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CHAPTER I

INTRODUCTION

Mobile wireless technologies have been fundamentally facilitating data communi-

cations by offering a rich set of features such as ubiquitous connectivity, mobility and

scalability. To date, mobile wireless systems are employed in a vast variety of appli-

cation areas. Notably, mobile smart computing platforms, like smartphones, tablets,

wearable computing devices and mobile game consoles, have become widely popular.

In the fourth quarter of fiscal year 2012 alone, 26.9 million iPhones were sold in the

world [1]. It is reported by Google that more than 750 million Android mobile devices

have been activated globally by March, 2013 [2].

Although today’s mobile wireless systems can offer impressive performance, they

are confronted with a twofold challenge. First, the accelerated proliferation of mobile

wireless devices is creating explosive demand beyond the capabilities of wireless net-

works. Cisco claims that global mobile data traffic grew 70 percent in 2012 and monthly

global mobile data traffic will surpass 10 exabytes in 2017 [3]. Recently, huge efforts

have been dedicated to expanding the capabilities of network infrastructures. For in-

stance, WiFi has been considered to be a primary candidate of data traffic offloading

from the cellular networks [4]. However, this is just a temporary remedy, as the lim-

itation on wireless spectrum will ultimately emerge, and performance issues like net-

work congestion and slow data speed keep arising. Second, the resources on mobile

wireless devices, like computational power and battery energy, are highly constrained,

which may severely limit the quality of service of mobile applications. Unlike conven-

tional computers, currently smart mobile devices are barely powerful enough to drive
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computation-intensive applications, hence many mobile applications need to rely on re-

mote computing, such as Apple’s Siri and Google’s Translate [5]. Battery life is another

long lasting issue, which is now challenged by faster processors, sharper displays and

sophisticated sensors on wireless mobile platforms [6]. To sum up, the resource problem

of wireless mobile systems is the bottleneck of the performance of mobile applications,

and it is becoming increasingly severe while the mobile applications today are largely

developed in a resource oblivious manner [7].

Problem Statement and Research Goal

Since the prevalence of Internet, significant research efforts have been contributed

to the problem of efficient network resource usage among network components. One

notable example is TCP, a resource management approach used for congestion control,

which implicitly preserves properties like fairness and stability. Due to the inherent

nature of mobile wireless systems, resource management is extremely important, which

basically follows two directions:

• Optimizing the internal resource usage in network architecture.

• Augmenting the capabilities of mobile platforms by integrating external compu-

tational resources.

Compared with wireline networks, optimizing resource usage among wireless nodes

is uniquely challenged by the inherent resource sharing feature of wireless medium:

wireless links may interfere with each other if they are close enough in spatial vicinity.

A large body of work in literature has investigated the resource management problem

for mobile wireless systems. In Fig. I.1 we categorize the existing solutions into several

classes and associate them with the corresponding layer(s) in the network architecture.
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Figure I.1: Wireless resource management.

For example, the channel assignment and scheduling solutions [8, 9, 10] deal with re-

source allocation on the link layer and the medium access control (MAC) layer. The

routing solutions [11, 12] addresses the route selection problem on the network layer.

The congestion control and flow admission control algorithms manage the data flows on

the transport layer. The mobile application offload techniques provide a therapy on the

application layer [5, 6, 13]. Recently, to leverage the popular optimization framework

[14] with spatial dependency issue and other dynamics in wireless networks, the joint

design approaches are proposed to manage sources across multiple layers. The global

optimization problem can be decomposed into sub-problems corresponding to different

layers of the network architecture. The sub-problems are coordinated by variables that

reflect the supply-demand conditions of network resources to achieve the global opti-

mum. For instance, the joint congestion control and link scheduling approach is broadly

employed in existing works [15, 16, 17, 18, 19].
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In spite of the tremendous research efforts involved, one noteworthy problem with

existing solutions is how to deal with dynamics, which stem from wireless environ-

ments, varying user demands, network topology changes, etc. If not deliberately han-

dled, the dynamic factors may cause severe performance degradation.

The previous studies on wireless network resource management strongly rely on two

assumptions: 1) feedback delay is negligible and 2) the wireless channels are considered

to be static or time-varying following a simple model, such as a stable Markov chain

[15]. In remarkable contrast to these simplified assumptions, feedback delays commonly

exist in networked systems. Additionally, the real-world channel dynamics are highly

complex. Delay effects, coupled with time-varying channels, significantly challenge the

design of congestion control and scheduling in wireless networks. For example, delay

effects incur stability problems. Some congestion control algorithms are sensitive to

delay uncertainty. The sufficient conditions for local stability may vary a lot with the

presence of delays. Moreover, in time-varying wireless networks, the rate adaptation at

source nodes respond to the outdated and inaccurate congestion price signal, resulting

in over-provisioning of sending rates and packet losses. This motivates the robust and

optimized all-weather resource management solutions which not only efficiently utilize

wireless resources, but consistently keep up the performance under all scenarios.

The problem also exists in the application layer solutions, for example, the offload-

ing solutions which augment the capabilities of mobile wireless systems by offloading

tasks from mobile terminals to external resource-rich devices. The resources on mobile

terminals, like CPU power, storage and battery energy, are very limited. Research stud-

ies in literature have proposed solutions of offloading mobile applications to resource-

rich systems, such as cloud systems. Then mobile applications are executed remotely in

order to reduce the internal resource consumption on mobile terminals. However, de-

signing an offload system is highly difficult because it usually needs to deal with when,
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what and how to offload a mobile application. When to offload refers to the decision

problem of whether a mobile task should be offloaded at a particular time instance. As

network condition and workload are not always consistent, the decision of offloading

should be adaptive to the change of environment, instead of following the static server-

client paradigm. What to offload is the problem of partitioning a mobile application

according to the resource usage profile. Simply put, the system needs to identify the

resource intensive components of the application. How to offload refers to the imple-

mentation of the offload mechanism. The existing works either use a simplified model of

dynamics [5, 20] or adopt offload mechanism with high overhead [6, 13], so designing

an efficient and robust mobile application offload system remains an open problem.

Based on the discussions above, this dissertation makes research efforts towards

dynamic-oriented resource management for mobile wireless systems. Our research

goals are as follows:

• To design an optimization based cross-layer resource management solution for

wireless networks, which is adaptive to time-varying channel and feedback delay.

• To design and implement a lightweight mobile application offload system, which

offers optimal execution schemes for a mobile application, according to dynamic

user demand and network condition.

Research Approach and Contributions

Our general research approach can be summarized to three steps.

• The first step is to identify and characterize the dynamic factors. For the two

different resource management approaches introduced earlier, various dynamic
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factors are considered. We explicitly model the dynamic factors that have signif-

icant impact on the performance of the mobile wireless systems. Time-varying

channel capacity and feedback delay are considered in the first category of solu-

tion. User demand and network condition are considered in the second category

of solution. We first profile the capacity vector, then we use time series analysis

to identify the critical time scale of the capacity vector.

• The second step is to integrate the dynamic factors into the resource management

problem formulation. For example, we have used the widely adopted network

utility maximization framework, which contains an optimization objective and a

group of constraints. By introducing dynamics into the framework, the solution

space will be reshaped.

• The third step is to address the resource management problem and obtain the

optimal solution. The problem can either be implicitly solved by distributed con-

trollers (Chapter III and Chapter IV) or by a solver (Chapter V).

Following the above guideline, we present a two-tier solution to resource manage-

ment for wireless mobile systems. The two tiers correspond to different layers. In

Fig. I.2 we summarize the proposed techniques. The first tier of management scheme

involves cross-layer techniques that improve resource allocation through interactions

across multiple lower layers (the medium access layer, the network layer and the trans-

port layer). It includes the following two techniques: robust joint congestion control and

scheduling (Chapter III) and time scale decomposition based cross-layer management

(Chapter IV). The second tier of management scheme focuses on the application layer

and addresses mobile application related resource allocation problems. It includes the

dynamic-aware mobile application offload system (Chapter V).
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Figure I.2: Summary of the proposed techniques.

The two tiers address the resource management problem under different scenarios.

Nevertheless, they are still closely related, as the layers in the network architecture are

not independent. The overall performance of a wireless mobile system is not only deter-

mined by each layer, but also by the interactions between different layers. Furthermore,

both of the two tiers are centered on dynamic-awareness, which guarantees that the re-

source management schemes are robust with the presence of dynamic factors.

Our contributions have been summarized as follows.

• We present a robust joint congestion control and scheduling algorithm for time-

varying multi-hop wireless networks with feedback delay. The algorithm is oper-

ated over a virtual capacity space: the dominant part of a virtual link capacity is

the low-frequency components of the original link capacity, so it is robust to chan-

nel variations. The algorithm is adaptive to heterogeneous channel conditions, by

adjusting the cut-off frequency during the capacity decomposition process. We
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provide the sufficient conditions for the Lyapunov stability of the control algo-

rithm, with the presence of feedback delay. The conditions are utilized to achieve

runtime stability.

• We present a time-scale decomposition approach to joint congestion control and

scheduling for wireless networks. We use the technique to investigate the risk

imposed by unpredictable fast-time scale and perform risk-benefit analysis by

introducing a penalty function into the optimization framework. This approach

provides a solid theoretical foundation towards the understanding and the man-

agement of dynamics in wireless networks. We conduct extensive trace-driven

packet-level simulation study and demonstrate that our approach outperforms the

existing joint congestion control and scheduling solutions in the presence of delay

under realistic channel conditions.

• We design and implement an energy-efficient mobile application offload system

that supports seamless and dynamic-aware mobile application offloading. We es-

tablish energy cost models for different execution schemes, including the local

execution energy model and the remote execution energy model. We introduce

a novel algorithm for runtime decision-making of execution scheme to minimize

energy consumption.

Dissertation Organization

The remainder of this dissertation is organized as follows. Chapter II overviews

the existing work in literature on resource management for mobile wireless systems.

In Chapter III, we detail a robust joint congestion control and scheduling approach for

time-varying multi-hop wireless networks with feedback delay. In Chapter IV we dis-

cuss a time-scale decomposition approach to joint congestion control and penalty-aware

8



scheduling. Then Chapter V describes our design of a dynamic-aware mobile applica-

tion offload system. Finally, Chapter VI summaries the completed work and outlines

several future research directions.
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CHAPTER II

RELATED WORK

Our work is largely related with two research areas. 1) Joint congestion control and

scheduling for wireless networks, particularly the research studies focusing on time-

varying channel condition and feedback delay. 2) Runtime mobile application offload

and the related studies, such as dynamic profiling, application migration, and remote

execution. This chapter overviews the related works and summarizes the open issues.

Optimization Based Wireless Network Resource Management

In this section, we review the optimization based wireless network resource man-

agement techniques and discuss the open issues.

Network Resource Usage Optimization

Optimization based approaches are widely utilized to improve the performance of

network systems. Network Utility Maximization (NUM ) has been one of the most no-

table techniques in network optimization, since it was first introduced in the 1960s.

Kelly et al. [14] further extended NUM by introducing a pricing mechanism for resource

management. This pricing approach is used in network congestion control optimization,

such as [21, 22, 23]. NUM tries to capture the network dynamics by embracing user ob-

jectives (the utility function) and resource sharing constraints. Usually, NUM defines

a utility function based on the types of optimality and fairness the algorithm wants to

achieve. The utility function should be concave and second order differentiable. The

optimization framework incorporates network dynamics like capacity, scheduling and
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power constraints, by formulating them as constraint inequalities. Solution to the opti-

mization problem can be obtained via primal, dual or primal-dual algorithms. Since its

birth, NUM has gained tremendous success in resource management for both wire-line

and wireless networks. Other optimization techniques, like multi-objective optimization

involving the user objective and operator objective, and game theorem based optimiza-

tion [10] are also effective techniques in optimizing resource management.

In wireless resource optimization problems, the major difference from wire-line net-

works is the resource sharing mechanism, which is constrained by the interdependencies

among wireless links: when one link is used, the links in the same channel and within

the interference range of this link cannot be active. Therefore the formulations of wire-

less optimization problems usually rely on some interference models, for instance, the

conflict graph [24].

Channel Assignment and Scheduling

Optimization algorithms on channel assignment and scheduling focus on improving

the quality of service by controlling media access, like wireless link access [10, 25,

26, 27, 28, 29], channel usage [8], etc. A notable scheduling policy is the well known

throughput optimal scheduling [30]: Maximal Matching Scheduling, which is used by

many existing works like [9, 15, 18] and [31].

The capacity of wireless networks can be greatly extended by using multi-channel

multi-radio (MC-MR) interfaces. Each radio can switch between several orthogonal

channels to avoid interference. The work of [8] proposes a robust resource provision

channel assignment algorithm for MR-MC wireless networks. The solution provides

guaranteed QoS under channel variability and external interference. The channel as-

signment problem is formulated to a NUM framework, where the utility is defined as

11



a function of interference margin, which represents the maximal degree of interference

that can be tolerated given the targeted transmission rate of a link, so maximal network

utility implies better robustness to interference. The idea of combining network uncer-

tainty modeling and utility maximization is important for resource management with

unpredicted network dynamics. However, the significance of this work is limited by the

assumption that the link traffic demands are pre-determined.

Scheduling policies determine how to assign the time slots to different wireless links

under the same channel, such that they are feasible for a given workload. For instance,

the largest debt first policies [10] are proposed to satisfy the delivery ratio of a set of

clients: the average proportion of transmitting time of a client is at least the implied

workload. The largest time-based debt first policy tries to make every client get a share

of time that is at least as large as the implied workload. The largest weighted-delivery

debt first policy attempts to make every client obtain a delivery ratio at least equal to the

desired delivery ratio. Here the concept of debt is similar to the notion of backlog used

in some congestion control algorithms. The scheduling policies can satisfy the desired

delivery ratio. The study makes a valuable step towards QoS related wireless scheduling

design.

The Max-Weight algorithm [30] is a popular scheduling strategy, which determines

the transmission priority based on the product of queue length and current channel rate.

Max-Weight involves both user demands and channel variation, and was considered to

provide throughput optimality. However, the work in [32] proves that Max-Weight is

not always throughput optimal under certain flow-level dynamics. Therefore, the study

of [26] proposes a novel scheduling policy that is adaptive to flow-level dynamics. A

new metric, system workload, is used to decide the priorities of channel allocation to

wireless links. The workload measures the backlog of a short-lived flow. By comparing
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the backlogs of the short-lived flows to the queue length and channel conditions of long-

lived flows, the algorithm generates the appropriate scheduling which is proved to be

throughput optimal even under flow-level dynamics.

Routing

Generally, routing is a mechanism used to find the path(s) from a source to a des-

tination in a network, which can also be formulated as optimization problems. The

algorithms solving these problems usually claim analytical properties like resource uti-

lization optimality and throughput fairness [12].

Optimal routing under conflict graph [24] is a throughput optimal routing strategy.

It relies on a conflict graph model: the link dependencies in a wireless network can be

modeled by a graph, in which the interference between two links is mapped to an edge

of graph. A throughput optimal routing algorithm is derived from a multi-commodity

flow problem, in which the graph model is used to formulate the constraint set.

The intuitive shortest path selection may lead to hot-spot regions with too many

flows, so the wireless links within these regions are overloaded. To make the routing

algorithms aware of congestion, the congestion aware path selection algorithm [33]

defines a congestion degree for a path that reflects the availability (determined by the

flows through it and the flows in its adjusted interference set) of links along the path.

Then this metric is used to guide path selection to avoid congestion.

The classical routing algorithms usually consider routing of flows with fixed de-

mands, however, the user demand on a flow rate could be dynamic. The uncertainty-

aware optimal routing [34] investigates how to make wireless routing accommodate the

flows with uncertain demand. It formulates the flow rates to a statistical model and solve

the problem in a NUM framework to achieve throughput optimization.
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Wireless networks are often constrained by the power of wireless clients. The power-

aware routing [11] aims at finding the most energy-efficient route. It employs an energy-

opportunistic weighted minimum energy routing strategy based on the energy consump-

tion model to maximize the total revenue of a network.

Congestion Control

Congestion control algorithms adapt the sending rates at the source nodes to avoid

traffic congestion in networks. Since the seminal work by Kelly [14], congestion con-

trol problems have been investigated under the optimal resource allocation framework.

