05 -0.07  9.14E-05 -0.06 

rs17265852 3.16E-05 -0.07  3.34E-05 -0.07 

rs6414906 3.51E-05 0.04  1.81E-04 0.04 

rs3813583 4.06E-05 0.04  5.94E-06 0.04 

rs749378 4.09E-05 -0.05  1.03E-04 -0.04 

rs6451801 4.10E-05 0.04  2.27E-04 0.03 

rs13162651 4.11E-05 0.04  2.14E-04 0.03 

rs12201217 4.30E-05 -0.04  1.86E-05 -0.04 

rs370234 4.32E-05 -0.04  6.80E-05 -0.04 

rs1647253 4.57E-05 -0.07  1.23E-04 -0.06 

rs6989877 4.59E-05 0.06  3.06E-06 0.06 

rs11963665 4.63E-05 -0.05  2.73E-04 -0.04 

rs6892290 4.76E-05 0.04  2.41E-04 0.03 

rs6668505 4.88E-05 -0.08  1.85E-04 -0.07 

rs3745746 4.93E-05 -0.04  8.12E-05 -0.04 
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SNP P BMI BETA BMI  P NO BMI BETA NO BMI 

rs12521494 5.00E-05 0.05  1.05E-03 0.04 

rs10064949 5.07E-05 0.04  7.77E-05 0.04 

rs1515259 5.44E-05 0.04  3.21E-04 0.03 

rs1012319 5.47E-05 -0.05  1.04E-04 -0.05 

rs2983500 5.54E-05 -0.06  4.80E-06 -0.07 

rs8096947 5.56E-05 -0.05  9.39E-06 -0.05 

rs888186 5.63E-05 -0.07  2.03E-04 -0.06 

rs4703797 5.65E-05 0.04  7.77E-05 0.04 

rs529126 5.65E-05 0.04  1.85E-04 0.04 

rs11805172 5.69E-05 -0.08  2.09E-04 -0.07 

rs8009673 5.83E-05 0.06  3.14E-05 0.05 

rs1939422 5.94E-05 -0.04  2.35E-04 -0.04 

rs1986415 6.05E-05 0.06  1.56E-04 0.05 

rs2439300 6.19E-05 -0.04  1.91E-05 -0.04 

rs2943179 6.31E-05 0.05  4.18E-05 0.05 

rs8035662 6.37E-05 -0.04  2.98E-04 -0.03 

rs877138 6.37E-05 -0.04  4.11E-05 -0.04 

rs1443434 6.53E-05 -0.04  5.97E-05 -0.04 

rs2381866 6.68E-05 0.04  9.97E-05 0.04 

rs888182 6.75E-05 0.05  3.55E-05 0.05 

rs7184757 7.22E-05 -0.07  6.70E-05 -0.07 

rs11172482 7.29E-05 -0.04  1.11E-04 -0.04 

rs39334 7.47E-05 0.04  2.38E-04 0.04 

rs12278001 7.53E-05 -0.08  8.24E-05 -0.08 

rs12654213 7.69E-05 0.04  3.64E-04 0.03 

rs10489909 7.81E-05 -0.09  8.43E-04 -0.07 

rs13231383 8.19E-05 0.04  1.71E-04 0.04 

rs2306344 8.23E-05 -0.04  6.54E-05 -0.04 

rs11666426 8.30E-05 0.04  8.65E-05 0.04 

rs12138950 8.97E-05 -0.05  1.29E-04 -0.05 

rs424829 9.02E-05 0.04  3.39E-04 0.04 

rs11071858 9.33E-05 -0.04  4.40E-04 -0.03 

rs12282135 9.47E-05 -0.05  2.44E-04 -0.05 

rs11118832 9.52E-05 -0.07  1.71E-04 -0.07 

rs630505 9.58E-05 -0.04  1.38E-04 -0.04 

rs16856529 9.80E-05 0.05  5.90E-05 0.05 

rs1502816 9.95E-05 -0.04  1.32E-04 -0.04 

 For each SNP, p-values and betas are given for models that include or exclude 
body mass index (BMI) as a covariate. All models are linear regressions 
assuming an additive genetic model adjusted for age, sex, and principal 
component 1 in this European American dataset (n=4,501). 
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Appendix Q. Comparison of SNP associations in regression models with and without BMI 
covariates for serum TSH levels in eMERGE African Americans. 

