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CHAPTER I

NOISY INFORMATION IN AN INTERNATIONAL REAL BUSINESS CYCLE MODEL

Introduction

Standard international real business cycle (IRBC) models formulated by Backus,

Kehoe, and Kydland (BKK, 1992, 1995) have been considered a natural starting point to

assess the quantitative implications of dynamic stochastic general equilibrium (DSGE) mod-

els in an open economy environment. Since the standard IRBC model under assumptions

of �exible prices and perfect competition cannot replicate all the observed characteristics

of international business cycles, a number of extended models with more realistic features

have been developed in the past two decades. Most importantly, incorporating monopolis-

tic competition and sticky prices, along with the monetary sector in open economy DSGE

models has been proven to be very successful in matching the data. In contrast to a large

interest in the role of nominal rigidities, however, few studies have attempted to formally

assess the quantitative implications of introducing informational frictions in the model.

In this paper, we introduce a noisy information structure in an otherwise standard IRBC

model and show that an extension in this direction is also useful in understanding some key

features of international comovements of output, consumption, and labor.

We consider an imperfect information variant of a standard two-country bond-

economy IRBC model similar to the one used in Baxter and Crucini (1995) and Heathcote

and Perri (2002), except that we exclude capital accumulation from the model. While we

believe that an open economy DSGE model with nominal rigidities is more realistic, we

maintain the assumptions of perfect competition and �exible prices in this paper simply

because they provide a reasonable benchmark in evaluating the pure e¤ect of imperfect
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information on the international business cycle properties. In terms of explaining the in-

ternational comovement, the original BKK model predicts negative (or near-zero) output

correlation, near-perfect consumption correlation, and negative correlation of factors of pro-

duction, all of which contradict the data. To improve the performance of the model, Baxter

and Crucini (1995) and Kollman (1996) replaced the complete market assumption of the

BKK model with the incomplete market assumption, so that consumers only have access

to a real bond market. A convenient approach to ensure a unique stationary solution to an

open economy model of incomplete market is to impose a (small) real cost of bond holding

(see Heathcote and Perri, 2002, and Schmitt-Grohe and Uribe, 2003). According to the

simulation results reported by Boileau and Normandin (2008, Table 1), under the station-

ary technology process with positive international spillovers, an incomplete market model

with a tiny bond holding cost can yield positive international output correlation, but its

magnitude is still less than the data.1 As in the original BKK model, we focus on station-

ary technology shocks with international spillovers as a source of aggregate �uctuations.

However, domestic �rms are assumed to observe the current foreign technology with noise.

We �rst show that when the information noise is su¢ ciently large, the model can match

the positive output comovement in the data not only for the case of incomplete market but

also for the case of perfect international risk sharing.

Even in the case of incomplete market where international consumption risk shar-

ing is restricted, the standard IRBC models with stationary technology shocks are known

to predict international consumption correlation higher than the international output cor-

relation (see Boileau and Normandin, 2008, Table 1). The data, however, typically suggest

that the former is lower than the latter (see Ambler, Cardia, and Zimmermann, 2004).

To narrow the gap between output correlation and consumption correlation predicted by

the model, several di¤erent channels have been emphasized in the literature. For example,

1Baxter and Crucini (1995) emphasized the better performance of the bond economy model when the
technology is highly persistent and there is no international spillover.
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the proposed channels include nontraded goods (Stockman and Tesar, 1995), endogenous

incomplete market with limited enforcement (Kehoe and Perri, 2002), sticky prices (Chari,

Kehoe, and McGrattan, 2002) and variable capital utilization (Baxter and Farr, 2005). In

this paper, we highlight the information channel and show that the presence of a noisy

information structure in the household sector helps to �ll the gap between the cross country

output correlation and consumption correlation.

In the recent global �nancial crisis of 2007-2009, employment and hours worked

declined both in the US and Euro area. Such a positive comovement is not predicted

by the standard IRBC models but can be generated in our imperfect information variant

of the model. Furthermore, since the labor declined more in the US than in the Euro

area, observed labor productivity increased in the US, which contrasts to the Euro area

where near-zero or negative productivity growth was observed. The empirical observation

of near-zero (or negative) correlation between productivity and hours worked has been

viewed as a productivity-hours anomaly in the macroeconomic literature, since the standard

real business cycle models predict positive response of hours worked to positive technology

shocks, provided an upward sloping labor supply curve (see for example, Galí, 1999, and

Christiano, Eichenbaum, and Vigfusson, 2003). To explain the negative productivity-hours

correlation, Galí (1999) emphasizes the role of monetary policy shocks and sticky prices. In

this paper, we show that negative productivity-hours correlation can also be predicted from

the noisy information structure even if prices are �exible and that heterogenous observations

in two regions can be obtained if the fraction of information-constrained consumers di¤ers

across regions.

We note that there are other studies that emphasize the role of imperfect in-

formation structures in open economy macroeconomic models. For example, Gourinchas

and Tornell (2004) discuss distorted beliefs of investors, while Bacchetta and van Wincoop

(2006) and Crucini, Shintani, and Tsuruga (2010), respectively, introduce the heterogenous
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information and sticky information structures in open economy monetary models. However,

these studies mainly focus on explaining nominal and real exchange rate dynamics rather

than the international comovement of real variables. Luo, Nie, and Young (2010) introduce

the rational inattention to an intertemporal current account model. However, since the

intertemporal current account model is a small open partial equilibrium model, it is not

suitable for understanding cross-country correlations. In our paper, we introduce a noisy

information structure in a two-country economy general equilibrium model with direct im-

plications on cross-country comovements. Our approach is similar in spirit to Angeletos and

La�O (2009), who introduce an imperfect common knowledge structure in a close-economy

real business cycle model and show that the model can induce a negative short-run response

of employment to productivity shocks. Unlike their model where heterogenous information

across �rms plays an important role, we assume homogeneous information across �rms but

only allow heterogenous information between countries. Even with such a simple informa-

tion structure, the model still has rich implications on international business cycle features.

The remainder of the paper is organized as follows. Our two-country model with

noisy information is introduced in Section 2. Section 3 discusses the implications of our

model on output, consumption and labor in order. Section 4 extends the baseline model

with capital accumulation. Section 5 concludes.

Model

Our baseline international real business model is a simpli�ed version of the two-

country bond-economy model of Baxter and Crucini (1995) from which we have eliminated

capital accumulation. We introduce information noise to both �rms and households in

the baseline model and compare it with the case of perfect information. Foreign country
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variables are denoted by stars.

Firms

Firms in the domestic country produce the same �nal good as �rms in the foreign

country. Labor is internationally immobile but the labor market is competitive. Firms

produce the output using a diminishing-returns-to-scale technology

Yt = AtN
�
t (I.1)

Y �t = A�tN
��
t

where Yt(Y �t ) is the output in the home (foreign) country, At(A
�
t ) is the technology level

in the home (foreign) country, Nt(N�
t ) is labor employed in the home (foreign) country,

and � 2 (0; 1). Domestic and foreign �rms maximize expected value of their pro�ts, �t =

PtYt�wtNt and ��t = PtY
�
t �w�tN�

t , respectively, where common price Pt of the �nal goods

in two countries is normalized to one and wt(w�t ) is the wage rate in the domestic (foreign)

country. We assume �rms in a country are owned by the residents of the same country so

that the pro�ts �t and ��t are given to consumers in corresponding countries
2. Technology

follows the VAR(1) model given by2664 logAt

logA�t

3775 =
2664 � �

� �

3775
2664 logAt�1
logA�t�1

3775+
2664 �t

��t

3775 (I.2)

where �(> 0) represents technology spillovers, and �t; ��t � N(0; 1=ka) and corr(�t; ��t ) � �.

Domestic �rms know their own level of technology, but receive a signal (with noise) for the

technology level of �rms in the foreign country. The signals received by home and foreign

�rms at the beginning of each period t are respectively given by

xt = logA
�
t + �t

2Here we exclude the possiblity of cross-border ownerships of �rms.
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and

x�t = logAt + �
�
t

where �t; ��t � N(0; 1=kx).

Households

Each country consists of two types of consumers. The �rst type (type 1) decides

the consumption level based on the same information set as the �rms located in the same

country. The fraction of the type 1 consumers in the home (foreign) country is represented

by �(��). The remaining consumers choose their consumption level after the information on

the foreign technology level is revealed. Households consume the �nal products and supply

labor to �rms located in the same country. Each type of consumer in the home country

maximizes the expected value of the discounted sum of utility given by

1X
t=0

�t[
C1�it

1�  �
N1+�
it

1 + �
]

conditional on the information available at the decision timing, where Cit and Nit are

consumption and labor supply of type i (i = 1; 2) consumers, (� 0) is the reciprocal of the

intertemporal elasticity of substitution or relative risk aversion, �(� 0) is the reciprocal of

the Frisch elasticity of labor supply, and � is the discount factor. The international asset

market is restricted to trade only non-contingent bonds. The household budget constraint

is given by

Cit +QtBit+1 +
�

2
B2it+1 � �t + wtNit +Bit

where Bit is bonds held by the type i consumers, Qt (= (1 + rt)
�1) is the price of bonds

in units of good, rt is the world interest rate, and (�=2)B2it+1 is a quadratic holding cost of
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bonds with � being a small positive value. The household maximization problem is similarly

de�ned for foreign consumers with preferences identical to domestic consumers.

For the timing of decisions made by �rms and households, we follow the setting

of Angeletos and La�O (2009) and consider each period in two stages. At the beginning

of each time period (stage 1), �rms and labor representatives of households meet and de-

cide the production level based on the information set flogAt; xtg [ 
t�1. All households

make labor supply decisions at this stage. The type 1 consumers, � fraction of house-

holds, also determine their consumption level (which cannot be adjusted in the next stage).

Firms produce �nal goods. Then, at the end of each time period (stage 2), information

on foreign productivity is revealed. The type 2 consumers, the remaining 1� � fraction of

households, make their consumption-saving decisions based on the updated information set


t = flogAt; logA�t ; xt; x�t g [ 
t�1. The interest rate level and the real wage rate level are

determined where the bond market and the labor market clear. Countries export or import

goods in the world market.

Reis (2006) built a microfoundation of inattentive consumers, who update their

information sporadically. Mankiw and Reis (2006) further considered the role of inattentive

consumers in a general equilibrium framework. In our model, type 1 consumers play a role

similar to that of inattentive consumers (planner) considered in Mankiw and Reis (2006),

except that we allow our consumers to observe a signal. The presence of type 2 consumers,

who make their consumption decision after all the information is revealed, is essential in

closing our model so that � = 1 case is excluded in the analysis. The timing of the decision

made by type 2 consumers is important in avoiding strategic responses by �rms and type 1

consumers. In the beginning of each period, neither �rms nor type 1 consumers can observe

prices to extract the information about the state of the economy. Since there is no strategic

responses by �rms, they make their production decisions based on their expected value of

the price, conditional on their restricted information set. Likewise, type 1 consumers make
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their saving-borrowing decisions based on their conditional expectation of the interest rate.

Equilibrium

Labor is internationally immobile so that the labor market clearing condition for

each country is respectively given by

Nt = �N1t + (1� �)N2t

and

N�
t = ��N�

1t + (1� ��)N�
2t

Trade across countries is allowed so that the world goods-market clearing condition (resource

constraint) is given by

Yt � Ct + Y �t � C�t �
��

2
B21t+1 �

���

2
B�21t+1 �

(1� �)�
2

B22t+1 �
(1� ��)�

2
B�22t+1 = 0

where

Ct = �C1t + (1� �)C2t

and

C�t = ��C�1t + (1� ��)C�2t:

Finally, the Walras�Law implies that the remaining bond market clears as

�B1t + �
�B�1t + (1� �)B2t + (1� ��)B�2t = 0

so that bonds are in zero net supply at the world level.
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Implications for International Business Cycles

International Output Correlation (� = �� = 0)

We �rst solve the model and investigate its implication on the international output

correlation when � = �� = 0 so that all the consumers can decide their consumption levels

after the information about foreign technology is revealed. This setting is convenient for

comparing the implication of the model under incomplete market assumption and that of

the model under complete market assumption. To solve the model, we log-linearize all the

�rst-order conditions and then use the guess-veri�cation approach. That is, we assume a

policy function to take a linear form and plug it into the model to match the coe¢ cients of

the same state variables in the two sides of the equations.

Let yt = log Yt� log Y (y�t = log Y
�
t � log Y �) and bt = Bt=Y (b�t = B�t =Y

�) where

variables with no subscript imply steady state values. We then have the following results

on the level of output.

Proposition 1 Suppose � = �� = 0 under the incomplete market assumption. Then, (i)
the equilibrium level of output in the home country and in the foreign country is given by

yt = m�1 logAt�1 +m
�
�1 logA

�
t�1 +m logAt +mxxt +mbbt (I.3)

y�t = m�1 logA
�
t�1 +m

�
�1 logAt�1 +m logA

�
t +mxx

�
t +mbb

�
t

for some coe¢ cients (m�1;m�
�1;m;mx;mb); and

(ii) the equilibrium value of the coe¢ cients (m�1;m�
�1;m;mx;mb) satis�es the

following properties: m�1 and m�
�1 approach zero as ka=kx ! 0; m approaches a positive

value as ka=kx ! 0; mx approaches a negative value as ka=kx ! 0 and approaches zero as
kz=kx !1; and mb is invariant to ka=kx.

To illustrate the reason why the model with noisy information provides a quantita-

tively di¤erent result on international output correlation from the full information model, it

is helpful to �rst consider the case of the complete market which has a closed form solution.

For the complete market case, �rms�problems are the same as before but the households
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maximize expected value of

1X
t=0

�tfC
1�
t

1�  �
N1+�
t

1 + �
+
C�1�t

1�  �
N�1+�
t

1 + �
g

which is common across countries subject to the world resource constraint

Yt � Ct + Y �t � C�t = 0:

For the full information case, the solution is given by

yt = m logAt +m
� logA�t (I.4)

y�t = m logA�t +m
� logAt

with m =
1��

2
1�� � > 0 and m� =

�
2

1��� < 0 where � = ��
1+��� < 0; � = 1+�

1+��� > 0. Note

that the combination of m > 0 and m� < 0 explain the reason why the the domestic

output responds negatively to foreign technology shocks. When the empirical performance

of the model is evaluated, both data series and the simulated series are typically �ltered

either by using the Hodorick-Prescott �lter or the �rst di¤erence �lter. In this paper, we

employ the latter and focus on the international correlations in terms of the log growth

rates �yt = yt � yt�1 and �y�t = y�t � y�t�1. Our choice of �lter here is convenient for

computing the predicted correlation directly when a closed form solution is provided, as in

the case of (I.4). Given the technology process (III.2) with a typical choice of parameters,

it is straightforward to show that (I.4) yields negative correlation of �yt and �y�t .

If the noisy information structure is introduced in this complete market model, we

have the following result.

Proposition 2 � = �� = 0 under the complete market assumption. Then, (i) the equilib-
rium level of outputs in the home country and in the foreign country is given by

yt = m�1 logAt�1 +m
�
�1 logA

�
t�1 +m logAt +mxxt (I.5)

y�t = m�1 logA
�
t�1 +m

�
�1 logAt�1 +m logA

�
t +mxx

�
t
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where8>>>>>><>>>>>>:

m�1 =
[�
2
�+(1��

2
)�](1��

2
)��

2(1��)[(1��
2
)2+(1��)(ka=kx)�1]

m�
�1 =

[���
2
(���)](1��

2
)��

2(1��)[(1��
2
)2+(1��)(ka=kx)�1]

m =
(1��

2
)�(1+(ka=kx)�1)

(1��
2
)2+(1��)(ka=kx)�1

mx =
�
2
�(ka=kx)�1

(1��
2
)2+(1��)(ka=kx)�1

(ii) the equilibrium value of the coe¢ cients (m�1;m�
�1;m;mx) approaches (0; 0;

1��
2

1�� �;
�
2

1���)
as ka=kx ! 0.

If we compare the coe¢ cients in (I.4) and (I.5), the output responds less to cur-

rently observed variables and more to old information. When the relative precision of

information becomes worse, �rms rely less on the signal xt, and more on old information

logA�t�1 so that m
�
�1 becomes more negative as ka=kx increases. Even if there is a positive

technology shock in the home country, since foreign �rms cannot directly observe it, they

do not reduce their production level as much as the full information case. Consequently,

the home �rms do not increase their production as much as the full information case and

m becomes smaller as ka=kx increases. Again, we can easily compute the correlation of �yt

and �y�t explicitly based on (I.5).

To better understand the di¤erence of the impact of imperfect information on

complete and incomplete markets, we conduct a simple calibration exercise using the results

from Propositions 1 and 2. We set parameters at � = 0:64, � = 0:5,  = 2 and � = 0:99,

values that are commonly used in the literature. We set � = :0001 for the quadratic cost

of bond holding to assure a unique steady state. For the parameters appear in technology

process (III.2), we use our own estimated values based on the quarterly series of output and

hours worked from the US and Euro area. For the hours worked series in the Euro area, we

obtain quarterly average weekly or monthly hours of work in manufacturing from 1989Q1

to 2009Q4 for Austria, France, Germany and Spain from LABORSTA. We then convert

these series to quarterly hours worked series in all sectors, by using the ratio of annual

hours of worker in manufacturing sector to that in all sectors, for each country, obtained
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from OECD Main Economic Indicator. The hours worked series for the US is obtained from

the BLS. Quarterly real GDP series, obtained from OECD Quarterly National Accounts is

used to construct output series for the US and Euro area. We then transform the hours

worked series and output series to logAt using (I.1) combined with � = 0:64. Using the

estimation procedure employed by BKK, we obtain � = 0:931, � = 0:046 and � = 0:040,

values that are very close to the ones used by BKK. The output (growth) correlation of

the US and Euro area from 1989Q1 to 2009Q4 is 0.54 when the Euro area is based on the

four countries we used to construct logAt. When we expand the output series of the Euro

area to those from 15 European countries (Austria, Belgium, Denmark, Finland, France,

Germany, Greece, Ireland, Italy, Norway, Netherlands, Portugal, Spain, Sweden and the

United Kingdom), the output correlation from the same period becomes 0.32.

Figure 1 shows how the predicted correlation of �yt and �y�t changes in response

to changes in the relative precision of information ka=kx under two di¤erent asset market

assumptions. The left panel shows the complete market case based on (I.5) and the right

panel shows the incomplete market case based on (I.3). When the information is perfect

(ka=kx = 0), the output correlation is negative for the complete market. As ka=kx increases,

the correlation monotonically increases and becomes positive. In case of the incomplete

market, the output correlation is positive but is much smaller than what the data suggests.

Again, the correlation increases as ka=kx increases. For both cases, the model with a

su¢ ciently large noise matches the observed output correlation from the data (0.54 and

0.32).

An intuitive explanation on the role of restricted information in increasing output

correlation is as follows. The main reason why standard IRBC models generate negative or

near zero correlation of output is that the domestic and foreign �rms respond to technology

shocks in the opposite direction. For example, with a positive productivity shock in the

home country, domestic �rms increase their production, while foreign �rms decrease their
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production. In contrast, if foreign �rms do not directly observe a positive shock at home

country, they do not reduce their production. Furthermore, as a result of excess supply

caused by uninformed foreign �rms, home �rms do not increase production as much as the

fully informed case. Combining the e¤ect of weaker responses with positively correlated

technologies across two countries can yield positive output correlation.

International Consumption Correlation (� = �� > 0)

We now focus on the bond-economy IRBC model when there are two types of

consumers. We show that introducing type 2 consumers in the economy will make the

international correlation of consumption lower compared to the benchmark model with

full information. To simplify the argument, we here maintain that the fraction of type 1

consumers is common across the countries. As in the previous subsection, we use the �rst

di¤erence �lter to investigate the international consumption correlation. Typically, the data

suggests that international consumption growth correlation is less than the international

output growth correlation. For example, Obstfeld and Rogo¤ (2000) use the annual Penn

World Table data over 1973 to 1992 and �nd that the average international correlation in

real GDP growth rates is 0.53, while the average consumption growth correlation is 0.40.

We also compute the consumption growth rate correlation based on the data from OECD

Quarterly National Accounts. If we use four countries for the Euro area, consumption

correlation is 0.46 compared to the outputs correlation of 0.54 during the period from

1989Q1 to 2009Q4. When we use 15 European countries to construct Euro aggregates,

the consumption correlation is 0.26, but the outputs correlation is 0.32. In either case,

consumption correlation is lower than the output correlation, which cannot be predicted by

the standard full information model.3

To solve the model with � = �� > 0, we need to combine an extended version of

3Pakko (2004) uses 10 country data from 1973:Q1 to 2002:Q4 and show that for all countries, the corre-
lations of output growth rates is higher than that of consumption growth rates.
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Sims�(2001) approach and the guess-veri�cation approach. We decompose heterogeneous

expectations into homogeneous expectation component and expectation error component.

We then solve the model by treating as if the latter is an exogenous shock in the �rst

step. In the second step, we use the method of undetermined coe¢ cients to assure the

endogenous expectation errors consistent with the solution from the �rst step (see technical

appendix for details). All the parameter values are the same as before except that we set

� = 0:6. The solutions are obtained for both (yt; y�t ) and (ct; c
�
t ) where ct = logCt � logC

and c�t = logC
�
t � logC�.

To understand the characteristics of the model, we compute the impulse response

of consumption to one standard positive deviation of domestic technology shocks with three

di¤erent choice of relative precision of information, ka=kx = 0, 1, and 25, which is shown

in Figure 24. Since the information is revealed at the end of each period, the e¤ects of

information precision become almost negligible after one period. In the perfect information

case (ka=kx = 0), households in the home country increase their consumptions as their

income increases. Households in the foreign country also increase consumption, since the

spillover e¤ects of the positive technology shocks make foreign households to borrow from

the home country. When the information noise becomes large (ka=kx = 1, and 25), foreign

households cannot predict the increase in income in the future and do not borrow as much

as they should from the international asset market. Therefore, even if foreign �rms produce

relatively more than the perfect information case, foreign households still decrease their

consumption. This asymmetric responses of ct and c�t is even more ampli�ed by taking the

�rst di¤erence �ct and �c�t . This makes consumption growth correlation decreasing with

respect to the magnitude of information noise.

Figure 3 demonstrates the dynamics of consumptions growth correlation and out-

4Since both information-constrained and unconstrained consumers have rational expectations, as long as
� is not extremely large the calibration of our exercise shows the response of interest rates to technology
shocks is not unrealistic.
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puts growth correlation in response to di¤erent degrees of information frictions. As in the

case of � = �� = 0, we can see information noise increases outputs growth correlation, and

at the same time it reduces consumptions-growth correlation. When the relative precision

of information (ka=kx) reaches 5, the consumption growth correlation becomes less than

the output growth correlation which dramatically reduces the gap between the prediction

of the model and the data.

International Productivity-Hours Dynamics (� 6= ��)

In the recent global �nancial crisis of 2007-2009, employment and hours worked

declined both in the US and Euro area. Such a positive comovement is not predicted by the

standard IRBC models. Furthermore, since the labor declined more in the US than in Euro

area, observed labor productivity increased in the US which contrast to the Euro area where

near-zero or negative productivity growth was observed. This fact was �rst investigated by

Ohanian (2010). The empirical observation of near-zero (or negative) correlation between

productivity and hours worked has been viewed as a productivity-hours anomaly in the

macroeconomic literature since the standard real business cycle model predicts a positive

response of hours worked to positive technology shocks, provided an upward sloping labor

supply curve (see Galí, 1999; Christiano, Eichenbaum and Vigfusson, 2003).

Let us �rst show that given a certain range of parameter values, our model can

predict the positive comovement of labor input, which cannot be obtained in the full in-

formation model. In our data, the hours worked (growth) correlation between the US and

Euro area based on four European countries is positive at 0.20. Using the same solution

technique as before, we can obtain the solution for (nt; n�t ) where nt = logNt � logN and

n�t = logN�
t � logN�. Figure 4 shows the predicted international correlation of hours

worked using the same set of parameter values as before. For the perfect information case

with ka=kx = 0, the correlation is negative. The correlation is not monotonically increasing
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in ka=kx. However, it predicts the positive correlation when ka=kx lies between the values

of 0.1 and 0.5.

We also solve the model when the fraction of information constrained consumers

di¤ers across the country. Figure 5 shows the predicted correlation of hour worked growth,

�nt(�n
�
t ), and measured productivity growth, �yt ��nt(�y�t ��n�t ), when � = 0:1 and

�� = 0:7. It shows that when ka=kx increases, the model can predict negative productivity-

hours correlation in one region and positive productivity-hours correlation in the other

region (Figure 6), where the former represents the Euro area and the latter represents the

US.

The Model with Capital Accumulation

In this section, we extend our model, and show that our main results are consistent

for models with and without capital as an input in the production functions. The model

structure is the same as in section 2, and the only di¤erence is �rms�production functions

and households�budget-constraint equations. The production functions is

Yt = AtK
1��
t N �

t

for the home country and

Y �t = A�tK
�1��
t N��

t

for the foreign country, where Kt(K
�
t ) is the capital stock for the home (foreign) country. In

addition to investing in the �nancial capital market, households also invest in the physical
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capital market. The households�budget constraint is

Ct + It +Bt+1 +
�

2
B2t+1 � rtKt +WtNt +RtBt

for the home country and

C�t + I
�
t +B

�
t+1 +

�

2
B�2t+1 � r�tKt +W

�
t N

�
t +RtB

�
t

for the foreign country, if households can only trade real bonds across countries. If house-

holds can trade state-contingent bonds internationally, the households�budget constraint

becomes

Ct + C
�
t + It + I

�
t = Yt + Y

�
t ;

where It(I�t ) is the investment in the physical capital in the home (foreign) country and

rt(r
�
t ) is the interest rate in the capital renting market in the home (foreign) country. The

capital stock evolves according to

Kt+1 = (1� �)Kt + �(
It
Kt
)Kt

for the home country and

K�
t+1 = (1� �)K�

t + �(
I�t
K�
t

)K�
t

for the foreign country, where � is the capital depreciation rate and the function �(�) implies

an adjustment cost. The function 1=�
0
is Tobin�s q, which gives the number of units of

output which must be foregone to increase the capital stock in a particular location by one

unit.