Algorithms in this class explore how to maximize network utility under the constraint of

network capacity by allocating sending rates and meanwhile maintain fairness among

the competing flows, such as the max-min fairness and the proportional fairness. To

this end, many existing works [21, 23, 35] adopt an optimization variable called price

that reflects the demand-supply relationship between the available network resource and

bandwidth utilization. Then a flow source adjusts the sending rate according to the ag-

gregate price charged along the flow route. Although Kelly’s optimization framework

has provided a very solid foundation for the resource allocation problem in wire-line

networks, it barely captures the nature of wireless resource capacity, because wireless

channel condition could be highly fluctuating and easily leads to capacity constraint

violation and system oscillation.

Since the achievable capacity of wireless networks is not explicit, Xue et al. [23] use

maximal clique to model the resource sharing of wireless nodes. In the contention graph

of a wireless network, wireless links are mapped to the vertices and the interference be-

tween two links is mapped to an edge in the graph. In a maximal clique of the contention

graph, any two vertices are connected, so only one link in the clique can be active at any
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time, thus the contention graph can be mapped to a set of cliques. Then each clique is

associated with a shadow price: the charge for a unit flow to use a link in the clique.

Finally the resource management problem can be solved in the NUM framework.

Cross-Layer Optimization

The cross-layer control algorithms have been popular in wireless resource manage-

ment. Examples include joint congestion control and scheduling, joint congestion con-

trol and routing, and joint congestion control and power control. The idea of cross-layer

optimization is motivated by the inherent nature of wireless resource sharing: feasi-

ble rate region are not explicitly measurable due to wireless interference [15], there-

fore the optimal resource allocation could hardly be achieved from a single layer. To

fully utilize the scarce wireless spectrum, the wireless resource management problem

can be formulated under an optimization framework. Then the problem is decomposed

into sub-problems corresponding to different layers of the network architecture. The

sub-problems are coordinated by variables that reflect the supply-demand conditions of

network resources to achieve the global optimum [36].

In this dissertation we focus on the joint congestion control and scheduling ap-

proaches [15, 19, 37, 38, 39, 40, 41, 42, 43, 44]. As we discussed earlier in this chapter,

the objective of a congestion control algorithm is to achieve fairness and utility max-

imization, and the objective of scheduling is to achieve proper link utilization for in-

terference avoidance. The two sub-problems are coordinated by optimization variables

(feedback information), for example, link congestion price.

A dual decomposition based joint rate control and scheduling approach is proposed

by Lin et al. [38] to solve the resource management problem for multi-hop wireless

networks. This approach is analytically proved to ensure fairness and quality of service.
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The study of [40] introduces a joint congestion control, scheduling and routing al-

gorithm for utility maximization. Meanwhile, the system stability is related to queue

overflow: the arrival data rate of any queue cannot be greater than the departure rate.

The decomposition of the Lagrangian of the primal problem naturally leads to three

subproblems: congestion control, scheduling, and routing. The congestion control com-

putes the flow rate vector that maximizes the utility function. The scheduling finds a

policy that stabilizes the system. The routing algorithm routes the flows following the

selected links.

However, the optimal control scheme of the joint congestion control and scheduling

is essentially a complex global optimization problem. Solving such a problem is com-

putationally expensive. Therefore in the work of [18], an imperfect scheduling is used to

achieve a sub-optimal solution to the max-matching scheduling problem. The study fur-

ther provides discussion on the impact of the imperfect scheduling performance of the

cross-layer congestion control. The imperfect scheduling based cross-layer control has

properties such as system stability and utility sub-optimality. The results provide a sig-

nificant step towards designing fully distributed cross-layer congestion control schemes

for multi-hop wireless networks.

In our previous work [45], we have investigated the joint rate allocation and schedul-

ing problem with end-to-end time delay constraints. In our model, the end-to-end delay

of a flow can be adjusted by controlling the per-link delays via a novel parameter called

Virtual Link Capacity Margin (VLCM), which is the measurement of the gap between

the schedulable link capacity and the maximum allowable flow rate over a link. We solve

the optimization problem via its dual decomposition through two price variables derived

with regard to the constraints: the link congestion price that reflects the relationship be-

tween the traffic load and the capacity of a link, and the flow delay price that reflects the
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margin between the average packet delay and the delay constraint of a flow. The pro-

posed technique presents a new attempt toward optimal cross-layer resource allocation

with quality of service constraints.

The cross-layer congestion control and scheduling approach is extended by [16]

to time-varying networks, where the channel states are assumed to follow recursive

Markov chain models. The resource management problem is formulated as a utility

maximization framework with rate allocation constraints and scheduling constraints.

Then three sub-problems: congestion control, routing and scheduling, are decoupled

from the initial global optimization problem according to its dual decomposition.

Dynamic-Aware Network Resource Management

Resource management in wireless networks can be further complicated by exter-

nal dynamics such as time-varying channel and feedback delay. Recently, providing

dynamic-aware resource management has attracted a lot of research attention.

Time delay problem is notoriously intricate in the area of networking: the outdated

feedback information could raise various problems such as inaccurate rate/scheduling

adjustment, bandwidth under/over utilization and system instability. Therefore, inves-

tigating network performance under time delay has been a long lasting research focus,

either within the context of wire-line networks [21, 46], or wireless networks [47, 48]

and [49].

For instance, [48] studies the resource allocation problem in cellular networks with

heterogeneous feedback delays and time-varying channels. The fair and utility-optimal

resource allocation is achieved via a combined scheduler-congestion controller. The

significance of the work is limited by the assumption that the channel states flow a given

statistical model.

17



The work of [47] proposes an asynchronous congestion control algorithm and a dis-

tributed scheduling algorithm for multi-hop wireless networks with fixed channel ca-

pacity. They consider unbounded heterogeneous delays in congestion information ex-

change. The algorithm is stable and supports at least one third of throughput supported

by the centralized algorithms. In spite of these elegant properties, this algorithm deals

with static channel states, which is a relatively idealistic assumption.

In the study of [49], a primal-dual congestion control algorithm is presented for

wireless network with time-varying channels. The study provides sufficient conditions

for the algorithm to be locally stable with the presence of feedback delay. Although

the proposed algorithm demonstrates certain robustness against time-varying channels,

it does not explicitly contains an interference model, which is not negligible in wireless

networks. In addition, the focus of the work is to analyze the stability and sensitivity of

the congestion control algorithm, rather than design a robust algorithm to handle channel

perturbations.

Summary of Open Issues

In spite of the efforts of recent research studies devoted to the the cross-layer re-

source management for wireless networks, there still lies a wide gap between the exist-

ing works and the real wireless environment. To date, the existing studies strongly rely

on two assumptions: 1) feedback delay is negligible and 2) the wireless channels vary

over time following a simple model, such as a stable Markov chain [16]. Unfortunately,

neither of the assumptions holds in real world wireless networks.

Dynamics caused by delay and channel state variations make the scope of the prob-

lem significantly different. Wireless channels are usually highly volatile [50]. A real op-

timal congestion control algorithm needs to make rate allocation based on time-varying
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channel states. Meanwhile, delay effects are ubiquitous in wireless networks, so in-

stantaneous delivery of the feedback information (such as congestion price) can barely

be guaranteed. Especially, delay effects, coupled with time-varying wireless channels,

make the design of a stable congestion control algorithm non-trivial. The problem is

even more challenging when combined with link scheduling. Based on the above dis-

cussion, we summarize the open issues as follows.

• Rate allocation with channel perturbation: ensuring the time-varying capacity can

be adequately utilized by the rate allocation algorithm is difficult with channel

perturbation.

• System stability with feedback delay: achieving system stability with the presence

of feedback delay is still largely an open issue.

• Penalty-aware scheduling: the max-weight scheduling is a throughput-optimal

policy, however, it is not aware of the status of resource provisioning with dy-

namic network conditions.

Dynamic-Aware Mobile Application Resource Management

In this section, we introduce the existing mobile application resource management

techniques and discuss the open issues.

Dynamic Mobile Application Offloading

While mobile applications keep gaining popularity and putting increasing demand

on hardware capabilities, the resource shortage problem of mobile devices becomes

pressing. Recently, the dynamic offload approach has attracted tremendous research
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attention [5, 6, 13, 20, 51, 52]: the resource intensive components of a mobile appli-

cation are (partially) migrated to a remote machine at runtime, such that the resource

consumption of the mobile device is reduced. The results of the remote execution will

be returned the mobile device. Dynamic offload often employs the techniques such as

program partition, process migration, virtualization, dynamic analysis, etc.

Dynamic offload is closely related to remote execution [53, 54, 55, 56, 57], which has

been widely used in mobile and pervasive computing. The systems that support remote

execution usually require pre-partition for remote execution of resource intensive tasks

[13], which is similar to the server-client paradigm. But this approach can barely adapt

to runtime dynamics.

More recently, Cloudlets [58] suggested that the remote execution techniques be ap-

plied to mobile device environments. This work proposes an infrastructure that enables

mobile devices to offload the running applications to the cloudlets within close prox-

imity. In the infrastructure, the device software can be rapidly deployed on a nearby

cloudlet through virtual machine (VM) migration techniques. Mobile application of-

fload is leveraged by the dynamic VM synthesis technique: a VM overlay is established

above the mobile device and the cloudlet, the infrastructure derives the state of the

launch VM (mobile application instance) and starts execution on the cloudlet from the

suspended state.

MAUI [6] further extends dynamic offload by enabling fine-grained energy-aware

offload of mobile code. The previous offload systems mostly relied on precise pre-

partition or coarse-grained migration (full process or VM), while MAUI supports dy-

namic and method level code offload. The system provides a programming environment

where developers can annotate the methods that are candidates for code offload. MAUI

also profiles mobile applications and network condition. At runtime, an optimization
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problem solver determines if an annotated method should be offloaded to the remote

server.

Similarly, CloneCloud [13] is also a dynamic mobile application offload system, and

it goes a step forward by reducing programmer involvement and supporting thread gran-

ularity offload. CloneCloud identifies the legal partition points of a mobile application

according to its control flow graph, in an offline manner. For instance, the methods

that create graphical user interface and the methods that share native states cannot be

offloaded. The system uses a dynamic profiler to build a cost model for a mobile ap-

plication. The offload decision is made by an optimization solver based on the current

network state and the estimated offload cost.

COMET [5] is an even finer-grained mobile code offload system which reduces the

restriction on the offloadable code. The system can complete transparent migration

of application execution based on the distributed shared memory (DSM) mechanism.

Making use of a VM-synchronization primitive, COMET can simultaneously migrate

multiple threads from a mobile device to a remote server.

In contrast to the above approaches, the migration of mobile applications in the

Dynamic Mobile Software Deployment system [20] relies on software modularization

techniques. The system is designed in an OSGI [59] framework. Mobile applications

are designed to contain pluggable modules (OSGI bundles), and these modules can be

dynamically offloaded and deployed in cloud. One advantage of this design is that it

avoids the overhead of virtual machine synchronization.

Summary of Open Issues

Although recently tremendous research progress has been made in dynamic mobile

application offload, there are still several open issues in this area.

21



• How to model the execution schemes of a mobile application? Existing works

mostly use intuitive (or oblivious) partitioning strategies, such as the resource

intensive components based partitioning, or non-native method based partitioning.

• How to establish the cost models in dynamic environment? The energy consump-

tion of an offload scheme may vary under different network conditions and differ-

ent workloads. It remains unclear what variables should be incorporated into the

cost model and how to formulate the problem.

• How to make an offload decision (local execution or remote execution) at runtime

to achieve cost-efficient execution? The decision should be made by evaluating

the costs of different schemes based on the cost models. The optimal scheme

should have the minimal cost of execution.
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CHAPTER III

ROBUST JOINT CONGESTION CONTROL AND SCHEDULING FOR
TIME-VARYING WIRELESS NETWORKS

In this chapter we present ROCS: a RObust joint Congestion control and Scheduling

algorithm for time-varying multi-hop wireless networks with feedback delay, to bridge

the gap between the existing approaches and the reality of wireless networks. The fun-

damental idea behind ROCS is Capacity Space Projection, that combines the slow time

scale part of the channel capacity and a margin estimated from the fast time scale part, to

form a new capacity space. Here slow indicates the channel varies sufficiently slowly so

the resource management algorithm can closely follow the changes, while fast implies

the dynamic channel condition is hard to capture. In our design, both time scales are in

the order of milliseconds.

The resource allocation problem is formulated into a utility maximization framework

over the new capacity space. The problem is solved by a control algorithm consisting

of link scheduling and congestion control. Link scheduling coordinates wireless link

utilization base on maximum weight matching, and congestion control allocates flow

rates according to congestion feedback information. Experiments conducted over sim-

ulated and real world traces demonstrate that ROCS substantially achieves robustness

and efficiency.

The remainder of this chapter is organized as follows. We first give an overview

of the proposed technique. Then we introduce the system model and give the problem

description. In the following four sections we present our robust joint congestion control

and scheduling algorithm and the experimental study. Finally we conclude this chapter

by a brief discussion.
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Overview

A widely adopted optimization based approach to solve the wireless resource allo-

cation problem is to formulate it under a utility maximization framework. The opti-

mization problem can be solved by a cross-layer approach. Recent studies in this area

usually use static channel models and assume feedback delay is negligible. However,

the assumptions do not hold under real wireless environments. Wireless channels are

highly volatile. Additionally, feedback delay is ubiquitous in wireless networks, so in-

stantaneous delivery of the feedback information can barely be guaranteed. This leads

to severe problems like resource over-provisioning or system oscillation.

To address these challenges, we present a RObust joint Congestion control and

Scheduling algorithm: ROCS. The algorithm focuses on the following unsolved criti-

cal issues in existing works: 1) Rate allocation with channel perturbation: ensuring

the time-varying capacity can be adequately utilized by the rate allocation algorithm is

difficult with channel perturbation. 2) System stability with feedback delay: achieving

system stability with the presence of feedback delay is still largely an open issue.

Our solution is centered around the concept of Virtual Capacity Space, which is

designed to protect a network system against channel perturbation. The original link

capacity can be decomposed into slow time scale components and fast time scale com-

ponents. The fast time scale capacity components are difficult to follow with the pres-

ence of feedback delay. We first decompose the original instantaneous channel capacity

into a slow time scale part and a fast time scale part. Then our algorithm maps the

original capacity space to a virtual capacity space by combining the slow time scale

part and a margin estimated from the fast time scale part. The algorithm mainly keeps

pace with the slow time scale signal so that it captures the critical changes of the chan-

nel. Moreover, it also incorporates the high frequency variations by using the margin.
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The cross-layer resource allocation problem is formulated into a utility maximization

framework over the newly generated capacity space. The problem can be solved by a

joint control algorithm which contains two closely coupled components: link schedul-

ing and congestion control. We establish the sufficient conditions of the stability of the

algorithm according to the Lyapunov-Razumikhin theorem. The conditions reveal the

relationship between the feedback delay and controller parameters. We further provide

a distributed implementation of the joint control algorithm.

System Model

We consider a single channel multi-hop wireless network, consisting of V nodes,

collectively denoted as V . The nodes communicate with each other via directed wireless

links, denoted as L. The end-to-end flow set is represented by S. Each flow s ∈ S with

sending rate xs is associated with a utility function Us(xs), which is concave and twice

differentiable. The link set the flow s traverses is denoted as L(s), and the flows incident

to link l ∈ L are denoted as S(l).

The communication in a wireless network is subject to location dependent inter-

ference. In this work we adopt the concept of conflict graph [24] to model wireless

interference. Each vertex in the conflict graph represents a wireless link of the original

network. An edge exists between two vertices if their corresponding wireless links in-

terfere with each other. We employ a scheduling mechanism Sc to schedule the wireless

links on a slotted time basis: in each time slot, one independent set I is selected from the

conflict graph and only the links corresponding to the vertices in I can be active because

there is no interference. Let cl represent the amount of bits that can be transmitted per

second along a link l once it is scheduled. We denote the capacity vector by c, where

c = (cl, l ∈ L).
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The scheduling Sc essentially determines the maximum feasible rate vector ĉ =

(ĉl, l ∈ L) of the links, where ĉl is the average capacity over time. ĉ is constrained

by the feasible capacity space Λ as introduced in [15], which is a convex hull [60, 61]

and is defined as Λ :=
∑

I αIr
I , where

∑
I αI = 1 and αI ≥ 0. The L-dimension

column vector rI represents the capacity vector of I , where rIl = cl if l ∈ I , and rIl = 0

otherwise. We collect the notations in Tab. IV.1.