SNP P BMI BETA BMI P NO BMI BETA NO BMI 

rs1409005 5.02E-07 0.25 2.60E-05 0.17 
rs2378497 3.53E-06 0.33 4.76E-03 0.16 
rs6062344 4.06E-06 0.18 3.64E-03 0.09 
rs270421 7.75E-06 0.19 3.08E-03 0.10 
rs2299116 8.16E-06 0.25 6.13E-05 0.18 
rs6728613 1.14E-05 0.20 7.95E-03 0.10 
rs6585018 1.17E-05 -0.22 2.58E-04 -0.14 
rs1013757 1.33E-05 -0.19 7.32E-04 -0.12 
rs4073401 1.33E-05 0.19 8.28E-03 0.09 
rs12883861 1.63E-05 0.21 2.22E-04 0.14 
rs9784959 1.82E-05 -0.18 1.63E-05 -0.15 
rs270422 2.17E-05 0.18 0.01 0.09 
rs261875 2.24E-05 0.18 3.56E-05 0.14 
rs274614 2.36E-05 -0.18 0.03 -0.08 
rs11711934 2.45E-05 -0.17 1.41E-03 -0.11 
rs12621889 2.68E-05 0.36 0.01 0.16 
rs12464144 2.68E-05 0.36 0.01 0.16 
rs10163845 2.74E-05 -0.18 0.04 -0.07 
rs12610504 3.07E-05 0.20 2.44E-03 0.12 
rs1274744 3.21E-05 -0.17 1.98E-03 -0.10 
rs10060607 3.28E-05 0.18 8.25E-05 0.13 
rs1824304 3.32E-05 0.17 9.22E-04 0.11 
rs841452 3.52E-05 0.17 1.96E-03 0.10 
rs11977108 3.70E-05 -0.21 6.20E-04 -0.14 
rs4678798 3.71E-05 0.24 8E-05 0.18 
rs6851816 3.83E-05 0.16 6.50E-04 0.10 
rs133201 4.04E-05 0.27 0.05 0.11 
rs2593996 4.09E-05 -0.16 5.52E-05 -0.13 
rs1054713 4.16E-05 0.19 9.71E-03 0.10 
rs12609319 4.23E-05 0.20 2.76E-03 0.12 
rs1918092 4.90E-05 0.30 4.47E-04 0.20 
rs2303478 5.11E-05 0.18 0.02 0.08 
rs3738605 5.12E-05 0.24 6.33E-03 0.13 
rs2659099 5.13E-05 0.18 6.38E-03 0.10 
rs4955261 5.19E-05 0.16 3.77E-04 0.11 
rs4772145 5.23E-05 0.15 0.03 0.07 
rs13403407 5.31E-05 -0.16 4.40E-03 -0.09 
rs1513476 5.46E-05 0.22 1.17E-04 0.17 
rs17032566 5.52E-05 -0.30 1.45E-03 -0.19 
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SNP P BMI BETA BMI P NO BMI BETA NO BMI 