The solution method is the same as the method used in section 3.2. We log-

linearize the �rst-order conditions of the model �rst, and then use an approach combining

an extended version of Sims� (2001) approach and the guess-veri�cation approach. To

calibrate the model, in addition to the parameters speci�ed before, we need specify two
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additional parameters, � and �(�). � is set to 0:025 which indicates that capital depreciates

at the rate of 2:5 percent per quarter. The solution method does not require us to specify

the function form of � but requires us to set the values of �, �
0
and �" in the steady state.

We choose �( IK ) = � and �
0
( IK ) = 1 so that the model with adjustment costs has the

same steady state as the model without adjustment costs. �"( IK ) is set to equal �2:5 as in

Christiano, Eichenbaum and Evans (2005).

The calibration results show that including capital accumulation in the model

does not change the results of the model quantitatively signi�cantly. In Figure 7, one can

see when � = �� = 0, information frictions increase the output correlation from around

0:14 to 0:52 for both the complete market case and incomplete market case. When we

introduce information frictions into the consumption side by choosing � = �� = 0:7, a

slightly bigger value than the one we used for the model without capital accumulation, the

consumption correlation declines from around 0:96 to around 0:40 when ka=kx increases

from 0 to 10, and is exceeded by the output correlation (Figure 8). From Figure 9, one can

see the implication of international comovement of labor inputs is much more signi�cant

when capital accumulation is allowed in the model. The hours worked correlation increases

monotonically with the degree of information frictions. When ka=kx > 1, the hours worked

correlation becomes positive. If we choose � = 0:1 and � = 0:7, the positive productivity-

hours correlation in the home country and negative correlation in the foreign country can

also be generated if the degree of information frictions is chosen to be large enough (Figure

10).

Conclusion

We introduced a noisy information structure into an otherwise standard interna-

tional real business cycle model with two countries. When domestic �rms observe current

foreign technology with some noise, prediction of the model on international correlation
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turned out to be very di¤erent from that of a standard perfect information model. First, we

found that the imperfect information model can explain positive output correlation both in

complete and incomplete market models. Second, consumption correlation became smaller

than output correlation when the precision of the information becomes worse in the pres-

ence of information constrained households. Third, the model can explain the observation

of positive productivity-hours correlation in one country and negative correlation in the

other country.

There are several directions in which our model can be extended. First, we can

allow for information heterogeneity not only across the countries but also within a country.

When �rms in the same country face di¤erent signals about the foreign technology, the

lagged foreign technology will have a role of public information, in addition to its role as the

predictor of the current foreign technology. This may amplify the e¤ect of noisy information

and increase the predicted international output comovement. Second, we can introduce

nominal shocks into the model and consider the possibility of confusion between nominal

and real shocks. Third, we can investigate the role of the possible correlation of noise shocks

across countries for the output correlations. Finally, it would be another contribution to the

literature if one can estimate the parameters of variances of noise shocks and of proportions

of information-constrained households within a country5. These extensions are left for

future research.

5To the best of my knowledge, until now there is no estimation work on to what degree noise shocks
can quantitatively explain business cycle �uctuations in a DSGE framework. Olivier J. Blanchard, Guido
Lorenzoni, and Jean Paul L�Huillier (2012) use a structural vector autoregression (SVAR) and argue that
noise shocks explain around half of business cycle �uctuations.
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Appendix A

Proof of Proposition 1

The bond economy can be fully characterized by the following �rst-order conditions

(normalize Pt = 1):

Eht!t � Eht(At�N ��1
t ) = 0 (I.6)

Eft!
�
t � Eft(A�t �N���1

t ) = 0 (I.7)

Yt �AtN �
t = 0 (I.8)

Y �t �A�tN��
t = 0 (I.9)

�t � C�t = 0 (I.10)

�t!t �N �
t = 0 (I.11)

�t(1 + �Bt+1)� Et(��t+1Rt+1) = 0 (I.12)

Bt+1 +
�

2
B2t+1 + Ct � Yt �RtBt = 0 (I.13)

��t � C
��
t = 0 (I.14)

��t!
�
t �N��

t = 0 (I.15)

��t (1 + �B
�
t+1)� Et(���t+1Rt+1) = 0 (I.16)

B�t+1 +
�

2
B�2t+1 + C

�
t � Y �t �RtB�t = 0 (I.17)

Bt +B
�
t = 0 (I.18)

Boundary condition:

lim
t!1

�t�tBt = 0 (I.19)

and

lim
t!1

�t��tB
�
t = 0 (I.20)
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where �t(��t ) is the Lagrange multipliers. Combine equations (6), (8), (10) and (11) and

log-linearize,

yt = c0 + � logAt + �Ehtct (I.21)

and equations (7), (9), (14) and (15),

y�t = c�0 + � logA
�
t + �Eftc

�
t : (I.22)

where � = ��
1+��� and � =

1+�
1+��� , yt = log Yt � log Y (y�t = log Y

�
t � log Y �), ct = logCt �

logC, (c�t = logC
�
t � logC�): From equations (10), (12), (14), and (16)

ct � Etct+1 =
1


Et(�rt+1 + �bt+1)

c�t � Etc�t+1 =
1


Et(�rt+1 + �b�t+1):

where rt = logRt � logR and bt = Bt=Y: With ct + c�t = yt + y
�
t ,

ct � Etct+1 =
1

2
[yt + y

�
t � Et(yt+1 + y�t+1) +

2�


bt+1]:

Assume

ct =
1

2
(yt + y

�
t + dt) (I.23)

c�t =
1

2
(yt + y

�
t � dt)

we have

dt = Et[dt+1 +
2�


bt+1] = Et[dt+2 +

2�


bt+1 +

2�


bt+2] = � � �: (I.24)

Since Bt+1 = Yt � Ct �RtBt � �
2B

2
t+1,

�kBt+k = �k[(Yt+k�1 � Ct+k�1 �
�

2
B2t+k) + (Yt+k�2 � Ct+k�2 �

�

2
B2t+k�1)Rt+k�1

+ � � �+Rt+k�1 � � �RtBt]:
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By using the boundary condition (19), limk!1Et�
kBt+k = 0, in the steady state Y = C

and �R = 1, Yt � Ct � Y (yt � ct), and (24),

dt = (1� �)fEt[
1X
k=0

�k(yt+k � y�t+k) +
1X
k=0

�k+1
2�

(1� �)bt+1+k + 2bt]g: (I.25)

Use guess-veri�cation approach and assume

yt = m�1 logAt�1 +m
�
�1 logA

�
t�1 +m logAt +mxxt +mbbt (I.26)

y�t = m�1 logA
�
t�1 +m

�
�1 logAt�1 +m logA

�
t +mxx

�
t +mbb

�
t (I.27)

and technology processes have the following vector-autoregressive form2664lnAt
lnA�t

3775 =
2664� �

� �

3775
2664lnAt�1
lnA�t�1

3775+
2664�t
��t

3775 (I.28)

then

dt = (1� �)(m�1 �m�
�1)(logAt�1 � logA�t�1) +

1� �
1� �(�� �) [�(m�1 �m�

�1) (I.29)

+m� �mx(�� �)](logAt � logA�t ) + (1� �)[mx(xt � x�t ) + (2mb +
2�

(1� �))

�Et
1X
k=0

�kbt+k + (2�
2�

(1� �))bt]: (I.30)

Plug (25) into (24),

Et[

1X
k=0

�k(yt+k � y�t+k) + (2mb +
2�

(1� �))
1X
k=0

�kbt+k + (2�
2�

(1� �))bt](I.31)

= Et[

1X
k=0

�k(yt+1+k � y�t+1+k) + (2mb +
2�

(1� �))
1X
k=0

�kbt+1+k + 2bt+1]:
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Since

Et

1X
k=0

�k(yt+k � y�t+k)

= Et

1X
k=0

�k[(m�1 �m�
�1)(logAt�1+k � logA�t�1+k) +m(logAt+k � logA�t+k) +

mx(xt+k � x�t+k)] + 2mbEt

1X
k=0

�kbt+k

� Ut + 2mbVt;

then equation (30) can be rewritten as

(mb + 1)Vt � (� +
�


+mb + 1)EtVt+1 + �EtVt+2 = �

1

2
(Ut � EtUt+1):

Use Lag-operator, bt = Vt � �EtVt+1 as initial condition and Ut+k as given,

Vt = (1�
�

�2
)�1

�

2�2(1 +mb)
fUt �

(1� �1)EtUt+1
1� �1(�� �)

g+ 1

1� �
�2

bt (I.32)

Where �1 < 1 < �2 solve the equation (mb + 1)�
2 � (� + �

 +mb + 1)�+ � = 0. Plug (31)

into (29), then (23), then (21) and compare the coe¢ cients with (26),8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

m�1 =
�(m�1+m�

�1)
2 +

�(1��)(1+d1)(m�1�m�
�1)

2 � �(1��)(1+d1)(�(m�1�m�
�1)+m��mx(���))ka�

2(1���+��)(ka+kx)

+ �mka�
2(ka+kx)

+
�(1��)d2(m�1�m�

�1+
(���)(�(m�1�m

�
�1)+m�mx)

(1���+��) )ka�

2(ka+kx)
;

m�
�1 =

�(m�1+m�
�1)

2 � �(1��)(1+d1)(m�1�m�
�1)

2 � �(1��)(1+d1)(�(m�1�m�
�1)+m��mx(���))ka�

2(1���+��)(ka+kx)

+ �mka�
2(ka+kx)

+
�(1��)d2(m�1�m�

�1+
(���)(�(m�1�m

�
�1)+m�mx

(1���+��) )ka�

2(ka+kx)
;

m = � + �(m+mx)
2 � �(1��)(1+d1)mx

2 +
�(1��)(1+d1)(�(m�1�m�

�1)+m��mx(���))
2(1���+��)

�1
2�(1� �)d2(m�1 �m�

�1 +
(���)(�(m�1�m�

�1)+m�mx)

1���+�� );

mx =
�mkx

2(kx+ka)
+ �mx

2 + �(1��)(1+d1)mx

2 � �(1��)(1+d1)(�(m�1�m�
�1)+m��mx(���))kx

2(1���+��)(ka+kx)

+
�(1��)d2(m�1�m�

�1+
(���)(�(m�1�m

�
�1)+m�mx)

(1���+��) )kx

2(ka+kx)
;

mb =
�(1��)(1� �

(1��) )(1�
�
�2
)+�(1��) �

(1��)

1� �
�2
��(1��)

:
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where � = ��
1+��� , � =

1+�
1+��� , d1 = (mb+

�
(1��))(1�

�
�2
)�1 �

(�2(1+mb)
, d2 = (mb+

�
(1��))(1�

�
�2
)�1 �(1��1)

(�2(1+mb)[1��1(���)] . There are �ve undetermined variables and �ve equations, so we

solve the coe¢ cients (m�1;m�
�1;m;mx;m

�
x). We can easily verify that mb is invariant to

ka=kx.

For part (ii), when ka=kx ! 0, the above equations become8>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>:

m�1 =
�(m�1+m�

�1)
2 +

�(1��)(1+d1)(m�1�m�
�1)

2 ;

m�
�1 =

�(m�1+m�
�1)

2 � �(1��)(1+d1)(m�1�m�
�1)

2 ;

m = � + �(m+mx)
2 � �(1��)(1+d1)mx

2 +
�(1��)(1+d1)(�(m�1�m�

�1)+m��mx(���))
2(1���+��)

�1
2�(1� �)d2(m�1 �m�

�1 +
(���)(�(m�1�m�

�1)+m�mx)

1���+�� );

mx =
�(m+mx)

2 + �(1��)(1+d1)mx

2 � �(1��)(1+d1)(�(m�1�m�
�1)+m��mx(���))

2(1���+��)

+
�(1��)d2(m�1�m�

�1+
(���)(�(m�1�m

�
�1)+m�mx)

(1���+��) )

2 ;

mb =
�(1��)(1� �

(1��) )(1�
�
�2
)+�(1��) �

(1��)

1� �
�2
��(1��)

:

so, 8>>>>>>>>>>><>>>>>>>>>>>:

m�1 = m�
�1 = 0;

m = �
1�� �

�[(1���+��)�(1��)(1+d1)+(1��)d2(���)]�
2(1��)[(1���+��)��(1��)(1+d1)+�(1��)d2(���)] ;

mx =
�[(1���+��)�(1��)(1+d1)+(1��)d2(���)]�

2(1��)[(1���+��)��(1��)(1+d1)+�(1��)d2(���)] ;

mb =
�(1��)(1� �

(1��) )(1�
�
�2
)+�(1��) �

(1��)

1� �
�2
��(1��)

:

Then, let us proof the case under the condition � ! 0, m > 0 and mx < 0. Let us prove

�1 < mb < 0 as a preparation for later proofs. Since 0 < �1 < 1 < �2, 0 < � < 1;and

� < 0; ��2 < 1; if � ! 0, we have mb < 0 and,

mb + 1 =
(1� �

�2
)(1� �(1� �)) + ���

�2

1� �
�2
� �(1� �)

> 0:
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Therefore, we have �1 < mb < 0: Next,

d1 = (mb +
�

(1� �))(1�
�

�2
)�1

�

�2(1 +mb)

=
�(1� �)� ��

 +
�

(1��)

1� �
�2
� �(1� �)

�

�2(1 +mb)
=

��(1��)
�2

� ���
�2

+ ��
�2(1��)

���(1��)
�2

+ ���
�2

+ 1� �
�2

< 0:

Similarly, we can also have d2 < 0:

�d2(�� �) < �d2 = �d1
1� �1

1� �1(�� �)
< �d1;

so we have �d1 + d2(�� �) > 0: Therefore, mx�s numerator:

�[(1� ��+ ��)� (1� �)(1 + d1) + (1� �)d2(�� �)]�

= �f� � ��+ �� + (1� �)[�d1 + d2(�� �)]g < 0:

Furthermore,

d1 + 1 =
1� �

�2
+ ��

�2(1��)

���(1��)
�2

+ ���
�2

+ 1� �
�2

> 0:

mx�s denominator

2(1� �)[(1� ��+ ��)� �(1� �)(1 + d1) + �(1� �)d2(�� �)] > 0:

Overall,

mx =
�[(1� ��+ ��)� (1� �)(1 + d1) + (1� �)d2(�� �)]�

2(1� �)[(1� ��+ ��)� �(1� �)(1 + d1) + �(1� �)d2(�� �)]
< 0:

Note that m+mx =
�

1�� > 0; so m > 0.
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Proof of Proposition 2

The complete-market economy can be fully characterized by the following �rst-

order conditions:

Eht!t � Eht(At�N ��1
t ) = 0 (I.33)

Eft!
�
t � Eft(PtA�t �N���1

t ) = 0 (I.34)

Yt �AtN �
t = 0 (I.35)

Y �t �A�tN��
t = 0 (I.36)

C�t � C��t = 0 (I.37)

N �
t � C

�
t !t = 0 (I.38)

N��
t � C��t !�t = 0 (I.39)

Ct + C
�
t �AtN �

t �A�tN��
t = 0: (I.40)

From equations (32), (34) and (37)

yt = c0 + � logAt + �Ehtct (I.41)

and equations (33), (35) and (38)

y�t = c�0 + � logA
�
t + �Eftc

�
t (I.42)

where the constant terms c0 = c�0 =
�

1+"�� , � � �
�

1+��� and � �
1+�
1+��� . Since Ct = C�t , we

have:

ct = c�t =
1

2
[yt + y

�
t ]: (I.43)

Use guess-veri�cation approach and assume

yt = m�1 logAt�1 +m
�
�1 logA

�
t�1 +m logAt +mxxt

y�t = m�1 logA
�
t�1 +m

�
�1 logAt�1 +m logA

�
t +mxx

�
t
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and plug the two above equations into equation (42), and then (40), we have

m0 +m�1 logAt�1 +m
�
�1 logA

�
t�1 +m logAt +mxxt

= c0 + � logAt + �fm0 +
m�1 +m�

�1
2

logAt�1 +
m�1 +m�

�1
2

logA�t�1

+
m[ka(� logA

�
t�1 + � logAt�1) + kxxt]

2(ka + kx)
+
m

2
logAt +

mx

2
xt +

mx

2
logAtg:

Compare the coe¢ cients in the above equation,

m�1 = �
m�1 +m�

�1
2

+
m��ka
2(ka + kx)

(I.44)

m�
�1 = �

m�1 +m�
�1

2
+

m��ka
2(ka + kx)

(I.45)

m = � + �
m+mx

2
(I.46)

mx = �[
mx

2
+

mkx
2(ka + kx)

] (I.47)

Solve equations (42) to (46), and ignore the constant term, we have,

8>>>>>>>>>><>>>>>>>>>>:

m =
(1��

2
)�(ka+kx)

(1��
2
)2ka+(1��)kx ;

mx =
�
2
�kx

(1��
2
)2ka+(1��)kx ;

m�1 =
[�
2
�+(1��

2
)�](1��

2
)��

2(1��)[(1��
2
)2ka+(1��)kx]ka;

m�
�1 =

[(1��
2
)�+�

2
�](1��

2
)��

2(1��)[(1��
2
)2ka+(1��)kx]ka:

:

For part (ii), when ka=kx ! 0, it is straightforward to have that the coe¢ cients

(m�1;m�
�1;m;mx) approaches (0; 0;

1��
2

1�� �;
�
2

1���).

Appendix B

This appendix brie�y describes a method to solve a system of linear expectational

di¤erence equations with heterogeneous information. At �rst, we divide heterogeneous

expectational operators into two components, the full information part and the expectation

errors part. The expectation errors part is then treated as shocks to the model, and then we

solve the system of linear expectational di¤erence equations as the case with homogeneous

information by Sims�s (2001) method in the �rst step. In the second step, we use the method
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of undetermined coe¢ cients to assure the endogenous expectation errors consistent with the

solution from the �rst step. Let y(t) be a vector (k � 1) which we are interested in. Then

a typical system of linear rational expectational di¤erence equations with heterogeneous

expectational operators can be written as

NX
i=1

�i0Eity(t) =
NX
i=1

�i1Eit�1y(t� 1) + C +	z(t) + ��(t) (I.48)

t=1,...,T, where C is a vector (k � 1) of constants, z(t) is a vector (p � 1) of exogenously

evolving, possibly serially correlated, random disturbances, �(t) is a vector (q�1) of expecta-

tional errors, satisfying Eit�(t+1) = 0, Eit denotes expectational operator with information

set 
it, �i0 and �i1 are (k � k) coe¢ cient matrics, and 	 and � are (k � p) and (k � q)

matrics.

Step 1. Divide heterogeneous expectational operators into two components, the

full information part and the expectation errors part. After this treatment, the equations

can be reorganized as

(
NX
i=1

�i0)Ety(t) = (
NX
i=1

�i0)Et�1y(t� 1) + C +	�z(t)� +��(t) (I.49)

where

	� = [	;��10;��20; :::;��Ni;�11;�21; :::;�N1]

and

z(t)� = [z(t); (E1t�Et)y(t); :::; (ENt�Et)y(t); (E1t�1�Et�1)y(t�1); :::; (ENt�1�Et�1)y(t�1)]0

(I.50)

where Et denotes the expectation operator based on full information. (I.49) can also be

solved by other standard methods (see Anderson (2008) for a survey).

Step 2. Undetermined Coe¢ cients Method.
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By using Sims�s (2001) method, the solution of (I.49) can be characterized as

y(t) = �1y(t� 1) + �c +�0z�(t) + �y
1X
s=1

�s�1f QzEtz
�(t+ s) (I.51)

where the coe¢ cients are de�ned in equations (44) and (45) by Sims (2001). To use

undetermined coe¢ cients method, �rst, we list all the exogenous innovations by �(t) �

(�1t; �2t; :::; �lt) which might a¤ect the solution of y(t). The state variables �its could be

technology innovations, information signals, or other type of shocks. We then assume

z�(t) = ��0(t) (I.52)

where � is the ((p + kN) � l) undetermined coe¢ cients matrix. Remember that the top

entry of z�t is zt, so the �rst p row of � should also be known at this point and in total we

have kN � l unknown coe¢ cients. Plug equation (I.52) into (I.51), and we can have y(t).

Then plug the y(t) into the de�nition of z�(t) (I.50), and �nally match the coe¢ cients in

equation (I.52). We will have exactly the same number of linear equations as of unknown

variables, so we can exactly identify the unknown matrix �. Because it is a linear equations,

the solution procedure will not take too much time by using regular matrix-based software.
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Example: Noisy Information with International Business Cycles

When there exist both information constrained households and informed house-

holds, the model can be characterized by the following log-linear equations:

0 = �nnt + cnt � (� � 1)nt � at (I.53)

0 = cnt � Etcnt+1 �
1


[pt + �bnt+1 + (Ehtpt � pt) + (Ehtcnt+1 � Etcnt+1)] (I.54)

0 = �bnt+1 + cnt � at � �nnt � bnt (I.55)

0 = �
nt � �nnt
1� � + cit � at � (� � 1)nt + (Eht!t � !t) (I.56)

0 =
1


(pt + �bit+1)� cit � Etcit+1 (I.57)

0 = �bit+1 + cit � at � �
nt � �nnt
1� � � bit (I.58)

0 = �n�nt + c
�
nt � (� � 1)n�t � a�t (I.59)

0 = c�nt � Etc�nt+1 �
1


[pt + �b

�
nt+1 + (Eftpt � pt) + (Eftc�nt+1 � Etc�nt+1)] (I.60)

0 = �b�nt+1 + c
�
nt � a�t � �n�nt � b�nt (I.61)

0 = �
n�t � �n�nt
1� � + c�it � a�t � (� � 1)n�t + (Eft!�t � !�t ) (I.62)

0 = c�it � Etc�it+1 �
1


(pt � �

�bnt+1 + (1� �)bit+1 + �b�nt+1
1� � ) (I.63)

0 = �bnt+(1� �)(c�it�a
�
t+bit��bit+1) + �b

�
nt��(n

�
t��n

�
nt)� ��(bnt+1+b

�
nt+1)(I.64)

0 = at � �at�1 � �a�t�1 � �t (I.65)

0 = a�t � �a�t�1 � �at�1 � ��t (I.66)
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So

z�t =

26666666666666666666666666664

�t

��t

Ehtpt � pt

Eht!t � !t

Eftpt � pt

Eft!
�
t � !�t

Ehtcnt+1 � Etcnt+1

Eftc
�
nt+1 � Etc�nt+1

37777777777777777777777777775
At �rst, we solve the models and get the equation (I.51), then assume

z�t =

���������������������������������

1 0 0 0

0 1 0 0

p1 p2 p3 p4

!1 !2 !3 !4

p�1 p�2 p�3 p�4

!�1 !�2 !�3 !�4

c1 c2 c3 c4

c�1 c�2 c�3 c�4

���������������������������������

�

266666666664

�t

��t

vt

v�t

377777777775

Use the algorithm discussed above, we solve the models.

Appendix C

We choose US versus the Euro as the two countries in our model. To construct

the Euro aggregator we choose the following four countries: Austria, France, Germany,
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and Spain. The following �les are used for average weekly hours worked per worker in

manufacturing.

Austria: we collect Monthly hours of work per month in manufacturing data from

LABORSTA. Then we use arithmetic mean of every three months to calculate the quarterly

hours of work per month in manufacturing. The data cover wage earners from 1989M1 to

1995M12. After that the data cover employees6.

France: we collect Quarterly hours of work per week in manufacturing data from

LABORSTA. The data cover wage earners from 1989Q1 to 1992Q4. From 1993Q1 to

2009Q4, the main coverage is for employees.

Germany: before 2005, LABORSTA has two di¤erent sequences for Germany:

Western Germany and Eastern Germany, but Western Germany covers both of two parts

after 1990Q1. After 2005, there is only one Germany sequence. We choose the sequence of

Western Germany to supplement the Germany sequence to have a complete data series of

Germany. The data cover wage earners.

Spain: we collect quarterly hours of work per week data from LABORSTA. The

data cover wage earners. There are two missing observations and we use the average of the

two closest observations to replace them.

All the raw data are not seasonally adjusted. We use X-12-ARIMA to seasonally

adjust them.

From above, we have the data of quarterly average hours of work per week or per

month in manufacturing. We collect the data of average annual hours actually worked per

worker in all sectors from OECD Main Economic Indicator. Then we use the quarterly

average hours of worker per week or per month in manufacturing as proportions to divide

the annual hours worked per worker in all sector to construct the quarterly hours of work

in all sectors data.
6Because we use the series of quarterly hours of work as proportions to divide the series of annual hours

of work, so we conjecture the change of coverage only has a minor e¤ect.
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Employment: we use quarterly average employment data from OECD Main Eco-

nomic Indicator. The data is seasonally adjusted.

Output and Consumption: the data for quarterly GDP and quarterly consumption

are from OECD Quarterly National Accounts.