Notation Definition
v ∈ V = {1, 2, ..., V } Node set
s ∈ S = {1, 2, ..., S} End-to-end flow set
l ∈ L = {1, 2, ..., L} Wireless link set
L(s) Links the flow s traverses
S(l) Flows incident to link l
Λ Original Capacity Space
Λ̄ Virtual Capacity Space
Ct
l = {cl(t)} , l ∈ L, t ∈ [1, T ] Original link capacity series

C̃t
l = {c̃l(t)} , l ∈ L, t ∈ [1, T ] Low-pass link capacity series
c = (cl, l ∈ L) Original link capacity vector
υ = (υl,t, l ∈ L) Link capacity margin vector
c̄ = (c̄l, l ∈ L) Virtual link capacity vector
ĉ = (ĉl, l ∈ L) ∈ Λ̄ Maximum feasible rate vector
y = (yl, l ∈ L) Aggregate flow rate vector
x = (xs, s ∈ S) Flow sending rate vector
ω = (ωl, l ∈ L) Cutoff frequency vector
τb = (τl,s, l ∈ L, s ∈ S) Backward delay
τf = (τs,l, l ∈ L, s ∈ S) Forward delay
p = (pl, l ∈ L) Link congestion price vector

Table III.1: Notations
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Problem Description

Next we discuss the challenge of congestion control algorithm under time-varying

wireless channel when feedback delay is considered.

Congestion Control with Static Channel

The objective of congestion control is to maximize the aggregate utility of all flows

across the network. Each flow s is associated with a utility function, such as Us(xs) =

βslog(xs), then the problem is formulated into a utility maximization framework.

W : max
∑
s∈S

Us(xs) (III.1)

s.t.
∑
s∈S(l)

xs ≤ ĉl, ∀l ∈ L (III.2)

over ĉ ∈ Λ (III.3)

Here (III.2) is the link capacity constraint, and (III.3) is the schedulability constraint.

Problem W is well studied in existing works on wireless network congestion control.

Usually the distributed solution is derived from its dual decomposition. Let p =

{pl, l ∈ L} be the Lagrange multipliers with respect to constraint (III.2). The dual of W

is

D̄(p) = min
p≥0

D(p) (III.4)
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where

D(p) = max
x,ĉ

L(x,p, ĉ) (III.5)

= max
x

∑
s∈S

Us(xs)− xs ∑
l∈L(s)

pl


+ max

ĉ

{∑
l∈L

plĉl

}
(III.6)

From the dual decomposition we obtain the optimal solution (x∗, ĉ∗), which should

satisfy Eq.(III.7) and Eq.(III.8).

x∗s = arg max
xs

∑
s∈S

Us(xs)− xs ∑
l∈L(s)

pl

 (III.7)

ĉ∗l = arg max
ĉl∈Λ

(∑
l∈L

plĉl

)
(III.8)

Here the multiplier pl can be understood as the implicit congestion price [21] of link l,

which represents the cost of delivering a unit of data through link l.

Eq.(III.7) can be solved by either adopting a dual controller or a primal-dual con-

troller [46]. For instance, the primal-dual controller algorithm is described as

ẋs(t) = λs

(
1− qs(t)

U ′s(xs(t))

)
(III.9)

ṗl(t) = [γl(yl(t)− ĉl)]+pl (III.10)

The function [f(x)]+x is defined as
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f(x) =

 f(x) if x > 0

max(f(x), 0) otherwise

qs(t) is the aggregate congestion price along the path of flow s, and yl(t) is the aggregate

flow rate over link l:

qs(t) =
∑
l∈L(s)

pl(t) (III.11)

yl(t) =
∑
s∈S(l)

xs(t) (III.12)

Eq.(III.9) implies that the rate of a flow is adjusted towards the direction of maximizing

the profit, which is the utility minus the cost. Eq.(III.10) describes the demand-supply

interaction of network resources: if the traffic demand over a link exceeds its maximum

allowable rate, the link congestion price pl will increase. The solution can be imple-

mented in a distributed manner: each source node updates its sending rate according to

Eq.(III.9) and each link updates its congestion price according to Eq.(III.10). Eq.(III.8)

is essentially a link scheduling problem. A maximum weighted matching based schedul-

ing policy [15] can be used to assure that the aggregate link weight
∑

l∈L plĉl is maxi-

mized.

Congestion Control with Dynamic Channel

The channel capacity inW is regarded as static and the problem can be solved by the

algorithm described by Eq.(III.8) - Eq.(III.10). However, the channel capacity in a real

wireless environment can be highly volatile due to signal propagation effects, wireless

interference, external noise, etc. [50].

29



Under time-varying channel c(t), the schedulable capacity region Λ is dynamic,

denoted as Λ(t). Under this context, the optimal sending rate of a flow s becomes

time-varying, which is denoted by xs(t). A straightforward approach is to track channel

dynamics and find the optimal solution for each time instance t. The time-varying rate

allocation problem WT is

WT : max
∑
s∈S

Us(xs(t)),∀t ∈ T (III.13)

s.t.
∑
s∈S(l)

xs(t) ≤ ĉl(t),∀l ∈ L (III.14)

over ĉ(t) ∈ Λ(t) (III.15)

In order to do so, the link congestion price can be updated according to the instanta-

neous link capacity

ṗl(t) = [γl(yl(t)− ĉl(t))]+pl (III.16)

Generally, time-varying solutions to WT require that the network dynamics can be

tracked timely so that the congestion control algorithm can make corresponding adjust-

ment to achieve a utility-optimal solution under time-varying channels. For instance, the

work of [15] presents an algorithm with time-varying channel modeled by an irreducible

finite-state Markov chain. In [18], an algorithm is presented to deal with channel vari-

ations where the channel state follows a stationary distribution. However, these studies

assume there is no feedback delay and rely on simplified wireless channel models. in

real wireless environments the practical significance of the simplified models, such as a

stationary Markov chain, is limited.
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Congestion Control with Feedback Delay

In wireless networks, the delivery of the feedback information, such as congestion

degree and link load, cannot be instantaneous due to the propagation delay, processing

time, etc. The delay problem, coupled with time-varying channel, could greatly de-

grade the performance of a congestion control algorithm. Consider a single-flow-single-

wireless-link scenario: let the link capacity of link l at time t be c(t). The congestion

price pl(t) from l the source node s may experience a delay τ b, called the backward

delay, so the price will be received by the source node at t + τ b. Based on this price,

the source node adjusts the sending rate to xs(t+ τ b), which will be detected by the link

after a delay of τ f , called the forward delay. When l makes price calculation according

to the current capacity, which already becomes cl(t+ τ b + τ f ), the load it detects is still

corresponding to the previous link capacity cl(t). Therefore a mismatch occurs.

In Fig. III.1 we plot the sending rate of a one-hop flow (between two Wi-Fi access

points), which is generated from a cross-layer congestion control algorithm based on

Eq.(III.8) - Eq.(III.10). The algorithm adjusts to time-varying wireless channels. The

link capacity is derived from the Roofnet (IEEE 802.11b mesh network) trace [62]. The

plots show that wireless link capacities fluctuate drastically over time. When there is

no feedback delay, the sending rate can closely match the link capacity. But with the

presence of feedback delay, the rate cannot match the capacity.

Solution Overview

To solve the problem of joint congestion control and scheduling in time-varying

wireless environments with the presence of feedback delay, we present a robust joint

control algorithm: ROCS. Fig. III.2 provides a high level overview of this approach,
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Figure III.1: Flow sending rate and link capacity of a single-hop network, with the
presence and absence of delay (10ms, 10ms).

which consists of three key components: Capacity Space Projection, Link Scheduling

and Congestion Control.

With the presence of feedback delay, the perturbation may lead to improper rate

allocation, resulting in packet loss. Therefore, it is impractical to explicitly track the in-

stantaneous signals. The central idea for addressing the problem of a dynamic channel

with feedback delay is Capacity Space Projection. If we regard the capacity of a link

as a signal, its perturbation is associated with its fast time scale component, which is

hard to track and may lead to improper utilization with the presence of delay. Hence we

employ a time decomposition approach: the slow time scale component c̃l(t) is directly

applicable to the congestion control algorithm, while the fast time scale component is

characterized by a capacity margin υl(t), which serves as a compensatory adjustment
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Figure III.2: Overview of ROCS.

to the slow time scale signal. The value of the margin variable needs to be deliber-

ately selected to ensure the bandwidth resource can be fully exploited while suppressing

the overshoot of sending rates. Based on the above discussion, the new link capacity

variable c̄l(t) is formulated as

c̄l(t) = c̃l(t) + υl(t) (III.17)

Here c̃l(t) should vary sufficiently slowly. In other words, when a link adjusts its conges-

tion price, the current capacity could be regarded as almost the same with the previous

capacity. Therefore the delay effect can be reduced. Based on the new capacity space,

now we can formulate a cross-layer congestion control problem W
′
T over the new ca-

pacity space Λ̄(t) generated from CSPA, where Λ̄ is more tractable than Λ.
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W̄
′

T : max
∑
s∈S

Us(xs(t)) (III.18)

s.t.
∑
s∈S(l)

xs(t) ≤ ĉl(t), ∀l ∈ L (III.19)

over ĉ(t) ∈ Λ̄(t), (III.20)

Λ̄(t) = CSPA(c(t)) (III.21)

W̄
′
T is solved by the joint Link Scheduling and Congestion Control algorithm which

is very similar to the solution for Problem W .

Capacity Space Projection Algorithm

In this section, we present the Capacity Space Projection Algorithm (CSPA).

Capacity Space Projection

The Capacity Space Projection Algorithm (CSPA) is used to form a new convex

capacity space as Eq.(III.17) shows, CSPA uses a time decomposition approach in which

an original instantaneous link capacity signal is decomposed to a slow time scale signal

and a margin value estimated from the fast time scale components. In this way the

original capacity space Λ(t) is projected to a new capacity space Λ̄(t), and the virtual

channel capacity vector c̄ with this space is defined as c̄(t) = {c̄l(t), l ∈ L} , t ∈ T .

Cutoff Frequency Search Algorithm

The central idea for identifying the slow time scale signal is low-pass filtering, so we

need to determine the cut-off frequencies of the low-pass filters. Let the sampled link
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capacity series be Cl = {cl(0), cl(1), cl(2), ...}, and the capacity time series generated

by CSPA be C̃l = {c̃l(0), c̃l(1), c̃l(2), ...}. Let vector ωl denote the cut-off frequency of

l. The low-pass filtering process is:

C̃l = Cl ∗ gωl
(III.22)

Here gωl
is the impulse response function of the low pass filter with cutoff frequency

ωl, and the symbol ∗ represents the convolution operation. The capacity signal after low

pass filtering is usually less fluctuating than the original capacity. Fig. III.3 shows the

autocorrelation function of the original link capacity series and the filtered link capacity

series of a wireless link. Obviously when the time τl lag is below a certain value, the

correlation between C̃t
l and C̃t−τl

l of the low-pass filtered series is significantly higher

than the original series. Hence even if a limited feedback delay is introduced to the

network, the channel condition does not change sharply. The link capacity of l at the

moment when the link senses the new rate allocation still resembles the link capacity

when the source nodes adjust the sending rates. As a result, the delay effect is effectively

reduced.

We propose a Static Cutoff Frequency Search Algorithm (SCFS) to find the optimal

cutoff frequency of each link. The goal of this algorithm is: a) The capacity signal

should be preserved as much as possible. Filtering a signal via a low-pass filter drops

the high frequency components and entails information loss. b) The autocorrelation of

the filtered link capacity series should be no less than a threshold. This implies the two

time series C̃t
l and C̃t−τl

l are highly correlated so that the delay effect can be mitigated.
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Figure III.3: Autocorrelation functions of the original link capacity series and low-pass
filtered link capacity series.

To achieve a), we define a preservation degree threshold η̄l to avoid unnecessary infor-

mation loss, when searching the optimal cutoff frequency. To achieve b), we define a

target correlation degree r̄l.

The algorithm is listed in Tab. III.2. Here Fr(·) is a function that returns the up-

per bound of the frequency spectrum of a capacity series, and corr(·) is a function that

computes the autocorrelation of the filtered capacity series. SCFS requires a link capac-

ity series Ct
l as input. The signal preservation degree is the ratio of the energy of the

low-pass filtered series and the energy of the original series, which is an indicator of the

information loss. We use a function pv(·) to compute the signal preservation degree,

defined as

pv(X, Y ) =
E(X)

E(Y )
(III.23)

Here E represents the energy of a capacity series.

SCFS is an exhaustive search algorithm. It tries to preserve the information of the

original capacity and meanwhile iteratively searches the optimal frequency. The algo-

rithm starts with a tight preservation degree constraint. If no feasible solution exists with

the current preservation degree, it gradually relaxes the preservation degree constraint
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and repeating the search process. The algorithm satisfies requirement a) by guaranteeing

the preservation degree will not fall below the threshold η̄l. It satisfies requirement b)

by searching a cutoff frequency that can achieve the maximum autocorrelation degree.

SCFS: Static Cutoff Frequency Search Algorithm
For each link l in L:
Input: Ct

l , r̄l, η̄l, τl
Output: ω∗l .

1. ω∗l ← Fr(C
t
l )

2. ωl ← ω∗l
3. η̄l ← 1

4. if (corr(C̃l,t, C̃
t−τl
l ) ≥ r̄l)

5. return ω∗l
6. end if
7. while (η̄l > η̄)
8. ωl ← ωl − ε
9. C̃t

l ← Ct
l ∗ gωl

10. ηl ← p(C̃t
l , C

t
l )

11. if (corr(C̃l,t, C̃
t−τl
l ) ≥ r̄l)

12. ω∗l ← ωl
13. return ω∗l
14. end if
15. end while
16. return ω∗l

Table III.2: Cutoff Frequency Search Algorithm (Static)

Capacity Margin Estimation

Now we present the fast time scale component modeling of via capacity margin esti-

mation. We develop a model to estimate the fast time scale signal of the capacity. More

specifically, we introduce a variable called capacity margin υl for link l to characterize

the fast time scale signal.
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In order to find the value of υl, we look for compensation for packet loss: the loss

incurred by overshooting will impose penalty on rate allocation. To this end, we define

a penalty function Pl(y
p
l ) for link l, which is a convex function Here ypl is the amount

that the virtual capacity of l exceeds the instantaneous capacity, i.e.

ypl (υl, t) = [c̄l(t)− cl(t)]+ (III.24)

= [c̃l(t) + υl − cl(t)]+

Now the objective of margin value selection is to maximize the profit across the network,

which is the optimal network utility minus the aggregate penalty of all the links. The

optimal network utility is obtained under the optimal rate allocation x∗(t), which is the

solution to W
′
T . Note that in the formulation of W ′

T , the link capacity is defined by

Eq. (III.17). Suppose the capacity margin vector is υ, The problem is formulated as

Φ(υ, t) (III.25)

= max
υ

(∑
s∈S

Us(xs(υ, t))−
∑
l∈L

P (ypl (υl, t))

)

= max
υ

(∑
s∈S

Us(xs(υ, t))−
∑
l∈L

P ([c̃l(t) + υl − cl(t)]+)

)

where the rate allocation x(υ, t) is made by assuming that the capacity space Λ(υ, t) is

defined such that the usable link capacity cul (υl, t) is

cul (υl, t) = c̃l(t) + υl (III.26)
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We propose a margin update algorithm find the margin vector υ. Suppose the upper

bound of queue loss is L̄. We introduce a margin update cycle Tυ The links keep moni-

toring their queue loss values and locally update their margin values at the beginning of

a cycle. The algorithm is presented in Tab. III.3. If the queue loss of a link exceeds the

upper bound, the margin will increase according to the gap between the average queue

loss during the previous cycle and the upper bound. Otherwise, the margin will decrease

if the queue loss is less than the bound. εl and φl are parameters for margin adjustment.

Margin Update Algorithm
At the beginning of Tυ, link l performs:
if Ll ≥ L̄

υl ← υl + εl(Ll − L̄l)
else if Ll ≤ L̄

υl ← υl − φl(L̄l − Ll)
end if

Table III.3: Margin Update Algorithm

CSPA Implementation

Based on the discussions of slow time scale capacity extraction and capacity margin

estimation, we now present the implementation of CSPA in Tab. III.4. The input of CSPA

includes ω and Tυ. Here ω is the optimal cut-off frequency vector generated by SCFS

algorithm, and Tυ is the period of capacity margin update. Each link autonomously

implements CSPA at run time and generates its virtual capacity. At the beginning of

a time slot, a link l first monitors the channel condition to obtain the original capacity,

then it updates its capacity time series C̄l,t which is used to compute the slow time scales

signal. Then the current virtual link capacity is computed using Eq.(III.22).

39



CSPA: Capacity Space Projection Algorithm
Each active link l in N performs:
Input: ωl, Th
Output: c̄l(t).