rs1105813 5.61E-05 0.16 1.07E-03 0.10 
rs1563333 5.64E-05 -0.19 2.06E-03 -0.11 
rs1907356 5.71E-05 -0.21 2.26E-04 -0.15 
rs11001788 5.71E-05 -0.21 2.26E-04 -0.15 
rs12470895 5.86E-05 0.21 1.46E-03 0.13 
rs646929 5.96E-05 0.30 7.19E-04 0.19 
rs2335640 5.98E-05 -0.17 3.31E-03 -0.10 
rs3742049 6.08E-05 0.18 3.31E-03 0.11 
rs17052068 6.46E-05 -0.16 1.96E-03 -0.10 
rs2819757 6.49E-05 0.22 3.77E-03 0.13 
rs10804139 6.54E-05 -0.16 8.86E-04 -0.11 
rs736218 6.66E-05 0.16 2.02E-03 0.10 
rs10989120 7.05E-05 -0.19 0.11 -0.06 
rs10744020 7.05E-05 0.16 1.97E-03 0.10 
rs2659103 7.29E-05 0.19 0.01 0.10 
rs10918914 7.39E-05 0.22 1.29E-04 0.16 
rs261878 7.42E-05 -0.16 7.12E-05 -0.13 
rs12914266 7.58E-05 0.17 1.16E-03 0.11 
rs6965055 7.65E-05 -0.16 1.34E-03 -0.10 
rs7808606 7.66E-05 -0.15 9.37E-04 -0.10 
rs17322359 7.74E-05 0.25 4.05E-03 0.15 
rs11949641 7.89E-05 0.18 2.12E-03 0.11 
rs12120382 7.96E-05 0.29 8.34E-04 0.20 
rs6731363 7.99E-05 0.20 1.77E-03 0.13 
rs13144021 8.00E-05 0.23 1.06E-03 0.15 
rs877128 8.10E-05 0.18 2.34E-03 0.11 
rs7923004 8.19E-05 -0.20 1.03E-03 -0.13 
rs6999969 8.33E-05 -0.16 7.19E-03 -0.09 
rs1027388 8.36E-05 -0.17 2E-03 -0.11 
rs17011253 8.38E-05 0.27 0.03 0.12 
rs942077 8.47E-05 -0.15 1.58E-04 -0.12 
rs4370216 8.55E-05 -0.15 1.8E-03 -0.10 
rs2333727 8.55E-05 -0.15 1.8E-03 -0.10 
rs1029357 8.57E-05 0.15 1.05E-03 0.10 
rs1332598 8.69E-05 -0.19 0.11 -0.06 
rs6864667 8.98E-05 0.15 2.21E-03 0.09 
rs4411338 9.05E-05 0.16 0.02 0.08 
rs171953 9.07E-05 -0.15 0.03 -0.07 
GA035020 9.11E-05 0.19 0.01 0.10 
rs2040578 9.13E-05 0.17 2.72E-04 0.13 
rs1106826 9.23E-05 0.17 0.01 0.08 
rs6090040 9.35E-05 0.15 0.02 0.08 
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SNP P BMI BETA BMI P NO BMI BETA NO BMI 

rs4408777 9.39E-05 0.16 0.07 0.06 
rs2521676 9.73E-05 0.16 8.4E-04 0.11 
rs16845412 9.76E-05 0.27 6.14E-03 0.15 
rs10518306 9.78E-05 0.35 4.33E-03 0.19 
rs10098991 9.86E-05 0.16 0.08 0.06 
rs8059691 9.90E-05 0.23 0.01 0.11 
For each SNP, p-values and betas are given for models that include or exclude body 
mass index (BMI) as a covariate. All models are linear regressions assuming an 
additive genetic model adjusted for age, sex, and principal component 1 in this 
African American dataset (n=351). 
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Interaction analyses were performed using the SNPs with p<1x10-4 significance levels in the model adjusted for age, sex, principal 
component 1 (PC1), and body mass index (BMI) in a model stratified for race/ethnicity and by normal/overweight BMI (normal: BMI 18-
24.9; overweight: BMI 25+). We considered a SNPxBMI interaction significant at a threshold of p<0.05. Shown are p-values from Wilcoxon 
rank-sum tests comparing median TSH values between BMI categories at each genotype. 
 

Appendix R. Body mass index as a modifier of serum TSH levels genetic associations in eMERGE African Americans.  
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Appendix S. Power calculations for replication/generalization in eMERGE TSH levels study. 

Locus Prior Association    
SNP Chr Gene CA CAF β P-value Ref. CAF 

EA 
Power 

EA 
n=4501 

CAF 
AA 

Power 
AA 

n=351 

rs10917469 1 CAPZB G 0.16 -0.16 3.2E-08 
 
(Panicker et al.2010) 0.15 1.00 0.24 0.53 

rs10917477 1 CAPZB A 0.51 -0.06 1.54E-08 (Rawal et al.2012) 0.48 0.74* 0.49 0.14* 
rs10799824 1 CAPZB A 0.16 -0.11 3.60E-21 (Porcu et al.2013) 0.15 0.97* 0.24 0.41 
rs334699 1 NFIA A 0.05 -0.14 5.40E-12 (Porcu et al.2013) 0.08 0.93* 0.17 0.49 

rs13015993 2 IGFBP5 A 0.74 0.08 3.24E-15 (Porcu et al.2013) 0.27 0.95 0.48 0.31 
rs10028213 4 NR3C2 C 0.82 0.08 2.88E-10 (Rawal et al.2012) 0.18 0.88 0.33 0.28 
rs10032216 4 NR3C2 T 0.78 0.09 9.28E-16 (Porcu et al.2013) 0.19 0.95 0.42 0.37 
rs2046045 5 PDE8B T 0.62 -0.12 2.79E-27 (Rawal et al.2012;Eriksson 