The series for US quarterly average hours of work per week and employment are

from BLS. The series for US consumption and GDP are from OECD Quarterly National

Accounts.
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Figure 1: The correlations of outputs in different asset markets
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Figure 2: The impulse response of consumption
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Figure 3: Outputs growth correlation and consumption growth correlation with different degrees

of noise shocks(κ = κ
∗ = 0.6)
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GDP Labor Force (age 16-64)
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                              Figure 4: Labor Productivity and Hours Worked during the Recent Financial Crisis
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Figure 5: The correlations of hours worked growth
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Figure 6: Productivity growth and hours growth correlation (κ = 0.1 and κ
∗ = 0.7)
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Figure 7: The correlations of outputs in different asset markets (models with capital)
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Figure 8: Outputs growth correlation and consumption growth correlation with different degrees

of noise shocks (models with capital,κ = κ
∗ = 0.7)
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Figure 9: The correlations of hours worked growth (models with capital)
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Figure 10: Productivity growth and hours growth correlation (models with capital, κ = 0.1 and

κ
∗ = 0.7)
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CHAPTER II

FINITE SAMPLE PERFORMANCE OF PRINCIPAL COMPONENTS ESTIMATORS
FOR DYNAMIC FACTOR MODELS: ASYMPTOTIC AND BOOTSTRAP

APPROXIMATIONS

Introduction

The estimation of dynamic factor models has become popular in macroeconomic

analysis since in�uential works by Sargent and Sims (1977), Geweke (1977) and Stock and

Watson (1989). Later studies by Stock and Watson (1998, 2002), Bai and Ng (2002) and

Bai (2003) emphasize the consistency of the principal components estimator of unobservable

common factors under the asymptotic framework with a large number of cross-sectional

observations. This paper investigates the �nite sample properties of two-step persistence

estimators in dynamic factor models when unobservable common factors are estimated by

the principal components method in the �rst step. The �rst-step estimation is followed

by the estimation of autoregressive models of common factors in the second step. Using

analytical results and simulation experiments, we evaluate the e¤ect of the number of the

series (N) relative to the time series observations (T ) on the performance of the two-

step estimator of a persistence parameter. Furthermore, we propose a simple bootstrap

procedure that works well when N is relatively small.

In this paper, we focus on the persistence parameter of the common factor be-

cause of its empirical relevance in macroeconomic analysis. In modern macroeconomics

literature, dynamic stochastic general equilibrium (DSGE) models predict that a small set

of driving forces is responsible for covariation in macroeconomic variables. Theoretically,

the persistence of the common factor often plays a key role on implications of these models.

For example, in the real business cycle model, there is a well-known trade-o¤ between the

persistence of the technology shock and the performance of the model. When the shock

becomes more persistent, the performance improves along some dimensions but deteriorates
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along other dimensions (King et al., 1988, Hansen, 1997, Ireland, 2001). In DSGE models

with a monetary sector, the optimal monetary policy largely depends on the persistence

of real shocks in the economy (Woodford, 1999). In open economy models, the welfare

gain from the introduction of international risk-sharing becomes larger when the technol-

ogy shock becomes more persistent (Baxter and Crucini, 1995). Since these common shocks

are not directly observable, a dynamic factor model o¤ers a simple robust statistical frame-

work for measuring the persistence of the common components that cause macroeconomic

�uctuations.1

Dynamic factor models have also been used to construct a business cycle index

(e.g., Stock and Watson, 1989, Kim and Nelson, 1993) and to extract a measure of underly-

ing, or core, in�ation (e.g., Bryan and Cecchetti, 1993). In such applications, the persistence

of a single factor can often be of main interest. For example, Clark (2006) examines the

possibility of a structural shift in the persistence of a single common factor estimated using

the �rst principal component of disaggregate in�ation series. In this paper, we consider

only the case in which a single common factor is generated from a univariate autoregressive

(AR) model of order one. This speci�cation keeps our problem simple since the persistence

measure corresponds to the AR coe¢ cient. However, in principle, the main idea of our

approach can be applicable to AR models of higher order.2

The principal components estimation of the unobserved common factors is com-

putationally simple and feasible with a large number of cross-sectional observations N .

The method also allows for an approximate factor structure with possible cross-sectional

correlations of idiosyncratic errors.3 The large N asymptotic results obtained by Connor

and Korajczyk (1986) and Bai (2003) imply
p
N -consistency of the principal components

estimators of common factors up to a scaling constant. Therefore, if N is su¢ ciently large,

we can treat the estimated common factor as if we directly observe the true common factor

when conducting inference. However, since this argument is based on the asymptotic the-

1Recently, Boivin and Giannoni (2006) proposed estimating a dynamic factor model in which they impose
the full structure of the DSGE model on the transition equation of the latent factors.

2In the case of AR models of higher order, however, there are several measures of persistence, including
the sum of AR coe¢ cients, largest characteristic root and �rst-order autocorrelation.

3The principle components estimator of the common factor with large N can also be used to estimate
nonlinear models (Connor, Korajczyk and Linton, 2006, Diebold, 1998, Shintani, 2005, 2008) or to test the
hypothesis of a unit root (Bai and Ng, 2004, and Moon and Perron, 2004).
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ory, an approximation may not work when N is small relative to the time series observation

T that is typically available in practice. Consistent with our theoretical prediction, the

results from our Monte Carlo experiment using positively autocorrelated factors suggest

the downward bias in the AR coe¢ cient estimator and signi�cant under-coverage of the

naive con�dence interval when N is small. The simulation results also suggest that a simple

bootstrap procedure works well in correcting the bias and improves the performance of the

con�dence interval.

The bootstrap part of our analysis is closely related to recent studies by Gonçalves

and Perron (2012) and Yamamoto (2012). Both papers also employ bootstrap procedures

for the purpose of improving the �nite sample performance of estimators of dynamic factor

models. Gonçalves and Perron (2012) employ a bootstrap procedure in factor-augmented

forecasting regression models with multiple factors. The factor-augmented forecasting re-

gression models are very useful in utilizing information from many predictors without in-

cluding too many regressors. This aspect is emphasized in Stock and Watson (1998, 2002),

Marcellino, Stock and Watson (2003) and Bai and Ng (2006), among others. Gonçalves

and Perron (2012) provide the �rst order asymptotic validity of their bootstrap procedure

for factor-augmented forecasting regression models, but not in the context of estimation

of the persistence parameter of the common factor. It should also be noted that, unlike

their factor-augmented forecasting regression models with multiple factors, the bootstrap

procedure for our univariate AR model of the common factor is not subject to scaling and

rotation issues.4 Yamamoto (2012) examines the performance of the bootstrap procedure

applied to the factor-augmented vector autoregressive (FAVAR) models of Bernanke, Boivin

and Eliasz (2005). While his multiple factor structure is more general than our single fac-

tor structure, his main focus is the identi�cation of structural parameters in the FAVAR

analysis using various identifying assumptions. In contrast, we are more interested in the

role of parameters in the model in explaining the deviation from the large N asymptotics

when N is small.
4To be more speci�c, under our normalizing assumption, the factor is estimated up to sign but the au-

toregressive coe¢ cient can be identifed as the sign cancels out from both side of the autoregressive equation.
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There are several simulation results available in the literature on the principal

components estimator of dynamic factor models. Stock and Watson (1998) report the �nite

sample simulation results on the magnitude of the �rst-step estimation error of the common

factor as well as the performance of an out-of-sample forecast based on the estimated factor

relative to that of an infeasible forecast with a true factor. Boivin and Ng (2006) report

similar performance measures in investigating the marginal e¤ect of increasingN when there

is a strong cross-sectional correlation of the errors. In addition, Stock and Watson (1998)

and Bai and Ng (2002) �nd that information criteria designed to determine the number

of the factors perform well in a �nite sample. None of these studies, however, directly

investigate the e¤ect of N on the estimation of dynamic structure of the common factors.

The remainder of the paper is organized as follows: Section 2 reviews the as-

ymptotic theory of the two-step estimator, and investigates the �nite sample performance

of the estimator in simulation. Section 3 considers a bootstrap approach to reduce the

bias. Section 4 considers a bootstrap approach to improve the coverage performance of the

con�dence interval. Section 5 provides an empirical illustration of our procedures. Some

concluding remarks are made in Section 6. All the proofs of theoretical results are provided

in the Appendix.

Two-Step Estimation of the Autoregressive Model of Latent Factor

We begin our discussion by reviewing the literature of �nite sample bias correction

of an infeasible estimator of an AR(1) model, and then provide asymptotic properties of

a two-step estimator of dynamic factor structure. Let xit be an i-th component of N -

dimensional multiple time series Xt = (x1t; : : : ; xNt)
0 and t = 1; :::; T . A natural way to

explain the comovement of xit�s caused by a single factor, such as productivity shocks, is

to use a simple one-factor model

xit = �ift + eit (II.1)

for i = 1; :::; N , where �i�s are factor loadings with respect to i-th series, ft is a scalar

common factor and eit�s are possibly cross-sectionally correlated idiosyncratic shocks. If
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a dynamic structure is introduced by incorporating (i) a dynamic data generating process

for ft, (ii) lags of ft in (II.1) or (iii) serial correlation in eit�s, then the model becomes a

dynamic factor model. In this paper, we limit our attention to a simple case with a single

factor generated from a zero-mean linear stationary AR(1) model,

ft = �ft�1 + "t (II.2)

where j�j < 1, and "t is i.i.d. with E ("t) = 0; E("t2) = �2" and a �nite fourth moment.

When ft is directly observable, the AR parameter � can be estimated by ordinary

least squares (OLS),

b� =  T+1X
t=2

f2t�1

!�1 TX
t=2

ft�1ft: (II.3)

Under the assumption described above, the limiting distribution of the OLS estimator (II.3)

is given by

p
T (b�� �) d! N(0; 1� �2); (II.4)

as T tends to in�nity, which justi�es the use of the asymptotic con�dence intervals for �.

For example, the 90% con�dence interval is typically constructed as

[b�� 1:645� SE(b�);b�+ 1:645� SE(b�)] (II.5)

where SE(b�) is the standard error of b� de�ned as SE(b�) = (b�2"=PT+1
t=2 f

2
t�1)

1=2, b�2" =
(T � 1)�1

PT
t=2 b"2t and b"t = ft � b�ft�1.

When T is small, the presence of bias of the OLS estimator (II.3) is well-known

and several procedures have been proposed to reduce the bias in the literature. Using the

approximation formula of the bias obtained in early studies by Hurwicz (1950), Marriott and

Pope (1954) and Kendall (1954), one can construct a simple bias-corrected estimator. For

example, in the current setting with a zero-mean restriction, the bias-corrected estimator

is given by b�KBC = T (T � 2)�1b�, which is a solution to the bias approximation formula
E(b�) � � = �2T�1� + O(T�2) for � with E(b�) replaced by b�. Alternatively, one can use
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the bootstrap method for the bias correction. A similar methodology was �rst employed by

Quenouille (1949), who proposed a subsampling procedure to correct the bias. A bootstrap

method for AR models based on resampling residuals was later formalized by Bose (1988)

and was extended to the multivariate case by Kilian (1998), among others. In particular,

the bias-corrected estimator is given by b�BC = b�� dbias where the bootstrap bias estimate
is dbias = B�1

PB
b=1 b��b � b� and b��b is the b-th AR estimate from the bootstrap sample and

B is the number of bootstrap replications. By using either the Kendall-type bias correction

or bootstrap bias correction procedures, the small T bias is reduced by the order of T�1.

Table 1 reports the mean values of the OLS estimator b� along with the e¤ective
coverage rates of the nominal 90% conventional asymptotic con�dence intervals (II.5) in

10,000 replications, using ft generated from (II.2) with the AR parameter, � = 0:5 and 0:9

combined with "t � iidN(0; 1 � �2).5 The sample sizes are T = 100 and 200. The initial

value ft is drawn from the unconditional distribution of ft, that is N(0; 1). In addition to

the OLS estimator b�, the mean values of the Kendall-type bias-corrected estimator b�KBC
and the bootstrap bias-corrected estimator b�BC are also reported. For the bootstrap bias
correction, we use B = 499. The results suggest that the coverage of conventional asymp-

totic con�dence intervals seems very accurate for sample sizes T = 100 and 200. In addition,

comparisons between two bias correction methods suggest that the small T bias of the OLS

estimator (b�) can be corrected reasonably well either by the Kendall-type correction (b�KBC)
or the bootstrap-type correction (b�BC). In what follows, we use the results in Table 1 as a
benchmark to evaluate the performance of the two-step estimator when the factor ft is not

known.

Let us now review the asymptotic property of the two-step estimator for the per-

sistence parameter � when only xit from (II.1) is observable. Under very general conditions,

ft can still be consistently estimated (up to scale) by using the �rst principal component of

the N�N matrix X 0X where X is the T �N data matrix with t-th row X 0
t, or by using the

�rst eigenvector of the T �T matrix XX 0.6 We denote this common factor estimator by eft
5Since our results are based on 10,000 replications, the standard error of 90% coverage rate in the

simulation is about 0.003 (�
p
0:9� 0:1=10000).

6Since principal components are not scale-invariant, it is common practice to standardized all xit�s to
have zero sample mean and unit sample variance before applying the principal components method.
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with a normalization T�1
PT
t=1

ef2t = 1. Once eft is obtained, we can replace ft in (II.3) byeft and the feasible estimator of � is
e� =  T+1X

t=2

ef2t�1
!�1 TX

t=2

eft�1 eft: (II.6)

Below, we �rst show the asymptotic validity of this two-step estimator, followed

by the examination of its �nite sample performance using a simulation. To this end, we

employ the following assumptions on the moment conditions for factors, factor loadings and

idiosyncratic errors. Below, we let M be some �nite positive constant.

Assumption F (factors): (i) Ejftj4 � M and (ii) F 0F=T
p! �2f = 1 where F =

[f1; � � � ; fT ]0 as T !1.

Assumption FL (factor loadings): (i) Ej�ij4 � M and (ii) �0�=N
p! �2� > 0 where

� = [�1; � � � ; �N ]0 as N !1.

Assumption E (errors): (i) For all (i; t), E (eit) = 0, E jeitj8 � M , (ii) E(eiseit) = 0

for all t 6= s, and N�1PN
i;j=1 j� ij j � M where � ij = E(eitejt), (iii) EjN�1=2PN

i=1[eiteis �

E(eiteis)]j4 � M for all t and s and (iv) (TN)�1
PT
t=1

PN
i;j=1 �i�jeitejt

p! � > 0, as

N;T !1.

Since we focus on the AR(1) process of the factor, Assumption F is equivalent

to the �nite fourth moment condition of an i.i.d. error "t with variance �2" = 1 � �2

given the stationarity condition j�j < 1. Assumption FL can be replaced by the bounded

deterministic sequence of factor loadings, but we only consider the case of random sequence

in this paper. Assumption E allows cross-sectional correlation and heteroskedasticity but

not serial correlation of idiosyncratic error terms. It should be noted that Assumption E can

be replaced by a weaker assumption that allows serial correlations of idiosyncratic errors

(see Bai, 2003, and Bai and Ng, 2002). Finally, we employ the following assumption on the

relation among three random variables.

Assumption I (independence): The variables fftg, f�ig and feitg are three mutually

independent groups. Dependence within each group is allowed.
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The following proposition provides the asymptotic properties of the two-step esti-

mator of the autoregressive coe¢ cient.

Proposition 1. Let xit and ft be generated from (II.1) and (II.2), respectively, and As-

sumptions F, FL, E and I hold. Then, as T !1 and N !1 such that
p
T=N ! c where

0 � c <1,

p
T (e�� �) d! N(�c���4� �; 1� �

2). (II.7)

The proposition is derived using the asymptotic framework employed by Bai (2003)

and Gonçalves and Perron (2012) in their analysis of the factor-augmented forecasting

regression model. In particular, it relies on the simultaneous limit theory where both N

and T are allowed to grow simultaneously with a rate of N being at least as fast as
p
T . The

bias term of order T�1=2 is analogous to the bias term in the factor-augmented forecasting

regression discussed by Ludvigson and Ng (2010) and Gonçalves and Perron (2012). Bai

(2003) emphasizes that the factor estimation error has no e¤ect on the estimation of the

factor-augmented forecasting regression model if
p
T=N is su¢ ciently small in the limit

(c = 0). Similarly, in the context of estimating the autoregressive model of the common

factor, the factor estimation error can be negligible for small
p
T=N . A special case of

Proposition 1 with c = 0 implies

p
T (e�� �) d! N(0; 1� �2) (II.8)

as T tends to in�nity, so that the limiting distribution of e� in Theorem 1 is same as that

of b� given by (II.4). In fact, we can also show the asymptotic equivalence of e� and b� with
their di¤erence given by e� � b� = oP (T

�1=2).7 Therefore, when the number of the series

(N) is su¢ ciently large relative to the time series observations (T ), the estimated factoreft can be treated in exactly the same way as in the case of observable ft. Combined with
the consistency of the standard error, asymptotic con�dence intervals analogues to (II.4)

can be used for the two-step estimator e�. For example, the 90% con�dence interval can be

7See the proof of Proposition 1.
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constructed as

[e�� 1:645� SE(e�);e�+ 1:645� SE(e�)] (II.9)

where SE(e�) is the standard error of e� de�ned as SE(e�) = (e�2"=PT+1
t=2

ef2t�1)1=2, e�2" =
(T � 1)�1

PT
t=2 e"2t and e"t = eft � e� eft�1.

When N is small (relative to T ), however, the distribution of e� may better be
approximated by (II.7) in Proposition 1, rather than by (II.8). In such a case, the presence

of bias term in (II.7) can result in bad coverage performance of a naive asymptotic con�dence

interval (II.9). Since the asymptotic bias term �T�1=2c���4� � can also be approximated

by �N�1���4� �, in what follows, we refer to this bias as the small N bias as opposed to

the small T bias, �2T�1�, discussed above. Within our asymptotic framework, the small

N bias dominates the small T bias since the former is of order T�1=2 and the latter is of

order T�1. However, it is interesting to note some similarity between the small N bias and

the small T bias. For positive values of �, both types of bias are downward and increasing

in �. However, the small N bias also depends on the dispersion of the factor loadings (�2�)

and covariance structure of the factor loadings and idiosyncratic errors (�).

To examine the �nite sample performance of the two-step estimator e� in a sim-
ulation, we now generate xit from (II.1) with the factor loading �i � N(0; 1), the serially

and cross-sectionally uncorrelated idiosyncratic error eit � N(0; �2e), and the factor ft from

the same data generating process as before. The relative size of the common component

and idiosyncratic error in xit is expressed in terms of the signal-to-noise ratio de�ned by

V ar(�ift)=V ar(eit) = 1=�2e, which is controlled by changing �
2
e. The set of values of the

signal-to-noise ratio we consider is f0:5; 0:75; 1:0; 1:5; 2:0g. We also follow Bai and Ng (2006)

and Gonçalves and Perron (2012) in considering the performance in the presence of cross-

sectionally correlated errors where the correlation between eit and ejt is given by 0:5ji�jj if

ji�jj � 5. For a given value of T , the relative sample size N is set according to N = [
p
T=c]

for c = f0:5; 1:0; 1:5g where [x] is integer part of x. Therefore, sets of Ns under consideration

are f7; 10; 20g for T = 100 and f9; 14; 28g for T = 200.

Table 2 reports the mean values of the two-step estimator e�, along with the e¤ective
coverage rates of the nominal 90% asymptotic con�dence intervals (II.9). The theoretical
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result for c = 0 implies that the coverage probability of (II.9) should be close to 0.90 only

if N is su¢ ciently large relative to T , but we are interested in examining its �nite sample

performance when N is small. The upper panel of the table shows the results with cross-

sectionally uncorrelated errors, while the lower panel shows those with cross-sectionally

correlated errors.

Overall, the point estimates of the two-step estimator e� are clearly biased down-
ward when N is small. Compared to the results for the infeasible estimator b� in Table 1,
the magnitude of bias is much larger with e� re�ecting the fact that the theoretical order
of the small N bias dominates that of the small T bias. In addition, consistent with the

theoretical prediction in Proposition 1, the magnitude with bias increases when (i) � in-

creases, (ii) c increases (or N decreases) and (iii) the signal-to-noise ratio decreases (or �

increases). For the same parameter values for �, c and signal-to-noise ratio, the introduction

of the cross-sectional correlation seems to increase the bias of e�. This e¤ect does not show
up in the �rst order asymptotics in Proposition 1 since it does not change the value of �.

However, when the signal-to-noise ratio is highest, the di¤erence in point estimates between

cross-sectionally uncorrelated and cross-sectionally correlated cases is smallest.

The coverage performance of the standard asymptotic con�dence intervals also

becomes worse compared to the results in Table 1. For all the cases, the actual coverage

frequency is much less than the nominal coverage rate of 90%. The closest coverage to

the nominal rate is obtained when � = 0:5 is combined with a small c (a large N) and

a large signal-to-noise ratio. In this case, there is about a 2 to 4% under-coverage. The

deviation from the nominal rate becomes larger when � increases, c increases, the signal-

to-noise ratio decreases and the cross-sectional correlation is introduced. The fact that the

degree of under-coverage is in parallel relationship to the magnitude of the small N bias

can also be explained by Proposition 1. When �c���4� � in (II.7) is not negligible, the

con�dence interval (II.9), which is based on approximation (II.8), cannot be expected to

perform well. In summary, the asymptotic con�dence interval (II.9) may work well in terms

of the coverage rate when N is as large as a half of T and when the AR parameter is not

close to unity. Otherwise, the presence of the small N bias results in a poor coverage of

the naive con�dence interval. The e¤ect of this downward bias becomes more severe as
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the AR parameter approaches to unity. In the next section, we consider the possibility of

improving the performance of the two-step estimator when N is small, by approximating

the true distribution using bootstrap procedures.

The Bootstrap Approach to Bias Correction

In the previous section, we conjectured that the presence of the small N bias is

likely the main source of poor coverage of the asymptotic con�dence interval when N is

small. Recall that in the case of correcting the small T bias, an analytical bias formula

is utilized to obtain b�KBC while the bootstrap estimate of bias is used to construct b�BC .
Similarly, we can either utilize the explicit bias function and correct the bias analytically

using the formula in Proposition 1, or estimate the bias using the bootstrap method for the

purpose of correction. For example, Ludvigson and Ng (2010) consider the former approach

in reducing bias in the context of the factor-augmented forecasting regression model. Here

we take the latter approach and employ the bootstrap procedure designed to work with

cross-sectionally and serially uncorrelated errors. To be speci�c, we set � ij = 0 for all

i 6= j in Assumption E(ii). However, in simulation, we also investigate its performance

in the presence of cross-sectionally correlated errors (� ij 6= 0). We �rst describe a simple

bootstrap procedure for the bias correction.

Bootstrap Bias Correction I

1. Estimate factors and factor loadings using the principal components method and

obtain residuals eeit = xit � e�i eft.
2. Recenter eeit, e�i and eft around zero. Generate x�1t = ��1 eft + e�1t for t = 1; :::; T by

�rst drawing ��1 from e�i and then drawing e�1t for t = 1; :::; T from eejt given ��1 = e�j .
Repeat the same procedure N times to generate all x�it�s for i = 1; :::; N .

3. Apply the principal components method to x�it and estimate ef�t .
4. Compute the bootstrap AR coe¢ cient estimate e�� from ef�t .
5. Repeat steps 2 to 4B times to obtain the bootstrap bias estimator bias� = B�1

PB
b=1 e��b�
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e� where e��b is the b-th bootstrap AR estimate and e� is the AR estimate from eft. The
bias-corrected estimator of � is given by e�BC = e�� bias�.
Beran and Srivastava (1985) have established the validity of applying the bootstrap

procedure to the principal components analysis. Our procedure slightly di¤ers from theirs

in that we resample x�it using the estimated factor model in step 2.

In the implementation of the bootstrap, theoretically, it is possible that the �rst

principal components cannot be computed for some bootstrap sample if an associated eigen-

value is extremely small. In such a case, we just set e�� = e� for the corresponding bootstrap
sample. This modi�cation, however, does not a¤ect the asymptotic property of the boot-

strap estimator of bias.

It should be noted that the procedure above is designed to evaluate the small N

bias in the principal components method rather than the small T bias in the autoregression.

In order to incorporate both the small T bias and the small N bias simultaneously, we may

combine the procedure above with bootstrapping AR models. This possibility is considered

in the second bootstrap bias correction method described below.

Bootstrap Bias Correction II

1. Estimate factors and factor loadings using the principal components method and

obtain residuals eeit = xit � e�i eft.
2. Compute the AR coe¢ cient estimate e� from eft and obtain residuals e"t = eft � e� eft�1.
3. Recenter e"t around zero, if necessary, and generate "�t by resampling from e"t. Then
generate pseudo factors using f�t = e�f�t�1 + "�t .

4. Recenter eeit and e�i around zero. Generate x�1t = ��1f
�
t + e�1t for t = 1; :::; T by �rst

drawing ��1 from e�i and then drawing e�1t for t = 1; :::; T from eejt given ��1 = e�j .
Repeat the same procedure N times to generate all x�it�s for i = 1; :::; N .

5. Apply the principal components method to x�it and estimate ef�t .
6. Compute the bootstrap AR coe¢ cient estimate e�� from ef�t .
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7. Repeat steps 2 to 6B times to obtain the bootstrap bias estimator bias� = B�1
PB
b=1 e��b�e� where e��b is the b-th bootstrap AR estimate and e� is the AR estimate from eft. The

bias-corrected estimator of � is given by e�BC = e�� bias�.
The second procedure for the bias correction involves a combination of bootstrap-

ping principal components and bootstrapping the residuals in AR models (Freedman, 1984,

and Bose, 1988). Note that our procedures employ the bootstrap bias correction based on

a constant bias function. While this form of bias correction seems to be the one most fre-

quently used in practice (e.g., Kilian, 1998), the performance of the bias-corrected estimator

may be improved by introducing linear or nonlinear bias functions in the correction (see

MacKinnon and Smith, 1998).

Let P � denotes the probability measure induced by the bootstrap conditional on

the original sample, and let E� denotes expectation with respect to the distribution of

the bootstrap sample conditional on the original sample. The asymptotic justi�cation of

using our bootstrap methods to correct the small N bias is established in the following

proposition.

Proposition 2. Let all the assumptions of Proposition 1 hold with � ij = 0 for all i 6= j,

Ejftj8 � M , Ej�ij8 � M , E jeitj16 � M , and the bootstrap data be generated as described

in Bootstrap Bias Correction I or in Bootstrap Bias Correction II. Then, as T ! 1 and

N !1 such that
p
T=N ! c where 0 � c <1, E�(e���e�) = �T�1=2c���4� �+oP (T�1=2).