1. if t← Th
2. Update υl
3. end if
4. Monitor current channel state and update Cl,t
5. Filter Cl,t and obtain the slow time scale signal c′l(t)
6. Update virtual capacity series:
7. c̄l(t)← c̃l(t) + υl
8. return the current virtual link capacity c̄l(t)

Table III.4: CSPA implementation

Joint Congestion Control and Scheduling

In this section we introduce the joint congestion control and scheduling algorithm

and its distributed implementation.

Robust Congestion Control Algorithm

Since CSPA can effectively mitigate the forward delay effect (it also reduces the

backward delay effect) incurred by flow rate information delay and channel perturbation,

we ignore the forward delay in this section and only consider the backward delay. Then

the joint control algorithm J is listed as follows.

ẋs(t) = λs

(
1− qs(t)

U ′s(xs(t))

)
(III.27)

ṗl(t) = [γl(yl(t)− ĉl(t))]+pl (III.28)

ĉ(t) = arg max
ĉ(t)∈Λ(t)

(∑
l∈L

pl(t)ĉl(t)

)
(III.29)
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The algorithm jointly adjusts flow rate allocation and link utilization, in order to

achieve a global optimum, where the aggregate network utility is maximized. The

two components of the algorithm, congestion control (Eq.(III.27) and Eq.(III.28)) and

scheduling (Eq.(III.29)), implicitly interact with each other: flow rate allocation deter-

mines link congestion prices and therefore affects the scheduling on link selection which

is based on link weight pl(t)c̄l(t). Meanwhile, scheduling determines the effective link

capacities, and hence affects flow rate allocation.

Stability Analysis

The stability of a delayed system can be studied either through Laplace transform

or Lyapunov function based approaches. Because the dynamics caused by scheduling

is not explicitly reflected in the frequency domain, we employ a time domain oriented

approach: Razumikhin theorem [63], to investigate the sufficient conditions for the Lya-

punov stability (local stability) of the control system (III.27) - (III.29). First, we assume

the link capacity vector is fixed during an interval [t, t + ∆t], considering the capacity

space varies at a sufficiently slow time-scale. We denote the current capacity allocation

vector as ĉ. Second, We assume the following condition holds for any flow congestion

price qdr (t). This implies the trajectories of the delayed signals are bounded.

sup ||qds (t)− qs(t)||2 = ζs,∀s ∈ S (III.30)

Let the equilibrium point corresponding to the channel state ĉ be (x∗,p∗), where x∗

and p∗ are equilibrium rate vector and price vector respectively. We consider the fol-

lowing positive definite and radially unbounded Lyapunov-Razumikhin function [64]:
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V (x,p;x∗,p∗) =
∑
s∈S

(xs(t)− xs∗)2

2λs
+
∑
l∈L

(pl(t)− pl∗)2

2γl
(III.31)

The time derivative of V is

V̇ (t) =
∑
s∈S

(xs(t)− x∗s)
[
U ′s(xs)− qds (t)

]
+
∑
l∈L

(pl(t)− p∗l ) [yl(t)− ĉl(t)]+ (III.32)

≤
∑
s∈S

(xs(t)− x∗s)
[
U ′s(xs)− qds (t)

]
+
∑
l∈L

(pl(t)− p∗l ) [yl(t)− ĉl(t)] (III.33)

=
∑
s∈S

[
(xs(t)− x∗s)(U ′s(xs)− U ′s(x∗s) + q∗s − qds (t))

]
+
∑
l∈L

[(pl(t)− p∗l ) (yl(t) + y∗l − y∗l − ĉl(t))] (III.34)

=
∑
s∈S

(xs(t)− x∗s)(U ′s(xs)− U ′s(x∗s))︸ ︷︷ ︸
(a)

+
∑
s∈S

(xs(t)− x∗s)(q∗s − qds (t))︸ ︷︷ ︸
(b)

+
∑
l∈L

(pl(t)− p∗l ) (yl(t)− y∗l )︸ ︷︷ ︸
(c)

+
∑
l∈L

(pl(t)− p∗l ) (y∗l − ĉl(t))︸ ︷︷ ︸
(d)

(III.35)

Note that (III.32) and (III.33) are equal if γ(yl(t) − ĉl(t)) is non-negative. The second

expression in (III.33) is positive because (pl(t)−p∗l ) is also negative when γ(yl(t)−ĉl(t))

is negative. (III.34) follows that U ′s(x
∗
s) = q∗s . If there are no delays, term (b) and term

(c) are canceled out. According to the concavity of the utility function, (a) ≤ 0. In

addition, by the scheduling policy (III.8), we have:
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∑
l∈L

p∗l ĉl(t) ≤
∑
l∈L

p∗l y
∗
l (III.36)∑

l∈L

pl(t)y
∗
l ≤

∑
l∈L

pl(t)ĉl(t) (III.37)

Now denote term (d) by S, then (III.36) and (III.37) lead to

S =
∑
l∈L

p∗l ĉl(t)−
∑
l∈L

p∗l y
∗
l (III.38)

+
∑
l∈L

pl(t)y
∗
l −

∑
l∈L

pl(t)ĉl(t) ≤ 0

If the delay is negligible, the time derivative of the Lyapunov function is not positive.

Therefore the proof of Lyapunov stability without delay is completed. However, the

above analysis is not sufficient for a system with delay.

Now we proceed to study the stability with delay. More specifically, we try to find

the sufficient conditions for the Lyapunov stability of the system. Since (d) ≤ 0, the

time derivative of V satisfies the following inequality:
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V̇ (t) ≤
∑
s∈S

(xs(t)− x∗s) [U ′s(xs(t))− U ′s(x∗s)] (III.39)

+
∑
s∈S

(xs(t)− x∗s)(q∗s − qds (t))

+
∑
l∈L

(pl(t)− p∗l ) (yl(t)− y∗l )

=
∑
s∈S

(xs(t)− x∗s)(U ′s(xs(t))− qds (t))

+
∑
l∈L

(pl(t)− p∗l ) (yl(t)− y∗l )

=
∑
s∈S

(xs(t)− x∗s)(U ′s(xs(t))− qds (t))

+
∑
s∈S

(xs(t)− x∗s) (qs(t)− q∗s)

Hence we have

V̇ (t) ≤ Q(t) (III.40)

where

Q(t) =
∑
s∈S

(x∗s − xs(t))[(qds (t)− qs(t))− (U ′s(xs(t))− q∗s)] (III.41)

Next we investigate the property of Q(t). From the concavity of U(xs), the following

inequality holds,

(x∗s − xs(t))(U ′s(xs)− q∗s) ≥ 0 (III.42)

We further consider the following two situations:
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1. if (x∗s − xs(t)) ≥ 0, then (U ′s(xs(t))− q∗s) ≥ 0,

hence the sufficient condition for Q(t) ≤ 0 is

|qds (t)− qs(t)| ≤ |U ′s(xs(t))− q∗s |,∀s ∈ S (III.43)

2. if (x∗s − xs(t)) < 0, then (U ′s(xs(t))− q∗s) < 0,

hence the sufficient condition for Q(t) ≤ 0 is

|qds (t)− qs(t)| ≤ |q∗s − U ′s(xs(t))|,∀s ∈ S (III.44)

According to condition (III.30), one sufficient condition for V̇ (t) ≤ 0 is

ζs ≤ ||U ′s(xs(t))− q∗s ||2,∀s ∈ S (III.45)

Since J is a primal-dual controller, condition (III.45) can be guaranteed by manipulating

the tuning parameters: λs and γl. Based on the discussions above we have the following

theorems.

Theorem 1: The joint congestion control and scheduling algorithm J is Lyapunov

stable without time delay.

Theorem 2: The joint congestion control and scheduling algorithm J is Lyapunov

stable with time delay if (III.45) holds.

Note that (III.45) gives the sufficient conditions, and the algorithm J may also be

stable if the conditions are not satisfied. Moreover, if the delay effect is dominant (ζs is

sufficiently large), the condition cannot be satisfied by simply manipulating the tuning

parameters, therefore, a feasibility check is required at the beginning of the algorithm.
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Distributed Implementation of ROCS

The implementation of cross-layer congestion control has been studied in existing

works, such as [15, 18]. Our cross-layer design differs from these works in that we em-

ploy a capacity space projection algorithm, such that the cross-layer control algorithm

runs over a newly built capacity space.

Since a link capacity series usually possesses some unchanging statistical character-

istics, these characteristics can be profiled from a sample sequence. At the beginning of

ROCS, we profile the link capacities and obtain ω by using SCFS. As we discussed in

Sec. III, the cutoff frequency vector can also be obtained online: the time series of the

sampled link capacity is periodically updated and fed into SCFS. When ROCS is run-

ning, the link states are monitored and the channel decomposition algorithm is applied

to generate the new capacity space.

The scheduling policy should maximize the aggregate link weight
∑

l∈L plĉl across

the network. In our implementation, this is achieved by using a maximal matching

scheduling, as introduced in [15]. However, one remarkable difference between our

scheduling algorithm and the scheduling algorithm used in [15] is that we use a virtual

capacity, consisting of the slow time scale component and an estimated component,

instead of using the original capacity directly. As a result, our design is capable of

not only adjusting rate allocation under time-varying channels, but also handling delay

effects. The distributed implementation of the algorithm is presented in Tab. III.5.
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Robust Joint Congestion Control and Scheduling (ROCS)
0) Perform SCFS to obtain ω
1) Feasibility check

if this is a feasible problem,
Start timer, t← 0, repeat 2)-7) on a slotted time basis.

else exit.
2) Collect channel states at each time slot.

Perform CSPA to obtain c̄. t← t+ 1.
3) if t == T

stop timer and go to 4).
else go to 2).

4) Link congestion price update
Link l updates its link congestion price

ṗl(t)← [γl(yl(t)− ĉl(t))]+pl
Add price pl(t) to the flow price qs, if s travels through l.

5) Rate adaption
Each source node adjusts its sending data rate when it receives
an ack packet from the destination node:

ẋs(t)← λs

(
1− qds (t)

U ′s(xs)

)
6) Scheduling

For each node s, start the scheduling timer.
6.1) if s has been scheduled by any of its neighbor node,

send messages to notify all nodes in its
interference set and stop scheduling procedure.

6.2) Each incident directional link l is assigned a weight
wl ← plc̄l

6.3) Find a link with the maximum weight.
if the link is found,

Schedule this link and update the effective capacity ĉl.
Notify all neighbors and all links in the interference set.

else Stop scheduling procedure.
6.4) if timeout occurs,

stop scheduling.
else repeat 6.1) to 6.4).

7) Restart timer, t← 0, and go to 2)

Table III.5: Distributed implementation of ROCS
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Numerical Results

In this section we evaluate the performance of our robust joint congestion control

and scheduling algorithm.

Experimental Setup

We simulate three wireless mesh network scenarios: a) a single-flow-single-link

network; b) a multi-hop network with parallel flows and 3) a multi-hop network with

overlapped flows, as shown in Fig. III.4. Data packets are delivered via wired con-

nections from remote sources to the stationary local wireless routers, and then for-

warded to the destination nodes in the wireless networks. We define utility function

Us(xs) = βslogxs. The time-varying capacities of the links are modeled by two types

of wireless network traces: one is a 4-state Markov chain trace with uniform inter-state

transition probability. During each state, a link capacity can be one of the following

values: 6Mbps, 7Mbps, 8Mbps and 9Mbps. The other one is the Roofnet trace [62].

In our simulation, each link in the experimental networks is randomly assigned a link

capacity series from the Markov trace the Roofnet trace. The capacity signal sampling

interval is 40 milliseconds, more specifically, the capacity of a link is updated every 40

milliseconds. We do not simulate retransmissions. Note that hereinafter a delay value τ

implies that the forward delay τf and the backward delay τb are both equal to τ .

To evaluate the performance of ROCS, we compare it with two baseline algorithms:

• Baseline algorithm I is a joint congestion control and scheduling algorithm, which

is called Alg.BASE. It is based on the cross-layer congestion control algorithm in-

troduced in [15],where we remove the routing component. It monitors the channel

states and adjusts flow rate accordingly.

1In our simulation, the lost packets are not retransmitted. Sending rate = Receiving rate + Loss rate.
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Figure III.4: Experimental multi-hop wireless networks with parallel data flows (left)
and overlapped data flows (right).

• Baseline algorithm II is a joint congestion control and scheduling algorithm sim-

ilar to Baseline algorithm I, called Alg.AVER. The major difference is that it uses

the average link capacity evaluated from the the sampled capacity signal series,

instead of the original capacity.

Performance metrics used in our experiments include: 1) flow rate (sending rate), 2)

network queue length and 3) loss ratio.

Sending Rate of Single-Hop Networks

We start from investigating the rate allocation over a single-hop wireless network

(Topo.I). The link capacity is modeled by the RoofNet trace, and the forward and back-

ward delays are both set to be 10 ms. Fig. III.5 shows the sending rate generated by

ROCS. The rates vary slowly compared with the rates in Fig. III.1.
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Figure III.5: Sending rate under ROCS of a single link (Topo.I) with delay (10ms,
10ms).

Sending Rates of Multi-Hop Networks

In this experiment we examine the sending rate allocation in the multi-hop networks.

The forward delay and the backward delay are both 20 ms. Fig. III.6 shows the flow

rates generated by ROCS. The instantaneous flow rates are fluctuating, because the link

capacities are time-varying. According to our observation, the flow rates generated by

ROCS can converge rapidly either under the simulated Markov channel or the RoofNet

channel.

Queue Stability

To investigate the stability of our algorithm, we evaluate the sum of the aggregate

queue length of the network (the network queue length) over time. A bounded network

queue length implies the system is stable. Here we assume the queue size at each node

is unbounded. Fig. III.7 shows the instantaneous network queue length of each scenario.

From the plots we can see that the queue lengths are bounded. However, if the maximum

queue size is bounded, packet loss may occur due to queue overflow. We will test the

performance of ROCS under this context via a group of experiments in Subsection III.
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Figure III.6: Sending rates of ROCS.
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Figure III.7: The total instantaneous queue length.
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Loss Ratio

In order to evaluate the efficiency of ROCS in packet delivery, we introduce loss

ratio, which is defined as the number of packets lost divided by the number of packets

delivered. This metric can be interpreted as the quantity of packets lost for each success-

fully delivered packet. We conduct two experiments: a) we change the delay values and

plot the corresponding loss ratios; b) we change the maximum queue size and plot the

corresponding loss ratios. For each network scenario, each simulation instance (corre-

sponding to either a particular delay value or a particular maximum queue length) runs

for 320 seconds.

We first fix the queue length bound to be 1000 and observe the loss ratios. Fig. III.8

shows the results across different delay values. Obviously the loss ratio of ROCS is the

lowest among all the three algorithms. We observe an increasing loss ratio when the

delay value increases under Alg.BASE. This is probably because a larger delay within

this range imposes a more severe impact on the congestion control algorithm. On the

other hand, the loss ratio under Alg.AVER is relatively stable. This is because the capac-

ity used by Alg.AVER is an estimated average value. Therefore the impact of channel

variation is limited. We plot the queue losses in Fig. III.9. The results indicate that the

loss under ROCS is less than the other two algorithm.

Next we observe the loss ratios across various queue length bounds, which are shown

in Fig. III.10. Like we expect, the loss ratios decrease while the maximum queue length

increases. Again the loss ratio under ROCS is the lowest among all the algorithms.

To sum up, the robust congestion control algorithm ROCS conservatively exploits

feasible capacity under channel perturbation, while avoiding queue overflows. It can

effectively reduce data loss without jeopardizing network throughput. In real world
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Figure III.8: Loss ratio (under different delays).

applications, queue overflows lead to packet losses, and packet losses incur retrans-

missions, which increase communication overhead. Therefore reducing occurrence of

queue overflows carries significance in wireless communications.

Discussion

In time-varying multi-hop wireless networks, the performance of joint congestion

control and link scheduling algorithms usually suffer from time delay and channel per-

turbations. The solution proposed in this chapter reshapes the wireless link capacity

space, so the virtual capacity used by the congestion control algorithm mainly follows

the slow time scale of the real capacity. By using this technique, the congestion control

algorithm is more robust with the presence of high frequency channel capacity varia-

tions. At the same time, the delay effect is remarkably reduced. We implement the al-

gorithm in a fully distributed way, so the nodes in a wireless network can autonomously
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Figure III.9: Data loss due to queue overflow.
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Figure III.10: Loss ratio (under different queue length limits).