et al.2012;Medici et al.2011) 
0.40 1.00 0.28 0.51 

rs6885099 5 PDE8B A 0.59 -0.14 1.95E-56 (Porcu et al.2013) 0.40 1.00 0.28 0.64 
rs4704397 5 PDE8B A 0.40* 0.21 1.64E-10 (Taylor et al.2011) 0.39 1.00* 0.28 0.92* 
rs753760 6 PDE10A C 0.69 0.10 1.21E-24 (Porcu et al.2013) 0.33 1.00* 0.38 0.41* 

rs9472138 6 VEGFA T 0.29 -0.08 6.72E-16 (Porcu et al.2013) 0.28 0.96 0.19 0.21 
rs11755845 6 VEGFA T 0.27 -0.07 1.68E-10 (Porcu et al.2013) 0.24 0.86 0.14 0.15 
rs9497965 6 SASH1 T 0.42 0.05 2.25E-08 (Porcu et al.2013) 0.30 0.41* 0.18 0.08* 
rs7825175 8 NRG1 A 0.21 -0.07 2.94E-09 (Porcu et al.2013) 0.31 0.33* 0.13 0.14 
rs657152 9 ABO A 0.34 0.06 4.11E-10 (Porcu et al.2013) 0.38 0.84 0.43 0.19 

rs1571583 9 GLIS3 A 0.25 0.06 2.55E-08 (Porcu et al.2013) 0.25 0.76 0.22 0.15 
rs17723470 11 PRDM11 T 0.28 -0.07 8.83E-11 (Porcu et al.2013) 0.29 0.87* 0.11 0.13 
rs1537424 14 MBIP T 0.61 -0.05 1.17E-08 (Porcu et al.2013) 0.43 0.71 0.34 0.14 
rs11624776 14 ITPK1 A 0.66 -0.06 1.79E-09 (Porcu et al.2013) 0.22 0.29* 0.11 0.11 
rs10519227 15 FGF7 A 0.25 -0.07 1.02E-11 (Porcu et al.2013) 0.23 0.85 0.12 0.13 
rs17776563 15 MIR1179 A 0.32 -0.06 2.89E-10 (Porcu et al.2013) 0.35 0.75* 0.45 0.18* 
rs3813582 16 LOC4403

89/MAF 
T 0.67 0.08 8.45E-18 (Rawal et al.2012;Porcu et 

al.2013) 
0.31 0.97 0.25 0.25 

rs9915657 17 SOX9 T 0.54 -0.06 7.53E-13 (Porcu et al.2013) 0.46 0.86 0.49 0.20 
rs4804416 19 INSR T 0.57 -0.06 3.16E-10 (Porcu et al.2013) 0.44 0.86 0.26 0.16 

Power calculations for replication/generalization of SNPs previously associated with serum TSH levels to eMERGE euthyroid 
European Americans (EA) and African Americans (AA). SNP rs number, chromosomal location, nearest gene/gene region, coded 
allele (CA), coded allele frequency (CAF), and association summary statistics (betas and p-values) are given for each previously 
reported association with serum TSH levels in European Americans. Starred (*) CAF represents mean CAF from Taylor et al. Power 
was calculated for each race/ethnicity using Quanto assuming the previously reported effect size, an additive genetic model, a 
liberal significance threshold of p<0.05,the eMERGE minor allele frequencies, and the eMERGE sample sizes. Power calculations 
labeled with an asterisk indicate proxy SNPs listed in Table 20 (European Americans) and Appendix M (African Americans) as 
described in the Chapter V. 
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Appendix T. 2x2 table for calculating the PPV of a hypothetical rare disorder. 

Variant Disease (+) (-) Total 
 (+) 99 199 298 
(-) 1 19,701 19,702 

Total 100 19,900 20,000 
PPV=99/298=33% 

Data shown are for calculating the positive predictive value (PPV) of a 
hypothetical rare disorder with a population n=20,000, disease 
prevalence = 0.5%, and tests sensitivity and specificity of 99%. 
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Appendix U. 2x2 table for calculating the PPV of a hypothetical common disorder. 

Variant Disease (+) (-) Total 
 (+) 822 72 894 
(-) 8 9,098 9,106 

Total 830 9,170 10,000 
PPV=822/894=92% 

Data shown are for calculating the positive predictive value (PPV) of a 
hypothetical common disorder with a population n=10,000, disease 
prevalence = 8.3%, and tests sensitivity and specificity of 99%. 
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