Proposition 2 implies the consistency of the bootstrap bias estimator bias� since

E�(e�� � e�) can be accurately approximated by bias� with a suitably large value of B.

The proposition also suggests that the bias-corrected estimator e�BC = e� � bias� has the

asymptotic bias of order smaller than T�1=2. Since the consistency holds for both Bootstrap

Bias Correction I and Bootstrap Bias Correction II, whether or not bootstrapping AR

models is included in the procedure does not matter asymptotically.

Let us now conduct the simulation to evaluate the performance of the bootstrap

bias correction method. The results of the simulation under the same speci�cation as in

Table 2 are shown in Table 3. For each speci�cation, the true bias is �rst evaluated by using
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the mean value of ~�� � in 10,000 replications. The asymptotic bias �T�1=2c���4� � is also

reported. The performance of bootstrap bias estimator based on Bootstrap Bias Correction

I and Bootstrap Bias Correction II is evaluated by using the mean value of bias� in 10,000

replications. The number of the bootstrap replications is set at B = 199.

The results of the simulation can be summarized as follows. First, results turn

out to be very similar between the cases of Bootstrap Bias Correction I and Bootstrap Bias

Correction II. This �nding suggests that the small T bias is almost negligible for the size of

T we consider, which is consistent with the results in Table 1. Two bootstrap bias estimates

match closely with the true bias for both the � = 0:5 and � = 0:9 cases unless the signal-to-

noise ratio is too small. Second, while the direction of the changes of the theoretical bias is

consistent with that of true bias, it only accounts for a fraction of the actual bias. In many

cases, bootstrap bias estimates are much closer to the actual bias than the �rst-order term

of the theoretical bias. Third, the bootstrap bias estimate does not seem to capture the

e¤ect of increased bias in the presence of the cross-sectional correlation. However, this is

not surprising because our bootstrap procedure is designed for the case of cross-sectionally

uncorrelated errors. Overall, the performance of the bootstrap correction method seems to

be satisfactory.

The Bootstrap Approach to Con�dence Intervals

Since the bootstrap bias correction method has been proven to be e¤ective in

simulation, we now turn to the issue of improving the performance of con�dence intervals

using a bootstrap approach. Recall that the deviation of the actual coverage rate of a naive

asymptotic con�dence interval (II.9) from the nominal rate is proportional to the size of

bias in Table 2. Thus, it is natural to expect that recentered asymptotic con�dence intervals

using the bootstrap bias-corrected estimates improve the coverage accuracy. For example,

the 90% con�dence interval can be constructed as

[e�BC � 1:645� SE(e�);e�BC + 1:645� SE(e�)]: (II.10)
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The asymptotic validity of the con�dence interval (II.10) can easily be shown using the

consistency result of the bootstrap bias estimator provided in Proposition 2.

Instead of using a bias-corrected estimator, we can directly utilize the bootstrap

distribution of the estimator to construct bootstrap con�dence intervals. Here we consider

the percentile con�dence interval based on the recentered bootstrap estimator e���e� as well
as the percentile-t equal-tailed con�dence interval based on the bootstrap t statistic de�ned

as t(e��) = (e���e�)=SE(e��) where SE(e��) is the standard error of e��, which is asymptotically
pivotal.8 For example, the 90% percentile con�dence interval and 90% percentile-t equal-

tailed con�dence interval can be constructed as

[e�� q0:95(e�� � e�);e�� q0:05(e�� � e�)] (II.11)

and

[e�� q0:95(t(e��))� SE(e�);e�� q0:05(t(e��))� SE(e�)] (II.12)

respectively, where q�(x) denotes 100��-th percentile of x. We now describe our procedure

of constructing the bootstrap con�dence intervals.

Bootstrap Con�dence Interval

1. Follow either steps 1 to 3 in Bootstrap Bias Correction I or steps 1 to 5 in Bootstrap

Bias Correction II.

2. Compute the bootstrap AR coe¢ cient estimate e�� or t(e��) from ef�t .
3. Repeat steps 1 to 2 B times to obtain the empirical distribution of e���e� to construct
the percentile con�dence interval and of t(e��) to construct the percentile-t con�dence
interval.

Note that, as in Kilian�s (1998) argument on vector autoregression, e� in step 3
in Bootstrap Bias Correction II can be replaced by bias-corrected estimates e�BC without
changing the limiting distribution of the bootstrap estimator. The following proposition

provides the asymptotic validity of the bootstrap con�dence intervals.
8See Hall (1992) on the importance of using asymptically pivotal statistics in achieving the higher order

accuracy of the bootstrap con�dence interval.
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Proposition 3. Let all the assumptions of Proposition 1 hold with � ij = 0 for all i 6= j,

and the bootstrap data be generated as described in Bootstrap Con�dence Interval. Then, as

T ! 1 and N ! 1 such that
p
T=N ! c where 0 � c < 1, supx2< jP �(

p
T (~�� � ~�) �

x)� P (
p
T (~�� �) � x)j P! 0.

Proposition 3 implies the consistency of our bootstrap procedure in the sense

that the limiting distribution of the bootstrap estimator ~�� is asymptotically equivalent

to that of e�.9 Since the limiting distribution of e� is given by (II.7) in Proposition 1, the
same distribution can be used to describe the limiting behavior of ~��. Since the coverage

rate of the asymptotic con�dence interval around the bias-corrected estimate, given by

(II.10), approaches the nominal coverage rate in the limit, the same is true for the percentile

bootstrap con�dence interval. Similarly, we can modify Proposition 3 and replace ~�� and

~� by their studentized statistics t(e��) and t(e�) = (~� � �)=SE(e�) and show the bootstrap

consistency of t(e��) and the asymptotic validity of the percentile-t con�dence interval.10
Table 4 reports coverage of three con�dence intervals based on the bootstrap ap-

plied to the two-step estimator e� for � = 0:5 and � = 0:9 cases. Here, for the bootstrap

bias correction method required in the con�dence interval (II.10), we use Bootstrap Bias

Correction II. Similarly, we report percentile and percentile-t con�dence intervals based on

Bootstrap Con�dence Interval combined with Bootstrap Bias Correction II. The table shows

that all three con�dence intervals signi�cantly improve over the naive asymptotic interval

(II.9) in Table 2. Especially, when T = 200, c = 0:5 and � = 0:5, the coverage rates of

all three bootstrap intervals are very close to each other and are nearly the nominal rate

regardless of the signal-to-noise ratio. The percentile con�dence interval (II.11) seems to

work relatively well when T = 100. The percentile-t con�dence interval (II.12) seems to

dominate the bias-corrected con�dence interval (II.10) for all the cases.

As in the case of the bias correction result, the performance of con�dence inter-

vals tends to improve when the signal-to-noise ratio increases. Likewise, the performance

9In general, signs of the coe¢ cients in the factor forecasting regression cannot be identi�ed, and Gonçalves
and Perron (2012) argue the consistency of their bootstrap procedure in renormalized parameter space. In
contrast, our result is not subject to the sign identi�cation problem since slope coe¢ cients in univariate AR
models can still be identi�ed.
10Note that we are not claiming here the higher order re�nement of the percentile-t bootstrap con�dence

interval.
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deteriorates when errors are cross-sectionally correlated. Yet, their coverage is much closer

to the nominal rate when compared to the corresponding results for the naive asymptotic

con�dence interval. In summary, the percentile-t con�dence interval works at least as well

as the bias-corrected con�dence interval but does not uniformly dominates the percentile

con�dence interval. Therefore, we suggest using three methods complementarily in practice.

Empirical Application to US Di¤usion Index

In this section, we apply our bootstrap procedure to the analysis of a di¤usion

index based on a dynamic factor model. Stock and Watson (1998, 2002) extract common

factors from 215 U.S. monthly macroeconomic time series and report that the forecasts

based on such di¤usion indexes outperform the conventional forecasts.11 We use the same

data source (and transformations) as Stock and Watson and sample period is from 1959:3

to 1998:12 giving a maximum number of time series observation T = 478. By excluding the

series with missing observations, we �rst construct a balance panel with N = 159.12 For the

purpose of visualizing the e¤ect of small N on the estimation of persistence parameter of the

single common factor, we then generate multiple subsamples using the following procedure.

Based on the full balanced panel, we select variables 1, 4, 7 and so on to construct a

balanced panel subsample. Next, we construct another subsample by selecting variables 2,

5, 8 and so on. By repeating such a selection three times, we can construct three balanced

panel data sets with T = 478 and N = 53. Similarly, we can select variables 1, 6, 11

and so on to construct �ve balanced panel with T = 478 and N = 31. Since the number

of the series in the full balanced panel and the two subsamples are N = 159; 53 and 31,

corresponding
p
T=N are 0.14, 0.41 and 0.71. Since the values of

p
T=N are not close to zero,

the bootstrap method is likely more appropriate than the naive asymptotic approximation

11The list provided in Appendix B of Stock and Watson (2002) shows that the individual series are
from 14 categories that consist of (1) real output and income; (2) employment and hours; (3) real retail,
manufacturing and trade sales; (4) consumption; (5) housing starts and sales; (6) real inventories and
inventory-sales ratios; (7) orders and un�lled orders; (8)stock prices; (9) exchange rates; (10) interest rates;
(11) money and credit quantity aggregates; (12) price indexes; (13) average hourly earnings; and (14)
miscellaneous.
12The number of the series in the full balanced panel di¤ers from that of Stock and Watson (2002) due to

the di¤erent treatment of outliers.
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in the two-step estimation. Di¤usion indexes, obtained as the cummurative sums of the

�rst principal components of panel data sets, are shown in Figure 11. The bold line shows

the estimated common factor using the full balanced panel with N = 159. The darker

shaded area represents the range of common factor estimates among three subsamples with

N = 53, while the lighter shaded area represents the range of common factor estimates

among �ve subsamples with N = 31. As the asymptotic theory predicts, we observe that

the variation among the indexes based on N = 31 is much larger than the variation among

indexes based on N = 53.

In the next step, we estimate the dynamic structure of three di¤usion indexes

using the AR(1) speci�cation. Table 5 reports the point estimates e�, naive 90% con�dence

intervals (II.9), bias-corrected estimates e�BC and 90% con�dence intervals (II.10), which are
based on the bootstrap bias-corrected estimates. The bias-corrected estimates are computed

with the number of bootstrap replication B = 799. One notable observation from this

empirical exercise is that the size of the bootstrap bias correction is substantial for all three

cases with the size largest in the N = 31 case and smallest in the N = 159 case. In

addition, the non-overlapping range between the naive and bootstrap intervals seems to be

wider when N is smaller. These observations are consistent with our �nding in the Monte

Carlo section.

Conclusion

In this paper, we examined the �nite sample properties of the two-step estimator

of the persistence parameter in dynamic factor models when unobservable common factors

are estimated by the principal components methods in the �rst step. As a result of the sim-

ulation experiment with small N , we found that the AR coe¢ cient estimator of a positively

autocorrelated factor is biased downward, and the bias is larger for a more persistent factor.

This �nding is consistent with the theoretical prediction. The property of the small N bias

somewhat resembles that of the small T bias of the AR estimator. However, the bias caused

by the small N is also present in the large T case. When there is a possibility of such a

downward bias, a bootstrap procedure proposed in the paper is e¤ective in correcting bias
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and controlling the coverage rate of the con�dence interval.

Using a large number of series in the dynamic factor analysis has become a very

popular approach in applications. The �nding of this paper suggests that practitioners

need to pay attention to the relative size of N and T before relying too much on a naive

asymptotic approximation. Finally, it would be interesting to extend the experiments to

allow for higher order AR models and nonlinear factor dynamics.
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Appendix: Proofs

Proof of Proposition 1

The principal components estimator eF =
h ef1; � � � ; efT i0 is the �rst eigenvector of

the T � T matrix XX 0 with normalization T�1
PT
t=1

ef2t = 1, where

X =

26666664
X 0
1

...

X 0
T

37777775 =
26666664
x11

...

x1T

� � �

. . .

� � �

xN1

...

xNT

37777775 :

By de�nition, (1=TN)XX 0 eF = eFvNT where vNT is the largest eigenvalue of

(1=TN)XX 0. Let st = N�1PN
i=1E(eiseit), �st = N�1PN

i=1(eiseit � E(eiseit)), �st =

N�1fs
PN
i=1 �ieit, and �st = N�1ft

PN
i=1 �ieis. Following the proof of Theorem 5 in Bai

(2003), the estimation error of the factor can be decomposed as

eft �HNT ft = v�1NT [T
�1

TX
s=1

efsst + T�1 TX
s=1

efs�st + T�1 TX
s=1

efs�st + T�1 TX
s=1

efs�st]
= OP

�
N�1=2��1NT

�
+OP

�
N�1=2��1NT

�
+OP

�
N�1=2

�
+OP

�
N�1=2��1NT

�
= OP

�
N�1=2

�
where HNT = ( eF 0F=T )(�0�=N)v�1NT and �NT = minfpN;pTg. From Bai�s (2003) Lemma

A.3, we have p lim
T;N!1

vNT = �2��
2
f = v and p lim

T;N!1
H2
NT = p lim

T;N!1
( eF 0F=T )(�0�=N)2(F 0 eF=T )v�2NT =

v�2�v
�2 = �2�(�

2
��

2
f )
�1 = ��2f = 1.

If ft is observable,

p
T (b�� �) =

p
T

 
T+1X
t=2

f2t�1

!�1
(
TX
t=2

ft�1ft � �
T+1X
t=2

f2t�1)

=
p
T

 
T+1X
t=2

f2t�1

!�1 TX
t=2

ft�1"t � �
p
T

 
T+1X
t=2

f2t�1

!�1
f2T

= T�1=2
TX
t=2

ft�1"t + oP (1)
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since T�1
PT
t=1 f

2
t = 1 + oP (1). If ft is replaced with eft, we have

p
T (e�� �) =

p
T

 
T+1X
t=2

ef2t�1
!�1

(

TX
t=2

eft�1 eft � � T+1X
t=2

ef2t�1)
= T�1=2

TX
t=2

eft�1 � eft � � eft�1�� T�1=2� ef2T = T�1=2
TX
t=2

eft�1 � eft � � eft�1�+ oP (1)
= T�1=2HNT

TX
t=2

eft�1"t + T�1=2 TX
t=2

eft�1 n eft �HNT ft � �� eft�1 �HNT ft�1�o+ oP (1)
= T�1=2H2

NT

TX
t=2

ft�1"t � T�1=2�
TX
t=2

eft�1 � eft�1 �HNT ft�1�
+T�1=2

TX
t=2

eft�1 � eft �HNT ft�+ T�1=2HNT TX
t=2

� eft�1 �HNT ft�1� "t + oP (1):
We next show (i) T�1�

PT
t=2

eft�1( eft�1 � HNT ft�1) = 2�v�2N�1� + oP (�
�2
NT );

(ii) T�1
PT
t=2

eft�1( eft � HNT ft) = �v�2N�1� + oP (�
�2
NT ); and (iii) T

�1HNT
PT
t=2(

eft�1 �
HNT ft�1)"t = oP (�

�2
NT ).

We decompose the left-hand-side of (i) as,

T�1�
TX
t=2

eft�1( eft�1 �HNT ft�1)
= T�1�

TX
t=2

( eft�1 �HNT ft�1)2 + T�1� TX
t=2

HNT ft�1( eft�1 �HNT ft�1)
= �(A+B):

For A, we have,

A = T�1
TX
t=2

v�2NT [T
�1

TX
s=1

efsst�1 + T�1 TX
s=1

efs�st�1 + T�1 TX
s=1

efs�st�1 + T�1 TX
s=1

efs�st�1]2
= v�2NTT

�1
TX
t=2

(A0t +A1t +A2t +A3t)
2

where A0t = T�1
PT
s=1

efsst�1, A1t = T�1
PT
s=1

efs�st�1, A2t = T�1
PT
s=1

efs�st�1 and
A3t = T�1

PT
s=1

efs�st�1.
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First,

T�1
TX
t=2

A20t = T�1
TX
t=2

[T�1
TX
s=1

efsst�1]2 � f[T�1 TX
s=1

~f2s ][T
�2

TX
t=2

TX
s=1

2st�1]g

= [T�2
TX
t=2

TX
s=1

2st�1] = OP (T
�1);

since T�2E
PT
t=2

PT
s=1 

2
st�1 = T�2E

PT
s=2 

2
ss = O(T�1). Second,

T�1
TX
t=2

A21t = T�1
TX
t=2

[T�1
TX
s=1

efs�st�1]2 = T�1
TX
t=2

[T�1
TX
s=1

( efs �HNT fs +HNT fs)�st�1]2
� T�1

TX
t=2

[T�1
TX
s=1

( efs �HNT fs)�st�1]2 + T�1 TX
t=2

[T�1
TX
s=1

HNT fs�st�1]
2

= OP (�
�2
NTN

�1) = oP (�
�2
NT );

since

T�1
TX
t=2

[T�1
TX
s=1

( efs �HNT fs)�st�1]2 � [T�1
TX
s=1

( efs �HNT fs)2][T�2 TX
t=2

TX
s=1

�2st�1]

= OP (�
�2
NTN

�1);

where the last equality follows from Assumption E(iii), and

T�1E
TX
t=2

[T�1
TX
s=1

fs�st�1]
2 = T�1E

TX
t=2

[T�2
TX
s=1

TX
l=1

fsfl�st�1� lt�1]

= T�1
TX
t=2

T�2
TX
s=1

TX
l=1

E[fsfl]E[�st�1� lt�1]

� MT�2
TX
s=2

TX
l=1

E[fsfl] = O(T�1);

provided �2f = 1 and T
�1PT

s=1

PT
l=1E[fsfl] = O(1). Third,

T�1
TX
t=2

A22t = T�3
TX
t=2

[
TX
s=1

( efs �HNT fs)�st�1 + TX
s=1

HNT fs�st�1]
2;

= T�1
TX
t=2

(A21t +A22t)
2 = T�1

TX
t=2

(A221t +A
2
22t + 2A21tA22t)
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where A21t = T�1
PT
s=1(

efs �HNT fs)�st�1 and A22t = T�1
PT
s=1HNT fs�st�1.We have

T�1
TX
t=2

A221t � [T�1
TX
s=1

( efs �HNT fs)2][T�2 TX
t=2

TX
s=1

�2st�1] = OP (�
�2
NTN

�1);

where the last equality follows from

T�2E
TX
t=2

TX
s=1

�2st�1 = T�2
TX
t=2

TX
s=1

E(N�1fs

NX
i=1

�ieit�1)
2

= T�1�2f

TX
t=2

N�2E
NX
i=1

�2i e
2
it�1 = O(N�1);

and

T�1
TX
t=2

A222t = H2
NTT

�3
TX
t=2

(

TX
s=1

fsN
�1fs

NX
i=1

�ieit�1)(
TX
s=1

fsN
�1fs

NX
i=1

�ieit�1)

= H2
NT (T

�1
TX
s=1

f2s )
2T�1

TX
t=2

(N�1
NX
i=1

�ieit�1)
2

= N�1� + oP (�
�2
NT ) = OP (�

�2
NT );

and

T�1
TX
t=2

A21tA22t � [T�1
TX
t=2

A21t]
1=2[T�1

TX
t=2

A22t]
1=2 = OP (�

�2
NTN

�1=2):

Therefore, T�1
PT
t=2A

2
2t = N�1� + oP (�

�2
NT ) = OP (�

�2
NT ). Fourth,

T�1
TX
t=2

A23t = T�1
TX
t=2

T�2[
TX
s=1

( efs �HNT fs)�st�1 + TX
s=1

HNT fs�st�1]
2;

= T�1
TX
t=2

(A31t +A32t)
2 = T�1

TX
t=2

(A231t +A
2
32t + 2A31tA32t) = oP (�

�2
NT )

where A31t = T�1
PT
s=1(

efs � HNT fs)�st�1 and A32t = T�1
PT
s=1HNT fs�st�1. The proof

of T�1
PT
t=1A

2
31t = oP (�

�2
NT ) and T

�1PT
t=1A31tA32t = oP (�

�2
NT ) is similar to the proof of

T�1
PT
t=1A

2
21t = oP (�

�2
NT ) and T

�1PT
t=1A21tA22t = oP (�

�2
NT ). For the remaining term,

T�1
TX
t=2

A232t = H2
NT (T

�1
TX
t=2

f2t�1)(T
�1

TX
s=1

N�1
NX
i=1

fs�ieis)
2 = OP ((NT )

�1);
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since

E(T�1N�1
TX
s=1

NX
i=1

fs�ieis)
2 = E[T�2N�2

TX
s=1

TX
t=1

fsft

NX
i=1

�2i e
2
is]

= M�2�E[T
�2N�1

TX
s=1

TX
t=1

fsft] = O((NT )�1):

Using the Cauchy-Schwartz inequality, we can show that T�1
PT
t=2A1tA2t = oP (�

�2
NT ),

T�1
PT
t=2A1tA3t = oP (�

�2
NT ), and T�1

PT
t=2A2tA3t = oP (�

�2
NT ). By combining all the

results, we have A = T�1
PT
t=2(

eft�1 � HNT ft�1)
2 = v�2NTN

�1� + oP (�
�2
NT ) = v�2N�1� +

oP (�
�2
NT ): For B,

B = HNT v
�1
NTT

�2
TX
t=2

TX
s=1

[ft�1 efsst�1 + ft�1 efs�st�1 + ft�1 efs�st�1 + ft�1 efs�st�1]
= HNT v

�1
NT (B0 +B1 +B2 +B3):

First,

B0 = T�2
TX
t=2

TX
s=1

ft�1 efsst�1 � [T�1 TX
s=1

ef2s ]1=2[T�1 TX
s=1

(T�1
TX
t=2

ft�1st�1)
2]1=2

= OP (T
�1);

where

T�1E
TX
s=1

(T�1
TX
t=2

ft�1st�1)
2 = T�3E

TX
s=1

T�2
TX
t=2

TX
l=2

ft�1fl�1st�1sl�1

= O(T�2):

Second,

B1 = T�2
TX
t=2

TX
s=1

ft�1 efs�st�1 � [T�1 TX
s=1

ef2s ]1=2[T�1 TX
s=1

(T�1
TX
t=2

ft�1�st�1)
2]1=2

= OP ((NT )
�1=2):
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Third,

B2 = T�2
TX
t=2

TX
s=1

ft�1 efs�st�1 � [T�1 TX
s=1

ef2s ]1=2[T�1 TX
s=1

(T�1
TX
t=2

ft�1�st�1)
2]1=2

= [T�1
TX
s=1

ef2s ]1=2[T�1 TX
s=1

(T�1
TX
t=2

ft�1N
�1

NX
i=1

fs�ieit�1)
2]1=2

= [T�1
TX
s=1

ef2s ]1=2[(T�1 TX
s=1

f2s )(T
�1N�1

TX
t=2

NX
i=1

ft�1�ieit�1)
2]1=2

= OP ((NT )
�1=2):

Fourth,

B3 = T�2
TX
t=2

TX
s=1

ft�1 efs�st�1 = T�2
TX
t=2

TX
s=1

ft�1( efs �HNT fs +HNT fs)�st�1
= T�2

TX
t=2

TX
s=1

ft�1( efs �HNT fs)�st�1 + T�2 TX
t=2

TX
s=1

ft�1HNT fs�st�1

= B31 +B32:

For B31,

B31 = [T�1
TX
t=2

f2t�1][T
�1

TX
s=1

( efs �HNT fs)N�1
NX
i=1

�ieis]

= T�2
TX
s=1

v�1NT

TX
t=1

[ eftts + eft�ts + eft�ts + eft�ts]N�1
NX
i=1

�ieis + oP (�
�2
NT )

= v�1NT (B310 +B311 +B312 +B313) + oP (�
�2
NT );

where

B310 = T�2
TX
s=1

TX
t=1

efttsN�1
NX
i=1

�ieis

� [T�1
TX
s=1

(T�1
TX
t=1

eftts)2]1=2[T�1 TX
s=1

(N�1
NX
i=1

�ieis)
2]1=2 = OP (�

�1
NTN

�1);

and

B311 = T�2
TX
s=1

TX
t=1

eft�tsN�1
NX
i=1

�ieis

� [T�1
TX
s=1

(T�1
TX
t=1

eft�ts)2]1=2[T�1 TX
s=1

(N�1
NX
i=1

�ieis)
2]1=2 = OP (�

�1
NTN

�1);
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and

B312 = T�2
TX
s=1

TX
t=1

eft�tsN�1
NX
i=1

�ieis = (T
�1

TX
t=1

eftft)[T�1 TX
s=1

(N�1
NX
i=1

�ieis)
2]

= HNTN
�1� + oP (�

�2
NT ):

and

B313 = T�2
TX
s=1

TX
t=1

( eft �HNT ft +HNT ft)�tsN�1
NX
i=1

�ieis = OP (�
�1
NTN

�1);

since

T�2
TX
s=1

TX
t=1

( eft �HNT ft)�tsN�1
NX
i=1

�ieis

� [T�1
TX
t=1

( eft �HNT ft)2]1=2[T�1 TX
t=1

(T�1
TX
s=1

�tsN
�1

NX
i=1

�ieis)
2]1=2

� [T�1
TX
t=1

( eft �HNT ft)2]1=2[(T�2 TX
t=1

TX
s=1

�2ts)T
�1

TX
s=1

(N�1
NX
i=1

�ieis)
2]1=2

= OP (�
�1
NTN

�1T�1=2);

and

T�2
TX
s=1

TX
t=1

HNT ft�tsN
�1

NX
i=1

�ieis = HNTT
�2[

TX
s=1

N�1
NX
i=1

fs�ieis]
2:

= OP ((NT )
�1):

Thus, B31 = HNT v
�1
NTN

�1� + oP (�
�2
NT ). For B32,

B32 = T�2
TX
t=2

TX
s=1

ft�1HNT fs�st�1 = T�2HNT

TX
t=2

TX
s=1

ft�1fsN
�1

NX
i=1

ft�1�ieis

= (T�1HNT

TX
t=2

f2t�1)(T
�1N�1

TX
s=1

NX
i=1

fs�ieis) = OP ((NT )
�1=2):