55



collect the network information and make corresponding adjustment to the resource

allocation. Experimental results demonstrate the robustness and efficiency of our algo-

rithm. The study is especially meaningful for some data usage critical applications, such

as mobile phone applications.
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CHAPTER IV

A TIME-SCALE DECOMPOSITION APPROACH TO JOINT CONGESTION
CONTROL AND SCHEDULING

In this chapter we present a time-scale decomposition approach to joint congestion

control and link scheduling for resource management in time-varying wireless networks

with feedback delays. We formulate this problem into an optimization framework con-

strained by the feasible capacity space. The objective of the optimization problem is to

maximize the time integral of the aggregate substantial network welfare. The proposed

solution is based on a time scale decomposition module, through which the congestion

control algorithm is operated over a new capacity vector that follows the critical time

scale. We further propose a penalty-aware scheduling mechanism to track the level of

rate over-provisioning at each link. The simulation results show that the proposed ap-

proach achieves stable rate allocation and greatly reduces over-utilization.

The rest of this chapter is organized as follows. We first overview the proposed

solution. Next we introduce the system model and the problem description. In the

following two sections we propose our dynamic-aware congestion control algorithm

and the simulation study. Finally we conclude the chapter.

Overview

The wireless network resource allocation has been a long-standing problem. It is

recently ignited by the accelerated proliferation of smart devices, which have created

increasing demand for wireless data services and resulted in network congestion prob-

lem. The inherent nature of wireless interference has motivated joint congestion control

and scheduling as a solution to resource allocation in wireless networks [15, 16, 17, 18,
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19, 37] and [38], where the global utility maximization problem is decomposed into

three subproblems at different layers of the network stack - rate adaptation at transport

layer, congestion degree generation at network layer and scheduling at MAC layer. For

example, the congestion control algorithms are usually combined with the queue length

based scheduling algorithms to achieve throughput optimality and fairness [38, 65, 66].

The analytical properties (e.g., stability) of these solutions studies strongly rely on two

assumptions: 1) feedback delay in the network is negligible and 2) the wireless channel

capacity is either static or its dynamics follow some simple models such as a Markov

chain [15]. However, neither of the assumptions is close to real wireless environments.

Feedback delays exist in real world wireless networks which have time-varying channel

condition.

To address this problem, we present a time-scale decomposition approach to joint

congestion control and scheduling for time-varying wireless networks. Our primary

objective is to ensure the stability of congestion control while effectively utilizing the

time-varying channel resource. We employ a new utility optimization framework, which

relaxes the original framework from two aspects. 1) Its solution for rate allocation does

not necessarily guarantee the aggregated utility of all flows to be optimal at each time

instance, rather it targets at optimizing the aggregated utility over a certain time span.

2) It allows for packet loss in the optimal solution and imposes a corresponding penalty.

This is in contrast with the original formulation where resource capacity imposes a hard

constraint that ensures no packet loss at the system equilibrium. To estimate the poten-

tial packet loss, we assign a quantitative variable to each link. Specifically, each link is

associated with a penalty function which evaluates its cost of capacity over-utilization.

The optimization objective is to maximize the time-aggregated network net profit which

is the difference between the aggregate utility and penalty. To reduce delay effect, we

decompose the problem into two components at two different time scales by introducing
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a virtual slow time scale capacity for each link. The congestion control component only

observes the slow time scale link capacity, and as a result executes on a slow time scale.

The scheduling component observes the real channel capacity and schedules the links

at fast time scale. The critical time scale of the slow time scale capacity is used to en-

sure the stability of congestion control in the presence of network feedback delay, while

the scheduling component reconciles the difference between the scheduled feasible link

rate and the virtual slow time scale link capacity to minimize the penalty of capacity

over-utilization. The implementation of the algorithm is fully distributed. Each compu-

tational unit involved in the cross-layer design autonomously updates its local status or

resource allocation information by using the required feedback information.

System Model

We consider a multi-hop wireless network model, consisting of V nodes, collectively

denoted as V . The nodes communicate with each other via directed wireless links, de-

noted as L. The end-to-end flow set is represented byR. Each flow r ∈ R with sending

rate xr is associated with a utility function Ur(xr), which is concave and twice differen-

tiable. The link set the flow r traverses is denoted as L(r), and the flows incident to link

l ∈ L are denoted as R(l). The communications in a wireless network is subject to lo-

cation dependent interference. In this work we adopt the concept of conflict graph [24]

to model wireless interference. Each vertex in the conflict graph represents a wireless

link of the original network. An edge exists between two vertices if their corresponding

wireless links interfere with each other.

We employ a scheduling scheme that schedules the wireless links on a slotted time

basis. In this scheme, one independent set I is selected from the conflict graph in

each time slot and only the links corresponding to the vertices in I can be active. This
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scheduling scheme ensures collision-free packet transmission, because there is no inter-

ference between any pair of nodes within the independent set. The scheduling scheme

implicitly determines the capacity region.

Let cl represent the amount of bits that can be transmitted per second (so-called

original link capacity) along a link l once it is scheduled. We denote the original capacity

vector by c, where c = (cl, l ∈ L). The feasible rate ĉl of link l that is achievable

under a scheduling scheme is the link capacity averaged over time when it is active. We

use ĉ = (ĉl, l ∈ L) to denote the feasible rate vector. Let the L-dimensional column

vector rI represent the capacity vector of I , where rIl = cl if l ∈ I , and rIl = 0

otherwise. Further we define Λ :=
∑

I αIr
I , where

∑
I αI = 1 and αI ≥ 0. Λ is

a convex hull [60], which contains all the feasible rate vectors [15] under any inference-

free scheduling, i.e., ĉ ∈ Λ.

We collect the notations used in this chapter in Tab. IV.1.

Notation Definition
v ∈ V = {1, 2, ..., V } Node set
r ∈ R = {1, 2, ..., R} End-to-end flow set
l ∈ L = {1, 2, ..., L} Wireless link set
L(r) Links the flow s traverses
R(l) Flows incident to link l
Λ Original Capacity Space
Pl Penalty function of link l
c = (cl, l ∈ L) Original link capacity vector
ĉ = (ĉl, l ∈ L) Feasible link rate vector
ĉL = (ĉLl , l ∈ L) ∈ Λ̄ Slow time scale capacity vector
y = (yl, l ∈ L) Aggregate flow rate vector
x = (xr, r ∈ S) Flow sending rate vector
µ = (µl, l ∈ L) Link congestion price vector

Table IV.1: Notations
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Problem Description

As we discussed in Chapter III, the cross-layer congestion control problem under

time-invariant channel can be solved by the joint congestion control and scheduling al-

gorithm described by Eq.(III.8) - Eq.(III.10). However, as being demonstrated in the

study of [62], wireless channel capacity could be highly dynamic. We can formulate the

NUM problem under time-varying channel, and formulation is similar to the formula-

tion of WT in Chapter III. The previous studies usually rely on some simplified wire-

less channel models to obtain the optimal rate allocation and prove the system stability.

Another dynamic factor is feedback delay, which we have also discussed in Chapter

III. Feedback delay under time-varying channel, could lead to performance issues to a

cross-layer control algorithm, such as system instability, rate over-provisioning, etc.

Approach

We propose an optimization framework for the resource management problem of

time-varying wireless networks and a time-scale decomposition approach to solve the

problem.

Time-Aggregated Optimization Framework

To address the inherent challenge of handling time-varying channel capacity with the

presence of feedback delay in congestion control, we present a new time-aggregated op-

timization framework W1 for congestion control in time-varying wireless network. This

framework relaxes the original framework from two perspectives: 1) its solution of rate

allocation does not guarantee the aggregated utility of all flows to be optimal at each

time instance, rather it targets at optimizing the aggregated utility over a certain time
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span; 2) it allows for packet losses in the optimal solution and imposes a correspond-

ing penalty. This is in contrast with the original formulation where resource capacity

imposes a hard constraint that ensures no packet losses at system equilibrium, formally,

W1 : max
∫ T

0

M(x(t))dt (IV.1)

where ∀t ∈ [0, T ],

M(x(t)) =
∑
r∈R

Ur(xr(t))−
∑
l∈L

Pl(
∑
r∈R(l)

xr(t), ĉl(t)) (IV.2)

Recall that the feasible rate vector ĉ is determined by the link scheduling algorithm.

This vector specifies the upper bounds of data rates that can be allocated over the links.

In the dynamic channel scenario, ĉ is time-varying. With the presence of delay, it is al-

most impossible to achieve loss-free delivery with limited queue size, because the data

rate allocated over a link could be higher than ĉl, which is known as the overshooting

problem. To evaluate the cost of excessive rate allocation over a link, we introduce a

penalty function Pl(·) for each link. The penalty function is a continuous, nondecreas-

ing convex function of the difference between the allocated rate and the feasible rate.

Fig. IV.1 presents an example of the penalty function curve.

Time-Decomposed Congestion Control and Scheduling

The perturbation of a channel state is associated with its fast time scale component.

Directly tracking the instantaneous channel variation may lead to improper utilization

with the presence of delay. To address this problem, we present a time-scale decom-

position approach. Instead of directly using ĉ generated by the scheduling module, we
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introduce a virtual capacity vector ĉL, called the slow time scale capacity, which varies

sufficiently slow so that it can be tracked by the rate controller even with the presence of

feedback delays. We use ĉL to constrain the rate allocation. Moreover, ĉLl can be used

together with the feasible rate vector ĉl to estimate the overshot rate of a link l. Now,

problem W1 is converted to problem W2:

max
∫ T

0

(
∑
r∈R

Ur(xr(t))−
∑
l∈L

Pl(ĉ
L
l (t), ĉl(t)))dt

s.t.
∑
r∈R(l)

xr(t) ≤ ĉLl (t),∀l ∈ L,

over ĉL(t) = Ω(ĉ(t)), ĉ(t) ∈ Λ(t),∀t ∈ [0, T ]

Note that we use Ω(·) to represent the process that generates the slow time scale

capacity vector ĉL. Taking the Lagrangian of W2, we obtain:
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max
∫ T

0

(
∑
r∈R

Ur(xr(t))−
∑
l∈L

Pl(ĉ
L
l (t), ĉl(t))−∑

l∈L

µl(t)(
∑
r∈R(l)

xr(t)− ĉLl (t)))dt (IV.3)

= max
∫ T

0

(
∑
r∈R

Ur(xr(t))−
∑
l∈L

µl(t)
∑
r∈R(l)

xr(t))dt+

max
∫ T

0

(
∑
l∈L

µl(t)ĉ
L
l (t)−

∑
l∈L

Pl(ĉ
L
l (t), ĉl(t)))dt

over ĉLl (t) = Ω(ĉ(t)), ĉ(t) ∈ Λ(t),∀t ∈ [0, T ]

Then we solve the above problem at discrete time instances, by decomposing it to two

subproblems:M1 andM2.

M1 : max
∑
r∈R

Ur(xr(t))−
∑
l∈L

µl(t)
∑
r∈R(l)

xr(t) (IV.4)

s.t.
∑
r∈R(l)

xr(t) ≤ ĉLl (t),∀t ∈ [0, T ]

M2 : max
∑
l∈L

µl(t)ĉ
L
l (t)−

∑
l∈L

Pl(ĉ
L
l (t), ĉl(t)) (IV.5)

over ĉ(t) ∈ Λ(t),∀t ∈ [0, T ]

M1 and M2 actually follow different time scales. M1 is the utility maximiza-

tion problem over the slow time scale capacity ĉLl (t), at time instance t. M2 is a

new scheduling problem that integrates the overshooting penalty, called Penalty-aware

Scheduling, which is on a fast time scale to track the channel dynamics.
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Figure IV.2: Time decomposition approach overview.

Fig. IV.2 provides an overview of our approach. The slow time scale capacity iden-

tifying component keeps monitoring the instantaneous feasible rate vector and generates

the slow time scale capacity vector. The congestion control component determines how

to allocate the sending rates. The penalty-aware scheduling component schedules the

wireless links and determines the feasible rate vector ĉ. The slow time scale capacity

vector ĉL is derived from ĉ based on the properties of a slowly-varying system, which

will be discussed in the following sub-section. On the other hand, ĉL have impact on ĉ

via the penalty function P (·).

Identifying The Slow Time Scale Capacity Vector

Identifying the slow time scale capacity vector is the key step towards realizing the

time decomposition based resource management. The slow time scale capacity vector

ĉL should vary slowly so that at a particular time instance t, it can be considered as a

frozen parameter and the congestion control algorithm has an isolated equilibrium point
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[67]. This requires the derivative of ĉL with respect to time,
∥∥∥ ˙̂cL

∥∥∥, is sufficiently small.

Furthermore, the slow time scale capacity should be insensitive to delay effect, which

means the difference between ĉLl (t) and ĉLl (t− τ) is bounded. If the system is described

by ẋ = f(x, ĉL), the slow time scale capacity vector needs to satisfy the following

conditions:

∫ t0+τmax

t0

∥∥∥ ˙̂cL(t)
∥∥∥ dt ≤ K1 (IV.6)∥∥∥∥∂f(x, ĉL)

∂ĉL

∥∥∥∥ ≤ K2

∥∥x− x∗(ĉL)
∥∥ (IV.7)

Here τmax is the maximum link round-trip delay. K1, K2 are positive constants. Condi-

tion (IV.6) can be simply interpreted as: the accumulated variation of the slow timescale

capacity over any time interval of [t0, t0+τmax] is upper bounded by a particular constant

value K1. The bound K1 determines how “slow” the capacity variation is. Condition

(IV.7) is derived based on Lemma 9.8 of [67]. It specifies that the derivative of the

system dynamic along the trajectory of the slow time scale capacity is upper bounded.

Overall, (IV.6) and (IV.7) require the trajectory of ĉL to be “sufficiently” slow and the

variation of the system along the direction of the capacity trajectory is upper bounded.

Under the constraints, the slow time scale capacity vector is considered as a “frozen” or

slowly varying parameter, hence the congestion control system has an equilibrium point

at each time instance (on the slow time scale). In our system, we denote the upper bound

of the derivative of ĉLl as δl.
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Congestion Control and Stability

Our congestion control component is based a primal-dual controller [46] which ad-

justs both the rate and the congestion price. At a particular time instance, if the slow

time scale capacity vector is regarded as ĉL, the control algorithm is

ẋr(t) = λr

(
1− qdr (t)

U ′r(xr(t))

)
(IV.8)

µ̇l(t) =
(
γl(y

d
l (t)− ĉLl )

)+

µl
(IV.9)

Here qr(t) =
∑

l∈L(r) µ
d
l (t) and yl(t) =

∑
r∈R(l) x

d
r(t) represent the delayed conges-

tion price signal and rate signal respectively. Since the system is regarded as a slowly

varying system, it can follow the corresponding capacity trajectory. We use the utility

function Ur(xr) = ωrlogxr. Now we investigate the stability of the controller (IV.8)-

(IV.9) around the equilibrium point (x∗,µ∗) . After linearization, the Laplace transforms

of (IV.8) and (IV.9) are:

xr(s) =
1

s+ λr(x∗r)
ωr

(
−λr(x

∗
r)

ωr
x∗rqr(s) + xr(0)

)
(IV.10)

µl(s) =
1

s
(rl(µ

∗
l )yl(s) + µl(0)) (IV.11)

Hence the transfer function can be easily obtained:

G(s) = diag

{
λrx

∗
r

ωrs+ λr

}
D(s)RT (−s)diag

{γl
s

}
R(s) (IV.12)

where D(s) = diag {e−sτ}. Rlr = e−sτb if l ∈ L(r), and Rlr = 0 otherwise. By

Theorem 6.12 of [46], the sufficient condition of local asymptotic stability is
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γl ≤
µ∗l

ĉLl τmax
,∀l ∈ L (IV.13)

where τmax is the maximum value among all the round trip delay values associated

with l. In Tab. IV.2 we present a distributed congestion control algorithm: Alg.C. The

algorithm involves two time scales: one fast time scale for the scheduling component

and one slow time scale for the congestion control component.

Algorithm II: Alg.C
1. Capacity Update (fast)
2. At each scheduling slot:
3. A link is selected according to S
4. Update ĉ(t)
5. At the beginning of each capacity update slot,
6. generate cL(t) from Alg.S’
7. Congestion control (slow)
8. On receiving an packet,
9. ∀r ∈ R, perform Rate adaptation:

10. ẋr(t)← λr

(
1− qdr (t)xr(t)

ωr

)
11. At the beginning of each price update cycle,
12. ∀l ∈ L, perform Price Adjustment:
13. µ̇l(t)←

(
γl(y

d
l (t)− cLl )

)+

µl

Table IV.2: Congestion control algorithm

Penalty Aware Scheduling

We propose a penalty aware scheduling algorithm, which schedules the wireless

links according to the link congestion degree, instantaneous channel condition and over-

utilization penalty. Recall the link scheduling problemM2 over the time-varying capac-

ity region Λ(t):
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max

∑
l∈L

µl(t)ĉ
L
l (t)− Pl(ĉLl (t), ĉl(t))︸ ︷︷ ︸

wl

 (IV.14)

over ĉ(t) ∈ Λ(t),∀t ∈ [0, T ]

M2 can be naturally interpreted as maximizing the summation of all link weights across

the network, where the weight of link l is denoted by wl. As indicated by (IV.14), wl

consists of two components: the product of the slow time scale capacity and the rate,

w1, and the penalty value w2. w1 is essential for achieving the throughput optimality

[30]. w2 can be simply understood as a numerical measurement of the penalty caused

by the excessive utilization of link capacity. Specifically, we define the function Pl(·) as

follows:

Pl(ĉ
L
l (t), ĉl(t)) =

 0 if ∆cl(t) ≤ 0

al
bl−∆cl(t)

otherwise

where

∆cl = ĉLl (t)− δl − ĉl(t)

Here ĉLl (t)− δl is an estimation of the lower bound of the slow time scale capacity that

will be generated in the current slot. al and bl are both positive constant values.

Now the scheduling principle is straightforward: at the beginning of each scheduling

slot, the server of the scheduling algorithm needs to make a scheduling decision S(t)

such that

S(t) = arg max
∑
l∈L

wl(S(t)) (IV.15)

Towards this end, we define an incentive variable dl, ∀l ∈ L,
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dl(t) = µlcl(t) + Pl(ĉ
L
l (t), ĉl(t)) (IV.16)

At the beginning of each scheduling slot, the server selects one link with the maximum

incentive value. The intuition behind this is: during each slot, the scheduling is based on

the real time channel condition c(t). To increase w1, the scheduler needs to select a link

with larger µlcl(t). Meanwhile, to reduce the penalty, the scheduler should schedule a

link with larger Pl(ĉLl (t), ĉl(t)), hence the capacity ĉl will increase and the penalty will

decrease in next slot.

We use a heuristic algorithm to estimate the slow time scale capacity. More specifi-

cally, we define a capacity update periods Tc, and bound the change of the link capacity

between two adjacent capacity update periods. In Tab. IV.3 we present a distributed

slow time scale capacity vector estimation algorithm Alg.S’, through which each link

autonomously generates its slow-time-scale capacity over time. At the beginning of

each capacity update slot, link l first loads the current ĉl(t). The algorithm ensures the

change of capacity |ĉLl (t) − ĉLl (t − 1)| is bounded by δl. The capacity also satisfies

ηl
τ
Tc
� |ĉLl |, where Tc represents the length of one capacity update slot and ηl is a

positive constant.

Algorithm I: Alg.S’
1. ∀l ∈ L, update ĉl(t)
2. if ĉl(t) ∈ [ĉLl (t− 1)− δl, ĉLl (t− 1) + δl]
3. ĉLl (t)← ĉl(t)
4. else if ĉl(t) < ĉLl (t− 1)− δl
5. ĉLl (t)← ĉLl (t− 1)− δl
6. else
7. ĉLl (t)← ĉLl (t− 1) + δl
8. end if
9. Return ĉLl (t)

Table IV.3: Slow time scale capacity vector estimation
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Cross-Layer Design

Our algorithm can be realized via a cross-layer design, including the wireless link

scheduling component and the congestion control component, which are on different

time scales. The scheduling component works on the media access control (MAC) layer.

It is based on the TDMA mechanism and the maximum weight matching algorithm:

the time is divided into slots, at the beginning of each scheduling slot, the scheduling

decision is made in order to maximize the aggregate link weight. The penalty-aware link

weight is defined in Eq.(IV.16). We use Alg.S’ to obtain the slow time scale capacity

vector cL from the feasible rate vector, which is directly generated by the scheduling

component.

The congestion control component implicitly follows a slow time scale because it

uses ĉL. Here we use a primal-dual controller for price adaptation and rate adaptation,

as listed in Tab. IV.2. The link congestion price variable is generated on the network

layer, where each link calculates the congestion price according to the current slow time

scale capacity and the load over the link. The rate of a flow is controlled by the source

node, on the transport layer, using the aggregate congestion price along the flow route.

Simulation Study

We evaluate the performance of our approach through trace-drive simulation.

Experimental Setup

We use the packet level network simulator ns-2. The MAC layer module of the sim-

ulated networks is developed based on the ns-2 TDMA module. It adopts the penalty

aware scheduling mechanism. Furthermore, we have implemented a primal-dual con-

troller as the congestion control module.
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Figure IV.3: Simulation networks.

We use two network topologies, as shown in Fig. IV.3: the first topology is a wireless

LAN network consisting of one wireless access point (wireless router), four wireless

clients and four data flows. The other topology is a multi-hop wireless network with

multiple wireless routers and two data flows. In both scenarios, the data flow sources in

the Internet connect with the wireless routers via wire-line connections.

The utility function of flow r is: Ur(xr) = ωrlogxr, where ωr is 1.0. In our experi-

ments, the queue size of each node is 100 (in packets). We consider packet loss due to

queue overflow. The lost packets are not retransmitted. The forward delay and backward

delay are both 100ms for any source-link pair, unless otherwise specified.

We use the following two types of wireless network traces to simulate the time-

varying capacities of the wireless links: The first trace is a 4-state Markov chain trace

with uniform inter-state transition probability. In each channel state, the link capacity

can be one of the following values: 6Mbps, 7Mbps, 8Mbps and 9Mbps. The second

trace is retrieved from the Roofnet trace [62], which contains the original packet trans-

mission information in a IEEE 802.11b mesh network. In our simulation, the original

link capacity vector is updated every 200ms.
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We compare the performance of our algorithm, called Alg.O in this section, with

two baseline algorithms:

• Alg.BI is a joint congestion control and scheduling algorithm with a fixed routing,

where the congestion control follows Eq.(III.9) - Eq.(III.10), and the scheduling

follows Eq.(III.8), as described in Chapter III The algorithm is based on the cross

layer congestion control algorithm as introduced in [15]. It keeps monitoring the

channel conditions and adjusts flow rate allocation. To focus on the performance

comparison, we removed the routing component of the algorithm.

• Alg.BII is a heuristic joint congestion control and scheduling algorithm. It adopts

the same congestion control mechanism with Alg.BI , however, the scheduling

policy used here is a round-robin style link scheduling mechanism, which implies

the every link has equal probability to be scheduled.

Slow Time Scale Capacity

In Fig. IV.4, we plot the instantaneous feasible rate ĉl and the slow time scale capac-

ity ĉLl of link 0 → 1 of Topology I. Obviously the feasible rate is highly dynamic, due

to the time-varying channel. In contrast with ĉl, ĉLl changes slowly. Since the slow time

scale capacity reduces the perturbation, it is beneficial to the stability of the system.

Flow Rate Allocation

Now we examine the flow rate allocation with different network configurations.

First, we investigate the performance of the baseline algorithms with Topology 1. In

Fig. IV.5 we plot the results of Alg.BI and Alg.BII , Clearly using the baseline algo-

rithms results in very fluctuating outputs. Next we evaluate the performance of our
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Figure IV.5: Sending rates under the baseline algorithms

approach under various network configurations. Fig. IV.6 illustrates the instantaneous

flow rates generated by our algorithm. The flow rates also vary over time under the

time-varying channel, but the burstiness is greatly reduced compared with the baseline

algorithms. Meanwhile, we note that the flow rates maintain some stability properties:

they are bounded even with the presence of feedback delay.

Packet Delivery and Loss Ratio

In order to evaluate the efficiency of our algorithm in packet delivery, we introduce

loss ratio, which is defined as the number of packets lost divided by the number of

packets delivered. This metric can be interpreted as the quantity of packets lost for each
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Figure IV.6: Sending rates under the optimal algorithm.

successfully delivered packet. We change the delay values and plot the corresponding

loss ratios of Alg.O and Alg.BI . Here we assume the forward delay and backward

delay are identical. For each network scenario, the experiment runs for 400 seconds.

Fig. IV.7 shows the results across different delay values. We notice that Alg.BI suffers

performance degradation as the delay value increases. Especially, the loss ratio with

the Markov trace is usually higher than the loss ratio with the RoofNet trace. This is

because the Markov trace is more bursty than the RoofNet trace. Compared with the

baseline algorithm, Alg.O is more resilient to delay effect: the loss ratio remains under

a relatively low level. Therefore our approach is more efficient in controlling the loss

ratio under the network dynamics.

Next we compare the packet delivery performance of the three algorithms in the

multi-hop wireless network topology and plot the results in Fig. IV.8. The results imply

that larger delay usually results in more packet loss. The number of delivered packets
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Figure IV.7: Packet loss ratio of the simulation scenarios.

under Alg.BII is obviously less than the results of the other two algorithms. This is

because the round-robin scheduling adopted by Alg.BII does not guarantee throughput

optimality. We also observe that the throughput performance under Alg.O is close to or

even sometimes better than Alg.BI . This proves that Alg.O achieves good throughput

performance while reducing packet loss.

Discussion

Similar to ROCS, the time-scale decomposition approach presented in this chapter

is also a joint congestion control and scheduling solution for time-varying wireless net-

works with the presence of feedback delay. The major difference is that the time-scale
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Figure IV.8: Packets delivered in the multi-hop network.

decomposition is based on the virtual capacity vector (scheduled capacity vector). Fur-

thermore, we present a penalty-aware scheduling algorithm that is on a fast time scale,

which conservatively tracks the instantaneous channel condition.

77



CHAPTER V

DYNAMIC-AWARE MOBILE APPLICATION OFFLOADING

In this chapter we look beyond the network infrastructure and investigate the ap-

proaches for managing distributed application execution over mobile devices and the

back-end platform. In particular, we present a dynamic mobile application task offload

solution which migrates the computation-intensive tasks from a mobile application to

its back-end system at runtime based on the user demand and network condition. Our

solution aims to improve the overall mobile user experience by minimizing the energy

consumption.

The remainder of the chapter is organized as follows. First we overview our tech-

nique, then in the following section we present the problem formulation. In the next two

sections we introduce the dynamic-aware offload system and present the test results.

Finally we conclude the chapter.

Overview

Optimizing the resource usage within the wireless network infrastructure benefits the

performance of wireless networks. However, this is barely enough to satisfy the growing

user requirements on mobile applications, with a series of constraints that stem from

CPU speed, memory size, disk space, and battery life. This motivates the application

layer solutions in the ecosystem consisting of mobile terminals, mobile applications

and external computational resources (such as mobile cloud). Our second tier solution

belongs to this category. Our goal is to enhance the overall user experience with mobile

systems. In this work, we capture the impact of a mobile application task execution on
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user experience using the total energy consumed by this task during its execution. The

rationales behind this model are: 1) the battery lifetime is a critical factor for mobile

systems, with longer battery life leading to better user experience [68]; 2) this metric

implicitly reflects, though not directly linked to, the overall application execution time.

The longer execution time usually leads to higher energy consumption. At the same

time, we admit that our model cannot capture other aspects of application performance

and their impact to user experience. For example, this model does not consider highly

interactive applications, where round-trip message latency plays an important role in the

user QoS.

To minimize energy consumption, we employ the approach of offloading: a mobile

application can be distributedly executed over mobile devices and a back-end platform.

In particular, we introduce a dynamic mobile application offload system to intelligently

migrate the computation-intensive tasks from a mobile application to a back-end server

at runtime. Task offloading has been widely adopted in mobile applications. An ex-

ample is the Mobile Cloud Computing (MCC) paradigm [69, 70] that enhances mobile

user experience by leveraging cloud resources. Existing works have explored the possi-

bilities of offloading mobile applications at various levels of granularity, by using tech-

niques like virtualization, partition, migration and remote execution [6, 13, 71, 72, 73].

Offloading mobile applications to resource-rich devices leads to several immediate ben-

efits. When the cost of offloading is low compared with local execution, the battery

energy consumption is reduced. This could greatly extend battery life. Moreover, the

mobile application can use the computational resources of the external devices. With

abundant resources, even the computation-intensive tasks, such as speech recognition,

image processing and decision making can be well supported.
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However, in real world applications, many unpredictable factors may largely affect

the cost of offloading, such as network condition and user demand. Generally, the deci-

sion of offloading is made only if the cost of local execution is higher than the cost of re-

mote execution (mainly incurred by migrating the mobile task to the back-end platform

and receiving the results) [6]. Therefore, how to make the offload system intelligently

migrate the tasks from mobile terminals becomes important.

We present a dynamic-aware mobile application offload system to accomplish cost-

effective offloading. The system is capable of migrating the computation-intensive tasks

of a mobile application to the back-end platform, such as a server. We model the ex-

ecution of a computation task by the concept of execution scheme, which refers to a

particular execution plan of the task. A task may contain multiple execution schemes.

We design a runtime solver to make a decision on which execution scheme should be

applied to the application, according to the quality of the wireless connection and the

user demand of the application. The offload system consists of four modules.

• The execution scheme module. Identifying the execution schemes of a mobile

application is the prerequisite of offloading. Generally, the computation-intensive

and non-native components are good candidates for remote execution.

• The energy cost models. The decision of execution scheme selection is made by

using the models. The models are derived through dynamic profiling and regres-

sion techniques. By fitting the dynamic information collected into the models,

both the energy consumption of the local execution and the energy consumed dur-

ing offloading can be evaluated.

• The solver module. By incorporating multiple dynamic factors, including the user

demand and the network condition, the solver module makes a decision on which

execution scheme is optimal.
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• The remote mobile method execution module. This module enables the seamless

invocation of a mobile method (a function originally on the mobile application)

on the back-end server. This module is similar to the Java RMI API. The mobile

application can invoke the remote execution of a method on the server, as if it is

invoked locally on the mobile terminal. The module is responsible for the im-

plementation of mobile task migration, including registering the method with the

server, serializing the parameter objects and retrieving the results after the remote

execution is completed.

Compared with the existing works, our solution is dynamic-aware and cost-effective.

We consider the network and user demand dynamics. The offload system determines

how the computation-intensive tasks of a mobile application could be executed to achieve

the optimal energy consumption. The contributions of the study are summarized as fol-

lows. (1) We propose a novel theoretical framework that characterizes the problem of

dynamic-aware mobile application offloading. (2) We present a dynamic profiling and

regression based approach to model the relationship between runtime dynamics and

energy cost. (3) We implement a remote execution module, which enables seamless mi-

gration of mobile task and can be easily applied to legacy code. Furthermore, it requires

no change to the kernel of the mobile operating system.

Problem Formulation

In this section, we first discuss the impact of the dynamic factors, such as the quality

of wireless connection and the user demand, on energy consumption during offloading.

Then we present the formulation of the decision-making problem.
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Dynamic Factors

Network Condition

Offloading a task from a mobile terminal relies on data transmission via wireless net-

works, either WiFi networks or cellular networks. Both sending and receiving packets

consume battery energy. In fact accessing WiFi and 3G/4G networks is one of the major

sources to drain the battery of mobile devices [7, 74, 75]. The energy consumed during

wireless network accessing depends on the quality of wireless connections, which can

be evaluated by metrics like signal strength, signal noise ratio (SNR), etc. As indicated

by the study of Ding et al. [75], weak signal strength may trigger the rate adaptation at

the physical layer [76] and thus increase the transmission time and energy consumption.

In addition, weak signal strength may also lead to packet retransmission and reconnect-

ing with the access points, which further increases energy consumption. Offloading the

same task may result in significantly different amount of energy consumption. Gener-

ally, better wireless connectivity implies lower transmission cost. In this study, we use

Received Signal Strength Indicator (RSSI) to measure the quality of a wireless connec-

tion. RSSI is widely used to measure the power level in a received radio signal [77].

Generally, a higher RSSI value implies a stronger received signal.

User Demand

The second dynamic factor we consider is user demand. User demand greatly affects

the workload which is directly related to the energy consumption. For the same type of

task, the workload can be dynamic due to varying user demand. If a task is resource-

intensive, it may be qualified for remote execution. On the other hand, if it is lightweight,

data transmission may drain more battery energy than local execution.

User demand can affect energy consumption in the following two aspects.
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• The user demand level determines the “workload” assigned by the user to the

mobile application in local tasks.

• The user demand level determines the amount of data transmitted in the remote

tasks during offloading.

However, it is extremely difficult to generally define the level of user demand. In the

mobile applications used in our study, we assume user demands are linked with some

user input related parameters, such as the dimension of a map or the size of an image,

so the relationship between user demand and energy consumption can be quantitatively

evaluated.