Therefore, B3 = HNT v
�1
NTN

�1� + oP (�
�2
NT ). By combining all the results for B1, B2 and

B3, we have B = T�1
PT
t=2HNT ft�1(

~ft�1 � HNT ft�1) = H2
NT v

�2
NTN

�1� + oP (�
�2
NT ) =

v�2N�1�+ oP (�
�2
NT ). Thus, T

�1�
PT
t=2

eft�1( eft�1�HNT ft�1) = �(A+B) = �(v�2N�1�+

v�2N�1�) + oP (�
�2
NT ) = 2�v

�2N�1� + oP (�
�2
NT ).
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To show (ii), we can decompose the left-hand-side of (ii) as

T�1
TX
t=2

eft�1( eft�HNT ft) = T�1
TX
t=2

( eft�1�HNT ft�1)( eft�HNT ft)+HNTT�1 TX
t=2

ft�1( eft�HNT ft):
The proof is almost the same as the proof of (i). We only mention the di¤erence. To show

T�1
PT
t=1(

eft�1 �HNT ft�1)( eft �HNT ft) = oP (�
�2
NT ), we need use

T�1
TX
t=2

( eft�1 �HNT ft�1)( eft �HNT ft)
= v�2NTH

2
NTT

�3
TX
t=2

(
TX
s=1

fsN
�1fs

NX
i=1

�ieit�1)(
TX
s=1

fsN
�1fs

NX
i=1

�ieit) + oP (�
�2
NT )

= v�2NTH
2
NTT

�3(
TX
s=1

f2s )
2
TX
t=2

(N�1
NX
i=1

�ieit�1)(N
�1

NX
i=1

�ieit) + oP (�
�2
NT )

= oP (�
�2
NT ):

To show HNTT
�1PT

t=2 ft�1(
eft �HNT ft) = �v�2N�1� + oP (�

�2
NT ), we need use

HNTT
�1

TX
t=2

ft�1( eft �HNT ft) = [T�1
TX
t=2

ft�1ft][T
�1

TX
s=1

( efs �HNT fs)N�1
NX
i=1

�ieis] + oP (�
�2
NT )

= �T�1
TX
s=1

( efs �HNT fs)N�1
NX
i=1

�ieis + oP (�
�2
NT )

= �HNTN
�1� + oP (�

�2
NT ):

To obtain the result (iii), we �rst decompose the left-hand-side of (iii) as

T�1HNT

TX
t=2

( eft�1 �HNT ft�1)"t
= HNT v

�1
NTT

�2
TX
t=2

TX
s=1

[ efsst�1"t + efs�st�1"t + efs�st�1"t + efs�st�1"t]
= HNT v

�1
NT (C0 + C1 + C2 + C3):

For C0;

C0 = T�2
TX
t=2

TX
s=1

efsst�1"t � (T�1 TX
s=1

ef2s )1=2[T�1 TX
s=1

(T�1
TX
t=2

st�1"t)
2]1=2

= [T�1
TX
s=1

(T�1
TX
t=2

st�1"t)
2]1=2 = OP ((NT )

�1=2);
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where the last equality follows from

T�1
TX
s=1

E(T�1
TX
t=2

st�1"t)
2 = T�1

TX
s=1

E(T�1
TX
t=2

[N�1
NX
i=1

E(eit�1eis)]"t)
2

= �2"T
�3

TX
s=1

TX
t=2

[N�1
NX
i=1

E(eit�1eis)]
2

= O((NT )�1):

For C1;

C1 = T�2
TX
t=2

TX
s=1

efs�st�1"t � (T�1 TX
s=1

ef2s )1=2[T�1 TX
s=1

(T�1
TX
t=2

�st�1"t)
2]1=2

= OP ((NT )
�1=2);

where the last equality follows from

T�1
TX
s=1

E(T�1
TX
t=2

�st�1"t)
2 = T�1

TX
s=1

E(T�1
TX
t=2

[N�1
NX
i=1

(eit�1eis � E(eit�1eis))]"t)2

= �2"T
�1

TX
s=1

T�2E
TX
t=2

[N�1
NX
i=1

(eit�1eis � E(eit�1eis))]2

= O((NT )�1):

For C2;

C2 = T�2
TX
t=2

TX
s=1

efs�st�1"t � (T�1 TX
s=1

ef2s )1=2[T�1 TX
s=1

(T�1
TX
t=2

�st�1"t)
2]1=2 = OP ((NT )

�1=2);

where the last equality follows from

T�1
TX
s=1

E(T�1
TX
t=2

�st�1"t)
2 = �2"T

�1
TX
s=1

E(T�2
TX
t=2

�2st�1)

= �2"T
�1

TX
s=1

E[T�2
TX
t=2

(N�1
NX
i=1

fs�ieit�1)
2]

= �2"�
2
fT

�2E[
TX
t=2

(N�1
NX
i=1

�ieit�1)
2] = O((NT )�1):

Similarly, we can show C3 = OP ((NT )
�1=2): By combining all the results for C0, C1,

C2 and C3, we have T�1HNT
PT
t=2(

eft�1 � HNT ft�1)"t = OP ((NT )
�1=2). Finally, we use
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H2
NT � 1 = oP (1) and T 1=2N�1 � c = o(1) to obtain

p
T (e�� �) = T�1=2

TX
t=2

ft�1"t � c�v�2� + oP (1).

The desired result follows from the central limit theorem applied to the martingale di¤erence

sequence ft�1"t with E(f2t�1"
2
t ) = 1� �2 combined with Slutsky�s theorem.

Proof of Proposition 2.

In this proof, we only derive the limiting behavior of E� (e�� � ~�) = E�[
�PT+1

t=2
ef�2t�1��1PT

t=2
ef�t�1 ef�t ] � ~� based on Bootstrap Bias Correction II because the proof for Bootstrap

Bias Correction I is similar but simpler. The bootstrap principal components estimatoreF � = h ef�1 ; � � � ; ef�T i0 is the �rst eigenvector of the T � T matrix X�X�0 with normalization

T�1
PT
t=1

ef�2t = 1, where the bootstrap sample is given by

X� =

26666664
X�0
1

...

X�0
T

37777775 =
26666664
x�11

...

x�1T

� � �

. . .

� � �

x�N1

...

x�NT

37777775 :

Analogous to the original version, we have (1=TN)X�X�0 ~F � = v�NT
~F � where v�NT

is the largest eigenvalue of (1=TN)X�X�0. Let ��st = N�1PN
i=1 e

�
ise

�
it, �

�
st = N�1f�s

PN
i=1 �

�
i e
�
it,

and ��st = N�1f�t
PN
i=1 �

�
i e
�
is = ��ts. The estimation error of the factor can be decomposed

as

~f�t �H�
NT f

�
t = v��1NT T

�1
TX
s=1

~f�s �
�
st + v

��1
NT T

�1
TX
s=1

~f�s �
�
st + v

��1
NT T

�1
TX
s=1

~f�s �
�
st

whereH�
NT = (

~F �0F �=T )(��0��=N)v��1NT . From Lemma C.1 of Gonçalves and Perron (2012),

with mutual independence of ft, �i, and eit and Ejftj8 � M , Ej�ij8 � M , Ejeitj16 � M ,

we have (a) T�1
PT
t=1 j eft�HNT ftj8 = OP (1); (b) N�1PN

i=1 j~�i�H
�1
NT�ij8 = OP (1); and (c)

(NT )�1
PN
i=1

PT
t=1 ~e

8
it = OP (1). (a), (b) and (c) imply that E�(e�8it ) = (NT )

�1PN
i=1

PT
t=1 ~e

8
it =
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OP (1),

E���8i = N�1
NX
i=1

~�
8
i � 8N�1(

NX
i=1

j~�i �H�1
NT�ij

8 +
NX
i=1

jH�1
NT�ij

8) = OP (1);

and

E�"�8t = T�1
TX
t=1

( eft � ~� eft�1)8
= T�1

TX
t=1

[ eft �HNT ft +HNT ft � ~�( eft�1 �HNT ft�1)� ~�HNT ft�1]8
� 47T�1

TX
t=1

[( eft �HNT ft)8 + (HNT ft)8 + ~�4( eft�1 �HNT ft�1)8 + (~�HNT ft�1)8]
= OP (1):

We denote S�T = oP �(�
�1
T ) if the bootstrap statistic S

�
T satis�es P

�(�T jS�T j > �) = oP (1) for

any � > 0 as �T !1. We have v�NT = v�+ oP �(1), where v� = ����
�
F , �

�
� =

e�0e�=N !P v

and ��F = eF 0 eF=T = 1, and H�2
NT � 1 = oP �(1) because

H�2
NT = ( ~F

�0F �=T )(��0��=N)2(F �0 ~F �=T )v��2NT = �
��1
F + op�(1):

Note that v�NT is the largest eigenvalue of a positive semi-de�nite matrix (1=TN)X
�X�0 and

v�NT !P � v > 0. By the construction of our bootstrap procedure, v�NT has a lower bound

and (TN)�1X�X 0� is non-zero for all bootstrap samples. Because v�NT is greater than some

small positive number � in our bootstrap procedure, we have E�v��4NT = v�4+oP (1). Even if

there is no lower bound, P �(v�NT � �)!P 1 holds and thus the e¤ect of such a modi�cation

in our procedure on the distributions of random variables ��i , f
�
t , and e

�
it is asymptotically

negligible. We can also show E�H�2
NT = 1 + oP (1) and E�H�4

NT = 1 + oP (1) by using the
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following argument. We have

E�[T�1
TX
t=1

( ~f�t�1 �H�
NT f

�
t�1)

2]

= T�1E�f
TX
t=1

v��2NT [T
�1

TX
s=1

ef�s ��st�1 + T�1 TX
s=1

ef�s ��st�1 + T�1 TX
s=1

ef�s ��st�1]2g
= v��2NT E

�fT�1
TX
t=1

(A�1t +A
�
2t +A

�
3t)

2g

� ��2E�fT�1
TX
t=1

(A�1t +A
�
2t +A

�
3t)

2g;

where A�1t = T�1
PT
s=1

ef�s ��st�1, A�2t = T�1
PT
s=1

ef�s ��st�1 and A�3t = T�1
PT
s=1

ef�s ��st�1.
First,

E�fT�1
TX
t=1

A�21t g = E�fT�1
TX
t=1

[T�1
TX
s=1

ef�s ��st�1]2g
� E�f[T�1

TX
s=1

ef�2s ][T�2 TX
t=1

TX
s=1

��2st�1]g

= fE�[T�2
TX
t=1

TX
s=1

��2st�1]g = T�2
TX
t=1

TX
s=1

N�2E�[
NX
i=1

e�2is e
�2
it ]

= OP (�
�2
NT );

provided E�e�4it = OP (1): Second,

E�fT�1
TX
t=1

A�22t g = E�fT�1
TX
t=1

(T�1
TX
s=1

~f�sN
�1f�s

NX
i=1

��i e
�
it�1)

2g

= E�fT�1
TX
t=1

(T�1
TX
s=1

~f�s f
�
s )
2(N�1

NX
i=1

��i e
�
it)
2g

� E�f(T�1
TX
s=1

~f�2s )(T
�1

TX
s=1

f�2s )T
�1

TX
t=1

(N�1
NX
i=1

��i e
�
it)
2g

= E�[(T�1
TX
s=1

f�2s )][T
�1

TX
t=1

N�2E�
NX
i=1

��2i e
�2
it ]

= E�[(T�1
TX
s=1

f�2s )][T
�1

TX
t=1

N�2
NX
i=1

E���2i E
�e�2it ]

= OP (�
�2
NT );
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which follows from E�[T�1
PT
s=1 f

�2
s ] = T�1

PT
s=1

~f2s = 1 and E
���4i = OP (1). Third,

E�fT�1
TX
t=1

A�23t g = E�f(T�1
TX
t=1

f�2t )(T
�1

TX
s=1

~f�sN
�1

NX
i=1

��i e
�
is)
2g

� E�f(T�1
TX
s=1

~f�2s )(T
�1

TX
t=1

f�2t )[T
�1

TX
s=1

(N�1
NX
i=1

��i e
�
is)
2]g

= fE�(T�1
TX
t=1

f�2t )[T
�1N�2E�

TX
s=1

NX
i=1

��2i e
�2
is ]g

= OP (�
�2
NT ):

Using the Cauchy-Schwartz inequality, we can show that E�[T�1
PT
t=1A

�
1tA

�
2t] = OP (�

�2
NT ),

E�[T�1
PT
t=1A

�
1tA

�
3t] = OP (�

�2
NT ), and E

�[T�1
PT
t=1A

�
2tA

�
3t] = OP (�

�2
NT ). Therefore, we

have E�[T�1
PT
t=1(

~f�t�1�H�
NT f

�
t�1)

2] = OP (�
�2
NT ). Since H

�2
NT = 1+ oP �(1); with Markov�s

inequality we have E�H�2
NT � 1 + oP (1): Also, with E�[T�1

PT
t=1(

~f�t�1 � H�
NT f

�
t�1)

2] =

OP (�
�2
NT ),

E�H�2
NT = E�[T�1 ~F �

0 ~F � T�1( ~F � �H�
NT

~F )0 ~F ]2

= E�(T�1 ~F �
0 ~F )2 + E�[T�1( ~F � �H�

NT
~F )0 ~F ]2 � 2E�[T�2 ~F �0 ~F ( ~F � �H�

NT
~F )0 ~F ]

� E�(T�1jj ~F �0 jjjj ~F jj) + oP (1) = 1 + oP (1):

Therefore, E�H�2
NT = 1+ oP (1):Similarly, with E

�e�8it , E
���8i , and E

�"�8i bounded in proba-

bility, we can obtain E�[T�1
PT
t=1(

~f�t�1�H�
NT f

�
t�1)

4] = OP (�
�4
NT ) and E

�H�4
NT = 1+oP (1).
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The bootstrap bias estimator can be decomposed as

E� (e�� � ~�)
= E�[

 
T+1X
t=2

ef�2t�1
!�1

(
TX
t=2

ef�t�1 ef�t � ~� T+1X
t=2

ef�2t�1)]
= T�1E�[

TX
t=2

ef�t�1 � ef�t � ~� ef�t�1�]� T�1~�E� ef�2T
= T�1E�[

TX
t=2

ef�t�1 � ef�t � ~� ef�t�1�] + oP (T�1=2)
= T�1E�[

TX
t=2

ef�t�1 n ef�t �H�
NT f

�
t � ~�

� ef�t�1 �H�
NT f

�
t�1

�o
+H�

NT

TX
t=2

ef�t�1"�t ] + oP (T�1=2)
= T�1E�[H�2

NT

TX
t=2

f�t�1"
�
t ]� T�1E�[~�

TX
t=2

ef�t�1 � ef�t�1 �H�
NT f

�
t�1

�
]

+T�1E�[
TX
t=2

ef�t�1 � ef�t �H�
NT f

�
t

�
] + T�1E�[H�

NT

TX
t=2

� ef�t�1 �H�
NT f

�
t�1

�
"�t ] + oP (T

�1=2):

Note that third equality follows from T�1E� ef�2T = oP (T
�1=2) which can be shown by using

the decomposition T�1E�H�2
NT f

�2
T +T

�1E�( ef�T�H�
NT f

�
T )
2. The leading term can be written

as

T�1E�[
�
H�2
NT � 1

� TX
t=2

f�t�1"
�
t +

TX
t=2

f�t�1"
�
t ] = T�1E�[

�
H�2
NT � 1

� TX
t=2

f�t�1"
�
t ]

� fE�[H�4
NT � 2H�2

NT + 1]T
�2E�[

TX
t=2

f�t�1"
�
t ]
2g1=2

= fE�[H�2
NT � 1]2T�2E�[

TX
t=2

f�2t�1"
�2
t ]g1=2 = oP (T

�1=2);

where we use the fact E�[H�2
NT�1]2 = oP (1). In what follows, we show that (i) T�1E�[~�

PT
t=2

ef�t�1� ef�t�1 �H�
NT f

�
t�1

�
] = 2N�1�v�2� + oP (T

�1=2); (ii) T�1E�[~�
PT
t=2

ef�t�1 � ef�t �H�
NT f

�
t

�
] =

N�1�v�2�+oP (T
�1=2); and (iii) T�1E�[H�

NT

PT
t=2(

ef�t�1� H�
NT f

�
t�1)"

�
t = oP (T

�1=2). The

proof of (i) to (iii) is similar to the proof of Proposition 1. For (i),

T�1E�f~�
TX
t=2

~f�t�1( ~f
�
t�1 �H�

NT f
�
t�1)g = ~�(A� +B�)
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where A� = E�fT�1
PT
t=2(

~f�t�1�H�
NT f

�
t�1)

2g = v��2NT E
�fT�1

PT
t=1(A

�
1t+A

�
2t+A

�
3t)

2g and

B� = E�fT�1
PT
t=2H

�
NT f

�
t�1(

~f�t�1 � H�
NT f

�
t�1)g. To show A� = v�2N�1� + oP (�

�2
NT ), we

can focus on dominant term A�2t which is analogous to the dominant term A2t in the proof

of Proposition 1.

E�fv��2NT T
�1

TX
t=2

A�22t g = T�3E�v��2NT

TX
t=2

[
TX
s=1

( ef�s �H�
NT f

�
s )�

�
st�1 +

TX
s=1

H�
NT f

�
s �
�
st�1]

2;

= T�1E�v��2NT

TX
t=2

(A�21t +A
�
22t)

2

= T�1E�v��2NT

TX
t=2

(A�221t +A
�2
22t + 2A

�
21tA

�
22t);

where A�21t = T�1
PT
s=1(

ef�s � H�
NT f

�
s )�

�
st�1 and A

�
22t = T�1

PT
s=1H

�
NT f

�
s �
�
st�1. Further-

more,

T�1E�v��2NT

TX
t=2

A�221t � ��2E�f[T�1
TX
s=1

( ef�s �H�
NT f

�
s )
2][T�2

TX
t=2

TX
s=1

��2st�1]g

= ��2fE�[T�1
TX
s=1

( ef�s �H�
NT f

�
s )
2]2E�[T�2

TX
t=2

TX
s=1

��2st�1]
2g1=2

= OP ((TN)
�1=2);

and

T�1E�v��2NT

TX
t=2

A�222t = T�1E�(v��2NT H
�2
NT �v�2)H��2

NT

TX
t=2

A�222t+T
�1E�v�2H��2

NT

TX
t=2

A�222t;

where

T�1E�v�2H��2
NT

TX
t=2

A�222t = v�2E�[T�3
TX
t=2

(

TX
s=1

f�sN
�1f�s

NX
i=1

��i e
�
it�1)

2]

= E�fv�2(T�1
TX
s=1

f�2s )
2T�1

TX
t=2

(N�1
NX
i=1

��i e
�
it�1)

2g

= v�2E�(T�1
TX
s=1

f�2s )
2E�[T�1

TX
t=2

(N�1
NX
i=1

��i e
�
it�1)

2]

= v�2N�1� + oP (T
�1=2) = OP (�

�2
NT );
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where the last equality follows from

T�1E�
TX
t=2

(N�1=2
NX
i=1

��i e
�
it)
2 = T�1N�1

TX
t=2

NX
i=1

e�2i ee2it
= � + oP (1);

and

T�1E�(v��2NT H
�2
NT � v�2)H��2

NT

TX
t=2

A�222t

= E�(v��2NT H
�2
NT � v�2)[T�3

TX
s=1

f�2s

TX
t=2

(N�1
NX
i=1

��i e
�
it�1)

2]

� E�(v��2NT H
�2
NT � v�2)2E�[T�3

TX
s=1

f�2s

TX
t=2

(N�1
NX
i=1

��i e
�
it�1)

2]2

= oP (�
�2
NT );

and

T�1E�v��2NT

TX
t=2

A�21tA
�
22t � E�fv��2NT [T

�1
TX
t=2

A�221t]
1=2[T�1

TX
t=2

A�222t]
1=2g

� ��2fE�[T�1
TX
t=2

A�221t]E
�[T�1

TX
t=2

A�222t]g1=2 = oP (�
�2
NT ):

Therefore, T�1E�v��2NT

PT
t=2A

�2
2t = v�2N�1� + oP (�

�2
NT ) = OP (�

�2
NT ). By combining all the

results, A� = v�2N�1� + oP (�
�2
NT ): For B

�, we have

B� = E�fH�
NT v

��1
NT T

�2
TX
t=2

TX
s=1

[f�t�1 ef�s ��st�1 + f�t�1 ef�s ��st�1 + f�t�1 ef�s ��st�1]g
= (B�1 +B

�
2 +B

�
3):
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First,

B�1 = T�2E�[H�
NT v

��1
NT

TX
t=2

TX
s=1

f�t�1 ef�s ��st�1]
� E�f[T�1H�

NT v
��2
NT

TX
s=1

ef�2s ]1=2[T�1 TX
s=1

(T�1
TX
t=2

f�t�1�
�
st�1)

2]1=2g

= E�f[H�
NT v

��2
NT ][T

�1
TX
s=1

(T�1
TX
t=2

f�t�1N
�1

NX
i=1

e�ise
�
it�1)

2]g1=2

� f��2E�[H�2
NT ]E

�[T�1
TX
s=1

(T�1
TX
t=2

f�t�1N
�1

NX
i=1

e�ise
�
it�1)

2]g1=2

= OP ((NT )
�1=2):

Second,

B�2 = T�2E�[H�
NT v

��1
NT

TX
t=2

TX
s=1

f�t�1 ef�s ��st�1]
� E�f[H�2

NT v
��2
NT T

�1
TX
s=1

ef�2s ][T�1 TX
s=1

(T�1
TX
t=2

TX
s=1

f�t�1�
�
st�1)

2]g1=2

= E�fH�2
NT v

��2
NT [T

�1
TX
s=1

(T�1
TX
t=2

f�t�1�
�
st�1)

2]g1=2

� f��2E�[H�2
NT ]E

�[T�1
TX
s=1

(T�1
TX
t=2

f�t�1�
�
st�1)

2]g1=2

= OP ((NT )
�1=2):

Third,

B�3 = T�2E�[H�
NT v

��1
NT

TX
t=2

TX
s=1

f�t�1 ef�s ��st�1]
= T�2E[H�

NT v
��1
NT

TX
t=2

TX
s=1

f�t�1( ef�s �H�
NT f

�
s +H

�
NT f

�
s )�

�
st�1]

= T�2E�fH�
NT v

��1
NT [

TX
t=2

TX
s=1

f�t�1( ef�s �H�
NT f

�
s )�

�
st�1 +

TX
t=2

TX
s=1

f�t�1H
�
NT f

�
s �
�
st�1]g

= B�31 +B
�
32:
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For B�31,

B�31 = E�fH�
NT v

��1
NT [T

�1
TX
t=2

f�2t�1][T
�1

TX
s=1

( ef�s �H�
NT f

�
s )N

�1
NX
i=1

��i e
�
is]g

= T�2E�f
TX
s=1

H�
NT v

��2
NT

TX
t=1

[ ef�t ��ts + ef�t ��ts + ef�t ��ts]N�1
NX
i=1

��i e
�
isg

= (B�311 +B
�
312 +B

�
313);

where

B�311 = T�2E�[H�
NT v

��2
NT

TX
s=1

TX
t=1

ef�t ��tsN�1
NX
i=1

��i e
�
is]

� E�f[(T�1H�
NT v

��2
NT

TX
t=1

ef�t )2]1=2[T�3 TX
t=1

(
TX
s=1

��tsN
�1

NX
i=1

��i e
�
is)
2]1=2g

� E�f[H�2
NT v

��4
NT ]

1=2[T�3
TX
t=1

(

TX
s=1

��tsN
�1

NX
i=1

��i e
�
is)
2]1=2g

� ��2fE�f[H�2
NT ]E

�[T�1
TX
t=1

(T�1
TX
s=1

��tsN
�1

NX
i=1

��i e
�
is)
2]g1=2

= OP ((NT )
�1=2);

and

B�312 = E�[H�
NT v

��2
NT T

�2
TX
s=1

TX
t=1

ef�t ��tsN�1
NX
i=1

��i e
�
is]

= E�fH�
NT v

��2
NT (T

�1
TX
t=1

ef�t f�t )[T�1 TX
s=1

(N�1
NX
i=1

��i e
�
is)
2]g

= E�fv�2(T�1
TX
t=1

f�2t )[T
�1

TX
s=1

(N�1
NX
i=1

��i e
�
is)
2]g

+E�f(H�2
NT v

��2
NT � v

�2)(T�1
TX
t=1

f�2t )[T
�1

TX
s=1

(N�1
NX
i=1

��i e
�
is)
2]g

+EfH�
NT v

�2
NT [T

�1
TX
t=1

( ef�t �H�
NT f

�
t )f

�
t ][T

�1
TX
s=1

(N�1
NX
i=1

��i e
�
is)
2]g

= v�2N�1� + oP (�
�2
NT ) + oP (�

�2
NT );
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and

B�313 = T�2E[H�
NT v

��2
NT

TX
s=1

TX
t=1

( ef�t �H�
NT f

�
t +H

�
NT f

�
t )�

�
tsN

�1
NX
i=1

��i e
�
is]

= OP (�
�1
NTN

�1);

since

T�2E�[H�
NT v

��2
NT

TX
s=1

TX
t=1

( ef�t �H�
NT f

�
t )�

�
tsN

�1
NX
i=1

��i e
�
is]

� E�f[H�2
NT v

��4
NT T

�1
TX
t=1

( ef�t �H�
NT f

�
t )
2]1=2[T�1

TX
t=1

(T�1
TX
s=1

��tsN
�1

NX
i=1

��i e
�
is)
2]1=2g

� fE�[T�1H�2
NT v

��4
NT

TX
t=1

( ef�t �H�
NT f

�
t )
2]E�[T�1

TX
t=1

(T�1
TX
s=1

��tsN
�1

NX
i=1

��i e
�
is)
2]g1=2

� ��2fE�[T�1H�2
NT

TX
t=1

( ef�t �H�
NT f

�
t )
2]E�[T�1

TX
t=1

(T�1
TX
s=1

��tsN
�1

NX
i=1

��i e
�
is)
2]g1=2

� ��2fE�H�4
NTE

�[T�1
TX
t=1

( ef�t �H�
NT f

�
t )
2]2E�[T�1

TX
t=1

(T�1
TX
s=1

��tsN
�1

NX
i=1

��i e
�
is)
2]g1=2

= OP ((NT )
�1=2);

and

T�2E�[H�2
NT v

��2
NT

TX
s=1

TX
t=1

f�t �
�
tsN

�1
NX
i=1

��i e
�
is]

= E�fH�2
NT v

��2
NT [T

�1
TX
s=1

N�1
NX
i=1

f�s �
�
i e
�
is]
2g: = OP ((NT )

�1=2):

Thus, B�31 = v�2N�1� + oP (�
�2
NT ). For B

�
32,

B�32 = E�[H�2
NT v

��1
NT T

�2
TX
t=2

TX
s=1

f�t�1f
�
s �
�
st�1]

= E�[H�2
NT v

��1
NT T

�2
TX
t=2

TX
s=1

f�t�1f
�
sN

�1
NX
i=1

f�t�1�
�
i e
�
is]

= E�[H�2
NT v

��1
NT (T

�1
TX
t=2

f�2t�1)(T
�1N�1

TX
s=1

NX
i=1

f�s �
�
i e
�
is)] = OP ((NT )

�1=2):

Therefore, B�3 = v�2N�1�+ oP (�
�2
NT ). By combining all the results for B

�
1 , B

�
2 and B

�
3 , we

haveB� = v�2N�1�+oP (�
�2
NT ). Thus, E

�[T�1~�
PT
t=2

ef�t�1( ef�t�1�H�
NT f

�
t�1)] = ~�(A

�+B�) =
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2�v�2N�1� + oP (�
�2
NT ) which completes the proof of (i).