Fig. V.1 shows a simple example of this relationship. We have observed the energy

cost of a micro-benchmark application: N-Queen Puzzle solver on an HTC Inspire 4G

smartphone, where different numbers of queens represent different user demand levels.

We use the online energy estimation tool PowerTutor [78] to measure the energy con-

sumed locally by the CPU. PowerTutor can be used to measure the aggregated energy

consumption of a mobile application during any specified time interval. The plot shows

when N ≥ 8, the energy consumption increases sharply. On the other hand, when N is

small, the energy consumption is low.

Execution Scheme

We define an execution scheme ψ as a particular execution plan of a mobile task T .

Let F = {m1,m2, ...,mk} be the collection of methods invoked under the scheme. In

an execution plan, some methods may be executed locally and others may be executed

remotely. For instance, for the same group of methods F , let ψL be the scheme with

all local executions, and ψR be a scheme with several methods executed remotely, then

ψL and ψR are two distinct schemes. Fig. V.2 shows an example of a simple mobile
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Figure V.1: Energy cost of the N-Queen Puzzle application with different user demand
levels.

application with only one method that is qualified for remote execution. The execution

schemes are very straightforward: the first is a scheme with the local execution of the

service method, and the other one is a complementary scheme of the first one, with the

remote execution of the method. The energy consumption of a scheme includes the

energy consumed locally and the energy consumed by migrating some tasks (if there are

any) to an server.

First we need to identify the possible execution schemes, which form the solution

space for the runtime solver, so the optimal scheme at a time instance will be selected

from the candidate scheme pool. The structure of a mobile application implicitly de-

termines the solution space of scheme selection. More specifically, it determines which

components can be offloaded. In MAUI [6] and CloneCloud [13], any method that

neither accesses native resource nor creates user interface on a mobile device can be

offloaded. In our study, we explore the possibility of merging the loosely coupled meth-

ods into one bundle, which can be offloaded at the same time instance. In addition,

we also inspect whether a method is a good candidate for remote execution: only the

computation-intensive methods will be offloaded. Reducing the frequency of remote

84



Figure V.2: Partition schemes.

execution can effectively reduce the extra overhead incurred by decision making and

control message transmission.

Generalized Problem Formulation

Next we introduce the formulation of the mobile application offloading problem.

The formulation relies on the assumption that the energy consumption of a mobile ap-

plication is closely related to user demand and network condition.

We consider the execution of a computation task T of a mobile application. The

network condition and user demand may vary during the execution of the task. With

the dynamic environment, the mobile application may experience multiple execution

scheme changes to accomplish task T . Let the set Ψ be the collection of all the execution

schemes that are applicable. We say that an execution scheme ψu is feasible if ψu ∈ Ψ.
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We denote the sequence of the schemes during the entire task execution period as ΦT =

(ψ1, ψ2,...,ψn). Let the set of all the feasible scheme sequences be Λ, clearly we have

ΦT ∈ Λ. Furthermore, let xc(u) denote the quality of the wireless network connection,

and xw(u) denote the user demand level, during the execution of scheme ψu. Let EΦT

represent the total energy consumption during the service time. The energy consumption

of a scheme may consist of the energy consumed locally, denoted byEL , and the energy

consumed by offloading, denoted by ER . Clearly if the scheme does not involve any

remote execution, ER = 0. Based on our assumption, the remote execution related

energy consumption of a scheme ER is regarded as a function of the wireless network

condition and the user demand. Then the total energy consumed by T can be described

by the following equation.

EΦT
=

n∑
u=1

E(ψu) (V.1)

=
n∑
u=1

(EL
ψu

(xc(u)) + ER
ψu

(xc(u), xw(u)))

Eq.(V.1) implies that the energy consumption of the local computation is only related

to user demand, and the energy consumption by offloading is related to both network

condition and user demand. The problem of resource management for task T is to find

the optimal execution scheme sequence Φ∗T , which results in the minimum accumulated

energy consumption. Let C denote the set of all possible network quality levels and

W denote the set of user demand levels. The generalized problem G is formulated as

follows.
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G : minimize E(ΦT ) (V.2)

subject to ΦT ∈ Λ,

and xc(u) ∈ C, xw(u) ∈ W,∀u ∈ [0, n) (V.3)

The formulation provides a guideline for deriving a practical solution.

Approach

In this section, we introduce our dynamic-aware offload system. Our system consists

of a method migration module, a runtime profiler and a solver. The method migration

module provides a tunnel for the transient remote execution of the offloaded tasks. The

runtime profiler collects the real time information of the network condition and user

demands and updates the profiles to the solver. The solver keeps evaluating the en-

ergy consumption levels of different feasible execution schemes. It changes the current

scheme if a more energy-efficient scheme is found. The parameters required by the

remote execution are serialized and delivered through a TCP connection based “tun-

nel”. The the server remotely executes the methods and returns the results to the mobile

application. Fig. V.3 shows an overview of the system architecture.

We start by presenting the implementation of the Android platform based method

migration module. Then we discuss modeling the energy consumption using regression

techniques. The energy model will be used by the solver to evaluate the energy costs of

local execution and remote execution at runtime. Finally, we introduce the algorithm of

the solver.
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Figure V.3: System overview.

Mobile Application Method Migration

The method migration module provides interfaces for the client (the mobile termi-

nal) and the server to accomplish task offload. At runtime, a particular component of the

mobile application can be decoupled from the local execution and migrated to the server

for remote execution. The component should re-join the mobile application by integrat-

ing the results of the remote execution with the mobile application. Existing works have

demonstrated schemes that operate on different levels of dynamic task offload: the op-

erating system level (full process or virtual machine) [58], the method level [6], or the

thread level [13].

We have used a method level task offload module: a lightweight version of the Java

Remote Method Invocation (Java RMI) API [79]. Java RMI enables distributed imple-

mentation of Java applications: the methods of remote Java objects can be invoked from

other Java virtual machines [80]. This framework was not initially designed for mobile

platforms. Based on the existing library, we develop an Android platform compatible
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RMI module. Moreover, we extend the original Java RMI library by adding more func-

tions that are useful for mobile method migration.

The module is developed by following three guidelines. (1) It enables method level

migration. Other levels of migration usually require additional overhead. For instance,

the OS level migration requires identical execution environments on the mobile applica-

tion side and the server side. The process of virtual machine migration leads to a high

cost due to additional management, like context preservation. The thread level migra-

tion requires a synchronization mechanism to achieve finer granularity of task offload.

(2) It is convenient to deploy. The module requires no change to the underlying mobile

operating system and is loosely coupled with the host application. (3) It is highly scal-

able. The module provides generic APIs that be easily used by developers to support

task migration of any non-native method.

Fig. V.4 explains how the module accomplishes method level migration. The migra-

tion of a method from the mobile application is essentially to execute the code of the

method on the server side Java virtual machine. The server maintains a naming module:

application registry, which is similar to the registry in Java RMI. All the methods that

can be offloaded need to register with this module. In addition, the server has access to

the codebase of these methods (either locally available or accessible via URL protocols).

At the client side, if a local object initializes a remote method call, the object invokes

the remote method via the remote interface, as if it is calling a local method. Then the

underlying migration module sends a query to the server and the server looks up the

interface in the registry. If it has been registered, the parameters of the method will be

serialized into byte-stream and sent to the server. At the server side, a remote object,

which is of the same type with the local object at the client, calls the method. The result

of the execution will be returned to the client as byte-stream and de-serialized. By using
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Figure V.4: Mobile application method migration.

this framework, a non-native mobile method can be seamlessly migrated to an external

device and later resume from the migration point.

Energy Cost Models

The energy cost models are prediction models used by the runtime solver to evaluate

the energy consumption levels of the feasible schemes. As Eq.(V.1) shows, the energy

consumption of an execution scheme Ψ consists of the locally consumed energy and

the energy consumed by task migration if the scheme contains remote execution. The

energy consumption is dominated by the dynamic factors: network condition and user

demand. As discussed in Sec. V, we use RSSI to evaluate network condition. The

other dynamic factor user demand is non-trivial to define for different applications and

scenarios. In our model, we introduce the User Demand Mapping approach to evaluate

the user input related variables. As Fig. V.5 shows, user demand effect can be mapped

to some user input related parameters for local execution schemes, which represents the
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Figure V.5: User demand related input variables.

user related workload. Moreover, for the remote execution schemes, it is mapped to

the size of transmitted and received data, which directly determine how much energy is

consumed during offloading.

In order to accurately estimate the energy consumption, especially the energy con-

sumed by offloading, we need to exploit the quantitative relationship between the dy-

namic factors and energy consumption. However, one energy model that applies to one

mobile device may not be simply used by another device because the hardware specifi-

cations can be very different. Therefore we use profiling and regression techniques [81]

to establish the cost models in an offline manner for each scheme.

Energy Model of Local Execution Schemes

Local execution schemes are schemes without task migration. As Fig. V.1 shows,

the energy consumption of a local execution scheme is closely related to user demand.

The higher the workload assigned by the user, the more energy consumed. We first use
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the linear regression model for local energy consumption. Linear regression is a pre-

diction model that describes the relationship between a dependent variable and multiple

explanatory variables. The model can be used to predict the value of the dependent

variable when it is considered to be linearly related to the explanatory variables. In our

study, we assume user demand level can be described by a particular input variable that

reflects the user-related workload, denoted by xw. Our local execution energy model

is represented by Eq.(V.4), where the local energy consumption EL
ψ is the dependent

variable, and the user demand variable xw is the only explanatory variable. ε is the er-

ror term. The model is suitable for the applications in which the user demand variable

has almost linear impact on energy consumption. In Fig. V.6, we plot the data samples

obtained from an image processing application that adds Gaussian blur effect to user

specified pictures. In this application, we use the image size as the user demand related

variable. Again we have used PowerTutor to measure the image processing task. We

measure the energy consumed by CPU with different user demand levels. Clearly the

linear model describes the relationship between the variables. However, the linear re-

gression model may be biased for some applications, such as the local energy cost of

the N-Queen Puzzle application, shown in Fig. V.1.

EL
ψ (xw) = γ + βxw + ε (V.4)

Energy Model of Remote Execution Schemes

The energy consumption of a remote execution scheme is dominated by the qual-

ity of wireless connection and user demand. To better understand this, let us investigate

where the battery energy is drained while offloading a mobile task. First, the task migra-

tion and re-integration obviously consume energy, and the amount of energy consumed
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Figure V.6: Linear regression model of the local execution scheme (Gaussian blur ap-
plication).

is directly related to how many bytes of data have been transmitted and received. This

involves two parts: the energy consumed by transmitting the serialized method param-

eters to the server, and the energy consumed by receiving the serialized result from the

server. In addition, the method migration module itself also consumes battery energy. If

the size of data transmitted to the server is denoted by ws, the size of data received by

is wr, and the energy consumption of the runtime solver is Es, then the total data size is

xw = ws+wr. The energy consumption of a remote execution scheme can be expressed

by the following equation.

ER
ψ (xc, xw) = E

′

ψ(xc, xw) + Es (V.5)

Here E ′ψ(xc, xw) represents the energy consumed by data transmission.

In our model, we mainly consider the impact of user demand and network condition,

and the solver related energy consumption is regarded as a constant value for a particular

computation task. We still first use linear regression to establish a quantitative model.

In our case, the dependent variable is the energy consumption of a remote execution
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scheme ψ and the explanatory variables include network condition and user demand

level.

We first profile the energy cost under various conditions with different wireless con-

nection quality levels and user demand levels. We use the total amount of data trans-

mitted and received during offloading as the user demand related input parameter and

RSSI as the indicator of the network condition. We used the method migration module,

the N-Queen Puzzle application, and the energy profiler PowerTutor [78] to collect the

energy consumption samples. The way we collect the samples is as follows: each sam-

ple is corresponding to a scenario with a particular network condition level and a user

demand level, and we measure the energy consumption of the critical computation task:

the N-Queen Puzzle.

In Fig. V.7, we present the average energy cost during offloading, with different

RSSI levels. As expected, weaker signal strength usually leads to higher energy cost.

Especially, when the RSSI is worse than −80dBm, the energy cost increases sharply.

Fig. V.8 illustrates the average energy cost of code migration, when the user demand

related parameter (size of the transmitted data) is different. Obviously higher demand

level would cost more energy.
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Figure V.8: Impact of the size of transmitted data.

Now we formally define our linear regression model of energy cost ER
ψ of scheme

ψ in Eq.(V.6). Here xc and xw represent the normalized RSSI value and user demand

related parameter (the size of transmitted and received data) respectively. The coef-

ficients in the regression model is obtained based on the least square estimation. For

instance, the regression models for the N-Queen Puzzle application and the image pro-

cessing (Gaussian Blur) application are illustrated in Fig. V.9 and Fig. V.10, where the

predicted values are close to the actual samples. The coefficients of the remote execu-

tion energy model of the N-Queen Puzzle application are γ = −2.4872, α = −0.1482

and β = 0.0001. With the regression models, the energy consumption of a partition

scheme at a particular time instance can be predicted. The prediction statistics of the

two models are listed in Tab. V.1.

ER
ψ (xc, xw) = γ + αxc + βxw + ε (V.6)
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Figure V.9: The linear regression model of the remote execution scheme of the N-Queen
Puzzle application.
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Figure V.10: The linear regression model of the remote execution scheme of the Image
Processing (Gaussian blur) application.

Mobile Applications R2 RMSE
N-Queen Puzzle 0.8911 4.3377
Image Processing: Gaussian blur 0.9404 0.7562

Table V.1: Prediction statistics of the linear regression models
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Optimized Energy Models

Although linear regression effectively models the relationship between the energy

cost and the explanatory variable(s) if they are “linearly related”, like the energy model

of the local execution scheme of the image processing application, it may fail to accu-

rately predict the dependent variable when the relationship is not linear, for instance, the

energy model of the local execution scheme of the N-Queen Puzzle application. To solve

the problem, we introduce the regression tree model [82], a widely adopted predictive

model in data mining and machine learning. Unlike the linear regression model, which

uses the same linear equation to predict the dependent variable over the entire space of

the explanatory variables, the regression tree model partitions the space into multiple

smaller sub-places, or cells, and each of the cells is associated with a particular simple

predictive model. The regression tree model uses a tree structure to represent the re-

cursive partition of the data space. Each interior node is associated with a classification

question, and the edges connecting two nodes represent the answers. By taking differ-

ent branches under a node, the data space is partitioned by using the criteria specified

by the node. A new prediction starts from the root and terminates at a leaf node which

represents the simple prediction model for the particular data tuple. The traversal from

the root to the leaf is achieved by using the partition rules associated with the interior

nodes and branches.

In Fig. V.11, we plot the regression tree energy model of the local execution scheme

of the N-Queen Puzzle application. In this example, if the user demand level (WL: the

number of queens) is greater than or equal to 11, the predicted energy cost of the local

execution is 963.4J , otherwise we traverse to the left child of the root node and keep

searching until we find the correct leaf node. Fig. V.12 presents the regression tree model

of the energy cost of a remote execution scheme. The partition in this model is based
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Figure V.11: Regression tree model of the local execution scheme (N-Queen Puzzle).
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Figure V.12: Regression tree model (partial) of a remote execution scheme (N-Queen
Puzzle).
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on two variables: RSSI and user demand (WL: the total data transmitted/received).

The regression errors are listed in Tab. V.2. Compared with the RMSEs of the linear

regression models, the RMSEs of the regression tree models are smaller.

Mobile Applications RMSE
N-Queen Puzzle 1.5291
Image Processing: Gaussian blur 0.0621

Table V.2: Regression errors of the regression tree models

Runtime Solver

The solver determines what execution scheme should be used during the next time

interval. The solver relies on a heuristic algorithm to seek the optimal execution scheme

from the scheme pool at runtime. The algorithm provides a solution to Problem V.2.

The mechanism of the runtime decision making is illustrated by Fig. V.13. The

runtime profiler keeps monitoring RSSI and user demand. At each time instance tu (the

beginning time point of a scheme cycle), the solver collects runtime profiles from the

profiler. Then it predicts the energy consumptions of the candidate schemes by using the

regression models. If a better scheme exists (the predicted energy cost of the candidate

scheme is lower than the current scheme), the current scheme will be replaced by the

optimal scheme during this cycle. The solver algorithm is listed in Tab. V.3. Here δ is a

constant serving as the tolerance value of decision making.