To show (ii), we use a similar decomposition as (i),

T�1E�~�
TX
t=2

ef�t�1( ef�t �H�
NT f

�
t )

= E�[T�1~�
TX
t=2

( ef�t�1 �H�
NT f

�
t�1)( ef�t �H�

NT f
�
t ) + T

�1H�
NT ~�

TX
t=2

f�t�1( ef�t �H�
NT f

�
t )]:

Since the proof is almost the same as the proof of (i), we only mention the di¤erence. To

show T�1E�
PT
t=2(

ef�t�1 �H�
NT f

�
t�1)(

ef�t �H�
NT f

�
t ) = oP (�

�2
NT ), we need to use

T�1E�
TX
t=2

( ef�t�1 �H�
NT f

�
t�1)( ef�t �H�

NT f
�
t )

= E�[H�2
NT v

��2
NT T

�3
TX
t=2

(
TX
s=1

f�sN
�1f�s

NX
i=1

��i e
�
it�1)(

TX
s=1

f�sN
�1f�s

NX
i=1

��i e
�
it)] + oP (�

�2
NT )

= E�[H�2
NT v

��2
NT T

�3(
TX
s=1

f�2s )
2
TX
t=1

(N�1
NX
i=1

��i e
�
it�1)(N

�1
NX
i=1

��i e
�
it)] + oP (�

�2
NT )

= oP (�
�2
NT ):

To show E�[H�
NTT

�1PT
t=2 f

�
t�1(

ef�t �H�
NT f

�
t )] = �v�2N�1� + oP (�

�2
NT ), we need to use

E�[H�
NTT

�1
TX
t=2

f�t�1( ef�t �H�
NT f

�
t )]

= E�f[T�1
TX
t=2

f�t�1f
�
t ][T

�1
TX
s=1

( ef�s �H�
NT f

�
s )N

�1
NX
i=1

��i e
�
is]g+ oP (��2NT )

= E�[~�[T�1
TX
t=2

f�2t�1]T
�1

TX
s=1

( ef�s �H�
NT f

�
s )N

�1
NX
i=1

��i e
�
is] + oP (�

�2
NT )

= �v�2N�1� + oP (�
�2
NT ):

To obtain the result (iii), we have

T�1E�[H�
NT

TX
t=2

( ef�t�1 �H�
NT f

�
t�1)"

�
t ]

= E�fH�
NT v

��1
NT T

�2
TX
t=2

TX
s=1

[ ef�s ��st�1"�t + ef�s ��st�1"�t + ef�s ��st�1"�t ]g
= C�1 + C

�
2 + C

�
3 :
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For C�1 ;

C�1 = T�2E�[H�
NT v

��1
NT

TX
t=2

TX
s=1

ef�s ��st�1"�t ]
� E�f[T�1

TX
s=1

(H�
NT v

��1
NT

ef�s )2]1=2[T�1 TX
s=1

(T�1
TX
t=2

��st�1"
�
t )
2]1=2g

� fE�[H�2
NT v

��2
NT ]E

�[T�1
TX
s=1

(T�1
TX
t=2

��st�1"
�
t )
2]g1=2

= OP ((NT )
�1=2);

where the last equality follows from

T�1
TX
s=1

E�(T�1
TX
t=2

��st�1"
�
t )
2 = T�1

TX
s=1

E�(T�1
TX
t=2

[N�1
NX
i=1

e�it�1e
�
is]"

�
t )
2

= ��2T�1
TX
s=1

T�2E�
TX
t=2

[N�1
NX
i=1

e�it�1e
�
is]
2

= OP ((NT )
�1):

For C�2 ;

C�2 = E�fH�
NT v

��1
NT T

�2
TX
t=2

TX
s=1

ef�s ��st�1"�t g
� E�f(T�1

TX
s=1

H�2
NT v

��2
NT

ef�2s )1=2[T�1 TX
s=1

(T�1
TX
t=2

��st�1"
�
t )
2]1=2g

� fE�(H�2
NT v

��2
NT )E

�[T�1
TX
s=1

(T�1
TX
t=2

��st�1"
�
t )
2]g1=2

= OP ((NT )
�1=2);

where the last equality follows from

T�1
TX
s=1

E�(T�1
TX
t=2

��st�1"
�
t )
2 = ��2T�1

TX
s=1

E�(T�2
TX
t=2

��2st�1)

= ��2T�1
TX
s=1

E�[T�2
TX
t=2

(N�1
NX
i=1

f�s �
�
i e
�
it�1)

2]

= ��2��2f T
�2E�[

TX
t=2

(N�1
NX
i=1

��i e
�
it�1)

2] = OP ((NT )
�1):
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Similarly, we can show C�3 = OP ((NT )
�1=2): By combining all the results for C�1 , C

�
2 and

C�3 , we have E
�[T�1H�

NT

PT
t=2(

ef�t�1 �H�
NT f

�
t�1)"

�
t ] = OP ((NT )

�1=2) which completes the

proof of (iii). Finally, the desired result follows from

E� (e�� � ~�) = �2N�1�v�2� +N�1�v�2� + oP (T
�1=2)

combined with v = �2� and T
1=2N�1 � c = o(1).

Proof of Proposition 3.

The dominant term of the bootstrap estimation error can be decomposed as

p
T (e�� � ~�) = T�1=2

TX
t=2

ef�t�1 � ef�t � ~� ef�t�1�+ oP �(1)
= T�1=2

TX
t=2

ef�t�1 n ef�t �H�
NT f

�
t � ~�

� ef�t�1 �H�
NT f

�
t�1

�o
+ T�1=2H�

NT

TX
t=2

ef�t�1"�t + oP �(1)
= T�1=2H�2

NT

TX
t=2

f�t�1"
�
t � T�1=2~�

TX
t=2

ef�t�1 � ef�t�1 �H�
NT f

�
t�1

�
+ oP �(1)

+T�1=2
TX
t=2

ef�t�1 � ef�t �H�
NT f

�
t

�
+ T�1=2H�

NT

TX
t=2

� ef�t�1 �H�
NT f

�
t�1

�
"�t + oP �(1):

The leading term can be written as

T�1=2
�
H�2
NT � 1

� TX
t=2

f�t�1"
�
t + T

�1=2
TX
t=2

f�t�1"
�
t = T�1=2

TX
t=2

f�t�1"
�
t + oP �(1).

The last equality follows from the fact that H�2
NT � 1 = oP �(1): E

�(e�4it ), E
�(��4i ), and

E�("�4t ) are bounded in probability because of mutual independence of ft, �i, and eit and

Ejftj4 � M , Ej�ij4 � M , and Ejeitj8 � M . Analogous to the proofs of Propositions

1 and 2, we have (i) T�1~�
PT
t=2

ef�t�1 � ef�t�1 �H�
NT f

�
t�1

�
= �2�v�2N�1� + o�P (�

�2
NT ); (ii)

T�1~�
PT
t=2

ef�t�1� � ef�t �H�
NT f

�
t

�
= �v�2N�1� + o�P (�

�2
NT ); and (iii) T

�1H�
NT

PT
t=2(

ef�t�1 �
H�
NT f

�
t�1)"

�
t = o�P (�

�2
NT ): Therefore,

p
T (e�� � ~�) = T�1=2

TX
t=2

f�t�1"
�
t � c���4� � + o

�
P (1):

We apply the bootstrap central limit theorem to the term T�1=2
PT
t=2 f

�
t�1"

�
t . Since E

�[f�t�1"
�
t j

f�t�2"
�
t�1; :::] = 0, we can use the central limit theorem for the martingale di¤erence sequence
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under the bootstrap probability measure and thus P �(
p
T (~�� � ~�) � x) approaches normal

distribution function with mean �c���4� � and variance E�(f�2t�1"�2t ) = T�1
PT
t=2

~f2t�1~"
2
t un-

der the bootstrap probability measure. Combining it with T�1
PT
t=2

~f2t�1~"
2
t !P E(f2t�1"

2
t ) =

1� �2, we have P �(
p
T (~��� ~�) � x)�P (

p
T (~�� �) � x)!P 0 for any x. By using Polya�s

theorem, we have the uniform convergence result.
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Table 1: AR Estimation

Estimator
ρ T ρ̂ ρ̂KBC ρ̂BC Coverage Rate

0.5 100 0.49 0.50 0.50 0.90
200 0.50 0.50 0.50 0.90

0.9 100 0.88 0.90 0.90 0.90
200 0.89 0.90 0.90 0.90

Note: Mean values of the OLS estimator (ρ̂), the Kendall-type
bias-corrected estimator (ρ̂KBC) and the bootstrap bias-corrected
estimator (ρ̂BC) and coverage rates of the asymptotic confidence
interval (5) in 10,000 replications.

Table 2: Two-Step AR Estimation

ρ̃ Coverage Rate
ρ T c S/N =0.5 0.75 1 1.5 2 S/N=0.5 0.75 1 1.5 2

(A) No cross-sectional correlation
0.5 100 0.5 0.42 0.43 0.44 0.45 0.46 0.77 0.82 0.84 0.86 0.86

1 0.36 0.39 0.41 0.42 0.44 0.58 0.69 0.73 0.79 0.82
1.5 0.32 0.36 0.38 0.40 0.41 0.44 0.56 0.64 0.73 0.76

200 0.5 0.45 0.46 0.46 0.47 0.47 0.79 0.83 0.85 0.87 0.88
1 0.41 0.43 0.44 0.45 0.46 0.60 0.70 0.75 0.81 0.83

1.5 0.36 0.40 0.41 0.43 0.44 0.39 0.53 0.61 0.71 0.77
0.9 100 0.5 0.73 0.77 0.79 0.81 0.82 0.25 0.40 0.47 0.58 0.63

1 0.62 0.68 0.71 0.75 0.77 0.07 0.13 0.22 0.32 0.41
1.5 0.54 0.61 0.65 0.70 0.73 0.03 0.07 0.11 0.19 0.27

200 0.5 0.80 0.82 0.83 0.85 0.85 0.27 0.42 0.51 0.62 0.70
1 0.72 0.76 0.78 0.81 0.82 0.05 0.12 0.21 0.35 0.43

1.5 0.65 0.70 0.73 0.77 0.79 0.01 0.04 0.08 0.16 0.25

(B) Cross-sectional correlation
0.5 100 0.5 0.40 0.42 0.44 0.45 0.45 0.71 0.79 0.81 0.84 0.86

1 0.29 0.35 0.38 0.41 0.42 0.39 0.55 0.65 0.73 0.78
1.5 0.21 0.28 0.32 0.37 0.39 0.24 0.39 0.49 0.61 0.69

200 0.5 0.44 0.45 0.46 0.47 0.48 0.75 0.82 0.84 0.86 0.87
1 0.37 0.41 0.43 0.45 0.46 0.44 0.61 0.69 0.78 0.82

1.5 0.28 0.34 0.38 0.41 0.43 0.22 0.38 0.49 0.64 0.70
0.9 100 0.5 0.67 0.74 0.77 0.80 0.81 0.19 0.33 0.43 0.54 0.61

1 0.44 0.56 0.63 0.70 0.74 0.05 0.11 0.17 0.29 0.38
1.5 0.32 0.44 0.52 0.62 0.67 0.02 0.06 0.10 0.18 0.24

200 0.5 0.78 0.81 0.83 0.84 0.85 0.22 0.37 0.48 0.61 0.66
1 0.63 0.71 0.76 0.80 0.81 0.05 0.11 0.18 0.31 0.40

1.5 0.46 0.59 0.65 0.73 0.76 0.01 0.05 0.08 0.16 0.23

Note: Mean values of the two-step estimator (ρ̃) and coverage rates of the asymptotic confidence
interval (10) in 10,000 replications. S/N denotes the signal-to-noise ratio.
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Table 3: Bootstrap Bias Corrections

T = 100 T = 200
ρ c S/N =0.5 0.75 1 1.5 2 S/N =0.5 0.75 1 1.5 2

(A) No cross-sectional correlation
0.5 0.5 bias -0.08 -0.07 -0.06 -0.05 -0.05 -0.05 -0.04 -0.04 -0.03 -0.02

asy bias -0.05 -0.03 -0.03 -0.02 -0.01 -0.04 -0.02 -0.02 -0.01 -0.01
bias I* -0.05 -0.04 -0.03 -0.02 -0.02 -0.04 -0.03 -0.02 -0.01 -0.01
bias II* -0.07 -0.06 -0.05 -0.05 -0.04 -0.05 -0.04 -0.03 -0.03 -0.03

1 bias -0.13 -0.11 -0.10 -0.07 -0.07 -0.09 -0.08 -0.06 -0.04 -0.04
asy bias -0.10 -0.07 -0.05 -0.03 -0.03 -0.07 -0.05 -0.04 -0.02 -0.02
bias I* -0.08 -0.07 -0.06 -0.05 -0.04 -0.06 -0.05 -0.04 -0.04 -0.03
bias II* -0.09 -0.09 -0.08 -0.07 -0.07 -0.07 -0.06 -0.05 -0.05 -0.04

1.5 bias -0.18 -0.14 -0.12 -0.10 -0.08 -0.13 -0.10 -0.09 -0.07 -0.06
asy bias -0.15 -0.10 -0.07 -0.05 -0.04 -0.11 -0.07 -0.05 -0.04 -0.03
bias I* -0.09 -0.08 -0.08 -0.07 -0.06 -0.08 -0.07 -0.07 -0.06 -0.05
bias II* -0.10 -0.10 -0.10 -0.09 -0.08 -0.09 -0.08 -0.08 -0.07 -0.06

0.9 0.5 bias -0.17 -0.13 -0.11 -0.10 -0.09 -0.10 -0.08 -0.07 -0.06 -0.05
asy bias -0.09 -0.06 -0.04 -0.03 -0.02 -0.06 -0.04 -0.03 -0.02 -0.02
bias I* -0.09 -0.08 -0.07 -0.05 -0.04 -0.07 -0.05 -0.05 -0.03 -0.03
bias II* -0.13 -0.12 -0.10 -0.09 -0.08 -0.09 -0.07 -0.07 -0.05 -0.05

1 bias -0.28 -0.22 -0.19 -0.15 -0.13 -0.18 -0.14 -0.12 -0.09 -0.08
asy bias -0.18 -0.12 -0.09 -0.06 -0.05 -0.13 -0.08 -0.06 -0.04 -0.03
bias I* -0.14 -0.13 -0.11 -0.10 -0.09 -0.12 -0.10 -0.09 -0.07 -0.06
bias II* -0.17 -0.16 -0.15 -0.14 -0.13 -0.13 -0.12 -0.10 -0.09 -0.08

1.5 bias -0.36 -0.29 -0.24 -0.20 -0.17 -0.26 -0.20 -0.17 -0.13 -0.11
asy bias -0.27 -0.18 -0.14 -0.09 -0.07 -0.19 -0.13 -0.10 -0.06 -0.05
bias I* -0.15 -0.15 -0.15 -0.14 -0.12 -0.15 -0.14 -0.12 -0.11 -0.09
bias II* -0.18 -0.18 -0.18 -0.17 -0.16 -0.16 -0.15 -0.14 -0.13 -0.11
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Table 3 (continued)

T = 100 T = 200
ρ c S/N =0.5 0.75 1 1.5 2 S/N =0.5 0.75 1 1.5 2

(B) Cross-sectional correlation
0.5 0.5 bias -0.10 -0.08 -0.07 -0.05 -0.05 -0.06 -0.04 -0.04 -0.03 -0.02

asy bias -0.05 -0.03 -0.03 -0.02 -0.01 -0.04 -0.02 -0.02 -0.01 -0.01
bias I* -0.05 -0.04 -0.03 -0.02 -0.02 -0.04 -0.03 -0.02 -0.02 -0.01
bias II* -0.07 -0.06 -0.05 -0.05 -0.04 -0.05 -0.04 -0.03 -0.03 -0.03

1 bias -0.21 -0.15 -0.12 -0.09 -0.08 -0.14 -0.09 -0.07 -0.05 -0.04
asy bias -0.10 -0.07 -0.05 -0.03 -0.03 -0.07 -0.05 -0.04 -0.02 -0.02
bias I* -0.06 -0.07 -0.06 -0.05 -0.05 -0.06 -0.05 -0.04 -0.04 -0.03
bias II* -0.08 -0.08 -0.08 -0.07 -0.07 -0.07 -0.06 -0.05 -0.05 -0.04

1.5 bias -0.29 -0.22 -0.18 -0.14 -0.10 -0.23 -0.16 -0.13 -0.09 -0.07
asy bias -0.15 -0.10 -0.07 -0.05 -0.04 -0.11 -0.07 -0.05 -0.04 -0.03
bias I* -0.07 -0.08 -0.08 -0.07 -0.07 -0.07 -0.07 -0.07 -0.06 -0.05
bias II* -0.08 -0.09 -0.09 -0.09 -0.09 -0.08 -0.08 -0.08 -0.07 -0.06

0.9 0.5 bias -0.22 -0.17 -0.13 -0.11 -0.09 -0.12 -0.08 -0.07 -0.06 -0.05
asy bias -0.09 -0.06 -0.04 -0.03 -0.02 -0.06 -0.04 -0.03 -0.02 -0.02
bias I* -0.09 -0.08 -0.07 -0.05 -0.04 -0.07 -0.05 -0.05 -0.03 -0.03
bias II* -0.12 -0.11 -0.10 -0.09 -0.08 -0.09 -0.07 -0.07 -0.05 -0.05

1 bias -0.45 -0.35 -0.26 -0.18 -0.16 -0.27 0.18 -0.14 -0.10 -0.08
asy bias -0.18 -0.12 -0.09 -0.06 -0.04 -0.13 -0.08 -0.06 -0.04 -0.03
bias I* -0.11 -0.11 -0.11 -0.10 -0.09 -0.11 -0.10 -0.09 -0.07 -0.06
bias II* -0.13 -0.14 -0.14 -0.13 -0.13 -0.12 -0.11 -0.10 -0.09 -0.08

1.5 bias -0.57 -0.45 -0.37 -0.28 -0.23 -0.45 -0.31 -0.25 -0.18 -0.14
asy bias -0.27 -0.18 -0.14 -0.09 -0.07 -0.19 -0.13 -0.10 -0.06 -0.05
bias I* -0.12 -0.13 -0.14 -0.13 -0.12 -0.12 -0.13 -0.12 -0.11 -0.09
bias II* -0.13 -0.15 -0.16 -0.16 -0.16 -0.13 -0.14 -0.14 -0.13 -0.11

Note: The actual bias (bias), bootstrap bias estimator based on Method I (bias I*) and bootstrap bias
estimator based on Method II (bias II*) are mean values in 10,000 replications. The asymptotic bias (asy
bias) is −T−1/2cρσ−4

λ Γ. S/N denotes the signal-to-noise ratio.
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Table 4: Coverage Rate of Bootstrap Confidence Intervals

T = 100 T = 200
ρ c S/N=0.5 0.75 1 1.5 2 S/N=0.5 0.75 1 1.5 2

(A) No cross-sectional correlation
0.5 0.5 Bc 0.85 0.86 0.86 0.86 0.87 0.86 0.87 0.87 0.87 0.88

Per 0.87 0.87 0.88 0.87 0.88 0.88 0.88 0.88 0.89 0.89
Per-t 0.86 0.87 0.87 0.87 0.88 0.87 0.88 0.87 0.88 0.89

1 Bc 0.77 0.80 0.83 0.83 0.85 0.81 0.83 0.84 0.87 0.86
Per 0.80 0.84 0.86 0.86 0.87 0.86 0.87 0.87 0.88 0.87
Per-t 0.79 0.83 0.85 0.85 0.87 0.84 0.85 0.86 0.87 0.87

1.5 Bc 0.68 0.75 0.77 0.80 0.82 0.72 0.79 0.81 0.82 0.85
Per 0.73 0.80 0.81 0.84 0.85 0.78 0.83 0.85 0.85 0.87
Per-t 0.72 0.79 0.80 0.84 0.84 0.75 0.82 0.84 0.84 0.87

0.9 0.5 Bc 0.78 0.82 0.83 0.84 0.84 0.84 0.87 0.88 0.89 0.89
Per 0.90 0.93 0.93 0.93 0.93 0.95 0.95 0.95 0.94 0.93
Per-t 0.80 0.86 0.87 0.88 0.88 0.86 0.90 0.90 0.90 0.89

1 Bc 0.60 0.70 0.75 0.79 0.80 0.70 0.80 0.83 0.84 0.86
Per 0.74 0.84 0.88 0.91 0.93 0.87 0.93 0.94 0.95 0.95
Per-t 0.62 0.73 0.79 0.84 0.87 0.72 0.82 0.86 0.89 0.89

1.5 Bc 0.45 0.60 0.66 0.73 0.76 0.50 0.64 0.71 0.76 0.80
Per 0.60 0.74 0.79 0.87 0.88 0.70 0.84 0.90 0.92 0.93
Per-t 0.48 0.63 0.70 0.79 0.82 0.53 0.70 0.79 0.84 0.88

(B) Cross-sectional correlation
0.5 0.5 Bc 0.81 0.84 0.86 0.86 0.87 0.85 0.86 0.87 0.88 0.88

Per 0.83 0.86 0.87 0.87 0.88 0.87 0.88 0.88 0.89 0.88
Per-t 0.82 0.85 0.87 0.87 0.88 0.86 0.86 0.87 0.89 0.89

1 Bc 0.58 0.71 0.78 0.82 0.84 0.68 0.79 0.83 0.86 0.87
Per 0.62 0.75 0.81 0.84 0.86 0.71 0.83 0.86 0.88 0.87
Per-t 0.61 0.73 0.80 0.84 0.86 0.69 0.81 0.84 0.87 0.87

1.5 Bc 0.45 0.60 0.67 0.75 0.78 0.48 0.64 0.73 0.78 0.82
Per 0.48 0.64 0.70 0.78 0.81 0.52 0.69 0.78 0.83 0.85
Per-t 0.47 0.63 0.69 0.77 0.81 0.51 0.66 0.76 0.81 0.84

0.9 0.5 Bc 0.62 0.73 0.78 0.81 0.83 0.75 0.83 0.85 0.87 0.88
Per 0.73 0.85 0.89 0.91 0.92 0.87 0.93 0.93 0.93 0.93
Per-t 0.62 0.76 0.81 0.85 0.86 0.73 0.82 0.87 0.88 0.89

1 Bc 0.32 0.48 0.59 0.70 0.74 0.43 0.63 0.71 0.80 0.82
Per 0.42 0.60 0.73 0.83 0.87 0.57 0.77 0.84 0.91 0.93
Per-t 0.33 0.50 0.63 0.75 0.79 0.44 0.63 0.72 0.82 0.85

1.5 Bc 0.21 0.36 0.46 0.60 0.65 0.24 0.42 0.56 0.65 0.71
Per 0.29 0.46 0.58 0.72 0.78 0.36 0.57 0.71 0.81 0.87
Per-t 0.23 0.39 0.50 0.65 0.71 0.26 0.44 0.60 0.71 0.78

Note: Coverage rates of three nominal 90% confidence intervals in 10,000 replications. Bc denotes the
bootstrap bias corrected asymptotic confidence interval (11), Per denotes the percentile bootstrap
confidence interval (12) and Per-t denotes the percentile-t equal-tailed bootstrap confidence interval
(13). S/N denotes the signal-to-noise ratio.
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Table 5: AR(1) Estimates of the US diffusion index

Asymptotic Bootstrap confidence intervals
Series ρ̃ Confidence interval ρ̃BC Bc Per Per-t

(A) Full sample (N = 159)
1 0.66 (0.60, 0.71) 0.69 (0.64, 0.75) (0.64, 0.76) (0.64, 0.75)

(B) Long subsample (N = 53)
1 0.65 (0.60, 0.71) 0.74 (0.69, 0.80) (0.68, 0.82) (0.68, 0.80)
2 0.58 (0.52, 0.64) 0.66 (0.60, 0.72) (0.59, 0.74) (0.59, 0.72)
3 0.68 (0.63, 0.73) 0.78 (0.72, 0.83) (0.71, 0.86) (0.71, 0.83)

average 0.64 (0.58, 0.69) 0.73 (0.67, 0.79) (0.66, 0.80) (066., 0.78)

(C) Short subsample (N = 31)
1 0.57 (0.51, 0.63) 0.75 (0.69, 0.81) (0.66, 0.84) (0.65, 0.80)
2 0.83 (0.79, 0.87) 0.95 (0.91, 1.00) (0.88, 1.06) (0.88, 0.99)
3 0.63 (0.58, 0.69) 0.75 (0.69, 0.80) (0.67, 0.83) (0.67, 0.80)
4 0.55 (0.49, 0.61) 0.65 (0.58, 0.71) (0.57, 0.73) (0.57, 0.71)
5 0.54 (0.48, 0.60) 0.67 (0.61, 0.74) (0.59, 0.77) (0.59, 0.75)

average 0.62 (0.57, 0.68) 0.75 (0.70, 0.81) (0.67, 0.84) (0.67, 0.81)

Note: The sample period is from 1959:3 to 1998:12 (T = 478). c =
√

T/N is 0.14, 0.41 and 0.71,
respectively, for series A, B and C. The first confidence interval next to ρ̃ is the 90% asymptotic
confidence interval (10). For the boostrap confidence intervals, Bc denotes the 90% bootstrap
bias corrected asymptotic confidence interval (11), Per denotes the 90% percentile interval (12)
and Per-t denotes the 90% percentile-t equal-tailed interval (13).
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Figure 11: US Diffusion Index
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CHAPTER III

INFORMATION HETEROGENEITY, HOUSING DYNAMICS AND THE BUSINESS
CYCLE

Introduction

The recent �nancial crisis that started in the U.S. in December 2007 has demon-

strated the importance of the housing sector in macroeconomic modeling. In response to

the recession, a growing literature has tried to incorporate the housing sector into standard

macroeconomic models to explain stylized facts in the housing market and the business

cycle.1 However, there are two facts that existing quantitative macroeconomic models have

di¢ culty explaining: house prices are highly volatile and closely correlated with the busi-

ness cycle, which is at odds with the evidence that rental prices are relatively stable and

almost uncorrelated with the business cycle; and residential investment leads the business

cycle while nonresidential investment moves contemporaneously with the business cycle.

The main goal of this paper is to present an alternative model to quantitatively

explain these two facts. To incorporate the housing sector into the standard dynamic sto-

chastic general equilibrium (DSGE) model, one usually assumes that �rms need a collateral

asset to secure their external �nancing as in Kiyotaki and Moore (1997), and speci�es the

collateral asset as houses, such as Iacoviello (2005), and Liu, Wang, and Zha (2011) et al.

These types of models succeed in explaining either the close correlation between house prices

and nonresidential investment or the close correlation between house prices and consump-

tion, but fails in explaining the contrast between the high volatility of house prices and the

low volatility of rental prices. Figure 12 illustrates the cyclical components of house prices

and rental prices with the business cycle for the United States from 1975Q1 to 2010Q32

1Iacoviello (2010) is a recent survey. A inexhaustive reading list should include Iacoviello (2005), Davis
and Heathcote (2005, 2007), Piazzesi and Schneider (2009), Iacoviello and Neri (2010), Liu, Wang, and Zha
(2011), Sterk (2010), Burnside, Eichenbaum, and Rebelo (2011), Caplin and Leahy (2011), Chaney, Sraer,
and Thesmar (2012), Chatterjee and Eyigungor (2011), Favilukis, Ludvigson, and Nieuwerburgh (2011),
Mian and Su� (2011), Kiyotaki, Michaelides, and Nikolov (2011), and Rupert and Wasmer (2012).

2In this paper, we collect the data of output, consumption, residential investment, and nonresidential
investment from the St. Louis Fed.
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(all data are log-linearized and �ltered using the Hodrick-Prescott �lter). House prices are

closely correlated with the business cycle and their correlation with U.S. GDP is around

0:52. In contrast, rental prices are almost uncorrelated with the business cycle and their

correlation with U.S. GDP is less than 0:06. Furthermore, house prices are much more

volatile than output and their standard deviation is around 1:55 times of the standard devi-

ation of output. However, rental prices are much less volatile and their standard deviation

is only 0.46 times of the standard deviation of output. To explain the di¤erence between

the volatility of house prices and the volatility of rental prices, in addition to incorporat-

ing �nancial frictions as in Liu, Wang, and Zha (2011), we further incorporate information

frictions into the standard DSGE model, and demonstrate that information heterogeneity

plays a key role in quantitative macroeconomic analysis of housing dynamics.

In the standard DSGE model with �nancial frictions, houses can be viewed as

assets (see equation (20) in Liu, Wang, and Zha (2011)). If we de�ne the rental prices as

the marginal rate of substitution (MRS) between housing consumption and goods consump-

tion, the asset pricing theory implies that house prices are determined by the discounted

sum of future rents. With consumption smoothing, the model predicts that the volatility of

house prices is much lower than the volatility of output (see Liu, Wang, and Zha (2011) for

a detailed discussion). However, if households have heterogeneous information about the

future average MRS between housing consumption and goods consumption, house prices

will also be determined by households�expectations of other households�expectations of the

future average MRS, households�expectations of other households�expectations of other

households�expectations of the future average MRS, and so on. Therefore, higher-order ex-

pectations of the future average MRS play a potential role in determining the �uctuations

of house prices. Our calibration exercise shows that information heterogeneity increases the

relative volatility of house prices to output by more than 50% and explain the disconnect

between house prices and the discounted sum of future rents compared with the full infor-

mation case. However, our model still has a di¢ culty in predicting house prices having a

higher volatility than output.

We assume households�information sets di¤er in two respects. First, households

have dispersed information of the total factor productivity (TFP). Second, households have
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idiosyncratic information of the aggregate preferences on houses. When house prices rise,

households are confused by whether this rise is driven by an improvement in TFP or an

increase in the aggregate demand. Because of rational confusion, an improvement in TFP

has an ampli�ed e¤ect on house prices3. Thus, information heterogeneity generates a higher

volatility of house prices, and breaks down the close correlation between house prices and

rental prices.

The other fact which standard macroeconomic models have di¢ culty in explain-

ing is the lead-lag relationship between residential investment and nonresidential investment

over the business cycle. Figure 13 displays the normalized cyclical components of residential

and nonresidential investment over the business cycle for the United States from 1975Q1 to

2010Q3, and shows that residential investment leads the business cycle while nonresidential

investment moves contemporaneously with the business cycle. The reason why standard

real macroeconomic models have di¢ culty in explaining the lead-lag relationship is because

nonresidential capital produces market consumption and investment goods, whereas resi-

dential capital produces only home consumption goods (e.g. Fisher, 2007). The asymmetry

in how many goods to substitute away from residential capital provides a strong incentive to

substitute away from residential capital toward nonresidential capital after a productivity

shock. In our model, with incomplete information �rms cannot fully observe the true TFP

shocks, so the model generates a dampened response of nonresidential investment to TFP

shocks. On the other side, since the ampli�ed response of house prices mainly comes from

the rising demand of real estate from households, the response of residential investment

to TFP shocks is dampened, but to a smaller degree. In total, the correlation between

lead residential investment and nonresidential investment increases, as does the correlation

between lead residential investment and output. Our calibration shows that the correlation

between lead residential investment and nonresidential investment increases from a negative

value to a large positive value.

3The idea of rational confusion has long existed in the noisy rational expectation literature. For example,
Bulow and Klemperer (1994) use this idea to explain the worldwide stock market crash of 1987. Bacchetta
and van Wincoop (2006) claim that such rational confusion plays a key role in explaining the exchange rate
disconnect puzzle and matching the evidence on micro trading activities.
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The paper is related to several strands of the literature. First, it is related to the

literature incorporating �nancial frictions into models of business cycles (see Gertler and

Kiyotaki, 2010, for a survey). Within this strand, there is a large body of work that speci�es

houses as a collateral asset, and investigates frictions in the house market a¤ecting the

business cycle1. For example, Iacoviello (2005) introduces collateral constraints tied to home

values into a standard monetary business cycle model and shows that houses contribute to

the ampli�cation and propagation of demand shocks. In terms of the labor market, Rupert

and Wesmer (2012) incorporate frictions in housing mobility into a standard searching and

matching model to investigate the di¤erence of unemployment rates between the U.S. and

Europe. Sterk (2011) studies the e¤ect of the housing bust in 2007 on the unemployment rate

of the recent �nancial crisis. However, these models either do not consider the disconnect

between house prices and rental prices or have di¢ culty in explaining it. Liu, Wang, and Zha

(2011) estimate a real business cycle model with land as a collateral asset in �rms�credit

constraints, and claim that a shock originated from households�preferences on houses is

important in determining land prices and the business cycle. In their model, the housing

demand shock explains more than 90% of the observed �uctuations of land prices, and other

shocks make almost no contributions, which seems counterintuitive4.

In this paper, we investigate information frictions in explaining the high volatility

of house prices. Trading with information frictions in the housing market has been consid-

ered in the literature for a long time (see Himmelberg, Mayer, and Sinar, 2005, for a survey).

For recent evidence, Piazzesi and Schneider (2009) propose a search model with transac-

tion costs and show that a small portion of momentum trades generates a high volatility

of house prices. Burnside, Eichenbaum, and Rebelo (2011) develop a model with hetero-

geneous expectations and show that changes in expectations can generate the boom-bust

cycles in the housing market. However, these models are not in a micro-founded general

equilibrium framework, and therefore are not suitable for a quantitative analysis of the

interaction of information frictions and the housing dynamics over the business cycle. To

the best of my knowledge, this paper is the �rst to introduce imperfect information into

4The other shocks include a patience shock, permanent and transitory shocks to neutral technology,
permanent and transitory shocks to biased technology, a labor supply shock, and a collateral shock.
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the standard DSGE model with a housing sector, and shows information heterogeneity has

the potential to explain the aforementioned puzzles in both the housing market and the

macroeconomy. Our paper is also the �rst one to introduce information frictions to explain

the lead-lag relationship between residential investment and business investment. Previous

literature investigating the lead-lag relationship includes Benhabib, Rogerson, and Wright

(1991), Greenwood and Hercowitz (1991), Chang (2000), Gomme, Kydland, and Rupert

(2001) Davis and Heathcote (2005), Fisher (2007), et al.

Finally, this paper also contributes to the growing interests in investigating im-

perfect information in macroeconomics5. In their seminal work, Phelps (1970) and Lucas

(1972) demonstrate that the dispersion of information can help nominal shocks generate

�uctuations in real variables. Recently, Morris and Shin (2002) investigate strategic in-

teractions in a global game framework; Mankiw and Reis (2002) consider the case that

agents update their information sets sporadically; and Sims (2003) formalizes the idea of

information frictions by assuming limited capacity for processing information. Our work

is more closely related with La�O (2010), which also studies the interaction of information

frictions with �nancial frictions. However, our work di¤ers from La�O�s work in three as-

pects. First, our work directly investigates the information frictions in the housing market

and the spillover e¤ects from the housing market to the business cycle. Second, we build our

model in a dynamic stochastic general equilibrium framework and thus can quantitatively

evaluate the contribution of information heterogeneity to both the housing market and the

business cycle. Finally, La�O�s work focuses on how the interactions of �nancial frictions

and information frictions a¤ect noise shocks as an independent source of the business cycle

�uctuations.

The remainder of the paper is organized as follows. Section 2 provides empirical

evidence about the two facts in the housing market and the business cycle. Section 3

introduces the model with both �nancial frictions and information frictions. Section 4

discusses the implications of our model regarding house prices, residential investment, and

5Mankiw and Reis (2010) provide a recent survey. An inexhaustive list includes Phelps (1970), Lucas
(1972), Townsend (1983), Mankiw and Reis (2002), Morris and Shin (2002), Sims (2003), Woodford (2003),
Bacchetta and van Wincoop (2006), Nimark (2008), Lorenzoni (2009), Machowiak and Wiederholt (2009),
Angeletos and La�O (2010), Graham and Wright (2010), and Guo and Shintani (2011), Crucini, Shintani,
and Tsuruga (2010, 2012).
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nonresidential investment over the business cycle. Section 5 presents additional evidence

from the survey data. Finally, section 6 concludes.

Empirical Motivation

In this section, we empirically present the two facts that existing macroeconomic

models have di¢ culty in explaining: the disconnect between house prices and the discounted

sum of future rents; and the lead-lag relationship between residential investment and nonres-

idential investment. To investigate the disconnect between house prices and the discounted

sum of future rents, we consider the user-cost approach, an approach commonly used in the

literature (see Mayer, 2011, for a survey)6. This approach takes the simple non-arbitrage

condition that the rent-price ratio should be equal to the user cost of housing, which is the

sum of the after-tax equivalent-risk opportunity cost of capital and the expectation of fu-

ture house prices appreciation excluding maintenance cost. This implies that the following

relationship holds at each point in time:

Rt
Pt
= �0 + �1it + �2

(1� �h)Pt+1 � Pt
Pt

+ "t; (III.1)

where Rt is the rental price for a representative home for one year at time t, Pt is the

corresponding purchase price of the same home, it is the opportunity cost of capital, �h is

the home depreciation rate, and "t is white noise.

We collect house prices and rent data from 1960Q1 to 2010Q3 from the Federal

Housing Finance Agency (FHFA) home price index, and use the data with the same period

from the Case-Shiller-Weiss (CSW) home price index as a robustness check. The FHFA

series is well-known for its broad geographic coverage, but it covers only conventional mort-

gages. On the other hand, the CSW series covers both conventional and unconventional

mortgages (see Davis and Heathcote (2007) for a detailed description of the data set). By

assuming that the risk premium of house price �uctuations is constant, we take the fed-

eral funds rate to approximate the opportunity cost of capital. To introduce maintenance
6There are three alternative approaches commonly used in the literature: the user-cost methodology which

compares the present discounted value of future rents with house prices; the construction-cost approach that
compares the cost of constructiong a new home with house prices; and the a¤odability approach which
compares the ability of potential buyers of the house with house prices.
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costs, we assume that houses depreciate at a constant rate �h = 0:01 as in Iacoviello and

Neri (2010). Table 6 presents the regression results of equation (III.1). The results show

that appreciation in house prices has almost no explanatory power in the �uctuations of

the rent-price ratio. One percent increases in house prices predict around 0:09 increases in

rent-price ratio for the FHFA series, and around 0:02 increases for the CSW series. The null

hypothesis �2 = 1 is rejected at any signi�cance level for both of the two data sets. Thus,

the regression results con�rm the disconnect between house prices and the discounted sum

of future rents.

The second fact that we want to investigate is the lead-lag relationship between

residential investment and nonresidential investment over the business cycle. The litera-

ture in home production has demonstrated that residential investment leads the business

cycle and nonresidential investment lags the business cycle for the U.S. economy (see Davis,

2010, for a survey). In sharp contrast, Kydland, Rupert, and �ustek (2012) empirically show

that the lead-lag relationship in the developed countries only holds for the two Western-

Hemishpere countries: USA and Canada, and in other developed economies there is no

such a clear feature of the lead-lag relationship between either residential investment or

nonresidential investment and the business cycle. We reconsider the fact and calculate the

correlations among the lead (lag) residential investment, the lead (lag) business investment,

and the lead (lag) output for the following countries and periods: Austria (1988Q1-2012Q2),

Finland (1975Q1-2012Q2), France (1978Q1-2012Q2), Netherlands (1988Q1-2012Q2), the

U.K. (1970Q1-2012Q2), the EU (1988Q1-2012Q2), Australia (1959Q3-2012Q2), Canada

(1981Q1-2012Q2), and the U.S. (1960Q1-2012Q2)7. All the data are logged and Hodrick-

Prescott �ltered. In Table 7, our main results con�rm the leading (lagged) role of residential

(nonresidential) investment over the business cycle in the U.S. and Canada. In other devel-

oped countries, there is no clear order among the second moments except Finland, which

also shares this feature to some extent. One interesting thing in our calculation is that if

we aggregate the �ve countries in the Europe together, the aggregate will also somewhat

perform like the U.S. and Canada.

7The EU is aggregated by the �ve following countries: Austria, Finland, France, Netherlands, and the
U.K.. We collect the data for the European countries from the Eurostat, for Canada from the OECD, for
Australia from Australian Bureau of Statistics, and for the U.S. from the St. Louis Fed.
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To further investigate the causality e¤ect between residential and nonresidential

investment, we conduct a bivariate vector autoregression (VAR) with a Granger-causality

test for these two types of investment. To apply the Granger-causality test, we �rst test

whether the two series have a unit-root process by the Dickey-Fuller test. If the two series are

of I(1), we further test whether the two are cointegrated. If we cannot detect a cointegration

relationship between the two series, the following formulation is used in testing the null

hypotheses:

�Ist = �0 +

kX
i=1

�1i�I
s
t�i +

kX
�=1

�2i�It�i + "1t (III.2)

�It = �0 +
kX
i=1

�1i�I
s
t�i +

kX
�=1

�2i�It�i + "2t:

Failing to reject the H0: �21 = �22 = ::: = �2k = 0 implies that nonresidential investment

does not Granger cause residential investment. Likewise, failing to reject H0: �12 = �12 =

::: = �1k = 0 implies that residential investment does not Granger cause nonresidential

investment. If the series are cointegrated, we need to incorporate an error correction term

in testing the null hypotheses:

�Ist = �0 + �1(I
s
t � �It) +

kX
i=1

�1i�I
s
t�i +

kX
�=1

�2i�It�i + "1t (III.3)

�It = �0 + �2(I
s
t � �It) +

kX
i=1

�1i�I
s
t�i +

kX
�=1

�2i�It�i + "2t;

in which �1 and �2 denote speeds of adjustment. Failing to reject the H0: �21 = �22 =

::: = �2k = 0 and �1 = 0 implies that nonresidential investment does not Granger cause

residential investment. Likewise, failing to reject H0: �12 = �12 = ::: = �1k = 0 and �2 = 0

implies that residential investment does not Granger cause nonresidential investment.

The data we use in testing equation (III.2) or (III.3) are the same as in Table 7.

However, we conduct the Granger-causality test for the period from 1984Q1 to 2005Q4 in

the U.S. as a robustness check to avoid the potential problem of structural changes, since this

period is well-known for its low volatility of the business cycle in contrast to other periods.

The lag parameter k is selected by the Akaike information criterion (AIC). Table 8 shows

the fact that in the U.S. and Canada residential investment Granger causes nonresidential
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investment and nonresidential investment does not Granger cause residential investment.

This fact is very clear in Canada, but in the U.S., we can reject the null hypothesis that

residential investment does not Granger cause nonresidential investment at any signi�cance

level, whereas we cannot reject the null hypothesis that nonresidential investment does

not Granger cause residential investment for the period from 1984Q1 to 2005Q4 at 5%

signi�cance level, and for the period from 1960Q1 to 2010Q3 at 1% signi�cance level. In

other developed countries, there is no such feature similar as in the U.S. and Canada,

except in Australia and the U.K. In contrast to the lead-lag relationship that the European

aggregate shares with the U.S. and Canada, we cannot see such a similarity for the Granger

causality of the two types of investment between the two regions.

The Basic Model

To quantitatively explain the two facts in a dynamic general equilibrium frame-

work, we build our model in the style of Liu, Wang, and Zha (2011) with real estate

production and information heterogeneity. The model in Liu, Wang, and Zha (2011) is

a variant of standard real business cycle models that include a feature of credit frictions

(Kiyotaki and Moore, 1997). We add a real estate production sector into the model, and

assume agents are endowed with heterogeneous information instead of perfect information.

Following Iacoviello (2005), Iacoviello and Neri (2010), Kiyotaki, Michaelides, and Nikolov

(2011), and Liu, Wang and Zha (2011), we assume two types of agents in the economy:

a representative impatient entrepreneur and a continuum of patient households. The rep-

resentative entrepreneur owns two types of �rms: a continuum of residential �rms and a

continuum of nonresidential �rms. The whole economy is segmented geographically and

endowed with a continuum of islands. Each island i 2 [0; 1] contains one residential �rm,

one nonresidential �rm, and one household. The residential �rm hires labors from the

household, and accumulates residential structures to build houses. The nonresidential �rm

also hires labor from the household, accumulates nonresidential capital, and combines with

real estate input to produce �nal goods. The household provides labor services, saves for

next period, and consumes �nal goods and housing services. The �nal goods can be used to
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�nance residential investment and nonresidential investment, whereas real estate can only

be used for residence.

Entrepreneurs

The representative entrepreneur owns a continuum of residential �rms and a con-

tinuum of nonresidential �rms. On each island resides one residential �rm and one nonresi-

dential �rm. The residential �rm and the nonresidential �rm maximize their expected pro�ts

and return the pro�ts to the entrepreneur. The nonresidential �rm i takes a Cobb-Douglas

constant-to-scale technology that uses labor, capital, and housing as input, according to

Yit = K
�k
it (AtAitN

0k
it )

vkH
01��k�vk
it ;

where Yit is the output, At is the aggregate technology level, Ait is the �rm-speci�c tech-

nology level, Kit is capital produced at the end of last period, H
0
it is the real estate input,

and N
0k
it is the labor input in the nonresidential market. �k and 1 � �k � vk measure

output share of capital and real estate respectively. The residential �rm i also takes a

Cobb-Douglas constant-to-scale technology that uses labor, residential structures, and land

as input, according to

H0
it = S

�h
it (AtAitN

0h
it )

vhL
1��h�vh
it ;

where H0
it is newly built housing, Sit are residential structures, Lit is the land endowment,

and N
0h
it is the labor input in the residential market. �h and 1��h�vh measure output share

of residential structures and land respectively. The representative entrepreneur borrows Bit

from household i in the asset market, invests Iit in the nonresidential capital market and

Isit in the residential structure market, produces consumption �nal goods by purchasing real

estate input �(Hit) and hiring workers Nk
it, constructs houses by using the land endowment

Lit, the labor input Nh
it, and the residential structure Sit, and consumes C

0
t to maximize its

97



expected utility according to

maxE

1X
t=0

�
0tC

01�
t

1� 

s:t: C
0
t +

Z
I
[(N

0k
it +N

0h
it )Wit �

�itBit+1
Rit

+ Pt(H
0
it � (1� �h)H

0
it�1) + Iit + I

s
it �

K
�k
it (AitAtN

0k
it )

vkH
01��k�vk
it � PtS�hit (AitAtN

0h
it )

vhL
1��h�vh
it +Bit]di = 0

where �
0
is the discount factor of the entrepreneur,  measures the relative risk aversion,Wit

is the wage that the entrepreneur pays for workers from the household i, �it is the island-

speci�c bond-holding shock, Rit is the island-speci�c interest rate, �h is the discount factor

of houses, and Pt is house prices. The island-speci�c bond-holding shock �it serves one and

only one role, to slow down the learning of agents in island i from the bond market. To

replace the assumption of the island-speci�c bond-holding shock, one can introduce another

aggregate shock, such as a patience shock to the entrepreneur, to serve a similar role. For

simplicity, we do not consider adding another aggregate shock. As in Kiyotaki and Moore

(1997), we assume the entrepreneur needs collateral to secure its borrowings

Bit+1 � mEit(Pt+1H
0
it); (III.4)

where m indicates that if borrowers repudiate their debt obligations, lenders can liqui-

date the borrowers� real estate assets but have to pay a proportional transaction cost

(1�m)Pt+1Hit. Allowing capital as an additional collateral asset will amplify the e¤ect of

credit constraints since the entrepreneur will be more leveraged. We will discuss this later

as a robustness check. Nonresidential capital accumulation follows the law of motion

Kit+1 = (1� �k)Kit +�1(
Iit
Kit

)Kit;

and similarly, residential structure accumulation follows the law of motion

Sit+1 = (1� �s)Sit +�2(
Isit
Sit
)Sit;

where �k and �s are the discount factors of nonresidential capital and of residential structures

respectively, and �1(�) and �2(�) denote the adjustment cost functions of nonresidential

capital and of residential structures respectively.
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Households

We assume one household resides on each island i. The household i consumes

the �nal goods, utilitzes the housing services, and provides labor services to the residential

�rm and the nonresidential �rm. The household maximizes its expected discounted sum of

utility conditional on its own information set 
it by

maxEi

1X
t=0

�t[lnCit + �0�t�it lnHit �  Nit];

where Cit is goods consumption, Hit is the housing consumption, Nit is the labor services

provided by the household, � is the discount factor, �t and �it denote the aggregate and the

idiosyncratic housing preference shocks respectively, and �0 and  are constant parameters.

We assume households�discount factor � > �
0
, which indicates that households are more

patient than the entrepreneur and inclined to save. The household i�s budget constraint is

given by

Cit + Pt(Hit � (1� �h)Hit�1) +
Bit+1
Rit

�WitNit �Bit = 0:

Market Clearing

The economy has four markets in total: goods, labor, bond and housing. To clear

the goods market, we have

C
0
t +

Z
I
[Cit + Iit + I

s
it]di =

Z
I
Yitdi:

We assume labor is immobile across islands, so in island i we have

Nit = N 0k
it +N

0h
it :

To clear the bond market, we have

Bit +B
0
it = 0:
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Finally, to clear the housing market, we haveZ
I
[Hit +H

0
it � (1� �h)(Hit�1 +H 0

it�1)]di =

Z
I
H0
itdi:

Shocks

Our model includes two aggregate shocks and three idiosyncratic shocks. The

aggregate shocks follow AR(1) processes in logs,

logAt = �a logAt�1 + u
a
t

log�t = �� log�t�1 + u
�
t ;

where uat � N(1; �2a), and u
�
t � N(1; �2�). The idiosyncratic shocks also follow the AR(1)

processes in logs

logAit = �ai logAit�1 + u
a
it

log�it = ��i log�it�1 + u
�
it

log �it = ��i log �it�1 + u
�
it;

where uait � N(1; �2ai), u
�
it � N(1; �2�i), and u

�
it � N(1; �2�i). We also assume the law of

large numbers applies for the distribution of all the three types of idiosyncratic shocks, as

is common in the literature.