In our implementation, the solver relies either on a simple linear polynomial calcu-

lation (liner regression model) or a tree (regression tree) search, and this calculation is

not so frequent. Therefore the energy consumption of the solver is negligible compared

with the energy consumption of other components, such as data transmission and object

99



Figure V.13: Runtime solver

serialization/de-serialization. This is why the energy consumption is not regarded as a

variable in the model, not like the network condition and user demand. However, when

we profile the energy consumption of different schemes, the solver energy consumption

(if there is any energy consumed by the solver) is also considered in the profiling process

because we measure the total energy consumption that includes the energy consumption

of the solver.

At the beginning of each cycle:
1) Collect the runtime profile p(xc(tu), xw(tu))
2) Predict the energy consumption of each candidate scheme
3) Find the optimal scheme:

ψ∗ = arg minψi∈Ψ Eψi

4) Make runtime decision
if Eψ∗ + δ < Eψ(tu) (ψ(tu): current scheme)

replace ψ(tu) with ψ∗

invoke the method migration model if necessary
end if

Table V.3: Execution scheme selection algorithm.
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Evaluation

In this section we evaluate the performance of our offload system by using real world

applications.

Experimental Setups

Benchmark Applications

We use the following four benchmark mobile applications.

• N-Queen Puzzle. The user specifies the dimensions of the chess board and the

results (the positions of the queens) are computed by the mobile application and

displayed on the board. The critical task of the application is the N-Queen place-

ment, which can either be solved locally or remotely. The user demand level of

an execution is determined by the dimensions of the chess board (Level 1 is the

user demand level of the 4-Queen puzzle. When the user demand level increases

by one, the chess board dimension increases by one).

• Image Processing I - Gaussian blur effect. The application can add Gaussian

blur effect to any user specified image. The critical task of the application is the

Gaussian blurring process, which can either be executed by the mobile terminal

or by the server. The user demand level of an execution is determined by the

dimensions of the image.

• Image Processing II - Sharpen effect. The application can add sharpen effect to

any user specified image. Similarly, the critical task is the sharpen process, which

can be executed locally or remotely. The user demand level of an execution is also

related to the dimensions of the image.
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• Ant Colony Game - A real time strategy game in which users train a group of

ants to collect food scattered around the map. The computation-intensive task

is the ant-colony optimization algorithm, which helps find the optimal path to

the food. The task contains two independent components that can be executed

locally or remotely: the pheromone update component and the solution producing

component. The user demand level of an execution is related to the size of the

map (Level 1 is the user demand level of a 4 × 4 map. When the user demand

level increases by one, the map dimension increases by one).

In the image processing applications we use the following two groups of images

(Portable Network Graphics (PNG) format).

User demand level 1 2 3 4 5 6 7 8 9
Size (KB) 13 35 96 263 411 642 1001 1545 2371
Width (pixels) 56 146 243 404 505 631 788 984 1229
Height (pixels) 88 92 152 253 316 394 492 615 768

Table V.4: User demand description of the image processing applications: Group I

User demand level 1 2 3 4
Size (KB) 37 20 678 1169
Width (pixels) 154 108 800 922
Height (pixels) 116 82 626 692

Table V.5: User demand description of the image processing applications: Group II

Experiment Platforms

We use an HTC Inspire 4G smartphone as our mobile terminal. The energy con-

sumption of the mobile terminal is measured by a power profiling tool PowerTutor [78].

102



The tool can be used to measure the energy consumed by different components on a

mobile platform, such as CPU, WiFi and monitor, of a particular mobile application. In

our experiments, we only measure the energy consumed by CPU and WiFi. Every data

point collected in the experiments is an averaged value of at least five samples.

We deploy two types of back-end platforms:

• A Lenovo T400 laptop with Intel Core 2 Duo CPU (2.26GHz) and 3GB memory.

We deploy a Java based server program on a Windows 7 operating system, which

can respond to the remote execution requests from the mobile terminal.

• An Oracle virtual machine (Virtual Box) instance with quad-core CPU and 8GB

memory. The server program is deployed on an Android operating system, so it

can process the Android platform dependent program execution.

The two back-end servers use distinct Java environments: the regular Java virtual

machine and the Dalvik virtual machine. This is to prove that the proposed system is

compatible with different platforms. The advantage of using Dalvik virtual machine

at the server side is that even some Android dependent methods can be seamlessly of-

floaded. The serialized objects passed between the client and server can be parsed by

differen types of servers.

Offload Decisions

We first study how the system makes offload decisions at runtime in dynamic en-

vironments. The benchmark applications used in this test are N-Queen Puzzle, Image

Processing II and Ant Colony Game. The N-Queen Puzzle and the Image Processing II

applications have two execution schemes: a scheme with local execution and a scheme

with remote execution. The Ant Colony Game application has four schemes: Scheme I
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is the local execution scheme. Scheme II is an execution scheme that executes the two

components of the optimization algorithm remotely. Scheme III is an execution scheme

that only executes the solution producing component remotely. Scheme IV is an exe-

cution scheme that only executes the pheromone update component remotely. We have

collected the runtime decisions (local execution or remote execution of the computation-

intensive components) across different RSSI levels and user demand levels. For in-

stance, if the N-Queen placement algorithm or sharpen effect algorithm is solved by the

mobile terminal, the decision is called local execution decision, otherwise, it is called

remote execution decision. The decision results of the first two applications are plotted

in Fig. V.14 and Fig. V.15. From the empirical observations we can easily make the fol-

lowing conclusion: if the quality of the wireless connection is poor and the user demand

level is low, it is highly possible the computation is conducted locally. In contrast, a task

with high user demand level with excellent network condition is usually offloaded and

executed remotely. Sometimes even if the received signal strength is weak, the task is

still executed remotely because the local execution consumes too much battery energy.

In Fig. V.16 we compare the energy consumption of the dynamic-aware execution and

several static execution schemes (Scheme I - Scheme III) of the Ant-colony optimization

algorithm of the Ant Colony Game application. From the results we find that the energy

consumption of the dynamic-aware execution outperforms the other schemes.

Energy Consumption

Now we evaluate the energy consumption of the benchmark applications running

with the offload system, under three RSSI levels: excellent (RSSI I: < −40dBm), fair

(RSSI II:−40dBm−−79dBm) and poor (RSSI III:−85dBm−−80dBm). The mobile

applications repeatedly work at each user demand level, and we measure the average
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Figure V.14: The offload decisions in various scenarios: N-Queen Puzzle.
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Figure V.15: The offload decisions in various scenarios: Image Processing II.
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Figure V.16: Comparison between the dynamic-aware execution and the static execution
schemes (the Ant-colony Optimization algorithm of Ant Colony Game).

energy consumption. The user demand levels of the image processing applications are

listed in Tab. V.4. The results in Fig. V.17 - Fig. V.20 imply that when the user demand

level is low, the energy consumption with offload system is very close to the energy

consumption of local executions because the tasks are usually executed locally in such

scenarios, which is consistent with the runtime offload decision observations. When the

user demand level is high, the advantage of remote execution is obvious: the energy

consumption is lower than the local executions. We also notice the effect of wireless

network condition. Poor quality of a wireless connection usually results in higher energy

consumption. Notably, the poor connection quality (−80dBm−−85dBm) may greatly

degrade the performance of the offload system.

Execution Time

Reduced execution time is another advantage of a mobile application offload system.

Because the back-end servers are usually resource-rich platforms, the execution time of

a computation-intensive task is expected to be less than the local execution. In our
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Figure V.17: Energy consumption: N-Queen Puzzle
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Figure V.18: Energy consumption: Ant Colony Game
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Figure V.19: Energy consumption: Image Processing I
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Figure V.20: Energy consumption: Image Processing II
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evaluation, the execution time includes the time to execute the task remotely on the

server and the time to transfer to/from the server. Next we evaluate the performance of

our system. The user demand levels of the image processing applications are listed in

Tab. V.4.

First we use Image Processing II to investigate data transmission with different wire-

less connections: a stable connection with high RSSI value and an intermittent connec-

tion with very low RSSI value. In the test, the mobile terminal sends an image to the

server, then the server processes the image and sends the result back. We collect the

data sent and received in each time slot (10ms). The transmission behaviors in Fig. V.21

show that when the quality of the network connection is high, the task migration is ac-

complished shortly after the request is sent to the server. However, when the connection

is weak, it takes much longer to receive the processed image. In addition, it costs much

more time to establish a connection with the server under the poor network condition.

We plot the average execution times of the benchmark applications with different

user demand levels and RSSI levels in Fig. V.22 - Fig. V.24. Again the execution time

of a task is close to the local execution when the workload is low. When the workload

is high, the performance of execution time with the offload system obviously outper-

forms the local executions. We also notice the impact of network condition. A wireless

connection with poor received signal strength could significantly increase the execution

time.

Comparison with Heuristic Offload Algorithm

Next we compare the performance of our offload algorithm with a heuristic offload

algorithm, which is unaware of the dynamics and always prefers remote executions. We

investigate the average energy consumption of the algorithms under four different RSSI
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Figure V.21: Data transmission under different network conditions (Image Processing
II).
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Figure V.22: Execution time: N-Queen Puzzle
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Figure V.23: Execution time: Image Processing I
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Figure V.24: Execution time: Image Processing II

levels: 1)−25dBm−−45dBm; 2)−45dBm−−65dBm; 3)−65dBm−−85dBm and

4) ≤ −85dBm. Especially, the fourth level represents connections with very weak sig-

nal strength, such as the intermittent wireless connections. Packet transmissions with

such a connection usually consume much more energy. We test the N-Queen Puz-

zle application and the Image Processing I application which uses the images listed

in Tab. V.5.

We plot the test results in Fig. V.25 and Fig. V.26. Overall, our offload algorithm

outperforms the other two execution strategies. Even under the worst case scenarios, the

performance of the proposed algorithm is very close to the best performing algorithm.

With a high user demand level, the advantage of offloading is impressive. We have also

noticed that the heuristic algorithm leads to high energy consumption with intermittent

connections. This is possibly due to the high energy cost of packet transmissions and the

re-transmissions when some initial attempts fail. This also demonstrates the importance

of adopting an intelligent offload strategy, which can flexibly adjust the offload decision

according to runtime dynamics.
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Figure V.25: Energy consumption of N-queen Puzzle.

Discussion

The resource constraints of mobile terminals have compromised the quality of ser-

vice of mobile applications. To solve the problem, the task offload approach is pro-

posed to migrate the intensive computations to some external devices, in order to extend

the capabilities of the mobile platforms and reduce resource consumption. However,

it is challenging to achieve cost-efficient offloading with the presence of dynamic fac-

tors, such as network condition and user demand. In this chapter, we have discussed a

dynamic-aware mobile application offload solution. The proposed system aims to min-

imize the energy consumption of offloading by adjusting execution schemes at runtime.

We present a theoretical formulation for the offloading problem and propose a heuristic

algorithm to find the solution. In order to predict the cost of offloading in dynamic en-

vironments, we propose cost models by using profiling and regression techniques. The
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Figure V.26: Energy consumption of Image Processing I.

execution decisions are made by evaluating the levels of energy consumption of different

schemes using the cost models.

The current objective of our solution is to reduce energy consumption. However,

other quality of service metrics, like execution time, are also very important to the per-

formance of a mobile application. It is possible that an energy-efficient solution may not

result in the optimal execution time. The experimental results indicate that the execution

time of a task is also related to user demand and network condition, which implies the

cost models can be established based on execution time. Therefore the proposed system

can also be adjusted to find optimal execution schemes that yield the best executions

time.
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CHAPTER VI

CONCLUSIONS AND FUTURE WORK

This dissertation explores the robust resource management solutions for mobile

wireless systems in dynamic environments. In this chapter, we review the work pre-

sented in the previous chapters and discuss several future research directions.

Conclusions

Resource constraints of mobile wireless systems can mainly be attributed to two

problems: mobile data congestion in wireless networks and limited hardware capabili-

ties of mobile terminals. The key to solving the data congestion problem in wireless net-

work infrastructure is to balance demand and supply to achieve optimal and fair resource

allocation, which is nontrivial due to the complex nature of wireless communication and

network structure. Notably, more challenges arise under dynamic environments. Time-

varying wireless channel keeps reshaping the solution space of the resource manage-

ment problem. Furthermore, the delay problem challenges the coordination of resource

providers and consumers. The resource constraint problem of mobile platforms awaits

discovery of new solutions that transiently and seamlessly transfer the computation-

intensive components from mobile terminals to resource-rich devices. A challenge to

this task is the cost of offloading changes with user demands and network condition.

In this dissertation, we propose a two-tier dynamic-oriented resource management

solution towards achieving efficient resource utilization in mobile wireless systems.

Overall, our solution framework is established along two tiers. The first tier involves
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cross-layer (the MAC layer to the Transport layer) optimization based techniques (Chap-

ter III and IV) that improve the network performance by efficiently utilizing wireless re-

sources under dynamic scenarios. The second tier of scheme operates on the application

layer. We propose a mobile code offload approach (Chapter V) that leverages external

resources to augment the capabilities of mobile wireless systems. We summarize our

work as follows.

• The robust joint congestion control cross-layer control algorithm (Chapter III)

solves the resource allocation problem in time-varying multi-hop wireless net-

works with presence of feedback delay. This approach relies on capacity space

projection to form a new capacity space based on the slow time scale channel ca-

pacity, which substantially reduces the delay effect. Unlike most of the exiting

joint congestion control and scheduling algorithms, our algorithm offers robust

management with time delay.

• The time scale decomposition based joint congestion control and scheduling ap-

proach (Chapter IV) aims to maximize the time integral of the aggregated sub-

stantial network utility. In this approach the resource allocation is operated over

the critical time scale. Meanwhile, a penalty aware scheduling that uses a penalty

function to estimate the level of rate over-provisioning can effectively track the

fast time scale channel dynamics.

• The dynamic-aware mobile application offload system (Chapter V) extends the

capabilities of resource-constrained mobile platforms. The system enables seam-

less remote execution of mobile applications. The proposed energy cost models

characterize energy consumption under varying user demands and network con-

nection. The execution schemes of a mobile application are selected intelligently

at runtime to achieve minimal energy consumption. Compared with the previous
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mobile code offload systems, we have considered network and user dynamics, and

our approach can be easily applied to existing mobile applications.

Future Research

Like the wireless sensor networks challenged our understanding of computing in

the early twenty-first century, again we are facing a new era of computing evolution

featured with smart phones, tablets and wearable computing devices, which offer enor-

mous possibilities to improve our life. Meanwhile the ever-increasing requirements of

mobile computing on computational resources urge us to explore more intelligent strate-

gies of managing the mobile ecosystems. In the rest of this chapter, we outline several

interesting and promising directions of future research.

• Provisioning qualify of service for diverse requirements. Our dynamic-aware

mobile application offload system is a prototype of qualify of service oriented

hybrid mobile computing platform, which has mainly targeted energy saving by

offloading mobile applications to external servers. However, the requirements on

quality of server may be diverse. As pointed out by Satyanarayanan et al. [58], de-

lay, jitter, and bandwidth could all influence the design of an offload system. For

example, some mobile applications are sensitive to latency and jitter, like online

games and live video, therefore energy consumption may not be the system’s first

priority. Many research results have demonstrated the possibility of provisioning

other types of quality of service during offloading. The Odessa [52] system en-

ables adaptive offloading of interactive perception mobile applications, in which

latency is considered as an important metric for adaption of offloading. By re-

defining the cost models, our technique can be extended to provision quality of

service for different user requirements.
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• Recognizing interactions in a mobile wireless system. Mobile applications are

not stand-alone applications. As the existing studies [83, 84, 75] reveal, in the

lifetime of a mobile application, a mobile application might interact closely with

WiFi networks or cellular networks. Very similar to what we have discussed in

Chapter III and Chapter IV, the complex cross-layer interactions may largely af-

fect the overall performance of a mobile application. Some interesting research

problems emerge with this. For example, how to optimize the way a mobile appli-

cation accesses the networks to reduce energy consumption and how to reduce the

misunderstandings between two different software systems (network and mobile

application) to avoid runtime failures. This research could be extremely helpful

for designing high-performance network protocols and mobile applications.

• Composition model based mobile cloud computing. Mobile cloud computing

is a new trend of mobile application development, particularly the composition

development model [69, 85], which carries a similar concept with our dynamic-

aware offload system. In this model, a mobile application can contain some

reusable service components, which can be shipped to cloud on demand. Some

interesting problems in this area include how to design an architecture that effi-

ciently integrates the cloud service and mobile applications and how to enhance

the performance by introducing parallelism. Furthermore, introducing dynamic-

aware modules into mobile cloud computing applications would be a bright re-

search direction.
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