The Information Structure and the Equilibrium

At each period t, the representative entrepreneur has full information. However,

the �nal goods �rm i, the real estate �rm i, and the household i can only obtain information

from their market activities: idiosyncratic preferences series on houses f�t�s�it�sg1s=0, wage

series fWit�sg1s=0, interest rate series fRit�sg1s=0, and house prices series fPt�sg1s=0. The

information set for agents in island i is denoted as


it = ff�t�s�it�sg1s=0; fWt�sg1s=0; fRit�sg1s=0; fPt�sg1s=0g:
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We assume the parameters and the model structure are common knowledge, which indicates

our model is in line with the framework of noisy rational expectation models.

The equilibrium is de�ned as follows:

1. Given prices and information restrictions, the allocations solve the utility maximiza-

tion problem of the entrepreneur and of the household i and the pro�t maximization

problem of the �nal goods �rm i and the real estate �rm i.

2. All markets clear, and fPt�s; Rit�s;Wit�sg1s=0 are the market clearing house prices,

interest rates of bonds, and wages, respectively.

Economic Implications

In our model, we assume residential �rms, nonresidential �rms, and households

do not have full information about the economic fundamentals and di¤er in their informa-

tion sets for di¤erent islands. Instead of an ad hoc assumption of perfect information, we

assume agents can only extract information about the true economic fundamentals from

their idiosyncratic market activities. With information heterogeneity, agents make their

decisions based on their forecasts of not just true economic fundamentals but also forecasts

of other agents�actions, forecasts of other agents�forecasts of other agents�actions, etc. In

this section, we show that higher-order beliefs play a potential explanatory role in the two

facts: the disconnect between house prices and rental prices, and the lead-lag relationship

between residential investment and nonresidential investment over the business cycle.

Solving a dynamic general model with dispersed information requires dealing with

the well-known "in�nite regress" problem (Townsend, 1983), since higher-order beliefs are

crucial for the decisions of agents and depend on the entire history of shocks. The literature

has solved this type of model by either truncating the dependence of equilibrium actions on

higher order beliefs (Nimark, 2008) or by assuming private information is revealed after an

ad hoc period T (Lorenzoni, 2009). We take the second approach, and assume that after T =

30 periods all of the shocks are observed by agents across islands. The choice of T is based
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on two considerations: saving computational time and not a¤ecting the results signi�cantly

if the value of T is increased. We assume all the shocks are relatively small in magnitude,

so the inequality in (III.4) is always binding. Without the problem of occasional binding,

one can solve the model by log-linearizing around the steady state. After log-linearization,

we solve the linear equations by combining Sims�s (2001) method and the guess-veri�cation

approach. In the model economy, agents on island i are integrated into two aggregate

markets: the �nal goods market and the housing market. Therefore, decisions of agents

are a¤ected by two aggregate variables: consumption of the representative entrepreneur C
0
t

and house prices Pt. In the �rst step, we guess the aggregate variables, C
0
t and Pt, to be

linear functions of aggregate shocks; in the second step, we plug these two variables into the

equations and solve the equations using Sims�s (2001) method; in the third step, we update

expectation operators of agents on island i by their information set 
it; �nally, we verify

the guess of linear functions of C
0
t and Pt by minimizing their distance with the updated

variables C
0
t and Pt. The appendix provides a detailed description of the method.

To calibrate the model, we choose the parameters commonly used in the literature

(e.g. Iacoviello and Neri, 2010). � and �
0
are set to 0:9925 and 0:97 respectively. Relative

risk aversion, , is set to 2. The housing preference parameter �0 is set to 0:1 and the

disutility on labor  is set to 1. The entrepreneurial "loan-to-value ratio" m is set to 0:89

to match the empirical debt to GDP ratio in the U.S. data. The nonresidential capital

share in the output production function is set to �k = 0:63, and the house share is set to

1��k�vk = 0:05. For the real estate production function, the share of residential structures

is set to �h = 0:1, and the share of land is set to 1��h� vh = 0:1. The discount factors for

houses, residential structures, and nonresidential capital are set to �h = 0:01, �s = 0:25, and

�k = 0:03 respectively. These three discount factors, combined with the capital share in the

goods production function and real estate production function, imply that nonresidential

investment accounts for around 30% of the total output, residential investment accounts for

about 6% of the total output, and the value of house stocks is about 1:80 time the total

output. The solution method does not require us to specify the functional form of �1 and

�2, but needs us to set the values of �1, �01, �
00
1, �2, �

0
2, and �

00
2 in the steady state. We

choose �1( IK ) = �k, �01(
I
K ) = 1, �2( I

s

S ) = �s, and �01(
Is

S ) = 1, so that the model with
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adjustment costs has the same steady state as the model without adjustment costs. We

set the second-order derivative of the adjustment cost function of residential investment

�002(
Is

S ) = �2:5, the same as that of nonresidential investment �
00
1(

I
K ) = �2:5. The later is

chosen as in Christiano, Eichenbaum, and Evans (2005)8.

There are two aggregate and three idiosyncratic AR(1) shock processes in total.

Two parameters are crucial for the AR(1) processes: the persistence and the variance of the

shocks. The persistence and the variance of the shocks a¤ect the response of business cycle

variables in two di¤erent ways: �rst, the shocks to the model are directly a¤ected; second,

the precision of agents�information and agents�information updating process are altered.

For the aggregate technology shock process, we assume a persistent shock process and set

�a = 0:95 as in Fisher (2005). Similarly, the autocorrelation in the aggregate housing

preference shock is assumed to be �� = 0:95. We choose �2a = 0:009842 to match the

volatility of output, and �2� =
1
102
�2a to weaken the e¤ect of housing preference shocks and

focus on technology shocks as a main driving force of the business cycle �uctuations9. Since

our interest is in the role of information heterogeneity in matching aggregate business cycle

variables, we choose the persistence and the variance of idiosyncratic shocks to maximize

the e¤ect of information heterogeneity on house prices, and ignore the empirical micro-level

cross-sectional facts. For the idiosyncratic bond-speci�c shock processes, we set ��i = 0

and �2�i = 1 for one and only one reason: to screen the information contained by the

real interest rate. For the idiosyncratic technology shock and the idiosyncratic housing

preference shock, we set �ai = 0:001, ��i = 0:001, �2ai = 1002�2a and �
2
�i = 1002�2a. The

high magnitude of idiosyncratic shocks implies that agents extract information mainly from

house prices instead of idiosyncratic variables, such as island-speci�c wages and island-

speci�c technology shocks. This assumption of a large magnitude of idiosyncratic shocks

relative to aggregate shocks has been used in the literature (Máckowiak and Wiederholt,

2009).

8In the literature, one usually pins down the parameters �001 (
I
S
) and �001 (

Is

S
) by matching the volatility of

nonresidential investment and residential investment in the data, Unfortunately, our solving procedure can
�nd a convergence point only for certain ranges of parameters values. Of course, this is left for future work.

9In our model, a low magnitude of the housing preference shocks is enough to confuse the rational agents.
Nimark (2008) makes a similar assumption that the variance of the transitory labor supply shock is 1

100
of

other aggregate shocks, such as the technology shock.
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To evaluate the model�s performance, we turn on all the shocks and simulate the

model 1; 000 times with 142 periods in each simulation. The simulated data are then �ltered

with the Hodrick-Prescott �lter. The average second moments of all the simulations and

their empirical counterparts are reported in Table 9. Our model con�rms the main argu-

ments in Liu, Wang, and Zha (2011) that collateral constraints in nonresidential investment

play a key role in explaining the close correlation between house prices and other business

cycle variables. All of the correlations between house prices and other business cycle vari-

ables for the simulated data are well above their empirical counterparts. In comparison

with the model with full information, two facts stand out for the model with heterogeneous

information: �rst, information heterogeneity ampli�es the response of business cycle vari-

ables to technology shocks10; second, the correlation between lead residential investment

and nonresidential investment increases signi�cantly from a negative value to a large posi-

tive value, and exceeds the correlation between lag residential investment and nonresidential

investment. Similarly, the correlation between lead residential investment and output in-

creases signi�cantly from a small positive value to a large positive value, and exceeds the

correlation between lag residential investment and output.

What drives house prices �uctuations?

Table 9 shows that information heterogeneity ampli�es the response of business

cycle variables to technology shocks, especially for house prices, whose standard deviation

in the model with heterogeneous information is about twice the standard deviation in the

model with full information. In contrast, the standard deviation of goods consumption

increases slightly. These two together indicate that our model might be able to explain the

puzzle of the disconnect between house prices and rental prices, since the later is closely

correlated with �nal goods consumption. As discussed in Liu, Wang, and Zha (2011),

the main reason why standard DSGE models with a housing sector cannot predict a high

10Since the standard deviation of housing preference shocks is one-tenth of the standard deviation of
technology shocks, the role of housing preference shocks in our calibration is limited.
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volatility of house prices can be illustrated by the Euler equation of households,

Pt = �(1� �h)Eit
Cit
Cit+1

Pt+1 +
�0�t�itCit

Hit
:

If we de�ne rental prices as the marginal rate of substitutions between goods consumption

and housing service consumption as

Rhit =
�0�t�itCit

Hit
;

house prices can be expressed as

Pt = �(1� �h)
Z
I
Eit

Cit
Cit+1

Pt+1di+R
h
t ; (III.5)

where Rht =
R
I R

h
itdi denotes the aggregate rental prices. We further write house prices

recursively,

Pt = �(1� �h) �Et
Cit
Cit+1

Pt+1 +R
h
t =

1X
k=0

�k(1� �h)k �E(k)t Rht+k
Ct

Ct+1+k
:

where �E0t (Pt) = Pt, �E1t (Pt+1) = �Et(Pt+1), and higher-order expectations are de�ned as,

�Ekt (Pt+k) = �Et �Et+1 � � � �Et+k(Pt+k):

Therefore, house prices at time t depend on rental prices at time t, the average expectation

at time t of rental prices at time t + 1, the average expectation at time t of the average

expectation at time t + 1 of rental prices at time t + 2, etc. In the case of complete

information, the average expectation at t of the average expectation at t+1 of rental prices

at t+2 coincides with the average expectation at t of the average expectation of rental prices

at t+ 2, i.e. �Et �Et+1 � � � �Et+k(Pt+k) = �Et(Pt+k), and therefore equation (III.5) collapses to

Pt =
1X
k=0

�k(1� �h)kEtRht+k
Ct

Ct+1+k
:

Since households smoothly allocate their consumption period by period, the model with

full information fails to predict a high volatility of house prices. However, in the case of

imperfect information, equation �Et �Et+1 � � � �Et+k(Pt+k) = �Et(Pt+k) does not hold. In other

words, even though rental prices are relatively stable, house prices might still be volatile
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since house prices are also determined by higher-order expectations of future rental prices.

Figure 14 displays the response of house prices to one positive standard deviation of tech-

nology shocks in the models with full information and in the model with heterogeneous

information. Information heterogeneity initially dampens the technology shocks, but am-

pli�es and propagates the technology shocks after three quarters. Unfortunately, our model

still fails to generate a higher volatility of house prices than output. To illustrate how in-

formation heterogeneity a¤ects house prices, we plot the average expectation of next-period

house prices for both the full information case and the heterogeneous information case in

Figure 15, since equation (III.5) shows that it is crucial in determining house prices in this

period. The �gure displays that the model with heterogeneous information is accompanied

by higher average expectations of house prices.

To rigorously prove that information heterogeneity can explain the disconnect

between house prices and rental prices, we test the user-cost equation as in (III.1) using the

simulated data. The results in Table 10 show that the null hypothesis �2 = 1 cannot be

rejected by the model with full information, but is rejected by the model with heterogeneous

information at 5% signi�cance level. In sum, even though the model with heterogeneous

information cannot predict house prices having a higher volatility than output, it explains

the disconnect puzzle between house prices and rental prices to some level.

Implications for Investment Dynamics

The other prediction of our model is the lead-lag relationship among nonresiden-

tial investment, residential investment, and output. Empirical studies have documented

that residential investment leads the business cycle, but nonresidential investment lags the

business cycle, and the two types of investment are positively correlated with each other

(see Gangopadhyay and Hatchondo, 2009, for a survey). However, standard real business

cycle models with home production predict the opposite and even a large negative value

for the correlation between the contemporaneous residential investment and nonresidential

investment. To match the data, several di¤erent channels have been emphasized in the

literature, including adjustment costs in capital accumulation (Chang, 2000), time-to-build
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in nonresidential investment (Gomme, Kydland, and Rupert, 2001), multiple-market sec-

tors (Davis and Heathcote, 2005), and a direct role for household capital as an input in

market production (Fisher, 2007). In this paper, we highlight the information channel and

show that the presence of information heterogeneity has a potential to explain the lead-lag

relationship between residential investment and nonresidential investment.

As emphasized by Fisher (2007), real business cycle models with home produc-

tion can predict the lead-lag relationship between residential investment and nonresidential

investment, if home product enters the production function of market goods with a reason-

able share. In our model, real estate enters the production function of �nal goods in two

di¤erent ways: �rst, it directly enters the production function with a share of output equal

to 1��k�vk = 0:05; second, it serves as collateral for nonresidential investment. Since the

share in our model is lower than the share of 0:14 in Fisher (2007), our model with full in-

formation cannot explain the lead-lag relationship, but it does predict a positive correlation

of 0:69 between the contemporaneous residential investment and nonresidential investment

as shown in the panel B of Table 9. The panel also shows information heterogeneity plays

a key role in generating the positive correlation between lead residential investment and

nonresidential investment. When there is no information frictions, the model predicts a

negative correlation of �0:04, which is much less than the correlation between lead nonres-

idential investment and residential investment of 0:58. In contrast, when there is informa-

tion heterogeneity, the correlation between lead residential investment and nonresidential

investment increases to a signi�cantly positive value 0:51, larger than the correlation of 0:38

between the lead nonresidential investment and residential investment. However, our model

still produces a larger correlation between the contemporaneous residential investment and

nonresidential investment, which is at odds with the data.

In the standard real business cycle model with home production, �rms increase

their production and nonresidential investment immediately in response to TFP shocks.

Whereas real estate �rms increase residential investment gradually. Therefore, the model

predicts a negative correlation between lead residential investment and nonresidential in-

vestment. In the model with information heterogeneity, both residential �rms and nonresi-

dential �rms are partially informed about the size of TFP shocks, and therefore both �rms
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postpone their investment in response to TFP shocks. However, if the ampli�ed house prices

are mainly caused by rising demand from households, real estate �rms will have a stronger

incentive to increase residential investment in response to TFP shocks since the marginal

revenue of real estate production increases. As shown in last subsection, the main reason the

response of house prices is ampli�ed is the breakdown in households�Euler equation (III.5).

In our calibration, we �nd aggregate housing demand from households Ht =
R
I Hitdi de-

creases by much less in the model with information heterogeneity compared with the model

with full information. Accordingly, residential investment will decrease by much less, and

the correlation between lead residential investment and nonresidential investment increases.

With the delayed response of nonresidential investment, our model predicts a hump-shaped

response of output to one standard deviation of TFP shocks. In the case of imperfect in-

formation, the response of output initially increases at a slow speed and peaks in several

periods. The hump-shaped response of output con�rms the �nding in Nimark (2008) that

imperfect information provides a potential explanation for the contrast between a posi-

tive autocorrelation of output in the data and a negative autocorrelation of output in the

real business cycle theory (Cogley and Nason, 1995). The one-period-lag autocorrelation

increases from �0:10 to 0:04, although not signi�cantly.

Empirical Evidence from Survey Data

A di¢ culty in the literature of imperfect information is that it is hard to provide

empirical evidence to test the model. A prediction of our model is that if we de�ne ex-

pectation errors of real variables as the di¤erence between the average expectation of real

variables and the corresponding realized variables, the expectation errors should be corre-

lated with the business cycle. For instance, the model predicts that the forecast errors of

output are positively correlated with the business cycle in response to TFP shocks with

a correlation of 0:052, since �rms are partially informed about the shocks and agents�ex-

pectations of output tend to underreact. As other variables, such as house prices, are also

positively responded to TFP shocks, if one identi�es an independent shock in the expecta-

tion errors of output, a vector autoregression (VAR) should perform as this shock positively
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causes other real variables, such house prices, output and investment.

To con�rm this prediction, we run a three-variable VAR with expectation errors

of output, output, and house prices to consider the partial derivatives of output and house

prices at various horizons with respect to shocks in the expectation errors of output. We

compare the results from an empirical VAR to those arising from application of the same

VAR speci�cation to data generated from our model with information heterogeneity. To

measure the average expectation of output, we collect data from the Survey of Professional

Forecasters (SPF). The data cover the period from 1975Q1 to 2010Q3. We take the median

forecasts of real GDP in the coming quarter as the forecast of output. We de�ne the

expectation errors as the percentage deviation of the realized real GDP from the forecast

of real GDP. To see how innovations in the expectation errors a¤ect other variables, we

run the VAR with four lags and the expectation errors ordered �rst. Figure 15 shows the

empirical impulse responses to shocks in expectation errors of output from the trivariate

VAR. The shaded areas represent one-standard-error bias-corrected bootstrap con�dence

bands of Kilian (1998). The �gure shows that one percent increases in agents�expectation

errors are followed by around 0:05 increases in house prices and 0:4 increases in real GDP.

To run a similar trivariate VAR for the model, we collect simulated data with a

length of 142 observations. The average expectations of real variables are directly calculated,

as agents�information sets are clearly de�ned. Similarly, we de�ne the expectation errors

of output as the percent deviation between the average expectation of output and the true

output. The correlation between the expectation errors and output is also a positive value of

0:042. Figure 16 plots the impulse response to one positive standard deviation of shocks in

expectation errors of output from the trivariate VAR for the simulated data. The responses

in the simulated data are as similar as the responses in the empirical data, although they

di¤er in magnitude. A one percent increase in agents� expectation errors is followed by

around a 0:05 percent increase in house prices and a 0:05 percent increase in output. The

main di¤erence between the data sets is that in the simulated data both house prices and

output respond with a hump shape, but in the empiricial data, we do not observe such a

hump.

To check the robustness of the results, we have repeated the VAR exercise using
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di¤erent variables or di¤erent numbers of variables. For instance, we have replaced the

expectation errors of output by the expectation errors of nonresidential investment, and

replaced output by nonresidential investment. We have also extended the three-variable

VAR to a �ve-variable VAR by adding consumption and nonresidential investment. All of

the regressions report similar qualitative results.

Conclude

The recent standard real business cycle models with �nancial frictions succeed in

explaining the close correlations among house prices, consumption, and investment. How-

ever, the models cannot explain two facts: the disconnect between house prices and rental

prices, and the lead-lag relationship between residential investment and nonresidential in-

vestment. We introduce information heterogeneity into a standard real business cycle model

with real estate production and �nancial frictions. By assuming that agents are rationally

confused about the sources of shocks, the model generates an ampli�ed response of house

prices to technology shocks, which explain the disconnect puzzle. Since the ampli�ed re-

sponse mainly comes from the rising demand of real estate from households, the model

potentially explains the lead-lag relationship between residential investment and nonresi-

dential investment.

There are several directions in which our paper can be improved11. In our model,

although we show information heterogeneity ampli�es the response of house prices to tech-

nology shocks, the volatility of house prices is still much lower compared to the data. One

can introduce monetary shocks into the model and investigate the confusion between real

shocks and nominal shocks, since nominal shocks can also be viewed as pure demand shocks

and therefore may serve a similar role to housing demand shocks in our model. Second, we

could apply the method of minimization of distance between the simulated second moments

and the empirical second moments to pin down parameters for our calibration instead of

choosing ad hoc values. Third, our model extends the standard real business cycle model

in three directions: residential production, �nancial frictions, and information frictions. It
11Our solution method can only solve the model using certain ranges of parameters values. Of course, this

is the most central issue to address.
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is more intuitive to extend the model step by step, so one can clearly discuss how each

extension a¤ects the model. All of these are left for future work.
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Appendix: Solving a DSGE model with heterogeneous information

The solving procedure consists of four steps in total.

� Step one: shut down all the shocks, solve the model in the steady state, and log-

linearize the model around the steady state. In our model, there are two aggregate

variables which a¤ect agents�decisions: housing prices Pt and the aggregate consump-

tion of the entrepreneur Ct. The later one also determines the stochastic discount

factor. We assume the two aggregate variables are a linear function of aggregate

shocks �t = ffuat�igTi=1; fu
�
t�igTi=1g, Ct = CC � [uat ; uat�1; :::; uat�T ; u

�
t ; u

�
t�1; :::; u

�
t�T ]

0,

and Pt = PP � [uat ; uat�1; :::; uat�T ; u
�
t ; u

�
t�1; :::; u

�
t�T ]

0.

� Step two: replace the goods market clearing condition and the housing market clear-

ing condition by the two above equations of the de�nitions Ct and Pt, and solve the

linear di¤erence equations as a typical rational expectation model.

� Step three: from Step two, we have

Yit = G1Yit�1 +�c +�0z
�
it;

and then apply an expectation operator to both sides of the above equation conditional

on the information set 
it

Yit = G1Yit�1 +�c +�0Eitz
�
it:

To derive Eitz�it, we should �rst keep in mind that the signals sit island i receives are

linear functions of zit, given by,

sit = �zit:

By Kalman �lter updating, we have

Eitzit � E(zitjsit) = ��0(���0)�1sit = ��0(���0)�1�zit:

� Step four: plug the solved individual variables into the goods market clearing con-

dition and the housing market clearing condition, derive the updated C�t and P �t ,
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and match the distance between (Ct; Pt) and (C�t ; P
�
t ): If the distance is zero or close

enough to zero, we solve the model. In our calibration, the square root of the distance

is less than 10�3, although we cannot �nd the exact solution.
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Table 6: House price appreciation and rental prices

�0 �1 �2
The FHFA series 0:0449�� 0:0022�� 0:0899��

The CSW series 0:0439�� 0:0024�� 0:0191��

�� indicates rejection at 1% signi�cance level.

Table 7: Second Moments - Empirical lead-lag correlations

Austria FIN FRA NET UK EU AUS CAN US
�(Ist�1; It) �0:359 0:453 0:576 0:227 0:210 0:301 0:355 0:398 0:503

�(Ist ; It) �0:268 0:378 0:618 0:567 0:094 0:288 0:267 0:228 0:289

�(Ist+1; It) �0:161 0:202 0:448 0:138 �0:029 0:182 0:137 0:018 0:021

�(Ist�1; Y t) 0:047 0:669 0:540 0:378 0:467 0:722 0:519 0:640 0:689

�(Ist ; Y t) 0:029 0:668 0:595 0:489 0:513 0:715 0:578 0:580 0:571

�(Ist+1; Y t) 0:019 0:560 0:604 0:463 0:454 0:618 0:503 0:378 0:345

�(It�1; Y t) 0:381 0:452 0:082 0:416 �0:063 0:495 0:335 0:491 0:498

�(It; Y t) 0:473 0:653 0:186 0:584 0:007 0:596 0:479 0:662 0:724

�(It+1; Y t) 0:484 0:737 0:261 0:610 0:089 0:621 0:510 0:745 0:797

Ist ; It; and Ytdenote residential investment, nonresidential investment and output respectively.

Table 8: The causality test between residential and business investments

Country Ist 9 It It 9 Ist
Lag �2 Value p Value �2 Value p Value

Austria 4 4:120 0:390 8:199 0:085

Finland 6 13:63 0:034 12:318 0:055

France 6 116:52 0:000 99:495 0:000

Netherlands 4 5:311 0:257 7:454 0:114

UK 2 8:121 0:017 5:052 0:080

Euro 2 2:331 0:312 5:874 0:061

Australia 4 22:649 0:000 5:303 0:258

Canada 2 10:190 0:006 5:611 0:060

USA (1960Q1~2012Q2) 4 181:9 0:000 13:8 0:014

USA (1984Q1~2005Q4) 2 158:8 0:000 5:1 0:076
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Table 9: Business cycle statistics for the models

U.S. Data Full info. Hetero info.
A. Basic statistics

�y 1:42 1:08 1:31

�c=�y 0:62 0:48 0:36

�i=�y 2:54 2:35 2:73

�is=�y 5:05 2:64 2:54

�p=�y 1:55 0:49 0:64

�(yt; pt) 0:52 0:77 0:87

�(ct; pt) 0:47 0:90 0:94

�(it; pt) 0:59 0:97 0:98

B. Investment dynamics
�(Ist�1; Yt) 0:77 0:17 0:58

�(Ist ; Yt) 0:73 0:83 0:66

�(Ist+1; Yt) 0:32 0:65 0:44

�(Ist�1; It) 0:84 �0:04 0:51

�(Ist ; It) 0:71 0:69 0:59

�(Ist+1; It) 0:29 0:58 0:38

�(It�1; Yt) 0:75 0:42 0:43

�(It; Yt) 0:89 0:97 0:98

�(It+1; Yt) 0:60 0:20 0:47

Table 10: House price appreciation and rental prices in simulated data

�0 �1 �2
U.S. Data 0:0449�� 0:0022�� 0:0899��

Full info. 0:0148 1:3487 1:4195

Hetero info. 0:0141 1:8102� 0:4895�

�� and � indicate rejection at 1% and 10% signi�cance level respectively.
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Figure 12: Home rents and house prices with the business cycle.
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Figure 13: Residential investment and nonresidential investment with the business cycle
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Figure 14: House prices in response to TFP shocks

0 2 4 6 8 10 12 14 16 18 20
0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

t

co
m

m
od

ity
 u

ni
ts

Average Expected House Prices

 

 
Full Info
Hetero Info

Figure 15: Average expectation of next-period house prices
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Figure 16: Empirical evidences from SVAR
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Figure 17: Simulation evidences from SVAR
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